
NONVANISHING OF L-FUNCTIONS AND
DIFFERENTIAL OPERATORS FOR JACOBI FORMS

By

SHIVANSH PANDEY

Enrolment Number: MATH11201904008

National Institute of Science Education and Research, Bhubaneswar

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February, 2024













Dedicated to My Family

v



ACKNOWLEDGEMENTS

I wish to conveymy deep gratitude tomy thesis supervisor Prof. Brundaban Sahu for his

continuous support and constant encouragement throughout my Ph.D. journey. Without his

guidance, this thesis would not have been possible. His knowledge and expertise have been

invaluable assets during my research. The extent of gratitude I owe to him is immeasurable.

I am sincerely thankful to members of my doctoral committee Dr. B. K. Sahoo, Dr. J.

Meher, Dr. K. Senthil Kumar, and Dr. G. Kasi Vishwanadham for their invaluable guidance

throughoutmy tenure at NISER. I extendmy deepest appreciation to all the faculty at NISER

who imparted various courses during my coursework. I express my gratitude to Dr. A. K.

Jha for being my co-author and offering invaluable assistance at various stages of my Ph.D.

journey.

I would like to acknowledge the CSIR, India for providing financial support through

the CSIR-NET fellowship, and NISER for infrastructure and providing a nice environment

for research.

I am thankful to my seniors and friends, Anup, Mithun, Mohit, Anshu, Shubham, Kiran,

Gorekh, Diptesh, Rajeeb, Pushpendu, Dinesh, Mrityunjay, Sanjay, Suman, Nilima, Snehal,

Arindam, Sayan, Anjaneya, Ajith, Saurabh, Satyajyoti, Devjyoti, Raveena, Sahanawaj and

Subhadeep with whom I had many beautiful memories at NISER.

I want to express my deep and sincere gratitude to my father and mother, for their love,

encouragement, assistance, and support. I am thankful to my brother for always being there

for me as my best friend. I would also like to express my gratitude to my sister-in-law and

love to my nephew.

vi



ABSTRACT

Nonvanishing of L-functions has many consequences in analytic number theory, for ex-

ample, the nonvanishing of the Riemann zeta function is the key point in proving the

prime number theorem. The generalized Riemann hypothesis states that all the zeros of

L-functions associated with a Hecke eigenform of weight k lie only on the critical line

Re(s) = k/2. Another interesting problem is to study the equivalence of modular prop-

erties of an automorphic form and analytic properties of L-functions attached to it, i.e., to

derive the transformation properties from the functional equation of L-functions and vice

versa.

Jacobi forms are natural generalizations of modular forms and they appear as Fourier-

Jacobi coefficients of Siegel modular forms. Jacobi forms play a crucial role in the proof

of the Saito-Kurokawa conjecture.

In this thesis, we study the nonvanishing of L-functions and the Poincaré series for

Jacobi forms of integer index and matrix index as well. More precisely, we prove that given

certain points inside the critical strip, L-functions attached to the Jacobi form do not vanish

for large weights. We also study the analytic continuation of L-functions and a converse

theorem for Jacobi forms of half-integral weight. Then, we study certain properties of

Rankin-Cohen brackets and their relation with the Poincaré series for Jacobi forms. Finally,

we construct Jacobi cusp forms involving special values of certain Dirichlet series as their

Fourier coefficients.
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Summary
This thesis deals with the study of L-functions and differential operators associated with

Jacobi forms and examines their analytic properties. Modular forms which played a crucial

role in the proof of Fermat’s last theorem, have applications beyond number theory. L-

functions attached to modular forms have interesting analytic properties and play a crucial

role in analytic number theory.

The nonvanishing property of L-functions holds huge significance, serving as a key

point in various analytic results such as the prime number theorem, where, the nonvanish-

ing of the Riemann zeta function assumes a pivotal role. One of the problems in the theory

of L-functions is to find the zero-free region for L-functions attached to modular forms.

The Generalized Riemann Hypothesis remains an unsolved conjecture for a long time. It

posits a stringent constraint on the zeros of L-functions, claiming that L-functions associ-

ated with Hecke eigenforms of weight k admit zeros only on the critical line Re(s) = k/2.

Towards this direction, Kohnen [24] proved the nonvanishing of L-functions attached to

Hecke cusp forms on average. The approach of Kohnen has been adopted for various kinds

of automorphic forms to prove the nonvanishing of associated L-functions.

The reciprocal relationship between the modular properties of an automorphic form

and the analytic properties of its associated L-function forms an interesting topic of ex-

ploration. The derivation of transformation properties from the functional equation of L-

functions and vice versa reveals the underlying relation between these two mathematical

entities. The study of such a relationship is known as the converse theorem for automorphic

forms. Hecke studied the converse theorem for modular forms for SL2(Z). In particular,

Hecke [16] proved that the transformation properties and the analytic properties of associ-

ated L-functions are equivalent. Later, Weil [48] generalized Hecke’s work for congruence
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subgroups.

Differential operators on modular forms form a crucial aspect of mathematical analysis

within the realm of number theory. By applying differential operators to modular forms,

one can study the arithmetic behavior of many interesting number theoretic functions that

appear as Fourier coefficients ofmodular forms. Using differential operators, one can obtain

interesting congruences between Fourier coefficients of modular forms.

Jacobi forms emerge as natural extensions of modular forms in two variables. They

appear as Fourier-Jacobi coefficients of Siegel modular forms. Jacobi forms assume a cru-

cial role in the proof of the Saito-Kurokawa conjecture. In this thesis, we investigate the

nonvanishing of L-functions associated with Jacobi forms of integer and matrix index and

Jacobi Poincaré series. The converse theorem for Jacobi forms for congruence subgroups

has been studied byMartin and Osses [36] for Jacobi forms with respect to congruence sub-

groups. We also investigate L-functions attached to Jacobi forms of half-integral weight.

More precisely, we associate L-functions to a Jacobi form of half-integral weight using

theta decomposition. Then we study the analytic continuation of these L-functions and

prove a converse theorem. We also investigate Rankin-Cohen brackets and their relation

with the Jacobi Poincaré series. More precisely, we prove that Rankin-Cohen brackets and

Jacobi Poincaré series commute in a certain sense analogous to [49]. We also give some

applications as a consequence of the above property. Finally, we construct cusp forms

whose Fourier coefficients involve special values of convolution-type Dirichlet series by

constructing the adjoint of certain differential operator on the spaces of Jacobi forms.
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Chapter 1

Introduction
This chapter introduces basic notions in the theory of modular forms and Jacobi forms of

integral weight and half-integral weight. We also introduce L-functions and differential

operators associated with modular forms and Jacobi forms.

1.1 Notations

Let N, Z, Q, R and C be the set of natural numbers, integers, rational numbers, real num-

bers, and complex numbers, respectively. We denote the real part and imaginary part of

z ∈ C by Re(z) and Im(z), respectively. We denote e2πizm
n by emn (z) where n 6= 0 and

m are real numbers. We also denote e11(z) by e(z). Let H = {τ ∈ C : Im τ > 0} be the

complex upper half-plane. We denote the variable in the complex upper half-plane by τ

and the variable in C or Cg by z.We denote q = e(τ), for τ ∈ H and ζ = e(z), for z ∈ C.

For a complex number z, the square root is defined as follows:

√
z = |z|

1
2 e

i
2
arg(z), with − π < arg(z) ⩽ π.

We set z k
2 = (

√
z)k for any k ∈ Z.We denote A[X] = X tAX where A andX are matrices

of suitable orders. For a ring R, we denote Rg as the set of all row vectors with g columns

and Rg,1 as the set of all column vectors with g rows.

3



1 Introduction

The full modular group Γ = SL2(Z) is defined by

SL2(Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 .

For a positive integerN, we denote the congruence subgroup Γ0(N) of SL2(Z) as follows:

Γ0(N) =


 a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 .

1.2 Modular forms for SL2(Z)

The groupGL+
2 (R) =


 a b

c d

 : a, b, c, d ∈ R, ad− bc > 0

 acts onH via fractional

linear transformations, i.e., for γ =

 a b

c d

 ∈ GL+
2 (R) and τ ∈ H,

γ · τ :=
aτ + b

cτ + d
.

Let k ∈ Z. The groupGL+
2 (R) acts on set of all complex-valued holomorphic functions on

H via the action defined by:

(f |k γ) (τ) := (det γ)
k
2 (cτ + d)−kf(γ · τ),

where γ =

 a b

c d

 ∈ GL+
2 (R) and f is a complex-valued holomorphic function onH.

Definition 1.2.1. A modular form of weight k with respect to the group SL2(Z) is a holo-

morphic function f : H −→ C satisfying

4



1 Introduction

1. f |k γ = f, ∀γ ∈ SL2(Z), i.e.,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀ γ =

 a b

c d

 ∈ SL2(Z) and ∀τ ∈ H.

2. f is holomorphic at the cusp infinity, i.e., f has a Fourier series expansion of the

form f(τ) =
∞∑
n=0

a(n)qn.

Moreover, if a(0) = 0, then f is called a cusp form.

The set of all modular forms of weight k forms a vector space overC. The set of all modular

forms of weight k for SL2(Z) is denoted byMk and that for cusp forms by Sk, respectively.

Let f, g ∈ Mk be such that either f or g is a cusp form. We define the Petersson inner

product of f and g as:

〈f, g〉 =

∫
SL2(Z)\H

f(τ)g(τ)(Im(τ))kdV,

where SL2(Z) \ H is a fundamental domain, τ = u + iv and dV =
dudv

v2
is an invariant

measure under the action of SL2(Z) on H. The inner product is independent of the choice

of fundamental domain.

Example 1.2.1. (Eisenstein series): Let k > 2 be an even integer. The normalized Eisen-

stein series Ek of weight k for SL2(Z) is defined by:

Ek(τ) :=
1

2

∑
(m,n)∈Z2\{(0,0)}

(m,n)=1

1

(mz + n)k
.

Then Ek is a modular form of weight k for SL2(Z) with Fourier expansion

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

5



1 Introduction

where σk−1(n) =
∑
d|n
dk−1 and Bk’s are Bernoulli numbers defined by

x

ex − 1
=

∞∑
k=o

Bk
xk

k!
.

The Fourier expansions of Ek for k = 4, 6, 8, 10 and 12 are as follows:

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)q
n,

E6(τ) = 1− 504
∞∑
n=1

σ5(n)q
n,

E8(τ) = 1 + 480
∞∑
n=1

σ7(n)q
n,

E10(τ) = 1− 264
∞∑
n=1

σ9(n)q
n,

E12(τ) = 1 +
65520

691

∞∑
n=1

σ11(n)q
n.

Example 1.2.2. (Ramanujan delta function): The Ramanujan delta function is defined

as

∆(τ) :=
(E4(τ)

3 − E6(τ)
2)

1728
.

∆ is a cusp form of weight 12 for SL2(Z) with Fourier expansion

∆(τ) =
∞∑
n=1

τ(n)qn,

where τ(n) is called the Ramanujan tau function. Ramanujan delta function has a product

expansion

∆(τ) = q
∞∏
n=1

(1− qn)24.

Example 1.2.3. (Poincaré series): Let n be a positive integer. The n-th Poincaré series of

6



1 Introduction

weight k for SL2(Z) is defined by

Pk,n(τ) :=
∑

γ∈Γ∞\SL2(Z)

e2πinτ |kγ, (1.1)

where Γ∞ :=

±

 1 t

0 1

 : t ∈ Z

 . Pk,n is a cusp form of weight k > 2 for SL2(Z)

with Fourier expansion

Pk,n(τ) =
∞∑
m=1

gn(m)qm,

where

gn(m) = δn,m + (−1)
k
2
+1
(m
n

) k−1
2
π

∞∑
c=1

Kc(n,m)Jk−1

(
4π

√
nm

c

)
,

δn,m is Kronecker delta symbol and Kc(n,m) is the Kloosterman sum defined by

1

c

∑
d (mod c)

dd−1≡1 (mod c)

e
2πi

md+ nd−1

c


,

and Jk−1(x) is the Bessel function of order k − 1.

The Poincaré series has the following property:

Lemma 1.2.2. If f ∈ Sk with Fourier expansion f(τ) =
∞∑
m=1

a(m)qm, then

〈f, Pk,n〉 =
Γ(k − 1)

(4πn)k−1
a(n), (1.2)

where Γ(x) is the usual gamma function.

7



1 Introduction

1.2.1 Hecke operators

We now define linear operators on the space of modular forms, called the Hecke operators.

Definition 1.2.3. Let n be a natural number. For f(τ) =
∑
m≥0

a(m)qm ∈ Mk, the n-th

Hecke operator is defined by

Tnf(τ) :=
∑
m≥0

an(m)qm,

where an(m) =
∑

d|(m,n)
dk−1a(mn

d2
). Then Tnf is a modular form of weight k. Moreover, if f

is a cusp form then Tnf is also a cusp form.

The set {Tn : n ∈ N} consists of self-adjoint, commuting operators on the space of cusp

forms.

Definition 1.2.4. A cusp form is said to be an eigenform if Tnf = λnf for all n ∈ N.

The space of cusp forms Sk is a finite-dimensional Hilbert space with respect to the

Petersson inner product. Hence, there exists an orthonormal basis consisting of eigenforms

of all the Hecke operators Tn.

1.2.2 L-functions associated with a modular form

Let f(z) ∈ Sk, with Fourier expansion f(τ) =
∞∑
n=1

a(n)qn. The L-function associated to f

is defined by

L(f, s) :=
∞∑
n=1

a(n)

ns
. (1.3)

8



1 Introduction

Since the Fourier coefficients of a cusp form of weight k satisfy a(n) = O(n
k
2 ), the above

series converges for Re(s) > c+ 1, where c = k
2
. The completed L-function is defined by

L∗(f, s) :=
1

(2π)s
Γ(s)L(f, s),

L∗(f, s) can be extended to an entire function of s ∈ C, and satisfies the functional equation

L∗(f, s) = (−1)
k
2L∗(f, k − s).

Further, if f is an eigenform, then L(f, s) has an Euler product

L(f, s) =
∏
p-prime

(1− a(p)p−s + pk−1−2s)−1.

1.3 Modular forms for Γ0(N)

Definition 1.3.1. Let k be an integer and χ be a Dirichlet character modulo N. A holo-

morphic function f : H −→ C is said to be a modular form of weight k, with level N and

character χ if

1. (f |k γ) (τ) = χ(d)f(τ), ∀ γ =

 a b

c d

 ∈ Γ0(N), i.e.,

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ), ∀ γ =

 a b

c d

 ∈ Γ0(N).

2. f is holomorphic at all the cusps of Γ0(N), i.e., f |k γ has Fourier expansion of the

form

(f |k γ) (τ) =
∞∑
n=0

aγ(n)q
n
d

for every γ ∈ SL2(Z).

9



1 Introduction

Further, f is called a cusp form if f vanishes at all the cusps of Γ0(N), i.e. aγ(0) = 0

for every γ ∈ SL2(Z).

Denote the space of all modular forms and the subspace of all cusp forms of weight k, level

N with character χ on Γ0(N) byMk(Γ0(N), χ) and Sk(Γ0(N), χ), respectively. If χ is the

trivial character, then we denote the spaces asMk(Γ0(N)) and Sk(Γ0(N)), respectively.

If f, g ∈ Mk(Γ0(N), χ) are such that either f or g is a cusp form, then the Petersson

inner product of f and g is defined as:

〈f, g〉 =
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f(τ)g(τ)(Im(τ))kdV,

where Γ0(N) \ H is a fundamental domain for the action of Γ0(N) on H and [SL2(Z) :

Γ0(N)] is the index of Γ0(N) in SL2(Z).

We state a lemma on the bounds of Fourier coefficients of a modular form.

Lemma 1.3.2. If f ∈Mk(Γ0(N), χ) with Fourier coefficients a(n), then

a(n) � |n|k−1+ϵ.

Moreover, if f is a cusp form, then the coefficients satisfy the following Ramanujan-Petersson

bounds:

a(n) � |n|
k
2
− 1

2
+ϵ.

For more details on the theory of modular forms of integral weight, we refer to [18, 23].

10



1 Introduction

1.4 Modular forms of half-integral weight

Let Γ = Γ0(4). For an odd integer k and γ =

 a b

c d

 ∈ Γ, define the slash operator as

follows: (
f |̃ k

2
γ
)
(τ) :=

( c
d

)(−4

d

) k
2

(cτ + d)−
k
2 f(γ · τ),

where
( c
d

)
is the Kronecker symbol and f is a complex-valued holomorphic function on

H.

Definition 1.4.1. Let k be an odd integer and χ be a Dirichlet character modulo 4. A

holomorphic function f : H −→ C is said to be a modular form of weight k
2
and character

χ for the group Γ if

1.
(
f |̃ k

2
γ
)
(τ) = χ(d)f(τ), ∀ γ =

 a b

c d

 ∈ Γ.

2. f is holomorphic at all the cusps of Γ, i.e., f |̃ k
2
γ has Fourier expansion of the form

(
f |̃ k

2
γ
)
(τ) =

∞∑
n=0

aγ(n)q
n
d

for every γ ∈ SL2(Z).

Moreover, we say f is a cusp form if f vanishes at all the cusps of Γ0(4), i.e., aγ(0) =

0 for every γ ∈ SL2(Z).

LetM k
2
(Γ, χ) and S k

2
(Γ, χ) denote the spaces of modular forms and cusp forms respec-

tively of weight k
2
and group Γ = Γ0(4). The space S k

2
(Γ, χ) is a finite-dimensional Hilbert

11



1 Introduction

space with respect to the Petersson inner product defined by:

〈f, g〉 =

∫
Γ\H

f(τ)g(τ)(Im(τ))
k
2 dV,

for f, g ∈ S k
2
(Γ, χ).Moreover, the inner product is well defined if at least one of f and g

is a cusp form. For more details on modular forms of half-integral weight, we refer to [23].

1.5 Jacobi forms

Consider the Jacobi group ΓJ defined by

ΓJ := SL2(Z)n Z2 =

(M,X) :M =

a b

c d

 ∈ SL2(Z), X = (λ, ν) ∈ Z2

 .

The set ΓJ has a binary group operation defined by

(M,X)(M ′, X ′) = (MM ′, XM ′ +X ′).

The group ΓJ acts onH× C via


a b

c d

 , (λ, ν)

 · (τ, z) :=
(
aτ + b

cτ + d
,
z + λτ + ν

cτ + d

)
.

Let k,m be any fixed positive integers. Let ϕ be a complex-valued holomorphic func-

tion onH× C. Let γ =


 a b

c d

 , (λ, µ)

 ∈ ΓJ . Define the slash operator

(ϕ|k,mγ) (τ, z) := (cτ + d)−kem
(
−c(z + λτ + µ)2

cτ + d
+ λ2τ + 2λz

)
ϕ(γ · (τ, z)).

12



1 Introduction

Definition 1.5.1. Let ϕ : H × C → be a holomorphic function. Then ϕ is said to be a

Jacobi form of weight k and indexm for ΓJ , if ϕ is invariant under the slash operator with

respect to the Jacobi group, i.e.,

ϕ|k,mγ = ϕ, ∀γ ∈ ΓJ

and has a Fourier series expansion of the form

ϕ(τ, z) =
∑
n,r∈Z,
r2≤4nm

c(n, r)qnζr (q = e2πiτ , ζ = e2πiz). (1.4)

Moreover, ϕ is called a cusp form if c(n, r) 6= 0 implies r2 < 4nm.

Remark 1.5.1. The property ϕ|k,mγ = ϕ for every γ ∈ ΓJ is equivalent to

ϕ|k,m[M, (0, 0)] = ϕ, for everyM ∈ SL2(Z) (1.5)

and

ϕ|k,m[Id, (λ, µ)] = ϕ, for every (λ, µ) ∈ Z2. (1.6)

Denote the space of all Jacobi forms and the subspace of all Jacobi cusp forms by Jk,m and

J cuspk,m , respectively.

Let ϕ, ψ ∈ Jk,m such that at least one of them is cusp form. The Petersson inner product

of ϕ and ψ is defined by:

〈ϕ, ψ〉 =
∫

ΓJ\H×C

ϕ(τ, z)ψ(τ, z)vke
−4πmy2

v dVJ ,

where τ = u + iv, z = x + iy and dVJ =
dudvdxdy

v3
is an invariant measure under the

13
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action on ΓJ on H × C. The space of Jacobi cusp forms of weight k and index m is a

finite-dimensional Hilbert space with respect to the Petersson inner product.

