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ABSTRACT

Nonvanishing of L-functions has many consequences in analytic number theory, for ex-
ample, the nonvanishing of the Riemann zeta function is the key point in proving the
prime number theorem. The generalized Riemann hypothesis states that all the zeros of
L-functions associated with a Hecke eigenform of weight £ lie only on the critical line
Re(s) = k/2. Another interesting problem is to study the equivalence of modular prop-
erties of an automorphic form and analytic properties of L-functions attached to it, i.e., to
derive the transformation properties from the functional equation of L-functions and vice
versa.

Jacobi forms are natural generalizations of modular forms and they appear as Fourier-
Jacobi coefficients of Siegel modular forms. Jacobi forms play a crucial role in the proof
of the Saito-Kurokawa conjecture.

In this thesis, we study the nonvanishing of L-functions and the Poincaré series for
Jacobi forms of integer index and matrix index as well. More precisely, we prove that given
certain points inside the critical strip, L-functions attached to the Jacobi form do not vanish
for large weights. We also study the analytic continuation of L-functions and a converse
theorem for Jacobi forms of half-integral weight. Then, we study certain properties of
Rankin-Cohen brackets and their relation with the Poincaré series for Jacobi forms. Finally,
we construct Jacobi cusp forms involving special values of certain Dirichlet series as their

Fourier coefficients.
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Summary

This thesis deals with the study of L-functions and differential operators associated with
Jacobi forms and examines their analytic properties. Modular forms which played a crucial
role in the proof of Fermat’s last theorem, have applications beyond number theory. L-
functions attached to modular forms have interesting analytic properties and play a crucial
role in analytic number theory.

The nonvanishing property of L-functions holds huge significance, serving as a key
point in various analytic results such as the prime number theorem, where, the nonvanish-
ing of the Riemann zeta function assumes a pivotal role. One of the problems in the theory
of L-functions is to find the zero-free region for L-functions attached to modular forms.
The Generalized Riemann Hypothesis remains an unsolved conjecture for a long time. It
posits a stringent constraint on the zeros of L-functions, claiming that L-functions associ-
ated with Hecke eigenforms of weight & admit zeros only on the critical line Re(s) = k/2.
Towards this direction, Kohnen [24] proved the nonvanishing of L-functions attached to
Hecke cusp forms on average. The approach of Kohnen has been adopted for various kinds
of automorphic forms to prove the nonvanishing of associated L-functions.

The reciprocal relationship between the modular properties of an automorphic form
and the analytic properties of its associated L-function forms an interesting topic of ex-
ploration. The derivation of transformation properties from the functional equation of L-
functions and vice versa reveals the underlying relation between these two mathematical
entities. The study of such a relationship is known as the converse theorem for automorphic
forms. Hecke studied the converse theorem for modular forms for SLy(7Z). In particular,
Hecke [16] proved that the transformation properties and the analytic properties of associ-

ated L-functions are equivalent. Later, Weil [48] generalized Hecke’s work for congruence
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subgroups.

Differential operators on modular forms form a crucial aspect of mathematical analysis
within the realm of number theory. By applying differential operators to modular forms,
one can study the arithmetic behavior of many interesting number theoretic functions that
appear as Fourier coefficients of modular forms. Using differential operators, one can obtain
interesting congruences between Fourier coefficients of modular forms.

Jacobi forms emerge as natural extensions of modular forms in two variables. They
appear as Fourier-Jacobi coefficients of Siegel modular forms. Jacobi forms assume a cru-
cial role in the proof of the Saito-Kurokawa conjecture. In this thesis, we investigate the
nonvanishing of L-functions associated with Jacobi forms of integer and matrix index and
Jacobi Poincaré series. The converse theorem for Jacobi forms for congruence subgroups
has been studied by Martin and Osses [36] for Jacobi forms with respect to congruence sub-
groups. We also investigate L-functions attached to Jacobi forms of half-integral weight.
More precisely, we associate L-functions to a Jacobi form of half-integral weight using
theta decomposition. Then we study the analytic continuation of these L-functions and
prove a converse theorem. We also investigate Rankin-Cohen brackets and their relation
with the Jacobi Poincaré series. More precisely, we prove that Rankin-Cohen brackets and
Jacobi Poincaré series commute in a certain sense analogous to [49]. We also give some
applications as a consequence of the above property. Finally, we construct cusp forms
whose Fourier coefficients involve special values of convolution-type Dirichlet series by

constructing the adjoint of certain differential operator on the spaces of Jacobi forms.



Chapter 1

Introduction

This chapter introduces basic notions in the theory of modular forms and Jacobi forms of
integral weight and half-integral weight. We also introduce L-functions and differential

operators associated with modular forms and Jacobi forms.

1.1 Notations

LetN, Z, Q, R and C be the set of natural numbers, integers, rational numbers, real num-
bers, and complex numbers, respectively. We denote the real part and imaginary part of
z € C by Re(z) and I'm(z), respectively. We denote e>™*% by e¢™(z) where n # 0 and
m are real numbers. We also denote e1(z2) by e(z). Let H = {7 € C: Im 7 > 0} be the
complex upper half-plane. We denote the variable in the complex upper half-plane by 7

and the variable in C or CY by z. We denote ¢ = e(7), for 7 € H and { = e(z), for z € C.

For a complex number z, the square root is defined as follows:
Vz= |z]%e%‘"9(z), with — 7 < arg(z) < 7.

We set 22 = (1/2)* forany k € Z. We denote A[X] = X'AX where A and X are matrices
of suitable orders. For a ring R, we denote 1?9 as the set of all row vectors with g columns

and 9! as the set of all column vectors with g rows.
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The full modular group I' = SL4(Z) is defined by
a b
SLy(Z) = ca,b,e,d €7, ad —bc=1
c d

For a positive integer N, we denote the congruence subgroup I'g(/V) of SLy(Z) as follows:

[o(N) = ’ € SLy(Z) : ¢ =0 (mod N)

1.2 Modular forms for S1Ly(Z)

a b
The group GL3 (R) = ca,b,c,d € R, ad — bc > 0 » acts on H via fractional
c d
a b
linear transformations, i.e., for v = € GLf(R)and 7 € H,
c d
_ar+b
et 4 d

Let k € Z. The group GL3 (R) acts on set of all complex-valued holomorphic functions on

‘H via the action defined by:

(f [k 7) (1) = (det 7)2 (cT +d) " f (v - 7),

a b
where 7 = € GLj (R) and f is a complex-valued holomorphic function on H.

c d

Definition 1.2.1. 4 modular form of weight k with respect to the group SLo(Z) is a holo-

morphic function [ : H — C satisfying
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1. f |k Y= f, ‘v’v S SLQ(Z), ie.,

ar +b0\ X | e b
f(CT+d)—(CT+d) f(r), ¥y = o € SLy(Z) and V7 € H.

2. f is holomorphic at the cusp infinity, i.e., [ has a Fourier series expansion of the

[&.°]

form [(r) = 3~ a(n)q".

n=0

Moreover, if a(0) = 0, then f is called a cusp form.

The set of all modular forms of weight £ forms a vector space over C. The set of all modular
forms of weight k for SL,(Z) is denoted by M), and that for cusp forms by Sy, respectively.
Let f, g € My be such that either f or g is a cusp form. We define the Petersson inner

product of f and g as:

(fg) = / F(r)g() (Tm(r)AdV,

SLa(Z)\H

dudv

1S an invariant
02

where SLy(Z) \ H is a fundamental domain, 7 = u + iv and dV =
measure under the action of SLy(Z) on H. The inner product is independent of the choice

of fundamental domain.

Example 1.2.1. (Eisenstein series): Let k > 2 be an even integer. The normalized Eisen-

stein series Ey, of weight k for S Ly(7) is defined by:

1 1
Ey(r) = = S
() 2 Z (mz +n)k
(m,n()EZQ)\_{go,O)}

Then Ej, is a modular form of weight k for S Ly(Z) with Fourier expansion



1 Introduction

where oy,_1(n) = . d* and By, s are Bernoulli numbers defined by
dn

i k

x x
er—1 ZB}CF

k=0

The Fourier expansions of Ey. for k = 4,6, 8,10 and 12 are as follows:

Ey(r) = 14240) o3(n)q",
n=1

Es(t) = 1—504%05(n)q :
n=1

Eg(T) = 1+480§:a7(n)q”,
n=1

Ey(r) = 1—264iog(n)q",
n=1

Ep(r) = 1—1—623—210 3 o11(n)q".

Example 1.2.2. (Ramanujan delta function): The Ramanujan delta function is defined

(Ea(7)* — Eo(7)*)

Alr) = 1728

A is a cusp form of weight 12 for S Ly(7Z) with Fourier expansion

Ar)= ) r(n)q",

where 7(n) is called the Ramanujan tau function. Ramanujan delta function has a product

expansion
A(r)=q[J1-q"
n=1

Example 1.2.3. (Poincaré series): Let n be a positive integer. The n-th Poincaré series of
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weight k for SLs(Z) is defined by

Pen(r) = > "y, (1.1)

~ET 60\ S L2 (Z)

1 ¢
where 'y, := { £ ct €Z ). Py is acusp form of weight k > 2 for SLs(Z)

01

with Fourier expansion
Pen(7) =) gn(m)q™,
m=1
where

k-1

Gn(m) = 6y + (—1)57! <T> o i K. (n,m)Ju_s (‘”iﬁ) ,

n
c=1

On.m is Kronecker delta symbol and K .(n,m) is the Kloosterman sum defined by

md + nd_l)

D DR .
C
d (mod ¢)
dd~'=1 (mod c)

and Ji_1(x) is the Bessel function of order k — 1.
The Poincaré series has the following property:

Lemma 1.2.2. If f € Sy with Fourier expansion f(7) = Y. a(m)q™, then

m=1

T(k—1)

(fs Prn) = Wa(”)a (1.2)

where I () is the usual gamma function.
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1.2.1 Hecke operators

We now define linear operators on the space of modular forms, called the Hecke operators.

Definition 1.2.3. Let n be a natural number. For f(1) = > a(m)q™ € My, the n-th

Hecke operator is defined by

where a,(m) = > d*'a(=3). Then T, f is a modular form of weight k. Moreover, if f
d|(m,n)
is a cusp form then T,, f is also a cusp form.

The set {7}, : n € N} consists of self-adjoint, commuting operators on the space of cusp

forms.
Definition 1.2.4. A cusp form is said to be an eigenform if T,,f = A\, f for alln € N.

The space of cusp forms Sy, is a finite-dimensional Hilbert space with respect to the
Petersson inner product. Hence, there exists an orthonormal basis consisting of eigenforms

of all the Hecke operators 7,.

1.2.2 L-functions associated with a modular form

[e.o]

Let f(z) € Sk, with Fourier expansion f(7) = > a(n)q™. The L-function associated to f

n=1

is defined by

L(f,s) = aﬁ;’). (1.3)
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Since the Fourier coefficients of a cusp form of weight k satisfy a(n) = O(n %) the above

series converges for Re(s) > ¢+ 1, where ¢ = £. The completed L-function is defined by

L*(f, s) can be extended to an entire function of s € C, and satisfies the functional equation

L*(f,s) = (~1)2L*(f, k — s).

Further, if f is an eigenform, then L( f, s) has an Euler product

L(f.s)= J] @ —alp)p~ +p172)"

p-prime

1.3 Modular forms for ['y(NV)

Definition 1.3.1. Let k be an integer and x be a Dirichlet character modulo N. A holo-
morphic function f : H — C is said to be a modular form of weight k, with level N and

character x if

a b
Lkt = xfeva=| " | erm e,
at + b a b
f =x(d) (et +d)*f(1), Vv = e I'o(N).
() =@+ arse = | er

2. f is holomorphic at all the cusps of T'y(N), i.e., [ | v has Fourier expansion of the

form
o

(fle (7 Zav

n=0

R-\:

for every v € SLy(Z).
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Further, f is called a cusp form if f vanishes at all the cusps of I'o(N), i.e. a,(0) =0

for every v € SLy(Z).

Denote the space of all modular forms and the subspace of all cusp forms of weight &, level

N with character x on I'g(N) by My(Io(N), x) and Sk(I'o(NV), x), respectively. If x is the

trivial character, then we denote the spaces as M (I'o(N)) and Si(I'o(N)), respectively.
If f, g € Mp(T'o(IV), x) are such that either f or g is a cusp form, then the Petersson

inner product of f and ¢ is defined as:

19 = spmray e umE)ay,

FO(N \H

where ['g(N) \ H is a fundamental domain for the action of I'o(N) on H and [SL2(Z) :
Lo(N)] is the index of I'g(N) in S Lo(Z).

We state a lemma on the bounds of Fourier coefficients of a modular form.

Lemma 1.3.2. If f € My(I'o(N), x) with Fourier coefficients a(n), then
a(n) < |n|F1re.

Moreover, if f is a cusp form, then the coefficients satisfy the following Ramanujan-Petersson

bounds:

a(n) < |n|277r,

For more details on the theory of modular forms of integral weight, we refer to [18, 23].

10
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1.4 Modular forms of half-integral weight

b
Let ' = T'y(4). For an odd integer k and v = € I', define the slash operator as

follows:
()= () (F) er vy

where (cgl) is the Kronecker symbol and f is a complex-valued holomorphic function on

H.

Definition 1.4.1. Let k be an odd integer and x be a Dirichlet character modulo 4. A

holomorphic function f : H — C is said to be a modular form of weight g and character

X for the group 1 if
1 (f17) (1) = x(@)f(r), ¥y = er.

2. fis holomorphic at all the cusps of T', i.e., nyy has Fourier expansion of the form
2

(7)) = X oo o

for every v € SLy(Z).

Moreover, we say f is a cusp form if f vanishes at all the cusps of T'y(4), i.e., a,(0) =

0 for every v € SLyo(Z).

Let M (I',x) and S % (T, x) denote the spaces of modular forms and cusp forms respec-

tively of weight £ and group I' = I'g(4). The space S k (T, x) is a finite-dimensional Hilbert

11
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space with respect to the Petersson inner product defined by:

(f,9) = F(P)g(m)Im(r))zdV,

T\H

for f, g€ S 5 (I, x). Moreover, the inner product is well defined if at least one of f and g

is a cusp form. For more details on modular forms of half-integral weight, we refer to [23].

1.5 Jacobi forms

Consider the Jacobi group I'/ defined by

r’ :ZSLQ(Z)'XZQZ (MaX):M: ESL2(Z)>X:(/\7V)€Z2

The set '/ has a binary group operation defined by

(M, X)(M',X') = (MM', XM' + X").

The group I'’ acts on H x C via

a b

) | = (

ar +b z—l—)\T—i-z/)

¢ d ct+d  er+d

Let k£, m be any fixed positive integers. Let ¢ be a complex-valued holomorphic func-

a b
tionon H x C. Lety = ,(A\, 1) | € TY. Define the slash operator
c d
+ AT + 1)’
() () = e+ a)hen (LTI r oot (.2)

12
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Definition 1.5.1. Let ¢ : H x C — be a holomorphic function. Then ¢ is said to be a
Jacobi form of weight k and index m for I'? | if ¢ is invariant under the slash operator with

respect to the Jacobi group, i.e.,

Hlemy = &, Vy €T/

and has a Fourier series expansion of the form

(T, 2) = Z c(n,r)q"¢" (q=e™7, ¢ = e¥™). (1.4)
n,rez,
r2<4nm

Moreover, ¢ is called a cusp form if c(n,r) # 0 implies r* < 4nm.

