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SUMMARY

The aim of my Ph.D was to study the optical signatures of chemical and physical

functionalization of nano structures, primarily the experimentally realizable nano

structures made of 2p block elements which are known for their versatile electronic

and magnetic properties, as a guide for experimentalists. These nano structures

are typically made of hundreds to thousands of atoms which makes them difficult

to study computationally using the standard methodologies like the time depen-

dent density functional theory (TDDFT) based on approximations of the exchange

correlation interaction among electrons in the valence and conduction bands, and al-

most impossible for the more accurate framework based on many body perturbation

theory and Bethe-Salpeter equation. This motivated us to explore methodological

strategies to cut-down the computational cost of accurate estimation of optical ex-

citation within the tight-binding (TB) framework, leading us to develop a minimal

multi orbital basis.

In my thesis,first I described the construction of directed hybrid atomic Wannier

orbital (HAWO) basis constructed from Kohn-Sham (KS) states of a given system.

By construction , the degenerate HAWOs being oriented to directions of coordi-

nation in systems with ideal bond angle , they render predominantly single TB

parameters for each nearest neighbor bond irrespective of their orientation and also

facilitates an easy route for the transfer of such TB parameters across iso-structural

systems exclusively through mapping of neighborhoods and projection of orbital

charge centers. However in a host of molecules and low dimensional systems bond-

angles are non-ideal, which makes degenerate HAWOs unusable. For such systems

we have proposed construction of the optimally oriented maximally valent orbitals

(MVO),which maximally incorporate covalent interactions prevalent in the system
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estimated in terms of the Mayer’s bond order, also known as the Wiberg’s bond

index.

We calculate TB parameters in the proposed directed basis at the level of KS

DFT and further also include self-energy corrections of single particle levels com-

puted using GW approximation. Self energy corrected TB parameters are computed

in small reference systems and transferred to larger isomorphic systems to reproduce

quasi-particle band gap with workable accuracy (>90%) in systems with hundreds of

atoms where an explicit DFT+G0W0 computation would be prohibitively expensive.

In the second part of my thesis work, we have developed a computationally in-

expensive anti-causally corrected real time dynamics(ACC-RTD) approach to study

the optical absorption spectra beyond the independent particle level, for experimen-

tally realizable systems in the directed basis proposed in the first part of my thesis

works. ln ACC-RTD, Hamiltonian is updated at every time step using the dielectric

susceptibility , leading to good agreement of, primarily the absorption threshold,

with reported experimental spectra, as well as those computed using GW-BSE, for

systems ranging from small molecules to nano diamonds made of carbon and silicon

atoms we have tested in so far. I hope the methodological efforts reported in my

thesis will pave the way for inexpensive computation of optical excitation in experi-

mentally realizable nano structures leading to refinement of computational proposals

of optically active device configurations.
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Chapter 1

Preface

The aim of my Ph.D when I started, was to study the optical signatures of chemical

and physical functionalization of nano-structures as a guide for experimentalists.

My primary goal was to investigate experimentally realizable nano-structures made

of 2p block elements which are known for their versatile electronic and magnetic

properties. These nano-structures are typically made of few hundreds to thousands

of atoms which makes them difficult to study computationally.

Time dependent density functional theory (TDDFT)1 is an exact frame work for

study the optical properties but accurate computation of the same based on TDDFT

requires realistic approximations of the exchange correlation interaction among elec-

trons in the valence as well as conduction bands. The key inadequacy stems from the

local and static nature of the primarily jellium based exchange-correlation kernel2,3

primarily in use. Overcoming these inadequacies a more accurate frame work based

on many body perturbation theory4,5 and Bethe-Salpeter6 equation, known popu-

larly as GW-BSE approach,7 has been shown to render optical gap comparable with

experimentally observed optical excitation. However GW-BSE computation of opti-

cal excitation, which explicitly considers an electron-hole quasi particle interaction

kernel is computationally prohibitively expensive and practically impossible for the

kind of systems I planned to investigate with the standard configuration of stand-

alone computational infrastructure available in general with exception of large scale
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super-computing facilities. This limitation motivated us to evolve methodological

strategies to cut-down the computational cost. As a feasible direction we started

exploring possibilities within the tight-binding (TB) framework, which led us to

develop a localized orbital basis which will not only maximally incorporate the elec-

tronic structure of a given system in a minimal set of basis but will also facilitate

easy transfer of parameters across systems. Then I returned to the original goal

of my Ph.D to compute optical properties of realizable nano-structure. We took

recourse of the real time dynamics (RTD) approach with the Hamiltonian describe

in our proposed directed basis. We have introduced an easily parameterizable anti-

causally corrected RTD approach for accurate estimation of primarily the optical

absorption threshold beyond the independent particle level. Hopefully the method-

ological efforts reported in my thesis will pave the way for inexpensive computation

of optical excitation in experimentally realizable nano-structures leading to refine-

ment of computational proposals of optically active device configurations.

1.1 This Thesis

In the first part of my thesis, I described the construction of optimally directed lo-

calized atomic Wannier orbital8 basis constructed from Kohn-Sham (KS)9 states of

a given system. In this direction we first proposed construction of localized degen-

erate hybrid atomic orbitals (HAO)10 as approximate eigenstates, which maximally

joint diagonalize the non-commuting first moment matrices. Relative orientation of

HAOs by construction are as per the direction of nearest neighbor co-ordinations in

systems with ideal bond angle. Wannierization of HAOs in the basis of Kohn - Sham

(KS) single particle states lead to the hybrid atomic Wannier orbitals (HAWO) which

constitute an orthonormal multi-orbital tight binding (TB) basis.10 By construction

HAWOs being locked to directions of coordination, they render predominantly single

TB parameters for each nearest neighbor bond involving no more than two orbitals

irrespective of their orientation and also facilitates an easy route for the transfer of

such TB parameters across iso-structural systems exclusively through mapping of
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neighborhoods and projection of orbital charge centers.

However in a host of atoms and low dimensional systems bond-angles are non-

ideal, which makes degenerate HAOs unusable. For many such systems a possible

bent nature of covalent bonding has also been reported.11 Accordingly, we have pro-

posed construction of maximally valent orbitals (MVO), which are non-degenerate

HAOs with customizable hybridization as per their orientations, chosen such that

they maximally incorporate covalent interactions prevalent in the system, which we

estimated in terms of the Mayer’s bond order,12,13 also known as the Wiberg’s bond

index.14

We calculate TB parameters in the Wannierized HAO or MVO basis as per the

orientation of nearest neighbor co-ordinations in the given system. TB parameters

are computed based on energetics of single particle states not only at the level of KS

DFT but also including their self-energy corrections computed using GW approxi-

mation15 of many body perturbation theory. TB parameters are computed in small

reference systems and transferred to larger isomorphic systems through mapping of

neighborhoods. We have shown10 that such transferred self-energy corrected TB

parameters can reproduce quasi-particle band gap with workable accuracy (> 90%)

in systems with hundreds of atoms where an explicit DFT+G0W0 computation of

self-energy correction would be prohibitively expensive.

In the second part of my thesis work, we have developed a computationally

inexpensive anti-causally corrected real time dynamics (ACC-RTD) approach to

study the optical properties of experimentally realizable systems as per the original

aim of my Ph.D., in the directed basis (HAO/MVO) proposed in the first part of my

thesis work. In our RTD16,17 calculation, we apply a delta like pulse to the system at

the initial time step and allow the system to evolve in time using the Cranck-Nicolson

scheme.16,17 The absorption spectra calculated from the polarization profile matches

with the same calculated at the independent particle (IP) level with the KS single

particle states. To compute optical excitation beyond the IP level we resort to ACC-

RTD where the self-energy corrected TB Hamiltonian is updated at every time step

in order to ensure minimal evolution of the density with the rationale being that the
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true Hamiltonian corresponding to the evolving states should naturally incorporate

excitonic interactions which are minimized by the evolving states. We find that

the resultant absorption spectra are in good agreement with reported experimental

spectra as well as those computed using GW-BSE, for systems ranging from small

molecules to nano-diamonds made of four co-ordinated carbon and silicon atoms

that we have tested for so far.

I hope the methodological efforts reported in my thesis will pave the way for

inexpensive computation of optical excitation in experimentally realizable nano-

structures leading to refinement of computational proposals of optically active device

configurations.

(c)(b)(a)

Figure 1.1: (a) Adamantane (C10H16), (b) Pentamantane (C26H32), (c) large nano-
diamond with sp3 hybridization. The arrow denotes the transfer of TB parameters
from smaller reference to larger isomorphic systems, which is procedurally central to
computation of electronic structure and optical excitation of realizably large systems
reported in this thesis.

The construction of Wannierized directed hybrid orbitals has been demonstrated

in a wide variety of molecules and clusters with non-ideal as well as ideal bond angles,

for example water, ammonia, diborane, cyclo propane and to others cyclic molecules

like C3H3, C4H4, C5H5, benzine. I have demonstrated the propose ACC-RTD scheme

for estimation of absorption cross-section in carbon and silicon based nano diamond

[Fig.1.1] in good agreement with the corresponding experimental or GW-BSE based

spectra.18,19,20,21 Self-energy corrected TB parameters have been transferred from

pentamantane to larger nano-diamonds. As an application, I have tried to correlate

chemical activation and presence of local magnetic moments with the absorption

spectra in carbon doped h-BN segments of realizable length scales.



Chapter 2

Theoretical background

2.1 Introduction

The exact description of the electronic structure of atoms, molecules and solids is

important to understand the properties in the significant portion of condensed mat-

ter physics, quantum chemistry and material science. However, this is a daunting

task mainly because of two reasons. Firstly, electrons in matter must be described

by the laws of quantum mechanics rather than classical ones. This is because the

de Broglie wavelength (λ = h/p) of an electron in a many-electron environment is

comparable to the average inter-particle separation, h being the Planck’s constant

and p the momentum of the electron. The second problem arises from the complex

multi-particle interaction due to the overlapping of de Broglie wavelengths of differ-

ent electrons. This causes the solution to be impossible for many-electron systems

and the complexity grows drastically with the increasing number of electrons. For

these reasons, computing electronic structure of matter is essentially a quantum

many-body problem.