Example 1.5.1. Let k ⩾ 4 be an even integer. The Jacobi Eisenstein series of weight k and

indexm is defined as

Ek,m(τ, z) =
1

2

∑
c,d∈Z
(c,d)=1

∑
λ∈Z

(cτ + d)−kem
(
λ2
aτ + b

cτ + d
+ 2λ

z

cτ + d
− cz2

cτ + d

)
,

where a and b are such that

 a b

c d

 ∈ SL2(Z). Then, Ek,m ∈ Jk,m.

For more details on Jacobi forms of integer weight, one can refer to [13].

1.5.1 Jacobi forms of matrix index

Let g be a positive integer. Consider the Jacobi group ΓJg of degree g defined by ΓJg =

{(M,X) :M ∈ SL2(Z), X = (λ, µ) ∈ Zg,1 × Zg,1} with the group law defined by

(M1, X1) · (M2, X2) = (M1M2, X1M2 +X2)

for (M1, X1), (M2, X2) ∈ ΓJg . The Jacobi group acts on the spaceH× Cg,1 via

(a b

c d

 , (λ, µ)

)
·(τ, z) =

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Let k be a positive integer,M be a positive definite symmetric half-integral matrix of order

g × g and h =

(a b

c d

 , (λ, µ)

)
∈ ΓJg .We define the automorphic factor with respect

14
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to h by

jh,k,M(τ, z) := (cτ + d)−ke

(
−c

cτ + d
M[z + λτ + µ] +M[λ]τ + 2λtMz

)
.

Jacobi group ΓJg acts on the set of all holomorphic functions ϕ : H × Cg,1 → C via the

action:

(ϕ|k,Mh)(τ, z) = jh,k,M(τ, z)ϕ(h · (τ, z)).

Definition 1.5.2. Let ϕ : H×Cg,1 → be a holomorphic function. The function ϕ is said to

be a Jacobi form of weight k and indexM for ΓJ if ϕ is invariant under the slash operator

with respect to the Jacobi group ΓJg , i.e.,

ϕ|k,Mγ = ϕ, ∀γ ∈ ΓJg

and satisfies the cuspidality condition, i.e.,

ϕ(τ, z) =
∑

n∈N,r∈Zg ,
n⩾ 1

4
M−1[rt]

c(n, r)qne(r · z).

Moreover, ϕ is called a cusp form if c(n, r) 6= 0 implies n > 1
4
M−1[rt].

Denote the space of all Jacobi forms and Jacobi cusp forms of weight k and index M by

Jk,M and J cuspk,M , respectively. Define the Petersson inner product on J cuspk,M by

〈ϕ, ψ〉 =
∫

ΓJ
g \H×Cg,1

ϕ(τ, z)ψ(τ, z)yke(−4πM[v]y−1)dV J
g ,

where τ = x + iy, z = u + iv and dV J
g = v−g−2dxdydudv. Define z = pτ + q with

p, q ∈ Rg,1 and µk,M(τ, z) := y
k
2 e(iyM[p]). One can rewrite the above Petersson inner

15
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product as

〈f, g〉 =
∫

ΓJ
g \H×Cg,1

f(τ, z)g(τ, z)yke(2iyM[p])y−2dxdydpdq.

The space J cuspk,M is a finite-dimensional Hilbert space with respect to the Petersson Inner

product.

Example 1.5.2. (Poincaré series): Let k be a positive integer,M be a symmetric, positive

definite, half-integral g × g matrix. Let n ∈ Z and R ∈ Zg such that n− 1
4
M−1[Rt] > 0.

We define (n,R)-th Poincaré series by

Pk,M;n,R(τ, z) =
∑

γ∈ΓJ
g,∞\ΓJ

g

e(nτ)e(Rz)|k,Mγ(τ, z), (1.7)

where (τ, z) ∈ H × Cg,1 and ΓJg,∞ =


(1 n

0 1

 , (0, µ)

)
: n ∈ Z, µ ∈ Zg,1

 .

The Poincaré series have the following properties:

Theorem 1.5.3. [3] The Poincaré series Pk,M;n,R ∈ J cuspk,M and the set of all Poincaré series

generates the space J cuspk,M . For a Jacobi form ϕ(τ, z) =
∑

n′∈Z, R′∈Zg

n′⩾ 1
4
M−1[R′t]

c(n′, R′)e(n′τ)e(R′z)

we have,

〈ϕ, Pk,M;n,R〉 = 2(g−1)(k− g
2
−1)π−k+ g

2
+1|M|k−( g+3

2
)D−k+ g

2
+1Γ(k − g

2
− 1)c(n,R).

The Fourier expansion of the Poincaré series Pk,M;n,R is given by

Pk,M;n,R(τ, z) =
∑

n′∈Z, R′∈Zg

n′⩾ 1
4
M−1[R′t]

pk,M;n,R(n
′, R′)e(n′τ +R′z),

16
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where

pk,M;n,R(n
′, R′) = δM(n,R, n′, R′) + (−1)kδM(n,R, n′,−R′)

+ ikπ21−
g
2 |M|−

1
2

(
D′

D

) k
2
− g

2
− 1

2 ∑
c⩾1

(
HM(n,R, n′, R′)

+ (−1)kHM(n,R, n′,−R′)

)
Jk− g

2
−1

(
π
√
DD′

2g−1|M|c

)
,

where D = det

2

 n 1
2
R

1
2
Rt M


 , D′ = det

2

 n′ 1
2
R′

1
2
R′t M


 and

δM(n,R, n′, R′) =


1, if D = D′, R′ ≡ R(Zg 2M),

0, otherwise

and

HM(n,R, n′, R′) = c−
g
2
−1

∑
x(c)y(c∗)

ec((M[x] + Rx+ n)y + n′y +R′x)e2c(R
′M−1Rt)

is the generalized Kloosterman sum. Here y runs over (Z/cZ)∗ with yy ≡ 1(c) and x runs

over (Zg,1/cZg,1).

For more details on the theory of Jacobi forms of matrix index, we refer to [52].

For any µ ∈ Zg \ Zg(2M) define the µ-th theta series of weight g
2
and indexM by

ΘM,µ(τ, z) =
∑
R∈Zg

R≡µ (mod 2M)

e(
1

4
M−1[Rt]τ)e(Rz).

17
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1.5.2 Theta decomposition of a Jacobi form

Let ϕ(τ, z) =
∑

n∈Z, R∈Zg

n⩾ 1
4
M−1[Rt]

c(n,R)e(nτ)e(Rz) be a Jacobi form. The Fourier coefficients of

ϕ satisfy the property c(n,R) = c(n′, R′) whenever n − 1
4
M−1[Rt] = n′ − 1

4
M−1[R′t]

and R ≡ R′ (mod 2M). Hence one can define cR(N) = c(n,R) whenever N = 4n −

M−1[Rt]. Then ϕ can be represented as follows:

ϕ(τ, z) =
∑

R∈Zg (mod 2M)

ϕR(τ)ΘM,R(τ, z), (1.8)

whereϕR(τ) =
∞∑
N=0

cR(N)e(N
4
τ).The holomorphic functions {ϕR(τ)} behave like a vector-

valuedmodular form of half-integral weight. The expression (1.8) is called the theta decom-

position of ϕ. Using the theta decomposition (1.8), one can define L-functions associated

with Jacobi forms.

1.5.3 Dirichlet Series associated with Jacobi forms

Let ϕ be a Jacobi cusp form with theta decomposition (1.8). For every R ∈ Zg \ Zg(2M)

define the Dirichlet series

LR(ϕ, s) =
∞∑
D=1

cR(D)

(
D

4|M|

)−s

(1.9)

and the completed Dirichlet series by

ΛR(ϕ, s) = (2π)−sΓ(s)LR(ϕ, s). (1.10)

Martin studied the analytic properties of these Dirichlet series and established a set of func-

tional equations.

18
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Theorem 1.5.4. [35] Let k be a positive even integer andM be symmetric, positive definite,

half-integral matrix of order g × g. Let ϕ : H × Cg,1 → C be a Jacobi form of weight k

and indexM. Then for anyR ∈ Zg \Zg(2M), the completed Dirichlet series ΛR(ϕ, s) has

analytic continuation to whole complex plane and they satisfy

1√
2g|M|

∑
R′ (mod 2M)

(e(−R′(2M)−1Rt)+e(R′(2M)−1Rt))ΛR′(ϕ, s) = ikΛR(ϕ, k−s−
g

2
).

(1.11)

1.5.4 Hecke operators

LetM2(Z) denote the set of all 2 × 2 matrices with integer entries and l > 0 be a positive

integer.

Definition 1.5.5. Let ϕ : H×C → C be a holomorphic function. The l-th Hecke operator

Tl is defined by

(Tlϕ)(τ, z) = lk−4
∑

M∈Γ\M2(Z),
det(M)=l2,g.c.d.(M)=□

∑
X∈Z2/lZ2

ϕ |k,m M |m X,

where g.c.d.(M) = □ means that the greatest common divisor of all the entries ofM is a

square number.

Theorem 1.5.6. The Hecke operators Tl are well defined linear operators on the space

Jk,m.
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1.6 Jacobi forms of half-integral weights

Let γ = ( a bc d ) ∈ GL+
2 (R) and γ̃ = (γ, ϕ(τ)), with ϕ(τ) a complex-valued holomorphic

function onH such that ϕ2(τ) = t
cτ + d√
det(γ)

with t ∈ {1,−1}. Then the set

G :=

γ̃ = (γ, φ(τ)) : γ =

a b

c d

 ∈ GL+
2 (R), φ2(τ) = t

cτ + d√
det(γ)

, t = ±1

 ,

forms a group with the following operation

(γ1, φ1(τ)) · (γ2, φ2(τ)) := (γ1γ2, φ1(γ2τ)φ2(τ)).

The association γ 7→ γ̃ = (γ, j(γ, τ)), where γ =

a b

c d

 ∈ Γ0(4), and j(γ, τ) =

(
c
d

) (−4
d

)−1/2
(cτ + d)1/2, is an injective map from Γ0(4) into G.

Let

G̃J = {(γ̃, X, s) : γ ∈ SL2(R), X ∈ R2, s ∈ S1}.

Then G̃J is a group with the group law

(γ̃1, X, s)(γ̃2, Y, s
′) =

γ̃1γ̃2, Xγ2 + Y, ss′ · det

Xγ2
Y


 .

and it acts onH× C as follows:

h · (τ, z) :=
(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,
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where (τ, z) ∈ H × C, h = (γ,X, ζ) ∈ GJ with γ =

 a b

c d

 .

Let k andm be fixed positive integers with k odd. For a function ϕ : H×C −→ C and

h = (γ̃, X, s) ∈ G̃J with X = (λ, µ) ∈ R2, the slash operator | k
2
,m is defined by

(
ϕ| k

2
,mh
)
(τ, z) := smφ(τ)−kem

(
−c(z+λτ+µ)2

cτ+d
+ 2λ2τ + 2λz + λµ

)
ϕ
(
aτ+b
cτ+d

, z+λτ+µ
cτ+d

)
.

For h = (γ̃, (0, 0), 1) with γ̃ =


a b

c d

 , j(γ, τ)

 ,

a b

c d

 ∈ Γ0(N), 4 | N the above

definition reduces to

(
ϕ| k

2
,mh
)
(τ, z) := j(γ, τ)−kem

(
−cz2
cτ+d

)
ϕ
(
aτ+b
cτ+d

, z
cτ+d

)
.

Denote ϕ| k
2
,mh by ϕ| k

2
,mγ̃ whenever h = (γ̃, (0, 0), 1) with γ̃ = (γ, j(γ, τ)) , γ ∈ Γ0(N).

For positive integerN with 4|N, consider the subgroup ΓJ(N) of G̃J defined by ΓJ(N) :=

Γ̃0(N)n (Z× Z) i.e.,

Definition 1.6.1. Let k,N,m be positive integers such that k is odd and 4|N. Let χ be a

Dirichlet character moduloN. A Jacobi form of weight k
2
and indexm with character χ for

the group ΓJ(N) is a complex-valued holomorphic function ϕ defined onH×C satisfying

the following conditions:

1. ϕ | k
2
,m h = χ(d)ϕ, for all h = (γ̃, X, s) ∈ ΓJ(N) with γ =

∗ ∗

c d

 ,

2. for each σ =

a b

c d

 ∈ SL2(Q), there exists an integer dσ such that the function
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ϕ | k
2
,m h, where h = (σ−1, (0, 0, 1)) has a Fourier expansion of the form

ϕ | k
2
,m h =

∑
n,r∈Z

r2≤4nmdσ

cϕ,σ(n, r)e

(
n

dσ
τ +

r

dσ
z

)
.

Further, if the inequality in the above expression is strict for every σ ∈ SL2(Q), then

ϕ is said to be a Jacobi cusp form.

Denote the space of all Jacobi forms and Jacobi cusp forms of weight k
2
and indexmwith

characterχ for the groupΓJ(N) by J k
2
,m(Γ

J(N), χ) and J cuspk
2
,m
(ΓJ(N), χ), respectively. For

more details on Jacobi forms of half-integral weight, we refer to [46].

1.6.1 Theta decomposition

Let ϕ ∈ J k
2
,m(Γ

J(N), χ) with the Fourier series expansion given by

ϕ(τ, z) =
∑
n,r∈Z
r2≤4nm

cϕ(n, r)e(nτ + rz). (1.12)

ForD ≥ 0 and r (mod 2m),we define a sequence {cµ(D)} of complex numbers as follows:

cµ(D) :=


cϕ

(
D+r2

4m
, r
)
, if D ≡ −r2 (mod 4m), r ≡ µ (mod 2m),

0, otherwise.
(1.13)

Set

hµ(τ) :=
∞∑
D=0

cµ(D)e4m(Dτ), (1.14)
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and for a natural number l, consider the Jacobi theta function defined by

θl,µ(τ, z) :=
∑
r∈Z

r≡µ(mod 2l)

e

(
r2

4l
τ + rz

)
. (1.15)

The equations (1.12), (1.14) and (1.15) imply the following decomposition of the ϕ(τ, z) :

ϕ(τ, z) =
2m∑
µ=1

hµ(τ)θm,µ(τ, z). (1.16)

The above representation is called the theta decomposition of ϕ. The transformation prop-

erties of the Jacobi form ϕ imply certain transformation properties of hµ. For more details

on the transformation properties satisfied by the function hµ, we refer to [41].

Lemma 1.6.2. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi form with the Fourier series expansion

as given in (1.12). Then there exists a positive real numberC0 such that |cϕ(n, r)| ≤ C0D
k
4 ,

where D = 4mn− r2.

The above estimate for the Fourier coefficients has nice analytic consequences as given

in the following lemma:

Lemma 1.6.3. [36] Letm be a positive integer and {cµ(D)}, µ = 1, · · · , 2m,whereD > 0

be a sequence as defined in (1.13). Let hµ(τ), θm,µ(τ, z) and ϕ(τ, z) be the power series

given by (1.14), (1.15) and (1.16), respectively. If cµ(D) = O(Dδ) for some δ > 0, then

each of the series hµ(τ) (respectively, hµ(τ)θm,µ(τ, z)) converges absolutely and uniformly

on any compact subset of H (respectively, H × C). In particular they define holomorphic

functions on H (respectively,H× C). Moreover

hµ(τ)θm,µ(τ, z)e
m(pz) = O(y−δ−

3
2 ) as y → 0,

hµ(τ)θm,µ(τ, z)e
m(pz) = O

(
e

(
iy

4m

))
as y → ∞
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hold uniformly with respect to x, where τ = x+ iy and z = pτ + q.

Lemma 1.6.4. Let ϕ : H × C → C be a holomorphic function satisfying part (i) of the

definition 1.6.1. Assume that the estimate em(pz)ϕ(τ, z) = O(y−δ) as y → 0 holds uni-

formly with respect to <(τ) for some positive real number δ. Then, ϕ ∈ J k
2
,m(Γ

J(N), χ).

Moreover, if δ < k−1
2
, then ϕ ∈ J cuspk

2
,m
(ΓJ(N), χ).

Proof. The proof is similar to that of Lemma 3 in [36].

1.7 Differential operators

Differential operators on the spaces of automorphic forms are weight-increasing linear op-

erators and they give rise to many interesting identities between Fourier coefficients of

automorphic forms. The derivative of a modular form need not be a modular form. How-

ever, one can construct differential operators by taking an appropriate linear combination

of higher-order derivatives. Rankin [42, 43] studied a general description of the differential

operators on the space of modular forms. Cohen [10] explicitly constructed certain bilin-

ear operators using differential operators and obtained cusp forms with interesting Fourier

coefficients. Zagier [50, 51] studied the algebraic properties of these operators and called

them Rankin–Cohen brackets.

1.7.1 Rankin-Cohen brackets for modular forms

Let k and l be positive integers and ν ≥ 0 be an integer. Let f and g be two complex-valued

holomorphic functions onH. The ν-th Rankin-Cohen bracket of f and g is defined by

[f, g]ν :=
ν∑
r=0

(−1)ν−r
(
ν

r

)
Γ(k + ν)Γ(l + ν)

Γ(k + r)Γ(l + ν − r)
DrfDν−rg, (1.17)
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where Drf =
1

(2πi)r
drf

dτ r
.

Remark 1.7.1. Note that the 0-th Rankin-Cohen bracket [42, 43] is the usual product, i.e.,

[f, g]0 = fg and [−,−]ν has the following property:

[f |kγ, g|lγ]ν = [f, g]|k+l+2νγ, ∀γ ∈ SL2(Z). (1.18)

Theorem 1.7.1 ([10]). Let ν ≥ 0, be an integer. If f ∈ Mk and g ∈ Ml, then [f, g]ν ∈

Mk+l+2ν . Moreover, if ν > 0, then [f, g]ν ∈ Sk+l+2ν . In fact, [ , ]ν is a bilinear map from

Mk ×Ml toMk+l+2ν .

1.7.2 Serre derivative

Let k be a positive integer and f be a complex-valued holomorphic function onH. Define

the Serre derivative by

ϑ(f)(τ) =
1

2πi

d

dτ
f(τ)− k

12
E2(τ)f(τ), (1.19)

where E2 = 1− 24
∑∞

n=1 σ(n)q
n is the Eisenstein series of weight 2.

Theorem 1.7.2. Let f be a modular form (cusp form) of weight k. Then ϑ(f) is a modular

form (cusp form) of weight k + 2.

1.7.3 Heat operators

Letm be a positive integer. Define the heat operator by

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
− ∂2

∂z2

)
.
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The heat operator does not necessarily map a Jacobi form to another Jacobi form. For k and

m positive integers, define the modified heat operator by

Lk,m := Lm − 2k − 1

6
mE2. (1.20)

Theorem 1.7.3. Let k and m be positive integers and ϕ ∈ Jk,m. Then Lk,m(ϕ) ∈ Jk+2,m.

Moreover, if ϕ is a cusp form, then Lk,m(ϕ) is also a Jacobi cusp form.

1.7.4 Heat operators for Jacobi forms of degree g

LetM be a positive definite, symmetric, half-integral g × g. Define the heat operator by

LM :=
1

(2πi)2

(
8πi|M| ∂

∂τ
−
∑

1≤i,j≤g

Mij
∂

∂zi

∂

∂zj

)
, (1.21)

where τ ∈ H and zt = (z1, z2, · · · , zg) ∈ Cg andMij is the (i, j)-th cofactor of the matrix

M. LM acts on e(nτ)e(Rz) by

LM(e(nτ)e(Rz)) = (4n|M| − M̃[rt])e(nτ)e(Rz),

where M̃ denotes the matrix of cofactorsMij of the matrixM.

Lemma 1.7.4. [41] Let ϕ ∈ Jk,M. Then for k ∈ Z+, ν ≥ 0 and A =

∗ ∗

c d

 ∈ SL2(Z),

we have

(LMϕ)|k+2,MA = LM(ϕ|k,MA) +
2|M|(k − g

2
)

πi

(
c

cτ + d

)
(ϕ|k,MA). (1.22)

The heat operator commutes with the lattice action of the Jacobi group.

Define the modified heat operator which maps Jacobi forms to Jacobi forms as
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Lk,M := LM −
(k − g

2
)|M|

3
E2. (1.23)

Lemma 1.7.5. The operator Lk,M maps a Jacobi form (resp. Jacobi cusp form) of weight

k and indexM to a Jacobi form (resp. Jacobi cusp form) of weight k + 2 and index M.