Remark 1.5.1. The property ¢,y = ¢ for every v € ' is equivalent to
¢’k,m[M7 (07 O)] = ¢7 for cvery M e SLQ(Z) (15)

and

OlemlId. (A )] = &, for every (A, p) € Z2. (1.6)

Denote the space of all Jacobi forms and the subspace of all Jacobi cusp forms by .J ,,, and
Jem > TEspectively.
Let ¢, 1 € Ji m such that at least one of them is cusp form. The Petersson inner product

of ¢ and ¢ is defined by:

—471"my2

(P, 1) = / o(7, 2) (1, 2)vke v dVj,

IJ\HxC

dudvdxdy

3 is an invariant measure under the
v

where 7 = u + v,z = x + iy and dV; =

13
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action on I'Y on H x C. The space of Jacobi cusp forms of weight k and index m is a

finite-dimensional Hilbert space with respect to the Petersson inner product.

Example 1.5.1. Let k > 4 be an even integer. The Jacobi Eisenstein series of weight k and

index m is defined as

+0b z cz?
Erm d)~Fem (22220 4 o) -
em(7,2) ZZCT+ ( ord Card atd)
¢ dEZ NEL
(e,d)=1
a b
where a and b are such that € SLy(Z). Then, Ey, 1, € Jjm.
c d

For more details on Jacobi forms of integer weight, one can refer to [13].

1.5.1 Jacobi forms of matrix index

Let g be a positive integer. Consider the Jacobi group Fg of degree g defined by F; =
{(M,X): M € SLy(Z), X = (\, u) € Z%' x Z9'} with the group law defined by

(M, Xq) - (My, Xo) = (M1 My, X1 My + Xs)

for (M, X1), (Ms, X5) € Fg. The Jacobi group acts on the space H x C9! via

(a b 7(}\#))'(772)_<ar+b7z+>\7+u>'

c d ct+d er+d

Let & be a positive integer, M be a positive definite symmetric half-integral matrix of order

a b
gxgand h = ( , (A, ,u)) € I'J. We define the automorphic factor with respect
c d

14
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to h by

Jngkm(T,2) = (cT + d)"“G( Mz + A1+ p] + M[N\|T + 2)\th).

—c
ct+d
Jacobi group I“g’ acts on the set of all holomorphic functions ¢ : H x C%! — C via the

action:

(@lkMmh) (T, 2) = G (T, 2)0(h - (7, 2)).

Definition 1.5.2. Let ¢ : H x C9' — be a holomorphic function. The function ¢ is said to
be a Jacobi form of weight k and index M for I'? if ¢ is invariant under the slash operator

with respect to the Jacobi group I’ ie.,

Olpmy =&, Vy €Ty

and satisfies the cuspidality condition, i.e.,

o(r,2) = Z c(n,r)q"e(r - 2).

neN,rez9,
n}%/\/l_ Lrt]

Moreover; ¢ is called a cusp form if c(n,r) # 0 implies n > M ™[r].

Denote the space of all Jacobi forms and Jacobi cusp forms of weight £ and index M by

Ji,m and J. %, respectively. Define the Petersson inner product on J; 7} by

(P, 1) = / o(1, 2) (T, 2)y"e(—4m M [v]y‘l)dvg‘],

LI\ HxC9:1

where 7 = x + iy, 2 = u + ww and dVgJ = v 9 2dxdydudv. Define z = pr + ¢ with

p,q € R% and py (7, 2) = y2e(iyM]p]). One can rewrite the above Petersson inner

15
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product as

(f.9) = / f(7,2)g(7, 2)y"e(2iyM|p))y > dzdydpdy.
TJ\HxC9:L

The space J. ,fjf/lp is a finite-dimensional Hilbert space with respect to the Petersson Inner

product.

Example 1.5.2. (Poincaré series): Let k be a positive integer, M be a symmetric, positive
definite, half-integral g x g matrix. Letn € Z and R € 79 such that n — 3 M™'[R] > 0.

We define (n, R)-th Poincaré series by

Pk,M§n,R<T> Z) = Z €<NT)€(RZ) ’k,MPY(T7 Z)a (17)

YEL oo \I']

where (1,z) € H x C¥' and T | = (

The Poincaré series have the following properties:

cusp

Theorem 1.5.3. [3] The Poincaré series Py pn,r € Jj_y and the set of all Poincaré series

generates the space J,.';. For a Jacobi form ¢(7,z) = > c(n’, RNe(n't)e(R'z)
' n' €z, R'€LI
77/2%/\/[71[}2“}
we have,

(6. Pt ) = 207002 b MR DAL (-~ 1)e(n, B),
The Fourier expansion of the Poincaré series Py a.,r is given by

Pk,MmR(ﬂ Z) - E : pkM\/l;mR(n/v R/)e(n/T + R/Z)’
n'€Z, R'€79
R/EiM_l[R/t]

16
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where

pk,M;n,R(n/a R/) = 6/\/[ <n7 Ra nlv R/) + (_1)]95/\/[(,”’ R7 TLI, _R/)

297 Ml|e
n iR n’ iR

where D = det | 2 2 , D' =det | 2 2 and
R M SR M

1, ifD =D R = R(Z92M),

0, otherwise

and
Hy(n,Ron/,R) = ¢ 57} Z ee((M[z] + R +n)y +n'y + R'z)ese(R MR
z(c)y(c*)

is the generalized Kloosterman sum. Here y runs over (Z/cZ)* with yy = 1(c) and x runs

over (791 /cZ9Y).

For more details on the theory of Jacobi forms of matrix index, we refer to [52].

For any p € Z9 \ Z9(2M) define the p-th theta series of weight 4 and index M by

Oupr2) = S eCMIRe(Rz).

4
ReZ9
R=p  (mod 2M)

17



1 Introduction

1.5.2 Theta decomposition of a Jacobi form

Let ¢(7,2) = > ¢(n,R)e(nt)e(Rz) be a Jacobi form. The Fourier coefficients of
n€Z, REZI
n}%M‘l[Ri]
¢ satisfy the property c(n, R) = c(n’, R') whenever n — 1M R = n' — IM7[R"]
and R = R’ (mod 2M). Hence one can define cg(N) = c(n, R) whenever N = 4n —

M™1[R!]. Then ¢ can be represented as follows:

o(T,2) = > 6r(M)Oma(T2), (1.8)

ReZ9 (mod 2M)

o

where ¢g(7) = > cr(N)e(Z 7). The holomorphic functions {¢r(7)} behave like a vector-
N=0
valued modular form of half-integral weight. The expression (1.8) is called the theta decom-

position of ¢. Using the theta decomposition (1.8), one can define L-functions associated

with Jacobi forms.

1.5.3 Dirichlet Series associated with Jacobi forms

Let ¢ be a Jacobi cusp form with theta decomposition (1.8). For every R € Z9 \ Z9(2M)

define the Dirichlet series

oo D —S
Lr(¢,s) = > cr(D) (M) (1.9)
and the completed Dirichlet series by
Ag(p,s) = (2m)°T'(s)Lg(o, ). (1.10)

Martin studied the analytic properties of these Dirichlet series and established a set of func-

tional equations.

18
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Theorem 1.5.4. [35] Let k be a positive even integer and M be symmetric, positive definite,
half-integral matrix of order g x g. Let ¢ : H x C9' — C be a Jacobi form of weight k
and index M. Then for any R € 7.9\ 79(2M), the completed Dirichlet series Ag(¢, s) has

analytic continuation to whole complex plane and they satisfy

1 _ _ . g
_— e(—R'2M) 'R +e(R (2M) ' R))Ap (¢, 5) = i*Ap(¢, k—s—2).
M, (%;W)(( (2M) 7 R)+e(R (2M) 7 R'))Ar (9, s) (¢ 2)

(1.11)

1.5.4 Hecke operators

Let M(7Z) denote the set of all 2 x 2 matrices with integer entries and [ > 0 be a positive

integer.

Definition 1.5.5. Let ¢ : H x C — C be a holomorphic function. The I-th Hecke operator
T, is defined by

(Ti)(r, 2) = I > > b lkm M X,

MeT\M>(Z), Xez2/1z2
det(M)=i2,g.c.d.(M)=0

where g.c.d.(M) = O means that the greatest common divisor of all the entries of M is a

square number.

Theorem 1.5.6. The Hecke operators I} are well defined linear operators on the space

Jkm-

19
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1.6 Jacobi forms of half-integral weights

Lety = (¢%) € GL3 (R) and ¥ = (v, ¢(7)), with ¢(7) a complex-valued holomorphic

ct +d

function on H such that ¢?(7) =t with t € {1, —1}. Then the set

Vdet(v)
~ a b cT+d
Gi=7=e) 7= € GLI(R), ¢*(1) = t————_ t =1},
c d det()

forms a group with the following operation

(71, 1(7)) - (25 2(7)) := (7172, P2 (2T )p2(T)).

a b
The association v — 5 = (v,7(7,7)), where 7 = € I'og(4), and j(v,7) =
c d

(¢) (_74)_1/2 (et + d)"/?, is an injective map from I'y(4) into G.
Let

—~

G’ ={(7,X,s): v€ SLy(R), X € R? s S'}.

Then G” is a group with the group law

~ ~ ~~ X2
(’}/17 X7 S)(PY% Y7 Sl) = Y172, X’)/Q + Y, 33, . det
Y

and it acts on H x C as follows:

at+b z+ AT+
ct+d  cr+d ’

he(r,2) ;:(

20
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a b
where (7,2) € H x C, h=(v,X,() € G’ withy =

c d
Let k£ and m be fixed positive integers with k£ odd. For a function ¢ : H x C — C and

h=7,X,s) € G with X = (A, 1) € R?, the slash operator |§’m is defined by

—k m [ —c(z4+A7 2 ar 24T
<q§]§mh> (1,2) = s™p(1) e (% + 2027 + 202 + /\,u> ) (CTifl, %) )

For h = (3, (0,0), 1) with 7 = i | € Ty(N),4 | N the above

definition reduces to

(ls.h) (r.2) 1= G ,m)Fem (25) 0 (2255 )

Denote ¢|§7mh by ¢|§mﬁ whenever h = (7, (0,0),1) with 5y = (7,7(7,7)),7 € To(V).
For positive integer N with 4| N, consider the subgroup I'/ (V) of G/ defined by '/(N) :=
m X (Z x 7) i.e.,

Definition 1.6.1. Let k, N, m be positive integers such that k is odd and 4|N. Let x be a
Dirichlet character modulo N. A Jacobi form of weight % and index m with character x for

the group T7 (N) is a complex-valued holomorphic function ¢ defined on H x C satisfying

the following conditions:

ko ok
1. ¢k, h=x(d)¢, forallh = (7,X,s) € 7 (N) with vy = ,
’ c d
a
2. foreacho = € SLy(Q), there exists an integer d,, such that the function

c d
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o) |%m h, where h = (¢71,(0,0, 1)) has a Fourier expansion of the form

) |§m h = Z Coo(n,r)e (d—iT - d%z) )

n,reZ
r2<4nmd,

Further, if the inequality in the above expression is strict for every o € SLy(Q), then

¢ is said to be a Jacobi cusp form.

Denote the space of all Jacobi forms and Jacobi cusp forms of weight 5 k and index m with
character y for the group I'/ (V) by J 5 m(T7(N), x) and J LP(D7(N), x), respectively. For

more details on Jacobi forms of half-integral weight, we refer to [46].

1.6.1 Theta decomposition

Letop € J E m (I'7(N), x) with the Fourier series expansion given by

o(r,2) = E co(n,r)e(nt +rz). (1.12)
n,reZ
r2<4nm

For D > 0 and r (mod 2m), we define a sequence {c,, (D)} of complex numbers as follows:

(D) = (1.13)

0, otherwise.

Set

Zc# Yeam (D7), (1.14)
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and for a natural number [/, consider the Jacobi theta function defined by

0,(7, 2) = Z e (Z—jT + TZ) : (1.15)

rEL
r=p(mod 21)

The equations (1.12), (1.14) and (1.15) imply the following decomposition of the ¢(7, z) :

2m
A(7.2) =D ()0 (7, 2). (1.16)
pn=1

The above representation is called the theta decomposition of ¢. The transformation prop-
erties of the Jacobi form ¢ imply certain transformation properties of /,,. For more details

on the transformation properties satisfied by the function %,,, we refer to [41].

Lemma 1.6.2. Let ¢ € J."*P(T7(N), x) be a Jacobi form with the Fourier series expansion
3,m
as given in (1.12). Then there exists a positive real number Cy such that |cy(n,r)| < CoD1,

where D = 4mn — r2.

The above estimate for the Fourier coefficients has nice analytic consequences as given

in the following lemma:

Lemma 1.6.3. /36] Let m be a positive integer and {c,, (D)}, = 1,--- ,2m, where D > 0
be a sequence as defined in (1.13). Let h,(7), 0, (7, 2) and ¢(7, z) be the power series
given by (1.14), (1.15) and (1.16), respectively. If c,(D) = O(D?) for some § > 0, then
each of the series h,,(T) (respectively, h,(7)0,, (T, z)) converges absolutely and uniformly
on any compact subset of H (respectively, H x C). In particular they define holomorphic

functions on H (respectively, H x C). Moreover

hu(T)a(7,2)e™ (p2) = O(y™°72) as y =0,
ha(F) (7, 2)e™ (p2) = O(e <%)) as y = oo
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hold uniformly with respect to x, where T = x + 1y and z = pT + q.

Lemma 1.6.4. Let ¢ : H x C — C be a holomorphic function satisfying part (i) of the
definition 1.6.1. Assume that the estimate ™ (pz)¢(,2) = O(y~°) as y — 0 holds uni-
Sformly with respect to R(1) for some positive real number §. Then, ¢ € ng(FJ(N), X)-
Moreover, if § < ®21, then ¢ € Jgf::(FJ(N),X).

Proof. The proof is similar to that of Lemma 3 in [36]. [

1.7 Differential operators

Differential operators on the spaces of automorphic forms are weight-increasing linear op-
erators and they give rise to many interesting identities between Fourier coefficients of
automorphic forms. The derivative of a modular form need not be a modular form. How-
ever, one can construct differential operators by taking an appropriate linear combination
of higher-order derivatives. Rankin [42, 43] studied a general description of the differential
operators on the space of modular forms. Cohen [10] explicitly constructed certain bilin-
ear operators using differential operators and obtained cusp forms with interesting Fourier
coefficients. Zagier [50, 51] studied the algebraic properties of these operators and called

them Rankin—Cohen brackets.

1.7.1 Rankin-Cohen brackets for modular forms

Let k and [ be positive integers and > 0 be an integer. Let f and g be two complex-valued

holomorphic functions on H. The v-th Rankin-Cohen bracket of f and g is defined by

oS () S e,
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1 df
here D" f = .
where D" f (2ma)r drr
Remark 1.7.1. Note that the 0-th Rankin-Cohen bracket [42, 43] is the usual product, i.e.,
[f,glo = fg and [—, —], has the following property:
[ lkv: gliv)e = [f, gllksiv2ny, ¥y € SLa(Z). (1.18)

Theorem 1.7.1 ([10]). Let v > 0, be an integer. If f € My and g € M, then [f,g], €
My 140, Moreover, if v > 0, then [f, 9], € Skyiron. In fact, [, |, is a bilinear map from

My x My to M4,

1.7.2 Serre derivative

Let k be a positive integer and f be a complex-valued holomorphic function on . Define

the Serre derivative by

1 d k

= %Eﬂﬂ — =B (7)f(7), (1.19)

o) -

where By =1 — 245> o(n)q" is the Eisenstein series of weight 2.

Theorem 1.7.2. Let f be a modular form (cusp form) of weight k. Then 9( f) is a modular

form (cusp form) of weight k + 2.

