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ABSTRACT

In modern Fourier analysis, the study of multilinear (m-linear) operators focuses on es-
tablishing their boundedness from the m-fold product of normed spaces to the appropriate
normed spaces. For instance, Lebesgue spaces are commonly considered as the normed
spaces in this context. These operators find applications in various fields, including partial
differential equations, complex analysis, and quantum mechanics. A more comprehensive
investigation consists of exploring weighted inequalities, which involve determining the
boundedness of these operators on weighted Lebesgue spaces. Weighted inequalities hold
significance in a broader scope, impacting areas such as vector-valued operators, operator
extrapolation, and the theory of Laplace’s equation boundary value problems on Lipschitz
domains.

Over the past three decades, a parallel theory to classical Fourier analysis, associated
with root systems and reflection groups, has emerged in Euclidean harmonic analysis. This
theory, known as Fourier analysis in the Dunkl setting, serves as a generalization of classi-
cal Fourier analysis. Within this context, significant progress has been made, particularly
in understanding singular integrals, Fourier multiplier operators, and potential-type oper-
ators. However, exploration of multilinear operators or weighted inequalities within the
Dunkl setting has been relatively limited. The primary aim of this thesis is to delve into the
weighted boundedness of some multilinear operators in the Dunkl framework.

The first result of this thesis is one and two-weight estimates for multilinear Calderdn-
Zygmund type singular integral operators in the Dunkl setting, along with the associated
maximal operators. Importantly, these operators distinguish themselves from classical Cald-
eron-Zygmund singular integral operators by incorporating both the ‘Dunkl metric’ and the
usual metric in their definition. In the subsequent chapter, we initially establish Littlewood-
Paley theory in the Dunkl framework, utilizing it to prove a Coifman-Meyer type bilinear
multiplier theorem associated with the Dunkl transform. Additionally, we show that these
multiplier operators are examples of multilinear Dunkl-Calderén-Zygmund operators and
derive weighted estimates for them. In the final chapter, we study similar weighted in-
equalities for a different type of operators known as multilinear Dunkl fractional integral

operators and multilinear fractional maximal operators.
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Summary

A generalization of classical Fourier analysis is Fourier analysis in the Dunkl setting. In-
deed, following the discovery of Dunkl operators as a generalization of partial derivative
operators, analysis in the Dunkl setup has been explored in various directions. There has
been a particular emphasis on singular integrals, multiplier operators, and potential-type
operators. However, not much investigation has been conducted concerning multilinear
operators or weighted inequalities within this context. The aim of this thesis is to bridge
this gap by addressing and exploring the weighted boundedness of certain multilinear op-
erators in the Dunkl setup.

We consider a fixed root system R on R?, a fixed non-negative valued multiplicity
function £ defined on R, GG as the associated reflection group, and dy; as the associated
Dunkl measure. Through the well-established connection between the Fourier transform
and the partial derivative operator, Dunkl operators introduce a new operator that gen-
eralizes the classical Fourier transform, called the Dunkl transform. It is defined for all
f € L'(RY, dyy), by

Fif©) = [ 5Bt ) duu o)

where E is called the Dunkl kernel, which can be thought of as a generalization of the
exponential function. Fj enjoys a many properties similar to those of the classical Fourier
transform.

Generalizing the notion of classical multilinear Calderén-Zygmund operators opera-
tors introduced by Grafakos and Torres [38], we define the multilinear Dunkl-Calderén-

Zygmund operators as follows.

T(fla f27 e afm)(x) = (R K(I, Y1,Y2, -+ 7ym) H f](yj) d:uk’(y])a
for all f; € C°(R?) with o(x) ¢ () supp f; forall o € G, where K is a function defined
j=1



Summary

away from the set O(A,, 1)
= {(2, 91, Y2, »ym) € RHY™! 1 2 = 0;(y;) for some 0; € G, forall 1 < j < m},

which satisfies the some suitable size estimate and smoothness estimates. We derive one and
two-weight estimates for the operator 7, extending the results established in the classical
framework by Lerner et al. [48]. We also prove a multilinear Cotlar-type inequality and
weighted boundedness for the maximal operators associated with 7, given by
T (fr, far o s fw)(@) = ililgm(fl,fz,m s Jm) ()],

where for any § > 0, 75 represents the appropriately truncated operator obtained from 7.

Next, we delve into multiplier operators associated with the Dunkl transform. In anal-
ogy to the classical case, for a bounded function m on R? x R? define the bilinear Dunkl
multiplier operator 7Ty, as

Tl (o) = [ m(€n)Fu(€)Ffaln) B, Buli, ) die( € n)

for all fi, fo € S(RY), the space of all Schwartz class functions on R¢. By establishing a
Littlewood-Paley type theory, we initially derive a Coifman-Meyer [16] type bilinear mul-
tiplier theorem for 7y,. Subsequently, utilizing this theorem along with results for the mul-
tilinear Dunkl-Calderon-Zygmund operators, we obtain weighted estimates for the operator
Tm-

Lastly, we study multilinear fractional integral operators Z* and multilinear fractional
maximal operators M? in the Dunkl setup. For ? = (f1, fay ey fm) € S(RY) x S(RY) x
... x S(RY), they are defined as follows

17 = [ TRt ) ).,

ey (9117 4 [y2l? + oo+ [y [?) (02

where 0 < a < mdy, and 7* is the Dunkl translation operator;

/R ) [ B0 (—y5) dun(y;) |,

where 0 < a < mdg. We establish both one and two-weight inequalities for these two

operators which extends the results of Moen [51] in the classical setting.
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Chapter 1

Introduction

In harmonic analysis, the study of bilinear or m-linear operators represents an extension of
the concept of the multiplication of two functions or m-functions. A significant aspect of
the study of multilinear operators involves demonstrating that certain integral operations
on specific types of functions are not excessively irregular. In simpler terms, when dealing

with an m-linear integral operator T, the main aim is to establish an inequality of the form

1T far - S llxo < CllAIx A 2llxs - [ fmllxns (1.0.1)

where X;’s are appropriate normed function spaces with norms || - || x, for j = 0,1,--- ,m.
These operators naturally arise not only in harmonic analysis but also in different areas
of analysis, such as partial differential equations, complex analysis, potential theory, and
quantum mechanics, etc. The study of such operators helps us understand non-linear prob-
lems where the product of more than one function is considered. The basis of these studies
goes back to the contributions of Coifman and Meyer [14—16]. After the pioneering works
[46,47] of Lacey and Thiele, numerous developments have been made in the field of multi-
linear operators. Some of those that we are interested in are [8,29,34,36-38,42,48-51,73],
where the boundedness of the form (1.0.1) for certain multilinear integral operators are
studied on the Lebesgue spaces.

Now, given the inequality (1.0.1), a natural question is whether we can derive conditions

on the functions wy, wy, - - - , w,, such that we have

IT(f1, for 5 fm) wollxo < O\l frwillx, | faw2llx, - | frn Winll x, 7 (1.0.2)

3



1 Introduction

This type of inequalities are known as weighted inequalities and the functions w;’s are
called weights. If there is a relation between wgy and the product w,ws - - - w,,, then in-
equality (1.0.2) is called a one-weight inequality; otherwise, it is known as a two-weight
inequality. Weighted inequalities, with their broad implications, are not merely generaliza-
tions. Applications of these inequalities extend to areas such as vector-valued operators and
the extrapolation of operators (for example, see [5, 18]). They also play a significant role
in the theory of boundary value problems for Laplace’s equation on Lipschitz domains (for
example, see [67]), showcasing their importance.

The initial response in this direction was provided by Muckenhoupt [52] for the lin-
ear Hardy-Littlewood maximal operators in the context of Lebesgue spaces. He gave a
characterization stating that the Hardy-Littlewood maximal operator M is bounded on the
weighted Lebesgue space LP(R? w(x)dr) for 1 < p < oo, if and only if the weight w

belongs to the class A,, that is w satisfies

sgp <|712|/de$> (/le_p' dx)pl < 00, (1.0.3)

where () denotes a cube in R? and p’ is the Holder conjugate of p.
Later, Sawyer [64] characterized the two-weight inequality for M, proving that M :
LP(RY, u(x)dx) — LP(RY, v(z)dz) if and only if

“ fQ M (xou'™)(z)Pu(z) dx
Qp fQ v(z) P dx

< . (1.0.4)

These results led to the investigation of similar weighted inequalities for various opera-
tors including the Hilbert transform [43], Calderén-Zygmund operators [13], and fractional
operators [53].

In 2009, Lerner et al. [48] presented a suitable adaptation of the Muckenhoupt A, classes

from the linear setting to the multilinear setting:



1 Introduction

Definition 1.0.1. Let 1 < py,pa, -+, pm < 00, ? = (p1,p2, -, Pm) and p be the number
given by 1/p = 1/py + 1/ps + -+ + 1/py,. Furthermore, let wy, ws, -+, w,, be non
negative, locally integrable functions on R and W = (wy,wa, -+ ,wy,). We say that the
vector weight W is in the class Az, if it satisfies

sup <|7;|/le:j[l(wj(x))p/pjdxf/pﬁ(ﬁ/ij(:c)l_p3d:z:)l/p; < 00,

QCR4
1 1—p' l/p;. . . -
when p; =1, <@ fQ wj(x) P dx) is understood as 1gfwj :

They characterized that the multilinear Hardy-Littlewood maximal operators are bounded
from the product of the Lebesgue spaces LP* (RY, wy (z)dx) x LP2(RY wq(x)dx) X -+ X

L (R, wy, (z)dz) to LP(RY, TT (wy (x))p/pj dz) (weak L? if one of the p;’s is 1) if and only

7j=1
if W e A. The natural progression involved exploring how weighted inequalities extend

to the multilinear context for other operators. We will delve into a few of these topics in
more detail in the next sections.

In 1989, C.F. Dunkl introduced the Dunkl operators [22] by adding a rational part to
the standard directional derivatives. These operators are linked to root systems and reflec-
tion groups in Euclidean spaces and serve as a broadened perspective on partial derivatives.
This concept originates from the examination of root systems, which are fundamental tools
in the theory of Lie groups and Lie algebras, consisting of configurations of vectors in Eu-
clidean spaces satisfying certain geometrical properties. By exploiting the well-established
correlation between the Fourier transform and the partial derivative operator, Dunkl oper-
ators unveil a new operator known as the Dunkl transform. This extension of the classical
Fourier transform marks the initiation of the analytical aspect of Dunkl theory — a com-
prehensive endeavor to extend the core findings of classical Fourier analysis and special
function theory to the realm of root systems and reflection groups.

Over the past three decades, counterparts of many classical harmonic analysis theories

5



§1.1. Multilinear Calderon-Zygmund Operators

related to singular integrals, multiplier operators, and potential-type operators have been
studied in the Dunkl setting. However, there has not been much exploration regarding
multilinear operators or weighted inequalities in this context. The purpose of this thesis is
to address this gap and investigate weighted boundedness for certain multilinear operators
within the Dunkl setup. Specifically, we are interested in studying one and two-weight in-
equalities for multilinear Calderon-Zygmund-type singular integral operators and maximal
operators associated with them, bilinear multiplier operators, multilinear fractional integral
operators, and multilinear fractional maximal operators in the Dunkl setup. Next, we briefly

discuss a few of the theories in the classical setup relevant to our results.

1.1 Multilinear Calderon-Zygmund Operators

Multilinear Calderon-Zygmund theory in the unweighted case was systematically studied
by Grafakos and Torres [38]. Let us use the notation S(R?) to denote the class of all
Schwartz functions on R?. Let S'(R?) be the corresponding space of all tempered distri-
butions, and let ? denote the vector consisting of an m-tuple of functions (f1, f2, ..., fm)-

The following definition of multilinear Calderon-Zygmund operators was given in [38].

Definition 1.1.1. A function T : S(R?) x S(R?) x --- x S(R?) — S'(R?) is called

an m-linear Calderén-Zygmund operator, if for all fi, fo, -+, frn € C(R?) with z ¢

m
() supp f;, T has the integral representation
7=1

(Re)™

j=1
and the kernel K is defined on the compliment of the set A, 11
= {($7y17y27” ' aym) € (Rd)m+1 === ym}

and K fulfils the following size and smoothness conditions for some € > 0:

6



§1.1. Multilinear Calderon-Zygmund Operators

1
|K(y07y17y27” : 7ym)’ S C md’ (111)
(Iyo — w1l + lyo — wol + -+ lyo — yml)
for all (y07y17y27 e aym) € (Rd)m+1 \ Aerl;
|K(y0ay17y27"' yYny o ’ym) _K(y07y17y2a'” 7%;"‘ 7y’rn)|
VAT
< (Y = Yl o (1.1.2)
(Iyo — w1l + |90 — val + -+ %o — yml)
whenever |y, — y/,| < max |yo — y;|/2, foralln € {0,1,--- ,m}.

1<j<m
In the same paper, the boundedness of T in the Lebesgue spaces was proved in the

unweighted case. Later in [48], a theory of weighted boundedness results was presented.

We state it below.

Theorem 1.1.2. Let 1 < pi,pa, -+ ,pm < 0O, ? = (p1,p2,"** ,Pm), p be the number
given by 1/p = 1/p1 + 1/ps + - - - + 1/p,, and the vector weight 0 € Az. Furthermore,
let T maps from L (R4, dx) x L®(R? dx) x --- x LI (R? dx) to LY(R?, dx) for some

¢ qus 42, G Satisfying 1 < qi, gz, -+ g < cowith1/q=1/q+1/ga + -+ 1/gm.
Then the following hold:

(i) ifp; = 1forsomel < j <m, thenforall? € L7 (R4, wy (x) do) x LP? (R4, wo (1) dx) %
coo X LPm(RY w,, () d), the following boundedness holds:

spi( [ Mwwrra)” < I [ 1nerwa)";

>0 i
{y €R%: T T ()| >t}

(ii) ifp; > Lforalll < j <m, thenforall? € LP1(RY, wy (x) do) x LP? (R4, wo (1) dx) X
coo X [P (RE w,, () d), the following boundedness holds:

(/Rd |T7(m)|pﬁwj(x)l’/pj dm) 1/p < Cﬁ(/Rd |f; () [Prw; () dx> 1/:0;"

7



§1.2. Bilinear Multiplier Operators

In a similar manner, a two-weight inequality for the operator T can also be established,
provided certain additional assumptions on the weights are satisfied. However, we are not
including the details here.

Also one can consider the corresponding maximal operator T*, given by

T (f)(2) = sup [T5(F ) (x)],

>0

where for § > 0,

L@ = [ K ) [y

|z—y;]2>62

s

1

J

and K is the m-linear Calderon-Zygmund kernel as in Definition 1.1.1. In the paper [37],
the authors examined the boundedness properties of the operator T* by utilizing the bound-
edness results for T. Specifically, they established the boundedness of this operator in
LP-spaces in both weighted and unweighted cases. A crucial tool in proving this result is

the following multilinear Cotlar-type inequality:
* v 1/v -
T @l < ([T @]+ I M), (1.13)
j=1

Our objective is to formulate an appropriate analogue of multilinear Calderén-Zygmund
operators in the Dunkl setup and to present one and two-weight inequalities resembling
those stated in Theorem 1.1.2. We also want to derive a multilinear Cotlar-type inequal-
ity in this setup and explore the relevant literature for maximal operators associated with

multilinear Dunkl-Calderén-Zygmund operators.

1.2 Bilinear Multiplier Operators

To keep things simple and avoid the complexity of the large expressions, we will focus
on Fourier multipliers for the bilinear case, i.e., when m = 2. Let, F denote the classi-

cal Fourier transform on the Euclidean space R¢. A priori, for a function m € L>(R??),

8



§1.3. Multilinear Fractional Operators

the bilinear Fourier multiplier operator T,, associated with m is defined on the product of

Schwartz spaces by

Tn(fo. ) () = / (€, 1) F Fu(E)F folm)e™ € de dy

R2d
With certain smoothness assumptions on the multiplier m, Coifman and Meyer [16] es-
tablished the boundedness of the operator Ty, in the LP-spaces. Afterward, a significant
amount of literature (for example, see [8,29,38,42,45,49,73]) has developed concerning
the study of bilinear multipliers. In this context, we will specifically highlight weighted
inequalities involving multiple weights, which bear relevance to this thesis. The following

result was proved in [8].

Theorem 1.2.1. Letm € C* (R? x R?\ {(0,0)}) satisfies the condition
0205 m(¢,m)| < Cap (€] + Inf) 1T+ (1.2.1)

for all multi-indices «, f € (NU {0V such that || + |8| < L and for all (€,7) € R? x
R%\ {(0,0)}, where L is an integer with d + 1 < L < 2d. Also, let p, p1, p> be exponents
satisfying 1/p = 1/py + 1/py and py = 2d/L < pi,ps < oo and the vector weight
(wi,ws) € A(%7%). Then for all fi € LP*(R%, w(x)dx) and fo € LP*(RY, wy(z)dz), the

following boundedness holds:

</Rd |Tm7(gj)|pw]10/p1 (éE)wg/pQ(ﬂ?) dm) v < Cf[(/Rd 1 () [Py () dx) 1/17]‘.

We aim to study the weighted boundedness properties of bilinear multiplier operators

associated with the Dunkl transform in the place of the Fourier transform.

1.3 Multilinear Fractional Operators

In this section, we will discuss the multilinear fractional integral operator and the associated

multilinear fractional maximal operator. These operators were introduced by Moen [51].

9



§1.3. Multilinear Fractional Operators

For 7 = (fi, fo,- , fm) € S(RY) x S(RY) x --- x S(R?), the multilinear fractional

integral operator Z,, is defined by

i) fa(w2) - fon(Ym)
La - dyrdys...diym,
7 /(Rd)’" (2 — [ + |7 — 1ol + oot 2 — g 2

where 0 < o < md;

and for all locally integrable functions fi, fo, - - - , fm in R, the multilinear fractional max-

imal operator is given by

S § LAy TR h d
Mj(;ﬂ)_iggg - /Q|fj<yj>| g where0 < a < md

These two operators are closely interrelated. In [51], a distinct class of weights A3 . Was
introduced to characterize the weighted boundedness of these multilinear operators. This
extension builds upon Muckenhoupt and Wheeden’s [53] A, , weight classes from the linear

case. We present the following one-weight inequality form [51].

Theorem 1.3.1. Suppose that 1 < py,ps, -+ ,pm < 00, 0 < a < md, 1/m < p < d/«
and q be a number defined by 1/q = 1/p — o/d. Furthermore, let the vector weight W =

(’LUl,UJQ, T ;wm) S A?’q, i.e.,

m 1/qg m 1/p}
1 q 1 —p,
Sup, (@/Q (ij(y)> dy) j1<5/ij(y) dy) < 00.

Jj=1

Then for all ? € L (R, wh (z)dx) x LP2(RY, wh? (z)dx) x -+ x LPm (R, wPr(z)dx),
the following inequality holds:

1/pj

m 1/q m
</Rd ( ‘Na7($)‘ HlUj(x))qdl‘> <C H(/Rd (1 () Jw; ()™ d:p) ’
Jj=1 j=1

where N, is either I, or M.,,.

10



§1.3. Multilinear Fractional Operators

For ao = 0, the operator M,, coincides with the multilinear Hardy-Littlewood maximal
operator. Therefore, based on the results in [48], the above inequality holds true for M.,
even when a = 0.

In this case as well, a two-weight inequality for these operators was established in the
same paper, in a comparable fashion, provided that specific additional conditions on the
weights are met. However, we choose not to present the details here.

Our goal is to devise suitable counterparts for these operators in the Dunkl setup. We
intend to investigate the weighted boundedness characteristics of the multilinear Dunkl frac-

tional integral operators and the multilinear Dunkl fractional maximal operators.
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Chapter 2

Preliminaries

This chapter serves as the prerequisite chapter for the thesis. In the next section, we present
several notations, definitions, and preliminary results of Dunkl theory, which are essential
for this thesis. We also extend these concepts to the multilinear Dunkl setting, as outlined in
Section 2.2. Moving on to Section 2.3, we discuss the topics of spaces of homogeneous type
according to Coifman and Weiss [17], Muckenhoupt weight classes, and the boundedness

of Hardy-Littlewood maximal operators for the spaces of homogeneous type.