1.7.5 Rankin-Cohen brackets for Jacobi forms

Let k1, k2,m1 andm2 be positive integers and ν ≥ 0 be an integer. Let ϕ and ψ be complex-

valued holomorphic functions defined onH×C. The ν-th Rankin-Cohen bracket of ϕ and

ψ is defined by

[ϕ, ψ]ν :=
ν∑
l=0

(−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2L

l
m1

(ϕ)Lν−lm2
(ψ).

We note that here x! = Γ(x+ 1).

Remark 1.7.2. One can easily verify that

[ϕ|k1,m1γ, ψ|k2,m2γ]ν = [ϕ, ψ]|k1+k2+2ν,m1+m2γ, ∀γ ∈ ΓJ . (1.24)

Theorem 1.7.6. [6] Let ν ≥ 0 be integer. If ϕ ∈ Jk1,m1 and ψ ∈ Jk2,m2 , then [ϕ, ψ]ν is a

Jacobi form of weight k1 + k2 + 2ν and indexm1 +m2.
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Chapter 2

Nonvanishing ofL-functions associatedwith

Jacobi forms
2.1 Introduction

Let f(τ) =
∑

n⩾1 a(n)e
2πinτ be a normalized Hecke eigenform of weight k for the group

SL2(Z). LetL∗(f, s) = (2π)−sΓ(s)
∑

n⩾1 a(n)n
−s be the completedL-function associated

with f. The completed L-function L∗(f, s) has an Euler product for Re(s) ≥ k+1
2

and all

the zeros of L∗(f, s) can exist only inside the critical strip k−1
2

≤ Re(s) ≤ k+1
2
. According

to the generalized Riemann hypothesis, all the zeros of L∗(f, s) can occur only on the line

Re(s) = k
2
. Towards this direction, Kohnen proved the following:

Theorem 2.1.1. [24] Let Bk = {f1, f2, ..., fdim(Sk)} be a basis of normalized Hecke eigen-

forms for Sk. Let ϵ > 0 and t0 be given real numbers. Then there exists a constant C(t0, ϵ)

such that for k > C(t0, ϵ), the function

dim Sk∑
i=1

L∗(fi, s)

〈fi, fi〉
(2.1)

does not vanish on any point of the line segments Im(s) = t0 with k−1
2
< Re(s) < k

2
− ϵ

and k
2
+ ϵ < Re(s) < k+1

2
.

As a corollary Kohnen obtained the following result:
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2 Nonvanishing of L-functions associated with Jacobi forms

Corollary 2.1.2. [24] Let ϵ > 0 and t0 be given real numbers. For k > C(t0, ϵ) and any

s = Re(s) + it0 with k−1
2

< Re(s) < k
2
− ϵ and k

2
+ ϵ < Re(s) < k+1

2
, ∃ a cusp form

f ∈ Bk such that L∗(f, s) 6= 0.

To prove Theorem 2.1.1 and Corollary 2.1.2, Kohnen constructed the following kernel

functions:

Rk,s(τ) = γk,s
∑

(
a b

c d

)
∈SL2(Z)

(cτ + d)−k
(
aτ + b

cτ + d

)−s

,

where τ ∈ H and 1 < Re(s) < k − 1 and γk,s = 1
2
eπis/2Γ(s)Γ(k − s). These kernel

functions relate a cusp form to its L-values.

Theorem 2.1.3. [24] For a given positive integer k and a complex number s = σ+ it with

1 < σ < k − 1, the function Rk,s ∈ Sk. Moreover, if f ∈ Sk, then we have

〈f,Rk,s〉 =
(−1)

k
2π(k − 2)!

2k−2
L∗(f, s).

To prove Theorem 2.1.1 it is sufficient to prove the nonvanishing of the first Fourier coef-

ficient of Rk,s for large weights.

Kohnen’s work is generalized to other kinds of automorphic forms like half-integral

weight modular forms [28], Siegel modular forms [12], Hilbert modular forms [40]. Also,

there are some results on the nonvanishing of derivatives of L-functions [15, 27] and prod-

ucts of L-functions [9].

One of the key points to prove Theorem 2.1.3 is to express the kernel functions Rk,s as

a linear combination of Poincaré series for modular forms, i.e.

Rk,s(τ) = (2π)sΓ(k − s)
∑
n≥1

ns−1Pk,n(τ). (2.2)

Nonvanishing of Poincaré series Pk,n is an interesting problem in number theory. It is
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2 Nonvanishing of L-functions associated with Jacobi forms

not known whether Pk,n vanishes identically or not for general k and n. From (2.2), one can

observe that the nonvanishing of kernel functions implies the nonvanishing of the Poincaré

series. Rankin [44] studied the nonvanishing of Poincaré series using analytic tools and

proved the following:

Theorem 2.1.4. [44] There exists positive constants k0 and B with B > 4log 2, such that

for all k ≥ k0 and all positive integers n ≤ k2e−B
log(k)

log log(k) the Poincaré series Pk,n does not

vanish identicaly.

The Jacobi Poincaré series Pk,m;n,r (1.7) are a natural generalization of Pk,n to several

variables. Following the work of Rankin, Das [11] obtained the following result for the

nonvanishing of Jacobi Poincaré series:

Theorem 2.1.5. [11] Letm, n ∈ N and r ∈ Z such thatD = 4nm−r2 > 0 and πD > 2m.

Then the Jacobi Poincaré series Pk,m;n,r 6= 0 whenever

M

(
πD

m

)
σ0(D)D <

m
8
7

2
2
9π

(
2

62/3
+

54

25/6
+

16

23/4

)− 3
2

,

where σ0(D) denotes the number of divisors of d, M(x) = e
Blog x

loglog 2x and B is as in Theo-

rem 2.1.4.

In the same paper, Das also obtained the nonvanishing of Jacobi Poincaré series of matrix

index.

Theorem 2.1.6. [11] Let 2R ≡ 0 (mod Zg 2M). Then there exists an integer k0 and a

constant B ≥ 3log2 such that for all even k ⩾ k0, Pk,M;(n,R) does not vanish identically

whenever

k′ ≤ πD

|2M|
≤ k′1+α(g)exp

(
−B log(k′)
log log(k′)

)
,
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2 Nonvanishing of L-functions associated with Jacobi forms

where k′ = k − g
2
− 1 and α(g) =


2

3(g+2)
if 1 ⩽ g ⩽ 4,

2
3g

if g ⩾ 5.

Jacobi Poincaré series for the congruence subgroups are defined below:

Definition 2.1.7. Let n ∈ Z and R ∈ Zg with 4n > M−1[Rt]. For k ≥ g + 2, define the

Poincaré series

PN
k,M;n,R(τ, z) =

∑
γ∈ΓJ

g,∞\γ∈ΓJ
g (N)

e(nτ +Rz)|k,mγ(τ, z),

where ΓJg (N) = Γ0(N)n (Zg,1 × Zg,1).

It is well known that PN
k,M;(n,R) is a Jacobi cusp form of weight k and indexM with respect

to the group ΓJg (N).

Shankhadhar [45] generalized the work of Das and obtained nonvanishing of Poincaré

series for congruence subgroups.

Theorem 2.1.8. [45] For any ϵ > 0 there exists a positive integer k0(ϵ,M, N) such that

PN
k,M;n,R(τ, z) does not vanish identically if k > k0 and

Dϵ

(
πD

det(2M)

)
(D,N)

2
g �ϵ (det(2M))

1
g

(
N

σ0(N)

) 2
g

k′1+α(g),

where k′ = k − g
2
− 1, α(g) =


2

3(g+2)
if 1 ⩽ g ⩽ 4,

2
3g

if g ⩾ 5.

In this chapter, we generalize the work of Kohnen in the context of Jacobi forms of

integer index [38] and matrix index [39] as well. We also obtain nonvanishing of Jacobi

Poincaré series in both cases.
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2 Nonvanishing of L-functions associated with Jacobi forms

2.2 Statements of results

First we state our main results in the case g = 1. For any Jacobi cusp form ϕ we write

ϕ(τ, z) = ϕ(−τ ,−z). Then ϕ has Fourier coefficients cµ(N) in the corresponding theta

decomposition.

Theorem 2.2.1. [38] Let m ∈ Z, ϵ > 0 and t′ be real numbers. Then for any given

s = σ+ it′ with k
2
− 3

4
< σ < k

2
− 1

4
− ϵ or k

2
− 1

4
+ ϵ < σ < k

2
+ 1

4
there exists k0 = k0(t

′, ϵ)

and a Hecke eigenform ϕ of weight k > k0 and indexm such that the vector-valued function

Λ(ϕ, s) = (Λi(ϕ, s))i=0,1,...,2m−1 6= 0.

In [39] we generalize the above result to Jacobi forms of matrix index (g ∈ N).

Theorem 2.2.2. [39] Let M be a g × g symmetric positive-definite half-integral matrix,

ϵ > 0 and t′ be real numbers. Then for any given s = σ+it′ with k
2
− g

4
− 1

2
< σ < k

2
− g

4
−ϵ

or k
2
− g

4
+ ϵ < σ < k

2
− g

4
+ 1

2
there exists k0 = k0(t

′, ϵ) and a Hecke eigenform ϕ of weight

k > k0 and indexM such that the vector-valued function Λ(ϕ, s) = (Λi(ϕ, s))i∈Zg\Zg2M 6=

0.

We have the following nonvanishing of the Jacobi Poincaré series.

Theorem 2.2.3. [39] Let M be a g × g symmetric positive-definite half-integral matrix,

n ∈ N and R be as in Theorem 2.4.2 and 0 < δ < 1
2
. Then for any positive integer k > k0

we have Pk,M;n,R 6= 0 where

k0 = max

8πD +2,2(
(2πD)2δ2

g
2
+1
√
M

π(e(Rt0) + e(−Rt0))
)

1
2δ +g+1,

2log

(
22π3(2πD)1+δ+

g
4

)
log2

+g+2

 .

The approach of the proof is similar to the work of Kohnen. We first define kernel

functions, calculate the Fourier coefficients of these kernel functions, and obtain their non-
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2 Nonvanishing of L-functions associated with Jacobi forms

vanishing. We only give a detailed proof of Theorem 2.2.2. The case g = 1 [38] can be

deduced as a particular case of Theorem 2.2.2.

2.3 Kernel Functions

Let k > 2g + 4 be a positive even integer and M be a symmetric positive definite half-

integral g×g matrix. For t0 ∈ (2M)−1Zg,1 and s ∈ Cwith 1 < Re(s) < k−2g−1 define

the kernel functions

Ωk,M
t0,s (τ, z) =

∑
h∈HJ

g \ΓJ
g

ϕt0,s(τ, z)|k,Mh(τ, z), (2.3)

where ϕt0,s(τ, z) = 1
τs
e(−1

τ
M[z − t0]) and HJ

g = {(Id, (λ, 0)) : λ ∈ Zg,1}. A set of all

coset representatives for HJ
g \ ΓJg is given by {(Id, (0, ν))(M, (0, 0)) :M ∈ Γ, ν ∈ Zg,1}.

Theorem 2.3.1. [39] Let k be a positive integer,M be a positive definite symmetric matrix

of order g with k > 2g + 4 and t0 ∈ (2M)−1Zg,1. If 1 < Re(s) < k − 2g − 1 then

Ωk,M
t0,s ∈ J cuspk,M .

To prove Theorem 2.3.1, it is sufficient to prove the absolute and uniform convergence

of the kernel functions Ωk,M
t0,s as the required transformation properties for Ωk,M

t0,s to be a Ja-

cobi form are easy to observe from (2.3). The required Fourier expansion will be computed

later in Theorem 2.4.1 and the cuspidality will be deduced. First, we state a fact that will

be used in the proof of the above theorem.

Lemma 2.3.2. For every (τ, z) ∈ H × Cg,1, there exists r = r(τ, z) ≥ 0 such that the

image of B(τ, 1
2
)×D(z, 1

2
) (where B(τ, 1

2
) denotes for hyperbolic ball) under anyM ∈ Γ

is contained in B(M(τ), 1
2
)×D(0, r).
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2 Nonvanishing of L-functions associated with Jacobi forms

Now we prove Theorem 2.3.1.

Proof. Let (τ, z) ∈ H×Cg,1. Using the factB(τ, 1
2
) = D(τ0, r0) for some τ0 and holomor-

phicity of the functions ϕt0,s and ϕt0,s|k,Mh for any h ∈ HJ
g \ ΓJg , we have

|ϕt0,s|k,Mh(τ, z)| ⩽
2gΓ(1 + g

2
)

π1+ g
2 r20

∫
D(τ0,r0)×D(z, 1

2
)

|ϕt0,s|k,Mh((τ ′, z′))|dx′dy′du′dv′.

The map (τ ′, z′) 7→ µk,M(τ ′, z′)y′−g−2 is continuous and hence there exists a positive real

numberm(τ,z) such that

1 ⩽ µk,M(τ ′, z′)y′−g−2

m(τ,z)

for all (τ ′, z′) ∈ D(τ0, r0)×D(z, 1
2
). Hence rewriting the above equation we get

|ϕt0,s|k,Mh(τ, z)| ⩽
2gΓ(1 + g

2
)

π1+ g
2 r20mτ,z

∫
B(τ, 1

2
)×D(z, 1

2
)

|ϕt0,s|k,Mh(τ ′, z′)|µk,M(τ ′, z′)dV (τ ′, z′).

Summing over all the elements of the cosetHJ
g \ ΓJg , we have

2−gπ1+ g
2

r20
Γ(1 + g

2
)
mτ,z

∑
h∈HJ

g \ΓJ
g

|ϕt0,s|k,Mh(τ, z)|

⩽
∑

h∈HJ
g \ΓJ

g

∫
B(τ, 1

2
)×D(z, 1

2
)

|ϕt0,s(h(τ ′, z′))|µk,M(h(τ ′, z′))dV (τ ′, z′)

=
∑

h∈HJ
g \ΓJ

g

∫
h(B(τ, 1

2
)×D(z, 1

2
))

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dV (τ ′z′)

=
∑
M∈Γ

∑
ν∈Zg,1

∫
[Id,0,ν].M(B(τ, 1

2
)×D(z, 1

2
))

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dV (τ ′, z′)

⩽
∑
M∈Γ

∑
ν∈Zg,1

∫
[Id,0,ν].(B(M(τ), 1

2
)×D(0,r))

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dV (τ ′, z′)
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2 Nonvanishing of L-functions associated with Jacobi forms

=
∑
M∈Γ

∑
ν∈Zg,1

∫
B(M(τ), 1

2
)

∫
D(ν,r)

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dV (τ ′, z′).

Estimating the integral we have

∑
ν∈Zg,1

∫
D(ν,r)

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dp′dq′

⩽ 2rg

∫
∪ν∈Zg,1D(ν,r)

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)y′−gdu′dv′dp′dq′.

A simple calculation shows that

∑
ν∈Zg,1

∫
D(ν,r)

|ϕt0,s(τ ′, z′)|µk,M(τ ′, z′)dp′dq′

⩽
√

23g

|M|
R2g| 1

τ ′s−g
|y′

k−3g
2 .

Hence we obtain

2−gπ1+ g
2

r20
Γ(1 + g

2
)
mτ,z

∑
h∈HJ

g \ΓJ
g

|ϕt0,s|k,Mh((τ, z))|

⩽
√

23g

|M|
R2g

∑
M∈Γ

∫
B(M(τ), 1

2
)

| 1

τ ′s−g
|y′

k−3g−4
2 dx′dy′.

Now estimatemτ,z whenever k > 2g + 4 to get

∑
h∈HJ

g \ΓJ
g

|ϕt0,s|k,Mh((τ, z))| � (1 + y2)g

y(
k
2
+g)

∑
M∈Γ

∫
B(M(τ), 1

2
)

| 1

τ ′s−g
|y′

k−3g−4
2 dx′dy′.
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2 Nonvanishing of L-functions associated with Jacobi forms

Simplifying, for 1 < r0 < σ one gets

∑
h∈HJ

g \ΓJ
g

|ϕt0,s|k,Mh((τ, z))| � y−
k
2 (y +

1

y
)g+1e

c1
y

∫
B′

y′
k−3g−4

2

|τ ′|σ−g−r|τ ′|r
dx′dy′,

where B′ = {τ ′ ∈ H | y′ < T (τ,Γ) = 2cosh(1
2
)cΓ(y +

1
y
), 1

|τ ′|2 � y+ 1
y

y′
}. Proceeding as in

[34], for any 1 < r0 < σ one gets

∑
h∈HJ

g \ΓJ
g

|ϕt0,s|k,Mh((τ, z))|�y−
k
2 (y +

1

y
)g+1e

c1
y

T (τ,Γ)∫
y′=0

∞∫
x′=−∞

y′
k−3g−4

2

(x′2 + y′2)
r0
2

(
y + 1

y

y′

)σ−r0−g
2

dx′dy′

= y−
k
2 (y +

1

y
)
σ−r0+g+2

2 e
c1
y

T (τ,Γ)∫
y′=0

∞∫
x′=−∞

y′
k−σ−2g+r0−4

2

(x′2 + y′2)
r0
2

dx′dy′

� y−
k
2 (y +

1

y
)
σ−r0+g+2

2 e
c1
y
Γ( r−1

2
)

Γ( r
2
)

T (τ,Γ)∫
y′=0

y′
k−σ−2g−r0−2

2 dy

� y−
k
2 (y +

1

y
)
σ−r0+g+2

2 e
c1
y
Γ( r−1

2
)

Γ( r
2
)
T (τ,Γ)

k−σ−r0−2g
2 ,

whenever 1 < σ < k−2g−1.HenceΩk,M
t0,s converges absolutely and uniformly on compact

subsets ofH× Cg,1.

Theorem 2.3.3. [39] Let k and M be as before. For any f ∈ J cuspk,M , the inner product

〈Ωk,M
t0,s , f〉 is a holomorphic function on the vertical strip 1 +

g
2
< Re(s) < k − 2g − 1.

Proof. Rewrite the definition of kernel functions as

Ωk,M
t0,s (τ, z) =

∑
M∈Γ

∑
ν∈Zg,1

ϕt0,s|k,M[Id, 0, ν]|k,MM(τ, z).
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2 Nonvanishing of L-functions associated with Jacobi forms

Putting t0 = (2M)−1βt with β ∈ Zg one has

Ωk,M
t0,s (τ, z) =

∑
M∈Γ

∑
ν∈Zg,1

ϕ0,s|k,M[Id, 0, ν]|k,M[Id, 0, (2M)−1βt]|k,MM(τ, z).

Theta inversion formula is given by

∑
ν∈Zg,1

ϕ0,s|k,M[Id, 0, ν] =
1√

(2i)g|M|
1

τ s−
g
2

∑
R∈Zg\Zg(2M)

ΘM,R(τ, z).

Hence one gets

Ωk,M
t0,s (τ, z) =

1√
(2i)g|M|

∑
M∈Γ

 1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z)

 |k,MM.

Consequently one has

〈Ωk,M
t0,s , f〉=

∫
Γ\H×Cg,1

Ωk,M
t0,s (τ, z)f(τ, z)µ

2
k,MdV

=
1√

(2i)g|M|

∫
Γ\H×Cg,1

∑
M∈Γ

 1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z)

 |k,MM

× f(τ, z)|k,MMµ2
k,MdV.

The transformation formula for µk,M and the usual unfolding argument implies

√
(2i)g|M|〈Ωk,M

t0,s , f〉 =
∫
H

∫
Zg,1τ+Zg,1\Cg,1

 1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z)


× f(τ, z)µ2

k,MdV.
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Putting the theta decomposition of f in the above equation one gets

√
(2i)g|M|〈Ωk,M

t0,s , f〉=
1

2g
√

|M|

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)

∫
H

1

τ s−
g
2

fR(τ)y
k− g

2
−2dxdy.