1.7.3 Heat operators

Let m be a positive integer. Define the heat operator by
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The heat operator does not necessarily map a Jacobi form to another Jacobi form. For k£ and

m positive integers, define the modified heat operator by

mE,. (1.20)
Theorem 1.7.3. Let k and m be positive integers and ¢ € Jy . Then Li 1 (¢) € Jito.m-

Moreover, if ¢ is a cusp form, then Ly, ,,,(¢) is also a Jacobi cusp form.

1.7.4 Heat operators for Jacobi forms of degree g

Let M be a positive definite, symmetric, half-integral g x g. Define the heat operator by

1 0 o 0
L= ——— | 8milM| — — i 1.21
M= o) ( Ml 5 Z Migs, azj) (1.21)
1<i,j<g
where 7 € H and 2 = (21, 29, -+ , 2,) € CY and M;; is the (i, j)-th cofactor of the matrix

M. Ly acts on e(nt)e(Rz) by
Lu(e(nm)e(Rz)) = (4n|M| — M[r'])e(nT)e(Rz),

where M denotes the matrix of cofactors M,;; of the matrix M.

ko ok
Lemma 1.7.4. [4]1] Let ¢ € Jym. Thenfork € Z, v > 0and A = € SLy(Z),
c d

we have

2M](k - §)

X

(Lm®)|kr2,mA = Lyg(SleimA) +

( - )<¢’k,MA)- (1.22)

ct+d

The heat operator commutes with the lattice action of the Jacobi group.

Define the modified heat operator which maps Jacobi forms to Jacobi forms as
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k— )M
Lk,,/\/l = LM - %EQ (123)

Lemma 1.7.5. The operator L p maps a Jacobi form (resp. Jacobi cusp form) of weight

k and index M to a Jacobi form (resp. Jacobi cusp form) of weight k + 2 and index M.

1.7.5 Rankin-Cohen brackets for Jacobi forms

Let k1, ko, my and mo, be positive integers and v > 0 be an integer. Let ¢ and ¢ be complex-
valued holomorphic functions defined on H x C. The v-th Rankin-Cohen bracket of ¢ and
1 is defined by

il _3 _3
ot = S (M (M) TR it 0122 w0,
=0

We note that here 2! = I'(z + 1).

Remark 1.7.2. One can easily verify that

[¢|k1,m1’7a ¢|k2,m2’7]u = [¢7¢]|k1+k2+2u,m1+m27a VV € FJ- (124)

Theorem 1.7.6. [6] Let v > 0 be integer. If ¢ € Jy, m, and @ € Jiy my, then [P, ], is a

Jacobi form of weight ki + ko + 2v and index my + ms.

27



Chapter 2

Nonvanishing of L-functions associated with

Jacobi forms

2.1 Introduction

Let f(7) = >, a(n)e*™" be a normalized Hecke eigenform of weight & for the group
SLy(Z). Let L*(f,s) = (2m)~°T'(s) >_,=1 a(n)n~* be the completed L-function associated
with f. The completed L-function L*(f, s) has an Euler product for Re(s) > % and all
the zeros of L*(f, s) can exist only inside the critical strip 25! < Re(s) < 1. According

to the generalized Riemann hypothesis, all the zeros of L*(f, s) can occur only on the line

Re(s) = %. Towards this direction, Kohnen proved the following:

Theorem 2.1.1. [24] Let B;, = { f1, fa, ..., faim(s,) } be a basis of normalized Hecke eigen-
forms for Sy. Let € > 0 and tq be given real numbers. Then there exists a constant C(tg, €)

such that for k > C|(tg, €), the function

dim S, %
Zk L*(fi,s) 2.1)
i=1 <f27 fz>
does not vanish on any point of the line segments Im(s) = to with 21 < Re(s) < £ — ¢

and £ + € < Re(s) < L.
As a corollary Kohnen obtained the following result:
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2 Nonvanishing of L-functions associated with Jacobi forms

Corollary 2.1.2. [24] Let € > 0 and ty be given real numbers. For k > C(ty, €) and any
s = Re(s) + ito with 51 < Re(s) < & —eand & + ¢ < Re(s) < E2L, 3 a cusp form
f € By, such that L*(f,s) # 0.

To prove Theorem 2.1.1 and Corollary 2.1.2, Kohnen constructed the following kernel

functions:

Roa) = Y ()

ct +d
<“ Z) €SLa(Z)

where 7 € H and 1 < Re(s) < k — 1 and v,, = 1e™/2T'(s)['(k — s). These kernel
) 2

functions relate a cusp form to its L-values.

Theorem 2.1.3. [24] For a given positive integer k and a complex number s = o + it with

1 <o <k —1, the function Ry, s € Sy,. Moreover, if f € Sy, then we have

(R = CTE 2R g )

To prove Theorem 2.1.1 it is sufficient to prove the nonvanishing of the first Fourier coef-
ficient of Ry, , for large weights.

Kohnen’s work is generalized to other kinds of automorphic forms like half-integral
weight modular forms [28], Siegel modular forms [12], Hilbert modular forms [40]. Also,
there are some results on the nonvanishing of derivatives of L-functions [15, 27] and prod-
ucts of L-functions [9].

One of the key points to prove Theorem 2.1.3 is to express the kernel functions 7, s as

a linear combination of Poincaré series for modular forms, i.e.

Rio(r) = 27)'T(k — 8) > n* ' Pun(7). (2.2)

n>1

Nonvanishing of Poincaré series P, ,, is an interesting problem in number theory. It is
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2 Nonvanishing of L-functions associated with Jacobi forms

not known whether P, ,, vanishes identically or not for general k£ and n. From (2.2), one can
observe that the nonvanishing of kernel functions implies the nonvanishing of the Poincaré
series. Rankin [44] studied the nonvanishing of Poincaré series using analytic tools and

proved the following:

Theorem 2.1.4. [44] There exists positive constants ko and B with B > 4log 2, such that
_ log(k)
for all k > ko and all positive integers n < ke Biisle® the Poincaré series Py, does not

vanish identicaly.

The Jacobi Poincaré series P, ,,,.,.» (1.7) are a natural generalization of P ,, to several
variables. Following the work of Rankin, Das [11] obtained the following result for the

nonvanishing of Jacobi Poincaré series:

Theorem 2.1.5. [11] Letm, n € Nandr € Z such that D = 4nm—1r? > 0 and D > 2m.
Then the Jacobi Poincaré series P, ., » 7 0 whenever

3

2

D mr [ 2 54 16 \
M(H) 0'0<D)D< 2%7‘_ <62/3 +25/6+23/4> ;

Blog x
where oo(D) denotes the number of divisors of d, M(z) = efsios 2 and B is as in Theo-

rem 2.1.4.

In the same paper, Das also obtained the nonvanishing of Jacobi Poincaré series of matrix

index.

Theorem 2.1.6. [11] Let 2R = 0 (mod Z9 2M). Then there exists an integer ky and a
constant B > 3log2 such that for all even k > kg, Py r;(n,r) does not vanish identically

whenever

D B log(k')
< T < pntalg) _ 2 0e\v)
- 2M| T “rp loglog(k') )’
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2 Nonvanishing of L-functions associated with Jacobi forms

where k' =k — § — 1 and a(g) =

Jacobi Poincaré series for the congruence subgroups are defined below:

Definition 2.1.7. Let n € Z and R € 79 with 4n > M7 RY]. For k > g + 2, define the

Poincaré series

Pli\,[./\/l;n,R(T’ Z) = Z e<n7 + Rz)‘k,m7(77 Z),

YErY e (N)
where T7(N) = To(N) x (Z91 x Z21).

It is well known that P,f Mi(n,R) is a Jacobi cusp form of weight £ and index M with respect
to the group I'J ().
Shankhadhar [45] generalized the work of Das and obtained nonvanishing of Poincaré

series for congruence subgroups.

Theorem 2.1.8. /45] For any € > 0 there exists a positive integer ky(e, M, N) such that

Pl in 1 (7, 2) does not vanish identically if k > ko and

D ) ) N 2
D =7 ) (D, N) s < (det(2 g [ L) prtele)
(det(zM)>< N)7 L (det(2M)) <00(N)> :
2 if 1< g <4,
where k' = k — % —1, alg) = 3(g+2)
= ifg=5.

In this chapter, we generalize the work of Kohnen in the context of Jacobi forms of
integer index [38] and matrix index [39] as well. We also obtain nonvanishing of Jacobi

Poincaré series in both cases.
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2 Nonvanishing of L-functions associated with Jacobi forms

2.2 Statements of results

First we state our main results in the case ¢ = 1. For any Jacobi cusp form ¢ we write
&(1,2) = ¢(—7, —%). Then ¢ has Fourier coefficients c,(N) in the corresponding theta
decomposition.

Theorem 2.2.1. /38] Let m € Z, ¢ > 0 and t' be real numbers. Then for any given

s=o+it' withs -2 <o <i—1_corf—1te<o<i41thereexistsky=ko(t,e)

and a Hecke eigenform ¢ of weight k > kq and index m such that the vector-valued function

A(C_b s) = (A (¢» $))i=0,1,..2m—1 7 0.

In [39] we generalize the above result to Jacobi forms of matrix index (g € N).

Theorem 2.2.2. [39] Let M be a g X g symmetric positive-definite half-integral matrix,

€ > 0 andt' be real numbers. Then for any given s = o+ it wzth 59— % <o < g —4—¢
orf—9te<o<E—94 Lihereexists ko = ko(t', €) and a Hecke eigenform ¢ of weight

k > ko and index M such that the vector-valued function A(¢, s) = (Ai(¢, 8))icza\z9om 7
0.

We have the following nonvanishing of the Jacobi Poincaré¢ series.

Theorem 2.2.3. [39] Let M be a g x g symmetric positive-definite half-integral matrix,
n € Nand R be as in Theorem 2.4.2 and 0 < § < % Then for any positive integer k > k

we have Py ..z 7 0 where

2log (227r3(27rD)1+5+i)

log?2

(2nD)*25 /M
(e(Rto) + e(—Rto))

m"“

ko = max < 8w D +2.2(

)% +g+1, +g+2

The approach of the proof is similar to the work of Kohnen. We first define kernel

functions, calculate the Fourier coefficients of these kernel functions, and obtain their non-
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2 Nonvanishing of L-functions associated with Jacobi forms

vanishing. We only give a detailed proof of Theorem 2.2.2. The case g = 1 [38] can be

deduced as a particular case of Theorem 2.2.2.

2.3 Kernel Functions

Let £ > 2g + 4 be a positive even integer and M be a symmetric positive definite half-
integral g x g matrix. Fortg € (2M)7'Z%! and s € C with 1 < Re(s) < k—2g — 1 define

the kernel functions

W) = Y es(T 2) kbl 2), (2.3)

heHJ\I']

1

where ¢y, (7, 2) = &e(—=M[z — to]) and H] = {(Id, (X,0)) : A € Z9'}. A set of all
T

coset representatives for H; \ T/ is given by {(Id, (0,v))(M, (0,0)) : M € T, v € Z9'}.

Theorem 2.3.1. /39] Let k be a positive integer, M be a positive definite symmetric matrix

of order g with k > 2g + 4 and ty € (2M)7'Z9' . If 1 < Re(s) < k —2g — 1 then

QM

cusp
tos € M-

To prove Theorem 2.3.1, it is sufficient to prove the absolute and uniform convergence
of the kernel functions Qfofl as the required transformation properties for Qfofl to be a Ja-
cobi form are easy to observe from (2.3). The required Fourier expansion will be computed

later in Theorem 2.4.1 and the cuspidality will be deduced. First, we state a fact that will

be used in the proof of the above theorem.

Lemma 2.3.2. For every (1,2z) € H x C9', there exists r = r(7,2) > 0 such that the

image of B(7,3) % D(z,3) (where B(r, 5) denotes for hyperbolic ball) under any M € T

1
' 2
is contained in B(M (1), 1) x D(0,r).
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2 Nonvanishing of L-functions associated with Jacobi forms

Now we prove Theorem 2.3.1.
Proof. Let (7, z) € H x C'. Using the fact B(7, 3) = D(70,70) for some 7 and holomor-
phicity of the functions ¢y, s and ¢y, s|xah forany h € H/ \ T'J, we have

|Dto,s| kAP (T, 2)| < ;
1

29T°(1 + £
¥r+3) / 610 slendh (7, ) dady/ dud'd

D(70,70)xD(2,%)

The map (77, 2') — (7', 2')y 972 is continuous and hence there exists a positive real

number 1.y such that

< Mk’M(T/7Z/)y/—gf2

M(,z)

forall (7, 2') € D(70,70) x D(2, ). Hence rewriting the above equation we get

|¢t0,s|k’,/\/[h’<7_7 Z)| g

29T(1+ 9) /

T |Bto,s |k, B (T, 2) 1t (7, 21) AV (77, 21).
0 T,2

Summing over all the elements of the coset Hg‘] \ F; , we have

2
2797T1+%r—0m7z ‘¢t s|k/\/lh<7—7 Z)’
T+ ) HZ\ ;
< ¥ / 6100 (h(T e B+, ) AV (7, )

J J
PN B(r,4)x Dz, )

- Z / |bro.s (7', 2 [ pem (77, 2)dV (772"

heHg\F‘glh(B(r,%)xD(Zé))

- Z Z / ’¢t0,8 (Tlv Z/)‘,U/k,/\/l (7—/7 Z/)dv<7'/, Z/)

(]
(]

|¢t0,8 (7_17 Z,)|:uk,/\/l (7_17 Z,)dV(Tlv Z/)
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2 Nonvanishing of L-functions associated with Jacobi forms

Z Z / / |Pto,s (7", 2) e (77, 2) AV (77, 2').

1
MeT veZ9, l) D(v,r
2

Estimating the integral we have

S / (G105 (7 2 (7', 2)dpfdg

1
VEE D)

< 2rg / G0 (7', 2 tspa (7', 2 Y9 dv' dp' d

U, czg.1 D(v,r)

A simple calculation shows that

) S v

,1
vEZI D(l/,?")

239 2 1 k—3g
R > 220 ) B P e
el

Hence we obtain

9. 1+% T(2)
2ot gy D s

) heHJ\T']

k—3g—4
’/IM R / ,sg 2 dady'.
MEFB(M

):5)

((7,2))]

Now estimate m. . whenever £ > 2g + 4 to get

> b yth((m))|<< Z / —— S

heHJ\T'] )
)’5
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2 Nonvanishing of L-functions associated with Jacobi forms

Simplifying, for 1 < ry < o one gets

k:3g4

1 2
g+1 - g /
> sl ()] < by / e Tt

heHJ\T'J

l
where B' = {7 € H |y < T(r,T) = 2cosh(3)er(y + i), |T}|2 <! ”} Proceeding as in

[34], forany 1 < ry < o one gets

( oo — 0 g

4 y+
1 2
D broslemh((r, 2)) | <y~ 3( y/ / ) 0( ,y) dr'dy’
heHJ\T'] s :13 +y 2 Yy
T(r,I")

k o— 2g+'r0 4

1 oortot? o / / L
+ - —dz'd
(y y .IIQ + y12 70 Yy

y'=0 z'=

M\a-

=y

_k 1 9= "'D+9+2 C1 F Tl k o— 2g k—o—2g—rg—2
< v+ ) dy

k 1 o—rg+g+2 c1 F(
2

< Yy 2(y+ y)ie

whenever 1 < 0 < k—2g—1. Hence Qfofl converges absolutely and uniformly on compact

subsets of H x C91'. O

Theorem 2.3.3. /39] Let k and M be as before. For any f € J,?j\s,[p, the inner product

(Qfofl, [f) is a holomorphic function on the vertical strip 1 + 4 < Re(s) < k —2g — 1.

Proof. Rewrite the definition of kernel functions as

Qfo/}s/l 72) = Z Z (bto,s,k,/\/l[[d>07V”’C,MM<T"Z)'

MeTl veZz9:t
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2 Nonvanishing of L-functions associated with Jacobi forms

Putting ¢y = (2M)~! " with 3 € Z9 one has

O 2) =D Y GoslkmlId,0,V][kmlId, 0, (2M) 7 B M (7, 2).