2.1 Preliminaries of Dunkl Theory

Let us consider the usual inner product (- , -) and the usual norm | - | := /(- , -) on R<. For
any A\ € R?\ {0}, the reflection o with respect to the hyperplane A* orthogonal to \ is

given by

Let R be a finite subset of R? which does not contain 0. If R satisfies R N R\ = {£\}
forall A € Rand 0\(R) = R forall A € R, then R is called a root system. Throughout
this thesis we will consider a fixed normalized root system R, that is |\| = v/2, VA € R.
The subgroup G generated by reflections {0, : A € R} is called the reflection group (or
Coxeter group) associated with R and a G-invariant function £ : R — C, is known as a
multiplicity function. In this paper, we take a fixed multiplicity function £ > 0. Let hy

be the G-invariant homogeneous weight function given by hy(z) = [] [{(x, \)[*") and
\ER

13



§2.1. Preliminaries of Dunkl Theory

dux () be the normalized measure cihy(x)dx, where

el = / e 12 () da,
Rd

d, = d+yand y, = 3 k(N).
AER
Letz € RY r > 0 and B(z,r) be the ball with centre at = and radius r. Then the

volume p,(B(x,7)) of B(x,r) is given by !

pr(B(z,r)) ~ [T (e, M) + 7)™ (2.1.1)

It is immediate from above that if o > r; > 0 then

di d
(%) ke = (5)- @1
In fact, if 21, o € R? and B(xy,71) C B(xo,73), then
C (ﬁ>dk < ielBlen ) e (ﬁ>d. 2.13)
To i (B(z2,72)) To

Let dg(z, y) denote the distance between the G-orbits of x and y thatis dg (z, y) = miél lo(z)—
(S

y| and for any r > 0 we write V(x,y,r) = max {ug(B(x,7)), ux(B(y,7))}. Then from

the expression for volume of a ball, it follows that
Va(,y, do(2,y)) ~ p(B(z, da(z,y))) ~ By, da(z, y)))- (2.1.4)
Let us define the orbit O(B) of the ball B by
O(B) ={y e R : de(cp,y) < r(B)} = | o(B),
where cp denotes the centre and r(B) denotes the radius of the ball B. It then follows that

1(B) < u(O(B)) < |G g (B). (2.1.5)

'The symbol ~ between two positive expressions means that their ratio remains between two positive
constants.

14



§2.1. Preliminaries of Dunkl Theory

Although d; satisfies the triangle inequality, it is not a metric on R?. Also note that for any
z,y € R? we have dg(z,y) < |z — v

The differential-difference operators or the Dunkl operators T, introduced by C.F. Dunkl
[22] is given by

k()

KO 1y o f(@) = flone)
2

(OTER

Tef(z) = 0cf(x) + )

XER
The Dunkl operators 7 are the k-deformations of the directional derivative operators O, and
coincides with them in the case & = 0. For a fixed y € R, there is a unique real analytic
solution for the system 7 f = (y, §) f satisfying f(0) = 1. The solution f(z) = Ej(x,y) is
known as the Dunkl kernel. For two reasonable functions f and g, the following integration

by parts formula is well known:

/Rd Te f(2)g(x) dug(z) = — /Rd F(@)Te g(x) dpg(z).

Also, if at least one of f or g is G-invariant then the Leibniz-type rule holds:

Te(fg)(x) = Tef(x) g(x) + f(2)Teg ().

Let us consider the canonical orthonormal basis {e; : j = 1,2,--- ,d} in R? and set
T; = 1T¢, and 9; = O,,. For any multi-index a = (a1, az, -+ ,aq) € (NU {0})?, we use
the following notations.
ola| = (v +as+--+ag),
©0)=1,0=0{"00y"0-- 005",
oTjQ:],T‘“:TfloTQO‘QOu-oT;‘d.
Sometimes we will write J¢' to indicate that the partial derivatives are taken with respect to
the variable &.

The Dunkl kernel Ej,(z, y) which actually generalizes the exponential functions e<%¥~,

has a unique extension to a holomorphic function on C¢ x C¢. We list below few properties

15



§2.1. Preliminaries of Dunkl Theory

of the Dunkl kernel (see [60—62] for details).

e Ey(x,y) = Ey(y,x) forany z, y € C%,

o Ey(tr,y) = Ey(z,ty) forany z, y € C?and t € C,

o |0°E)(iz, 2)| < |z|l* forany z, z € R and o € (N U {0})*.

Let LP(R?, dyy,) denote the space of complex valued measurable functions f such that
» 1/p
s = ([ 1F @ duna)) " < oc
and LP > (R¢, du;,) be the corresponding weak space with norm
1l = sup t e ({r € RY: ()| > 13)]7 < oc.
>

For any f € L'(R?, duy), the Dunkl transform of f is defined by

Ff(©)= | F@)B(~ig.x) i)

The following properties of Dunkl transform are known in the literature [21,23].
e J;, preserves the space S(RY),

e F;. extends to an isometry on L?(R¢, du;,) (Plancherel formula) that is,

kafHH(duk) = ”fHLQ(dl/«k)’

e Ifboth f and F. f are in L*(IR¢, dy;,), then the following Dunkl inversion formula holds
fz) = F  (Ff)(z) =: y Fif (€) Er (i€, ) dpy(§),
e From definition of the Dunkl kernel, for any f € S(R?), the following relations holds :
TiFef (&) = =Fi(i(-);/)(€) and Fu(T;f)(§) = i&;Fef ().

The Dunkl translation 7* f of a function f € L?(R?, dyy) is defined in [71] in terms of

Dunkl transform by
Fil7s F)(y) = Exliz, y) Fif(y).

16



§2.1. Preliminaries of Dunkl Theory

Since E,(iz, y) is bounded, the above formula defines 77 as a bounded operator on L*(R9, dpuz,).
We collect few properties of the Dunkl translations which will be used later.

e For f € S(R?), 7¥ can be pointwise defined as
) = [ | Bl O Bulin FS () due).
o 77 f(x) =7} f(y) for any f in S(R?),
o JoaTEf(W)g()dpe(y) = [ou F(W)TF9(y)dps(y), for any f € S(R?) and any bounded
function g € L'(R¢, duk);
o 75(f) = (7F )i, Vo € R?and Vf € S(RY), where fi(z) = ¢ % f(t"'x) and ¢ > 0;
e 7% f > 0 for all bounded, radial functions f € L'(IR¢, dy;) such that f > 0.

Also the following specific formula for the Dunkl translation of Schwartz class radial

functions f(z) = fo(]z|) was obtained by Rosler [62].

) = [ (oo ey duslo) .16

where A(z,y,n) = /]z|> + |y|? — 2(y,n) and p, is a probability measure supported in
the convex hull of the set {o(z) : 0 € G}.

A useful formula that for any n € conv {o(z) : 0 € G},
dG(xay) < A($ay777) < ?ea();( |O—($) - y| (217)

Thangavelu and Xu [71, Proposition 3.3] observed that the formula (2.1.6) also holds
for radial functions f such that both f and F,.f € L*(R?, duy). Later Dai and Wang [19,
Lemma 3.4] extended it to all continuous radial functions in L*(R¢, dyy,).

Although 7% is bounded operator for radial functions in LP(R?, dy,.) (see [31]), it is

not known whether Dunkl translation is bounded operator or not on whole LF(R?, dy;,) for

p#2.
For f,g € L*(RY, duy), the Dunkl convolution f ), g of f and g is defined by

[ gla /ng ) dua(y).

17



§2.2. A Multilinear Dunkl setup

x;, has the following basic properties (see [71] for details).
o [ g(x) = g* fz) forany f,g € L*(RY, duy);
o Fi(f #1 9)(€) = Fuf(€)Frg(§) forany f,g € L*(RY, duy,).

As mentioned for the Dunkl operators case, for £ = 0 Dunkl transform becomes the
Euclidean Fourier transform and the Dunkl translation operator becomes the usual transla-
tion. In this sense, Dunkl transform is a generalization of Euclidean Fourier transform and
putting £ = 0, we can recover the corresponding results in the classical setting from our

results.

2.2 A Multilinear Dunkl setup

We start this section by extending the Dunkl theory to a multilinear setup. Let R be the root

system and £ be the multiplicity function as in the last Section. Then
R™:= (R X (0)p-1) U ((0)1 X R x (0)y—2) U+ U ((0)m_1 x R),

where (0); = {(0,0,---,0)} C (R?), defines a root system in (R?)". The reflection
group acting on (R%)™ is isomorphic to the m-fold product G x G x --- x G. Let k™ :
R™ — C be defined by

E™((0,0,--+ A, -+ ,0)) = k(\) forany A € R.

Then it follows that £™ is a non-negative normalized multiplicity function on R™. Due
to this choice of the Root system and multiplicity function, Dunkl objects on (R%)™ splits
into product of the corresponding objects in R?. In fact, using the notations as described in

Section 2.1, it follows that for any x1, y1, T2, Y2, - - - , T, Ym € RY, we have

dpigm (21,29, ) = dp (1) dpn(a) - - - dppg(2n).

18



§2.3. Spaces of Homogeneous type and Muckenhoupt Weights

Again the structures of the root system and the multiplicity function allow us to write

Ekm(([L‘l,[L‘27-~- 7Im)7(y1)y27”' 7ym>) = Ek(xl,yl)Ek($27y2)'"Ek(xm,ym)-

This at once implies that for reasonable functions fi, fo, -, fiu;

Fim (1 ® f2@ -+ ® fin) (21,22, -+, Tm)) = Frfr(w1) Frfolw2) - - Frfon(m)

and T(kzzl,xz,m,zm) (fl K- ® fm) ((yla Ya, - 7ym)> = Tf1f1(?/1) o Tfmfm<ym)

Also the m-fold counterparts of all the properties mentioned in Section 2.1 hold in this case.

2.3 Spaces of Homogeneous type and Muckenhoupt Weights

Definition 2.3.1. A space of homogeneous type (X, p, dyu) is a topological space equipped

with a quasi metric p and a Borel measure du such that
(i) pis continuous on X x X and the balls B,(z,r)) := {y € X : p(x,y) < r} are open
in X;
(i1) the measure p fulfills the doubling condition :

w(By(z,2r)) < Cu(By(z,7)), Yo € X, Vr > 0;

(i) 0 < p(B,(z,r)) < oo for every x € X and r > 0.

Note that the Dunkl measure i, is a Borel measure on R¢ and satisfies the doubling
condition, and hence (R?, |z — y|, duy) is a space of homogeneous type.

For any m € N and given any ? = (f1, f2,-+, fm) with each f; being a locally
integrable function on (X, p, du), we define the multi(sub)linear Hardy-Littlewood maximal

function M3, by

ME T (2) = o 1l H
weBy 7

/ £ ()] du(y),
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where supremum is taken over all balls B, in X which contains x.
We will use the notation M%,; for the multi(sub)linear Hardy-Littlewood maximal func-
tion on the space (R?, |z — y|, dus), i.e

My, T (@) = sup ] / 1)) dpa(y

BCRd
zEB -

When m = 1, we will write
M (@)= sup —s | 17|y

BCRd Nk
xz€eB

For any locally integrable function f, we also define the sharp maximal function Mg’f,

given by
ME! f(z) = sup / ) — Fal dun(y).
BCR4 Mk
xEB
where
y) dur(y)
For e > 0 set

MEE  fa) = (MEE(fI) @) .

Observe that for €, a, b > 0, the inequalities
min{1, 2 ' }(a® + %) < (a + b)* < max{1,2°'}(a® + b°)

yield
Mt fa) ~ sup ind [ [ 1l = el i)

BCRd CG‘C
rEB

For t > 1, we also define the average maximal operator M/, given by My, f =
(ME | 1)t From the well known result in homogeneous space type [17], we can state

the following theorem for the above maximal type operators.

Theorem 2.3.2. Let m € N, then
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i) M isweak type L' (R®, dpuy,) x LY (R?, dpig) % - - - x LN (R®, dpy,) to L™ (R?, dyuy )
HL yp H H
i) for 1 < p < oo, MF is strong type LP(R?, dyuy,) to LP(R?, duy,);
HL
iii) fort > 1, MF ., . isstrong type LP (R?, duy,) to LP (R?, duy,).
(tp),HL

A non-negative locally integrable function in a homogeneous space is called a weight.

Next we define Muckenhoupt class in homogeneous space setting as follows.

Definition 2.3.3. Let 1 < p < oo and w be a weight. The weight w is said to belong to the

class A,(X, p, du), if it satisfies

3 (g f, ) (g [ aut)”™ <0

P

—1
1
is understood as (inf w) .

P

, P
when p = L ( iy f, w() 7 dn(y))
Set Ao (X, p,dp) .= U  Ay(X,p,dp).
1<p<oo

Definition 2.34. Let 1 < p < ¢ < oo and w be a weight. We say that the weight w is in

the class A, ,(X, p, du), if it satisfies

1/q 1/p'
1 , 1 .
Sup (TBP) /Bpw(y) du@)) (rBP)B/w(y) du(y)> < 00

We also have the multilinear analogue of the above classes as follows.

Definition 2.3.5. Let 1 < py,po, -+, pm < 00, ? = (p1,p2,* "+ ,pm) and p be the num-
ber given by 1/p = 1/p1 + 1/ps + -+ + 1/py,. Furthermore, let v, wy, ws, - , w,, be
weights and @ = (wy,ws, - - -, w,,). We say that the vector weight (v, W) is in the class

A3(X, p,dp), if it satisfies

g Gy, 000)”" T [, o i)™ <o

J=1

/ 1/p} . -1
when p; = 1, <ﬁBP) pr w; (y)lfpjd'u(y>> " is understood as (glfwj) :
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In particular whenv = [] wﬁ-’/pj , we will simply say that 0 is in the class A (X, p, dp).
=1

=

Definition 2.3.6. Let 1 < py,p2, -+, pm < 00, ¢ be anumber such that 1/m < p < ¢ < oo
and wy, wy, - - - , w,, be weights. We say that the vector weight W = (wy,wa, -+, Wy,) 18

in the class Ap (X, p, dp), if it satisfies

m /g m 1/p}
s (@ / (H’%(y))qdu(y)) H(ﬁ / wj<y>-p9du<y>> <oo
L CX p) J B, j=1 =1 P B,

k

For the homogeneous space type(R?, |z — y/|, duy ), we will simply write A¥, A%, AF

A’j_g and A?’q in place of A,(R%, |z —y|, dur), Ao (RY, |z —1yl, dur), Ay (R, |z —yl, dus.),
Az (R, |z — yl, du,) and Al—gﬂ(Rd, |z — yl, du), respectively. A% weights are recently
studied in [41] without using the results of spaces of homogeneous type. However in this
article will use the known results for weights in a general space of homogeneous type. In
our main theorems we will use G-invariant weights in Dunkl setting, i.e. weights w in R?
that satisfies w(o(z)) = w(z), Vr € R? and Vo € G. It is quite natural to restrict to the
weights which are G-invariant as the Dunkl measure dy itself is G-invariant. From G-
invariance of a weight w, it follows that for a reasonable function f on R, for any 0 € G

and for any exponent p,

| foo@u@ dute) = [ fayo) dute)
R R
which will be used many times in our proofs.

As in the classical setting [7, Remark 2.4] the following property of A* . follows im-

mediately from the definition.

Proposition 2.3.7. Let 1 < py,pa, -+ ,Pm < 00, q be such that 1/m < p < q < oo and

W € AL, | then there existt > 1 such that for any ball B € R?,
P.q

1/t
: i 1 waly) P
(Mk(B)/Bwj(y) d,uk(y)) SOMk(B)/B i(y) Pidug(y).
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Proof. We only give an outline of the proof as the same argument as in the classical case
works here also. From the definition one can find that @ € A’j_g , implies each w;pj satisfies
the A* condition (see [51, Theorem 3.4 ], for the classical case). Then the rest of the proof

is a direct consequence of the fact that A, weights satisfy the reverse Holder condition. [

We also have the following improving property of A* . weights.

Proposition 2.3.8. Suppose that 1 < py,pa, -+ ,pm < 00, 0 < a < mdy, 1/m < p <
dr /o and q be a number defined by 1/q = 1/p — a/dy. Furthermore, let the vector weight

W = (w1, wa, -+ ,Wy) € A1_3> y then there exists € > 0 such that
k k
E? € A?,qe N A?,q?’

where 1/q. = 1/p — (o + €)/dy and 1/q. = 1/p — (o — €)/dy. Also € satisfies € <

min{o, md, — a}; 1/p > (a+¢€)/dy and 1/q < (mdy, — €)/d.
Proof. Let1 < r < oo and w € A¥, then we have the following.
(i) forr < s < oo, AF C AF;
(i) forany 0 < § < 1, w’ € AF;
(iii) there exists d > 0 with r — ¢ > 1 such that w € AF
(iv) there exists § > 0 such that w'™ € A

In fact (1) and (i1) follows easily by applying Holder’s inequality. For any homogeneous
space with doubling measure, proof of (iii) can be found in [68, Lemma §]. Finally (iv)
follows by using the fact that w € A¥ implies w!™"" € A¥,, using the result in [68, Theorem
15] for homogeneous spaces together with decreasing property of reverse Holder classes.
On the other hand, let 1 < sy, 89, , 8, < 00,1/s=1/s1 +1/sy+ -+ 1/s,, and

0 <7 < oo. Then w EA%Tifandonlyif
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O (TTw) € Afym:

J=1

(ii) forallj € {1,2,--- ,m}, wj_sj € A’f+s‘,jtj,where ti=1/r+m—1/s—1/s.

This actually follows by repeating the arguments used in the proof by lida [44, Theorem 2]
for the classical case with obvious modifications of the parameters involved.

Thus we have acquired all the ingredients used in the proof the corresponding result in
classical setting [76, Lemma 3.3]. Hence the proof follows by arguing in the same way as

in the classical case. O]

We end this section by stating two theorems which follow from well known results for

general space of homogeneous type [34, Theorem 4.4, Theorem 4.6, and Theorem 4.7].

Theorem 2.3.9. Let 1 < pi,pa, -+ ,pm < 0O, ? = (p1,p2,*** ,Pm), P be the number
givenby 1/p = 1/p1 + 1/pa + -+ + 1/pm and v, wy,ws, - - -, w,, be weights. Then the
following hold:

(i) if pj = 1 for some 1 < j < m and the vector weight (v, W) € A%, then for all
? € LPY(RY wy dpy) x LP2(RY wo dpy,) x -+ - x LPm (R w,, duy,), the following
boundedness holds:

api( [ @) <o TI( [ @)

t>0
{y erd: ME T (1)>1}

(ii) ifp; > 1forall 1 < j < m and for somet > 1 the vector weight (v, E?) satisfies the

bump condition

1 1/p - 1 . 1/tp]
2.3.1)
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then for all 7 € LPY(RY, wy dpy) x LP2(RY, wq dpy) X - -+ x LPm (R w,, duy), the

following boundedness holds:

</Rd (MI’Z’L?( ) v(x) dpu(x Up 1:_1/|fy Wiw;(x) dp(x )) e

Theorem 2.3.10. Let 1 < pi,pa, -+, Pm < 0O, ? = (p1,p2, "+ ,Pm), p be the number
givenby 1/p = 1/py + 1/ps+ -+ + 1/pm and wy,ws, - - -, w,, be weights such that the
vector weight W € A? then for all ? € LP(RY, wy duy) x LP2(RY, wq dpy,) X+ x
LPm(RE w,, duy,), the following boundedness holds:

([ i Ty Toster )" < TI( [ o) )™
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Chapter 3

Multilinear Dunkl- Calderon- Zygmund
Operators

In this chapter, we introduce multilinear Calderén-Zygmund operators that incorporate the
actions of reflection groups and orbit distances, aligning appropriately with the Dunkl setup.
Our focus lies in establishing weighted bounds for these operators, extending the corre-
sponding conclusions from the classical setup to the Dunkl setup. Assuming the initial
boundedness condition, we first prove an end-point weak-type boundedness result in Sec-
tion 3.2. Then, in Section 3.3, by combining these weak-type end-point estimates with
known bounds for the maximal operators, we establish one and two-weight estimates for
multilinear DunkI-Calderon-Zygmund operators. In Section 3.4, we delve into the study of
maximal operators associated with multilinear Dunkl-Calderén-Zygmund operators. Specif-
ically, we establish a multilinear Cotlar-type inequality as a means of attaining the weighted
boundedness of these maximal operators. The content of this chapter is based on a portion

of the work [56] and on the work [54].