Now consider the inner integral

∫
H

1

τ s−
g
2

fR(τ)y
k− g

2
−2dxdy

=

∞∫
y=0

1∫
x=0

∑
n∈Z

1

(τ + n)s−
g
2

e(
n

4
M−1[Rt])fR(τ)y

k− g
2
−2dxdy

=
∑

n0 (mod 4|M|)

e(
n0

4
M−1[Rt])

∞∫
y=0

1∫
x=0

ζ4|M|(τ + n0, s−
g

2
)fR(τ)y

k− g
2
−2dxdy,

where ζmZ(τ, z) =
∑
l∈Z

(τ + 4|M|l)−s. Hence it is sufficient to show that integral

∞∫
y=0

1∫
x=0

ζ4|M|(τ + n0, s−
g

2
)fR(τ)y

k− g
2
−2dxdy (2.4)

defines a holomorphic function of s on the given region. Note that fR(τ) = O(e−π
y

2|M| ) as

y → ∞ uniformly on x and for σ = Re(s) > 1 + g
2
one has

ζ4|M|Z

(
τ + n0, s−

g

2

)
� e−π

y
2|M|

(4|M|)−σ+ g
2

(1 + y−σ+
g
2 ).

This implies

∞∫
y=0

1∫
x=0

|ζ4|M|

(
τ + n0, s−

g

2

)
fR(τ)y

k− g
2
−2|dxdy
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�
∞∫

y=0

e−π
y

|M| (yk−
g
2
−2 + yk−2−σ)dy

�
(

π

|M|

)−k+ g
2
+1

Γ
(
k − g

2
− 1
)
+

(
π

|M|

)−k+σ+1

Γ(k − σ − 1).

From this relation, one deduces that the integral (2.4) is absolutely and uniformly convergent

on 1 + g
2
< Re(s) < k − 2g − 1. Hence the theorem follows.

Theorem 2.3.4. [39] Let k > 2g + 4 and M be as above and t0 ∈ (2M)−1Zg. If s ∈ C

such that 1 + g
2
< Re(s) < k − 2g − 1 then we have

Ωk,M
t0,s (τ, z) =

1√
(2i)g|M|

(2π)s−
g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈zg\zg(2M)

e(−R(2M)−1βt)

×
∞∑
D=1

(
D

4|M|

)s− g
2
−1

Pk,M;( D
4|M|+

1
4
M−1[Rt]),R(τ, z).

Proof. Rewriting the definition ofΩk,M
t0,s as in the proof of Theorem 2.3.3,

√
(2i)g|M|Ωk,M

t0,s (τ, z)

equals

=
∑

M∈Γ\Γ∞

(
∑

M ′∈Γ∞

1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z))|k,MM ′|k,MM.

Now Γ∞ =

±

1 l

0 1

 : l ∈ Z

 . Then

∑
M ′∈Γ∞

1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z))|k,MM ′

=
∑
l∈Z

1

(τ + l)s−
g
2

∑
R∈Zg\Zg(2M)

(e(−R(2M)−1βt) + e(R(2M)−1βt))ΘM,R(τ + l, z).
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2 Nonvanishing of L-functions associated with Jacobi forms

Rewrite the above equation to get

∑
M ′∈Γ∞

1

τ s−
g
2

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)ΘM,R(τ, z))|k,MM ′

=
∑

R∈Zg\Zg(2M)

(e(−R(2M)−1βt) + e(R(2M)−1βt))ΘM,R(τ, z)

×
4|M|∑
l0=1

∑
l∈Z

e(1
4
M−1[Rt]l0)

(τ + l0 + 4|M|l)s− g
2

=

4|M|∑
l0=1

∑
R∈Zg\Zg(2M)

(
e

(
l0
4
M−1[Rt]−R(2M)−1βt

)
+ e

(
l0
4
M−1[Rt] + R(2M)−1βt

))
× ΘM,R(τ, z)ζ4|M|Z(τ + l0, s−

g

2
).

Inserting the Fourier expansion of ζ4|M|Z(τ, s) =
1

(4|M|)
(2π)s−

g
2

eπi( s2− g
4 )Γ(s− g

2
)

∞∑
D=1

( D
4|M|)

s− g
2
−1e(D(τ+l0)

4|M| )

one obtain

√
(2i)g|M|Ωk,M

t0,s (τ, z)

=
1

(4|M|)
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

4|M|∑
l0=1

∑
R∈Zg\Zg(2M)

[
e

(
l0
4
M−1[Rt]−R(2M)−1βt

)

+ e

(
l0
4
M−1[Rt] + R(2M)−1βt

)] ∞∑
D=1

∑
M∈Γ

(
D

4|M|

)s− g
2
−1

ΘM,R(τ, z)e(
D(τ + l0)

4|M|
)|k,MM

=
1

(4|M|)
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

4|M|∑
l0=1

∑
R∈Zg\Zg(2M)

[
e

(
l0
4
M−1[Rt]−R(2M)−1βt

)

+ e

(
l0
4
M−1[Rt] + R(2M)−1βt

)] ∞∑
D=1

(
D

4|M|

)s− g
2
−1

e

(
Dl0
4|M|

)
×

∑
M∈Γ

∑
µ∈Zg

µ≡R (mod Zg(2M))

e

((
D

4|M|
+

1

4
M−1[µt]

)
τ + µz

)
|k,MM.
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2 Nonvanishing of L-functions associated with Jacobi forms

For every D, l0 and R one has

∑
M∈Γ

∑
µ∈Zg

µ≡R (mod Zg(2M))

e

((
D

4|M|
+

1

4
M−1[µt]

)
τ + µz

)
|k,MM

=
1

2

∑
c,d∈Z, (c,d)=1, µ∈Zg

µ≡R (mod Zg(2M))

(cτ + d)−ke

(
−c

cτ + d
M [zt]

)
e

((
D

4|M|
+

1

4
M−1[µt]

)
aτ + b

cτ + d
+

µz

cτ + d

)
,

where a and b are chosen such that ad− bc = 1. Thus

∑
M∈Γ

∑
µ∈Zg

µ≡R (mod Zg(2M))

e

((
D

4|M|
+

1

4
M−1[µt]

)
τ + µz

)
|k,MM

=
1

2

∑
c,d∈Z, (c,d)=1,

µ∈Zg

(cτ + d)−ke

(
− c

cτ + d
M[zt] +

aτ + b

cτ + d
M[µt] + 2µM zt

cτ + d

)

× e

((
D

4|M|
+

1

4
M−1[Rt]

)
aτ + b

cτ + d

)
e

(
R

z

cτ + d
+Rµ

aτ + b

cτ + d

)
=

1

2
Pk,M;( D

4|M|+
1
4
M−1[Rt]),R(τ, z).

This implies

√
(2i)g|M|Ωk,M

t0,s (τ, z)

=
1

(8|M|)
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∞∑
D=1

(
D

4|M|

)s− g
2
−1

×
4|M|∑
l0=1

∑
R∈Zg\Zg(2M)

e

((
D

4|M|
+

1

4
M−1[Rt]

)
l0

)
(e(−R(2M)−1βt) + e(R(2M)−1βt))

× Pk,M;( D
4|M|+

1
4
M−1[Rt]),R(τ, z).
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2 Nonvanishing of L-functions associated with Jacobi forms

We have the following identity:

4|M|∑
l0=1

e

((
D

4|M|
+

1

4
M−1[Rt]

)
l0

)
=


4|M|, if D

4|M| +
1
4
M−1[Rt] ∈ Z,

0, otherwise.

Using the above identity, we see that

√
(2i)g|M|Ωk,M

t0,s (τ, z)

=
(2π)s−

g
2

2eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈Zg\Zg(2M)

(e(−R(2M)−1βt) + e(R(2M)−1βt))

×
∞∑
D=1

(
D

4|M|
)s−

g
2
−1Pk,M;( D

4|M|+
1
4
M−1[Rt]),R(τ, z)

=
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈Zg\Zg(2M)

e(−R(2M)−1βt)

×
∞∑
D=1

(
D

4|M|
)s−

g
2
−1Pk,M;( D

4|M|+
1
4
M−1[Rt]),R(τ, z),

where in the last line we have used the relation Pk,M;n,R = Pk,M;n,−R for k even. Hence

the theorem follows.

Corollary 2.3.5. Let k > 2g + 4 and M be as above and t0 ∈ (2M)−1Zg. If s ∈ C such

that 1 + g
2
< Re(s) < k − 2g − 1 and f ∈ J cuspk,M then we have

〈Ωk,M
t0,s , f〉 =

π

2k−2eπi
s
2

Γ(k − g
2
− 1)

Γ(s− g
2
)Γ(k − s)

∑
R∈Zg\(Zg(2M))

e(−Rt0)ΛR(f, k − s).

Proof. It follows from Theorem 1.5.3, (1.10), and Theorem 2.3.4.
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2 Nonvanishing of L-functions associated with Jacobi forms

2.4 Nonvanishing of L-functions

Theorem 2.4.1. [39] Let k be a positive integer,M be a positive definite symmetric matrix

of order g with k > 2g + 4 and t0 ∈ (2M)−1Zg. If 1 < Re(s) < k − 2g − 1, then Ωk,M
t0,s

has Fourier series expansion

Ωk,M
t0,s (τ, z) =

∑
n∈Z, R∈Zg ,
4n>M−1[Rt]

ωk(n,R)e(nτ +Rz),

where

ωk(n,R)=
πs−

g
2 ie(− s

4
)Ds− g

2
−1

2g−s
√

|M|
(e(−Rt0) + e(Rt0))

Γ(s− g
2
)

+ (−i)k−s−1 (2πD)k−s−1

Γ(k − s)
{e(−s

2
)I{2Mt0+2MZg}(R) + e(

−k + s

2
)I{−2Mt0+2MZg}(R)}

+
(2π)k−

g
2Dk− g

2
−1i1−s−

g
2

2
g
2

√
|M|Γ(k − g

2
)

∑
(a,c)=1, c′c≡1(mod a),

ac>0

(
a

c
)k−sa−k

∑
ν(aZg,1)

e(R
ν − t0
a

)

[
e(− c

a
M[ν − to])e(

nc′

a
) 1F1(k − s, k − g

2
;−2πDi

ac
)

+ e(
c

a
M[ν − to])e(−

nc′

a
) 1F1(k − s, k − g

2
;
2πDi

ac
)

]
,

where

IX(a) =


1 if a ∈ X,

0 otherwise

and 1F1 is Kummer’s hypergeometric function.

Proof. Rewriting the definition of Ωk,M
t0,s as
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2 Nonvanishing of L-functions associated with Jacobi forms

Ωk,M
t0,s (τ, z) =

∑
ν∈Zg(

a b

c d

)
∈Γ

(cτ + d)−ke(− c

cτ + d
M[z])(

aτ + b

cτ + d
)−se

(−M[ z
cτ+d

+ ν − t0]
aτ+b
cτ+d

)
.

Break the sum into three parts corresponding to the matrices with c = 0, a = 0, and

ac 6= 0 and compute the Fourier expansion of each part. Sum C0 corresponding to matrices

satisfying c = 0 i.e.,

±

1 l

0 1

 : l ∈ Z

 is given by

C0 =
∑

l∈Z, ν∈Zg,1

[
(τ + l)−se

(
−M[z + ν − t0]

τ + l

)
+ (τ + l)−se

(
−M[−z + ν − t0]

τ + l

)]
.

The contribution of the first part of the sum to (n,R)th Fourier coefficient c01(n,R) is given

by

c01(n,R) =

ic+∞∫
ic−∞

(

ic1+∞∫
ic1−∞

...

icg+∞∫
icg−∞

τ−se

(
−M[z − t0]

τ

)
e(−R.z)dz)e(−nτ)dτ,

where c, ci ∈ R for i = 1, 2, ..., g and c > 0.We have

c01(n,R) = e(−Rt0)
ic+∞∫
ic−∞

(

ic1+∞∫
ic1−∞

...

icg+∞∫
icg−∞

τ−se(−M[z]

τ
−Rz)dz)e(−nτ)dτ

= e(−Rt0)
1

(2i)
g
2

√
|M|

ic+∞∫
ic−∞

τ−se(
1

4
M−1[Rt]τ)τ

g
2 e(−nτ)dτ

=
πs−

g
2 ie(− s

4
)(n− 1

4
M−1[Rt])s−

g
2
−1

2g−s
√

|M|
e(−Rt0)
Γ(s− g

2
)
.

Similarly one can compute the contribution of the second part to get the Fourier expansion
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2 Nonvanishing of L-functions associated with Jacobi forms

of C0

C0(n,R) =
πs−

g
2 ie(− s

4
)(n− 1

4
M−1[Rt])s−

g
2
−1

2g−s
√

|M|
(e(−Rt0) + e(Rt0))

Γ(s− g
2
)

. (2.5)

The sum A0 corresponding to matrices satisfying a = 0, i.e.,

±

0 −1

l 1

 : l ∈ Z

 is

given by

A0 =
∑

l∈Z, ν∈Zg

[
e(−s

2
)(τ + l)−k+se

(
−M[z]

τ + l
)e(−

M[ z
τ+l

+ ν − t0]
−1
τ+l

)

+ e(
s

2
)(τ + l)−k+se(−M[z]

τ + l
)e

(
−
M[ −z

τ+l
+ ν − t0]
−1
τ+l

)]
=

∑
l∈Z, ν∈Zg

[
e(−s

2
)(τ + l)−k+se

(
−M[z]

τ + l
)e(

M[ z
τ+l

+ ν − t0]
1
τ+l

)

+ e(
s

2
)(τ + l)−k+se(−M[z]

τ + l
)e

(M[ z
τ+l

+ ν + t0]
1
τ+l

)]
=

∑
l∈Z, ν∈Zg

[
e(−s

2
)(τ + l)−k+se(2zM(ν − t0) + (τ + l)M[ν − t0])

+ e(
s

2
)(τ + l)−k+se(2zM(ν + t0) + (τ + l)M[ν + t0])

]
.

Similar to the case of c = 0 one gets the Fourier coefficients corresponding to a = 0

A0(n,R) =


(2π)k−se(− s

2
)(−i)k−s−1e(− s

2
)Dk−s−1

Γ(k − s)
if R + 2Mt0 ∈ 2MZg,

(2π)k−se( s
2
)(−i)k−s−1e(− s

2
)Dk−s−1

Γ(k − s)
if R− 2Mt0 ∈ 2MZg.

(2.6)
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2 Nonvanishing of L-functions associated with Jacobi forms

Now the sum corresponding to the matrices with ac 6= 0 is given by

B0 =
∑

ac ̸=0, (a,c)=1,
ν∈Zg,1

(cτ + d)−ke(− c

cτ + d
M[z])(

aτ + b

cτ + d
)−se

(−M[ z
cτ+d

+ ν − t0]
aτ+b
cτ=d

)

=
∑

ac ̸=0, (a,c)=1,
ν∈Zg,1

(
cτ + d

aτ + b

)−k+s

(aτ + b)−ke(− c

a
M[ν − t0])e

(
− a

aτ + b
M[z +

ν − t0
a

]

)

=
∑

ac ̸=0, (a,c)=1,
ν∈Zg,1

a−k
(
c

a
− 1

a2(τ + b
a
)

)−k+s

(τ +
b

a
)−ke(− c

a
M[ν − t0])

× e

(
− 1

τ + b
a

M[z +
ν − t0
a

]

)
=

∑
ac ̸=0, (a,c)=1, ν(Zg,1a),
bc≡1(a), α∈Z, β∈Zg,1

a−k
(
c

a
− 1

a2(τ + β + b
a
)

)−k+s

(τ + β +
b

a
)−ke(− c

a
M[ν − t0])

× e

(
− 1

τ + β + b
a

M[z + α +
ν − t0
a

]

)
=

∑
ac ̸=0, (a,c)=1, ν(Zg,1a),
bc≡1(a), α∈Z, β∈Zg,1

a−ke(− c

a
M[ν − t0])Fa,c(τ +

b

a
, z +

ν − t0
a

),

where Fa,c(τ, z) =
∑

α∈Zg,1,β∈Z

(
c
a
− 1

a2(τ+β)

)−k+s

(τ + β)−ke

(
− 1
τ+β

M[z + α]

)
. Now for

ac > 0, the contribution to (n,R)-th Fourier coefficient is given by

F+
a,c(n,R) =

ic+∞∫
ic−∞

(
c

a
− 1

a2τ

)−k+s

τ−k
( ic1+∞∫
ic1−∞

...

icg+∞∫
icg−∞

e

(
−1

τ
M[z]−Rz

)
dz

)
e(−nτ)dτ

=
1

(2i)
g
2

√
|M|

ic+∞∫
ic−∞

(
c

a
− 1

a2τ

)−k+s

τ−ke

(
−(n− 1

4
M−1[Rt])τ

)
dτ.
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2 Nonvanishing of L-functions associated with Jacobi forms

Now the change of variables τ → a
c
it implies

F+
a,c(n,R) =

1

2
g
2

√
|M|

(
a

c
)−(s− g

2
−1)i1−s−

g
2

c+i∞∫
c−i∞

(
t+

i

a2

)−k+s

t−(s− g
2
)

× e

(
2π(n− 1

4
M−1[Rt])

a

c
t

)
dτ.

Using the integral representation of Kummer’s hypergeometric functions one gets that

F+
a,c(n,R) =

(2π)k−
g
2Dk− g

2
−1i1−s−

g
2

2
g
2

√
|M|Γ(k − g

2
)

(
a

c
)k−s 1F1(k − s, k − g

2
;−2πDi

ac
).

Similarly one can compute the contribution of the terms with ac < 0 to obtain

B0(n,R) =
(2π)k−

g
2Dk− g

2
−1i1−s−

g
2

2
g
2

√
|M|Γ(k − g

2
)

∑
(a,c)=1, cc′≡1(a),

ac>0

(
a

c
)k−sa−k

∑
ν(aZg,1)

e(R
ν − t0
a

)[e(− c

a
M[ν − to])e(

nc′

a
) 1F1(k − s, k − g

2
;−2πDi

ac
)

+ e(
c

a
M[ν − to])e(−

nc′

a
) 1F1(k − s, k − g

2
;
2πDi

ac
)].

Theorem 2.4.2. [39] Let M and ωk(n,R) be as in Theorem 2.4.1 for fixed (n,R) with

2Rt0 /∈ Z + 1
2
. Then there exists k0 such that for all k > k0 the Fourier coefficient

ωk(n,R) 6= 0 for s = k
2
+ g

4
− δ − it′, 0 < δ < 1

2
.

Proof. Let us assume that for given M, n and R, there does not exist any such k0, i.e.,
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2 Nonvanishing of L-functions associated with Jacobi forms

there are infinitely many large k such that ωk(n,R) = 0. Then

0 =
πs−

g
2 ie(− s

4
)Ds− g

2
−1

2g−s
√

|M|
(e(−Rt0) + e(Rt0))

Γ(s− g
2
)

+ (−i)k−s−1 (2πD)k−s−1

Γ(k − s)
{e(−s

2
)I{2Mt0+2MZg}(R) + e(

−k + s

2
)I{−2Mt0+2MZg}(R)}

+
(2π)k−

g
2Dk− g

2
−1i1−s−

g
2

2
g
2

√
|M|Γ(k − g

2
)

∑
(a,c)=1, cc′≡1(a),

ac>0

(
a

c
)k−sa−k

∑
ν(aZg,1)

e(R
ν − t0
a

)

[
e(− c

a
M[ν − to])e(

nc′

a
) 1F1(k − s, k − g

2
;−2πDi

ac
)

+ e(
c

a
M[ν − to])e(−

nc′

a
) 1F1(k − s, k − g

2
;
2πDi

ac
)

]
.