MeT vez9l

Theta inversion formula is given by

1 1
Z ¢0,8’k,M[1d707V] = - g Z @M’R(T,Z).

vEZ91 <2Z)9|M| T2 REZINZI(2M)

Hence one gets

QT 2) = Z > e(=REM) ' BYOMR(T, 2) | kM.

MeF Rezg\zg(zM)

Consequently one has

(M ) — / M (7, 2 T 212 sadV
\HxCo:1

- / S X e-REM)T)OumAT) | i

F\HX coMET ReZg\Za( M)

X T YoMk gV,

The transformation formula for 14, ¢ and the usual unfolding argument implies

s—Z

T
H 72917 +Z91\C9> REZI\ZI (2M)

< FT 2 pdV.

erMieis = [ [ (o X ed-reM 0
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2 Nonvanishing of L-functions associated with Jacobi forms

Putting the theta decomposition of f in the above equation one gets

1 1
(20| M ) = Nl '8
t Rezgé;(w\/t H/

fR(T)yk_%_dedy.

w\u:

Now consider the inner integral

fR(T)yk_%_dedy

————— (= MR fr(T)y* 2 P dudy

=Y / / G+ 0,5 = S Ty~ dady,

no (mod 4|M]) y=0 2=

where (7 (7, 2) = > (7 + 4|M|l)~*. Hence it is sufficient to show that integral

leZ
00
=0

defines a holomorphic function of s on the given region. Note that fz(7) = O(e

G (7 + o, s = ) Ta(r)y* 4 2dady (24)

Lo~

Yy x

y — oo uniformly on z and for o = Re(s) > 1 + § one has

g
Cajm|z (T +ng, s — —) <

1 —0’+

This implies

L~y

[ Vcusa (7 1o, = §) eyt 1oy

y=0 =0
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2 Nonvanishing of L-functions associated with Jacobi forms

- —k4+5+1 g - —k+o+1
— I (k—2-1 — L(k—o—1).
< (i2a) (=50 (5g)  reoov

From this relation, one deduces that the integral (2.4) is absolutely and uniformly convergent

on 1+ ¢ < Re(s) < k — 2g — 1. Hence the theorem follows. O

Theorem 2.3.4. [39] Let k > 2g + 4 and M be as above and t, € (2M)™1Z9. If s € C

such that 1 + § < Re(s) < k — 2g — 1 then we have

QEM(r 2) = = (2 —R@EM)"'p!
0, (T Z) /(22)9|M| mi(5— 4)I‘( )Rezg\g(QM) ( ( ) )

g

o0 D 8—5—1
X (M) Pk,/\/l;(ﬁJr%M—l[Rt]),R(T? z).
D=1

Proof. Rewriting the definition of Q as in the proof of Theorem 2.3.3, 1/ (2i)9 Qk M (T,

to,s

equals
> e(—REM) T BYOMA(T, 2)) kM |k M.
MeMTwM'elod * ReZ9\Z9(2M)
1 1
Now 'y =< £ -l eZ } . Then
0 1

S (- REM)TE)OMA(T, )M

TS
REeZINZI (2M)

M

M€l

=Y L S (CREMYTEY) + (REM)E))Ou (T + L2).
(51

REZINZLI (2M)
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2 Nonvanishing of L-functions associated with Jacobi forms

Rewrite the above equation to get

S Y (—REM) T B)Oumn(T, 2) oM

! TS_§
M'€Tw REZI\ZI(2M)

— S (e(~REM)B) + e(REM) T E))O (7 2)

ReZINZI (2 M)
4M| t
“R"lo)
x ZZ l VIS
—1 lez (7 +lo + 4| M[l)
4|M|

_ Z Z )(eCfM 'R — (2M)16t)+e(li/vt YR + R(2M)™ 15t))

lo=1 ReZ9I\Z9(2M

g
X OpmR(T: 2)Cymiz (T + Lo, s = 3)-
Inserting the Fourier expansion of ¢ (7,8) = s () ! io:( )s-i-t (D(THO))
g u p AMZ\T ) = QM) =ity - Drs—g) f= M A
one obtain

vV (2i)9 Qfofl
. 1 27T s=35 M l(] R 9 _1 ot
T (4IM]) emiG- 4>p Z ) [6(4/\4 R = R(2M) ﬁ)

lo 1 REZINZI(2M

—|—e(l4./\/l 'R+ R(2M)~ )}ZZ( ’M‘) glG)M,R(T,z)e(%)Ik,MM

D=1 Mer

- W % > [ (Gurtm - nesis)

lo 1 REZINZI(2M)

b e (Bmom+ R(ZM)‘lﬁt) ] f; (ﬁ) (1)

<Yy e((ﬁ+ L ])T+Mz)|k,MM.

Mel WEZI
pn=R (mod Z9(2M))
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2 Nonvanishing of L-functions associated with Jacobi forms

For every D, [y and R one has

D 1
g g el |+ M) T+ pz ) eM
I 4M| 4
er pezs
p=R (mod Z9(2M))

L - —¢ D L, _ at +b wz

= = d)~" Mzt 17t
chez (c%::l piczz—i_ ) e(CT+d ¢ ]) ((4|M‘ M [,u]) CT+d+CT+d) ’
,quR ’ (m70d 29’(2./\/[))

where a and b are chosen such that ad — bc = 1. Thus

D 1
> > e\ o + M) T+ pz ) M
2 M) "2
er HEZI
u=R (mod Z9(2M))

:% 3 (CT+d)ke(— M+ T M) 4 2 —= )

o deZ. (o=l cT +d cT +d ct+d
WEZI
D art+b z at+b

X —— + MR R R

((4|J\/l|+ 'R ])CT—I-d)e( CT-|—d+ 'uCT—Fd)

1
= gpk,M;(ﬁJriMfl[Rq),R(T? 2)-
This implies

(20)9| M|Q (7, 2)
1 27r 5= ad s—§-1
- @G =g o ()
4|M|
Z Z ((4,/\4‘ iMl[Rt]) lO) (6(—3(2/\/1)716’5) + €<R(2M)7lﬁt))

lo=1 ReZI\Z9(2M)

X

X Pk,/\/(;(m—i-zfv{—l[Rt]),R(T?Z)'
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2 Nonvanishing of L-functions associated with Jacobi forms

We have the following identity:

4M| D 1 4| M|, if ﬁ +IM- R €7,

Z e M + ZM (R )1y | =

lo=1 0, otherwise.
Using the above identity, we see that

(20)9| M|Q (7, 2)
27)5~%
- e S (e(—REM)BY) + e(RE2M)BY)
2¢mi(3 DI (s — 2) 5
E€ZINZI (2 M)

D .,
< D) Pt e (72 2)

_ ,<27§>Sé — Y (—REM))

3) REZI\Z9(2M)

oo D .
X Z(‘H—M) 2 Pk,M;(ﬁﬁM*l[Rt}),R(T’Z)’

where in the last line we have used the relation P, (. g = FPpmn,—r for k even. Hence

the theorem follows. O]

Corollary 2.3.5. Let k > 29 + 4 and M be as above and ty € (2M)~'Z9. If s € C such

that 1+ § < Re(s) <k —2g — 1 and f € J.'} then we have

k—2-1) —

QbM oy T 2 —Rto)Ar(f. k —s).

< to,s 7f> Ok—2,mi5 F(S _ g)r(k _ 8) Z 6( R 0) R(fv S)
ReZ9I\(Z9 (2M))

Proof. 1t follows from Theorem 1.5.3, (1.10), and Theorem 2.3.4. [

42



2 Nonvanishing of L-functions associated with Jacobi forms

2.4 Nonvanishing of L-functions

Theorem 2.4.1. [39] Let k be a positive integer, M be a positive definite symmetric matrix

of order g with k > 29 + 4 and ty € (2M)1Z9. If 1 < Re(s) < k — 2g — 1, then QF!

to,s

has Fourier series expansion

QM(rz)= S wi(n, R)e(nt + Rz),

n€Z, REZI,
4n>M~1[RY]

where
g. g
s=oje(—=2 D527 (e(—
wk(n,R):W 2ie(—=5)D 27" (e( Rto)—i-ge(Rto))
29-5/| M| I'(s—9%)
pgq (2mD)Fmst s —k+s
+ (=) I—F(k’—s) {6<_§)I{2Mto+2MZH}(R)+€( 7 )L —amigramzey (R) }
(2m)k=2 DF—5 11753 a. .
+ 2% M|F(k‘ g Z (_)k a k
‘ - 2) (a,c)=1, 'c=1(mod a),
ac>0
v—ty c nc g 2mDi
S R el My — ") Filk = sk - -2
v(aZ9t)
c nd g 2nDi
_ —t, —— )1 Fy(k — ,k__; )
boelEMI e Filh = s,k - 520
where

1 ifa e X,
0 otherwise

and | Fy is Kummer s hypergeometric function.

Proof. Rewriting the definition of Qf()/\s/l as
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2 Nonvanishing of L-functions associated with Jacobi forms

~M[Zo vt

at+b
=, et +d ct+d e
¢ *ler
c d

Break the sum into three parts corresponding to the matrices with ¢ = 0, a = 0, and

ac # 0 and compute the Fourier expansion of each part. Sum Cj, corresponding to matrices

1 [
satisfying ¢ = 0 i.e.,{ *+ 2l € Z ) is given by
0 1
_ Mz + v —tg] _ M[—z+v — 1]
Co= el ——— I)%e| — :
" lez;ezg,l{<7+) e( T+ Frte T+

The contribution of the first part of the sum to (n, R)*" Fourier coefficient cy; (n, R) is given
by

ic+oo ici+oo  iCg+oo

cor(n, R) = / ( / / % (—M) e(—R.2)dz)e(—n7)dr,

T
1C—00 1€1—00  iCg—00

where ¢,¢c; € Rfori =1,2,...,g and ¢ > 0. We have

ic+oo ici+oo  icg+oo

con(m B) = e(—Rty) /(/ / e

1Cc—00 1C1—00 1Cg—00

T

— Rz)dz)e(—nT)dr

ic+00
1 1 9
= e(—Rty)———F— re(-=M R T)r2e(—nT)dr
( t)@i)?Wm_/m (GM R e(—n)
T %ie(—3)(n — TMTURY)*TE! e(—Rty)

Nk | o

205, /| M] I'(s—4)

Similarly one can compute the contribution of the second part to get the Fourier expansion
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2 Nonvanishing of L-functions associated with Jacobi forms

of C()

o bie(=5)(n — IMORY T (o= Rty) + e(Rto))
29-5 /| M| I'(s—9%) .

(2.5)

0o -1
The sum A, corresponding to matrices satisfying a = 0, i.e., { £ ey is

given by

Ay = Z [6(_2)(7+l)_k+se(—j—v{[2])e(— i T _tO])

+ m(zg,:z: — M[z])€<_M[T—g_+ly_to])]

Mz), MlZ+v— t]>

— Z [e(—%)(r+l)‘k+se<—7+l)€( T
(

I€Z, vEZI TH

M[T+l+u+t0]>]

1
T+

= Z [6<_§)<T + 1) TF e M (v — to) + (T + DM[v — t])

l€Z, veZI

I G G

+ 6(%)(7’ + 1) FSe(2eM(v + to) + (T + DMy + to])] :

Similar to the case of ¢ = 0 one gets the Fourier coefficients corresponding to a = 0

if R+ 2 Mt 2MZI
F(/C—S) 1 + 2Mty € 2MZI,

(2m)k=se(S)(—i)F 5" te(—£) D51
['(k—s)

if R —2Mty € 2MZI.
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2 Nonvanishing of L-functions associated with Jacobi forms

Now the sum corresponding to the matrices with ac # 0 is given by

Bo = Y (et d)e(- erb)_Se(_M[”id +V_t0])

cr+d cr+d arth

ac#0, (a,0)=1, cr=d
veZI!

d 7k'+5 —t
= 3 () (aren e M — e (- M+
o =1 at +b a ar +b a

vezol

2 b
ac#0, (a,c) a a (7— + a) a a
vezZ9!
VvV — to
X el ———M[z+ ]
T a a

-y (_ - %)( 6+ ) el Ml — 1))

ac#0, (a,c)=1, v(Z9'a),
bc=1(a), a€Z, BEZIL

1 I/—t()
X 6(—mM[Z+O&+ 0 ])

c b v—t
- > aFe(—=Mv — to]) Foe(T + =, 2 + 0
ac#0, (a,c)=1, v(Z9'a), a a
bc=1(a), a€Z, BEZI !

—k+s
where F, .(1,2) = Y, <§ — m> (7 + B)7*e <—$M[z + a]) . Now for

a€Z9t BEZ
ac > 0, the contribution to (n, R)-th Fourier coefficient is given by

ic+o0 ic1 400 1Cg+00

¢ 1 —k+s 1
Fz;fc("y R) = / (5 - E) Tk( / / e(—;M[Z] - RZ) dz) e(—nt)dr
ic+00 ks
= g; / R el —(n— lM_l[Rt])T dr.
CiiyiM J \a a7 1
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2 Nonvanishing of L-functions associated with Jacobi forms

Now the change of variables 7 — ¢4t implies

1 a c+1i00 ; ks
Fr(n.R)= ——— (2) (s=5-1)l-s—3 / L+ — (=9
a,c( ) ) 2% |M| (C) a2

c—1i00

C

« e(?w(n - iM‘l[Rt])gt) i

Using the integral representation of Kummer’s hypergeometric functions one gets that

27 Di
(Eys Ry — s,k - & -2
IM|IT(k—-1%) ¢ 2 ac

rhn gy = 2 )

Byn.R) = 20 | > Gt

(a,c)=1, c’=1(a),

ac>0
v—ty c nc g 2mDi
S el oMl — ") Ak — 5,k - L P
(az1)
c nc g 2mwDi
- —t —— )1 Fi(k—s,k—Z; :
b el EMp — t)e(="%) Fy(k — sk~ 3 2T

O

Theorem 2.4.2. [39] Let M and wi(n, R) be as in Theorem 2.4.1 for fixed (n, R) with
2Rty ¢ 7 + % Then there exists ko such that for all k > kg the Fourier coefficient

wp(n,R) #£0fors=%4+2—-6—it’, 0<d < 3.

Proof. Let us assume that for given M, n and R, there does not exist any such ky, i.e.,
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2 Nonvanishing of L-functions associated with Jacobi forms

there are infinitely many large & such that wi(n, R) = 0. Then

mHie(=§) D E ! (e(~Rhy) + e Riy))

0 pu—
29-5\ /| M| I'(s—4%)
e (2mD)kmL s —k+s
+ (=0)f ) F(k')— ) {6<—§)I{2Mto+2MZH}(R)+€( 7 L —2mtgramzay (R)}
(QW)k_ng_%_l?;l_s_% s _k
Mt (= 9) 2, ()
2 (a,0)=1, cc’=1(a)
ac>0
v —t c nc g 2nDi
—— — 1, —) 4 F — =:
3 dr ) |el=EM = e = sk =20
c nc 2w Di
+ e(aM[V—to])e(——) 1F1(k—37k’ g% ac )}

Rewrite the above equation as

200 /[M(=i)~*~ 2 D)~ 'T(s - §)

—1= g . g
m2ie(—2) D2 (k — s)
y e(—2)Ziamtor2mzoy (R) 4 (52T _onmtgr2mzey (R)
(e(—Rto) + e(Rto))
(2m)k= 3 D=3 11ms= 5295 /M (s — £) 1
W VT 9~ tie(—3) D> 571 (e(—Rto) + e(Rty))

DN PELES
(

(a,c)=1, cc’=1(a), v(aZ9t)
ac>0
nc’ 2w Di
_° _ 20N m(k —

X [e( My —t,))e(—) 1Fi(k — s,k 5 " )

nc g 2mDi
—t)e(=25y Rk — .