The quantum many-body problem is hard because the equations required for

exact solution are known but computationally impossible to solve as is for more

than one electron. Reasonably accurate approximate analytic solution exist only for

systems with two confined electrons. In principle any static quantum system can be
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described from the solution of the time independent Schrödinger equation :

Ĥψ(ri) = Eψ(ri) (2.1)

where Ĥ, ψ(ri) and E are the static Hamiltonian, many-body wavefunction and

total energy of the system respectively. Here, ri for i = 1, 2, 3, · · · , N denote the

position of N electrons. For a system of M atoms the Hamiltonian of Eqn.(2.1)

consists of the following terms

Ĥ = T̂n(R) + T̂e(r) + V̂nn(R) + V̂ee(r) + V̂ne(r,R)

= −
M∑
I=1

~2

2MI

∇2
I −

N∑
i=1

~2

2me

∇2
i +

e2

4πε0

M∑
I

M∑
J>I

ZIZJ
|RI −RJ |

(2.2)

+
e2

4πε0

N∑
i

N∑
j>i

1

|ri − rj|
− e2

4πε0

M∑
I

N∑
i

ZI
|RI − ri|

where ZI , MI and me are the atomic numbers, nuclear masses and electron mass,

respectively. The first two terms of the above equation represent the kinetic en-

ergies of the nuclei and electrons. The last three terms represent the interaction

energy operators between nuclei-nuclei (V̂nn), electron-electron (V̂ee) and electron-

nuclei (V̂ne) respectively. In practice, the partial differential Eqn.(2.1) is impossible

to solve within a full quantum mechanical framework. There are various features

that contribute to this difficulty, but the most important one is that the two-body

nature of the Coulomb interaction which makes the above Schrödinger equation not

separable.

As the first approximation, known as the Born Oppenheimer approximation,22

we can decouple the motion of electrons from the nuclear motion owing to the fact

that the time scale associated with the motion of nuclei is much larger than that

of electrons. Within this approximation, we can factorize the total wavefunction ψ

into a nuclear wavefunction ψn and electronic wavefunction ψe, as :

ψ({RI}, {ri}) = ψn({RI})ψe({xi}). (2.3)
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The approximation allows us to fix nuclear configuration at some particular value

RI and solve for the electronic wavefunction ψe({ri}) depending parametrically on

RI .

The electronic Hamiltonian is thus :

Ĥe = −
N∑
i=1

1

2
∇2
i +

N∑
i

N∑
j>i

1

|ri − rj|
−

M∑
I

N∑
i

ZI
|RI − ri|

. (2.4)

In the above equation, we use hartree atomic units, whereby ~ = e = me = 4πε0 = 1

unless otherwise stated, we will use this unit for the rest part of the thesis.

Although we simplified our many-body Schrödinger equation in Eqn.(2.4) by

applying Born-Oppenheimer approximation, but still the solution of the electronic

Schrödinger equation i.e. Eqn.(2.4) is too complex because of the many-electron

wavefunction which depends on 3N variables and which for a solid of N ∼ 1026

electrons, is an unmanageable number of degrees of freedom. In the next section,

we will briefly describe the wavefunction based approaches to obtain approximate

solutions of Eqn.(2.4).

2.2 Hartree-Fock Method

The starting point of this method was introduced by D. R. Hartree in 1928, where

each electron in a many-electron system is assumed to be moving in an effective

potential which takes into account the effect of attraction to the nucleus and the

average effect of the repulsive electron-electron interactions due to other electrons.

Each electron in the system is described by its own wavefunction, which was written

within the independent particle approximation as product of individual orbitals for

each electrons.

Φ(r1, r2, r3, · · · , rN) = φ(r1), φ(r2), φ(r3), · · · , φ(rN) (2.5)
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In 1930, V. A. Fock generalized Hartree’s method which takes into account the

antisymmetry requirement of the many-electron wavefunction. In the Hartree-Fock

(HF) approximation, the wavefunction of a N electron system is taken as a Slater

determinant23

ψHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

α1(X1) α1(x2) . . . α1(xN)

α2(x1) α2(x2) . . . α2(xN)

...
...

. . .
...

αN(x1) αN(x2) . . . αN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.6)

where αi(Xj) = φi(rj)σi(j) are spin-orbitals which follow the orthonormality condi-

tion :

〈αi|αj〉 = δij. (2.7)

Within the HF approximation, the expectation value of the Hamiltonian of Eqn.(2.4)

is given by :

EHF = 〈ψHF|Ĥe|ψHF〉 =
N∑
i=1

hi +
1

2

N∑
i,j=1

(Jij −Kij), (2.8)

where

hi =

∫
φ∗i (r)

(
−1

2
∇2

r + vext(r)

)
φ∗i (r)d3r (2.9)

Jij =

∫ ∫
φ∗i (r1)φ∗j(r2)

1

|r1 − r2|
φi(r1)φj(r2)d3r1d

3r2 (2.10)

Kij =

∫ ∫
φ∗i (r1)φ∗j(r2)

1

|r1 − r2|
φi(r2)φj(r1)d3r1d

3r2. (2.11)

The term in Eqn.(2.10) is the Coulomb interaction energy between electrons and the

Eqn.(2.11) represents the exchange energy between electrons arising due to Pauli

exclusion. For i = j, we have Jii = Kii leading to cancellation of the self-interaction

of orbitals. Many-electron wavefunction ψ is the basic quantity for the wave function

based methods. The variation principle states that for any guessed wave function

the expectation value of the Hamiltonian (Ĥe) always gives the upper bound to the
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electronic ground state energy :

〈ψ|Ĥe|ψ〉 ≥ 〈ψ0|Ĥe|ψ0〉, (2.12)

where the equality sign holds only for the true ground state wave function ψ0. Min-

imizing the above expression w.r.t. the orbital φ∗i gives the canonical HF equation

for the ith orbital

(
−1

2
∇2

r + vext(r) +

∫
ρ(r′)

|r− r′|
dr′
)
φi(r)−

∑
i,j

(σi||σj)

∫ ∫
φ∗j(r

′)φj(r)φi(r
′)

|r− r′|
dr′ = εiφi(r),

(2.13)

where εi is the Lagrange multiplier to ensure the orthonormality of the orbitals and

σi is the spin of the ith orbital. The Eqn.(2.13) is solved self-consistently and the

solution results in a set of orthonormal orbitals which can be used in Eqn.(2.8) to

calculate the total energy of a given system.

The inherent non-locality and multitude of orbitals make the HF approach com-

putationally expensive. We recall at this point that omitting the exchange term

in Eqn.(2.13) results into the Hartree Eqn. HF method renders total energy of

diatomic molecules with high degree of accuracy. HF orbitals are often used as

zero-order states for perturbation schemes.24

However, due to lack of dynamic correlation, the binding energy of molecules

calculated using HF is large and also the dissociation limit of molecules is usually

predicted incorrectly.

To account for dynamic correlation linear combination of Slater determinants

made of different combination of orbitals are used, leading to the configuration

interaction (CI) scheme which is very accurate but computationally prohibitively

expensive. From the variational approach, accuracy of the quantum Montecarlo

(QMC) based estimation of the ground state is comparable to CI but also compu-

tationally exorbitantly expensive. Both QMC and CI are used as benchmarking

reference for various parametrizations in the construction of functional in DFT.
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2.3 Density Functional Theory

Owing to the numerical complexity of dealing with many particle wave function in

the HF approach alternate route to calculate the electronic structure evolved based

on the one electron density. Efforts in this direction started with the Thomas Fermi

approach25,26 and matured in the Kohn-Sham27 density functional theory which con-

stitutes the primary methodology employed widely in deriving quantum mechanical

description of materials with weak to modest correlation. The main advantage of

using the density rather than wave function is that it always involves only three

generalized coordinates regardless of the number of electrons in the system. This

enables DFT to compute the properties of large systems containing hundreds to

thousands of atoms. Electron density defined as :

ρσ1=σ′ (r1) = Nσ′

∫
· · ·
∫
|ψ(x1,x2, · · · ,xN)|2dx2 · · · dxN (2.14)

determines the probability of finding an electrons with σ1 spin at r1 :

∑
σ

∫
ρσ(r)dr = N (2.15)

where ψ(x1, x2) is a normalized Slater wavefunction for a combination of them.

2.3.1 The Hohenberg-Kohn Theorem

Foundation of DFT is the fundamental correspondence of the ground state charge

density and the external potential proved by Hohenberg-Kohn in 1964.9

Theorem I: There exists a one-to-one mapping between ground state charge den-

sity and the external potential up to a trivial constant.

Corollary Since the density ρ(r) determines the external potential and the density

can be obtained from the ground state wave function, the density therefore deter-

mines the complete Hamiltonian. Therefore, the ground state energy is expressed
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as a functional of the density :

E[ρ] = 〈ψ|Ĥe[ρ]|ψ〉 = F [ρ] +

∫
vext(r)ρ(r)dr, (2.16)

where

F [ρ] = 〈ψ|T̂ [ρ(r)] + V̂ee[ρ(r)]|ψ〉. (2.17)

F [ρ] is called the universal functional as it is independent of the external potential.

Its form should thus remain unchanged irrespective of the system. Therefore, a

particular system is completely determined by vext(r) given which, the ground state

charge density can be uniquely determined.

Theorem II: The ground-state energy can be determined using variational principle

and the density which minimizes the total energy functional is the exact ground-

state density.

Corollary This implies that the energy functional E[ρ(r)] gives the true ground-

state energy only for the exact ground-state density ρ0(r). For any other density,

the predicted energy will be higher than the ground state energy.

E[ρ0] = min
ρ(r)

{
E[ρ(r)]

}
≤ E[ρ(r)]. (2.18)

The ground-state energy can be therefore calculated using the variational principle

with the constraint of conserving the number of electrons.

δ

{
E[ρ(r)]− µ

(∫
ρ(r)dr−N

)}
= 0. (2.19)

This leads to the Euler-Lagrange equation,

δE[ρ(r)]

δρ(r)
= µ = vext(r) +

δF [ρ(r)]

δρ(r)
, (2.20)

where, µ is the Lagrange multiplier and also known as the chemical potential of the

electrons. These two theorems form the mathematical basis of density-functional
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theory.