3.1 Introduction

In the 1950’s, Calderén and Zygmund [9—11] made significant progress in laying the ground-
work for studying a broad category of singular integral operators. These operators later
became known as Calderon-Zygmund operators. Much later, in the 2000’s, a considerable
portion of these works was extended to the multilinear setting (see e.g. [14,15,25,36-38,45,

48]). Our primary focus among these references lies in the multilinear Calderon-Zygmund
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operators, as introduced by Grafakos and Torres [38].

The study of singular integral operators has been well-explored in the Dunkl setup [4,
27,69]. Remarkably, Tan et al. [69] recently introduced a category of singular integrals that
bears resemblance to classical Calderéon-Zygmund operators. However, currently, there is
no known theory for multilinear singular integrals in this framework. Thus, it is crucial
to investigate this unexplored domain. In this chapter, our objective is to explore m-linear
Dunkl-Calderén-Zygmund operators, which can be treated as Dunkl counter part of the
multilinear Calderon-Zygmund operators in classical setting introduced by Grafakos and

Torres [38].

In the theory of Dunkl analysis, our findings on multilinear singular integral operators
pave the way for studying various multilinear operators within the Dunkl framework. No-
tably, in the next chapter, we have derived that bilinear multipliers represent specific class
of such operators. Furthermore, we anticipate the extension of these results to encompass
other type of operators, including multilinear Dunkl-pseudo-differential operators belong-
ing to some particular symbol classes, much like in the classical case ( [12, 38]). Also,
this, in turn, prompts us to explore other types of multilinear singular integrals, such as
rough singular integrals and singular integrals with Dini-type conditions, along with their

associated commutators.

Motivated by the Definition 1.1.1 of classical multilinear Calderén-Zygmund opera-
tors, we provide the following definition for multilinear Calderon-Zygmund operators in

the Dunkl setting.

Definition 3.1.1. An m-linear Dunkl-Calderon-Zygmund operator is a function 7 defined
on the m-fold product S(R?) x S(R?) x - - - x S(R?) and taking values on S’(R?) such that
for all f; € C>°(RY) with o(z) ¢ () supp f; forall o0 € G, T can be represented as

Jj=1
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m

T(7)a) = K (2, Y1, Y2+ Ym H () dpan (),

(Rd)m -

where K is a function defined away from the set O(Am+1)
= {(z,y1, 92, ,ym) € RH™' 1 2 = 0;(y;) for some 0; € G, forall 1 < j <m}

which satisfies the following size estimate and smoothness estimates for some 0 < € < 1:

m ;dG(yanj)
‘K(y(hyby% T 7ym)’ < CK [ZMk(B(yo,dg(yojy])))}—m ];n— ,
= > |yo — vy
j=1
3.1.1)

for all (yo, y1, %2, » Ym) € (R)™ N\ O(Apy);

|K(y0ay17y27"' yYns - aym)_K(y07ylay2a"' ayr:w"' 7ym)|

€

S D e 1
Zuk (0 e (o, 7)) | i (3.12)
1<j<m Yo =Y
whenever |y, — .| < max da(vo,y;)/2, foralln € {0,1,--- ,m}.
=jsm

Note that the size condition (3.1.1) guarantees that the above integral is convergent and
hence pointwise 7'(7) makes sense. Also this definition of multilinear Calderén-Zygmund
operators in Dunkl setting matches with the definition of multilinear Calderén-Zygmund op-
erators in classical setting [38] as well as with the definition of linear Calderén-Zygmund
operators in Dunkl setting [69]. In this context, it is worth noting that the regularity condi-
tions (3.1.2) assumed on the kernel are much weaker than those required for kernels of the
multilinear Calderén-Zygmund type operators defined in [34] for spaces of homogeneous
type. This contrast is consistent with the situation in the linear case, as shown in [69, p. 10].

Our main results regarding Dunkl-Calderon-Zygmund operators are one-weight inequal-

ities Theorem 3.3.4 and and two-weight inequalities Theorem 3.3.3. In the proofs of these
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theorems, we closely follow the scheme used in [48] (see also [34]). However, due to in-
volvement of the action of the reflection group in Definition 3.1.1, some new ideas regarding
G-orbits, the Dunkl metric d¢, and results for spaces of homogeneous type are required to
complete the proofs. Here, we also mention that by arguing as in [69, p. 10], we can see
that the smoothness conditions (3.1.2) assumed on the kernel are weaker than that of the
Calderon-Zygmund singular integral operators given in spaces of homogeneous type [34, p.
20]. So, the results for singular integrals in spaces of homogeneous type do not imply our

results.

3.2 Weak Boundedness for Multilinear Dunkl-Calderon-
Zygmund Operators

Before going into the weak-type estimates for 7, we require the following lemma.

Lemma 3.2.1. Forany e > 0 and N € N there exists a constant C' > 0 such that for any

s€{1,2,--- ,N}and z,y, € RY,

1<n<N 1<n<N
n#s

/Rd [Zﬂk(B(xvdG(xvyn)))}_l[ max dG(x7yn)]_E dﬂk(ys) < O[ max dG(x7yn)]_E-

Proof. Taket = ax_ de(x, yn).
n#s
Estimate for dg(z,ys) < 2t.

In this case using (2.1.2), it is not hard to see that

N
> (B, da(z,yn))) ~ pr(Blx,1)).
Then from (2.1.5),
/d . [ D e (B, e, 3u)))] [ max de (e, yn)] ™ dp(vs)
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< C[max dg(x,y,)]” 6/ — _dw
1<nr;<sN dg (z,ys)<2t Mk(B(xa t))

< C[lg}]a%XNdG(x yn)]
n#s

(ys)

Estimate for dg(z, ys) > 2t.

In this case we have

Zuk (2, da(@,yn))) ~ 1e(B(2, do(z,ys)))-

Hence, similarly applying (2.1.5) again,

/d (o)t Zuk (x,dg(z yn)))}_ [ max de(z, yn)] ™ dp(ys)

1<n<N
n=1
1

< C / [de(, ys)] ™ dp(ys)

de(z,ys)>2t Mk (B(x, dc(% ys)))

it 1
< C / [de(,ys)] ™ dpu(ys)

; ,uk(B(xadG(wayS)))

27t<dg(z,ys) <271t

1 IG!uk B(z,2't)) -
< < 1= d n ‘
= Oy mipGen =07 OLmm bl

This completes the proof of the lemma. [

Throughout this section we will assume that 7 is an m-linear Dunkl-Calderén-Zygmund
operator and 7 maps from L% (R?, duy) x L%2(RY, dpug) x - - - x LI (R?, duy,) to LY (R?,
duy) with norm A for some q,q1,qs, - - , ¢ satisfying 1 < q1,q2,- -+ ,qm < oo with
1/¢g=1/¢1 +1/q2 + - - - + 1/¢y,. From this a priori boundedness condition we can prove

the following weak-type end-point estimates.

Theorem 3.2.2. Let T be a multilinear operator as described above. Then T extends to a
bounded operator from the m-fold product L*(R?, dyy,) x L*(R?, duy,) x - - - x LY(R?, duy,)
to LY (R?, duy,) with norm < C(Cx + A).
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Proof. By density argument, it is enough to show the result for functions in S(R?). Take

fi, f2, 5 fm € S(RY) and fix a > 0. Define
Eo={x € R [T(f1. far -, f)(@)] > }.

Also, without loss of generality we can take || f;|| 11 (a,,) = 1. It then suffices to prove that
we(Ey) < C(Cg + A)Vma=tm,

Let v > 0 be constant to be defined later. Applying Calderén-Zygmund decomposition
to each of the functions f; at height ()™, we obtain m number of good functions gj, M
number of bad functions b; and m families I; of balls { B; , : n € I;} such that f; = g;+b;,

bj = > b; , with the properties that for alln € I; and s € [1, c0),
’VLEIJ'

(i) suppbjn C Bjnand [5,b; . (y) du(y) = 0;
(i) 1165, 0l 22 ) < C )™ e (Bj )

(ii)) Y pr(Byn) < Clav)~1/m;

nEIj

(V) lgill < Clav)™, NlgillLo(ap) < Claw)™ =1 and [|bj|| 1(gp) < C.

Now let
Ei = {zeR":[T(g1,02,+ , gm) ()| > a/2"},
E2 = {’I S Rd : |T(b17927 e agm)(x” > a/Qm}v
Ey = {zeR":|T(g1,b2,- ,gm) (@) > a/2™}
and Eyn = {ox € R [T (b1, by, -, by)(2)| > /2™
2m
Then i, ({z € R : [T (f1, fo, -+, fm)(2)] > a}) < 3 wi(E,). It is now enough to
n=1
show that foralln € {1,2,--- 2™},
we(E,) < C(Cx + A)Yma=tm, (3.2.1)
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Applying the given hypothesis on 7, we get

:uk(El) < (QmA/a) Hglqul (dpr) HgQHLqQ (dpr) HgmHLqm(duk)

< CAqa*q(Qy)(q/m)(mfl/q < O Al Vmya=t/m, (3.2.2)

Next let us take F,,, where 2 < n < 2™. Consider the case where there are exactly

[ bad functions appearing in 7 (hq, ho,- - , hy,,) Where h; is either g; or b; and also let
J1sJ2, -+, J; are the indices which corresponds to the bad functions. We will prove that
pr(Ey) < Ca=Vmp=tm 4 y=Ym(y Cr)V1. (3.2.3)

Let r;,, be the radius and ¢, ,, be the centre of the ball B;,,. Define (B;,,)* = B(cjn, 27j,)
and (B; )™ = B(c¢jn, 57j,). Now

(U o) < Z (B)))

j=1nel;

< CZ >k (Bjn)) < Clav)™m.

Thus in view of the above inequality, to prove (3.2.3), we only need to show that

(e e U o T (P hay ) ()] > /2 })

Jj=1negl;

< C(aw) Y™(Cx )Y (3.2.4)

Fixae ¢ ) U O((B;)*). Then

j=1nel;

T by )@ < 30 - Z\/ K (g0 yn )

n1€I]1 "IEIJZ

l

< I 9sws) [T 0sme (i) disw(wn) -+ dpn(m)|
Sl i) =1
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> D Huae (3.2.5)

n1€lj; HIEI]'Z
Let us fix balls Bj, ., Bj, n,, - - , Bj, »n, and without loss of generality let us take
le ny mln TJS Ns*

1<s<1

Then using the smoothness condition (3.1.2) we have
‘ K(xayby%"' 7ym) bjl,nl(yjl)duk(yﬁ)‘

= | [K(-ﬁ[,yl,"' >yj17"' >ym)_K($7y17"' yCiinyy s >ym>]

(B]'Lnl)
ijl,nl (yj1) duk(yﬁ)‘
S -m ‘y 1 Cjy n1’ ¢
< Ck / Z ,Uk I dG x yn)))] [—m;X |33]— |]
(Bi1.n) 1<n<m Yn
X 1B (Y) | diee(y;,)- (3.2.6)

To complete the proof, taking integration on both sides of (3.2.6) with respect to y, €

{1,2,--- ,m}\ {j1,J2,- -+ , 71} and using Lemma 3.2.1 (m — [) times, we get
Lo K ) b)) T i)
R)m= (Bjy,ny) s ¢{j1.d2, i}
< CK / |bj1,n1(y]1 |:/ Zﬂk l‘ dG X yn)))]_m[ |yj1 — Cjy, n1| €
(B’ 1223, 4t vn)
x ] d,uk(ys)} dyu(y5:)
s¢ {j1.g2, i}
I
-1 e
< CCK / j1 ni y]1 Z:uk :L’ dG :E y]a)))] |yj1 = Cj1my
(Bjy,ny
x[max de(z, yjs)] duk(yjl)
Tjm -l
< coe [ [max sl Zuk (@ da(,95.0))] " g ()| e (33
(Ble"I) Ja

(3.2.7)

Now y;, € Bj,n,andz ¢ |J U O((B;,,)*) together implies

j=1nel;
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Also the minimality of r;, ,,, implies

l

Tjhnl S H(Tjs Ms )1/l

s=1
Similarly,
l
)
oax do (@, 5..) 2 | [ 19, i)
s=1
l
and Zﬂk (z, da(z, cjon,) H B(z,dg(w, ¢;,.0.))) "

Now, taking the above discussions into account, from (3.2.7) we can write

Lo e ) b)) TT dueta)

Bjyni) s¢{j1.g2, a1}

Tiin =
< CCK [lngaiildél(xlcjs ns :| Z,Uk .I' dG x y Cjs, ns)))] Hbjl,mHLI(de)

: 1

T e/l
< b " [ JsMs i| .
< CCkg ” J1, 1||L1(d,uk H dG’ {E . Cj.. né) ,Uk(B(I,dG(x;st,ns)))

s=1

So using properties of Calderon-Zygmund decomposition, from (3.2.5) we write

Hnl,”%"' Ny < /(]Rd)m_l ‘ B - K(l‘, Y1, Y2, ,ym) bjl,nl d:uk(yh)‘
J1,m1

l

< T 19s(e)l dii(ys) TT 185000 (i) diaec(ys,)

s @t it} s=2
l
CCk (av)m=D/m ||bj1,n1HL1(d,uk)/ o T s ()
=2

()

IA

dpu(y5.)
l

T'j1,m ¢/ 1
% Hl |:dG ',”U st ns)i| /"Lk(B(x7dG('T7CjS>nS)))

s

IN

l
S Mbjemall L (ap)
cc Oé]/ (m /m |: T'jsns ] Js,Ms HEk
K H dG ‘/E Cj57ns) /,Lk(B(x,dG(I, styns)))

Ti e/l ,uk(B n )
CC av JssMs Js Ms )
® H |:dG('T7cj57ns>:| H’k(B(m’dG<x7cjsans)))

s=1

IN
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Thus forany z ¢ |J U O((Bj,)**), substituting the above inequality in (3.2.5), we have
jil nelj

|T(hy, hoy -+ hay) ()]

T e/l Mk(B ’s,ns)
< CCgav Y o) H [d(;xjcjs,ns)] uk(B(%dsz’%ns»)

n1€I]1 mG] s=1

Tjsins ¢/l Hi (Bj57ns)
S OOK av H [ Z |:dG(?L’, st,ns)] Mk (B(l‘, dG(CL’, st,ns)))] ' (328)

s=1 ns€lj,

Now using the facts that dg(z, cj, n,) ~ da (@, ¢, n,) + Tjones te(B(@, da(,¢j,0.))) ~

e (B(z, d(z, ¢j,n,) + 7j,0,)) and the condition (2.1.2), we get

|: Tjs,”s ]E/l /’Lk(B]57ns)
do(x, ¢jon) ) (B, da(z, ¢j0,)))
< of pe(Bjn.) ]6/(1 i) fir (B, )
N 'Mk(B<‘T7dG(‘r7Cj57ns> +Tj37ns>) /’Lk(B(x7dG(x7st,ns) +rj$un3))

_ . 1+e/(ldy)
< ¢ / X5y () dpis(y)

i (B(2,da (@, ¢jom,) + Tjin,)) Jra ™0
< C !

_/’Lk (B(‘IJ dG(x,Cj&ns) + Tjs:”s))

1+e/(ld)
X / XBj, ns (Y) duk(y)]
O(B(w7dG(x7cjs»ns)+TjSans))

< C

1
anG j3 (B(J({B), da(, ¢j,n,) + Tjs,ns))

« / X5, () dpii(y)

B(U('Z)? dG(‘I7cjs’ns )+T‘j57ns)

< O Y Mh (s, ) (@)

oeG

] 1+€/(1dy)

]HE/(ldk) (3.2.9)

Finally, using Chebyshev’s inequality, (3.2.8), (3.2.9), Holder’s inequality, L'*¢/(4) bound-

edness of M¥, and properties of Calderén-Zygmund decomposition, we obtain

{x ¢ U U O | T(hi, he, -+ b)) ()] > O‘/Qm})

j=1nel;
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< ca i / Tk, oy ) (&)Y ()
¥ 0.8, )
1/1 [ k I4e/(ldy) "
< e [ T 3 [ 3 Min (. ) ota)] ()
R L s=1 ns€l; oceG

IA

l 1te/(Ldy 1
C (CKV)I/I U /Rd [ZMZL(XBJ.SM)(O(J:))] /t )duk(x)]

IN

! 1+e/(1 dy 1
cewy II | £ % [ [Mhs s, )en] )duk<x>]

l
= ccx)'']]
s=1

l -
< C(Cgr)! H Z G| Mk(Bjs,ns)]l/l < C(Cxw)"aw)™m,
s=1

i nseljs
This completes the proof of the inequality (3.2.4). Finally choosing v = 1/(Ck + A), from
(3.2.2) and (3.2.3), we see that (3.2.1) holds and hence the proof is concluded. O

3.3 Weighted Inequalities for Multilinear Dunkl-Calderon-
Zygmund Operators

In this section, we discuss our main results, namely Theorem 3.3.3 and Theorem 3.3.4,
regrading weighted estimates for multilinear Dunkl-Calder6n-Zygmund Operators. We will

now prove two propositions that will be very useful in the proofs of these results.

Proposition 3.3.1. Let 1 < py,pa, -+ ,pm < 00 and v € (0,1/m). Then there is a con-
stant C' > 0 depending only on v, m, e and p; s such that for all ? € LP(RY, duy) x
LZU(Rd’ duk) X o0 X me(Rd’ d,uk):

M}Cfil/(T?)(x)SC(CK_‘_A) Z MIICtIL(floO—TLUfQOO—nza'” afmoanm)(x)'

(n1,n2,,nm)
ong €G
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Proof. Fix a ball B such that x € B. From the definition given in Section 2.3, it suffices

to prove that there is a ¢z € C depending only on B such that

= (17T - el )]

< C(CK+A) Z M’;{L(floanla.fQOanzv'“ 7fmoo—nm)($)(331)

(n1,n2, )
ong €G

Let ¢ denotes the centre and 7( B) denote the radius of the ball B and set B** = (B(cp, 5r(B))).

Also define f = fixo(s=) and f;° = f; — f7. Then

15wy = 11 17w+ 57w
j=1

J=1

- Z i ) f52 2) - - for (ym)

1,02, ,0m € {O’OO}

= [IRw+ > e o)

at least one avp, # 0

Denote (f7, f9,---, f2) by ]ﬁ, then we have

T =TRE+ Y TUS e ). (32)

at least one oy, # 0

Set N = H \f |21 () and ¢ = Z T( o1 for L ’f%m)(x).

at lest one ay, # 0

Then from (3.3.2) we can write

[ [T -l )]

< C [ukgB) /B | Tﬁ(z)|“duk(z)] " e [ﬁ/}g at least one £ 0

v /v
x\T( o fo2 7f;;m)(z)_T( o1 o fam ;c)\ dﬂk<z>:|1 (3.3.3)

Now we consider the first term. It follows from Theorem 3.2.2 that

I AGCIETCT
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1 N(Ck+A) . ?
= |—== vt’” 2 € B:|Tf(2)]>1t})dt
5/ m({z € B2 1) > 1))
- L 3 Y
+ vt” ze€ B:|Tf(2)|>t})dt
1k (B) Jnci+a) el THEI> 1) ]
0 1/v
< C[N”((JK + A" + (Ck + A)l/le/m/ primtm dt}
N(Ck+A)
< C(Cx + AN < O (Cr + HMYy, T (@)
< C(Ck+4) Y My (00w, f200u, -, fu©0a,) (2). (3.34)
g
For the second term in (3.3.3), we take o, = o, = -+ = «a;, = 0, where for 0 < s <

l, js €{1,2,--- ,m}and 0 < [ < m with the convention that {j;, j2, -+ , 51} = 0if [ = 0.
Then keeping in mind that m — 1 > 1,z € B and supp f;° C R?\ O(B**), forany z € B

we can apply smoothness condition (3.1.2) to obtain

‘T( lcu’ 2a27,,. ,fﬁl’”)(z)—T( 1041’ ;2’... Jf,‘;")(x)\

< CK/(Rd) K (290,20 Ym) = K (291,92 ym)| ] | |17 (y5)] di(5)
m ] 1
. -m ‘Z
e B(z, do(2, v =] H a
— K/(Rd)m [nz:lluk( (z G(Z Y )))] 1r<na<x \Z—yn ‘f y] ‘ 123 y]

o | ﬁ‘fﬁ(y“ / zuk (2ol )]

(o) (rnvo(s+) "
or(B) | !
11<13La<Xm‘Z _yn‘ j§§{]’11j_;[,m7jz} ‘fj(yj)‘ Edﬂk(yjs} jg{jlg...7jl}d”k(yj)’
o0 l m
i O(B**))l = (O(3nB**))mil\(@(r)n—ls**))m*l =t
r(B) E " ! | |
8 max de(z,ys) jgé{jllj:[...j} \f](y])\ qdﬂk‘(y]s) | H | dpe(y;),
=8=m WJ2,m01 s J& {g1.g2, a1}
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where in the last step, we have used the fact that (R¥\ O(B**))™! C (Rd)m_l\(O(B**))m_l

Using the inequalities max dq(z,y:) > C'3"r(B) and 3_ i (B(z, da(z,ys))) >
<s<m s=1

C (3" B), from above we write

IA

IN

IN

IN

|T te fam)< ) T( ?17 327"' ,f%m)(ili”

l

CCKZS"E / 11/ (s0)

dpe(y;,)

J¢{dr.g2, ik

« / (uk<3n3>)*’" T 1) duy)
(

(o@B=)"" \(o@-15+ )"

o m

CCx Z 3ne H B) / | fi(y)| di(y;)

O(3nB**)

CCx g?ﬂ”ﬁ [gm / |fi 0 a(y;)] dﬂk(%)}

Jj=1 3n Brx

CCKZlS‘”E . [Hm/\fgoamy;|dukya]

(n17n27"' 7nm) 3n B
ong €G

C<CK+A) Z MI;{L(floO-nlvaOO-nz?"' ,meO'nm)(LC).