Rewrite the above equation as

−1=
2g−s

√
|M|(−i)k−s−1(2πD)k−s−1Γ(s− g

2
)

πs−
g
2 ie(− s

4
)Ds− g

2
−1Γ(k − s)

×
e(− s

2
)I{2Mt0+2MZg}(R) + e(−k+s

2
)I{−2Mt0+2MZg}(R)

(e(−Rt0) + e(Rt0))

+
(2π)k−

g
2Dk− g

2
−1i1−s−

g
2 2g−s

√
|M|Γ(s− g

2
)

2
g
2

√
|M|Γ(k − g

2
)πs−

g
2 ie(− s

4
)Ds− g

2
−1

1

(e(−Rt0) + e(Rt0))

×
∑

(a,c)=1, cc′≡1(a),
ac>0

(
a

c
)k−sa−k

∑
ν(aZg,1)

e(R
ν − t0
a

)

×
[
e(
−c
a
M[ν − to])e(

nc′

a
) 1F1(k − s, k − g

2
;−2πDi

ac
)

+ e(
c

a
M[ν − to])e(−

nc′

a
) 1F1(k − s, k − g

2
;
2πDi

ac
)

]
.
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2 Nonvanishing of L-functions associated with Jacobi forms

Applying modulus on both the sides, one has

1 ⩽
∣∣∣∣2g−s

√
|M|(−i)k−s−1(2πD)k−s−1Γ(s− g

2
)

πs−
g
2 ie(− s

4
)Ds− g

2
−1Γ(k − s)

∣∣∣∣
×

∣∣∣∣e(− s
2
)I{2Mt0+2MZg}(R) + e(−k+s

2
)I{−2Mt0+2MZg}(R)

(e(−Rt0) + e(Rt0))

∣∣∣∣
+

∣∣∣∣ (2π)k−
g
2Dk− g

2
−1i1−s−

g
2 2g−s

√
|M|Γ(s− g

2
)(

2
g
2

√
|M|Γ(k − g

2
)πs−

g
2 ie(− s

4
)Ds− g

2
−1

)
(e(−Rt0) + e(Rt0))

∣∣∣∣
×

∑
(a,c)=1, cc′≡1(a),

ac>0

∣∣∣∣(ac )k−sa−k
∣∣∣∣ ∑
ν(aZg)

∣∣∣∣e(Rν − t0
a

)

∣∣∣∣
×

[∣∣∣∣e(− c

a
M[ν − to])e(

nc′

a
) 1F1(k − s, k − g

2
;−2πDi

ac
)

∣∣∣∣
+

∣∣∣∣e( caM[ν − to])e(−
nc′

a
) 1F1(k − s, k − g

2
;
2πDi

ac
)

∣∣∣∣].

For s = k
2
+ g

4
− δ − it′, one has

1⩽ 2
g
2
+2δ
√

|M|(π)2δ−1D2δ

∣∣∣∣Γ(k2 − g
2
− δ − it′)

Γ(k
2
− g

2
+ δ + it′)

∣∣∣∣ 1∣∣∣∣(e(−Rt0) + e(Rt0))

∣∣∣∣ (2.7)

+ (2πD)
k
2
− g

4
+δ

∣∣∣∣Γ(k2 − g
4
− δ − it′)

Γ(k − g
2
)

1

(e(−Rt0) + e(Rt0))

∣∣∣∣ ∑
(a,c)=1, cc′≡1(a),

ac>0

∣∣∣∣(ac ) k
2
− g

4
+δa−k

∣∣∣∣
×
∑

ν(aZg,1)

∣∣∣∣ 1F1(
k

2
− g

4
+ δ + it′, k − g

2
;−2πDi

ac
)

∣∣∣∣+[∣∣∣∣ 1F1(
k

2
− g

4
+ δ + it′, k − g

2
;
2πDi

ac
)

∣∣∣∣].

Using the integral representation of 1F1 and estimating, one observes that the infinite series

in the sum is convergent and bounded by a constant, say L, for large k. Hence the above
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2 Nonvanishing of L-functions associated with Jacobi forms

inequality is reduced to

1 ⩽ 2
g
2
+2δ
√

|M|(π)2δ−1D2δ

∣∣∣∣Γ(k2 − g
2
− δ − it′)

Γ(k
2
− g

2
+ δ + it′)

∣∣∣∣ 1∣∣∣∣(e(−Rt0) + e(Rt0))

∣∣∣∣
+

(2πD)
k
2
− g

4
+δ

(k − g
2
− 1)(k − g

2
− 2) · · · ([k

2
])

∣∣∣∣Γ(k2 − g
4
− δ − it′)

Γ([k
2
])

∣∣∣∣∣∣∣∣ L

(e(−Rt0) + e(Rt0))

∣∣∣∣.

Using the fact that zb−a Γ(z+a)
Γ(z+b)

→ 1 as z → ∞ we observe that both the terms on the

right-hand side tend to zero and hence we get a contradiction.

Remark 2.4.1. In the above inequality (2.7) one can compute k0 explicitly such that both

the summands are strictly less than 1
2
for k > k0. Let’s assume

2
g
2
+2δ
√

|M|(π)2δ−1D2δ

∣∣∣∣Γ(k2 − g
2
− δ − it′)

Γ(k
2
− g

2
+ δ + it′)

∣∣∣∣ 1∣∣∣∣(e(−Rt0) + e(Rt0))

∣∣∣∣ <
1

2
(2.8)

and estimate the lower bound for k. Estimating the ratio of gamma functions one obtain

2
g
2
+2δ
√

|M|(π)2δ−1D2δ∣∣∣∣(e(−Rt0) + e(Rt0))

∣∣∣∣
1

(k
2
− g

2
− 1

2
)2δ

<
1

2
.

Hence (2.8) is satisfied whenever

k > 2

(
2

g
2
+2δ+1

√
|M|π2δ−1D2δ

(e(−Rt0) + e(Rt0))

) 1
2δ

+ g + 1.

Similarly one can estimate k from the second term of (2.7) to obtain that second term is less
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2 Nonvanishing of L-functions associated with Jacobi forms

than 1
2
whenever k > 8πD + 2 and

(
2πD
k
2
− 1

) k
2
− g

2
−1

(2πD)δ+1+ g
4
2π4

g
<

1

2
.

Hence one obtains the lower bound for k

k > 2

log
(
22π3(2πD)1+δ+

g
4

)
log 2

+ g + 2.

Now we prove Theorem 2.2.2.

Proof. First, we prove the theorem for s in the right part of the critical strip, i.e., for s =

σ + it′ with k
2
− g

4
+ ϵ < σ < k

2
− g

4
+ 1

2
. Let δ > 0 and s = k

2
+ g

4
− δ − it′ be as in

Theorem 2.4.2 andBk,M be basis of eigenforms of weight k and indexM.AsΩk,M
t0,s ∈ J cuspk,M ,

we can express the kernel function as

Ωk,M
t0,s (τ, z) =

∑
fi∈Bk,M

〈Ωk,M
t0,s , fi〉
〈fi, fi〉

fi.

Now compare the (n,R)-th Fourier coefficient of both the sides with 2Rt0 /∈ Z+ 1
2
and use

Theorem 2.4.2 to obtain k0 and a Hecke eigenform fi ∈ J cuspk,M with k > k0 such that

〈Ωk,M
t0,s , fi〉 =

π

2k−2eπi
s
2

Γ(k − g
2
− 1)

Γ(s− g
2
)Γ(k − s)

∑
N∈Zg\(Zg(2M))

e(−Rt0)ΛN(fi, k − s) 6= 0.

Hence for some N ∈ Zg \ (Zg(2M), ΛN(fi, k2 − g
4
+ δ + it′) 6= 0. Now using functional

equations (1.11) we have the theorem.
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2 Nonvanishing of L-functions associated with Jacobi forms

2.5 Nonvanishing of Poincaré series

Using Theorem 2.4.2 and the fact that kernel functions can be written as linear sums of

Poincaré series (Theorem 2.3.4), we prove Theorem 2.2.3. Using Theorem 2.3.4 one can

write the kernel functions as

√
(2i)g|M|Ωk,M

t0,s

=
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈zg\zg(2M)

e(−R(2M)−1βt)
∞∑
D=1

(
D

4|M|
)s−

g
2
−1Pk,M;( D

4|M|+
1
4
M−1[Rt]),R.

Now choose (n′, R′) as in Theorem 2.4.2 and fix t′ = 0. Compare the (n′, R′)-th Fourier

coefficient on both sides of the above equation.

√
(2i)g|M|ωk,Mt0,s (n

′, R′)

=
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈zg\zg(2M)

e(−R(2M)−1βt)

×
∞∑
D=1

(
D

4|M|
)s−

g
2
−1pk,M;( D

4|M|+
1
4
M−1[Rt]),R(n

′, R′).

=
(2π)s−

g
2

eπi(
s
2
− g

4
)Γ(s− g

2
)

∑
R∈zg\zg(2M)

e(−R(2M)−1βt)

×
∞∑
D=1

(
D

4|M|
)s−

g
2
−1pk,M;(n′,R′)(

D

4|M|
+
1

4
M−1[Rt], R).

Hence for k > k0 we have

pk,M;(n′,R′)(
D

4|M|
+

1

4
M−1[Rt], R) 6= 0.

In particular, Pk,M;(n,R) 6= 0 for k > k0.
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Chapter 3

A converse theorem for Jacobi forms of

half-integral weight
3.1 Introduction

A converse theorem in the context of automorphic forms studies the equivalence of the

automorphic properties of a power series and the analytic properties of the Dirichlet series

associated with the power series. For example, Hecke [16] proved the following converse

theorem:

Theorem 3.1.1. [16] Let k ⩾ 2 be a positive integer. Let {a(n)}n⩾1 be a sequence of com-

plex numbers such that a(n) = O(nσ) for some σ > 0. The function f(τ) =
∑
n⩾1

a(n)e2πinτ

defines a cusp form of weight k for full modular group SL2(Z) if and only if the completed

Dirichlet series L∗(f, s) admits a holomorphic continuation to the whole complex-plane

C which is bounded on any vertical strip and satisfies the functional equation L∗(f, s) =

(−1)
k
2L∗(f, k − s).

Weil [48] generalized Hecke’s work for modular forms on the congruence subgroups.

The converse theorem has been studied for various kinds of automorphic forms, for exam-

ple, modular forms of half-integral weight [5] and Siegel modular forms [17].

Martin studied the analytic continuation of L-functions and a converse theorem for Ja-

cobi forms with respect to ΓJ .
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3 A converse theorem for Jacobi forms of half-integral weight

Theorem 3.1.2. [33] Let k andm be positive integers. Let ϕ(τ, z) =
∑

r2<4nm

cϕ(n, r)e
2πi(nτ+rz)

be a holomorphic function satisfying

(i) ϕ(τ, z) converges absolutely and uniformly on compact subsets ofH× C,

(ii) there exists ν > 0 such that ϕ(τ, z)e2πipz = O(=(τ)−ν) as =(τ) → 0,

(iii) for each λ, we have c(n, r) = c(n+ λr + λ2m, r + 2λm).

Then the following statements are equivalent:

1. the function ϕ(τ, z) is a Jacobi form of weight k and indexm.

2. each completed L-function Λµ(ϕ, s), 0 ⩽ µ ⩽ 2m − 1 associated to ϕ(τ, z) can be

analytically continued to a holomorphic function on the s-plane. These functions are

bounded on any vertical strip and satisfy the functional equations

(2m)−
1
2

2m−1∑
µ=0

e−
πiaµ
m Λµ(ϕ, s) = ikΛa

(
ϕ, k − 1

2
− s

)
, 0 ⩽ a ⩽ 2m− 1.

Later, Martin and Osses [36] generalized the above theorem for congruence subgroups

of the Jacobi group. In this chapter, we study the analytic properties of L-functions and a

converse theorem for Jacobi forms of half-integral weight. Our approach is similar to the

work of Bruinier [5] in the case of modular forms of half-integral weight. The content of

this chapter is based on [30].

3.2 Statement of results

Following the work of Martin and Osses [36] we define analogous series of type J and the

associated twisted Dirichlet series.
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3 A converse theorem for Jacobi forms of half-integral weight

Definition 3.2.1. For a fixed positive integerm,we callϕ(τ, z) =
∑
n,r∈Z
r2<4nm

cϕ(n, r)e(nτ+rz)

to be a series of type J, if the following properties hold:

1. The series ϕ(τ, z) converges absolutely and uniformly on every compact subset of

H× C.

2. There exist positive real numbers C and δ such that |cϕ(n, r)| < C(4mn − r2)δ for

all n, r such that r2 < 4nm.

3. The Fourier coefficients of cϕ(n, r) satisfy cϕ(n, r) = cϕ(n + λr + λ2m, r + 2mλ)

for every λ ∈ Z.

From the condition (1), ϕ : H × C −→ C is a holomorphic function. The relation

between Fourier coefficients implies that ϕ has a theta decomposition similar to (1.16).

Note that the Fourier series expansion of a Jacobi cusp form ϕ(τ, z) ∈ J cuspk
2
,m
(ΓJ(N), χ)

represents a series of type J.

Definition 3.2.2. Let N andM be positive integers with 4|N and (N,M) = 1. Let ϕ(τ, z)

be a series of type J and χ1 be a primitive Dirichlet character modulo M. Then for each

µ ∈ {0, 1, 2, · · · , 2mM − 1}, we define a Dirichlet series using the theta decomposition of

ϕ as follows:

Lµ(ϕχ1 ; s) =
∞∑
D=1

χ1

(
D + µ2

4m

)
cµ(D)

(
D

4m

)−s

. (3.1)

The completed Dirichlet series is defined by

Λµ(ϕχ1 ; s) =

(
2π

M
√
N

)−s

Γ(s)Lµ(ϕχ1 ; s). (3.2)

Note that bounds on Fourier coefficients (condition (2) of the definition 3.2.1) imply

the Lµ(ϕχ1 ; s) is absolutely convergent on the complex half-plane <(s) > 1 + δ for every

µ ∈ {0, 1, 2, · · · , 2mM − 1}.
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3 A converse theorem for Jacobi forms of half-integral weight

Now, we define the analogous series of type JN and the associated twisted Dirichlet

series.

Definition 3.2.3. Letm andN be fixed positive integers with 4|N.We call a seriesϕ(τ, z) =∑
n,r∈Z

4mn>Nr2

cϕ(n, r)e(nτ + rNz) to be a series of type JN , if the following properties hold:

1. The series ϕ(τ, z) converges absolutely and uniformly on every compact subset of

H× C.

2. There exist positive real numbers C and δ such that |cϕ(n, r)| < C(4mn−Nr2)δ for

all n, r such that Nr2 < 4nm.

3. The Fourier coefficients of cϕ(n, r) satisfy cϕ(n, r) = cϕ(n+λrN+λ2mN, r+2mλ)

for every λ ∈ Z.

A series of type JN has a theta decomposition given by

ϕ(τ, z) =
2m∑
µ=1

gµ(τ)θm,µ(Nτ,Nz), (3.3)

where gµ(τ) =
∞∑
D=1

dµ(D)e
(
D
4m
τ
)
with dµ(D) = cϕ(n, r) and D = 4nm−Nr2.

If ϕ(τ, z) ∈ J cuspk
2
,m
(ΓJ(N), χ), then ψ(τ, z) := ϕ| k

2
,mWN(τ, z) ∈ J k

2
,mN(Γ

J
1,N(N), χ) (see

(3.9) for the definition of WN ) and hence ψ(τ, z) represents a series of type JN . Here we

have used the notation i.e.,

ΓJα,β(N) = {(γ̃, (λ, µ), s) : γ ∈ Γ0(N), λ ∈ αZ, µ ∈ β−1Z, s ∈ 〈ζβ〉},

where 〈ζβ〉 is the cyclic group generated by the primitive β-th roots of unity.

For each µ ∈ {0, 1, 2, · · · , 2mM − 1}, we define the Dirichlet series Lµ(ψχ1 ; s) and the
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3 A converse theorem for Jacobi forms of half-integral weight

corresponding completed Dirichlet series Λµ(ψχ1 ; s) associated to ψ as follows:

Lµ(ψχ1 ; s) =
∞∑
D=1

χ1

(
D +Nµ2

4m

)
dµ(D)

(
D

4m

)−s

, (3.4)

Λµ(ψχ1 ; s) =

(
2π

M
√
N

)−s

Γ(s)Lµ(ψχ1 ; s). (3.5)

Now we state our main results.

Theorem 3.2.4. [30] Letm,N andM be positive integers such that 4|N and (N,M) = 1.

Let χ be a Dirichlet character moduloN , χ1 be a primitive Dirichlet character moduloM,

and χ2 be a Dirichlet character defined by χ2(·) =
( ·
M

)
, where

( ·
M

)
denotes the Jacobi

symbol. If ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) is a Jacobi cusp form with WN(ϕ) = ψ, then for each

µ = 0, 1, · · · , 2mM − 1, the completed Dirichlet series Λµ(ϕχ1 ; s) associated to ϕ admits

a holomorphic continuation to the whole complex plane. Moreover, they are bounded in

any vertical strip and satisfy the functional equation:

• for χ1 6= χ2

(
2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(1)

χ1
Λa

(
ψχ1χ2 ;

k

2
− s− 1

2

)
,

where C(1)
χ1 = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)Gχ1χ2G−1

χ1
, for every a = 0, 1, ...2mM − 1.

• for χ1 = χ2

(
2mM√
N

)− 1
2
2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(2)

χ1
Λa

(
M

1
2BM(ψ)−M− 1

2ψ;
k

2
−s− 1

2

)
,

for every a = 0, 1, ...2mM − 1, where C(2)
χ1 = (−1

M
)
k−1
2 χ(M), Gχ is the Gauss sum

with character χ and BM(ψ) := 1
M

∑
u (mod M)

ψ| k
2
,mT̃ y

M
and T y

M
=
(

1 y/M

0 1

)
.
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3 A converse theorem for Jacobi forms of half-integral weight

We now state the converse of the above theorem. For a positive integer N, let MN be

the set of all prime numbers p such that (p,N) = 1 and the set MN ∩ {aL + b|L ∈ Z} is

non-empty for all a, b ∈ Z \ {0} with (a, b) = 1.

Theorem 3.2.5. [30] Let m,N,M be positive integers such that 4|N, (M,N) = 1, χ be

a Dirichlet character modulo N and χ2(·) = ( ·
M
). Let {cϕ(n, r)} and {cψ(n, r)} be se-

quences of complex numbers such that the series

ϕ(τ, z) =
∑
n,r∈Z

4mn>r2

cϕ(n, r)e(nτ + rz)

and

ψ(τ, z) =
∑
n,r∈Z

4mn>Nr2

cψ(n, r)e(nτ + rNz)

are of type J and JN , respectively, and ψ(τ, z) = (−1)
k
2χ(−1)ψ(τ,−z). Assume that for

every primitive Dirichlet character χ1 of conductorM ∈ MN ∪ {1}, Λµ(ϕχ1 , s) is entire

and bounded in every vertical strip and satisfies the following conditions:

(i) if χ1 6= χ2, then

(
2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = C(1)

χ1
Λa

(
ψχ1χ2 ;

k

2
− s− 1

2

)
,

where C(1)
χ1 = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)Gχ1χ2G−1

χ1
, for every a = 0, 1, ..., 2mM−1.

(ii) if χ1 = χ2, then

(
2mM√
N

)− 1
2
2mM−1∑
µ=0

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s)= C(2)

χ1
Λa

(
M

1
2BM(ψ)−M− 1

2ψ;
k

2
−s− 1

2

)
,

where C(2)
χ1 = (−1

M
)
k−1
2 χ(M), for every a = 0, 1, ..., 2mM − 1.
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3 A converse theorem for Jacobi forms of half-integral weight

If for every µ ∈ {0, 1, 2, · · · , 2mM − 1} the Dirichlet series Lµ(ϕ; s) converges absolutely

for k
2
− 1− ϵ for any ϵ > 0, then

ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) and ψ = WN(ϕ).

We study twists of Jacobi forms of half-integral weight, involution operator, and twisted

L-functions to prove Theorem 3.2.4 and Theorem 3.2.5.

3.3 Twist and Fricke involution for Jacobi forms of half-

integral weight

Letm,M,N be positive integers and k be an odd integer such that 4|N. Let χ be a Dirichlet

character modulo N and Tλ =

1 λ

0 1

 , where λ is any real number. Let Id denote the

identity matrix of order 2. Define ϵM by

ϵM =


1, M ≡ 1 (mod 4)

i, M ≡ 3 (mod 4).

Definition 3.3.1. Let ϕ be a series of type J or JN . Let χ1 be a primitive Dirichlet character

moduloM, where (N,M) = 1. The twist of ϕ(τ, z) by the character χ1 is defined by

ϕχ1(τ, z) =
∑
n,r∈Z
r2≤4nm

χ1(n)cϕ(n, r)e(nτ + rz). (3.6)

Lemma 3.3.2. Let ϕ ∈ J k
2
,m(Γ

J(N), χ). Let χ1 be a primitive Dirichlet character modulo
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3 A converse theorem for Jacobi forms of half-integral weight

M, where (N,M) = 1. Then

ϕχ1(τ, z) ∈ J k
2
,m(Γ

J
M,1(NM

2), χχ2
1),

where ΓJM,1(N) := ˜Γ0(NM2)n (MZ×Z). Further, if ϕ is a Jacobi cusp form, then ϕχ1 is

also a Jacobi cusp form.