2.4 Kohn-Sham Self-consistent Field Equation

The Eqn.(2.16) and Eqn.(2.18) in the previous subsection give a way of calculating

the ground-state ρ if the form of F [ρ] is known. However, for practical calculations,

we have to rely on the approximate form of F [ρ] and finding a good approximation

beyond Jellium model remains a challenge. The universal density functional of

Eqn.(2.17) can be rewritten as follows

F [ρ] = Ts[ρ] + EH[ρ] + Exc[ρ], (2.21)

where EH[ρ] = 1
2

∫ ∫ ρ(r)ρ(r′)
|r−r′| drdr

′ is the part of the electron-electron coulomb repul-

sion or the Hartree energy and the term Exc is the exchange correlation functional

which is supposed to described electron-electron interactions rooted at exchange in-

teraction as well as the Pauli, Coulomb and kinetic correlation. We finally obtain

the Kohn-Sham total energy functional,

EKS[ρ] = Ts[ρ] +

∫
ρ(r)vext(r)dr + EH[ρ] + Exc[ρ]. (2.22)

The Kohn-Sham potential is determined by minimizing the KS energy functional

w.r.t. density under the constraint of the density integrates to the N electrons,

δ

δρ(r)

{
EKS[ρ]− µ

∫
ρ(r)dr

}
= 0. (2.23)

From the above equation, we obtain the following equation for the minimizing ground

state density
δTs[ρ]

δρ(r)
+ vext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc

δρ(r)
= µ. (2.24)
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The effective KS potential vKS will be

vKS(r) = vext(r) + vH(r) + vxc(r) (2.25)

where vH(r) =
∫ ρ(r′)
|r−r′|dr

′ and vxc(r) = δExc

δρ(r)
are the Hartree and exchange-correlation

(XC) potential respectively.

In terms of one electron orbitals constituting the Slater determinant Φ Eqn.(2.6)

density and kinetic energy expectation value expressed :

ρ(r) =
N∑
i=1

|φi(r)|2 and Ts[ρ] = 〈Φ|T̂s|Φ〉 = −1

2

∫
φ∗(r)∇2φ(r)dr, (2.26)

In view of the above expressions Eqn.(2.24) can be further simplified as:

[ δTs[ρ]

δφ∗i (r)

δφ∗i (r)

δρ(r)
+ vext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc

δρ(r)

]
φi = µφi (2.27)

leading to

[−1

2
∇2
iφi + vext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc

δρ(r)

]
φi = µφi. (2.28)

The Eqn.(2.28) can be written separately for all single particle orbital implying

different values of µ for different orbitals. Each such µ can thus be interpreted as

single particle energy levels:

ĤKSφi(r) = εiφi(r). (2.29)

where

ĤKS =
N∑
i=1

[
−1

2
∇2
i + vKS(ri)

]
. (2.30)

Eqn.(2.25) and Eqn.(2.29) imply a self-consistent computation of single particle or-

bitals starting from a reasonable initial guess as summarized in the flowchart below.
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Choose φini (r)

Construct ρin(r) =∑
i |φini (r)|2, VKS(r, ρin(r))

[
−1

2
∇2

r + VKS(r, ρin(r))
]
φouti (r) =

εouti φouti (r)

Construct ρout(r) =
∑

i |φouti (r)|2

if |ρin(r) − ρout(r)| < δtol

ρout(r) = ρin(r)

Calculate the ground state property

no
yes

In the next section, we will discuss about various approximations to the XC

energy term for practical calculations.

2.5 Exchange-Correlation Functionals

Since the advent of DFT various types of approximations for Exc have been used for

practical calculations. Proposed XC functionals are categorized as different rungs

of a Jacob’s ladder28 depending upon the ingredients used as shown in Fig. 2.1.

Furthermore, the XC functionals can be divided into non-empirical ones which are

analytical in nature and empirical ones which are proposed by fitting to known

atomic or molecular properties. Next, we briefly describe the rungs of the Jacob’s

ladder to introduce some of the most widely used XC functionals which also have

been used later in this thesis for studying different properties of solid-state and

molecular systems.
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∆ρ

ε
x

exact

Hartree Theory

LDA

GGA

meta−GGA

hyper−GGA

RPA + ........

ρ

τ

unoccupied 

orbital
Non−local

Local

PW91,PBE,BLYP,BP86,...

VWN,PZ81,PW92,...

TPSS,mPWB95,...

PBE0,B3LYP,X3LYP,...

{

{

Semi−local

Figure 2.1: Schematic representation of the Jacob’s ladder of the exchange-
correlation functional approximations.

Local Density Approximation (LDA): In this approximation, a real inhomo-

geneous system is divided into infinitesimal volumes and within each infinitesimal

volume, the density is taken to be uniform. The XC energy for each volume can be

calculated using the XC energy for the uniform electron gas at that density and the

total XC energy for the system can be written as

ELDA
xc =

∫
ρ(r)εunif

xc [(ρ(r))]dr, (2.31)

where εunif
xc [(ρ(r))] is the XC energy density for the interacting electron gas of density

ρ(r). The ELDA
rmxc has two parts: ELDA

x and ELDA
c . The analytical form of the exchange

energy (ELDA
x ) is known in this case and given by29,30

ELDA
x = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3dr. (2.32)

However, there is no simple form available for the correlation energy and gener-

ally obtained by analysis and interpolation of highly accurate quantum Monte-Carlo

simulations of the uniform electron gas.31 Some of the popularly used LDA function-

als are the Vosko-Wilk-Nusair (VWN),32 Perdew-Zunger (PZ)33 and Perdew-Wang
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(PW).34

The LDA shows good performance for various properties of solid-state systems

such as equilibrium structures, vibrational frequencies etc.. LDA works remarkably

well for metallic systems. A possible explanation for this success can be related to the

error cancellation between the exchange and correlation energies in LDA. Typically,

LDA overestimates the exchange and underestimates the correlation energies for real

systems and as a result of which it fortuitously gives good values of ELDA
xc . This error

cancellation likely because the LDA satisfies the exact sum rule35,36 of XC potential

which however does not necessarily guarantee accurate estimation of XC energy.

Generalized Gradient Approximation (GGA): The first step to improve

the performance of LDA is to include the gradient of density (∇ρ(r)) into the XC

functional in order to capture the varying electron densities of many materials. The

earliest attempt was called the gradient-expansion approximation (GEA), where the

gradient correction terms in powers of ∇ρ(r), |∇ρ(r)|2, ∇2ρ(r), etc. are added to

LDA. A more appropriate way of incorporating the gradient of density beyond the

LDA was found possible as:

EGGA
x =

∫
ρ(r)εunif

x (ρ(r))FGGA
x (s)dr, (2.33)

where FGGA
x (s) is the exchange enhancement factor which determines the enhanced

exchange energy over the LDA for a given density and s is the dimensionless reduced

density gradient

s =
|∇ρ(r)|

2 (3π2)1/3 ρ(r)4/3
. (2.34)

Some widely used GGA functionals are PBE,37 PW91,38 LYP39 and AM05.40

In particular GGAs improve binding energies, atomic energies and dynamical

properties of water, ice and water clusters41 over the LDA results.

Hybrid Functional: The observation that trends rendered by semi-local ap-

proximations briefly discussed above are different to those rendered by the HF ap-
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proximation mainly in semiconductors and insulators led to attempts to mix these

two approaches. Formally the concept of hybrid functionals can be derived from the

adiabatic connection”42 for the XC energy as :

Exc =

∫ 1

0

Uλ
xcdλ, (2.35)

λ = 0 correspond to non-interacting limit where Exc is exactly represented by HF

exchange in terms of the Kohn-Sham orbitals. The upper limit (λ = 1) corresponds

to the fully interacting real system which can be approximately described by a local

spin density approximations. The Eqn.(2.35) connects the non-interacting Kohn-

Sham system for λ = 0 which does not incorporate any form of correlation to the

fully interacting system for λ = 1 through a series of partially interacting systems in

between 0 < λ < 1 and all of the intermediate systems have the same density as the

interacting one. As the non-interacting limit (λ = 0) is exactly described by the HF

exchange, we expect an important role of the exact exchange for the improvement of

the XC functionals as we switch on interaction (λ). Thus in the hybrid functionals

semi-local XC approximation is mixed with the HF exchange in the following way

Ehyb
xc = αEHF

x + (1− α)EDFT
x + EDFT

c . (2.36)

The most popular and widely used hybrid functional is the B3LYP43 which uses

three parameters for controlling the mixing of the HF exchange and the DFT XC

and the functional form can be written as :

EB3LYP
xc = ELDA

xc + α0(EHF
x − ELDA

x ) + αx∆EB88
x + αc∆E

LYP
c , (2.37)

where α0 = 0.20, αx = 0.72 and αc = 0.81 are determined empirically by fitting to

experimental data, ∆EB88
x and ∆ELYP

c are the gradient corrections for the exchange

and correlation respectively.39,44 In the case of PBE045 functional, PBE GGA is used

in Eqn.(2.36). In this case, the mixing coefficient α is taken to be 0.25 from the
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perturbative calculation.46 These functionals improve the performance over semi-

local functionals for several molecular properties.47,48 The hybrid functionals are

called the global hybrids as the mixing coefficient is constant over the whole range.

There are other class of hybrid functionals where the HF exchange and the semilocal

XC functionals are mixed using the range separation of the Coulomb interaction

operator. These are called range separated functionals and popular examples of this

type of functionals are the CAM-B3LYP,49 HSE06,50 LC-ωPBE,51 LC-ωPBEh52 etc..

Although, it is expected to get improved results by climbing higher on Jacob’s ladder

but it is not always be the case.53 Most of the proposed XC functionals have been

implemented in the library of exchange-correlation functional (LIBXC)54 which can

be interfaced with several first-principle codes for the DFT calculations.

2.6 Pseudopotential Method

The idea of pseudopotential is to write an effective potential felt by valence electron

in presence of core electrons. Technically pseudopotential replace the complicated

structure of actual potential around the core region by smoother function. In a

systems, the electronic structure have different contribution due to the core electrons

and valence electrons because the core electrons are more bound to nuclei respect

to the valence electrons which are relatively free due to the screening of the nuclei

potential by the core electrons. In the low energy physical properties such as optical

excitation, chemical bonding, conductivity etc. the core electrons have negligible

contribution.