(n1,m2, ;nm)
ong €G

Now making use of (3.3.4) and the last inequality in (3.3.3), we conclude the proof of

(3.3.1).

]

Proposition 3.3.2. Let w be a weight in the class A* and p € [1/m, 00). Then there exists

a constant C' > 0 such that if fi, fa,- -, fm are bounded functions with compact support

(i) if p > 1/m, then

([T @l u duw)”
< e Y ([ (MpE@) e dne)

(n1,m2, nm)
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(ii) if p > 1/m, then

([ wa)

{y €R%: [T T (y)|>t}

< cex+a) Y s [ w@dn)

t>0

n1,Nn2, ", Mm
gz Ty ertaly, B>t
. —
where we have used the notation f, = (fio0on,,  * , fm ©0On,,)-

Proof- We only prove (i) as (ii) follows by similar arguments. For any N € N, define
wy(x) = min{w(x), N}. Then the weight wy € A* (cf. [18, p. 215]) and the constant
[wn]ax_ in the A% condition, does not depend on .

Also by Fatou’s lemma

LT T @l v < jim [ 177 @ onto) dua).

Since f1, fa,- - -, fm are bounded functions with compact support, by our hypothesis 7'7 €

L%°°(R?, dyy,) which implies for any v € (0,1/m),

similar method as in (3.3.4)). Next we claim that

supt ( / wy(z) duk(x)>1/p0 < 00, (3.3.5)

>0 )
1/v
{yere: (Ml (T T W) " >t}
for some 0 < py < p. Taking py = 1/m and using the fact that M¥, is bounded on

L">°(R4, dpy,) for 1 < r < oo (cf. [33, p. 103]), we have

supt ( / wn () diug(x)) "

{yera: (st (TT1VW) ">t}

1
< Yl 0T A
1 1
S ”wNHzLOOHM}CILHL/ll;mV,oo(duk) Ll/mu oo(duk)H’T7‘ HL/ll;my oo dﬂk)

1/v

= NI IS L ey g 1T ey < 00
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This completes the proof of the claim (3.3.5).
Therefore, by arguing as [34, Lemma 4.11 (i)] for the space of homogeneous type

(R, |z — y|, djux) and using Proposition 3.3.1, we finally write

(/Rd ‘7—7(37)‘%;]\,(3;) dﬂk(x)>l/p
([, 0t 7 1) wnte) dianta)) ™
C[UJN}AI;O (/Rd (Mffi,u(T?)(x))pr(x) d:“k(:t)) 1/p

VAN

IA

1/
S C<CK+A) Z </]R;d (MIIC:[L (floanlv"' 7fm00—nm) (l’))pr<.Z'>duk(.’L')) ’
(n1,n2, ,Nm
1/p

IN

C(Cg + A) Z (/Rd (M (froom, -, fmoon,) () w(x) d,uk(x)>

(nl 312,00 7n7n)
ong €G

Recalling the fact that [wy]4x is independent of NV, we get the required result by taking

N — oo. O]

Finally, our main results concerning multilinear Dunkl-Calderén-Zygmund operators

consist of the following two-weight and one-weight inequalities:

Theorem 3.3.3. Let 1 < py,po,--- ,pm < 09, ? = (p1,p2," " ,Pm), p be the number
givenby 1/p =1/p1+1/pe+---+1/py and v, wy, we, - - -, wy, be G-invariant weights with
v € A* . Furthermore let T maps from L (R?, dug) x L9 (R®, dpy,) x - - - x LI (R duy,)
to L4 (R?, duy) with norm A for some q, q1, qz, -+ , Gm Satisfying 1 < q1,qa, -+, Gm <

cowithl/q=1/q +1/qa + -+ - + 1/qm. Then the following hold.:

(i) if pj = 1 for some 1l < j < m and the vector weight (v, ﬁ) € A%, then for all
7 € LPY(RY, wy dpy) x LP? (R, wo dpig) X -+ x LPm(RY, w,, duy,), the following
boundedness holds:

st [ o) du)

{y €R%: T F (y)|>t}

1/p
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< e+ ATT( [ P ueanm) "™

ii) ifp; > 1foralll < 7 < m and the vector weight (v, W) satisfies the bump condition
j
(2.3.1) for some t > 1, then for all 7 € L7 (R4, wy duy,) x LP2(RE wy dpy,) X - -+ X
LPm (R, w,, duy,), the following boundedness holds:

(/ |T? )Po(x) dpg( )> 1/p <C(Ckg+ A) f[(/Rd |3 () [Pw; () d#k($)> 1/pj‘

Proof of (i). Proof follows at once from Proposition 3.3.2 (ii), Theorem 2.3.9 (i) and the

G-invariance of the weights. [

Proof of (ii). Similarly the proof follows form Proposition 3.3.2 (i), Theorem 2.3.9 (ii) and

the G-invariance of the weights. [

Theorem 3.3.4. Let 1 < pi,pa, -+ ,pm < 0O, ? = (p1,p2,"** ,Pm), p be the number
givenby 1/p=1/p1+1/ps+---+1/py and wy, we, - - - , w,, be G-invariant weights and
the vector weight W € A’;_g. Furthermore let T maps from L% (R?, duy) x L2 (R?, duy,) x
- x L9 (R?, duy,) to LY(RE, duy) with norm A for some q,q1,qo, "+ , Gm Satisfying
1<q1,q0, @ <ocowithl/qg=1/q1+1/qa + - - - + 1/qm. Then the following hold:
(i) ifp; = 1forsomel < j <m, thenforall? € LPY (R wy duy,) x LP?(RE, wy dpuy) X
- x LP(R® w,, duy), the following boundedness holds:

sup t( / Hw Y2y ))1/17

t>0
{y €Rr¥: |T? >t} 7

< et AT [ 1n@puine) "™

(ii) if p; > 1 forall1 < j < m, then for all 7 € L (R4, wy duy,) x LP? (R, wy dug) x
- x LP(R® w,, duy), the following boundedness holds:

(/Rd |7‘? |pr p/P7 dpug( ))1/p
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< C(Cr+A) ﬁ (15 du) ™

d

Proof of (i). Note that W € A’% implies that ] wﬁ.’/ Pi e A% (see [34, Proposition 4.3]).
j=1

Hence, in this case also proof follows from Proposition 3.3.2 (ii), Theorem 2.3.9 (i) with

d
v=[]uw} /i and the G-invariance of the weights. O
j=1

Proof of (ii). The proof can be completed by using Proposition 3.3.2 (i), Theorem 2.3.10

and the G-invariance of the weights together with the property of the A? weights as used

in the last proof. O
Remark 3.3.5. In the classical setting, forn = 1,2, --- | d, the m-linear n-th Riesz tranas-
form is defined by

3o~ ()

Jiyn) - fn(Ym) dy1 - - - dymm,

Ra(F)ia) =pa. |

Rmd (i ‘ ’ )(md+1)/2

where (y,),, denotes the n-th coordinate of y;. These multilinear Riesz transforms are ex-
amples of classical multilinear Calderon—Zygmund operators. It is shown in [48] that if
Theorem 1.1.2 holds for each of the operators R,,, then W € A;;. However, since there is
not much information available about Dunkl translations, we cannot provide such necessary

conditions for weighted boundedness results in this setup.

3.4 Maximal Multilinear Dunkl-Calderon-Zygmund Op-
erators

In [70], the authors investigated boundedness results in the non-weighted scenario for max-
imal operators associated with linear Dunkl-Calderon—Zygmund singular integrals intro-

duced in [69]. We aim to extend these findings to multilinear operators, addressing not
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only the multilinear case but also exploring weighted scenarios. Therefore, proving our
theorems is much more complicated than in the linear case. This complexity arises from
dealing with multilinear situations and considering weighted scenarios, adding extra layers
of difficulty.
Following the classical case (see Section 1.1) as an analogy, we define maximal multi-
linear truncated operators 7* by
T (7)) = sup | To(7) ).

where we set, for any 6 > 0,

m

To(f () = / K(z,90, 42, U H (y5) dp(y;)

£ doley)z -
P

and K is the kernel as in Definition 3.1.1.
Ifforall j = 1,2,--- ,m, f; € L%(R% duy), then T5( f ) is well defined. In fact, the
size condition (3.1.1) on the kernel K implies

H | fi ()| dpe(y;)

(@) < Ck / = . (3.4.1)
[;ﬂk(B(%dG(m,yj)))}m

=1

Let dG<:U7y2) = 22}?2‘ dg(l’,yj), then Z ,uk(B(w,dG(x,y]))) ~ [Lk(B(fE,dg<iL',y2)) and
sjsm j=2

hence, using (2.1.5) together with this relation, we can write

dpr(y1)

/Rd [éuk(B(%da(:v,yj)))]mqi

- / dpir (Y1) _
[k (B(z, da(, 92)))] ™"

da(w,y1)<dg(z,y2)

dpe(y1)
+ ;
Z [Mk; (B(x, dc(x,yﬁ))}mql
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|G|:U’k(B(x7dG('r7y2)) +C - |G|/~Lk‘(B(x72ldG(I7y2))
[Mk(B(xadG(%m)))]mql =1 [Nk(B(xa QIdG(“fayﬁ))]m%
1

(1o (B(z, de(, yﬁ))}mqi_l

C L (3.4.2)

[ji j (B(:c, de(x, yj))))}mqi_l |

IN

C

IN

Now, without loss of generality we can take dg(x,y,,) > §/m. Then applying Holders

inequality repeatedly and using (3.4.2), from (3.4.1) we get

(@) < Crc |l

(Rd)m72 dc(w,ym)ZzS/m

dpx(y1) Vi ﬁ
X m , | fi ()| dp(y;)
</Rd [Zlﬂk(B(x,dG(I7yj)))]mql> J=2

I 15, ()] e (3)

IN

C Cx | f1ll o ()

@i daamzoim | 2 (B, da(@,95)))] m-1/
J:

< CCk 1 fillea @ | 2l Loz gy == - 1| fonl| Lam ()
> 1

X l e
ZZI [Mk(B(I’ 215/m))i|m_(1/ql+'“+l/qm)

Our main results related to maximal multilinear Dunkl-Calderén-Zygmund singular in-
tegrals are two-weight and one-weight inequalities (Theorem 3.4.2 and Theorem 3.4.3 re-
spectively). In the classical scenario, the Cotlar-type inequality plays a pivotal role in estab-
lishing these results. Here, we prove a variant of a multilinear Cotlar-type inequality (see
Lemma 3.4.1) within this framework, which encompasses the action of the involved reflec-
tion group. To prove this inequality, we closely follow classical ideas from [25,34,36,37].
However, as the integral representation provided in Definition 3.1.1 holds only when the

support of f;’s is outside the orbit of x and due to the involvement of both metrics-‘the
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Dunkl metric’ and the usual metric in the regularity conditions (eq. (3.1.1) and (3.1.2)) on
the kernel, some new arguments are essentially required to successfully conclude the proof.
Also, as a direct application of the Cotlar inequality, we obtain pointwise convergence of

principal value integrals, as stated in Theorem 3.4.4, much like the classical case.

3.4.1 Multilinear Cotlar-type Inequality

To prove the boundedness results, we first prove an analogue of the multilinear Cotlar in-

equality involving action of the reflection group.

Lemma 3.4.1. (Multilinear Cotlar-type inequality in Dunkl setting) For 0 < v < 1/m,
there exists a constant C' depending on m, €, v such that for all f; € L%(R? duy,); j =

1,2,--- ,m; and for all x € R% we have

TT@ < (M7 @]
+(CK+A) Z M’;{L(floo-nnf2oo-n27“'7fmoanm)(x)>7

(n1,m2, ,m)
ong €G

where MY, and MY, are respectively linear and m-linear Hardy-Littlewood maximal
operators defined as
M f (@) = sup — / 7(0)] iy

BCRd Mk
zEeB

and Miy, T (@)= sup [T —= [ 16,01 dinty

BcRd
rz€EB -

Proof. Let us consider z € R? and v € (0,1/m). We define two sets

S5 = {(y1>y2,"' ' Ym) € R™ sup dg(z,y;) < 5}

1<j<m

and Us = {(y1, %2, ) € S50 Y da(z,y;) > 6}

1<j<m
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Take any (y1, Y2, ,Ym) € Us. Then there exists y;, € R? satisfying dg(x,y;,) > §/m.
So

pi(B(z,0)) < Zuk (z,mde(z,y;)))

< Cn Z,Uk (z, de(x,y;)))-

Therefore, using the size condition (3.1.1) on K, we can compute

sup

sup| | K,y 5 ym) fr(yn) - fn(Ym) duk(yl)---duk(ym)’

/ Cx [fiy) - fin(ym)|
Us [Z uk(B(x,de(x,yj)))}m

@ 5 / Hlfg Y;)| dp(y;)

5]1

| f5 ()] dpn(y;)
O(B(x,9))

IN

sup
6>0

A (Y1) - - - dpr(Ym)

IN

C C sup

b T

m

C Ck su —
« 5>%’jr_[1 (B, 9))

IN

1
< CCks / (y)ld ;
Ka‘ilé'JHl > B ) £ dpayy)]
B(o(2),5)
< CCK Z MI[i[L(floanprOanz:"' 7fmoonm) ($) (343)
(n1,m2, ,nm)
Now, let us consider
T F )= [ KGan om) o) Fnloie) din(0:) - dpae)

and 7 f (2) := sup |75 f (2).

>0

Also for z € R?, define

Ga 7 (0:2) = || Koo o) Fin) -+ Fnon) din() - dpn(om).
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Then for z € B(x,6/2), we have

T/ (@)
= T5f(2)-Gs [ (x,2) SCK zye e Ym) Jr(yn) - S (Ym) dpe(y1) - - - disk (ym)
= BT @ =G T+ [ K ) Al fuly) di(sn) - dpe()

) K(z, 91, 3 Ym) fr(yn) -+ fon(Ym) dpe(y1) - - - dppr(yim)

= T (@) =G5 [+ T f(2)

— dK(z Y, Um) fixoses) W) - fmXoBs) Ym) di(y1) - - - dpk(Ym)
Rm

= 7 Ga7 (z,2) +T7 T, fn)(2), (3.4.4)
where f](y) = fi(y)xoB@es) (v) forall y € Riandj =1,2,---,m

Again from the smoothness condition (3.1.2) on K,

Tl @) =G5 f @2 < [ 1K@y vm) = Ky v 1) - Fym)]

S5
Xdpr(yr) - - - dpo(Ym)

Now we can express the above integral as a sum of integrals over R; C R™ for

1,025 501

some {j1,j2,"' ,jz} g {1,2,~-~ ,m} so that, for j = 1,2,--- ,m; dg(z,y;) < d if and

only if j € {j1,j2,--- ,ji} forall (y1, 42, ,Ym) € Rjy js...j,» where | < m. Set

{817827'” 781} = {1727 7m} \ {jluj?a"' 7jl}'

Then the last inequality can be rewritten as

T f (@) — G5 f (. 2)

< oo ] / |5 (w5)] dpa(y5)

JET1I2 01} 4 (2y,) <6
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m—l
1 H ’fSJ (ys])l duk(ysj)
.
oo LI Ao U] [$5 (B, dele. )]
(r-0(B(x.,9))) izl
<coes I [ 16w)lduw)
je{jl’j27'"7jl}dG(z7yj)<§
m—l1
1 H ’fS] (y83>’ dlLLk(yS])
7=1
X / m—I . m—I m
— da(z, ys. B(z,dg(x, ys,
glldc(:t,ij)Zfs [];1 G( Y J)} [;Mk< ( G( y])))}
<coe I [ 16w)lduw
jE{jl,jzf"7jz}dc(x7yj)<5
§ /-
r=0 .
2T6§n_§ dc;(z,ysj)<2T+15
< CCk i L ! = ﬁ / |5 ()| dpw(y;)
- — 27 [ (B(z,2416)) ]
r= I=0(B(,27+16)
< CCK Z MI;—IL(floUTLUfQOO-TLw”' 7fmognm) (‘T) (345)

(n1,mz, e nm)
ong €G

Substituting (3.4.5) in (3.4.4), we obtain

Tif@l < c(ce Y Min(fioom froom fnoom,) (@)

(n1,n2, ,nm)
ong €G

HATF I+ TG ) )] (346)

Taking vth power and averaging over B(x, §/2) with respect to the variable z, we get

T @)
< Ofex X Min(fieou. faoom e fnon,) @] + M (T F)@)

(n1,n2, nm)
ong €G

1 r r 14
B, // TG R ). 547
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B 1 m m 1/m
Now let @ = s AV }31 1fiXow@ a1, Then

/ T F) I dyun(2)

B(z,6/2)
= mu/ " ({2 € B(,0/2) [T (f1, -+, fn) ()™ > }) dt
0

= my— : Al/m - 1/m
< mV/ £ min {1 (B(x,0/2)), — T I1fixomeen | i, b dt

(e 9]

- my/oatm”_luk(B(x,é/Q)) dt+my/ t™ " a i (B(z,0/2)) dt

v 1—-mv a v
< C A" (B(x,0)) [T 1fixow@enl

J=1

Therefore, by (2.1.2),

1 3 5 » 1/v
[mm [/2) T (f1,--, fm)(2)] duk(z)]
- 1
= CA]Hlm / 1£3(y5)| dp ()
O(B(z.5))

< CA Y Mip(froom. fr00u,  fnoon,)(x). (348

(n1,n2, ,nm)
ong €G

Hence, (3.4.3), (3.4.7) and (3.4.8) together conclude the proof. ]

3.4.2 Weighted Boundedness

Now we are ready to state our main results regarding weighted boundedness for maximal

multilinear Dunkl singular integrals.

Theorem 3.4.2. Under the assumptions of Theorem 3.3.3, the following boundedness re-

sults hold:

(i) if p; = 1 for at least one j € {1,2,--- ,m} and the vector weight (v, W) € A%,
then for all 7 € LPY(RY, wy dyy,) x LP2(RY, wq dpy,) X - -+ x LPm (R w,, duy), the
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following boundedness holds:

1/
st [ v@duta)
>0

{y R%: |T*7(y)|>t}

1/p;
<C OK+A / |f] )P w] x)dp(z )) ;

(ii) ifforany j € {1,2,--- ,m}, p; > 1 and the weight (v, W) fulfills the bumped—A%
property (2.3.1) for somet > 1, then for all? € L (R4, wy dpy) x LP2 (R, wy dpg ) ¥
- x LPm(RY, w,, duy,), the following boundedness holds:

(/Rd 77 @) Poe) due(a)) " < O(Crc + 4) f[ / @) P (@) dn()) ",

Theorem 3.4.3. Under the assumptions of Theorem 3.3.4, the following boundedness re-

sults hold:
(i) if p; = 1 for at least one j € {1,2,--- ,m}, then for all ? € LPY (R4, wy dpuy) X
LP2 (R wy dpg) X -+ - X LPm (R w,, duy,), the following boundedness holds:
1/p
su t( / W z)P/Pid )
0 [T tar' de
fyera: 7= )l>)

< et ATI( [ 1n@ru i)™

j=1

(i) if forany j € {1,2,--- ,m}, p; > 1, then for all 7 € LP' (R4, wy duy) x LP2(RY,
wy dpig) X -+ x LPm (R w,, duy), the following boundedness holds:

( /Rdw*? \PHw e dya ()

Once Cotlar type inequality is proved, the proofs of the weighted inequalities for 7*

follow in the same way as in the classical case [37]. Hence, we omit the details.
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Proof of Theorem 3.4.2 and Theorem 3.4.3. Inview of the weighted boundedness of 7 (The-
orem 3.3.3 and Theorem 3.3.4) and the weighted boundedness of Hardy-Littlewood max-
imal functions in spaces of homogeneous type [34], the proofs can be done in the same
way as in the proofs of [34, Theorem 4.17 and Theorem 4.16]. Only change is that the
term M’};L7 needs to be replacedby Y. MY, (fioou,, fa00ny,, fmO0on,)

(n1nz, - ,nm)
ong €G

whose boundedness follows from the quasi-triangle inequalities, applying change of vari-

ables and the GG-invariance of the weights. [

Next, we state the pointwise convergence result for principal value integrals associated
with the multilinear Dunkl-Calderon-Zygmund kernels, which is a direct consequence of

Lemma 3.4.1.