+ e(a./\/l[y to))e( V1F1(k — s,k — 5 "o )
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2 Nonvanishing of L-functions associated with Jacobi forms

Applying modulus on both the sides, one has

< 2975\ /| M|(=i)k=*=1(2x D)7 (s — )
Ws_%ie(—i)Ds_%_lf(k — 3)
X

(e(—Rty) + e(Rty))
q (2m)* A D* 4 it b IMID (s — §)

(2% MIT(k — %)ws—‘éie(—i)Ds—%-l) (e(—Rto) + e(Rto)) ‘

e(=3)Zzmt+2mze) (R) + e(F52) Ii_aptg+20mz0) (R) ‘

A g _ v—1
X Z (E)k a " Z e(R - %)
(a,0)=1, cc’=1(a), v(aZ9)
ac>0
c nc g 2wDi
_° _ N R (k- _J._
X {e( aM[V to])e( - )1F1(k — s,k 5 " an )
c nc g 2w Di
- —to))e(——) 1 Fi(k — s,k — =; :
b [eCMy = (=" iFilh = k- 522
Fors:§+%—5—it’,onehas
. (k9 _§5_i
1 <25+25 |M|<7T)2§—1D26 F(i 3 g 2;/) 1 (27)
(3 -5 +o+at) ’(e(—Rto) + e(RtO))‘
b oo | T(E—9—6—it) 1 ak g
+ (2xD)z ito| 22 4 Ak _g45 _k
(2n D) T(k—2)  (e(—Rto) + e(Rto)) 2, Q)

(a,c)=1, cc'=1(a),
ac>0

T S

141 4 ) 9

k g . g 2mDi
Fil=—2+0+it k-2, —
1 1(2 4—|— + ', 5 e )

D

v(aZ9-1)

)

2

]

)
3
-]
~.

| E—

Using the integral representation of ; F; and estimating, one observes that the infinite series

in the sum is convergent and bounded by a constant, say L, for large k. Hence the above
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2 Nonvanishing of L-functions associated with Jacobi forms

inequality is reduced to

1 g 28t |M|(W)25_1D25 F<§ — 50—t 1
Tt —2465+at)
2 2 (e(—Rty) + e(Rty))
(27D)2

+

~ 4+ ’N%—%—é—ﬁ)
(k=4 =1k —§-2)-(5) ([5))

)
(6(—Rt0) + 6<Rt0)) )

Using the fact that zb*“% — 1 as z — oo we observe that both the terms on the

right-hand side tend to zero and hence we get a contradiction.

Remark 2.4.1. In the above inequality (2.7) one can compute &, explicitly such that both

the summands are strictly less than £ for k > ko. Let’s assume

I'(
I(

R

2
—2+6+it)

1

2%+2§ |M’(7T)26_1D25

(2.8)

DO | —

<

[SIEST TN

‘(e(—Rto) + e(Rtyp))

and estimate the lower bound for k. Estimating the ratio of gamma functions one obtain

2%—1—26 |M|(7T>26—1D26 1

(e(—Rto) + e(Rty))

Hence (2.8) is satisfied whenever

1
22+26+1 M|r20-1D26 26
k>2<2 VIMim +g+ 1.

(6(—Rt0) + G(Rt()))

Similarly one can estimate & from the second term of (2.7) to obtain that second term is less
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2 Nonvanishing of L-functions associated with Jacobi forms

than % whenever k > 87D + 2 and

[SIES

g
g1

2rD o 271t
<k7T 1> (27T.D)6+1+Zi <
5 — g

| —

Hence one obtains the lower bound for &

log (227T3(27TD)1+6+Z)
2

k
” log 2

+g+2

Now we prove Theorem 2.2.2.

Proof. First, we prove the theorem for s in the right part of the critical strip, i.e., for s =
. . k k- 1 _ k. . .

o+it'withs -4 +e<o<5—9435 Letéd >0ands =5 +92—5—it'beasin

Theorem 2.4.2 and By, be basis of eigenforms of weight k and index M. As QP e jeusb

to,s k,M>

we can express the kernel function as

O 1)
Qf,M ’ _ < to,s 7 J1 -
o (72) fiEBZW G

Now compare the (n, R)-th Fourier coefficient of both the sides with 2Rt ¢ Z + % and use

Theorem 2.4.2 to obtain kq and a Hecke eigenform f; € .J ,?jff with k& > kg such that

Qe Ry = i HE—g 1) Y e(=Rtg)An(fik —s) #0
to,s 2 Jt Qk_2em§ F(S _ %)F(/{Z . S) 0 N\Jis .
NeZI\(Z9 (2M))

Hence for some N € Z9 \ (Z9(2M), An(f;, & — ¢ + § +it’) # 0. Now using functional

equations (1.11) we have the theorem. O
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2 Nonvanishing of L-functions associated with Jacobi forms

2.5 Nonvanishing of Poincaré series

Using Theorem 2.4.2 and the fact that kernel functions can be written as linear sums of
Poincaré series (Theorem 2.3.4), we prove Theorem 2.2.3. Using Theorem 2.3.4 one can

write the kernel functions as

V(i) M
(2m)*~ %

D0 (s — 9)

2

=, D 4
> e(=REM)™B) D ) Pty o e

i M|
Rez9\z9(2M) D=1

S
e""\2

Now choose (n/, R') as in Theorem 2.4.2 and fix ' = 0. Compare the (n’, R')-th Fourier

coefficient on both sides of the above equation.

M (o, R)
- B S My

em'(fz)r(s — 5) Resma M)

© D e_9_1 oY
D) P ot ).

D=1
o)~
= m-(s(gﬂ)-) g Ze<_R(2M)71ﬁt>
™IS = Dpes e
D 4, D 1,
= s w r) (= +-MR, R).

Hence for k£ > ky we have

D Ly
pk‘,M;(n’,R’)(4|M’ + M [R'], R) # 0.

In particular, Py rq;(n,r) 7 0 for k > k.
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Chapter 3

A converse theorem for Jacobi forms of

half-integral weight

3.1 Introduction

A converse theorem in the context of automorphic forms studies the equivalence of the
automorphic properties of a power series and the analytic properties of the Dirichlet series
associated with the power series. For example, Hecke [16] proved the following converse

theorem:

Theorem 3.1.1. [16] Let k > 2 be a positive integer. Let {a(n)},>1 be a sequence of com-

plex numbers such that a(n) = O(n?) for some o > 0. The function f(7) = > a(n)e*™"
n>1

defines a cusp form of weight k for full modular group S L+(Z) if and only if the completed

Dirichlet series L*(f, s) admits a holomorphic continuation to the whole complex-plane

C which is bounded on any vertical strip and satisfies the functional equation L*(f,s) =

(~D5L*(f.k—s).

Weil [48] generalized Hecke’s work for modular forms on the congruence subgroups.
The converse theorem has been studied for various kinds of automorphic forms, for exam-
ple, modular forms of half-integral weight [5] and Siegel modular forms [17].

Martin studied the analytic continuation of L-functions and a converse theorem for Ja-

cobi forms with respect to I'”.
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3 A converse theorem for Jacobi forms of half-integral weight

Theorem 3.1.2. /33] Let k and m be positive integers. Let ¢(,z) =Y cg(n,r)e? i n7+72)
r2<4nm
be a holomorphic function satisfying

(i) ¢(T,z) converges absolutely and uniformly on compact subsets of H x C,
(ii) there exists v > 0 such that §(7, 2)e*™"* = O(S(7) ") as (1) — 0,
(iii) for each \, we have c(n, r) = c(n + Ar + \>m,r + 2\m).
Then the following statements are equivalent:
1. the function ¢(1, z) is a Jacobi form of weight k and index m.

2. each completed L-function A, (¢, s),0 < p < 2m — 1 associated to ¢(t, z) can be
analytically continued to a holomorphic function on the s-plane. These functions are

bounded on any vertical strip and satisfy the functional equations

2m—1

(2m)~2 ; e A0, 5) = iFA, (¢,k — % — s) , 0<a<2m—1.
Later, Martin and Osses [36] generalized the above theorem for congruence subgroups
of the Jacobi group. In this chapter, we study the analytic properties of L-functions and a
converse theorem for Jacobi forms of half-integral weight. Our approach is similar to the
work of Bruinier [5] in the case of modular forms of half-integral weight. The content of

this chapter is based on [30].

3.2 Statement of results

Following the work of Martin and Osses [36] we define analogous series of type J and the

associated twisted Dirichlet series.
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3 A converse theorem for Jacobi forms of half-integral weight

Definition 3.2.1. For afixed positive integer m,we call p(1,z) = > cy(n,r)e(nt+rz)
n,reZ
r2<dnm

to be a series of type J, if the following properties hold.:

1. The series ¢(T,z) converges absolutely and uniformly on every compact subset of

H x C.

2. There exist positive real numbers C and § such that |c,(n,r)| < C(4mn — r2)° for

all n,r such that r* < 4nm.

3. The Fourier coefficients of cs(n,r) satisfy cy(n,r) = cg(n + Ar 4+ N2m,r + 2mM)

for every \ € 7.

From the condition (1), ¢ : H x C — C is a holomorphic function. The relation
between Fourier coefficients implies that ¢ has a theta decomposition similar to (1.16).
Note that the Fourier series expansion of a Jacobi cusp form ¢(7,z) € J.""(I'/(N), x)

2 k)

represents a series of type J.

Definition 3.2.2. Let N and M be positive integers with 4| N and (N, M) = 1. Let ¢(T, z)
be a series of type J and x1 be a primitive Dirichlet character modulo M. Then for each

wed{0,1,2,--- 2mM — 1}, we define a Dirichlet series using the theta decomposition of

Lu(63,55) le (28 e () 6.0

The completed Dirichlet series is defined by

¢ as follows:

27\ ¢
Ap(byis s) = (M\/N) F(3>Lu(¢><1§ s). (3.2)

Note that bounds on Fourier coefficients (condition (2) of the definition 3.2.1) imply
the L, (¢,,; s) is absolutely convergent on the complex half-plane R(s) > 1 + ¢ for every
pe{0,1,2,---,2mM — 1}.
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3 A converse theorem for Jacobi forms of half-integral weight

Now, we define the analogous series of type Jy and the associated twisted Dirichlet

series.

Definition 3.2.3. Let m and N be fixed positive integers with 4| N. We call a series (1, z) =

> cs(n,r)e(nT +rNz) to be a series of type Jy, if the following properties hold.:
n,rez
4mn>Nr?

1. The series ¢(T,z) converges absolutely and uniformly on every compact subset of

H x C.

2. There exist positive real numbers C and § such that |cy(n,r)| < C(4mn— Nr?)° for

all n, r such that Nr* < 4nm.

3. The Fourier coefficients of cy(n, r) satisfy cy(n,r) = cy(n+ArN+X2mN, r+2mM)

for every A € 7.

A series of type Jy has a theta decomposition given by

2m
$(7,2) = > gu(7)bmu(NT,N2), (3.3)
pn=1

where g,(7) = Y du(D)e (:&7) with d,(D) = cy(n,r) and D = 4nm — Nr?.

D=1
If ¢(7,2) € JZ"Z:’(FJ(N),X), then ¢(7,2) = Qﬂ%mWN(T, z) € ngmN(F{,N(N),Y) (see
(3.9) for the definition of Wy ) and hence (7, z) represents a series of type J. Here we

have used the notation i.e.,
Fi,B(N) = {(:77 (/\nu)a S) e FO(N)7)‘ S aZaM € B_lzv s € <C,3>}a

where ((3) is the cyclic group generated by the primitive 3-th roots of unity.

For each ¢ € {0,1,2,--- ,2mM — 1}, we define the Dirichlet series L,(1),,;s) and the
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3 A converse theorem for Jacobi forms of half-integral weight

corresponding completed Dirichlet series A, (1,,; s) associated to ¢ as follows:

N D+ Ny? D\
Ly(tiis) = Dzlxl (T) d, (D) (%) , 34
2 \ "’
s = () T 69

Now we state our main results.

Theorem 3.2.4. /30] Let m, N and M be positive integers such that 4| N and (N, M) = 1.
Let x be a Dirichlet character modulo N, x1 be a primitive Dirichlet character modulo M,
and x, be a Dirichlet character defined by x,(-) = (M) , Where (M) denotes the Jacobi
symbol. If ¢ € Jg::(FJ(N),X) is a Jacobi cusp form with Wy (¢) = 1, then for each
p=0,1,--- 2mM — 1, the completed Dirichlet series \,(¢,,;s) associated to ¢ admits

a holomorphic continuation to the whole complex plane. Moreover, they are bounded in

any vertical strip and satisfy the functional equation:

* Jor X, # X
o[\ —3 2mM1 o . X
— — c6) = ) Mo
( VN ) ; ‘ < 2mM> Au(Pai ) OXl A <¢X1X2’ 9 S 2) )

where C{\) = (’ﬁl)%X(M)(%)Xl(—]\f)gmmgil,for everya =0,1,..2mM — 1.

s for x, = x,

M _§2mZM (—&>A (Pys; )_C(Z)A M3B (w)_M*%w.E_ _1
Vv ) &) A0 = ORI B 275y

k-1

foreverya =0,1,..2mM — 1, where C’fﬁ) = (37) 2 x(M), G, is the Gauss sum

M 0 1
u (mod M

with character x and By (¢) == = Y )¢\§7m@ and Ty = (1 y/M)_
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3 A converse theorem for Jacobi forms of half-integral weight

We now state the converse of the above theorem. For a positive integer NV, let My be
the set of all prime numbers p such that (p, N) = 1 and the set My N {aL + b|L € Z} is
non-empty for all a, b € Z \ {0} with (a,b) = 1.

Theorem 3.2.5. /30] Let m, N, M be positive integers such that 4N, (M,N) = 1, x be
a Dirichlet character modulo N and x»(-) = (7). Let {cg(n,r)} and {cy(n,7)} be se-

quences of complex numbers such that the series

o(r,2) = Z co(n,r)e(nt +rz)

n,reZ
4mn>r?

and

(T, 2) = g cy(n,r)e(nt +1rNz)
n,reZ
4mn>Nr?

are of type J and Jy, respectively, and (7, z) = (—1)2x(=1)1(r, —z). Assume that for
every primitive Dirichlet character x1 of conductor M € My U {1}, A,(¢y,, s) is entire

and bounded in every vertical strip and satisfies the following conditions:

(i) if x1 # X2, then

—lomM—-1

2mM Y\ _ap N ) 7‘5_ 1
( \/N ) ; e ( 2mM> A/»L(ngl) 8) - CXl Aa 1/)X1X27 2 S 2 ,

where C) = (%)%X(M)(%)Xl(—N)QXIXQQ;,for everya =0,1,....,2mM —1.

(ii) if X1 = X2, then

2mM —3 2mM—1 ags . 1
- : — (2) % . 7% R L
< VN ) Zoe( 2mM>A“<¢X“S) Cyi e <M B () =M™ 24; 5 ° 2) :

where C2) = (_Ml)k%lx(M),for everya=0,1,....2mM — 1.
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3 A converse theorem for Jacobi forms of half-integral weight

Ifforevery i € {0,1,2,---,2mM — 1} the Dirichlet series L, (¢; s) converges absolutely

for% —1—€foranye >0, then
¢ e J;ﬁf’(F‘I(N), x) and ¥ = Wi ().

We study twists of Jacobi forms of half-integral weight, involution operator, and twisted

L-functions to prove Theorem 3.2.4 and Theorem 3.2.5.