The pseudopotential or effective potential is constructed by replacing all atomic

electron potential (full-potential) in such a way that core states are eliminated and the

valence electrons are described by pseudo wavefunctions with significantly fewer

nodes which can be effectively described by plane-wave basis sets.

First-principles pseudopotentials are derived from an atomic reference state, re-

quiring that the pseudo- and all-electron valence eigenstates have the same energies

and amplitude (and thus density) outside a chosen core cut-off radius Rc. Pseu-



2.6 Pseudopotential Method 19

dopotentials with larger Rc are said to be softer, that is more rapidly convergent,

but at the same time less transferable, that is less accurate to reproduce realistic

features in different environments.

Valence wave functions, with complex nature in the core region(r< Rc) due

to presence of nodes, which demands a large set of plane wave basis for adequate

representation set by kinetic energy cut-off(Ecutoff )[Eqn.(2.38)].

1

2
G2 ≤ Ecutoff . (2.38)

where G is reciprocal lattice vector.

In standard DFT calculation like ours, we considered the valence electrons in

an effective smooth pseudopotential. This way the valence wave functions becomes

smooth enough within the core region to be described by a reasonably small set of

plane waves. These pseudopotentials are generated from all electron calculations of

atoms such that the pseudo wave functions satisfy the properties of valence electrons

outside the cut-off radius Rc[Fig. 2.2]. Depending on the choice of certain constraints

and division of core/semi-core and valence shell of electronic configurations there are

different types of pseudopotentials.55 The accuracy of the pseudopotentials depends

on their ‘transferability’ such that the same pseudopotential for a given element

can be used in various chemical environment and maximally reproduce scattering

properties of the true potential. Therefore, the pseudopotentials should be accurate

as well as smooth which requires less no of basis sets in order to reduce the compu-

tational cost. Norm-conserving ones57 are the most commonly used pseudopotential

which, as the name suggests conserve the normalization of the pseudo wave function

inside Rc so that the total charge within the core region remain preserved. Ultra-

soft58 ones constitute the other set of commonly used variant of pseudopotentials,

which maximally smoothen(delocalizes) the pseudo wave functions inside the core

region at the cost of nonconservation of total charge, leading to requirement of addi-

tional correction term, namely, the augmented charges while substantially reducing

the requirement of plane wave basis.
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Figure 2.2: Wave function(blue) in real Coulomb potential(blue) and representation
of pseudopotential(red) and pseudo wave function(red).56

2.6.1 Limitations

However, with increased correlation due to occupation of the d or higher orbitals

which have sharper localization than the s and p electrons due to higher number

of nodal plane and cones, the inadequacy of representation of correlation in XC

functionals, which inherently borough from node-less charge distribution, show up as

deviation of the calculated band gap and related properties from their experimental

observed values.

In terms of matching the experimental band gap, which is estimated as the differ-

ence between the ionization potential(IP) and the electron affinity(EA), both LDA

and GGA fails even for the 2p block diamond and zinc-blende structures of bulk C,

Si, BN etc. Fundamentally, these failures of LDA and GGA can be attributed to

the inherent lack of discontinuity of the derivative of the local and static mean-field

approximation of the exchange-correlation functional, upon addition or removal of

electron. As a state get filled or emptied once the electron number changes by one,

the overall behaviour of the system is expected to change, depending on the effect

of the charge density of that state on interaction among electrons in its vicinity.

However, the static nature of the XC functional does not support any such change

in the nature of many-electron interactions they represent. In principle, inclusion

of dynamic correlation in the form of dynamic screening should largely address this
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issue since it would in effect allow the inherent collective oscillatory (plasmonic)

response of electrons to any evolution of charge density. Towards such correlation

in the next section I will discuss the GW approximation of the many-body pertur-

bation theory (MBPT), which naturally incorporates dynamical screening leading

to a quasi-particle description of interacting electron.

2.7 GW approximation of Many-body perturba-

tion theory

The Green’s function based many-body perturbation theory (MBPT)4,5,59,60 presents

an exhaustive self-consistent approach to account for dynamic correlation starting

from a reasonable set of occupied and unoccupied single particle states. The GW

approximation5,61 of the MBPT is the state of the art method which allows accurate

estimation of energetic of interacting electrons through computation of self-energy

correction to single particle levels.

In a simple case of non-interacting particles with Hamiltonian H(r), we can

define a non-interacting single-particle Green’s function for the Schrödinger equation

H(r)ψ(r) = Eψ(r) as :

[H(r)− E]G0(r, r′, E) = δ(r− r′) (2.39)

where G0(r, r′, E) satisfies the same boundary conditions as ψ(r). Returning back

to the definition of Green’s function Eqn.(2.39) we note that it is the representation

of the operator equation:

(E − Ĥ)Ĝ0(E) = 1 (2.40)

Using the completeness of the eigenstates of the unperturbed Hamiltonian, we can
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write in the {|r〉} basis as:

Ĝ0(E, r, r′) =
∑
n

ψ∗n(r)ψn(r′)

E − En
(2.41)

where, ψn(r)’s and En’s are the eigenfunctions and eigenvalues of H respectively.

Generalizing the propagator interpretation of Green’s function in the realm of N

electrons systems, the generic one particle Green’s function (describing propagation

of one particle) is defined as :

Gαβ(r, t, r′, t′) = −i〈N, 0 | T̂ [ψ̂α(r, t)ψ̂†β(r′, t′)] | N, 0〉 (2.42)

where | N, 0〉 is an N electron ground state, ψ†α(r, t) and ψα(r, t) are respectively the

creation and annihilation field operator and T is time ordering operator to ensure

that the sequence of operation of the operators from right to left are causal in time:

T
[
ψ̂α(r, t)ψ̂†β (r′, t′)

]
= ψ̂α(r, t)ψ̂†β (r′, t′) , t > t′

= ±ψ̂†α (r′, t′) ψ̂β(r, t), t < t′
(2.43)

Implying:

iG(x, t, x′, t′) = 〈N, 0 | ψ̂(x, t)ψ̂†(x′, t′)) | N, 0〉θ(t− t′)

±〈N, 0 | ψ̂†(x′, t′)ψ̂(x, t)) | N, 0〉θ(t′ − t) (2.44)

where, θ(t− t′) is a step function.

We now move on to derive description of interaction approximately in terms of

one particle Green’s function by considering the two body interaction as perturba-

tion.

Let us consider a generic two body interaction described by the Hamiltonian :

Ĥ(x1, t1) = Ĥ0(x1) +
1

2
v(x1, x2)δ(t1 − t2) (2.45)
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where Ĥ0(x1) is the one-particle part and v(x1, x2) can be the coulomb interaction

i.e., e2

|~r1−~r2| .

Representing Eqn.(2.45) in term of field operator in the Heisenberg equation of

motion, we can write

i}
∂

∂t1
ψ̂(x1, t1) = Ĥ0(x1)ψ̂(x1, t1) +

∫
v(x1, x3)ψ̂†(x3, x1)ψ̂(x3, t1)dx3ψ̂(x1, t1)

(2.46)

We can multiplying Eqn.(2.46) by field operator ψ̂∗(x2, t2) with appropriate time

ordering and take expectation value with respect to ground state on both side to

write the duel Eqn(2.46) in term of Green’s function as :

G(x1, t1, x2, t2) + i

∫
v(x1, x3)〈N |T [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂†(x2, t2)]|N〉dx3

= }δ(x1 − x2)δ(t1 − t2)

(2.47)

Above equation can be interpreted as:

Non-interacting one-particle term + interaction term = }δ(x1 − x2)δ(t1 − t2)

In our case, we use DFT to represent the non-interacting regime.

The interaction term, on account of the two particle interaction, naturally in-

volves a two particle Green’s function:

〈N |T [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂†(x2, t2)]|N〉 (2.48)

In the non-interacting limit, where we assume the two particles to propagate in-

dependently to each other we can approximate the two particle Green’s function

similar as combination of products of one particle Green’s functions leading to the

Hartree-Fock description.

To go beyond independent propagation approximation, we introduce a external
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field φ in the equation of motion eqn.(2.47) as:

{i} ∂
∂t
− Ĥ0(x1)− φ(x1, t1)}G(x1, t1, x2, t2) + i

∫
v(x1, x3)〈N |T [ψ̂†(x3, t1)

ψ̂(x3, t1)ψ̂(x1, t1)ψ̂†(x2, t2)]|N〉dx3 = }δ(x1 − x2)δ(t1 − t2)

(2.49)

which enables us to define the two particle Green’s function as:

G2(1, 2, 3, 3+) = }
δG(1, 2)

δφ(3)
+G(1, 2)G(3, 3+) (2.50)

using Gellmann-Low theorem in the interaction representation. As obvious, we

denote the labels ”1,2,...,N” as ”(x1, t1), (x2, t2), ..., (xN , tN)” .

Using the expression of two particle Green’s function above in Eqn.(2.47), we obtain:

[i
∂

∂t
−H0(x1)− VH ]G(1, 2) + i

∫
v(1, 3)

δG(1, 2)

δφ(3)
d(3) = δ(1− 2). (2.51)

where

VH =

∫
v(1, 3)G(3, 3+)dx(3) (2.52)

At this point we can introduce the “self-energy operator” which contain all the

interaction terms in it as:

[i
∂

∂t
−H0(x1)− V (1)]G(1, 2)−

∫
Σ(1, 3)G(3, 2)d(3) = δ(1− 2). (2.53)

where V (1) = φ(1) + VH(1).

Comparing Eqn.(2.51) and Eqn.(2.53)

Σ(1, 2) = −i
∫
v(1, 3)G(1, 4)

δG−1(4, 2)

δφ(3)
d(3)d(4) (2.54)
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Noting G−1G = 1 which lead to

∂G

∂φ
= −G∂G

−1

∂φ
G (2.55)

We find:

Σ(1, 2) = −i
∫
v(1, 3)G(1, 4)

δG−1(4, 2)

δφ(3)
d(3)d(4) (2.56)

consistent with Eqn.(2.53).