Theorem 3.4.4. For f; € S(RY), j =1,2,--- ,m; if

T(H@ =tm [ K ) [[50) duw)

m

j=1
dg(x,y;)>0
j=1

where K is the kernel as in Definition 3.1.1. Then the above integral is convergent almost

everywhere for all f; € L9 (R?, duy,).
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Chapter 4

Bilinear Multiplier Operators for Dunkl
Transform

The theme of this chapter is to explore bilinear multiplier operators associated with the
Dunkl transform. In Section 4.1, we recall the theory for Fourier multiplier operators and
introduce multiplier operators associated with the Dunkl transform. Next, in Section 4.2, we
present new Littlewood-Paley type theorems for the Dunkl transform, which are essential
ingredients for the analysis of multiplier operators. We establish a generalization of the
Coifman-Meyer bilinear multiplier theorem in Section 4.3, extending it from the classical
setting to the Dunkl setting. Finally, in Section 4.4, we prove weighted estimates for bilinear
Dunkl multiplier operators, utilizing the results from Section 4.3 and the theory of singular

integrals presented in Chapter 3. This chapter is built upon a part from the work [56].

4.1 Introduction

One of the well studied and trending topics in modern Harmonic analysis is the Fourier
multipliers and its multilinear versions. For fi, fo € S(R?), the bilinear Fourier multiplier

operators is defined as

Ta(fi f)@) = [ mEnFAEQF fln)e™ 0 dg

R

where m is some reasonable function on R?¢ and F is the classical Fourier transform on
R?. The classical Coifman-Meyer [16] (bilinear) multiplier theorem from 1970’s states that

if m is a bounded function on R??, which is smooth away from the origin and satisfies the
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decay condition:

0205 m(¢,m)| < Cap (€] + )1+ @.1.1)

for all multi-indices ., 8 € (N U {0})“, then the operator Ty, is bounded from L?* (R?, dz) x
LP2(RY, dx) to LP(RY, dz) for 1 < p,p1,p2 < oo with the relation 1/p = 1/p; + 1/p».
Later, significant improvements has been done to this result by improving the range of
p [38,45] and by reducing the smoothness condition on m [73]. In 2010’s many authors
were concerned with weighted inequalities for the bilinear multipliers. In this direction,
weighted inequalities with classical A, weights were proved by Fujita and Tomita [29] and
Hu et. al [42] under Hormander condition which is weaker than the condition (4.1.1). Also,
Bui and Duong [8] and Li and Sun [49] presented similar results but with multiple weights
introduced by Lerner et. al [48] in place of the classical weights.

In parallel with the classical scenario, for a bounded function m on R¢ x R? define the

bilinear Dunkl multiplier operator T, as

Tu(f1, f2)(7) = / m(&, n) Fi f1(&) Frfa(n) Ex(ix, §) By iz, n) dpk(§)dp(n)

R2d
for all f1, f» € S(R?).

For the linear Dunkl multiplier operators, there are analogous results [3,26] to classical
Fourier multiplier operators for the non-weighted cases. However, for bilinear multipliers
there is a lack of proper analogue to the classical setting even for the non-weighted case. In
fact, in Dunkl setting boundedness of bilinear multiplier operators are known only in two
special cases. The first case is due to Wrobel [75], where he assumes that the multiplier m
is radial in both the variables, that is there exists a function my on (0, 00) x (0, c0) such
that m(&,n) = mg(|¢], |n]) and the second one is obtained by Amri et al. [3], where they
restricted themselves to the one-dimensional case only. This motivates us to address the
gap and acquire a suitable counterpart to the classical results for bilinear multipliers in the

Dunkl setting.
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Our first aim in this chapter is to prove a Coifman-Meyer type multiplier theorem in
Dunkl setting (Theorem 4.3.1) without those extra assumptions mentioned above. The main
obstacle that comes in obtaining such results is due to lack of appropriate Littlewood-Paley
type theorems in Dunkl setting. Thanks to recent results [28] on pointwise estimates of
multipliers, which allows us to overcome such difficulties and present a Littlewood-Paley
type theory. Once such tools are available, the rest of our work lies in properly adapting
some classical techniques ( [57, pp. 67-71], [75, Theorem 4.1]) in Dunkl setup along with
some new ideas.

Moving forward to the next step, we want to prove one and two-weight inequalities for
the bilinear Dunkl-multiplier operators (Theorem 4.4.2 and Theorem 4.4.1) with multiple
weights and also for the exponents beyond the Banach range 1 < p < oo. In our results, the
smoothness condition on the multiplier m and weight classes are not the same to that of the
corresponding results in the classical case (see [49, Theorem 1.2] and [8, Theorem 4.2]). To
prove the boundedness results, the approaches used in the classical setting highly depend
on the fact that the two transposes of the operator Ty, are also bilinear multiplier operators
with multipliers m(—¢ — 7,7) and m(§, —¢ — ). In Dunkl case, no mechanism is known
to find the multipliers of the so called transposes of the Dunkl bilinear multiplier operator.
Moreover, our results are different than the classical case as we have also included the two-
weight case and the end-point cases. Therefore, merely adapting classical techniques in a
routine manner is insufficient to attain these results. In this context, we will adopt a different
approach. To achieve these weighted inequalities, we will mainly rely on the estimates
for Dunkl translations established in [28] and apply the theory of multilinear Calderon-
Zygmund type singular integrals in the Dunkl setting.

These results concerning bilinear multipliers may have many potential applications,
namely in establishing fractional Leibniz-type rules for the Dunkl Laplacian and various

Kato-Ponce-type inequalities. For instance, in [75], a fractional Leibniz-type rules for the
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Dunkl Laplacian has been proved for the group Z< using bilinear multiplier theorem with

radial multipliers.

4.2 Littlewood-Paley type Theorems

In this section, we prove two different Littlewood-Paley type theorems which are the main
ingredients in the proof of Theorem 4.3.1. We start with the following theorem. A partic-
ular case [20, Theorem 5.2] of this theorem is known for the group Z<¢ with Muckenhoupt

weights.

Theorem 4.2.1. Let u € R% 1 < p < oo. Let 1 be a smooth function on R¢ such that
suppyp C {£ € R : 1/r < |¢| < r} for somer > 1. For j € 7Z, define 1;(£) = ¢(£/27)
and for f € S(R?) define

vl Dy D) (@) = [ 05(€) P Ff (O Buli,€) din€).

Then

| (S . D2y rP)

JEL

o = C (L [ul)"[[ 1] o ()

where n = |dy | + 2 and C'is independent of u.

Proof. We will use the theory of Banach-valued singular integral operators [4, Theorem 3.1]
to prove the above theorem. The L2-case follows in similar way to the classical case [24, p.

160]. Using Plancherel formula for Dunkl transform, we get

(e T,

= [ ) PR diata)

d
(dpx) ez

< / ij )2 Fif (@)]? dua ()
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< Collfl1Z2@un

where in the last step we have used the fact that for any x only a fixed finite number of j’s
(depending on ) will contribute in the sum. This concludes the L?-case.
Let U* € S(R?) be such that F,¥*(&) = ¥(£)e’™ %) and define W (&) = 279 W (27¢).
Then F, U(€) = ;(£)e’™ /%’ and we also have that
(Yl D2y ) - (S mwer) -
JEL

Thus to apply the above mentioned Theorem, we only need to show that

17205 (~y) = 720 (—y) |2y dpan(@) < C (1 + [u])"

ly—y'|<dc(z,y)/2

and / HT;\IJ;‘(—x) — T;;‘P?(—l‘)“p(z) dug(z) < C (1 + |u])".
ly—y'|<da(z,y)/2

Again to prove the above two inequalities, it is enough to show that for =, y,y’ € R? with
ly —y'| < da(z,y)/2,

C1+up)™  |y—y

7oV (—y) = VS (=9 ) |2y < 42.1
P () = U ey < e s (42
u u CL+]u)"  ly-y]

175 5 (=) — 705 (=) [l eng 4.2.2)

?= VG (.I' Y, dG(x y)) dG(‘T7 y) .
We will only proof (4.2.1), as proof of (4.2.2) follows from (4.2.1) by symmetry.

Now using the formula for Dunkl translation and the definition of U¥, we have

TV (—y) = 200 L v© '8 By (i€, 2 x) By (—i&, 2y) du (). (4.2.3)

Next, we calculate ||¢)(-) ! |

cnwd). Using usual Leibniz rule for any multi-index a we

have

o (¢(§) 6i<u’£>) — Z (g) 8%““’ &) aa—ﬁ¢(§)7

BLa

59



§4.2. Littlewood-Paley type Theorems

where the summation ranges over all multi-indices 3 such that 3; < o; forall 1 < j <d.
Hence,

lo() e Menmey = sup  [0%(€) Y|

¢eR |a|<n
< C(1+ |u])™ sup ||0%Y]| - 4.2.4)

laj<n

Next, we estimate |7, 0% (—y) — 750 (—y/)|. We calculate the estimate in two parts:

If |27y — 27y/| < 1:

In view of (4.2.3), applying [28, eq.(4.31)] and using the inequalities (4.2.4) and (2.1.2),

we have

[T (—y) — 7T ()]

C<1+| |>n 2jdk|2jy_2jy/| 1 1
u B . _
B (ur(B(202,1)) (B (29y, 1)))? L+ 2]z — y| (1 + 2dg(z, )"
< (1 + ulyr =Y ! _

|2 =yl (g (B(x,279)) i (B(y, 279)))

1

1+ 2del ) 22

Now, when 2/dg(z,y) < 1, from (2.1.2) and (2.1.4), we get

1 Sz ) 1
By = @) e
1

< C (2jdG(x,y)>dVG(x7y, da(z,y))

(Vde(z,y)" + (2da(z,y)™
= Va(z,y, da(w,y)) |

Similarly, when 27dg(x,y) > 1, from (2.1.2) and (2.1.4), we get

dy,

1 (deg<13, y))d + (2]dG<x7y))
/J,k(B<:U,2_j>> < ¢ VG(xvyvdG(xvy»
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Thus, in any case

1 < C (2dg(x,y))" + (Pde(x,y))™

,U,k(B<:U,2_j>> B VG(xvyvdG(xay»

In similar manner we can deduce

1 < C (dec(xay))d + (zjdG@?y))dk

we(B(y,279)) = Va(r,y,da(r,y))

Therefore, if |27y — 273/| < 1, using above two estimates, from (4.2.5) we write

[T (—y) — T (=)

y — o] (2da(z,9)" + (Pda(z, y)™
O n
< O+ ]u) |z — y| Va(z,y, da(z,y))
X 1 . (4.2.6)

(14 2dg(z,y)"

If |27y — 27y/| > 1:

Again, in view of (4.2.3), applying [28, eq.(4.30)] and using the inequalities (4.2.4), (2.1.2)

and (2.1.4) in similar manner as in the last case, we get

[T (—y) — TRV (=)

27 1 1
< O+l . o ‘ -
(B2, 1) i (B(@y, 1) 2 T+ 21— y] (14 2/dg(2,9))
n 27k 1 1
(B2, 1) i (B@iy 1)) 1+ 2] =/ (1 + 2da(w, )

o] @daey)’ + (2do(z,y)™ 1 L
= Gl [ Volw..do(w,y)) 1120yl (15 Ddg(a,y))"
(Ydo(z,y))" + (Pdo(x,y))* 1 ! .2.7)
Volw,y da(ey)) 1+ 2e -y (1 +2dg(e,y))" .

It is easy to see that the condition |y — v/| < dg(z,y)/2 implies that

dG(may) ~ dG<x>y,)7 |:B - y| ~ |ZL’ - y,| and VG('Iay>dG($ay)) ~ V(;(l’,y/,dg(iﬁ,y/))-
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§4.2. Littlewood-Paley type Theorems

So, if |27y — 27y/| > 1, applying the above estimates in (4.2.7), we write

TR (—y) — Ta VY (—y)]

n (de(;(x,y))d + (2jdg(l‘,y)) 1 1
S O T e i deey)) 12l (11 2oy
W (Pda(z,)! + (Pda(e,y)™ |2y — 2y 1
S T e de(ry)) 1+ 2~y (15 2 ()
Ny — | (2da(z, )" + (2da(z,y))™ 1
S OO+ = Vowde@y) (3 zda@ T Y

Now taking (4.2.6) and (4.2.8) into account and using |x — y| > dg(z, y) together with

the condition n = |dj | + 2, we have

AN

IN

IN

IN

<

17205 (=y) = 2 (=) e

Dol (—y) — v (—y)

JEZ

C+fu)” ly—v Z (Yda(2,y))" + (Pdo(z,y))"
Va(z,y, do(2,y)) da(z,y) (1+2dg(z,y)""

CA+[u)”  |y—v|

..+ N
Va(z,y, de(z,y)) do(z,y) <j€Z Y . Z )

JEZ:2idg (x,y)>1

CA+u)"  Jy— y’( 3 (dea(x,y))d
)

Va(z,y,da(z,y)) da(z, y) i€Z: 29 dg (z,y) <

(23(1@ T,y dk )

+ Y —
JEZ:2idg(z,y)>1 ( ]dG( )>
C+u)"  |y—v

VG(«T, Y, dG(xv y)) dG(x7 y)

This completes the proof of (4.2.1) and hence the proof of the theorem. 0

Remark 4.2.2. In [4, Theorem 3.1] the explicit constant for the boundedness of Banach-

valued singular integrals is not calculated. However, a close observation (see [4, Theorem

3.1] and [35, Theorem 1.1] ) assures that the constant in our proof will vary as (1 + |u|)".
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§4.2. Littlewood-Paley type Theorems

Let m be a bounded function on R¢. For any ¢ > 0 and for any f € S(R?), we define a

Dunkl-multiplier operator m;(Dy,) as

m(D)f(x) = | m1€)Ff(€) Belir ) dpe(€).

Then, we have the following boundedness result.

Proposition 4.2.3. Let m be a function on R? such that
Im(z)| < Cp/(1 4 |2|) and |Vm(x)| < Cw /(1 + |2|) for all x € R?,

where V is the usual gradient on RY. Then

sup |m (D) f|

t>0

L2 (dpy) < C(Cn + Co)l[ 1l 2

Proof. The proof follows by repeating the proof'in the classical case [63, pp. 397-398] with

the classical objects replaced by their Dunkl-counterparts. [

The next main result of this section is a different variant of the Littlewood-Paley theo-

rem, stated as follows.

Theorem 4.2.4. Letu € R% 1 < p < oo. Let 1) be a compactly supported smooth _function
onRY. For j € Z, define 1;(§) = ¢(£/27) and for f € S(R?) define

VD) (@) = [ 0O F ) Bulio. €) dia(©)

Then

sup [v(u, D/ 2| < € (Wt ul) I v

JEL.

where n = |dy| + 2 and C' is independent of u.

Proof. The proof follows in the same scheme as the proof of Theorem 4.2.1. We will only

provide a outline of the proof.
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§4.3. Coifman-Meyer type Bilinear Multiplier Theorem

Since 1 is a smooth function with compact support, ;1 is also so and 9;e{" =

iuje'™ forany 1 < j < d. Therefore, the following estimates hold for all £ € R%:

imey| o~ CU A+ [ul)
and |V (1(&)e'™9)| < T

i{u, &)
[(&)e™ 9| < o

where C' does not depend on .

Hence by Proposition 4.2.3,

sup [ (u, Di/2)

JEZ

<C(1 '
L2(dpy) ( + |u‘)||f||L2(d#k)

Let " be as in the proof of Theorem 4.2.1. Thus, to complete the proof, we only need

to prove that for z, y, 3y € R? with |y — ¢/| < dg(z,v)/2,

C+Ju)™  |y—y

NG T /
sup |7, Vi (—y) — 1, Vi (—y')| < , 4.2.9
jEIZ)‘ ]( y) ]( y>| VG (x7y7dG'(x7y)) dG(‘TJy> ( )
which follows by repeating the arguments used in the proof of Theorem 4.2.1. 0

4.3 Coifman-Meyer type Bilinear Multiplier Theorem

The first main result of this chapter is Coifman-Meyer [16] type multiplier theorem in Dunkl
setting. This theorem extends the boundedness of Fourier multiplier operators to include

multiplier operators associated with the Dunkl transform.

Theorem 4.3.1. Let 1 < p,p1,pas < oo with 1/p = 1/p1 + 1/ps and L € N be such that
L>2d+2|dy] +4 Ifm e C* (R x R\ {(0,0)}) be a function satisfying

|0800m(€,n)| < Ca, g (€] + |n]) =1

for all multi-indices o, f € (N U {0})? such that |a|+|8| < L andforall (€,7) € Réx R\
{(0,0)}; then for all f, € LP*(R?, duy) and fo € LP*(RY, duy,), the following boundedness
holds:

T (frs S 2oy < C I allorap) [ F2 2r2 ()
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§4.3. Coifman-Meyer type Bilinear Multiplier Theorem

Proof. Let 1) € C*°(R?) be such that supp1p C {£ € R4 : 1/2 < |€] < 2} and
S 05(6) = 1 forall € 0,
jez

where 1;(£) = (£/27) for all £ € R?. Then

Tulf1, f2)(z) = / DO U (v, (mm(E, n) Ff1(8) Fiefa(n) B (i, €)

J1€EZ jo €7
x By (iz,n) dp(§)dp(n

- [ - /z DR

l71—j21<4 Jj1>j2+4 Jo>j1+4

= Ti(f1, fo)(@) + T2 f1, fo)(z) + T3(f1, fo)(2)

We will calculate the estimates for 77, 75 and 73 separately.