3.3 Twist and Fricke involution for Jacobi forms of half-
integral weight

Letm, M, N be positive integers and k be an odd integer such that 4| N. Let x be a Dirichlet

character modulo N and 7), = , where \ is any real number. Let /d denote the
0 1

identity matrix of order 2. Define €, by

1, M=1 (mod 4)
€M —

i, M =3 (mod 4).

Definition 3.3.1. Let ¢ be a series of type J or J. Let x1 be a primitive Dirichlet character

modulo M, where (N, M) = 1. The twist of ¢(7, z) by the character X, is defined by

Oy, (T, 2) = Z X1(n)cy(n,r)e(nt +1rz). (3.6)
n,rez
r2<4nm

Lemma 3.3.2. Let ¢ € Jgjm(FJ(N), X). Let x1 be a primitive Dirichlet character modulo
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3 A converse theorem for Jacobi forms of half-integral weight

M, where (N, M) = 1. Then

b (1.2) € e (Tl (NM2), 8),

P

where I'y; | (N) := T'o(NM?) x (MZ x Z). Further, if ¢ is a Jacobi cusp form, then ¢y, is

also a Jacobi cusp form.

Proof. Letu € Z. Consider f\%/ =

¢|g7mTﬁ<’7’, z)=¢ (T + %, z> = Z e (%) co(n,r)e(nt +rz).

n,rez
r2<dnm

Multiplying by ¥, (u) and summing over all u (mod M), we obtain

> %Wl Ty(rz) = 3 (Zwu)e(u—ﬁ))%<n,v~>e<m+m>,

n,reZ u=0
r2<dnm
= E Grx, Co(n,r)e(nt +12),
n,reZ
r2<4nm

where G, v, is the Gauss sum associated with the primitive Dirichlet character y; defined

M—1
by Gny, = > Xi(u)e(%}). Note that G, 5, = 0if (n, M) > 1. Therefore,
u=0

M-1
yl(u)¢’g,mTﬁ (T7 Z) = gi1 ¢X1 (7-’ 2)7 (37)
u=0
~ a b
where G5, = Gy,. Let L = NM? and ¥ = (v, j(,7)), where v = € Lo(L).
cL d
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3 A converse theorem for Jacobi forms of half-integral weight

Note that

P e N

Y = Ty Tl € To(L) € To(N) () = X(), 7 = (37, 7) € To(L) € To(N)

and 7' = (T, (0,0), 1)F(T b , (0,0), 1). Hence for any [7, (A, 1), 1] € I}, (L), we have

M

Oxrtxile m (Y (A v), 1)(7,2) = x(7) ) Xa (W)l Tua2 (7, 2). (3-8)

Gt i 3 A 0), 1)(72) = x(7) Y X (ud )6, T (7, 2)

Now as x1(d) = x1(7), from (3.7) we get

Px1 ’g,m(§7 (A ), 1)(7,2) = XX%<7)¢X1 (7, 2).

Hence ¢, satisfies the transformation properties of Jacobi forms. From the Fourier expan-
sion of ¢, it is easy to see that ¢, , has the required Fourier expansion. O

Definition 3.3.3. Let k be an odd integer, m be any positive integer and ¢ be a complex-
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3 A converse theorem for Jacobi forms of half-integral weight

valued holomorphic function defined on H x C. For a positive integer L, we define the

following Fricke involution type operator by

WE™(@) = (Uyzd)l by (3.9)
~ N~ 0 _% 1 R
where h = (7,(0,0),1) € G7,7 = ,Li(—iT)z | € G, and the operator

VL 0
Uy is defined as

Uro(t, z) == ¢(1, Lz).

We have the following form of (3.9)

me(gb)(ﬂ z) = it L i semk (—Z;) o (_i i) . (3.10)

LT’ 7
We write W7, instead of Wf " when k and m are clear from the context.
Lemma 3.3.4. Let L be a positive integer with 4|L and x a Dirichlet character modulo L.

6 € Jg (I (L), ). then

Wi(9) € Ji (D] (L), X°).

where x*(d) = x(d) () . Further, if ¢ is a Jacobi cusp form, then W1,() is also a Jacobi

cusp form.

Proof. From the equation (3.10), it is easy to see that W (¢) is holomorphic. For matrices
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3 A converse theorem for Jacobi forms of half-integral weight

v = , = € I'g(L), we have
cL d —bL a
VI 0 VL 0

The definition of W, and the above identity implies

NI
.
\1
~—
[SIE

A=
~
2
[N
\—/
|
I
7 N
\Q\
N
=
~~_
.
—~
\Q\
2
~_

(d)WLo.

=

Now, we consider (Id, (\,v), () € I/ (L). We have

WL(¢>|§,mL(Id7 (>‘7 V)a gi)(ﬂ Z)

- (M, (_\/zy, %) ,<i> ((;z jf) ,Li(mé) .
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3 A converse theorem for Jacobi forms of half-integral weight

Note that

UMy s (10 (~VEn 2 ) ) = Ul 0 (L), 1),

As ¢ € Jg’m(FJ(L) X), we obtain

Uz s (Id, (—ﬁu, %) ,cz‘) = Uyz(9).

Hence we have WL(¢)] mpId, (A V), (1) = Wi(¢). It is easy to check that W, (¢) has

required Fourier expansion and the proof is similar to that of Lemma 5, p. 166 in [36]. [

Lemma 3.3.5. Let ¢ € JZ“ZJ(FJ(N),X) be a Jacobi cusp form and x, be a primitive
27
Dirichlet character modulo M, where (N, M) = 1. Denote 1) = Wy (¢). Then

(VVNM2 (¢X1))(T7 Z) - CXNP*(T; MZ>7

where -
-1\ 2 N _
cu=(57) xon(5)Jut-meie
and
M-1 "
(2 = 3 xaw) (57) vl (T, (0,0),1).
u=0
Proof. Let u be an integer such that (u, M) = 1. Then there exist integers x, y such that
M -y
M —yuN = 1. Then vy = € I'y(N). Observe that
—ulN x
0 —— ool |
(T, (0,0),1)) ML (NM?)i(—i7)2, (0,0), 1
N M? 0
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3 A converse theorem for Jacobi forms of half-integral weight

0 -kt __
- VN | NT(—in)E,(0,0),1 | A(Te, 0,0), 1))(1d, () eur, (0,0),1).
o (=im),(0,0),1 | 3(T,(0,0), 1)(7d, () ear, 0,0),1)

Also, note that UM\/N(M%,mT\%) (1,2) = (UM\/N¢)|§,mNM2T%(T, z). Therefore

(Wxar2(4| g,mTﬁ )7, 2)

_ 0 — L
2 1 . 1
= UMW((b‘E,mTﬁ)lE,mNM? N >(NM2)4(_ZT)27(070)71 (T,Z)
’ ’ N M? 0
Y\ -k 0 _\/Lﬁ 1 1 B
= (25) G Urrym s mvar e oM 00,1 | Ty )

Using Lemma 3.3.4, we obtain

—_—

N —
Waare(@ls ) 2) = (L) esfaa) (—) Ul T (7, M),

Now multiplying the above equation by ¥ (v) and summing overall . (mod M) asin (3.7),

we obtain

(Wrarz (G, 60))(7.2) = exfx(M) (%) S w) (57) ¥l Ty (. M)
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3 A converse theorem for Jacobi forms of half-integral weight

N

= ahOn (57 ) XN M)

Hence the result follows. O]

Lemma 3.3.6. Let ¢ € Jg“jf(FJ(N), X) be a Jacobi cusp form, where x is a Dirichlet

character modulo N. Let M be a prime with (N, M) = 1. Then
Bu(¢) € Jgfj:(rl{/l,l(NM2>a X):
where By (¢) is defined by

1 —
Bu(6)i= 1 > dlinTe

u mod (M)
. ) a b
Proof. Let M' = NM?. Consider the matrix v = € ['o(M’). Then we have
cM' d
N a b -
(Tﬁ7(070)71> 7(070)71 = VI(T%,(O,O),U,
cM’ d
a v
where 7/ = € Do(M') with d' = d — cd*™L . We have
cM’d
- 1 — _
Bu(@)lsmd = 37 2. @lenTe)lsnd
u mod (M)
_ 1 ! T
= (@15, N Tug2
uw mod (M)
1 —
_ n_-
= x(d)5; > Pl Tua
u mod (M)
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3 A converse theorem for Jacobi forms of half-integral weight

1 —

u mod (M)

= x(d)Bu(9),

where we have used that (d, M) = 1 and d’ = d (mod N) to obtain x(d) = x(d'). Other
transformation properties and required Fourier expansion follow similarly as in the proof
of Lemma 3.3.2.

]

Lemma 3.3.7. Let M be an odd prime and x, be a primitive Dirichlet character modulo
M. For a complex-valued holomorphic function i defined on H x C, consider the function

V* as defined in Lemma 3.3.5. Then

) 1 x1 # x then Cy 0 = (51) T XN (G (= N)erf GGt rer
(i) I xa = xo, then C, " = (517 xa(M)(M By () = M739).

Here C,, is as in Lemma 3.3.5 and x(u) = (%) .

Proof. If x1 # Xa, then x; x> is primitive character modulo M, and the proof follows from
Lemma 3.3.2.

Ile = X2, then

M
v = Yl Te — = MBu(¢) —¢
u=1
and C,, = ()7 x(M)eyf () (55) = (557 x(M) O
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3 A converse theorem for Jacobi forms of half-integral weight

3.4 Proof of results

In this section, we present the proofs of Theorem 3.2.4 and Theorem 3.2.5.

3.4.1 Proof of Theorem 3.2.4

We need the following half-integral weight version of Proposition 1 in [36] to prove Theo-

rem 3.2.4.

Lemma 3.4.1. Let k, m, and N be positive integers with k odd and 4|N. Let x1 be a char-
acter mod M with (M, N) = 1. If (7, z) and (7, z) are Fourier series of type J and Jy,

respectively. Then the following are equivalent:

a) There exists a constant C' such that
(VVNJ\/I2 (¢X1))(T> Z) - CW(T, MZ)

b) The functions A, (¢y, s and A, (¥*, s) (1 < p < 2mM) have a holomorphic contin-
uation to the whole complex plane. Moreover, they are bounded in any vertical strip

and satisfy functional equations

omM\ "2 2 aj k 1
(\/N) Z€<_2mM>A“(¢X1;S>:CAa(w5§_S—§>,

p=1

wherel < a < 2mM.

Proof. Since the definitions of Fricke involution in the case of integral weight ([36], p. 166)
and half-integral weight (3.9) differs just by a constant, the lemma follows just by replacing

k with g in the proof of Proposition 1 in [36]. [
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3 A converse theorem for Jacobi forms of half-integral weight

We now give a proof of the Theorem 3.2.4. Since ¢ € Jgfjf(lﬂ(]\f), X) is a Jacobi
cusp form with Wy (¢) = ¢, from Lemma 3.3.5, it is easy to see that ¢ and v are series
of type J and type Jy, respectively satisfying condition (a) of Lemma 3.4.1. Hence, by
Lemma 3.4.1, we deduce that for every p = 0,1,--- ,2mM — 1 the completed Dirichlet
series A, (¢,,; s) have holomorphic continuation to whole complex plane, are bounded on

every vertical strip and satisfy the function equation

2mM —%QmM ap k, 1
( \/N ) ;e<_2mM) AM(¢X1;S):CAa (7/}*7 5 - S — 5) , Where 1 < a < 2mM.

Now the result follows from Lemma 3.3.7.

3.4.2 Proof of Theorem 3.2.5

We first state two lemmas which will be used to prove Theorem 3.2.5. To state these lem-
mas, we need the following notation: for a complex-valued holomorphic function v defined
on H x C, we define Q, = {0 € C[G] : ¢|g7ma = 0}, where C[G] is the group ring. Then
€2, is a right ideal in C[G].

Lemma 3.4.2. Let m, N be positive integers and M be prime such that 4|N and (N, M) =
1. Let x be a Dirichlet character modulo N, x1 be a primitive Dirichlet character modulo
M. Let ¢(7, z) and (1, z) be series of type J and type Jy, respectively. Assume that ¢ and
W satisfy the following:

Wi(¢) = Oy, ¢p" with Cy, = (_M>2 x(M) (M) X1(=N)esto=!

and
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3 A converse theorem for Jacobi forms of half-integral weight

Then, for u, v € Z with (u, M) = (v, M) = 1, we have

() (5080 —x00 (7)) To=(55) (Far0 - x0) (7)) T3 moa )

Proof. The proof uses a similar method as given in Lemma 2.17 of [5]. 0

Lemma 3.4.3. Let N be a positive integer, and My, M, are prime numbers with (M,, N) =
1 = (M, N). Let x1 be a primitive Dirichlet character with conductor My or M,. Let
o(7,2) and (T, z) be series of type J and type Jy, respectively. Suppose that ¢ and )

satisfy the assumptions given in Lemma 3.4.2. Then

N M1 —U
Blx oy = X(M:) (V) o for all v = € To(N).
1 —uN MQ
Proof. The proof is a straightforward adaptation of the Lemma 2.18 of [5]. [

We now give a proof of Theorem 3.2.5. It is easy to observe that ¢(7, z) and ¢ (7, z) are
holomorphic functions on H x C. From the functional equation for M/ = 1 in Lemma 3.4.1
(x1 will be the trivial character), it follows that ¢» = Wy (¢). Let M be a prime number and
X1 be a primitive Dirichlet character modulo M. Then from the given conditions (7), (77)

and Lemma 3.4.1, it follows that

(WN((le))(Ta Z) = Oxﬂ/}*(Ta MZ)'
Next, we prove that

—v

- N M,
Ule iy = X(M2) A Y forall v = € L'o(N).
2 —uN Mg
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3 A converse theorem for Jacobi forms of half-integral weight

+1 w
Ifc=0,theny = and it is easy to check the required transformation property
0 =1
a —b )
for 1. Now, assume that ¢ # 0 and vy = . Since (a,¢N) =1 = (d,¢cN), there
cN d

exist integers s and ¢ such that both a + tcN,d + scN € My.Putad' = a + tcN, d =

d+ scN, ¢ = —cand b’ = —(b+ as + steN + dt). Then we have

a b 1 —t a’ b 1 —s
cN d 0 1 —N d, 0 1

From the above computation, we obtain

_ 1 —t a =V 1 —s
Ve mn = Pli gy
0 1 —IN d 0 1
a = 1 —s
- w|§,mN
—N d 0 1

Using Lemma 3.4.3, we obtain

Uyl 2) = xta) (5 ) (7. 2).