To interpret the Σ in terms of physically observable and measurable quantities

we note that the dielectric response function defined as :

ε−1(x1, t1, x2, t2) =
δV (x1, t1)

δφ(x2, t2)
(2.57)

Recalling v(1) = φ(1) + VH , we can write:

ε−1(1, 2) = δ(1− 2) +

∫
v(1, 3)

δρ(3)

δφ(2)
d(3) (2.58)

Polarization function is defined as :

P (1, 2) =
δρ(1)

δV (2)

= −i
∫
G(1, 3)Γ(3, 4, 2)G(4, 1+)d(3) (2.59)

where

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
(2.60)

which is known as vertex function.

In most of the system, it is found reasonable to approximate the vertex function Γ

as

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
' δG−1

0 (1, 2)

δV (3)
= δ(1− 2)δ(1− 3) (2.61)
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Leading to:

P0(1, 2) = −iG0(1, 2)G0(2, 1+) (2.62)

and the self-energy operator takes a simple form as

Σ(1, 2) = iG0(1, 2)W (1, 2) (2.63)

where

W (1, 2) =

∫
ε−1(1, 3)v(3, 2)d(3) (2.64)

Finally transforming expression for P0, ε,Σ,W in terms of ω, we have

P0(~r1, ~r2, ω) = − i

2π

∫
G0(~r1, ~r2, ω − ω′)G0(~r1, ~r2, ω

′)dω′ (2.65)

ε(~r1, ~r2, ω) = δ(~r1 − ~r2)−
∫
v(~r1, ~r3)P0(~r3, ~r2, ω)d~r3 (2.66)

W (~r1, ~r2, ω) =

∫
ε−1(~r1, ~r3, ω)v(~r3, ~r2)d~r3 (2.67)

Σ(~r1, ~r2, ω) =
i

2π

∫
G0(~r1, ~r2, ω − ω′)W (~r1, ~r2, ω

′)dω′ (2.68)

We now recall Eqn.(2.51) and write the corresponding homogeneous equation as:

(
−1

2
∇2 + Vext + VH

)
ψnk(r) +

∫
Σ(r, r

′
, Enk)ψnk(r

′
)dr

′
= Enkψnk(r) (2.69)

With the approximation that the single particle states remain unaltered upon

self-energy correction we calculate the quasi-particle energy at zeroth level as

EQP
nk = EKS

nk +
〈
φKSnk

∣∣∣ΣGW
(
EQP
nk

)
− Vxc

∣∣∣φKSnk 〉 (2.70)

This is only one iteration known as one-shot G0W0 which gives reasonably accurate

results for the systems we are interested. In a typial GW implementation, however,

the computational cost scales as O(N4) which is prohibitively expensive and restrict

its application to systems of having hundreds of electrons in it.
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The key convergenced parameters are ε and G and thereby Σ in terms of the un-

occupied state used in their calculation. The dynamic estimation of ε is performed

within the plasmon pole approximation starting with the static limit (ω = 0) calcu-

lated using the linear response based formulation as :

P0(~r, ~r
′
;ω = 0) =

∞∑
j,k=1

(fk − fj)
ϕ0
j(~r)ϕ

0∗
k (~r)ϕ0∗

j (~r
′
)ϕ0

k(~r
′
)

−ωjk + iη
(2.71)

where fj and fk are occupation number of the Kohn-Sham ground state(1 for occu-

pied and 0 for unoccupied orbitals).

2.8 Electron in periodic potential: Tight-binding

framework

In this section I will briefly introduce the Bloch formalism and the conceptual basis

of Wannier function and the tight-binding framework based on it.

A periodic system is characterized by an effective periodic potential that an

electron in it is subjected to, satisfying :

V (r) = V (r + R), (2.72)

where

R = n1a1 + n2a2 + n3a3 (2.73)

is any real space lattice vector with {ni}�Z, ai(i=1,2,3) being three lattice vectors

enclosing a finite volume which is defined as an unit-cell which defines the periodicity

of the system. A unit cell can be a primitive with smallest volume or multiple of

that. For a given system, although the volume of the primitive unit-cell is uniquely

defined, the primitive unit-cell itself is not.
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The potential defines a single particle Hamiltonian which satisfies:

H(r) = H(r + R), (2.74)

Within the Born-von Karman(BVK) periodic boundary condition(PBC), central

to the Bloch formalism, the infinitely extended perfect crystal is divided into chunks

of crystals containing, say, N1×N2×N3 number of unit-cells. Analytic description,

namely, the Bloch formalism, is derived for finite {Ni}, which are then notionally

set to ∞ to represent a perfect crystal.

For such a chunk of crystal, wave functions describing an electron within the

BVK PBC satisfy:

ψ(r) = ψ(r +N1a1 +N2a2 +N3a3). (2.75)

which allows expansion in the Fourier basis {eif .r} defined by wave-vectors:

f =
3∑
i=1

mi

Ni

bi, (2.76)

with mi �Z and bi(i=1,2,3) being primitive reciprocal lattice vectors which satisfy

bi.aj = 2πδij.

However, such a solution to the periodic Hamiltonian defined in Eqn.(2.74) be-

comes possible only if the Fourier coefficients {Cf} separates out intoN1×N2×N3 lin-

early independent sets each identified by a unique f defined by {mi = 0, 1, 2, ..., Ni−

1}i=1,2,3.

Denoting the unique set of wave-vectors {f} as {k}, referred as the allowed values

of crystal momentum, we therefore have for each unique k:

ψk(r) =
1√
Ω

∑
G

Ck−Ge
i(k−G).r (2.77)

where Ω = NkΩcell, withNk = N1N2N3, and k =
∑3

i=1
mi
Ni

bi withmi = 0, 1, 2, ..., Ni−

1 and G = l1b1 + l2b2 + l3b3 is a reciprocal lattice vector with li �Z
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Eqn.(2.77) implies

ψk(r) =
1√
Nk

uk(r)eik.r (2.78)

where uk(r) has the same periodicity as the Hamiltonian, and obtained as:

uk(r) =
1√
Ωcell

∑
G

Ck−Ge
iG.r. (2.79)

The cell periodic functions uk(r) can be obtained as eigen function of the Bloch

Hamiltonian:

H(k) = −(p̂ + ~k)2

2me

+ V (r). (2.80)

The eigenvalues and eigenstates of H(k) provides the description of energy levels and

charge density of an electron in a periodic potential. In the Kohn-Sham analogue

to Bloch Hamiltonian V = VH + VXC + Vext.

Introducing the band index (m) which are essentially the symmetry matched

order of the eigenstates obtained through diagonalization of Hk for every allowed

k values, the cell periodic function and the Bloch functions satisfy the following

orthoronmality conditions:

∫
Ωcell

u∗mk(r)um′k(r)dr = δmm′ (2.81)∫
Ω

ψ∗mk(r)ψm′k′ (r)dr = δmm′δ
kk

′ (2.82)

Following Eqn.(2.77) we note that

ψk+G′ (r) = ψk(r) (2.83)

Noting the periodicity of ψ in k-space, we recall that for a periodic function f(q) =

f(q +Q), we have:

f(q) =
∑
n

Cne
in 2π

Q
q. (2.84)

For simplicity, we now resort to one dimension which can be easily generalized to
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higher dimensions. Therefore in one dimension the periodicity of Bloch function :

ψk+G0(x) = ψk(x) (2.85)

would imply :

ψk(x) =
∑
n

Cn(x)e
in 2π
G0
k

=
∑
n

Cn(x)einak

=
∑
Rn

CRn(x)eiRnk (2.86)

where we replace G0 = 2π
a

and Rn = na. The function CRn(x) in real space is

essentially the Wannier function8,62,63 which we represent here onwards as WRn(x).

Eqn.(2.86) implies an inverse relation as :

WRn(x) = A

∫
BZ

ψk(x)e−iRnx. (2.87)

After normalization :

WRn(x) =

√
Nka

2π

∫
ψk(x)e−iRnkdk

=
1√
N

∑
k

ψk(x)e−iRnk (2.88)

implying :

ψk(x) =
1√
Nk

∑
Rn

eikRnWRn(x). (2.89)

Generalizing to three dimensions

WR(r) =

√
NΩ

(2π)3

∫
ψk(r)e−iR.kd3k

=
1√
N

∑
k

ψk(r)e−iR.k (2.90)
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and

ψmk(r) =
1√
Nk

∑
R

eik.RWmR(r). (2.91)

where we have reintroduced the band index (m) implying that Wannier function are

to constructed band by band. More generally:

WmR(r) =
1√
Nk

∑
k

e−ik.R
∑
l

Umlψlk(r). (2.92)

With proper choice of gauge U , Wannier functions can be constructed to be localized

within a desired unit-cell. Orthonormality condition satisfied by Wannier functions:

〈WmR(r) | Wm′R′ (r)〉 = δmm′δRR′ (2.93)

Localized set of orthonormal Wannier functions thus constitute an ideal set of lo-

calized orthogonal basis.

2.8.1 Tight-Binding model

Tight-binding (TB)62 model is the simplest single particle approach for calculation

of electronic structure of a system of atoms. To construct a representation of a given

Hamiltonian is in the basis of a chosen set of N number of orthonormal localized

functions {φi(r)} . Wannier functions are considered as a linear combinations of the

chosen basis functions as :

Wn(r,R) =
N∑
m

Cnmφm(r,R). (2.94)

where R is a lattice vector spanning the entire crystal and {φn(r,R)} are consid-

ered translated to the unit-cell defined by R. For isolated systems only R = 0 is

considered.

Depending on the range of the basis functions used, a TB model can be chosen

to represent either only few bands about the Fermi energy, or a wide subspace of
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bands covering not only the entire occupied subspace but also an equal number of

bands from the unoccupied subspace, as is the case in this thesis.

Traditionally, {φi(r)} are chosen to be atomic orbitals obtained as:

Hatφj(r) = Ejφj(r). (2.95)

Hat being the atomic Hamiltonian and Ej being the energy levels of a single atom.

Referring to the Bloch functions introduced in the previous section, Schrödinger

equation for the crystal can be written as,

Hψmk(r) = (
∑
atom

Hat + ∆V )ψmk(r) = εm(k)ψmk(r), (2.96)

where, H is the crystal Hamiltonian and ∆V contains the corrections to reproduce

the full periodic potential of the crystal in terms of the ionic potentials.