Estimate of 77:

Forany j € Z define m;(&,n) = 4;(&) > ¥,(n)m(E n)
Jo:lj—j2|<4

= ;(§)¢;(mm(E, n),

where ¢(n) = 3 1;(n) and ¢;(n) = ¢(n/27).

l7]<4
Then supp ¢ C {£ € R?: 275 < |€] < 25},

Let 1; € C*(R?) be another function such that 0 < Qﬁ < 1and
Ty 0 iffE] ¢ [27°,2°,
Ve —{ 1 iflé e 2,27
Then we have for any j € Z,
m;(&,n) = ¥;(§)e;(n)m(E, n)
= ()0 ()i ()b (mm(&, m)

= (&) (n)my(&,n).
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Now suppm; C {(&,n) € RY x RY: 276 < |¢] < 2776, 2076 < || < 27161,
Define for all j € Z,
a;(&§,n) = my(2¢,27n).
Then suppa; C {(£,n) € RT x R? : 276 < |¢] < 26, 276 < || < 26}, Now using
support of a; and smoothness assumption on m, expanding a; in terms Fourier series over
[276,26] x [276 26]9 we write

— Z Z Cj(n17n2)e2ﬂi(<§,n1>+<n,nz>)7 4.3.1)

n| €Z4 nyez4

where the Fourier coefficients c;(ny, ny) are given by

cj(ny,ny) = // a;(y, z) e~ 2y, m)H(zm2) gy,
[2—6726}d><[2—6,26]d

Thus we get

m](§>77> - Z Z Cj(lll’nQ) 627ri(<57n1>+<777n2>)/2j

n c€z4 ng czd

= D0 D7 ejlmmy) SO )5 ).

n cz4 ng czd

Substituting this in the expression for 7; and interchanging sum and integration, we obtain

Ti(f1, f2) ()
= /de Z m; (&, ) Fi f1(§) Frfo(n) Ex (i, &) Ex(iz,n) dpg (&) dpu(n)

jez

= TS S etmn) ([ 5@ € Bl € o))

n1€Z4 no €74 jEZ

< ([ Bt e o B duk(n))
= D > ci(ny,my) ¥(2mny, Di/27) fi(x) $(2mg, Di/20) fo(w),  (43.2)

n1€Z4 noc€Zd jEZ
where (27, D/27) f1(x) and ¢)(27ny, D /27) f() are as in Section 4.2. Now as 1) and ¢

are supported compactly away from origin and m satisfies (4.4.1), by Leibniz rule we have
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§4.3. Coifman-Meyer type Bilinear Multiplier Theorem

that for all j € Z,

10207 (m(27€,270) ¥ (€)d(n)) | < Cap (I€] + |n]) 1D (4.3.3)

forall a, 5 € (NU{0})* such that |o| + | 5| < L and for all (£,7) € R? x R%\ {(0,0)}.
Now for any o, § € (NU {0})%, we have

¢j(m,mg) = / / m(27y, 27 2)0(y)p(2) e 2w m+ ) gy
[2-6,26]dx[2-6,26]d
¢ j ‘ o —2mi n z,n
oo ] meese gt e iy

2 [2—67 26]d>< [2—67 26]d
Hence, applying integration by parts formula and using (4.3.3), we get

1
(14 [y | + [ma])*

|cj(n1,n2)] S OL (434)

Now using (4.3.4) and applying Cauchy-Schwarz inequality, from (4.3.2) we have

T )@ < Y > Y [e(ming) ¥ (2mny, Dy/27) fi(x) $(2mng, Di/2) folx)|

n1 €22 no€Z4 jEZ

¢ Z Z 1+|n1|+\n2| (ZW} 27m17Dk/2j)f1( )l >1/2

n €Z4 noezd

IN

< (3 4(2mma, Dy /20 fola)]? z
( )

jEZ
Finally, from Holder’s inequality and Theorem 4.2.1 and using the facts that L > 2d +
2|di] +4and n = |d;] + 2, we obtain

(], |’E(f1,f2)(x)|pdﬂk(x)>l/p

< C < 2mny, Dy, /2 >
> ¥ 2 10Em DDAF)
n|€Z% na€Z
x’ (Zw(zmg,Dk/zﬂ)leQ) \LP o)
(Lt )" (L + [ng))”
< CllAillenam el 2 D = maD?

ni €74 np €74
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< CIlfillzer @ || f2ll ez (@)

This concludes the proof for 7;.

Estimate of 75:

Forany j € Z, definem;(¢,n) = ;(¢) Z Vi (mm(E,m)

J2ija<j—4

= ;(§)é;(n)m(&, n),

where ¢(n) = 3 ;(n) and ¢;(n) = o(n/27).

j<—4

Then supp ¢ C {£ € R4 : €] <273},

o [0 TIEE 23
s0={ 1 ik £y

Ty 0 ifIE] ¢ [0,277,
0(€) _{ 1 if|¢] € 0,279,

Then, we have for any j € Z,
= 05 (€)e; () (n)m(&, )

= ¥;(§)o;(mm;(&,n).

Now suppm; C {(&,7) € RT x RY: 2071 < [¢] < 207 || < 2073},
Define forall j € Z,
a;(§,m) = m;(2€, 2').
Then suppa; C {(£,n) e R? x R : 271 < [¢] <2, |n| <273}
Although ¢(§) ¢(n) does not vanish at n = 0 but it is clear that it vanishes near £ = 0.

Hence, we can repeat the arguments as in the case of 77 to obtain that

T2(f1, f2) ()
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= Z Z ZCJ'(nl,nz)i/;(%“bDk/Qj)fl(ﬂj)

n|€Z4 no €74 jEZ

X ¢(2mny, Dy /27) fo() (4.3.5)

and also (4.3.4) holds.
To complete the proof in this case, we need the following lemma. A version of this
lemma can be found in [75], however for the sake of correctness and completeness, we

provide a proof here.

Lemma 4.3.2. Let ® be a smooth function on R such that0 < ® < 1, supp® C {£ € R :
270 < €] < 2V and ©(€) = 1 for 275 < || < 2°. For j € Z, define ®;(&) = ®(£/27)
and for f € S(R?) define

B(0.Dy/2)f(@) = [ B(OFEBuliz, ) dune).

Then for any j € Z and x € RY,

&(27"“17 Dk/zj)fl (33') é(zﬂ'n% Dk/2j>f2(x)

= ©(0,D/2’) ({2, De/2) i) 6(2mma, Du/2) o)) (2).
Proof. It is enough to prove that

Fu ((2mny, Du/2) () d(2mma, Die/2) fo()) (€)
= ©,(&)F: (b(2mni, Dy/2) fi() 2, De/2) ol ) (€),

for all £ € RY.

Applying properties of Dunkl convolution the above equality is equivalent to

(Tﬁj(‘)egmnl">/2j]'—kf1(') * &j(')egmn%'>/2j}—kf2(')) (€)
= 05(0) (G ()l EFL() i (eI F () (6),
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forall ¢ € R?. Again, to prove that the above equality holds, from definition of U, dand P, it
suffices to show that for any f, g € S(R?) with supp f C {{ € R?: 2]5i < |¢] < 5.2771},

suppg C {n € R?: |n| <272}, we have that
supp (f +r g) C {€ € RT: 2777 < J¢] < 27774,

Take z € R? such that |z| ¢ [2975, 2/75]. Now

fng(z) = / F)mEg(—y) du(y)

2L <jy|<p.2i-1

Now from [26, Theorem 1.7] or [2, Theorem 5.1], we have
suppTyg(—) C {y € R : 2772 — ||| < [y| < [a| + 277}

But |z 2i=5 2i5] and y € supp 7Fg(—-) together implies either |y| < Z— or |y| >
T 5

5.29=1 and which implies f *; g(z) = 0. This completes the proof of the Lemma. O

Coming back to the proof for 75, by Lemma 4.3.2, from (4.3.5) we get

T2(fr, f2) ()
= 30 20 D eilmmg) (0. /) (B(2mm, Dy/2)A() d2mma, Dy/2) o)) (2).

ni €74 no €74 jEL
To prove L” boundedness of Ty, take g € S(R?) with ||g|| . (4,,) = 1 Where 1/p+1/p’ = 1,

then using Plancherel formula for Dunkl transform, we have

/ To(fi, f2)(@) g(x) dug ()
— /Rd Z Z ch n; n,)

n EZd no EZd Vi €L

x®(0, Dy/2') ((2mmy, Di/2) fi() $(2mna, Di/20) fo(1)) (2) 9() dpuy(x)

= 2 2 > o(mm)

n EZd no EZd jEZ
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<( / (0, D4/2) ($(2mm, De/2) () (2mma, D/2) o)) (2)9(a) dpu(x) )
= 3% Somn) ([ b, D) i) e, D) (o

ni€Z4 no€Z4 jEZ

X ®(0, Dy/2)g(x) due(x) ).

Again using Cauchy-Schwarz inequality, Holder’s inequality, decay condition (4.3.4),
Theorem 4.2.1 and Theorem 4.2.4 and using the facts that L > 2d + 2|dy| + 4 and n =

|di| + 2, we have
[T ) ) o) ()|
= CZ Z +|n1|+|n2\) H(ZW(%nlaDk/Qj)fl (2”“2’D’“/2])f2’)/2’

ni €Z4 no €74 JEL

<[ (X 1200, D /2)gl?)

JEZ

Cllglliamy 2 D 1+|n1|+|n2|

ni €Z4 nyezd

sup [¢(2mmg, Dy /2’) fol

JEZ

(1+ m[)™(1 + |mg|)”
1l zos oy 2o () D Z

n1 €Z4 npeZ4 1 T |n1| T |n2|)

C | fillzer () 1 f2llLe2 (g

Lr(dpk)

LY (dpy,)

IN

(X thtemm. /251 )"

LP1(dpy)

P2 (duy)

IN

IA

Hence the proof for 75 is completed.

Estimate of 73:

The estimate for 73 follows exactly in the same as in the case of 75, hence it is omitted. [

Remark 4.3.3. In our result smoothness condition on m is more than what one may expect
from the viewpoint of the classical case [73, Corollary 1.2]. We do not know whether the

above result can be proven by assuming less number of derivatives on m.
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4.4 Weighted Inequalities for Bilinear Multiplier Opera-
tors

Next, we state and prove our main results regarding one and two-weight estimates the for

bilinear Dunkl multiplier operators.

Theorem 4.4.1. Let 1 < py,py < 00, p be the number given by 1/p = 1/p1 + 1/ps and
L € N be such that L > 2d + 2|dy,] + 4. If m € C* (R? x R?\ {(0,0)}) be a function
satisfying

0282m(E,m)| < Ca s (1€] + []) =112 (4.4.1)

for all multi-indices o, f € (NU{0V)? such that |o| + || < L and for all (£,1) € R? x

R\ {(0,0)} and v, wy, ws be G-invariant weights with v € A~_; then the following hold:

(i) if at least one of py or py is 1 and the vector weight (v, (w1, ws)) € Akp o) then

for all fi € LP*(RY, wy duy) and fy € LP*(RY, wy dpuy), the following boundedness
holds:

spi( [ ) <o TI( [ nerueme) "

t>0
{y €R: [T £ ()| >t}

(ii) if both py,ps > 1 and the vector weight (v, E?) satisfies the bump condition (2.3.1)
withm = 2 for somet > 1, thenforall f; € LP*(R, wy duy,) and fo € LP? (R, wy dpuy),

the following boundedness holds:
1/p 2 ) 1/p;
([ imF @) <cTI( [ 6P duw) ™
j=1

Theorem 4.4.2. Let 1 < p;,py < 0o and p be the number given by 1/p = 1/p; + 1/ps
and L € N be such that L > 2d + 2|dy| + 4. If m € C*(R? x R4\ {(0,0)}) be a
function which satisfies the condition (4.4.1) for all multi-indices o, § € (NU{0})? such
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that |a| + 8| < Landforall (£,1) € RExRI\ {(0,0)} and wy, wy be G-invariant weights

; then the following hold.:

with (wy,wsy) € A(p o)
€ LY (R wi dpy) and fy € LP2 (R, wo dpuy),

(i) ifatleastoneof pyorpsyis 1, thenforall f,

the following boundedness holds:

() Hw”“” x))”pscﬁ( L@ @)

{y R T F ()I>t}
(ii) if both py,pa > 1, then for all f; € LP* (R4, wy duy,) and fo € LP2(RY wy duy,), the

sup ¢
t>0

following boundedness holds:

([ mde@ramemmeane)” <o TT( [ e )™

Proofs of Theorem 4.4.1 and Theorem 4.4.2. Let ¢ € C*(R??) be such that supp¢ C
{(6m) e RN x BT 1/4 < (|6 + [n?) " < 4} and

> 6(&/2'n/27) = 1forall (&) # (0,0)

jEL
where we recall that the notation | - | stands for the usual norm on R?. Then

m,n) = > m&n) /2, n/2)

JEL

= Do my(e/Y /),

In view of the multilinear Dunkl setting defined in Section 2.2, for x, y1, y» € R?, let us

define
Kj<x7 Y1, y?) = T(’?:’I)F];Ql (m(a ) ¢</2j7 /2J>) ((—3/1, —3/2))
and [A{V](ZE, Y1, 92) = T(Ifaim)‘Fk;Bl mj <(_y1’ _y2>) :

Then K;(,y1,12) = 229 K;(20x, 2y, 29y,) for all x,y1,y, € R? and for all fi, f,
S(RY),
Talfnf)@) = [ &) F B i € Bu(or, ) (€ o)
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- Z /R2d mj(§/2j777/2j)}—k2 (fl & fz) ((5,77)) Ek2 (Z(ZE, :E)7 (f, 7)))

JEZ

Xd:qu ((ga 77))

— Z/de K;(x,y1,92) fr(y1) f2(y2) dpw(yn) dp(y2)

= | K2, y1,92) f1(y1) f2(y2) dpa(yr) dpun(y2)-

Having Theorem 4.3.1 already proved, proofs of Theorem 4.4.1 and Theorem 4.4.2 will
follow directly from Theorem 3.3.3 and Theorem 3.3.4, if we can show that integral kernel
K of Ty, satisfies the size estimate (3.1.1) and smoothness estimates (3.1.2) for m = 2. For

that, we need to show that for any ., 2’, 4, y» € R,

(1) | K (2, y1,92)]

< (B dgle, 1) + (B, do(r,92)] 2 de (2, 1) + dol@, ys)

|z — | + |7 — 12

(4.4.2)
for dg(z,y1) + dg(x,y2) > 0;
(ii) K (2,91, 92) — K(7,91,95)]
-2 YA
< C (Bl dolr, ) + e (Blr, dolw, ) | — {|x|32y1|y2|lc —T
(4.4.3)
for |ya — y5| < max{da(z,91)/2, da(w,y2)/2};
(lll) ’K(x7yluy2)_K(x7yi7y2)|
-9 o
< B dote) + (Bl oo )] 2
(4.4.4)

for |y1 - yi’ < maX{dG(xv y1>/27 dG(SE, y2)/2}

and
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(iv) |K (2,91, 2) — K (2", 91, 90)]
-2 |z — 2|
< C [ﬂk(B(xa dg(x, yl))) + [k (B(x, dg(.ilﬁ, y2)))] max{|x _ y1| |$ _ y2’}
(4.4.5)
for |z — 2| < max{dg(z,v1)/2, dg(x,y2)/2}.

Proof of the inequality (4.4.2)

The condition (4.4.1) assures that
sup [|my|| o gea) < C. (4.4.6)
JET

Since

Kj(x7y17y2> = /R2d mj(&n) Eje (2(577])’ ([E,(L’))Ekz( - Z(éan)a (y17y2)) dﬂl@((&n))v

by applying [28, eq.(4.30)] for R??, we write
C

[/vbk2 (B((.I‘, l‘), 1)):uk2 (B((yh y2)7 1))]
1 1

X
L+ (|2 — 2+ |z — 0l?)"? [1+ daxa((@,2), (y1,9))]

|Kj(l',y1,y2)| < 1/2

—1°
Therefore, using (2.1.2) for R?? we get

K (2,91, 12)]
S Z|K](x7yl7y2)|
JEZ

S Z 22jdk |I?j(2jx, 2jy1, 2Jy2)|
JEZ
C 22%

iz (e (B((272,20x),1)) e (B((27y1, 27y2), 1)) |
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1 1
1427 (Jz = a2+ o = of2) " 1+ 2 daxa (@, 2), (1,92))]

< C) 1

= [ (B((w,2),279)) e (B((y1, 92), 279)) ]
1 1

1+ 2 (jz — ]2+ |z — y2\2)1/2 |1+ 2 daxa((z,2), (9173/2))}&1

_ 3 R 3 (4.4.7)

JEZ: 29 daxa((z,), (y1,y2)) <1 JEL: 23 daxa((z,x), (y1,y2))>1

X

X

Again from the discussion in Section 2.2, using the product nature of the root system, it is
not too hard to see that
K2 (B((Zh z), 7“)) ~ Mk (B(Zh 7")) Kk (3(227 7“));
dGXg((z, 2), (21, 22)) ~da(z,21) + da(z, 22) (4.4.8)

and i, (B(z, 11 4+ 12)) > C [ (B(z,71)) + p(B(z,72))]
forall z, 21,2 € Réand r, 7,79 > 0.
Now, if 2/ dgxq((x, ), (y1,42)) < 1, by applying (2.1.2) for R?? and the relations
(4.4.8), we deduce
1 < C 27 doxa((z, %), (y1,¥2))]*
e (B((2,2),279)) — e (B((2,2), daxa((x,2), (41,92))))

27 daxa((, @), (y1,y2))*
[ (B(z, dg (2, 91))) + (B, da (2, y2)))]?

IN

and

1 < C 2 dewe((,2), (y1,12))]
ez (B((y1,92),279)) = w2 (B((y1, v2), daxa((z, @), (y1,12))))
o 27 daxa((x, @), (y1,92))*
M2 (B((:L‘,I’),dgxg((l‘,l’), (ylayQ))))
< C [2j doxa((z, ), (ylay2))]2d
= [u(B(x,da(z,m1))) + (B, dg (7, y2)))]?

where in the second last inequality we used (2.1.4) for R?¢

Using the above two inequalities in (4.4.7), we have

1
Z 1/2

Je: 2 dae (o), <t 2 (B(2,2),279)) e (B((y1, 42),279) ) ]
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1 1
1+ 2 (Jo — 2+ o — 12) " [1+ 2 daxa((z,2), (41, 92))]

2/ daxa((, @), (y1,y2))*
¢ 2 Ne(B(z, da(z,11))) + (B2, da(x, y2)))?

X

L-1

IN

JEL: 23 daxa((z,x), (y1,42)) <

1

><2J'(|$ — 1|+ |z —ya|)
< C [Mk(B(x,dG(x,yl))) +Nk(B(l’,dG(x,y2)))]_ dfx(gi ?211)| i |dxc;(_$;jj|2)

X Z 127 daxa((z, ), (Y1, 12))]% !

JEZ: 27 dGXG((xvx)v (y17y2))§1

< € [m(B.dolr.0) + (Bl da(e. )|

_2dG(‘T7y1> +dG(‘T7y2)
[z —yi| + |z — o
(4.4.9)

Similarly for the second sum in (4.4.7), where 27 dgxc((x, z), (y1,92)) > 1, we get

Z 1
JEZ: 29 dgxa((2,2), (y1,y2))>1 [,uk2 (B((l’yx)a 2_j))ﬂk2 (B((yb y2), 2_j))}1/2
1 1
L+27 (|l =2+ o — )7 [14 2 dowe((@,2), (11,92)] "

[2j dGXG((I7 ZL’), (y1, y2))]2dk

X

S TalBle ot )+ i (Ble. ol )P
» 1 1
2(lz =l + |z = a2l) [2 dore (2, 7), (y1,2))]"
< C [uk (B(w,de(w,y1))) + pu (B, de (=, yg)))] Qdfﬁ 3211)\ i 7;(—23!2)
1
* 2 27 daxa((w, ), (y1,y2))]F— 2%

jeZ:ZjdGXG((x7x)7(y17y2))>1
2dg(x,y1) + dg(x,y
< € [ (Bl doto. ) + (Bl data pe))]HATI LI

(4.4.10)

Substituting (4.4.9) and (4.4.10) in (4.4.7), we complete the proof of (4.4.2).

Proof of the inequality (4.4.3)
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It is easy to see that

da(z, 1) < daxa((z,x), (y1,92)) and de (2, y2) < daxa((z,2), (y1,¥2))-

So the condition |ys — 34| < max{dg(x,v1)/2, da(x,ys)/2} implies that the 2d-norm !

(Y1, 92) — (Y1, %) < daxa((2,2), (y1,92))/2,

which further implies
dGXG(('xax>? (3/1792)) ~ dGXG((xyx)a (ylay/Q))a ’(zax)_(y17y2)‘ ~ |(1:,x)—(y1,y’2)\ and

Vasa (@, ), (y1, o), daxa (2, 2), (y1,12))) ~ Vaxa((@,2), (y1,45), daxa ((z, ), (y1,45)) ) -

By applying the techniques used in the proof of Theorem 4.2.1 in R?¢ and using (4.4.6) in

place of (4.2.4), we get

927dr ’f?j(ij, 279, 2jy2) - kj@j% 27y, 2jyé)|
| 0 , 2d
< ’(ylayQ) _ (ylayé)‘ (QJdGXG<(x7x>ﬂ (yby?))) + (QJdGXG((x,x)’ <yl’ y2))) k

B }(ZL‘,J/’) - (yhyQ)’ VGXG((IP’E)a(y17y2)7dG><G((xvx)>(ylayQ)))
1

(1 + 2J’dGXG((x, x), (y1, yg)))Lfl '

Hence, using (2.1.4) for R?¢, and (4.4.8) repeatedly, from (4.4.11) we have

X (4.4.11)

K (2,91, 92) — K(z,91,95)]
Z 22jdk |j€] (2jx7 2jy17 2jy2) - [?j(2jx7 2jy17 2jyé)|
JEZ
(1, 92) — (Y1, v5)| 1
|(:C 33') - y17 Y2 ‘ VGXG((xaaj)a (y17y2)> dGXG((ma :C)a (ylayZ)))

« Z (2daxe((z,2), (v, yz)))2d + (2daxe((z, ), (yl,yz)))Qdk

JEZ (1 +2jdG><G((x7x)v(y17y2)))L71

'We have used the same notation | - | for norms on R¢ and R2%.