Since a’'d’ = 1 and 4 | N, we have
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3 A converse theorem for Jacobi forms of half-integral weight

Also d' = d + scN. Thus, we have

i) =) (5 ) 0(r.2), a1

The invariance of 1)(7, z) under the group (Z x N~'Z)({x) follows from the theta decom-

position of ¢ (7, z). Hence

'(ﬁlg,mNh(T, z) = x(d) (%) (T, z) for every h € Ff}N(N).

d —c a b
For matrices y = , Y = € I'o(L), we have
—bL a cL d
-1
O _L 1 1 O _L 1 1 N
vE 7LZ(_ZT>§ Y vE 7LZ(_ZT>§ = <7/’ (E) j(7,77—>>
VL 0 VL 0

Thus by the definition of W}, and the above identity, we have

W@ s s (1501, 7) (7, 2)

0 - 1 1
= (U\/f¢)|g,mL <7la <%) J'(W/,T)> (*JE ,La(—iT)2

VL
N - 0 =%
= | = ) Uz(@ls 7)) L Li(—ir)z | (3.12)
VL ,m mL )
(CL) 2 2 \/Z 0
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3 A converse theorem for Jacobi forms of half-integral weight

From (3.11) and (3.12), we obtain

N ~
( ) Uyz(dls = X(@)) 5

a 2

for every (7, z) € H x C. Hence we have ¢|§m7~’ = x(a)¢ = x(d)¢ for every ' € To(N).
To check the cuspidality, we need to estimate €™ (pz)h,,(7)0,, (T, ). For this, consider

d,(n) defined by d,,(n) :== > |c,(IV)|. Then, we have
N=1

k
2

du(n) < 037 (Y Jeu(N)NTEH),
N=1
Thus, we obtain d,,(n) = O(n2=") and 3" d,(n)e 2™ = O(y~2+¢). A straightforward
n=0
calculation shows that €™ (2)¢,(7)0, (T, 2) = O(y~2727¢) and hence e™(2)d(r, 2) =
O(y‘§+%+€). Finally, Lemma 1.6.4 together with the above observation implies that ¢ €

Ji*P(T'(N), x). This completes the proof.
2 k)
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Chapter 4

Differential operators and Poincaré series

for Jacobi forms

4.1 Introduction

Let f and g be modular forms of weight k; and ks, respectively. It is well known that [f, g],,
is a modular form of weight k; + ks + 2. One can consider the converse question: if the
Rankin-Cohen bracket of two holomorphic functions is a modular form, is it necessary that
one of the functions is a modular form? In this direction, Choie and Lee [8] proved the

following result:

Theorem 4.1.1. /8] Let ky, ko and v be positive integers. Let f and h be non-constant
modular forms of weight ky and ki + ko + 2v, respectively for the group S Ls(Z). Consider

the following differential equation

S (-1y (kl - 1) <k2 e 1) FO =) _ . (4.1)
r=0

Then

1. each solution g of (4.1) is a meromorphic modular form of weight ko for SLy(7)

which may have poles in H U {oo};

2. if any solution g of (4.1) is holomorphic on H U {oc}, then it is a holomorphic
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4 Differential operators and Poincaré series for Jacobi forms

modular form of weight ko for S Ly (7).

Rankin-Cohen brackets have interesting relations with the Poincaré series. Williams

studied the following properties:

Theorem 4.1.2. [49] Let ki, ko(> 4) be even integers and v, n be positive integers. For a

cusp form f of weight ki, consider the function f defined by

fo = (M T (T e,
r=0

Then

[f7 Pk?mn]l/ - Pk1+k2+2u(f),

where Py, 41,00 f) = > flwy is the generalized Poincaré series defined in [49].
Y€l \I!

As a corollary Williams proved that Poincaré series and Rankin-Cohen brackets commute

in the following sense:

Corollary 4.1.3. [49] Let f be a modular form of weight ki and ¢ be a g-series whose
coefficients grow sufficiently slow enough that P(¢) is well-defined and denote [f, ¢|, to
be the formal result of the v-th Rankin—Cohen bracket, where ¢ is treated like a modular

form of weight ko (where ky > ky + 2 if f is not a cusp form). Then

[fv ]P)k2 (¢)]V = Pk1+k2+21/([f7 ¢]u)

One can construct interesting modular forms using differential operators by computing
the adjoint maps. In this direction, Kohnen [25] constructed cusp forms whose Fourier
coefficients involve special values of certain convolution type Dirichlet series by computing
the adjoint of the linear map f — fg, for a fixed modular form g, between spaces of cusp

forms. Kohnen proved:
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4 Differential operators and Poincaré series for Jacobi forms

Theorem 4.1.4. [24] Let ky and ko be positive integers with ky > ko + 2. Let | € Sk, 1,

and g € Sy, with Fourier expansions

f() =Y a(m)g™ and g(t) = b(m)g™.

m=1 m=1

Then the function

T2 (f)(r) ==Y 0" Ly g (ks + ks — 1)q",

n=1

where

Lygnls) = 3 e, @2)

is a cusp form of weight ky for SLy(Z). In fact, the map Sk, +r, — Sk, defined by f
(k1 + ke —1
U + ks = 1) T¥(f) is the adjoint of the map T, : Sy, —> Sk,+ky» h — gh, with

[(ky — 1)(4m)k2 9
respect to the Petersson scalar product.

Herrero [19] generalized the work of Kohnen and constructed cusp forms by computing
the adjoint of certain maps constructed using Rankin-Cohen brackets. The work of Herrero
has been generalized by several authors for various automorphic forms (see [20, 21, 22, 32]).

The map ¥y, : f — Smidr 5E2(7) f(7) is a linear map from M;, to M;., called
the Serre derivative. Kumar [31] generalized the work of Kohnen by computing the adjoint
map of 9, and obtained interesting identities involving special values of convolution-type
Dirichlet series.

In this chapter, we prove the analogous results of Theorem 4.1.1, Theorem 4.1.2 and

Theorem 4.1.4. This chapter is based on our works [29] and [37].
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4.2 Statment of results

Following the work of Choie and Lee [8], we answer the analogous question in the context

of Jacobi forms.

Theorem 4.2.1. [29] Let ki, ko, m1 and mgy be positive integers. Let ¢ € Jy, m, and
h € Ji+ky+20,m1+m, be non-constant Jacobi forms. Then each solution 1) of the following

differential equation

Sy (’“ v ) (k v %)mezL:mw)L;;(w @3

—~ v—r r
satisfies the transformation properties (1.5) and (1.6) with weight ko and index ms. More-
over, if 1 has a Fourier series expansion similar (1.4), then ¢ € Ji, 1.

We have the following analogue of Theorem 4.1.2.

Theorem 4.2.2. [29] Let ki, ko(> 11), my, mgy and v be positive integers. Let N, R € 7

be such that ANmy — R* > 0. Consider the function f(, z) defined by

e = e (U (T g

vV —r T
r=0

X (4Nmy — R*)"7" L7, (9),
where ¢ € Ji, m, (With ks > ki 4+ 10 when ¢ is not a cusp form). Then we have

[¢a Pk2,m2;N,R]V = Pkl-‘rkz-‘r?%ml-‘rmz (f)

As an immediate consequence of the above theorem, we obtain the following corollary:

Corollary 4.2.3. [29] Let ¢ be a Jacobi form of weight k1, index m,, and f be a formal

(q,C)-series such that Py, ,,,(f) is well defined. Assume that ky > ki + 2 when ¢ is not a
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4 Differential operators and Poincaré series for Jacobi forms

cusp form. Then
[¢7 Pkg,mz (f)]z/ = Pk1+k2+2u,m1+m2 ([Qﬁ, f]u)

We recall that the modified heat operator L a4 (1.23) is a C-linear map between finite-
dimensional Hilbert spaces J;"vf, and J\%) . Therefore it has an adjoint map Lj ,,

J, ﬁ;” = quf/lp such that
<LZ,M(¢)aw> = <¢7Lk,/\/l(w>>7 v¢ € JlgistM7 and ¢ € Jlgjf}l)

We explicitly compute the adjoint map, i.e., we calculate the Fourier coefficients of the

image of a Jacobi cusp form under the map L}, ,,

Theorem 4.2.4. [37] Letk > 4, and M. Let ¢ € Ji\5 \, with Fourier expansion ¢(7, z) =

co(n, r)gN T Then the image of ¢ under L ,, is given b
. o 4 kM & Y
n,reZ9,
An>M"Lrt]>0

LZ:,M(¢)(7_> Z) = Z (L(N, R)qncr’
N,ReZ9,
AN-M~YR*]>0

where

a(N,R)=

. NIM| — M[R] — XM
M| (IC+1)(7C3(4N|M! M[R))* [(4 M - )c¢<N,R)

m22(9-1)(k=§-1) (4N| M| —M[R])’C+2
cg(n+ N,R)o ( ) ]

b IML e M M)

n>=1

wherelC:k—g—l.

4.3 Proof of results

The following lemma gives the bound of Fourier coefficients of Jacobi forms. We have
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4 Differential operators and Poincaré series for Jacobi forms

Lemmad4.3.1. [7] Letk >3and p = .  cy(n,7)q"C" € Jgm. Then

4nm—r2>0

Nl

co(n,r) < (dnm — r?)F 2.

Moreover, if ¢ € J. P, then

k.m

NI

co(n,r) < (4nm — 7“2)%_ :

Let f(, z) be aholomorphic function defined on H x C with Fourier expansion f(7, z) =

> agp(n,r)g"(". We define the generalized Poincaré series with the base function f by
n,r€z,
dnm>r?

Pk,m<f>(7—7 Z) = Z f|k,mry‘ (44)

~el\IY

To observe the absolute convergence of Py, ,,,(f), consider the series

]ka,m(f) = Z af(na T)Pk,m;n,r- (45)

n,reZ,

dnm>r2

Since Jj ,, 1s a finite-dimensional vector space, in view of the Theorem 1.5.3, the conver-

gence of the above series is equivalent to the convergence of the series

mF20(k — 2) co(n,r)ag(n,r
Z af(n:r) <w>Pk,m;n,r> = T2 Z w( ) f2( k_?,)a
n,rez, 2m 2 nreZ, (4nm -r ) 2
dnm>r? dnm>r?

where ¢ € Jj ., with the Fourier expansion given by ¢(7,2) = > ¢y(n,7)¢"¢". Now
n,r€”z,
dnm>r?

using Lemma 4.3.1, the convergence of the series (4.5) follows immediately provided the

coefficient a(n, r) of f satisfies the bound a(n,r) = O((4nm —r2)2 =6 forany € > 0.
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4 Differential operators and Poincaré series for Jacobi forms

Thus, Py, (f) = pk,m( f) whenever the later series converges.

We need the following two lemmas.

Lemma 4.3.2. [7] Let ¢ be a complex-valued holomorphic function defined on H x C.

* ok
Then for a non-negative integer v and M = € SLy(Z), we have

c d

, (V[ 2mc kv = VL (¢lpmM)
Lm@)”“”*mM—; (z>< i ) Er =2 (er+dp T

Lemma 4.3.3. Let ¢ be a Jacobi form of weight k and index m. Then for a non-negative

ko ok
integer v and M = € SLy(Z), we have
c d

LY (lkmM) = ZV:(—U”’ (”) (27"0) k4 v = D L Ok

— [ i (k+1— %)' (et + d)v

Proof. The proof is similar to the proof of Lemma 4.3.2 and it uses a simple induction

argument. [

4.3.1 Proof of Theorem 4.2.1

Proof. Let 1 be a solution of (4.3). We prove the transformation properties (1.5) and (1.6).
Consider

v 3 3
=31y (k - 5) (k e 5)mz-rmsL;1<¢>L¢n;’“<w>. (4.6)

v—r r

X %
Now for any matrix v = € SLy(Z), apply the slash operator of weight k; +

c d

ko + 2v and index m; + ms to the above equation. Using the fact that A is a Jacobi form of
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4 Differential operators and Poincaré series for Jacobi forms

weight k = ky + ko + 2v and index m = my + my, we obtain

ho= (Z(—l) (" ) (7 ')m?"“mSL:m<¢>L;;’“<¢>>|kvmv
- -3\ [k
= e (U (T s @

r=0

X

L1Vn_gr<¢) |k2+2(u—r),m2"7-

Now, Lemma 4.3.2 implies

hirz) = (-1 (“”")(’”*”‘ )mz-rm;L;n(as)mlW,mn

vV—r r
r=0

v =1\ (2mac)" T ke v =1 = DL, (V)
: Z( )( ) (ko +1 — g)f (cr + )yt 4.7)

Applying the change of variable [ — [ — 7 in (4.7), we obtain

V—r r

(v (2mae) T v = 1 = DU Wlima)

" ;([—r>( m> (k2+l—7“—%2). (et +d)v=t 7
v v kl—|—1/—— ]{32_{_1/__ v—r 2m26 v—l

— ZZ(_ < v—r ( r )(l—r)( m')

r=0 l=r
(bt v—r—3) Loy (lks my7)

hirz) = Y1y (‘“”") (’“” )m';’”m;L;x@\kﬁzT,mm

v—r

LT r,m ?
X my m (kg—l-l—?”—g) ( )|k1+27 1 (CT+d)Vl
— Zyzi(—l) kit v =3\ (ke v =23\ (v—r)[2mac\"
- v—r r l—r )
=0 r=0
por kot v—r=3)0_ LT ($]ky maY)
X my

L r,mi
m2 (k/‘g—f—l—r g)' m1(¢)‘k1+2, Y (CT"—d)V 1
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4 Differential operators and Poincaré series for Jacobi forms

Next, interchange the variables r and [ to obtain

o e (= [0
(ke +v—1-3)! Ly ($]a,m27)
2yt 1 3) (cr+d)

l/—l

L, () 42,077

A simple calculation yields

) (ky + v — 3 (ke + v — 3)lmy'ml,

ZZ k1+l—— (ka7 —1=H(r = Dl(v —1)!

=0 [=0

2m20 l LT l(sz mzf}/)
X < oy > Lm1(¢)|k1+2l,mﬁ (er 1 dyp— (4.8)

Also, we can rewrite the equation (4.6) as follows

- k —2\(k
b =330 (M) (Tt o 20

V—r
r=0

where we have used the fact that ¢ is a Jacobi form of weight k;, index m; and hence

®|ky.m, 7 = ¢. Next, using Lemma 4.3.3 we get

e = S (R (T

R

X
1=0
_ ZZ D!(ky v — ) (ks + v — $)my " m}
=010 ’“2”—7"—-) (k1= D = i = 1)1
2mic\"" LY (4) z
2 L : 4.
X ( T > (c¢+d)r—l m1(¢)|k1+2l7m17 ( 9)
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Now subtracting (4.9) from (4.8), we have

l

_ (1)'my !} Zmac"
0 = ZZ (ki +1 =) (ko + 7 — 1= 3)(r l)(V—"’)'( )

e
=0 [=0
Lr Z(sz mz’y)

X lel (¢) |k1+2l,m17

(et +d)r=—
(=1)imY " ms, 2myc\’
a ;; (ke +v—r1 =k +1—3) (v —r)(r—1)! ( i )
Ly ()

X m m1(¢)|k1+2l,m17

_ ZZ et (2mec\ " L, 2 (Vlka,ma )
k2+r—l 3 T T (et +d)r—

r=0 [=0

G (2m) Ly () }
1 2

(ks +v—r—32) i (er 4+ d)

1

I s

X l!(]/—r)!(r—l) (k1_|_l_ _)| m1<¢)|k1+217 Y
= v v <_1) 2m20 v— TLT l(¢|k;2 mg’)/)

1=0 r=I (k‘g—l—r—l—- i CT—|—d)V7“
— (_ ) 2m16 r—l1 LV r

<k2+y_r_%)' CT—I—drl

1

" l'(’/ ) (7’ — ! (/g1 +1—3) Ly (0) by 420m175

1% l/ l 1
— 1
-3 zv ml_ Lo (@), Z[ P
% 2m v— TLT l(¢|k2 m2’7) 1 2m20 r—l (4 10)

¥ (CT+d)V r (k;g—i—y—r—%)] Jy .