Taking inner product of both sides of Eqn.(2.96) with φ∗n(r) at R = 0:

∫
φ∗n(r)(

∑
atom

Hat + ∆V )ψmk(r)d3r = εm(k)

∫
φ∗n(r)ψmk(r)d3r. (2.97)

using Eqn.(2.89) and Eqn.(2.94):

εm(k)
∑
l

Cml(k)
∑
R

∫
d3rφ∗n(r)φl(r−R)eik.R =

∑
j

Cmj(k)
∑
R′

∫
d3rφ∗n(r)(Hat + ∆V )φj(r−R

′
)eik.R

′

which simplifies to:

(εm(k)− En)
∑
l

Cml(k)
∑
R

αnl(R)eik.R =
∑
j

Cmj(k)
∑
R′

γnj(R
′
)eik.R

′

(2.98)
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with

αmn(R) =

∫
d3r φ∗m(r)φn(r−R) (2.99)

γmn(R) = −
∫
d3r φ∗m(r)∆V φn(r−R). (2.100)

Overlap of m-th and n-th atomic orbitals located at different unit-cells is often

considered negligible. The parameter is γm,n(R), is known as ‘hopping’ parame-

ter, which is also often considered negligible beyond neighboring unit-cells due to

localized nature of the basis.

For an orthonormal basis, as we have constructed in this work, αmn(R) = δmnδR,0

which reduces Eqn.(2.98) to

εm(k)Cmn(k) = EnCmn(k) +
∑
j

Cmj(k)
∑
R′

γnj(R
′
)eik.R

′

(2.101)

In this thesis, we calculate the tight binding parameters in the basis of directed

hybrid atomic Wannier orbitals (HAWO) described in chapter3 and consider beyond

nearest neighborhood. Due to directed nature of the HAWO basis, each inter-atomic

hopping is predominantly represented by a single off-diagonal element.

2.9 The formal framework of linear-response within

TDDFT

2.9.1 General linear response theory

We consider the application of perturbation to the total Hamiltonian H0 as :

Ĥ(t) = Ĥ0 + Ĥ
′
(t)θ(t− t0) (2.102)
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At times before t0 the system is in equilibrium, after which the perturbation is

turned on. The system is now evolving according to new Hamiltonian and is in a

non-equilibrium state. The time dependence of the state |n(t)〉 is of course governed

by the Schrödinger equation

iδt|n(t)〉 = Ĥ(t)|n(t)〉 (2.103)

Since Ĥ
′

is to be regarded as a small perturbation, it is convenient to utilize the in-

teraction picture representation |n̂I(t)〉. The time dependence in this representation

is given by -

|nI(t)〉 = eiĤ0t|nS(t)〉 (2.104)

AI(t) = eiĤ0tASe
−iĤ0t (2.105)

where by definition

|nS(t)〉 = eiĤ0tÛI(t, t0)|nH〉 = e−iĤ0t(1− i
∫ t

t0

dt
′
Ĥ

′
(t))|nH〉 (2.106)
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The expectation value of A upto linear order in the perturbation using eqn. 2.106:

〈Â(t)〉 =
occu∑
n

〈nS(t)|Â|nS(t)〉

=
occu∑
n

{
〈nH |Û †I e

iĤ0t
}
Â
{
e−iĤ0tÛI |nH〉

}
=

occu∑
n

〈nH |
(

1 + i

∫ t

t0

dt
′
Ĥ

′
(t

′
)

)
eiĤ0tÂe−iĤ0t

(
1− i

∫ t

t0

dt
′
H

′
(t

′
)

)
|nH〉

=
occu∑
n

[(
〈nH |eiĤ0t

)
Â
(
e−iĤ0t|nH〉

)
+ i

∫ t

t0

〈nH |Ĥ
′
(t

′
)eiH0tÂe−iĤ0t|nH〉dt

′
]

− i
occu∑
n

[∫ t

t0

〈nH |eiĤ0tÂe−iĤ0tĤ
′
(t

′
)|nH〉

]
=

occu∑
n

[
〈nH |Â|nH〉+ i

∫ t

t0

〈nH |
{
Ĥ

′
(t

′
)ÂI(t)− ÂI(t)Ĥ

′
(t

′
)
}
|nH〉

]
= 〈A〉0 + i

∫ t

t0

〈[Ĥ ′
(t

′
), ÂI(t)]〉0dt

′
(2.107)

where ”0” implies in term of all unperturbed occupied state.

Now assume that the system is acted upon a time dependent perturbation

Ĥ
′
(t) = F (t)β̂, t ≥0 (2.108)

where F (t) is an external field that couples to an observable β̂ and which is switched

on at time t0. Then

〈Â(t)〉 − 〈Â〉0 = i

∫ t

t0

dt
′〈[β̂, ÂI(t)]〉0F (t

′
) (2.109)

We rewrite the linear response result as

δ〈Â(t)〉 = 〈Â(t)〉 − 〈Â〉0 =

∫ ∞
t0

dt
′
χRAβ(t, t

′
)F (t

′
) (2.110)

where

χRAβ(t, t
′
) = −iθ(t− t′)〈[ÂI(t), β̂]〉0 (2.111)
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Then, A(t)−A0 is called the response of Â due to the perturbation. Here A0 is the

expectation value of Â corresponding to the ground state wavefunction.

The response of Â, can be expanded in power of the field F(t):

A(t)− A0 = A1(t) + A2(t) + A3(t) + · · · (2.112)

where A1(t) is the linear response, A2(t) is the quadratic response, A3(t) is the third

order response and so on.

Using eqn.2.109, we can write the linear response as:

A1(t) = −i
∑
n

∫ t

t0

dt
′〈n0|[Â(t), β̂(t

′
)]|n0〉F (t

′
) (2.113)

Since the initial state Hamiltonian Ĥ0 is time-independent, we can replace the com-

mutator [Â(t), β̂(t)] with [Â(t − t
′
), β̂]. Similar to Eqn.(5.10), we now define the

retarded response function as-

χAβ(t− t,) = −iθ(t− t′)
∑
n

〈n0|[Â(t− t′), β]|n0〉 (2.114)

Where the word ’retarded’ indicates that the response at time t is due to a potential

at an earlier time t
′ ≤ t. The linear response A1(t) is therefore given by-

A1(t) =

∫ ∞
−∞

dt
′
χAβ(t− t′)F (t

′
) (2.115)

where we are allowed to replace the lower integration limit t0 by −∞, since the

external field F (t) is zero for all times before t0.

Next we define the density density response. Here the external perturbation is a

scaler potential v1(r, t) which is switched on at t0 and couples to the density operator

as :

Ĥ
′

1(t) =

∫
d3r

′
v1(r, t)n̂(r

′
) (2.116)
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Using the Eqn.(2.109) and Eqn.(5.10), we can write linear response of the density

as:

n1(r, t) =

∫ ∞
−∞

dt
′
∫
d3r

′
χnn(r, r

′
, t− t′)v1(r

′
, t

′
) (2.117)

comparing the Eqn.(2.117) with Eqn.(2.114), we get ÂI(t − t
′
) = n̂I(r, t − t

′
) and

β̂ = n̂(r
′
), implying a density-density response function as:

χnn(r, r
′
; t− t,) = −iθ(t− t′)

∑
n

〈n0|[n̂I(r, t− t
′
), n̂(r

′
)]|n0〉 (2.118)

2.9.2 Frequency-dependent response

We define the Fourier transform of the perturbing field as-

F (t) =

∫ ∞
−∞

dω

2π
F (ω)e−iωt (2.119)

and

F (ω) =

∫ ∞
−∞

dtF (t)eiωt (2.120)

Inserting the Eqn.(2.120) into Eqn.(2.115)

∫ ∞
−∞

dω

2π
A1(ω)e−iωt =

∫ ∞
−∞

dt
′
∫ ∞
−∞

dω

2π
χAβ(ω)e−iω(t−t′ )

∫ ∞
−∞

dω
′

2π
F (ω

′
)e−iω

′
t
′

=

∫ ∞
−∞

dt
′
∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω
′

2π
χAβ(ω)e−it

′
(ω−ω′

)F (ω
′
)e−iωt

=

∫ ∞
−∞

dω

2π
χAβ(ω)e−iωt

∫ ∞
−∞

F (ω
′
)
dω

′

2π

∫ ∞
−∞

dt
′
e−it

′
(ω−ω′

)

=

∫ ∞
−∞

dω

2π
χAβ(ω)e−iωt

∫ ∞
−∞

F (ω
′
)dω

′
δ(ω − ω′

)

=

∫ ∞
−∞

dω

2π
χAβ(ω)e−iωtF (ω) (2.121)

Finally, ∫ ∞
−∞

dω

2π
A1(ω)e−iωt =

∫ ∞
−∞

dω

2π
χAβe

−iωtF (ω) (2.122)
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Since all exponential term are linearly independent, the Eqn.(2.122) becomes:

A1(ω) = χAβ(ω)F (ω) (2.123)

Next, we define the response function in omega space. We take the Fourier transform

of Eqn.(2.114)

∫ ∞
−∞

dτχAβ(τ)eiωτ = −i
∑
n

∫ ∞
−∞

dτθ(τ)〈n0|[Â(τ), β̂]|n0〉eiωτ (2.124)

where τ = t− t′ . Then,

χAβ(ω) = −i
∑
n

∫ ∞
−∞

dτθ(τ)〈n0|[ÂI(τ), β]|n0〉eiωτ

= −i
∑
n

∫ ∞
−∞

dτθ(τ)〈n0|
[
ÂI(τ)β − βÂ(τ)

]
|n0〉eiωτ (2.125)

Using the completeness relation
∑∞

n=0|n0〉〈n0|= 1 in Eqn.(2.125)

χAβ(ω) = −i
∞∑
n=1

∞∑
l=1

∫ ∞
−∞

dτθ(τ)eiωτ
{
〈n0|ÂI(τ)|l0〉〈l0|β̂|n0〉 − 〈n0|β̂|l0〉〈l0|ÂI(τ)|n0〉

}
(2.126)

Now putting the value of Â(τ) from the interaction picture [ÂI(τ) = eiH0τ ÂSe
−iH0τ ]

into Eqn.(2.126)

χAβ(ω) = −i
∞∑
n=0

∞∑
l=1

∫ ∞
−∞

dτθ(τ)eiωτ ×{
〈n0|eiH0τ Âe−iH0τ |l0〉〈l0|β̂|n0〉 − 〈n0|β̂|l0〉〈l0|eiH0τ Âe−iH0|n0〉

}
= −i

∞∑
n=0

∞∑
l=1

∫ ∞
−∞

dτθ(τ)eiωτ
{
〈n0|Â|l0〉〈l0|β̂|n0〉e−iΩnlτ − 〈n0|β̂|l0〉〈l0|Â(τ)|n0〉eiΩnlτ

}
(2.127)
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where Ωnl = En − El is the excitation energy.