IN

IN
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|2 — ¥5] 1
2 =yl + 2 = v2| e (B((2, 2), daxa((2, 1), (Y1, 92))))

y Z (2 dee (@, 2), (1, 92))) ™ + (2dara((x, ), (y1,92))) "™

= (1 + Vdao((2,2), (11,92))) "
< |2 — 45 !
el = vl [ (B, doxa((z, ), (u1, yz))))]
3 Zdora(in.) ()" + P (2.2), (. 92) ™
= (1 + Ydga((@,2), (ybyz)))
< 2 — ¥4

max{|z — y1|, [z — va[} [ (B(z, de(z,31))) + Mk( x,dg(x, yg)))}Z
XZ (2 dewe (2, 2), (1,1))) ™ (2jdaxc()(x,w), y1,92))) "
I

jez (1+2JdG><G( (Y1, ¥2 ))L '

-2 |?Jz |

< Ou(Ble,dala.y2)) + mu(Bla, dolw )]~ =S ——

where the convergence of the last sum can be shown in exact same way as in the proof of

Theorem 4.2.1.

Proof of the inequality (4.4.4)

The proof of (4.4.4) is exactly the same as the proof of (4.4.3) with interchange of the

roles of y; and 5.

Proof of the inequality (4.4.5)

Note that K ;j can be written as

Kj (%, Y1, y2) = /]R?d m; (57 77) Eye (1(57 77)7 (_yl, _y2))Ek2 (_Z(éu 77)7 (_‘T7 _I>) dlu’k2 ((gv 77))7
Now the condition |x — 2’| < max{dg(z,v1)/2, da(z,y2)/2} implies that the 2d-norm
(2, 2) — (', 2")| < \/§deG(($,iE)> (y1,92))/2,
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which further implies
dGXG((xa iL‘), (Z/1>ZU2)) ~ dGXG((xl7x/>7 (yla y?))? |($,l’)—(y1,y2)‘ ~ ‘(xla xl>_(y17y2)‘ and

Vaxa((z,2), (Y1, y2), daxa ((z,2), (y1,42))) ~ Vaxa (@', 2), (y1,92), daxa (2, 2'), (y1,42))).-

Thus in this case also, rest of the proof can be carried forward in the same way as in the

proof of (4.4.3). O
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Chapter 5

Multilinear Fractional Operators in Dunkl
Setting

This chapter is devoted to studying weighted estimates for the multilinear Dunkl fractional
integral operator Z* and multilinear Dunkl fractional maximal operator M. It extends
the results in the classical setting mentioned in Section 1.3 to the Dunkl setting. After a
concise introduction and a brief overview of the history pertaining to these operators, we
formally define them in the next section. In Section 5.2, we use Rosler’s formula for Dunkl
translations of radial functions to dominate Z* by an operator similar to the classical mul-
tilinear fractional integral operator, which involves the Dunkl metric instead of the usual
metric. Subsequently, we investigate the two-weight inequalities for Z*. Similarly, in Sec-
tion 5.3, we control M? by a finite sum of classical multilinear fractional maximal operators
and study two-weight inequalities for them. Utilizing two-weight inequalities, we establish
corresponding one-weight inequalities for M¥ in Section 5.4. This enables us to prove
one-weight inequalities for Z* in Section 5.5, depending on the one-weight results for MF.

This whole chapter is based on the work [55].

5.1 Introduction

After the groundbreaking work of Muckenhoupt [52] regarding the characterization of wei-
ghted inequalities for the Hardy-Littlewood maximal operator M, the study of weighted
norm inequalities in harmonic analysis has garnered significant attention. The operator M

is closely related to the fractional integral operator /,,, defined for all functions f in the
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Schwartz class S(R?), by

Iaf(x):/RAdy, O<a<d

a |z —y|" e

and to the fractional maximal operator M,,, defined for locally integrable functions f, by

Vet @) = sop ey [ fldy, 0 <<
Along with the maximal function, a parallel weight-theory for M, and I, has been studied
as well by several authors. A characterization of the one-weight inequality for these two
operators has been given by Muckenhoupt and Wheeden [53]. In particular, they proved
that for 1 < p < d/a and ¢ givenby 1/q = 1/p — «/d; I, or M, : LP(R¢, w(z)Pdx) —

LY(R? w(z)4dr) if and only if w satisfy the A, , condition, i.e.,

sgp (@%/qudy)l/%ﬁ/czwpl dy)l/p/ < 00. (5.1.1)

On the other hand, Sawyer [65] gave a similar characterization as in (1.0.4) for the two-
weight L” — L9 inequalities for these two operators. Another characterization of the two-
weight inequalities for /, was given by Sawyer and Wheeden [66] using “power bump”
conditions on the weights.

In 2009, Moen [51] presented a multilinear analogue of the above weighted inequalities

for multilinear fractional integrals Z, and multilinear fractional maximal operators M,

where Z,, is defined forall f = (fi, far- - , ) € S(RY) x S(RY) x - - - x S(RY), by

Ji) f2(y2) - fon(Ym)
La - dyrdys....dyp,,
7@ /(Rd)’” (7 — 1| + |7 — 1] + oo + |2 — gy 12

0<a<md

and M, is defined for all locally integrable functions f; in R?, by

e TTHQ™
Moc?(x) _iggg |Q| /Qv|f](y])|dy]7 O§a<md
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Regarding one-weight inequality, the author in [51] proved that Z,, or M,, is a bounded
operator from LP1(R?, wy(x)Prdx) x LP*(RY, wq(x)P2dx) X -+ x LPY(RY, w,,(z)Pdr) to

m

LYRY, (T] wy(z))%dz), where 1/qg = 1/py + 1/pa + -+ 1/py, —a/nand 1 < p; < oo,

7=1
if and only if W = (wy,wa, -+ ,wy,) satisfy the Az . condition:

sup <Tc12| /Q(]l:[l w;)* dy) v j];[l (L%I /Q w, " dy> R (5.1.2)
which is multilinear version of the A, , condition (5.1.1). In the same paper two-weight
inequalities for these operators were also studied using “bump conditions” on the weights
which are similar to the linear case.

In analogy to the classical case, Thangavelu and Xu [72] defined the fractional integral

operator I* associated to Dunkl operator by

1 f(x) = / Pl dyu(y).
Rd

where 0 < a0 < d,.
Also the associated fractional maximal function M* was introduced by Gorbachev et
al. [32], given by

M f(x) = supro=

r>0

5 FW) X B0 (—y) du(y) |,

where 0 < a < di and x g0, denotes the characteristic function of the ball B(0,r).

For the reflection group ZZ, the L? — L9 inequalities for Dunkl fractional integral and
Dunkl fractional maximal function in the non-weighted case were proved by Thangavelu
and Xu [72] and it was further generalized for any reflection group GG by Hassani et al. [39].
Regarding weighted boundedness, weighted inequalities for ¥ and M* with radial power
weights are there in the literature [1,32].

Motivated by the work of Moen [51], in this chapter we define the multilinear fractional

integral operator in Dunkl setting Z* and the corresponding multilinear fractional operator
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M?_ which could be seen as multilinear analogues of I* and MP* respectively. For ? =
(fi, f2, - fm) € SRYXxS(RY) x - - - x S(RY), we define the multilinear Dunkl fractional

integral operator T as

il fi(@) f2(z) -« f(@)
Iz?(x) - / PN TRNER d:ukm(yh Yo, 7ym)7

where 0 < o < mdy,

and the associated multilinear Dunkl fractional maximal operator M" as

METF (@) = sup T [ 5

r>0 j=1

/d FiW)TEx B0 (—Y;) duk(y;)|, where 0 < a < mdj.
R

Clearly, Z*¥ and MF represent the m-linear extensions of the Dunkl fractional integral
operators and the Dunkl fractional maximal operators.

Our main purpose here is to study both one and two-weight inequalities for Z* and M*
for weights which are counter parts of those in classical setting. Our results extend the
literature in the Dunkl setting from the linear case to the multilinear case. For general space
of homogeneous type multiple-weighted inequalities for fractional integrals (which are not
equivalent to Dunkl fractional integrals) were proved by Maldonado et al. [50] using the
techniques in [58,66] (see also [51,59]). But we can not directly use their result here as none
of the conditions are satisfied by kernel associated with Z*. Here similar techniques will be
used to prove two-weight inequalities. On the other hand to prove one-weight inequalities
we will make use of the two-weight inequalities and follow the similar approaches which
are used to prove weighted inequalities for multilinear maximal function (in the classical
setting by Lerner et al. [48] and Moen [51] and for the homogeneous spaces by Grafakos et
al. [34]). The main essence of our results lies in some new tricks (Lemma 5.2.1 and Lemma
5.3.3)) that enable us to overcome the challenges inherent in this setup, transitioning from

Dunkl-characteristic to the characteristics similar to those of spaces of homogeneous type.
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5.2 Two-weight Inequalities for Multilinear Fractional In-
tegral Operators

Before delving into the main theorem of this section, we first state the following lemma,

which will be employed in proving the main theorem.

Lemma 5.2.1. For? € S(RY)xS(RY) x - -+ x S(RY) with f; > 0 forall j =1,2,--- ,m;

we have
757 ()]

< c /
(BH™ (dG(

Proof. From the identity

Sily) fa(y2) - - fin(ym)
2,91) + do(w,y2) + -+ + do(w,yn)

i —a A (y1) - e (Ym)

1
(yi]2 =+ [yal2 + - - - + [yp]2) e/

:;) / (mdi=a)/2-1 a1 [P+ P +uml?) g

F(mdg—a

and using the properties of Dunkl convolution, we have

1
127(95) = W/ T f(=y)Th fo(=ya) -+ T fon (= m)
P(=5=2) J@ay
X / S(mdkfo‘)/271€75(|yl‘2+|y2|2+"'+|ym|2) dS duk(yl)duk<y2) P duk(ym)
0
1 > - >
- - (mdy—a)/2—1 k(. )e sl .
- F(md;—a)/o $ g g (/]Rd Txf]( y])e Y dluk(y])> dS

1 > mdy—ao)/2— s k —s|l—y;|?
_ _P(mdk_a)/o J(mdi—a)/2 1H /Rdfj(yjme 0 dpue(ys) | ds.
7=1

Now using (2.1.6), applying the inequality (2.1.7) and reversing the above process, we get
757 (@)
1 /Oo(d—)/2—1m / —s(A(w,y;m)°
= Frmaay | S 1) ([ e A dps () dpn () | ds
F( % ) 0 31:[1 Rd 7 Rd ’

2
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Sily) fa(y2) - -+ fin(ym)
2.91) + doa, ) + -+ do(x,yn) )

ma—a () - - dpag(Ym)

< c /
(RA™ (dG(

The following is the main theorem in this section.

Theorem 5.2.2. Suppose that 1 < py,ps, - ,Pm < 00, ¢ be suchthat 1/m < p < q < o©
and mry, < o < mdy,. Furthermore, let u, vy, vs, - - - , v, be G-invariant weights such that

the following two-weight conditions hold:

@) ifqg>1,
1,1 1 1 L/ta
R
sup r(B)* ™k . (B)? P P /utqduk
b, rBN T (B we(B) I
m 1 1/tp]
—tp'.
XH( /v. ]d,u,k> < 00,
B J
i1 1i(B) Jg
for somet > 1;
(i) ifg <1,
1 1 1 1 1/q
R R T
sup r(B)*~"% g (B)* AT [ dn
BCRd 1i(B) Js
m l/tp;
X ( L /v._tp;du> < 0
B J ’
i1 1i(B) Js

for somet > 1.

Then for all? € L7 (RY, o dpy,) x LP2 (R, B2 djug ) x - - - x LPm (RE, vPmdyuy, ), the following

inequality holds:

(/.

m
=1

1/q 1/p;
7: 7 (@) u(m))qdw)) <c H( [ U@l duk<x>> .

J
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Proof. We start with the set of all dyadic cubes D in RY, i.e.,

o~

J

[mj2l, (mj + 1)21) SMmy,Ma, - ,mg,l € Z}.

d
=1

Let us define
D = {Q € D : side length of ) = 21}.
Then the following properties hold.
(i) forany ! € Z, R = Ugep @s
(i) given Q € D' and Q' € D" with [ < I, then either Q C Q" or Q N Q' = 0;
(iii) for each Q € D' and each I’ > [, there exists a unique ' € D" such that Q C Q’;
(iv) if Q € D', then diameter of Q < 2!1/d;
(v) fora given Q € D', let 2 denotes the centre of Q, then B(zg,2""!) C Q.

Clearly by the construction, the cubes in D' are pairwise disjoint. For any Q € D', we
define B(Q) = B(zq,2"'V/d). It then follows that if Q € D', Q' € D" and Q C @',
then we have B(Q)) C B(Q'). In fact, by property (ii), we get [ < I’ and hence y € B(Q)

implies that
ly — 20| < |y — 2ol + |zg — 20| < 25Wd +2'Vd < 2"V

Also observe that by property (iii), for every Q € D' we can find a unique Q* € D'*! such

that () C Q*. Since p, satisfies doubling condition and

B(zg,2™") € Q € B(Q) € B(Q") € 3B(Q),

so we have 1,(Q) ~ ux(B(Q)) ~ u(B(Q*)). Itis also important to notice that if ) € D',

there exists s > [ such that (*° is the cube which contains @) (by property (iii)), then
Q C Q*S‘
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Now we return to our operator Z*. By density argument it is enough to prove the The-
orem for | € S(RY) x S(RY) x --- x S(RY) with f; > 0 forall j = 1,2, -+ ,m
As usual, our next aim is to discretize Z*. For that we take (z, Y1, ya, -+ - ym) € (R?) m

and [ € Z such that
271 <dg(x, 1) + da(x,y2) + - - - da(w, ym) < 2.
Then we can find a Q € D' with z € Q. Now as diameter of Q) < 2'v/d,
da(2q,y;) < da(z,10) + da(z,y;) < 2WVd + 20 < 2%1V/d,
This implies (y1, Y2, - - - ym) € (O(B(Q)))" with
de(w, 1) +da(,y2) + - do(@,ym) 2 27" = r(B(Q))/4Vd.

Hence, we get for x € Q and (y1, 42, -+ , Ym) € O(B(Q)) x O(B(Q)) x --- x O(B(Q)),

1

mdy—a
(dote, 1) + dale,12) + -+ + do(w,ym))

m

< Cr(B(@)* ™ xq(z) [ [ xoww@)(u))

j=1

m

< O r(B@Q)* " xo@) [ | xowwn i)

QeD j=1

Then from Lemma 5.2.1, we have

T (@) <03 1(BQ)* md’“(H/ fil; dm(%)) xo()

QeD

Casel. g >1

As TF is a positive operator, it is enough to prove for all g € L9 (R?, dyy,), with g > 0,

/ Ik? x)dpr ()
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1/¢ m

1/p;
<C (/Rdg(lf)q/dﬂk(l‘v H(/Rd (fi(@)v;(z))™ dﬂk@)) :

j=1

From above, we have
| 2T @)
: d k j d k\Yj
| 9@ue) din <H/J€G () u(y))

(BQ | glayue) du) (H [ dmyj))

< C Z ZT(B(Q))a_mdk/Qg( ) dpg(z <H/ fi oo, (y; dﬁ‘k(yy))

INA INA
a a
v (]
™
S /U\d
<
™M =
2

S

Since the first sum is over finite indices, we only show that for any (0,,,,0,,, - ,04,.) €
GxGx---xG,

ZT(B(Q))“‘M’“/Q( Ju(z) dpu(z ( / fo; (y; nd(?JJ))

QeD Q

1/¢ m 1/p;
< 0( / g(a:)q’duk(x)) H( / (F(x)v; () dum)) L2
R4 o\ /R
j:

where we have written f, in place of f; o o,,; for simplicity of notation.

Further, forz € |J @ we define
QeD

Let a > 1 be a constant to be defined later. Define

= {x € U Q: MB(D fa(l’) > al},

QeD
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where

JTL::(fUUfUQa"' 7fUm)' (522)

If S! # (), then there exists a cube Q) € D with z € Q and

@) g o) st > (523)

=1 (B

Thus, we get Q C S'. Now using the facts that dyadic cubes in D are nested and / fo; () dur(y)
Rd

< 00, we can write S! = |J Q. s, where for each [ the cubes (); s € D are maximal, disjoint
S

that satisfy (5.2.3). Now if we take a to be sufficiently large, then by maximality of @;

. - 1
d < E—( (le))/%)faj(y)duk(y)

CI—=—— L (y)d
< ¢ e /B(QJ /) 3ent0)
< Cd <adth (5.2.4)

Next we compute the part of Ql,S inside S, Take z € ;s N S, then

B(D fa( )= SUP / faj ) dpw(y) >

PED

But the nested property of dyadic cubes and maximality of (); ; implies that

. 1
H —_— fo; () dpi(y) < @', VP D Qu such that z € P.

=1 ,uk(B(P)) B(P)

Consequently, we have

< M Ta(e) = sup / Fo () diaa ()

PeD
zGPCQl

m

- /
S — f]XB (;213 y (!M y .

IA

%
From this, it follows that if z € (); ; and M%(D)fa(m) > a'*1, then

Moy (forXB@u)» forXB@L) > fomXBQLy) () > T
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Then from Theorem 2.3.2 and (5.2.4), we have

p1(Qrs NS
= U ({x - le . MB(D l+1}>

M ({:L‘ € le MHL (fanB Qi,s)) fO'QXB Qi,s)» fUmXB st)) H_l})

1/m
(al+1H/ leffaj dﬂk(y))

1/m
p(B(Qus)) <al+1H le))/%)foj(y)duk(y))

1 1/m 1 1/m
< Cumpk(B(Qus)) <a> < Cupn(Qus) (a) < O (Qus),

IN

IN

IA

where the constant ¢ can be taken less than one by choosing a large enough.
Let B = Qs \ S, then {F)}, is a disjoint family of sets such that . (E; ) >

Yk (Qys), for some 0 < v < 1. Next define

={QeD: a<H / oy (Y)dply) < a1},

Notice that for any s, Q; ; € C' and by maximality of ;s if Q € C' then Q C Q) , for some

s. Then

LHSof (5.2.1) < 3.3 m(B(Q)"r(B(Q))* ™ /Q g(w)ulz) du(z)

leZ QeC!

m 1
X (JH1 T (BO)) /B(Q) fo; (y5) dm(w))

< S AY Y m(B@BQ) ™ [ gwyule) dutz).

I€Z. s Qecl Q
QCQ 4

d
Now for any ), Qg € D with Q C ), by (2.1.3), we get that % <C (:(Jf—@)))) ,

hence

91



§3.2. Two-weight Inequalities for Multilinear Fractional Integral Operators

pe(B(Q))"r(B(Q))* ™ r(B(@)\" """
pe(B(Qo))™r(B(Qo)) = <7”(B(Q0))> '

Since o — m~y, > 0, from above, (5.2.4) and applying Holder’s inequality, we have
LHS of (5.2.1)

@Y a>  (B(Qrs)"r(B(Qrs))* ™" / g(x)u(x) dpg(x)

leZ S Ql,s

CZuk (Qua))"r(B(Qus)) %

m 1 .
X(H—uk( (le))/% fo; ()i (y)v; (y)duk(y)>
1
8 (Mk(Qz,s) /QLS

- 1/th
1 —tp]
C s s a—mdy, _ ] pjd
Zl’[’k Ql (B(Ql, )) ]1;[ ([Lk:(B(les)) /B k uk)

1/tq o,

/(9}y
; tq ; ) (tP})'
- (Mk(@l,s) /l’s Y dﬂk) H ( ( (le» / le)(fo'jvj) d,uk>

1/(tQ)'
b 9 q
X (,uk(Ql,s) /Q ok Mk(@l,s)‘

Using the two-weight condition and replacing (); ; with the disjoint sets £ ,,

IN

IA

g(a)u(x) dm(ﬂf)) pe(Qus)

IA

l,s

LHS of (5.2.1)

U |m| 1 A
¢ T(BOMN L v;) )
[U; ] Py, (/Lk(B(Ql,S)) /B(Qz,s)<f ;U ) d/%)

' 1/(ta)
x ( g(tqyduk> e (Qus) VTP

m 1/q
ry a/(tp})
H (m /B(Q )(ijUj)(tpj) duk> t Nk(Ql,s)q/p>

l,s j

IN

A
Q
S
=
e
M
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oy \P) i
ZH( Qz )/Q )(fojvj) J d”’“) e (Bs)

l,s j=1

1 ¢/ (tq) v
X ( / g(tq)/d,uk> Mk El,s 5
(; 1 (Qus) Qi (Ebs)

where [u, U] denotes the smallest constant in two-weight condition.