L L) |

(et + d)Tl} (v—r)(r—=100

Now, consider the following expression

v

1 2mac\ """ Lyt (Y]ksms)
Z(/{:Q—H"—l— Hiw —r)l(r—1)! ( ) ) (et +d)— °
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Replace r — [ by p in the above expression to get

zl/: 1 (QWQC)VT erj(¢|k2,m27)
— (ky+r =1 =) —r)(r =D\ 7i (et +d)v=r

2

. i 1 <2m20)y_l_p[’£zg(w’k2,m27) (4 11)
B = (ka+p—3)pl(v—1—pN\ mi (e +d)v—t-r~ ’
Similarly, consider the expression
i 1 2mac\" T Ly ()
— (ks +v—r=Hw—r)(r -\ = (e + d)r—t
and replace v — r by p to obtain
2”: 1 2mac\ " LY (1)
— (ks +v—r—=Hw—r)(r—D\ (e +d)r—!
= i 1 <2m20) - 4.12)
n = (ko +p — %)!p!(y —l—p)\ mi (eT + d)v—t-r ’

Now using equations (4.11) and (4.12), the equation (4.10) reduces to

— v—I
(=1)'my~'mh 1
0 = S ey o
zz:; Ik +1=3)! m Plcras pz; (ks +p—3)pl(v — 1 —p)!
2mec v=l=p 1
( - > m%z(ilj\kg,mz’v — )
_ - Vz_l (—=1)'m%ml, (2m20>u_l_p
pn— (/fl—l-l—%)!(kg +p—%)!p!(1/—l—p)!l! i
1 I
X WL%(MWWV — ) Ly, (&) ky+20,m, -

84



4 Differential operators and Poincaré series for Jacobi forms

Again applying Lemma 4.3.2, we have

RS (~1)'my (2m2c)”—l d
= (ki + 1= ks +p=plv =1 —p)\ m
! 3
1 I (ki +1—=3)!
1 r 2
X (CT _,_d)u l—p m2(w|k2 m2,-)/ w) ;( ) <T) (kl T — %)l
L ((2mc L (9)
i (et + d)i=r
v I vl v—
_ ZZ ( 1)l+rm1 mey p
Pt (ki 41— (ks +p—3)p(v =1 —p)rl(l —7)!
2c\""7 Ly, (9)
_ p — M
X ( ; Lm2(¢|k2,m2’y ¢) (CT—Fd)V*rfp
v v v—l v—
_ ZZ ( 1)l+r 1 m2 P
== (ki 4+r =3 ka+p—3)p(v =1 = p)rl(l —7r)!
26\ """ L (o)
_ p — _m v
X < ; Lm2(¢|k2,m2f}/ w) (CT—f-d)V_T_p
= AT(’YvTv Z)LT (¢)
r=0

where for 0 < r < v, A,(v, T, 2) is given by

v v—l

(_1)l+rm myP
fy?TZ lr% kl—i_r__ <k2—|—p——)|p<y_l_ )‘T‘(l—ry
2c\"F 1
. (E) (er + d)r—rr Ly (Dl may = 9)-
Thus we have
> A7) Ly, (6) = 0. (4.13)
r=0
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As ¢ is a Jacobi form of weight k; and index my, it has a Fourier series expansion given by

o(r,2) = > co(N,R)gV¢R.
N,REZ
4miN—R?>0

By applying the heat operator L,,, repeatedly to the above Fourier series and using (4.13),

we obtain

v

Z co(N, R)(4myN — R*)" A, (7,7, 2)¢" ¢ = 0.

N,ReZ =0
4miN—R?>0

Hence, for every N and R with 4Nm; — R? > 0, we get

v

Z co(N, R)(4miN — R*)" A, (v,7,2) = 0.

r=0

Hence it follows that foreachr € {0, 1,...,v}, A.(v, T, z) = 0, as the polynomial > A, (v, 7, z)x"
r=0

can have only finitely many roots. In particular, for all (7, z) € H x C, we have

0= A(y.m2) = =T Wy — V)7 2)

(/{71 +v— %)'(k’g — % v

Therefore, in view of the above identity, we have

¢|k2,m27 = ¢7 for all v E SLQ(Z)

This proves the transformation property (1.5). Let us now prove the transformation property

(1.6). Let X = (), i) € Z*. Recall that

)= S () (T i @ 0

vV —r T
r=0
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4 Differential operators and Poincaré series for Jacobi forms

Then, we have

- k‘—i—l/—— ko +v — v—r_ _TTT
h= 31y ( )( )ml ML () lerszmom X

vV—r r
r=0

X Lryn;T( )|k‘2+2 V—'r)mZX

Sy (k o ) (’“ e )mz"mzL;Iwrkl,mm

vV —r r
r=0

X LV r(¢|k2m2 )

where in the last line, we have used the commutativity of heat operator and lattice action.

Hence, we obtain

h=> (-1 (l“”_') (’“2”_ )m?rmw (O L (W X). (4.14)
r=0

V—r r

Subtracting (4.6) from (4.14), we obtain

12 3 k‘ 3
S -1y (’“” )( 2ty )mi—rmaLmb)L” (1 X— 1) = 0

vV—r r
r=0

Rewrite the above equation as follows

ZB (A p, 7, 2) Ly, (¢) = 0,

where for 0 < r < v, B,.(\, i, T, 2) is given by

BuOpir,2) = (1) (’“”") (’”*” )m’f LY (Wlnm X ).

vV —r T

Now proceeding as above (in the case of SLy(Z)), we obtain the required transformation
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property of 1) with respect to the lattice Z?, i.e.,
Vlhymy X = 1, forall X = (\, u) € Z*.

Thus, 1) satisfies the transformation properties of a Jacobi form of weight k2 and index

ms and this completes the proof. [

4.3.2 Proof of Theorem 4.2.2

Proof. By using Lemma 4.3.1, it is easy to see that the coefficients c;(n,r) of f(7,2),
satisfy the bound ¢;(n,7) = O((4n(my + my) — r2) =27+ for any e > 0. Consider
the generalized Poincaré series Py, 1 x,-+20,m,+m, (f) associated to the above base function
f. To ensure its convergence the exponent in the bound of the coefficients of f which is

ki — 2+ v+e BEEE2 6 ¢ reduces to ky < ko — 9 — 4e. By definition, we have

z k=Nt =3\ .,
Pk1+k2+2u,m1+m2(f>: Z |:Z(_1) < ly_r 2)( ? r 2>m1 my

yerL A7 =r=0

X (4Nm2 - R2)V_TqNTRL:n1 (gb)} |k1+k‘2+2l/,m1+m277

- k1+V—§ k2+V—§ _
— —1) 2 2 v—r, T
S e (M T (T R s

YETL A\ r=0

X

Lrungr(qNTR) |k2+2(V—T),m27L:n1 <¢) |k1+2r,m1 -

Using Lemma 4.3.2, we get

v . k +y—§ k +i -3 v—r, T
Py 4k 20,mi+ms (f) = Z Z(_l) ( 11/—7”2>( 2 r 2)7”1 "

YEDL\DY r=0

r r—l 3 l
v—r/( N_R r lec (kl—i_r_ﬁ)'[’ml(gﬁlkl,mlfy)
X Loy (@77 ”’“”“”‘””””2:(5)( i ) (i H1=3)1 (et + )yt
=0
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- oS () (R

’y l: r=0

v—r)\ [ 2mic vor (ki +v—r— %)' L:nQ(qNTR)|k2+2(V*T),m2’Y
l i (ky +1—3)! (e +d)!

)

where in the last line we have replaced r by v — r. A simple calculation yields

) e

(ki +v— %)F(k:z +v— %)
D(r+ D)k +7— T+ )T (v—1—r+ 1)k +1—3)

T

Using the above equality, we see that Py, ik, +20.m,+m, () €quals

> S, (" ) (- )mg_lmé

'yGl"J \I'7 =0

. Z orter (V=0 (22 Tk Ay = L= D L (@ T sty
i (ki +r—3)! (et +d)v=t=r

Finally, using Lemma 4.3.3, we get that Py, 41, +9,.m, +m, (f) equals

- k -2\ [k
S Sevz () (T )
~el'J \I'7 I=0

v

= et (e

=

0
X Z LV l q CR|k2 m2'7)

e
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= ki +v—23\(ka+v—2\ ,_ b
- (_1>l( ! 2)( ? I 2>m1 lmIQLinl (qb)Lmzl(Pk‘Q,mz;N,R)a

v—1

=0
= [(ba sz,mz;N,R]zx-

Hence we have the theorem. O]

4.3.3 Proof of Theorem 4.2.4

First, we state a lemma which we shall use to prove Theorem 4.2 .4.

Lemma 4.3.4. Let ¢ € J}\) . Then the sum

- —4r M[y]
/ | (7, 2) Dot (TR [ Yo+ 2e =24 | g,
YELY 'Y Fg\HxCo!

converges.

For a proof, we refer to [20]. Now we prove Theorem 4.2.4. Let L} m(@)(T,2) =

> a(n,r)e(nt + rz). Now consider the (N, R)-th Poincaré series of weight k
n,r€z9,
An>M"1rt]>0

and index M. Then by Lemma 1.5.3, we have

(Li (@), Perinr) = Aempa(N, R).

Now using the definition of the adjoint map (L} (@, P sm;n,z) = (@, Lt m(Prmin,r)) W
have

a(N,R) = —— (¢, Lim(Prm:NR))- (4.15)

)\K,M,D

We now compute (¢, L v (Pi v r))- By definition, (¢, L am(Pra:n.r)) equals

—4r M|y]

= / O(7, 2) Lt (P, i) 02 dv;
LJ\HxCo:1
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B / N 6 ) Lo (€(NT + R2)) [z 7 052 V.
LI\ HxC9:1

yel] A\

By Lemma 4.3.4, we can interchange the sum and integration in (¢, Ly m(Pi AN R))-

Hence we have,

—4r M|y]

(¢, Lk (P m.NR))= Z /J (7, 2) g (e(NT 4 R2)) |pyora Y*2e v dVy.
LJ\HxC9:1

YETY S\

Using Rankin’s unfolding argument, we see that (¢, Ly, M(P,iV /\Ij» equals

/ ¢(7,2) L (e(NT + Rz2)) Uk:+2€*4+M[yldVJ
PJ oo \HxC9

ARt (k — %) N
— /rgo\HxC‘]’fb(T? 2)AN|M| — M[R!)e(RT + Rz) — 5 (1 - 24;0(j)e(37)>
ar Mly]

xe(NT + Rz) v"2e™ v dV;

(k4

= (4N|M|—M[Rt]— ; )) /F e 6(r, 2)e(N7 + Rz) v**2e = v
.00 \HXCO!

—4r M|[y]

+8 (k= 3 Ml /rng\Hng,l 6(1, 2) (Z o(j)e(ﬁ)) e(NT + Rz) o*+2e™ 2V

i1
(k—%)
3

= (NIM| = MR = =)0+ 8(k = DML,

where I; and I, are given by

L = / (7, 2)e(NT + Rz) e avy,
TJ oo \HxC91
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and

I, = / o(T, z) Za(j)e(jT) e(NT + Rz) e avy.

TJ o \HXxC91 >1
Now, we calculate the integrals /; and I, separately. We have
I, = / o(1,2)e(NT + Rz)v e e dVJ
'Y J\HXC91
= / Z co(n,r)e(nt +rz)e(NT + Rz)vk“ei“y[y] dvy.
oo \HXCY n,rez9,

4n>M~1[rt]>0

We put 7 = w + iv and z = = + iy, where © = (21,22, ...,2,) and y = (y1,¥2, ..., Yy)- A
fundamental domain for the action of ') __ on # x C¢ is given by {(7, 2) € H x C¥! : 0 <

u<1,v>02; €0,1],y € R%!}. Integrating over this region we obtain

IM|FF=9D(k — £ +1) C¢(N R)

L = g
1 20t =EH (AN M| — M[RY)F

Similarly, we can compute the integral /> and we obtain

IMFF9T (R — § + 1) cs(n+ N, R
- Z s( ) (n)

I = — t
2073 = (4(n+ N)IM| = M[R)*

Finally, we have the Fourier coefficient a(/N, R) of the adjoint map of the heat operator

IMIZ (k — £)(k — § — )AN|M| — M[R)*

a(N,R) = 290 D(E-§-1)
(4N!M| ~ M[R] - —(’“‘%)‘M')
{ (1~ FE T o
g co(n+ N, R)a(n)
DM i M~ iy |
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4.4 Applications

Rankin [42] computed the Petersson scalar product (f, gE;), where f € M., g € M; and
E, is the Eisenstein series of weight [. To compute (f, g £;), one can express g £, in terms of
Poincaré series and then use Lemma 1.2. The method is known as Rankin’s method. Zagier
[51] extended the result of Rankin and computed the Petersson scalar product (f, [g, Fi], ),
where f € My,;.9, and g € Mj. We use Corollary 4.2.3 to give some applications in the

case of Jacobi forms.

Example 4.4.1. Let N and R be integers such that AN — R? > 0. Then from Theorem 4.2.2,

we have

By Puing = Piga(¢"¢PEy,),

H3,4n —1%) i n o
= Pise Z (—)q ERICh I

An—r2>0 C(_S)
B Z H(3,4n—7’2)P
C(—5) 18,2;n+N,7‘+R'

An—r2>0

Thus we have

6

7 3 4TL T’ 618 2(17 8(n+N—(7‘+R)2))
T s Stn+ N) — (r + R)5)16 ’

<E1827E4 1P141NR

4n—r2>0

where H (n,r) are generalized class numbers defined by Cohen [10], and ey, ,,(n, 1) are the

Fourier coefficients of Ey, ,, [13].

Example 4.4.2. Let k1, ko(> 11),my, mo and v be positive integers. Let ) € J'P ¢ €

kl mi?

Jk1 +hot+20,m1+ma > a0d By, ., be the Jacobi-Eisenstein series of weight ky and index my.
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Assume that either ¢ or [\, Ey, m, |, is a Jacobi cusp form. Then Corollary 4.2.3 implies

[vak‘z,mz]V = Pk1+k2+2%m1+m2([¢’]‘]”)7

v k2 - % v v
= (_1) m2pk1+k2+2v7m1+m2<[’m1 (¢))7
1%
v k2 tv- % v
= (_1) my Z C(”? T)Pk1+k2+21/,m1+mg;n,r-
14 n,reZ

An—r2>0
Hence for ¢ € Ji, +ky+20,m,+ms, We obtain

c(n,r)d(n,r)

(4n(m1 + m2) _ T2)k1+k2+2v—% >

(6, [, Brgmal) = a2 >

n,reZ
dn—r220

where

]{?2 +v— % v (m1 + m2)k1+k2+2”_2f(/€1 + kQ + 2v — %)
My 27.‘.k1+k2+2y—% )

mi,m2 __ (_ 1\V
At = (=1
1%

We give one more application of Theorem 4.2.4.

Example4.4.3. Let 101 = > ¢y, (n,7)q"C" € Jfgjp and p1o1 = Y. Cop,(n,7)q"¢" €
n,r€”Z, n,r€Z,
Amn—r2>0 dmn—r2>0
qusp

121 - Then we have the following identity:

17

1|p124]]? 323(Dy r) % [(Dy.g — 2) o1

76 o2 eV B = ’ B )0, (N,R)+76Ly, (N, R —

B 1ol s (V- F) === | 5 5 s (N R) 4 6L (N, B )
Co(n+ N, R)

where Dy p = 4N — R? and L¢(N, R;s) = 2@1 (D E
n+N,R

Proof. We know that Ji;°" and J}5°" are one dimensional and L1 1(¢101) € Ji57 - Hence
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by comparing Fourier coefficients, we get

1
Lo, (¢101) = —84512,1-

Now let £T071(¢1271) = Oéqblo’l, we have

af[p101|]> = (g0, dro1)
= <E1ko,1(¢12,1)> ¢10,1>
= <¢12,1> 510,1 (¢10,1)>

1 2
- _6H¢12,1H :

Now from Theorem 4.2.4, we get the desired identity. [

Example 4.4.4. Observe that Jy; and Js; are one dimensional spaces generated by E,
and Eg, respectively. Comparing the constant term we get Ly1(E, ;) = _%E&l. Hence

we get the following relation between generalized class numbers

1

mH(E), 4n —r?)
= ﬁ[(‘ln —r?)H(3,4n —r?) — gH(?), 4n —r?) — 28 Z o(n1)H(3,4ns — 12)].
ni+nz=n,
dna—r220
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