Next we use the integral representation of the step function :

θ(τ) = lim
n→0+

i

2π

∫ ∞
−∞

dω
′ e−iω

′
τ

ω′ + iη
(2.128)

Using Eqn.(2.128) into Eqn.(2.9.2) :

χAβ(ω) = −i lim
n→0+

i

2π

∞∑
n=1

∞∑
l=1

∫ ∞
−∞

dτ

∫ ∞
−∞

dω
′ e−iω

′
τ

ω′ + iη{
eiωτ 〈n0|Â|l0〉〈l0|β̂|n0〉e−iΩnlτ − 〈n0|β̂|l0〉〈l0|Â|n0〉eiΩnlτ

}
= lim

n→0+

∞∑
n=1

∞∑
l=1

1

2π

∫ ∞
−∞

dω

ω′ + iη

∫ ∞
−∞

ei(ω−ω
′−Ωn)τdτ〈n0|Â|l0〉〈l0|β̂|n0〉

− lim
n→0+

∞∑
n=1

∞∑
l=1

1

2π

∫ ∞
−∞

dω

ω′ + iη

∫ ∞
−∞

ei(ω−ω
′
+Ωn)τdτ〈n0|β̂|l0〉〈l0|Â|n0〉

= lim
n→0+

∞∑
n=1

∞∑
l=1

{∫ ∞
∞

1

2π

dω

ω′ + iη
2πδ(ω − ω′ − Ωn)−

∫ ∞
∞

1

2π

dω

ω′ + iη
2πδ(ω − ω′

+ Ωn)

}
(2.129)

Finally:

χAβ(ω) = lim
n→0+

occu∑
n=1

∞∑
l=1

{
〈n0|Â|l0〉〈l0|β̂|n0〉
ω − Ωnl + iη

− 〈n0|β̂|l0〉〈l0|Â|n0〉
ω + Ωnl + iη

}
(2.130)

Eqn.(2.130) is called the Lehmann representation of the linear response function

which show how a frequency dependent perturbation couples to the excitation spec-

trum of a system.

Similarly the frequency-dependent density response [Eqn.(2.117)] is given by

n1(r, ω) =

∫
d3r

′
χnn(r, r

′
, ω)v1(r

′
, ω) (2.131)

Corresponding Lehmann representation of the density density response function
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[Eqn.(2.118)] is

χnn(r, r
′
ω) =

occu∑
n=1

∞∑
l=1

{
〈n0|n̂(r)|l0〉〈l0|n̂(r

′
)|n0〉

ω − Ωnl + iη
− 〈n0|n̂(r

′
)|l0〉〈l0|n̂(r)|n0〉

ω + Ωnl + iη

}
(2.132)

Noting that n̂(r) = |r〉〈r|we therefore have

χnn(r, r
′
ω) =

occu∑
n=1

∞∑
l=1

{
n∗0(r)l0(r)l∗0(r

′
)n0(r

′
)

ω − Ωnl + iη
− n∗0(r

′
)l0(r

′
)l∗0(r)n0(r)

ω + Ωnl + iη

}
=

∞∑
n=1

∞∑
l=1

(fn0 − fl0)
n∗0(r)l0(r)l∗0(r

′
)n0(r

′
)

ω − Ωnl + iη
(2.133)

obtained by swapping the index of the second term.

2.9.3 The Runge-Gross theorem in linear response

So far our discussion has been exclusively within the independent particle approx-

imation, wherein the effect of electric field on the charge density and thereby the

electronic structure has not been considered self consistently. To address this short-

coming, it turns out that the correspondence of the ground state charge density and

the external potential which is central to density functional theory is also valid if

the external potential is time dependent.

We consider time dependent external potential of the form-

v(r, t) = v0(r) + v1(r, t)θ(t− t0) (2.134)

That is the system is in its ground state before t0 and v1(r, t) is the small time

dependent perturbation which is switched on at t0

The initial many-body ground state is uniquely determined by the Hohenberg-Kohn

theorem of static DFT. But for time dependent potential we use the Runge-Gross

theorem.

According to Runge-Gross theorem, there exists a unique one-to-one correspondence

between v(r, t) and the time-dependent density n(r, t).
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This means that we can formally write the time-dependent density as a function of

external potential with out any dependence on the initial many-body state.

n(r, t) = n[v](r, t) (2.135)

We expand the density response in powers of the perturbation v1:

n(r, t)− n0(r) = n1(r, t) + n2((r, t) + n3(r, t) + .............. (2.136)

The first order density response is given by

n1(r, t) =

∫
dt

′
∫
d3r

′
χ(r, t, r

′
, t

′
)v1(r

′
, t

′
) (2.137)

We define the density-density response function of the many body system :

χ(r, t, r
′
, t

′
) =

δn[v](r, t)

δv(r′ , t′)
(2.138)

This equation shows that the linear response function is a function of the ground

state density only.

The one to one correspondence between time dependent densities and potentials

implies that one should also be able to calculate the perturbing potential from the

linear density response as :

v1(r, t) =

∫
dt

′
∫
d3r

′
χ−1(r, t, r

′
, t

′
)n1(r

′
, t

′
) (2.139)

where χ−1 is the inverse response function, whose existence is indeed guaranteed by

the Runge-Gross theorem.
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2.9.4 Linear response of the Kohn-Sham system

The time dependent n(r, t) corresponding to the external potential

v(r, t) = v0(r) + v1(r, t)θ(t− t0) (2.140)

can also be reproduced in a noninteracting, time dependent Kohn-Sham system with

the effective potential

vs[n](r, t) = v(r, t) +

∫
d3r

′ n(r
′
, t)

r− r′ + vxc[n](r, t) (2.141)

Then we can express the time dependent density as a function of the Kohn-Sham

potential as :

n(r, t) = n[vs(r, t)] (2.142)

Within the linear response the first order correction to density [Eqn.(2.142)] can be

obtained from the first order correction to the vs as:

n1(r, t) =

∫
dt

′
∫
d3r

′
χs(r, t, r

′
, t

′
)vs1(r

′
, t

′
) (2.143)

where

χs(r, t, r
′
, t) =

δn[vs](r, t)

δvs(r
′ , t,)

∣∣∣
vs[n0](r)

(2.144)

is the non-interaction Kohn-Sham particle density-density response and the first

order correction to the effective potential is

vs1[n](r, t) = v1(r, t) +

∫
d3r

′ n1(r
′
, t)

|r− r′|
+ vxc1(r, t) (2.145)

The first two term represent the external perturbation and the linearized [first order

correction] time dependent Hartree potential. The last term is the linearized XC
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potential, which is obtained by functional Taylor expression.

vxc1(r, t) =

∫
dt

′
∫
d3r

′ δvxc[n](r, t)

δn(r′ , t′
)
∣∣∣
n0(r)

n1(r
′
t
′
) (2.146)

where δvxc[n](r,t)

δn(r′ ,t′ )

∣∣∣
n0(r)

is the XC kernel, which is a functional of the ground state

density.

The XC kernel is the key quantity of TDDFT in the linear response regime. We

substitute vs1 in Eqn.(2.143) by Eqn.(2.145):

n1(r, t) =

∫
dt

′
∫
d3r

′
χs(r, t, r

′
, t

′
)
[
v1(r

′
, t

′
) +

∫
d3r′

n1(r
′
, t′)

|r− r′ |
+ vxc1(r

′
, t′)
]

=

∫
dt

′
∫
d3r

′
χs(r, t, r

′
, t

′
)
[
v1(r

′
, t

′
) +

∫
dτ

∫
d3x
{δ(t− τ ′

)

|r′ − x|

+fxc(r
′, t′,x, τ)

}
n1(x, τ)

]
(2.147)

For interacting system we define a net interacting response function χ as :

n1(r, t) =

∫
dt

′
∫
d3r

′
χ(r, t, r

′
, t

′
)v1(r

′
, t

′
) (2.148)

Next we can establish a relation between the interacting and noninteracting response

function by inserting the Eqn.(2.148) into Eqn.(2.147):

∫
dt

′
∫
d3r

′
χ(r, t, r

′
, t

′
)v1(r

′
, t,) =

∫
dt

′
∫
d3r

′
χs(r, t, r

′
, t

′
)[

v1(r
′
, t

′
) +

∫
dτ

∫
d3x
{δ(t− τ ′

)

|r′ − x|
+ fxc(r

′
, t′,x, τ)

}
×∫

dτ
′
∫
dx

′
χ(x, τ,x

′
, τ

′
)v1(x

′
, τ

′
)
]

(2.149)
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Since Hartree and XC integral kernels are the ground state properties of the system

and independent on the perturbation, the Eqn.(2.149) becomes :

χ(r, t, r
′
, t

′
) = χs(r, t, r

′
, t

′
) +∫

dτ

∫
d3r

∫
dτ

′
∫
d3x

′
χs(r, t,x, τ)

{δ(τ − τ ′
)

|x− x′|

+fxc(x, τ,x
′
, τ

′
)
}
χ(x, τ,x

′
, τ

′
)v1(r

′
, t

′
) (2.150)

Eqn.(2.150) known as Dyson equations to be solved self-consistently.

In standard TDDFT implementation the Dyson equation is converged in the

frequency domain where the noninteracting frequency dependent density-density re-

sponse function derived above in Eqn(2.133) can be used as the initial noninteracting

χs

2.9.5 Spectroscopic observables

Using the density-density response function we can calculate the spectroscopic ob-

servables of a system. We start by defining the dipole polarizability within linear

response in the presence of an external electric field Ej(t) = E0 sin(ωt), applied

along j-direction as :

pi(t) =

∫ t

0

dt
′∑

j

αij(t− t
′
)Ej(t

′
) (2.151)

Fourier transform of which is

pi(ω) =
∑
j

αij(ω)Ej(ω). (2.152)

where α(ω) is the dynamic polarizability tensor.