Since x € £ ; implies that z € (); 5, so from above we have

LHS of (5.2.1)

m 1/pj
< Clu,7] H(Z / Mép;>,,HL<fojvj><x>pjdum))
j=1 \ 1 v Fus
1/q
( / My a1 (9) @) dpule >>
1/p;
< O[%? (/ Mtp HL(foJUJ)( )" dpy, (v ))

1/q
(/ Mtq)’HL ()7 dﬂk( )) :

Now, Theorem 2.3.2 and G-invariance of the weights concludes the proof of (5.2.1).

Case?2. ¢ <1
By same estimates as in previous case and using ¢ < 1, we get

TFF (2)0 < cy (r(B( )" md’“H/ fily; dm(%)) Xq()

QeD

EDIEDY (T(B(Q))“‘md’“ﬂ /B o fi Oanj(yj)duk(yj)> Xe (@)

(n1n2, nm) QEP
dniEG

IN

Hence integrating,

/Rd <Ik7U> dp < C Z Z ( Oé mdkH f] O Oy, y]) d,uk(y])>q

(n1,n2, ) QEP B(@)
on; GG
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§3.2. Two-weight Inequalities for Multilinear Fractional Integral Operators

X / u(z)? dpg(z).
Q
As before, since the first sum is over finite indices, we only show that forany (o1, 09, -+ ,0,,) €
GxGx--xG
m q
Z (T(B(Q))a_mdkn/ faj(yj)dﬂk(yj)) /U(I)q dpi(z)
QeD j=17B(@Q) Q

q

< CH( [ e dukm) (525)
j=1

where f, is as before. Now

LHS of (5.2.5)

m a—mdy, . 1 . . q
< Q%%(MMB(Q)) @@ 1 /. faj<y]>duk<yj>>
w(x)? dug(x
| ute) et
< 3R 3 BQ) I BQ) [ wla)dita)
s QQCEQ(? Q
mqr aq mdgq M 1 '
< CZMk (Qus))™ 7 (B(Qu,s)) (]1_[1'% (B(OL) /B(Ql,s)ij duk>
></ u(z)? dug(z)
< OZ 111 (B(Qus))"r(B(Qr))* "% ﬁ;/ Jo, 050 lduk
= ’ W@ o, ™"

1/ay q
1 q
X <,U/k(Ql,s) /lvs u dﬂk) } X Mk(@l,s)-

Once again applying Holder’s inequality, using the two-weight condition and replacing );

with the disjoint sets £ ;, we have

LHS of (5.2.5)
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- l/tp;-
a—midy, v v
< C Z {,uk Ql s (B(les)) H ( ( (Ql s)) / B(Qu,s) dluk)

j=1

a4y a4 m a/(tp’)’
1 1 Y
a4 | | - - V] p3) g
. (Mk(@l,s) /Ql,s ! Iuk) } ( (B(Ql s)) / B(Qq, S)(f ]U ) Iuk)

XMk(Qz,s)

IA
Q
B
=)
=

1 qa/(tp})
T AN N U (tp;)'d a/p
(/’Lk<B(QZS)) /(le)(fajvj) ’uk> ,uk(Ql,s)

ks 1 p/(tp})’ q/p
_— (@)
[ R R

IA
2
RS
=
/—/L\

As B s C Qs, applying multilinear Holder’s inequality, using Theorem 2.3.2 and using

the G-invariance of the weights, we get

m Q/pJ
LHS of (5.2.5) < O[u,ﬁ]‘i’H</ Mﬁp/.>/HL(fajvj)(I)pj>
=1 \ R

m qa/p;
< Clu ] ( [ @ty duk<x>) .

This completes the proof. [

Remark 5.2.3. In the two-weight case for Z*, we could not get the expected range 0 < o <
mdy, we only got the range m~y, < a < md,. However, in the one-weight case we have

the full range.

5.3 Two-weight Inequalities for Multilinear Fractional Max-
imal Operators

We first prove the following proposition for Dunkl translation of the balls B(0, ).

Proposition 5.3.1. /26, 30] For any x,y € R% and r > 0, TfXB((]’T) satisfies

C'rde

> r = (B )
X80 (Y) < e (B(z, 7))
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L iffy| <,

Proof. Let ¢ be a continuous radial function such that0 < ¢ < land ¢(y) = { 0 ifly| > 2r

Let f(-) = ¢(r-). Then f satisfies

C

f(y) < W, where M > dk.

Recall the definition f;(x) = ¢t~ f(t~'x). Then clearly f, is continuous and is in L2(IR%, dyy,).

So applying the formula (2.1.6) and using [6, Proposition 3.1] with ¢ = r, we get

C

T [r(y) < ;ﬁ1}§zgj;jj.

Now applying the scaling 7%(f;) = (77, f):, we get

C'r

T, 0(y) < L;zz§agj;jj-

Since 77 is positive on bounded, radial functions in L' (R?, dyuy) and xpo.(-) < ¢(-), we

have
Cri

. k
TeXBOn(Y) < oY) < p(B(z, 1))’

]

Remark 5.3.2. Here we have used [26, Theorem 1.7] for the estimate of the support of
TRy B(o,r)(+). This can also be obtained using the formula (2.1.6) together with (2.1.7) (see
[26, Remark 2.11] for details).

For locally integrable functions f; on R?, define the multilinear homogeneous factional
maximal function M* by
ﬂi?(m) = sup ﬁ +/d/ |fi(y)| dpw(y), where 0 < av < mdj.
BCRY pi(B)t-e/mds f g

zeB

In the next lemma, we establish a relationship between the two types of fractional maximal

operators M and M?.
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Lemma 5.3.3. For 7 € S(R?) x S(R?) x --- x S(RY),

Mg?(x)SC’ Z Mv};(floo-nquOo-nQ"” ,meO'nm) (I)

(n1,m2, ,nm)
ong €G

Proof. Fix x € R?and r > 0. Then using [26, Theorem 1.7] and from Proposition 5.3.1

and the facts that o < mdj, and r% < Cpy,(B(z,r)); forany 1 < j < m,

ra/mfdk

[, 5wt xmon(-w)dun ()

< pofmede /Rd i3Im0 (=3) dian(y;)

i T‘dk 1—a/mdy

< O po/m=ds () [ du (v

< o [l (cpes) e
U o(B(z,r))

ceG
1

C ooyl d .
- aez;;(uk(B(:c,r))l—a/mdk /B(m,r)u’ o (y;)| dp(y;)

Thus, from above we get

m
[Tr
j=1

/Rd Fiu)mix o (—y;) dpn(y;)

- 1
C 0 MNd :
- E(gmkwu,r»l—a/mdk a2 “’“(y”>
- 1
= C 500, (y;)] d ;
(nh;nm)(jfllew))la/mdk / oo @)l dinty >)

< ¢ Z //\/lvg(floo'nl,fzoanm--',meO'nm)(l')-

(n1,m2, ,nm)
ong €G

Taking supremum over all » > 0 completes the proof. [

In this section, the main result regarding two-weight estimates for M¥ is the following

theorem.
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Theorem 5.3.4. Suppose that 1 < py,ps, -+ ,Pm < 00, ¢ be suchthat 1/m < p < ¢ < o©
and 0 < o < mdy. Furthermore, let u, vy, vs, - - - , vy, be G-invariant weights such that the

following two-weight condition holds:

1/q
1,1 1
sup r(B)*~" pu(B)* T ( >/ ““’duk>
B

BCR4 pu(B
m 1 1/tp};
,tp/_
X — | v, Tdug < 00,
H (Mk(B) /B ’ )

forsomet > 1. Thenforall? € LPY (R, v dpuy, ) x LP? (RE, vb2 dpug ) x - - - x LPm (RY, vPmdpy,),

the following inequality holds:

m

1/q 1p;
(/Rdw“? u(e) dinte ) SCH( /Rd<|fj<x>|vj<x>>pjduk<x>> |

Proof. In view of Lemma 5.3.3 to prove Theorem 5.3.4, it is enough to prove that for any
(O’nl,O'n27-.. ,O'nm) EGX Gx---X G,

1/pj

1/q m
( / (M’;m)u(x))qduk(@) SOH(/Rd(|fj($)|vj($))pjduk($)> (53.0)
j=1

%
where f, is as in (5.2.2).

For any N € N, define

m

— 1
M];,N?(x) = ;uﬂlgd Hw/]gm(yﬂ dpig(y)-
z€B, E(B)gN J=1

Then it suffices to prove (5.3.1) holds for Mv’; y (independent of N) instead of /\75 (by
using monotone convergence theorem as N — oo). Further, we may assume that each f;
is non-negative bounded function with compact support.

Forl € Z, let

O :{xeRd M’“Nfg>2l}
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Take = € € \ €11, then we can find a ball B, containing x with r(B,) < N such that

m 1
2’<|| /fa,yd,uygﬂ“.
e pur(By)tme/mds Jp () diae(y)

Note that here B, C € \ €41 so that we can write €; \ ;7 = |J  B,. Then using
€U\ 41

basic covering lemma for metric spaces [40, p. 2] for the family {Bz cx €\ Ql+1}, we
get a pairwise disjoint family {BZB} sep of balls each inside €2; \ €25 such that

&\ Qo C 5B
peB

Also, we have

- 1
2l < / for () dpi(y) < 201 (5.3.2)
jl;Jl:Hk(Blﬁ)l—oa/mdk Bf@ J( ) k( )

Again, note that {Bg : B € B, |l € Z} is also a pairwise disjoint family.
Let r(B) denotes the radius of the ball B. Now from the fact that 14 (B) > Cr(B)%

and using the estimates above, we get
. . 1/q
| (M Fo@uto) duk<x>)
R

1/q
- (2] - (M“';,Nﬁ<x>u<x>)qduk<x>>

leZ

Z 2(l+1)q/

leZ 0\

u(@)? dyu ()

IN

1/q
u(z)? dﬂk(f))

o
]
—

s 1/q

1
11 i (BL) o/ /Bl oy () duk(y)>q} (5.3.3)
' 5

J=1

(/53[ u(x)qdﬂk(x)>r (Blﬁ)qafqmdk

INA
Q
N —N— VN
o
N
=™
g

m 1/q
I1/ 7w duk(y))q} . (5.34)
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Using Holder’s inequality and the two-weight condition, we have

(/5131 u(z)? d/ik(x))r (Blﬁ)qa_qmdk (ﬁ/Bl 5o () d,uk(y)>q

< ( / ut dw)r(Bé)q““’mdkﬁ ( /B

/(tp’)’
(fo; v;) ) dﬂk)

5Bl@ Jj=1 B
m ) a/tp
X H (/ ”j_tpjd/%>
i=1 \/Bp
, a/ (9}
< Clu, 7% (BL)"" —/ £o0:) ) duy, . (53.5)
[ ] k’( B) H ,uk(Bl> ( JJ)

Now substituting (5.3.5) in (5.3.4) and using the fact that p < ¢, we have

(/Rd </\7§"N zw)“@) q d,Uk:(ZU)) :
| 1y \ 1/q
7]{ Z Z (Nk (Blﬁ)l/P H (Mk (1Bl) /Bl (fo_jvj)(tp d[%) /(tp)) ) }

<
I€Z BeB j=1 B
o/ (10’ e
= {ZZH( (BY) / (foy03) % duk> " (Bg)} . (5.3.6)
€7 BeB j=1 “k

Recalling the definition of MF; and applying multilinear Holder’s inequality, we get

q 1/q
( / d (Mz,Nﬁ<x>u<x>) duk@c))

1/p
: {ZZ /| I (2hu o)z >)”(””duk<x>}

leZ peB ﬁ j=1

i 1/p
7]{ /R U (M) @) duk(a:)}

" Pl Ve
< Clu, 7] H { /]Rd (MEL(fgjvj)(rpj) (x)) duk(x)} .

j=1

IN

Since p;/(tp})’ > 1, Theorem 2.3.2 yields

1/q

m 1/p;
( 3 (Mﬁ,Nﬁ<x>u<x>)qduk<x>> < Clu, 7] H( [ (i @pes@)” dﬂkm)) -
j=1
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Finally G-invariance of the weights concludes the proof. O

Remark 5.3.5. The conditions assumed in Theorem 5.2.2 and Theorem 5.3.4, may seem
to be inappropriate as they involve both the volume and radius of the ball, but we want to
point out that such conditions for two-weight inequalities is not new in the context of spaces
of homogeneous type. This type of condition first appeared for the study of fractional type
operators in spaces of homogeneous type in the paper of Sawyer and Wheeden [66, Theorem
3]. Later, other authors [50, 58] have also used analogous conditions involving both radius
and volume of balls. These are our main motivation for proposing such type of conditions

on the weights for the two-weight inequalities.

5.4 One-weight Inequalities for Multilinear Fractional Max-
imal Operators

In this section, we state and prove one-weight estimates for the operator M*.

Theorem 5.4.1. Suppose that 1 < p1,pa,-+ ,pm < 00, 0 < o < mdy, 1/m < p <
dp/a and q be a number defined by 1/q = 1/p — a/dy. Furthermore, let the vector
weight W = (w1, we, -+ ,wy) € % and each w;j is G-invariant. Then for all 7 €
LPY(RE witdpy) x LP2(RE whdpy) x - -+ x LPm(RY, wPmdyy,), the following inequality

holds:
</( M7 ﬁ (@) do >)1 <CH</ (1) >>fduk<x>)

Proof. By same arguments as in the proof of Theorem 5.3.4 with u = [[ w; and v; = wj,
j=1

1/p;

in place of (5.3.3) we have

(Lot
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< AT ([, (o) 'aneo)

leZ BeB

m 1/‘1
1 q
X(Euk(gﬁ)l_a/mdk /Bia fo; (y) du(y)) } : (5.4.1)

Using Holder’s inequality, Proposition 2.3.7 and A* . condition, we have

(/ <ij ) i ))Mk(Bﬁ)qa/dk qm<H / fo, (0) dp(y >>q

B a/ (tw)’
< (/5 <Hw3> de)Mk (Be)"™™ H </BB fajw]) d“k>
m qa/tp;
Al (fBzwj Jd”k>
) m 1 a/(tp})
q 1\4/P
< C[w]ou, (BY) ]Hl<uk A /B é(ﬁ,]wj) duk> , (5.4.2)

where [W] denotes the smallest constant in one-weight condition.

Now substituting (5.4.2) in (5.4.1) and using the fact that p < ¢, we have

(/R (Mi,Nfo f[ )qduk ))w

1)\ 1/a
< C[E?]{ZZ <'uk Bg 1/pH( j <fgjwj>§tpj) duk) /( J)> }

€7 BeB

1
(wy A\ "
( . (fo,w5); d/%) . (B5) ,
leZ peB j=1

IN

which is same as (5.3.6) with uw = [ w; and v; = w;. Hence, the rest of the proof follows
j=1

from the proof of Theorem 5.3.4. ]
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5.5 One-weight Inequalities for Multilinear Fractional In-
tegral Operators

Before addressing one-weight inequalities for Z*, we establish a Welland-type Lemma [74]

in the Dunkl setting, which will be useful here.

Lemma 5.5.1. For 0 < ¢ < min{a, mdy, — o} and 7 = (f1, fo, -+, fm) with f; > 0,

there is constant C. such that,
257 () =257 () < . (M5, T oMl T )

Proof. Since ZF is a positive operator and using properties of Dunkl convolution together

with the fact that 7% is positive on radial bounded functions in L!(R?, dyy,),

™ fi@)E fa(@) o TE, fn(@)
Ik — / Y1 Y2 Ym d d coed -
a?(:ﬁ) ®E™ (‘91’2 + ‘y2’2 +o ¥ ‘ym‘g)(mdk,a)/Q Nk?(yl) :uk(yQ) ,Uk(y )

_ / T Ju@)rE, fa(x) - TE ()
B(0,r)™ (

d Yy d Y .o d Ym
|y1|2—|— |y2|2_|_+ |ym|2)(mdk_a)/2 Mk( 1) ,Mk( 2) ,uk( )

+/ TEylfl(x)TEygfé(x) e Tfymfm(x)
®y™ porm (Y112 [Y2]? + - [y [?) (mde=e)/2
= 141

dpur(y1) - - - dpir(Ym)

Since, 0 < € < «, we have

@) TE fax) TR fo()

[ = /
% Qa4 3o + -+ [p )2

I=0 ga=irym\B(2—i~17)m

X dpu(y1)dpr(y2) - - - dptg(Ym)

[e.9]

@i [ A@rtfle) )

j=0

IA

B(2—ir)m
X dyu (y1) dpae(y2) - - i (ym)

= 067“6./\/12_67(1‘).
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On the other hand, using 0 < ¢ < md; — o, we get

_— i / (@) T fo(x) o TE f(@)
— (|y1‘2 + |y2‘2 N |ym|2)(mdkfa)/2
7=0p(ar+irym\B(2ir)m
X dp(yr) dpe(y2) - - - At (Ym)

< 03 (@) / @) fale) T fule)
=0

B2 1rym
X dpg (y1)dpr(y2) - - - dpir(Ym)

= oMt f (2),

Thus combining I and II, we have

) < C (wmi;j(@ v rwg_j(x)) .

1/2
Putting r¢ = (./\/l'; +67(:)3) / M';_e?(x)) , we conclude the proof of the Lemma. O
Finally, we prove one-weight estimates for the operator Z*.

Theorem 5.5.2. Suppose that 1 < py,pa,-+ ,pm < 00, 0 < o < mdy, 1/m < p <
dp/« and q be a number defined by 1/q = 1/p — «/dy. Furthermore, let the vector
weight W = (wy,wa, -+, Wy) € % and each w; is G-invariant. Then for all ? €
LPY(RE witdpg) x LP2(RE whdp) x - -+ x LP(RY, wPmdyy,), the following inequality

holds:

(L

Proof. For 0 < ¢ < min(«, mdy, — «), define

m

1/q 1/p;
77 (@) \ij )) e ) scH( /Rd<|fj<x>|wj<as>>”jduk<as>> .

1_1 o+ €

Ge p dk
1 1 —
and::——a ¢
Ge P dk



§3.5. One-weight Inequalities for Multilinear Fractional Integral Operators

Taking e sufficiently small, from Proposition 2.3.8 it follows that mls A% . and 0 €

A? - Let ¢1 = 2¢./q and g2 = 2q./q. Then ¢; and ¢, satisfies

1 1
— 4+ —=1.
q1 q2

Taking ? = (f1, fo,  + , fm) € S(RY) x S(RY) x - - - x S(R?), Lemma 5.5.1 together with

Holder’s inequality implies

/Rd <|I§?(:U)|w(x)>qduk($)
[ @D
c /Rd <<MZ+J?|)w)q/2 <<MZE‘?|>’U))(]/2 "
1/q2

a( (M7 ) m) h ([ (M Fow) am)

where | £ = ([fil, [ faly-++ » [finl).

Since p also satisfies p < di/(o+€) and p < di/(a — €), from Theorem 5.4.1 we

IN

IN

IN

conclude the proof. O

Remark 5.5.3. We do not know whether these conditions are also necessary for the bound-
edness results. Even in the classical setting the two-weight conditions with “power-bump”
on the weights are not known to be necessary for the two-weight boundedness for the frac-
tional maximal function and fractional integral operators. Although the two-weight condi-
tions without “power-bumps” on the weights can be obtained as necessary condition for the
two-weight boundedness for these operators in the classical setting. On the other hand in
the classical setting Al—g’ . condition (5.1.2) is necessary and sufficient for the one-weight in-
equalities. However, in the Dunkl setting the lack of information about the Dunkl translation

prevents us from obtaining necessary conditions for both one and two-weight inequalities.
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