Proof. Let u ∈ Z. Consider T̃ u
M

=


1 u

M

0 1

 , 1

 ∈ G. Now

ϕ| k
2
,mT̃ u

M
(τ, z) = ϕ

(
τ +

u

M
, z
)
=

∑
n,r∈Z
r2≤4nm

e
(un
M

)
cϕ(n, r)e(nτ + rz).

Multiplying by χ1(u) and summing over all u (mod M), we obtain

M−1∑
u=0

χ1(u)ϕ| k
2
,mT̃ u

M
(τ, z) =

∑
n,r∈Z
r2≤4nm

(
M−1∑
u=0

χ1(u)e
(un
M

))
cϕ(n, r)e(nτ + rz),

=
∑
n,r∈Z
r2≤4nm

Gn,χ1
cϕ(n, r)e(nτ + rz),

where Gn,χ1
is the Gauss sum associated with the primitive Dirichlet character χ1 defined

by Gn,χ1
=

M−1∑
u=0

χ1(u)e(
un
M
). Note that Gn,χ1

= 0 if (n,M) > 1. Therefore,

M−1∑
u=0

χ1(u)ϕ| k
2
,mT̃ u

M
(τ, z) = Gχ1

ϕχ1(τ, z), (3.7)

where G1,χ1
= Gχ1

. Let L = NM2 and γ̃ = (γ, j(γ, τ)), where γ =

 a b

cL d

 ∈ Γ0(L).
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Note that

γ′ := T u
M
γT−1

d2u
M

∈ Γ0(L) ⊂ Γ0(N), χ(γ) = χ(γ′), γ̃′ = (γ′, j(γ′, τ)) ∈ Γ̃0(L) ⊂ Γ̃0(N)

and γ̃′ = (T̃ u
M
, (0, 0), 1)γ̃(T̃−1

ud2

M

, (0, 0), 1). Hence for any [γ̃, (λ, ν), 1] ∈ ΓJM,1(L), we have

ϕ| k
2
,mT̃ u

M
| k
2
,m(γ̃, (λ, ν), 1)(τ, z)

= ϕ| k
2
,m

(
γ̃′,

(
λ, ν − λd2u

M

)
, 1

) ∣∣
k
2
,m
T̃ud2

M

(τ, z)

= χ(γ)ϕ| k
2
,mT̃ud2

M

(τ, z).

From (3.7) and the above equation, we obtain

Gχ1ϕχ1 | k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χ(γ)

M−1∑
u=0

χ1(u)ϕ| k
2
,mT̃ud2

M

(τ, z). (3.8)

As (d,M) = 1, replacing d2u by u in (3.8), we obtain

Gχ1ϕχ1 | k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χ(γ)

M−1∑
u=0

χ1(ud
−2)ϕ| k

2
,mT̃ u

M
(τ, z)

= χ(γ)χ1(d
2)

M−1∑
u=0

χ1(u))ϕ| k
2
,mT̃ u

M
(τ, z).

Now as χ1(d) = χ1(γ), from (3.7) we get

ϕχ1 | k
2
,m(γ̃, (λ, ν), 1)(τ, z) = χχ2

1(γ)ϕχ1(τ, z).

Hence ϕχ1 satisfies the transformation properties of Jacobi forms. From the Fourier expan-

sion of ϕ, it is easy to see that ϕχ1 has the required Fourier expansion.

Definition 3.3.3. Let k be an odd integer, m be any positive integer and ϕ be a complex-

61



3 A converse theorem for Jacobi forms of half-integral weight

valued holomorphic function defined on H × C. For a positive integer L, we define the

following Fricke involution type operator by

W k,m
L (ϕ) := (U√

Lϕ)| k
2
,mLh, (3.9)

where h = (γ̃, (0, 0), 1) ∈ G̃J , γ̃ =


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ) 1

2

 ∈ G, and the operator

UL is defined as

ULϕ(τ, z) := ϕ(τ, Lz).

We have the following form of (3.9)

W k,m
L (ϕ)(τ, z) = i

k
2L− k

4 τ−
k
2 emL

(
−z

2

τ

)
ϕ

(
− 1

Lτ
,
z

τ

)
. (3.10)

We writeWL instead ofW k,m
L when k andm are clear from the context.

Lemma 3.3.4. Let L be a positive integer with 4|L and χ a Dirichlet character modulo L.

If ϕ ∈ J k
2
,m(Γ

J(L), χ), then

WL(ϕ) ∈ J k
2
,mL(Γ

J
1,L(L), χ

∗),

where χ∗(d) = χ(d)
(
N
d

)
. Further, if ϕ is a Jacobi cusp form, thenWL(ϕ) is also a Jacobi

cusp form.

Proof. From the equation (3.10), it is easy to see thatWL(ϕ) is holomorphic. For matrices
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γ =

 a b

cL d

 , γ′ =

 d −c

−bL a

 ∈ Γ0(L), we have


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2

 γ̃


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


−1

=

(
γ′,

(
N

d

)
j(γ′, τ)

)
.

The definition ofWL and the above identity implies

WL(ϕ)| k
2
,mL(γ, j(γ, τ))(τ, z)

= (U√
Lϕ)| k

2
,mL

(
γ′,

(
N

d

)
j(γ′, τ)

)
 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


=

(
N

d

)
U√

L(ϕ| k
2
,mγ̃

′)| k
2
,mL


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


=

(
N

d

)
χ(d)(U√

Lϕ)| k
2
,mL


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


=

(
N

d

)
χ(d)WLϕ.

Now, we consider (Id, (λ, ν), ζjL) ∈ ΓJ1,L(L).We have

WL(ϕ)| k
2
,mL(Id, (λ, ν), ζ

j
L)(τ, z)

= (U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)
 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2

 .
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Note that

(U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)
= U√

L(ϕ| k
2
,m(Id, (−Lν, λ), 1)).

As ϕ ∈ J k
2
,m(Γ

J(L), χ), we obtain

(U√
Lϕ)| k

2
,mL

(
Id,

(
−
√
Lν,

λ√
L

)
, ζjL

)
= U√

L(ϕ).

Hence we have WL(ϕ)| k
2
,mL(Id, (λ, ν), ζ

j
L) = WL(ϕ). It is easy to check that WL(ϕ) has

required Fourier expansion and the proof is similar to that of Lemma 5, p. 166 in [36].

Lemma 3.3.5. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi cusp form and χ1 be a primitive

Dirichlet character moduloM, where (N,M) = 1. Denote ψ = WN(ϕ). Then

(WNM2(ϕχ1))(τ, z) = Cχ1ψ
∗(τ,Mz),

where

Cχ1 =

(
−1

M

) k−1
2

χ(M)

(
N

M

)
χ1(−N)ϵ−1

M G−1
χ1

and

ψ∗(τ, z) =
M−1∑
u=0

χ1(u)
( u
M

)
ψ| k

2
,m(T̃ u

M
, (0, 0), 1).

Proof. Let u be an integer such that (u,M) = 1. Then there exist integers x, y such that

xM − yuN = 1. Then γ =

 M −y

−uN x

 ∈ Γ0(N). Observe that

(T̃ u
M
, (0, 0), 1))


 0 − 1√

NM2

√
NM2 0

 , (NM2)
1
4 (−iτ)

1
2 , (0, 0), 1


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=


 0 − 1√

N
√
N 0

 , N
1
4 (−iτ)

1
2 , (0, 0), 1

 γ̃(T̃ y
M
, (0, 0), 1))(Id,

( y
M

)
ϵM , (0, 0), 1).

Also, note that UM√
N(ϕ| k

2
,mT̃ u

M
)(τ, z) = (UM

√
Nϕ)| k

2
,mNM2T̃ u

M
(τ, z). Therefore

(WNM2(ϕ| k
2
,mT̃ u

M
)(τ, z)

= UM
√
N(ϕ| k

2
,mT̃ u

M
)| k

2
,mNM2


 0 − 1√

NM2

√
NM2 0

, (NM2)
1
4 (−iτ)

1
2 , (0, 0), 1

(τ, z)

=
( y
M

)
ϵ−kM (UM

√
Nϕ)| k

2
,mNM2


 0 − 1√

N
√
N 0

 , N
1
4 (−iτ)

1
2 , (0, 0), 1

 γ̃T̃ y
M
(τ, z)

=
( y
M

)
ϵ−kM UM

U√
Nϕ| k

2
,mN


 0 − 1√

N
√
N 0

,N 1
4 (−iτ)

1
2 ,(0,0),1

 γ̃T̃ y
M

 (τ, z)

=
( y
M

)
ϵ−kM UM

(
WN(ϕ)| k

2
,mN γ̃| k

2
,mN T̃ y

M

)
(τ, z)

=
( y
M

)
ϵ−kM UM

(
ψ| k

2
,mN γ̃| k

2
,mN T̃ y

M

)
(τ, z).

Using Lemma 3.3.4, we obtain

WNM2(ϕ| k
2
,mT̃ u

M
)(τ, z) =

( y
M

)
ϵ−kM χ(M)

(
N

x

)
ψ| k

2
,mN T̃ y

M
(τ,Mz).

Nowmultiplying the above equation byχ1(u) and summing over all u (mod M) as in (3.7),

we obtain

(WNM2(Gχ1
ϕχ1))(τ, z) = ϵ−kM χ(M)

(
N

M

)M−1∑
u=0

χ1(u)
( y
M

)
ψ| k

2
,mN T̃ y

M
(τ,Mz)

= ϵ−kM χ(M)

(
N

M

)
χ1(−N)

M−1∑
u=0

χ1(y)
( y
M

)
ψ| k

2
,mN T̃ y

M
(τ,Mz)
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= ϵ−kM χ(M)

(
N

M

)
χ1(−N)ψ∗(τ,Mz).

Hence the result follows.

Lemma 3.3.6. Let ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) be a Jacobi cusp form, where χ is a Dirichlet

character modulo N. LetM be a prime with (N,M) = 1. Then

BM(ϕ) ∈ J cuspk
2
,m
(ΓJM,1(NM

2), χ),

where BM(ϕ) is defined by

BM(ϕ) :=
1

M

∑
u mod (M)

ϕ| k
2
,mT̃ u

M
.

Proof. LetM ′ = NM2. Consider the matrix γ =

 a b

cM ′ d

 ∈ Γ0(M
′). Then we have

(T̃ u
M
, (0, 0), 1)


 a b

cM ′ d

 , (0, 0), 1

 = γ̃′(T̃ud2

M

, (0, 0), 1),

where γ′ =

 a′ b′

cM ′ d′

 ∈ Γ0(M
′) with d′ = d− cd2 uM

′

M
.We have

BM(ϕ)| k
2
,mγ̃ =

1

M

∑
u mod (M)

(ϕ| k
2
,mT̃ u

M
)| k

2
,mγ̃

=
1

M

∑
u mod (M)

(ϕ| k
2
,mγ̃

′)| k
2
,mT̃ud2

M

= χ(d′)
1

M

∑
u mod (M)

ϕ| k
2
,mT̃ud2

M
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= χ(d′)
1

M

∑
u mod (M)

ϕ| k
2
,mT̃ u

M

= χ(d)BM(ϕ),

where we have used that (d,M) = 1 and d′ ≡ d (mod N) to obtain χ(d) = χ(d′). Other

transformation properties and required Fourier expansion follow similarly as in the proof

of Lemma 3.3.2.

Lemma 3.3.7. Let M be an odd prime and χ1 be a primitive Dirichlet character modulo

M. For a complex-valued holomorphic function ψ defined onH×C, consider the function

ψ∗ as defined in Lemma 3.3.5. Then

(i) If χ1 6= χ2 then Cχ1ψ
∗ = (−1

M
)
k−1
2 χ(M)(N

M
)χ1(−N)ϵ−1

M Gχ1χ2G−1
χ1
ψχ1χ2 .

(ii) If χ1 = χ2, then Cχ1ψ
∗ = (−1

M
)
k−1
2 χ1(M)(M

1
2BM(ψ)−M− 1

2ψ).

Here Cχ1 is as in Lemma 3.3.5 and χ2(u) =
(
u
M

)
.

Proof. If χ1 6= χ2, then χ1χ2 is primitive character moduloM, and the proof follows from

Lemma 3.3.2.

If χ1 = χ2, then

ψ∗ =
M∑
u=1

ψ| k
2
,mT̃ u

M
− ψ =MBM(ψ)− ψ

and Cχ1 = (−1
M
)
k−1
2 χ(M)ϵ−1

M

(
N
M

) (−N
M

)
= (−1

M
)
k−1
2 χ(M).
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3.4 Proof of results

In this section, we present the proofs of Theorem 3.2.4 and Theorem 3.2.5.

3.4.1 Proof of Theorem 3.2.4

We need the following half-integral weight version of Proposition 1 in [36] to prove Theo-

rem 3.2.4.

Lemma 3.4.1. Let k,m, and N be positive integers with k odd and 4|N. Let χ1 be a char-

acter modM with (M,N) = 1. If ϕ(τ, z) and ψ(τ, z) are Fourier series of type J and JN ,

respectively. Then the following are equivalent:

a) There exists a constant C such that

(WNM2(ϕχ1))(τ, z) = Cψ∗(τ,Mz).

b) The functions Λµ(ϕχ1,s) and Λµ(ψ∗, s) (1 ⩽ µ ⩽ 2mM) have a holomorphic contin-

uation to the whole complex plane. Moreover, they are bounded in any vertical strip

and satisfy functional equations

(
2mM√
N

)− 1
2

2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s) = CΛa

(
ψ∗;

k

2
− s− 1

2

)
,

where 1 ⩽ a ⩽ 2mM.

Proof. Since the definitions of Fricke involution in the case of integral weight ([36], p. 166)

and half-integral weight (3.9) differs just by a constant, the lemma follows just by replacing

k with k
2
in the proof of Proposition 1 in [36].
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We now give a proof of the Theorem 3.2.4. Since ϕ ∈ J cuspk
2
,m
(ΓJ(N), χ) is a Jacobi

cusp form with WN(ϕ) = ψ, from Lemma 3.3.5, it is easy to see that ϕ and ψ are series

of type J and type JN , respectively satisfying condition (a) of Lemma 3.4.1. Hence, by

Lemma 3.4.1, we deduce that for every µ = 0, 1, · · · , 2mM − 1 the completed Dirichlet

series Λµ(ϕχ1 ; s) have holomorphic continuation to whole complex plane, are bounded on

every vertical strip and satisfy the function equation

(
2mM√
N

)− 1
2
2mM∑
µ=1

e
(
− aµ

2mM

)
Λµ(ϕχ1 ; s)=CΛa

(
ψ∗;

k

2
− s− 1

2

)
, where 1 ⩽ a ⩽ 2mM.

Now the result follows from Lemma 3.3.7.

3.4.2 Proof of Theorem 3.2.5

We first state two lemmas which will be used to prove Theorem 3.2.5. To state these lem-

mas, we need the following notation: for a complex-valued holomorphic functionψ defined

onH×C, we define Ωψ = {σ ∈ C[G] : ψ| k
2
,mσ = 0}, where C[G] is the group ring. Then

Ωψ is a right ideal in C[G].

Lemma 3.4.2. Letm,N be positive integers andM be prime such that 4|N and (N,M) =

1. Let χ be a Dirichlet character modulo N , χ1 be a primitive Dirichlet character modulo

M. Let ϕ(τ, z) and ψ(τ, z) be series of type J and type JN , respectively. Assume that ϕ and

ψ satisfy the following:

WN(ϕ) = Cχ1ψ
∗ with Cχ1 =

(
−1

M

) k−1
2

χ(M)

(
N

M

)
χ1(−N)ϵ−1

M G−1
χ1

and

ψ∗(τ, z) =
M−1∑
u=0

χ1(u)
( u
M

)
ψ| k

2
,mT u

M
.
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Then, for u, v ∈ Z with (u,M) = (v,M) = 1, we have

( v
M

)(
γ̃(M, v)− χ(M)

(
N

M

))
T v

M
≡
( u
M

)(
γ̃(M,u)− χ(M)

(
N

M

))
T u

M
(mod Ωψ).

Proof. The proof uses a similar method as given in Lemma 2.17 of [5].

Lemma 3.4.3. LetN be a positive integer, andM1,M2 are prime numbers with (M1, N) =

1 = (M2, N). Let χ1 be a primitive Dirichlet character with conductor M1 or M2. Let

ϕ(τ, z) and ψ(τ, z) be series of type J and type JN , respectively. Suppose that ϕ and ψ

satisfy the assumptions given in Lemma 3.4.2. Then

ψ| k
2
,mNγ = χ(M1)

(
N

M1

)
ψ for all γ =

 M1 −v

−uN M2

 ∈ Γ0(N).

Proof. The proof is a straightforward adaptation of the Lemma 2.18 of [5].

We now give a proof of Theorem 3.2.5. It is easy to observe that ϕ(τ, z) and ψ(τ, z) are

holomorphic functions onH×C. From the functional equation forM = 1 in Lemma 3.4.1

(χ1 will be the trivial character), it follows that ψ = WN(ϕ). LetM be a prime number and

χ1 be a primitive Dirichlet character modulo M. Then from the given conditions (i), (ii)

and Lemma 3.4.1, it follows that

(WN(ϕχ1))(τ, z) = Cχ1ψ
∗(τ,Mz).

Next, we prove that

ψ| k
2
,mN γ̃ = χ(M2)

(
N

M2

)
ψ for all γ =

 M1 −v

−uN M2

 ∈ Γ0(N).
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If c = 0, then γ =

±1 v

0 ±1

 and it is easy to check the required transformation property

for ψ. Now, assume that c 6= 0 and γ =

 a −b

cN d

 . Since (a, cN) = 1 = (d, cN), there

exist integers s and t such that both a + tcN, d + scN ∈ MN . Put a′ = a + tcN, d′ =

d+ scN, c′ = −c and b′ = −(b+ as+ stcN + dt). Then we have

 a b

cN d

 =

1 −t

0 1


 a′ −b′

−c′N d,


1 −s

0 1

 .

From the above computation, we obtain

ψ| k
2
,mN γ̃ = ψ| k

2
,mN

˜1 −t

0 1


˜ a′ −b′

−c′N d′


∼ ˜1 −s

0 1



= ψ| k
2
,mN

˜ a′ −b′

−c′N d′


˜1 −s

0 1

.
Using Lemma 3.4.3, we obtain

ψ| k
2
,mN γ̃(τ, z) = χ(a′)

(
N

a′

)
ψ(τ, z).

Since a′d′ ≡ 1 and 4 | N, we have

ψ| k
2
,mN γ̃(τ, z) = χ(d′)

(
N

d′

)
ψ(τ, z).
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Also d′ = d+ scN. Thus, we have

ψ| k
2
,mN γ̃(τ, z) = χ(d)

(
N

d

)
ψ(τ, z). (3.11)

The invariance of ψ(τ, z) under the group (Z×N−1Z)〈ζN〉 follows from the theta decom-

position of ψ(τ, z). Hence

ψ| k
2
,mNh(τ, z) = χ(d)

(
N

d

)
ψ(τ, z) for every h ∈ ΓJ1,N(N).

For matrices γ =

 d −c

−bL a

 , γ′ =

 a b

cL d

 ∈ Γ0(L), we have


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2

 γ̃


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


−1

=

(
γ′,

(
N

d

)
j(γ′, τ)

)
.

Thus by the definition ofWL and the above identity, we have

WL(ϕ)| k
2
,mL(γ, j(γ, τ))(τ, z)

= (U√
Lϕ)| k

2
,mL

(
γ′,

(
N

a

)
j(γ′, τ)

)
 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2


=

(
N

a

)
U√

L(ϕ| k
2
,mγ̃

′)| k
2
,mL


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2

 . (3.12)
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From (3.11) and (3.12), we obtain

(
N

a

)
U√

L(ϕ| k
2
,mγ̃

′ − χ(a)ϕ)| k
2
,mL


 0 − 1√

L
√
L 0

 , L
1
4 (−iτ)

1
2

 = 0,

for every (τ, z) ∈ H×C.Hence we have ϕ| k
2
,mγ̃

′ = χ(a)ϕ = χ(d)ϕ for every γ̃′ ∈ Γ̃0(N).

To check the cuspidality, we need to estimate em(pz)hµ(τ)θm,µ(τ, z). For this, consider

dµ(n) defined by dµ(n) :=
n∑

N=1

|cµ(N)|. Then, we have

dµ(n) ≤ n
k
2
−1−ϵ(

∞∑
N=1

|cµ(N)N− k
2
+1+ϵ|).

Thus, we obtain dµ(n) = O(n
k
2
−1−ϵ) and

∞∑
n=0

dµ(n)e
−2πy = O(y−

k
2
+ϵ). A straightforward

calculation shows that em(z)ϕµ(τ)θm,µ(τ, z) = O(y−
k
2
+ 1

2
+ϵ) and hence em(z)ϕ(τ, z) =

O(y−
k
2
+ 1

2
+ϵ). Finally, Lemma 1.6.4 together with the above observation implies that ϕ ∈

J cuspk
2
,m
(ΓJ(N), χ). This completes the proof.
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Chapter 4

Differential operators andPoincaré series

for Jacobi forms
4.1 Introduction

Let f and g be modular forms of weight k1 and k2, respectively. It is well known that [f, g]ν

is a modular form of weight k1 + k2 + 2ν. One can consider the converse question: if the

Rankin-Cohen bracket of two holomorphic functions is a modular form, is it necessary that

one of the functions is a modular form? In this direction, Choie and Lee [8] proved the

following result:

Theorem 4.1.1. [8] Let k1, k2 and ν be positive integers. Let f and h be non-constant

modular forms of weight k1 and k1+ k2+2ν, respectively for the group SL2(Z). Consider

the following differential equation

ν∑
r=0

(−1)r
(
k1 + ν − 1

ν − r

)(
k2 + ν − 1

r

)
f (r)g(ν−r) = h. (4.1)

Then

1. each solution g of (4.1) is a meromorphic modular form of weight k2 for SL2(Z)

which may have poles inH ∪ {∞};

2. if any solution g of (4.1) is holomorphic on H ∪ {∞}, then it is a holomorphic
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4 Differential operators and Poincaré series for Jacobi forms

modular form of weight k2 for SL2(Z).

Rankin-Cohen brackets have interesting relations with the Poincaré series. Williams

studied the following properties:

Theorem 4.1.2. [49] Let k1, k2(≥ 4) be even integers and ν, n be positive integers. For a

cusp form f of weight k1, consider the function f̃ defined by

f̃(τ) := qn
ν∑
r=0

(−1)r
(
k1 + ν − 1

ν − r

)(
k2 + ν − 1

r

)
nν−rf (r).

Then

[f, Pk2,n]ν = Pk1+k2+2ν(f̃),

where Pk1+k2+2ν(f̃) =
∑

γ∈Γ∞\Γ
f |kγ is the generalized Poincaré series defined in [49].

As a corollary Williams proved that Poincaré series and Rankin-Cohen brackets commute

in the following sense:

Corollary 4.1.3. [49] Let f be a modular form of weight k1 and ϕ be a q-series whose

coefficients grow sufficiently slow enough that Pl(ϕ) is well-defined and denote [f, ϕ]ν to

be the formal result of the ν-th Rankin–Cohen bracket, where ϕ is treated like a modular

form of weight k2 (where k2 ⩾ k1 + 2 if f is not a cusp form). Then

[f,Pk2(ϕ)]ν = Pk1+k2+2ν([f, ϕ]ν).

One can construct interesting modular forms using differential operators by computing

the adjoint maps. In this direction, Kohnen [25] constructed cusp forms whose Fourier

coefficients involve special values of certain convolution type Dirichlet series by computing

the adjoint of the linear map f 7→ fg, for a fixed modular form g, between spaces of cusp

forms. Kohnen proved:
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4 Differential operators and Poincaré series for Jacobi forms

Theorem 4.1.4. [24] Let k1 and k2 be positive integers with k1 > k2 + 2. Let f ∈ Sk1+k2

and g ∈ Sk2 with Fourier expansions

f(τ) =
∞∑
m=1

a(m)qm and g(τ) =
∞∑
m=1

b(m)qm.

Then the function

T ∗
g (f)(τ) :=

∞∑
n=1

nk1−1Lf,g;n(k1 + k2 − 1)qn,

where

Lf,g;n(s) :=
∞∑
m=1

a(m+ n)b(m)

(m+ n)s
, (4.2)

is a cusp form of weight k1 for SL2(Z). In fact, the map Sk1+k2 → Sk1 defined by f 7→
Γ(k1 + k2 − 1)

Γ(k1 − 1)(4π)k2
T ∗
g (f) is the adjoint of the map Tg : Sk1 −→ Sk1+k2 , h 7→ gh, with

respect to the Petersson scalar product.

Herrero [19] generalized the work of Kohnen and constructed cusp forms by computing

the adjoint of certain maps constructed using Rankin-Cohen brackets. The work of Herrero

has been generalized by several authors for various automorphic forms (see [20, 21, 22, 32]).

The map ϑk : f 7→ 1

2πi

df

dτ
− k

12
E2(τ)f(τ) is a linear map from Mk to Mk+2 called

the Serre derivative. Kumar [31] generalized the work of Kohnen by computing the adjoint

map of ϑk, and obtained interesting identities involving special values of convolution-type

Dirichlet series.

In this chapter, we prove the analogous results of Theorem 4.1.1, Theorem 4.1.2 and

Theorem 4.1.4. This chapter is based on our works [29] and [37].
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4 Differential operators and Poincaré series for Jacobi forms

4.2 Statment of results

Following the work of Choie and Lee [8], we answer the analogous question in the context

of Jacobi forms.

Theorem 4.2.1. [29] Let k1, k2,m1 and m2 be positive integers. Let ϕ ∈ Jk1,m1 and

h ∈ Jk1+k2+2ν,m1+m2 be non-constant Jacobi forms. Then each solution ψ of the following

differential equation

ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ) = h, (4.3)

satisfies the transformation properties (1.5) and (1.6) with weight k2 and indexm2. More-

over, if ψ has a Fourier series expansion similar (1.4), then ψ ∈ Jk2,m2 .

We have the following analogue of Theorem 4.1.2.

Theorem 4.2.2. [29] Let k1, k2(≥ 11), m1, m2 and ν be positive integers. Let N,R ∈ Z

be such that 4Nm2 −R2 > 0. Consider the function f(τ, z) defined by

f(τ, z) = qNζR
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2

× (4Nm2 −R2)ν−rLrm1
(ϕ),

where ϕ ∈ Jk1,m1 (with k2 ⩾ k1 + 10 when ϕ is not a cusp form). Then we have

[ϕ, Pk2,m2;N,R]ν = Pk1+k2+2ν,m1+m2(f).

As an immediate consequence of the above theorem, we obtain the following corollary:

Corollary 4.2.3. [29] Let ϕ be a Jacobi form of weight k1, index m1, and f be a formal

(q, ζ)-series such that Pk2,m2(f) is well defined. Assume that k2 ⩾ k1 + 2 when ϕ is not a

77



4 Differential operators and Poincaré series for Jacobi forms

cusp form. Then

[ϕ,Pk2,m2(f)]ν = Pk1+k2+2ν,m1+m2([ϕ, f ]ν).

We recall that the modified heat operator Lk,M (1.23) is a C-linear map between finite-

dimensional Hilbert spaces J cuspk,M , and J cuspk+2,M. Therefore it has an adjoint map L∗
k,M :

J cuspk+2,M → J cuspk,M such that

〈L∗
k,M(ϕ), ψ〉 = 〈ϕ, Lk,M(ψ)〉, ∀ϕ ∈ J cuspk+2,M, and ψ ∈ J cuspk,M .

We explicitly compute the adjoint map, i.e., we calculate the Fourier coefficients of the

image of a Jacobi cusp form under the map L∗
k,M.

Theorem 4.2.4. [37] Let k > 4, andM. Let ϕ ∈ J cuspk+2,M with Fourier expansion ϕ(τ, z) =∑
n,r∈Zg ,

4n>M−1[rt]>0

cϕ(n, r)q
NζR. Then the image of ϕ under L∗

k,M is given by

L∗
k,M(ϕ)(τ, z) =

∑
N,R∈Zg ,

4N−M−1[Rt]>0

a(N,R)qnζr,

where

a(N,R)=
|M| 5−g

2 (K + 1)(K)(4N |M| − M̃ [R])K

π22(g−1)(k− g
2
−1)

[(4N |M| − M̃[R]− K|M|
3

)
(4N |M| − M̃[R])K+2

cϕ(N,R)

+ 8(K + 1)|M|
∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M| − M̃[R])K+2

]
,

where K = k − g
2
− 1.

4.3 Proof of results

The following lemma gives the bound of Fourier coefficients of Jacobi forms. We have
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4 Differential operators and Poincaré series for Jacobi forms

Lemma 4.3.1. [7] Let k > 3 and ϕ =
∑

4nm−r2⩾0

cϕ(n, r)q
nζr ∈ Jk,m. Then

cϕ(n, r) � (4nm− r2)k−
3
2 .

Moreover, if ϕ ∈ J cuspk,m , then

cϕ(n, r) � (4nm− r2)
k
2
− 1

2 .

Let f(τ, z) be a holomorphic function defined onH×Cwith Fourier expansion f(τ, z) =∑
n,r∈Z,
4nm>r2

af (n, r)q
nζr.We define the generalized Poincaré series with the base function f by

Pk,m(f)(τ, z) =
∑

γ∈ΓJ
∞\ΓJ

f |k,mγ. (4.4)

To observe the absolute convergence of Pk,m(f), consider the series

P̃k,m(f) =
∑
n,r∈Z,
4nm>r2

af (n, r)Pk,m;n,r. (4.5)

Since Jk,m is a finite-dimensional vector space, in view of the Theorem 1.5.3, the conver-

gence of the above series is equivalent to the convergence of the series

∑
n,r∈Z,
4nm>r2

af (n, r)〈ψ, Pk,m;n,r〉 =
mk−2Γ(k − 3

2
)

2πk−
3
2

∑
n,r∈Z,
4nm>r2

cψ(n, r)af (n, r)

(4nm− r2)k−
3
2

,

where ψ ∈ Jk,m with the Fourier expansion given by ψ(τ, z) =
∑

n,r∈Z,
4nm>r2

cψ(n, r)q
nζr. Now

using Lemma 4.3.1, the convergence of the series (4.5) follows immediately provided the

coefficient af (n, r) of f satisfies the bound af (n, r) = O((4nm− r2) k
2
−6−ϵ) for any ϵ > 0.
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4 Differential operators and Poincaré series for Jacobi forms

Thus, Pk,m(f) = P̃k,m(f) whenever the later series converges.

We need the following two lemmas.

Lemma 4.3.2. [7] Let ϕ be a complex-valued holomorphic function defined on H × C.

Then for a non-negative integer ν andM =

∗ ∗

c d

 ∈ SL2(Z), we have

Lνm(ϕ)|k+2ν,mM =
ν∑
l=0

(
ν

l

)(
2mc

πi

)ν−l (k + ν − 3
2
)!

(k + l − 3
2
)!

Llm(ϕ|k,mM)

(cτ + d)ν−l
.

Lemma 4.3.3. Let ϕ be a Jacobi form of weight k and index m. Then for a non-negative

integer ν andM =

∗ ∗

c d

 ∈ SL2(Z), we have

Lνm(ϕ|k,mM) =
ν∑
l=0

(−1)ν−l
(
ν

l

)(
2mc

πi

)ν−l (k + ν − 3
2
)!

(k + l − 3
2
)!

Llm(ϕ)|k+2l,mM

(cτ + d)ν−l
.

Proof. The proof is similar to the proof of Lemma 4.3.2 and it uses a simple induction

argument.

4.3.1 Proof of Theorem 4.2.1

Proof. Let ψ be a solution of (4.3). We prove the transformation properties (1.5) and (1.6).

Consider

h =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ). (4.6)

Now for any matrix γ =

∗ ∗

c d

 ∈ SL2(Z), apply the slash operator of weight k1 +

k2 +2ν and indexm1 +m2 to the above equation. Using the fact that h is a Jacobi form of
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4 Differential operators and Poincaré series for Jacobi forms

weight k = k1 + k2 + 2ν and indexm = m1 +m2, we obtain

h =

(
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ)

)
|k,mγ

=
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)|k1+2r,m1γ

× Lν−rm2
(ψ)|k2+2(ν−r),m2γ.

Now, Lemma 4.3.2 implies

h(τ, z) =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)|k1+2r,m1γ

×
ν−r∑
l=0

(
ν − r

l

)(
2m2c

πi

)ν−r−l (k2 + ν − r − 3
2
)!

(k2 + l − 3
2
)!

Llm2
(ψ|k2,m2γ)

(cτ + d)ν−r−l
. (4.7)

Applying the change of variable l 7→ l − r in (4.7), we obtain

h(τ, z) =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)|k1+2r,m1γ

×
ν∑
l=r

(
ν − r

l − r

)(
2m2c

πi

)ν−l (k2 + ν − r − 3
2
)!

(k2 + l − r − 3
2
)!

Ll−rm2
(ψ|k2,m2γ)

(cτ + d)ν−l
,

=
ν∑
r=0

ν∑
l=r

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)(
ν − r

l − r

)(
2m2c

πi

)ν−l
× mν−r

1 mr
2

(k2 + ν − r − 3
2
)!

(k2 + l − r − 3
2
)!
Lrm1

(ϕ)|k1+2r,m1γ
Ll−rm2

(ψ|k2,m2γ)

(cτ + d)ν−l
,

=
ν∑
l=0

l∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)(
ν − r

l − r

)(
2m2c

πi

)ν−l
× mν−r

1 mr
2

(k2 + ν − r − 3
2
)!

(k2 + l − r − 3
2
)!
Lrm1

(ϕ)|k1+2r,m1γ
Ll−rm2

(ψ|k2,m2γ)

(cτ + d)ν−l
.
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Next, interchange the variables r and l to obtain

h(τ, z) =
ν∑
r=0

r∑
l=0

(−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)(
ν − l

r − l

)(
2m2c

πi

)ν−r
× mν−l

1 ml
2

(k2 + ν − l − 3
2
)!

(k2 + r − l − 3
2
)!
Llm1

(ϕ)|k1+2l,m1γ
Lr−lm2

(ψ|k2,m2γ)

(cτ + d)ν−r
.

A simple calculation yields

h(τ, z) =
ν∑
r=0

r∑
l=0

(−1)l(k1 + ν − 3
2
)!(k2 + ν − 3

2
)!mν−l

1 ml
2

(k1 + l − 3
2
)!(k2 + r − l − 3

2
)!l!(r − l)!(ν − r)!

×
(
2m2c

πi

)ν−r
Llm1

(ϕ)|k1+2l,m1γ
Lr−lm2

(ψ|k2,m2γ)

(cτ + d)ν−r
. (4.8)

Also, we can rewrite the equation (4.6) as follows

h(τ, z) =
ν∑
r=0

(−1)r
(
k1+ν− 3

2

ν − r

)(
k2+ν− 3

2

r

)
mν−r

1 mr
2L

r
m1
(ϕ|k1,m1γ)L

ν−r
m2

(ψ),

where we have used the fact that ϕ is a Jacobi form of weight k1, index m1 and hence

ϕ|k1,m1γ = ϕ. Next, using Lemma 4.3.3 we get

h(τ, z) =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

ν−r
m2

(ψ)

×
r∑
l=0

(−1)r−l
(
r

l

)
(k1 + r − 3

2
)!

(k1 + l − 3
2
)!

(
2m1c

πi

)r−lLlm1
(ϕ)|k1+2l,m1γ

(cτ + d)r−l
.

=
ν∑
r=0

r∑
l=0

(−1)l(k1 + ν − 3
2
)!(k2 + ν − 3

2
)!mν−r

1 mr
2

(k2 + ν − r − 3
2
)!(k1 + l − 3

2
)!(ν − r)!l!(r − l)!

×
(
2m1c

πi

)r−l Lν−rm2
(ψ)

(cτ + d)r−l
Llm1

(ϕ)|k1+2l,m1γ. (4.9)
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Now subtracting (4.9) from (4.8), we have

0 =
ν∑
r=0

r∑
l=0

(−1)lmν−l
1 ml

2

(k1 + l − 3
2
)!(k2 + r − l − 3

2
)!l!(r − l)!(ν − r)!

(
2m2c

πi

)ν−r
× Llm1

(ϕ)|k1+2l,m1γ
Lr−lm2

(ψ|k2,m2γ)

(cτ + d)ν−r

−
ν∑
r=0

r∑
l=0

(−1)lmν−r
1 mr

2

(k2 + ν − r − 3
2
)!(k1 + l − 3

2
)!(ν − r)!l!(r − l)!

(
2m1c

πi

)r−l
×

Lν−rm2
(ψ)

(cτ + d)r−l
Llm1

(ϕ)|k1+2l,m1γ

=
ν∑
r=0

r∑
l=0

[
(−1)l

(k2 + r − l − 3
2
)!
mν−l

1 ml
2

(
2m2c

πi

)ν−rLr−lm2
(ψ|k2,m2γ)

(cτ + d)ν−r

− (−1)l

(k2 + ν − r − 3
2
)!
mν−r

1 mr
2

(
2m1c

πi

)r−l Lν−rm2
(ψ)

(cτ + d)r−l

]
× 1

l!(ν − r)!(r − l)!(k1 + l − 3
2
)!
Llm1

(ϕ)|k1+2l,m1γ,

=
ν∑
l=0

ν∑
r=l

[
(−1)l

(k2 + r − l − 3
2
)!
mν−l

1 ml
2

(
2m2c

πi

)ν−rLr−lm2
(ψ|k2,m2γ)

(cτ + d)ν−r

− (−1)l

(k2 + ν − r − 3
2
)!
mν−r

1 mr
2

(
2m1c

πi

)r−l Lν−rm2
(ψ)

(cτ + d)r−l

]
× 1

l!(ν − r)!(r − l)!(k1 + l − 3
2
)!
Llm1

(ϕ)|k1+2l,m1γ,

=
ν∑
l=0

(−1)lmν−l
1 ml

2

l!(k1 + l − 3
2
)!
Llm1

(ϕ)|k1+2l,m1γ

ν∑
r=l

[
1

(k2 + r − l − 3
2
)!

×
(
2m2c

πi

)ν−rLr−lm2
(ψ|k2,m2γ)

(cτ + d)ν−r
− 1

(k2 + ν − r − 3
2
)!

(
2m2c

πi

)r−l
(4.10)

×
Lν−rm2

(ψ)

(cτ + d)r−l

]
1

(ν − r)!(r − l)!
.

Now, consider the following expression

ν∑
r=l

1

(k2 + r − l − 3
2
)!(ν − r)!(r − l)!

(
2m2c

πi

)ν−rLr−lm2
(ψ|k2,m2γ)

(cτ + d)ν−r
.
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Replace r − l by p in the above expression to get

ν∑
r=l

1

(k2 + r − l − 3
2
)!(ν − r)!(r − l)!

(
2m2c

πi

)ν−rLr−lm2
(ψ|k2,m2γ)

(cτ + d)ν−r

=
ν−l∑
p=0

1

(k2 + p− 3
2
)!p!(ν − l − p)!

(
2m2c

πi

)ν−l−pLpm2
(ψ|k2,m2γ)

(cτ + d)ν−l−p
. (4.11)

Similarly, consider the expression

ν∑
r=l

1

(k2 + ν − r − 3
2
)!(ν − r)!(r − l)!

(
2m2c

πi

)r−l Lν−rm2
(ψ)

(cτ + d)r−l

and replace ν − r by p to obtain

ν∑
r=l

1

(k2 + ν − r − 3
2
)!(ν − r)!(r − l)!

(
2m2c

πi

)r−l Lν−rm2
(ψ)

(cτ + d)r−l

=
ν−l∑
p=0

1

(k2 + p− 3
2
)!p!(ν − l − p)!

(
2m2c

πi

)ν−l−p Lpm2
(ψ)

(cτ + d)ν−l−p
. (4.12)

Now using equations (4.11) and (4.12), the equation (4.10) reduces to

0 =
ν∑
l=0

(−1)lmν−l
1 ml

2

l!(k1 + l − 3
2
)!
Llm1

(ϕ)|k1+2l,m1

ν−l∑
p=0

1

(k2 + p− 3
2
)!p!(ν − l − p)!

×
(
2m2c

πi

)ν−l−p
1

(cτ + d)ν−l−p
Lpm2

(ψ|k2,m2γ − ψ)

=
ν∑
l=0

ν−l∑
p=0

(−1)lmν−l
1 ml

2

(k1 + l − 3
2
)!(k2 + p− 3

2
)!p!(ν − l − p)!l!

(
2m2c

πi

)ν−l−p
× 1

(cτ + d)ν−l−p
Lpm2

(ψ|k2,m2γ − ψ)Llm1
(ϕ)|k1+2l,m1 .
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Again applying Lemma 4.3.2, we have

0 =
ν∑
l=0

ν−l∑
p=0

(−1)lmν−l
1 ml

2

(k1 + l − 3
2
)!(k2 + p− 3

2
)!p!(ν − l − p)!l!

(
2m2c

πi

)ν−l−p

× 1

(cτ + d)ν−l−p
Lpm2

(ψ|k2,m2γ − ψ)
l∑

r=0

(−1)r
(
l

r

)
(k1 + l − 3

2
)!

(k1 + r − 3
2
)!

×
(
2m1c

πi

)l−r Lrm1
(ϕ)

(cτ + d)l−r

=
ν∑
l=0

l∑
r=0

ν−l∑
p=0

(−1)l+rmν−r
1 mν−p

2

(k1 + r − 3
2
)!(k2 + p− 3

2
)!p!(ν − l − p)!r!(l − r)!

×
(
2c

πi

)ν−r−p
Lpm2

(ψ|k2,m2γ − ψ)
Lrm1

(ϕ)

(cτ + d)ν−r−p

=
ν∑
r=0

ν∑
l=r

ν−l∑
p=0

(−1)l+rmν−r
1 mν−p

2

(k1 + r − 3
2
)!(k2 + p− 3

2
)!p!(ν − l − p)!r!(l − r)!

×
(
2c

πi

)ν−r−p
Lpm2

(ψ|k2,m2γ − ψ)
Lrm1

(ϕ)

(cτ + d)ν−r−p

=
ν∑
r=0

Ar(γ, τ, z)L
r
m1

(ϕ),

where for 0 ⩽ r ⩽ ν, Ar(γ, τ, z) is given by

Ar(γ, τ, z) =
ν∑
l=r

ν−l∑
p=0

(−1)l+rmν−r
1 mν−p

2

(k1 + r − 3
2
)!(k2 + p− 3

2
)!p!(ν − l − p)!r!(l − r)!

×
(
2c

πi

)ν−r−p
1

(cτ + d)ν−r−p
Lpm2

(ψ|k2,m2γ − ψ).

Thus we have
ν∑
r=0

Ar(γ, τ, z)L
r
m1

(ϕ) = 0. (4.13)
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As ϕ is a Jacobi form of weight k1 and indexm1, it has a Fourier series expansion given by

ϕ(τ, z) =
∑
N,R∈Z

4m1N−R2⩾0

cϕ(N,R)q
NζR.

By applying the heat operator Lm1 repeatedly to the above Fourier series and using (4.13),

we obtain

∑
N,R∈Z

4m1N−R2⩾0

ν∑
r=0

cϕ(N,R)(4m1N −R2)rAr(γ, τ, z)q
NζR = 0.

Hence, for every N and R with 4Nm1 −R2 ⩾ 0, we get

ν∑
r=0

cϕ(N,R)(4m1N −R2)rAr(γ, τ, z) = 0.

Hence it follows that for each r ∈ {0, 1, ..., ν}, Ar(γ, τ, z) = 0, as the polynomial
ν∑
r=0

Ar(γ, τ, z)x
r

can have only finitely many roots. In particular, for all (τ, z) ∈ H × C, we have

0 = Aν(γ, τ, z) =
mν

2

(k1 + ν − 3
2
)!(k2 − 3

2
)!ν!

mν
2(ψ|k2,m2γ − ψ)(τ, z).

Therefore, in view of the above identity, we have

ψ|k2,m2γ = ψ, for all γ ∈ SL2(Z).

This proves the transformation property (1.5). Let us now prove the transformation property

(1.6). Let X = (λ, µ) ∈ Z2. Recall that

h(τ, z) =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ).
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Then, we have

h =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)|k1+2r,m1X

× Lν−rm2
(ψ)|k2+2(ν−r),m2X,

=
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ|k1,m1X)

× Lν−rm2
(ψ|k2,m2X),

where in the last line, we have used the commutativity of heat operator and lattice action.

Hence, we obtain

h =
ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ|k2,m2X). (4.14)

Subtracting (4.6) from (4.14), we obtain

ν∑
r=0

(−1)r
(
k1+ν− 3

2

ν − r

)(
k2+ν− 3

2

r

)
mν−r

1 mr
2L

r
m1

(ϕ)Lν−rm2
(ψ|k2,m2X− ψ) = 0

Rewrite the above equation as follows

ν∑
r=0

Br(λ, µ, τ, z)L
r
m1

(ϕ) = 0,

where for 0 ⩽ r ⩽ ν,Br(λ, µ, τ, z) is given by

Br(λ, µ, τ, z) = (−1)r
(
k1+ν− 3

2

ν − r

)(
k2+ν− 3

2

r

)
mν−r

1 mr
2L

ν−r
m2

(ψ|k2,m2X− ψ).

Now proceeding as above (in the case of SL2(Z)), we obtain the required transformation
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property of ψ with respect to the lattice Z2, i.e.,

ψ|k2,m2X = ψ, for all X = (λ, µ) ∈ Z2.

Thus, ψ satisfies the transformation properties of a Jacobi form of weight k2 and index

m2 and this completes the proof.

4.3.2 Proof of Theorem 4.2.2

Proof. By using Lemma 4.3.1, it is easy to see that the coefficients cf (n, r) of f(τ, z),

satisfy the bound cf (n, r) = O((4n(m1 + m2) − r2)k1−
3
2
+ν+ϵ) for any ϵ > 0. Consider

the generalized Poincaré series Pk1+k2+2ν,m1+m2(f) associated to the above base function

f. To ensure its convergence the exponent in the bound of the coefficients of f which is

k1 − 3
2
+ ν + ϵ ⩽ k1+k2+2ν

2
− 6− ϵ reduces to k1 ⩽ k2 − 9− 4ϵ. By definition, we have

Pk1+k2+2ν,m1+m2(f) =
∑

γ∈ΓJ
∞\ΓJ

[ ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2

× (4Nm2 −R2)ν−rqNτRLrm1
(ϕ)

]
|k1+k2+2ν,m1+m2γ,

=
∑

γ∈ΓJ
∞\ΓJ

ν∑
r=0

(−1)r
(
k1 + ν − 3

2

ν − r

)(
k2 + ν − 3

2

r

)
mν−r

1 mr
2

× Lν−rm2
(qNτR)|k2+2(ν−r),m2γL

r
m1

(ϕ)|k1+2r,m1γ.

Using Lemma 4.3.2, we get

Pk1+k2+2ν,m1+m2(f) =
∑

γ∈ΓJ
∞\ΓJ

ν∑
r=0

(−1)r
(
k1+ν− 3

2

ν − r

)(
k2+ν− 3

2

r

)
mν−r

1 mr
2

×Lν−rm2
(qNτR)|k2+2(ν−r),m2γ

r∑
l=0

(
r

l

)(
2m1c

πi

)r−l(k1+r− 3
2
)!

(k1+l− 3
2
)!

Llm1
(ϕ|k1,m1γ)

(cτ + d)r−l
,
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=
∑

γ∈ΓJ
∞\ΓJ

ν∑
l=0

(−1)lLlm1
(ϕ)

ν−l∑
r=0

(−1)ν−l−r
(
k1 + ν − 3

2

r

)(
k2 + ν − 3

2

ν − r

)
mr

1m
ν−r
2

×
(
ν − r

l

)(
2m1c

πi

)ν−r−l (k1 + ν − r − 3
2
)!

(k1 + l − 3
2
)!

Lrm2
(qNτR)|k2+2(ν−r),m2γ

(cτ + d)r−l
,

where in the last line we have replaced r by ν − r. A simple calculation yields

(
k1 + ν − 3

2

r

)(
k2 + ν − 3

2

ν − r

)(
ν − r

l

)
(k1 + ν − r − 3

2
)!

(k1 + l − 3
2
)!

=
Γ(k1 + ν − 1

2
)Γ(k2 + ν − 1

2
)

Γ(r + 1)Γ(k2 + r − 1
2
)Γ(l + 1)Γ(ν − l − r + 1)Γ(k1 + l − 1

2
)

=

(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)(
ν − l

r

)
(k2 + ν − l − 3

2
)!

(k2 + r − 3
2
)!

.

Using the above equality, we see that Pk1+k2+2ν,m1+m2(f) equals

∑
γ∈ΓJ

∞\ΓJ

ν∑
l=0

(−1)lLlm1
(ϕ)

(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2

×
ν−l∑
r=0

(−1)ν−l−r
(
ν−l
r

)(
2m2c

πi

)ν−l−r(k2 + ν − l − 3
2
)!

(k1 + r − 3
2
)!

Lrm2
(qNτR)|k2+2r,m2γ

(cτ + d)ν−l−r
.

Finally, using Lemma 4.3.3, we get that Pk1+k2+2ν,m1+m2(f) equals

∑
γ∈ΓJ

∞\ΓJ

ν∑
l=0

(−1)lLlm1
(ϕ)

(
k1+ν− 3

2

ν − l

)(
k2+ν− 3

2

l

)
mν−l

1 ml
2L

ν−l
m2

(qNζR|k2,m2γ),

=
ν∑
l=0

(−1)lLlm1
(ϕ)

(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2

×
∑

γ∈ΓJ
∞\ΓJ

Lν−lm2
(qNζR|k2,m2γ),
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=
ν∑
l=0

(−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2L

l
m1

(ϕ)Lν−lm2
(Pk2,m2;N,R),

= [ϕ, Pk2,m2;N,R]ν .

Hence we have the theorem.

4.3.3 Proof of Theorem 4.2.4

First, we state a lemma which we shall use to prove Theorem 4.2.4.

Lemma 4.3.4. Let ϕ ∈ J cuspk+2,M. Then the sum

∑
γ∈ΓJ

g,∞\ΓJ
g

∫
ΓJ
g \H×Cg,1

| ϕ(τ, z)Lk,M (e2πi(Nτ+Rz) |k,M γ)vk+2e
−4πM[y]

v | dVJ

converges.

For a proof, we refer to [20]. Now we prove Theorem 4.2.4. Let L∗
k,M(ϕ)(τ, z) =∑

n,r∈Zg ,
4n>M−1[rt]>0

a(n, r)e(nτ + rz). Now consider the (N,R)-th Poincaré series of weight k

and indexM. Then by Lemma 1.5.3, we have

〈L∗
k,M(ϕ), Pk,M;N,R〉 = λκ,M,Da(N,R).

Now using the definition of the adjoint map 〈L∗
k,Mϕ, Pk,M;N,R〉 = 〈ϕ, Lk,M(Pk,M;N,R)〉 we

have

a(N,R) =
1

λκ,M,D

〈ϕ, Lk,M(Pk,M;N,R)〉. (4.15)

We now compute 〈ϕ, Lk,M(Pk,M;N,R)〉. By definition, 〈ϕ, Lk,M(Pk,M;N,R)〉 equals

=

∫
ΓJ
g \H×Cg,1

ϕ(τ, z)Lk,M (Pk,M;N,R) v
k+2e

−4πM[y]
v dVJ
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=

∫
ΓJ
g \H×Cg,1

∑
γ∈ΓJ

g,∞\ΓJ
g

ϕ(τ, z)Lk,M (e(Nτ +Rz)) |k+2,M γ vk+2e
−4πM[y]

v dVJ .

By Lemma 4.3.4, we can interchange the sum and integration in 〈ϕ, Lk,M(Pk,M;N,R)〉.

Hence we have,

〈ϕ, Lk,M(Pk,M;N,R)〉=
∑

γ∈ΓJ
g,∞\ΓJ

g

∫
ΓJ
g \H×Cg,1

ϕ(τ, z)Lk,M (e(Nτ +Rz)) |k+2,M γ vk+2e
−4πM[y]

v dVJ .

Using Rankin’s unfolding argument, we see that 〈ϕ, Lk,M(PN,R
k,M)〉 equals

∫
ΓJ
g,∞\H×Cg

ϕ(τ, z)Lk,M (e(Nτ +Rz)) vk+2e
−4πM[y]

v dVJ

=

∫
ΓJ
∞\H×Cg,1

ϕ(τ, z)(4N |M| − M̃[Rt])e(Rτ +Rz)−
(k − g

2
)

3

(
1− 24

∑
j≥1

σ(j)e(jτ)

)
×e(Nτ +Rz) vk+2e

−4πM[y]
v dVJ

=

(
4N |M| − M̃[Rt]−

(k − g
2
)

3

)∫
ΓJ
g,∞\H×Cg,1

ϕ(τ, z)e(Nτ +Rz) vk+2e
−4πM[y]

v dVJ

+8
(
k − g

2

∣∣∣M|
∫
ΓJ
g,∞\H×Cg,1

ϕ(τ, z)

(∑
j≥1

σ(j)e(jτ)

)
e(Nτ +Rz) vk+2e

−4πM[y]
v dVJ

= (4N |M| − M̃[Rt]−
(k − g

2
)

3
)I1 + 8(k − g

2
)|M|I2,

where I1 and I2 are given by

I1 =

∫
ΓJ
g,∞\H×Cg,1

ϕ(τ, z)e(Nτ +Rz) vk+2e
−4πM[y]

v dVJ ,
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and

I2 =

∫
ΓJ
g,∞\H×Cg,1

ϕ(τ, z)

(∑
j≥1

σ(j)e(jτ)

)
e(Nτ +Rz) vk+2e

−4πM[y]
v dVJ .

Now, we calculate the integrals I1 and I2 separately. We have

I1 =

∫
ΓJ
g,∞\H×Cg,1

ϕ(τ, z)e(Nτ +Rz)vk+2e
−4πM[y]

v dVJ

=

∫
ΓJ
g,∞\H×Cg,1

∑
n,r∈Zg ,

4n>M−1[rt]>0

cϕ(n, r)e(nτ + rz)e(Nτ +Rz)vk+2e
−4πM[y]

v dVJ .

We put τ = u + iv and z = x + iy, where x = (x1, x2, ..., xg) and y = (y1, y2, ..., yg). A

fundamental domain for the action of ΓJg,∞ onH×Cg is given by {(τ, z) ∈ H×Cg,1 : 0 ⩽

u ⩽ 1, v > 0, xi ∈ [0, 1], y ∈ Rg,1}. Integrating over this region we obtain

I1 =
|M|k+1−gΓ(k − g

2
+ 1)

2gπk−
g
2
+1

cϕ(N,R)

(4N |M| − M̃[Rt])k−
g
2
+1
.

Similarly, we can compute the integral I2 and we obtain

I2 =
|M|k+1−gΓ(k − g

2
+ 1)

2gπk−
g
2
+1

∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M| − M̃[Rt])k−
g
2
+1
.

Finally, we have the Fourier coefficient a(N,R) of the adjoint map of the heat operator

a(N,R) =
|M| 5−g

2 (k − g
2
)(k − g

2
− 1)(4N |M| − M̃[R])K

π22(g−1)(k− g
2
−1)

×
[(4N |M| − M̃[R]− (k− g

2
)|M|
3

)
(4N |M| − M̃[R])k−

g
2
+1

cϕ(N,R)

+8(k − g

2
)|M|

∑
n⩾1

cϕ(n+N,R)σ(n)

(4(n+N)|M| − M̃ [R])k−
g
2
+1

]
.
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4.4 Applications

Rankin [42] computed the Petersson scalar product 〈f, gEl〉, where f ∈Mk+l, g ∈Ml and

El is the Eisenstein series of weight l. To compute 〈f, gEl〉, one can express gEl in terms of

Poincaré series and then use Lemma 1.2. The method is known as Rankin’s method. Zagier

[51] extended the result of Rankin and computed the Petersson scalar product 〈f, [g, El]ν〉,

where f ∈ Mk+l+2ν and g ∈ Mk.We use Corollary 4.2.3 to give some applications in the

case of Jacobi forms.

Example 4.4.1. LetN andR be integers such that 4N−R2 > 0. Then from Theorem 4.2.2,

we have

E4,1P14,1;N,R = P18,2(q
NζRE4,1),

= P18,2

 ∑
4n−r2⩾0

H(3, 4n− r2)

ζ(−5)
qn+Nζr+R

 ,

=
∑

4n−r2⩾0

H(3, 4n− r2)

ζ(−5)
P18,2;n+N,r+R.

Thus we have

〈E18,2, E4,1P14,1;N,R〉=
2

61
2 15!

ζ(−5)π16

∑
4n−r2⩾0

H(3, 4n−r2)e18,2(17, 8(n+N−(r +R)2))

(8(n+N)− (r +R)2)16
,

whereH(n, r) are generalized class numbers defined by Cohen [10], and ek,m(n, r) are the

Fourier coefficients of Ek,m [13].

Example 4.4.2. Let k1, k2(≥ 11),m1,m2 and ν be positive integers. Let ψ ∈ J cuspk1,m1
, ϕ ∈

Jk1+k2+2ν,m1+m2 , and Ek2,m2 be the Jacobi-Eisenstein series of weight k2 and index m2.
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Assume that either ϕ or [ψ,Ek2,m2 ]ν is a Jacobi cusp form. Then Corollary 4.2.3 implies

[ψ,Ek2,m2 ]ν = Pk1+k2+2ν,m1+m2([ψ, 1]ν),

= (−1)ν

k2 + ν − 3
2

ν

mν
2Pk1+k2+2ν,m1+m2(L

ν
m1

(ψ)),

= (−1)ν

k2 + ν − 3
2

ν

mν
2

∑
n,r∈Z

4n−r2⩾0

c(n, r)Pk1+k2+2ν,m1+m2;n,r.

Hence for ϕ ∈ Jk1+k2+2ν,m1+m2 , we obtain

〈ϕ, [ψ,Ek2,m2 ]ν〉 = αm1,m2

k1,k2,ν

∑
n,r∈Z

4n−r2⩾0

c(n, r)d(n, r)

(4n(m1 +m2)− r2)k1+k2+2ν− 3
2

,

where

αm1,m2

k1,k2,ν
= (−1)ν

k2 + ν − 3
2

ν

mν
2

(m1 +m2)
k1+k2+2ν−2Γ(k1 + k2 + 2ν − 3

2
)

2πk1+k2+2ν− 3
2

.

We give one more application of Theorem 4.2.4.

Example 4.4.3. Letϕ10,1 =
∑

n,r∈Z,
4mn−r2>0

cϕ10,1(n, r)q
nζr∈J cusp10,1 andϕ12,1 =

∑
n,r∈Z,

4mn−r2>0

cϕ12,1(n, r)q
nζr ∈

J cusp12,1 . Then we have the following identity:

−1

6

||ϕ12,1||2

||ϕ10,1||2
Cϕ10,1(N,R) =

323(DN,R)
17
2

4π

[
(DN,R − 19

6
)

(DN,R)
21
2

Cϕ12,1(N,R) + 76Lϕ12,1(N,R;
21

2
)

]
,

where DN,R = 4N −R2 and Lϕ(N,R; s) =
∑

n⩾1

Cϕ(n+N,R)

(Dn+N,R)s
.

Proof. We know that J cusp10,1 and J cusp12,1 are one dimensional and L10,1(ϕ10,1) ∈ J cusp12,1 . Hence
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by comparing Fourier coefficients, we get

L10,1(ϕ10,1) = −1

6
ϕ12,1.

Now let L∗
10,1(ϕ12,1) = αϕ10,1, we have

α||ϕ10,1||2 = 〈αϕ10,1, ϕ10,1〉

= 〈L∗
10,1(ϕ12,1), ϕ10,1〉

= 〈ϕ12,1,L10,1(ϕ10,1)〉

= −1

6
||ϕ12,1||2.

Now from Theorem 4.2.4, we get the desired identity.

Example 4.4.4. Observe that J4,1 and J6,1 are one dimensional spaces generated by E4,1

and E6,1 respectively. Comparing the constant term we get L4,1(E4,1) = −7
6
E6,1. Hence

we get the following relation between generalized class numbers

1

ζ(−9)
H(5, 4n− r2)

=
1

ζ(−5)
[(4n− r2)H(3, 4n− r2)− 7

6
H(3, 4n− r2)− 28

∑
n1+n2=n,
4n2−r2⩾0

σ(n1)H(3, 4n2 − r2)].
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