The z-component of the dipole polarizability is

p1z(t) = −
∫
d3rzn1(r, t). (2.153)
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In Eqn.(2.153), the negative sign accounts for the negative sign of the change density.

The dynamic dipole polarizability tensor :

αzz(ω) = − 2

E0

∫
d3rzn1(r, ω) (2.154)

where Ej(ω) = 1
2
E0

Putting Eqn.(2.131) into Eqn.(5.2), we get

αzz(ω) = −
∫
d3r

∫
d3r

′
zz

′
χnn(r, r

′
, ω) (2.155)

where χnn is the dynamic dielectric susceptibility obtained as the density-density

(nn) response function in Eqn.(2.132). According to the fermi’s Golden Rule for-

mula, the photo absorption cross-section-

σzz(ω) =
4πω

c
=αzz(ω) (2.156)

So the primary computation involve calculation of dielectric response function χnn

in-terms of the available description of the electronic structure.

2.10 Description of optical properties using Bethe-

Salpeter Equation (BSE)

In section 2.7, we have introduced the single-particle Green’s function, which de-

scribe the motion of a single particle or hole in an N particle system in the ground

state. Optical excitation involve creation of an electron in the conduction band

and hole in the valence band which interact through coulomb attraction screened

by other charge particles. An electron-hole pair thus essentially constitute the two

particle bound system. Motion of such a system is thus described by the two par-

ticle Green’s function. Starting with the simplest approximation for a two particle
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correlation function for an non-interacting electron-hole pair as:

L0(12; 1
′
2
′
) = G1(1, 2

′
)G1(2, 1

′
) (2.157)

where the electron and the hole are represented by one particle Green function, the

correlation function L in the presence of electron-hole interaction kernel K can be

written as:

L(12; 1
′
2
′
) = L0(12; 1

′
2
′
) +

∫
d(3456)L0(14; 1

′
3)K(35; 46)L(62; 52

′
) (2.158)

which is a form of the Bathe-salpeter equation64 used to describe bound two particle

system. The electron-hole interaction kernel K is given by the functional derivative

K(35; 46) =
δ[VCoul(3)δ(3, 4) + Σ(3, 4)]

δG1(6, 5)
(2.159)

where Σ is self-energy operator discuss in section 2.7 in GW approximation. L can

be constructed using electron-hole amplitude of form

Φ(x,x
′
) =

occu∑
v

empty∑
c

Avcψc(x)ψ?v(x
′
) +Bvcψv(x)ψ?c (x

′
), (2.160)

which results into two set of identical eigenvalue problems for the co-efficient Avc and

Bvc. For isolated system like molecules and cluster, considering only the dominant

diagonal contributions, Eqn.(2.158) further results into an eigenvalue problem of

form:

(Ec − Ev)Acv +
∑
c′v′

(Kx
cv,c′v′

+Kd
cv,c′v′

)Ac′v′ = ΩAcv (2.161)

where the e-h bare exchange :

Kx
cv,c′v′

=

∫
dr

∫
dr

′
ψ?
v′

(r)ψ?c (r
′
)v(r, r

′
)ψv(r

′
)ψc′(r) (2.162)
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screened direct :

Kd
cv,c′v′

= −
∫
dr

∫
dr

′
ψv(r

′
)ψ?c (r)W (r, r

′
)ψ?

v′
(r

′
)ψc′(r) (2.163)

The eigenvalues of Eqn.(2.161) thus render the excitation energies Ω. The co-efficient

Avc can also be used to construct the dielectric function whose imaginary part ren-

ders the optical absorption cross-section. However computationally the BSE based

approach is expensive on two counts: (1) convergence of the interaction kernel with

respect to screening in Eqn.(2.163), and (2) convergence of the Ω with respect to

the states in conduction band (ψc) consider in electron-hole amplitude.

2.11 Real-time dynamics approach

In this approach the interaction of matter is studied in real time using the time

dependent Schrödinger equation.

i~
∂Ψ

∂t
= HΨ (2.164)

whose solution is

Ψ(t) = U(t, 0)Ψ(0) = T exp
(
− i
∫ t

0

H(t′)dt′
)
Ψ(0) (2.165)

where T is the time ordering operator. The most elementary solution is obtained by

breaking the total evolution operator into evolution operators of small time durations

U(t, 0) '
N−1∏
n=0

U((n+ 1)4 t, n4 t) (2.166)

where 4t = Ttot/N and

U(t+4t, t) = exp[−iH(t)4 t] (2.167)



48 Theoretical background

Ttot is the total time for which we allow the system to evolve. But in this method the

operator itself is not unitary. Therefore wave functions do not remain orthonormal

after evolution over a long time. This problem is solved by introducing a unitary

approximate form of time evolution operator discussed in the next section .

2.11.1 Cranck-Nicolson scheme

Time dependent Schrödinger equation can be discretized using finite difference ap-

proach in two ways. Using the forward time centered space (FTCS) scheme where

the wave function at any point in space at time t+ ∆t is computed based on hamil-

tonian operating on wave function at time t :

i~
Ψn+1
j −Ψn

j

δt
= − ~2

2m

Ψn
j+1 + Ψn

j−1 − 2Ψn
j

δx2
+ VjΨ

n
j (2.168)

where the superscript {n} represent the time index and the subscript {j} represent

the space index, implying

Ψn+1
j = Ψn

j −
iδt

~
[
− ~2

2m

Ψn
j+1 + Ψn

j−1 − 2Ψn
j

δx2
+ VjΨ

n
j

]
. (2.169)

which in a compact form implies

Ψn+1 −
(
I − iδt

~
H
)
Ψn = 0 (2.170)

where the H is written as a matrix in the finite difference scheme as per Eqn.(2.169).

In the Backward Time Space centered scheme (BTCS) where the wave function at

any point in space at time t is computed based on hamiltonian operating on the

wave function at time t+ ∆t as :

i~
Ψn+1
j −Ψn

j

δt
= − ~2

2m

Ψn+1
j+1 + Ψn+1

j−1 − 2Ψn+1
j

δx2
+ VjΨ

n+1
j (2.171)
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implying

Ψn+1
j +

iδt

~
[
− ~2

2m

Ψn+1
j+1 + Ψn+1

j−1 − 2Ψn+1
j

δx2
+ VjΨ

n+1
j

]
= Ψn

j (2.172)

which further implies (
I +

iδt
~
H
)
Ψn+1 −Ψn = 0 (2.173)

In the Symmetric Time Space centered Cranck-Nicolson scheme the averages of the

FTCS and BTCS schemes is made by adding Eqn.(2.170) and Eqn.(2.173) as :

[
Ψn+1 −

(
I − iδt

~
H
)
Ψn −Ψn +

(
I +

iδt
~
H
)
Ψn+1

]
= 0 (2.174)

which implies

Ψn+1 =

(
I − iδt

2~H
)(

I + iδt
2~H

)Ψn (2.175)

We can increase the stability of the solution if we include more terms in the expansion

of the derivatives both in numerator and denominator :

Ψn+1 =

(
I − iδt

2~H − 1/2(Hδt/2)2 + i1/6(Hδt/2)3
)(

I + iδt
2~H − 1/2(Hδt/2)2 − i1/2(Hδt/2)3

)Ψn (2.176)

This method is unitary, strictly preserving the orthonormality of the states for the

an arbitrary time evolution. For time-independent Hamiltonians it is also explicitly

time reversal invariant and exactly conserves energy. In practice , with a suit-

able choice of ∆t, the energy is satisfactorily conserved even when the Hamiltonian

changes with time. The method is stable when ∆E∆T � 1.

2.11.2 Calculation of the polarizabilities

In a part of this thesis work we have adopted the Cranck-Nicolson scheme to study

the response of finite systems to a pulsed electric field of form

v1(~r, t) = Aδ(t− t0)z (2.177)
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The dipole-moment is calculated as :

dz(t) =
∑
nocc

∫
|Ψn(~r, t)|2zd3r (2.178)

For finite system, the dipole polarizability αzz for a particular ω can be defined as

the ratio between the induced dipole-moment dz(t) and the applied external electric

field Ez(t) of form Ez(t) = E0e
−iωt. Therefore for an arbitrary time dependence of

Ez(t) and the consequent dz(t), their ω component should be related by the dipole

polarizability αzz(ω) as :

∫ ∞
0

dteiωtdz(t) = αzz(ω)

∫ ∞
0

dteiωtEz(t) (2.179)

implying

αzz(ω) =
1

Ẽz(ω)

∫ ∞
0

dteiωtdz(t) (2.180)

where Ẽz(ω) =
∫
dteiωtEz(t) is the Fourier transform of Ez(t) for frequency ω.

Since we chose an impulsive external potential [Eqn.(2.177)], which includes

all the frequency component uniformly, implying a frequency independent Fourier

transform, we can obtain the polarizability for the whole spectral region from a

single time evolution as:

αzz(ω) = −e
2

A

∫ ∞
0

dteiωtdz(t). (2.181)

In my work the time evaluation has been performed in the tight-binding basis de-

scribed in the first part of this thesis.



Chapter 3

Hybrid atomic orbital basis from

first principles: Bottom-up

mapping of self-energy correction

to large covalent systems

In this chapter the key outcome is a numerical scheme to construct degenerate hy-

brid atomic Wannier orbital basis from first principles which are naturally oriented

towards direction of coordination in systems with ideal bond angle. In chapter 4

we have generalized the construction for non-ideal bond angles. I have contributed

jointly with another colleague in developing and testing the methodology described

in this chapter. I will first reproduce the methodological part and then focus on

system which I worked on primarily. The proposed Wannier orbitals constitute a

directed multi-orbital orthonormal basis. Beyond the construction of the directed

basis, in this chapter I describe strategies to transfer of tight-binding parameters

calculated in basis of the constructed orbitals in reference systems to larger iso-

morphic target systems through mapping of neighborhoods and projected Wannier

charge centres. The proposed directed basis is demonstrated here to be promis-
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ing of facilitating transfer of self-energy correction from smaller covalent systems to

their larger variants with thousands of atoms. I will be using transferred self-energy

corrected tight binding parameters in large nano-diamonds in chapter 5 where I pro-

pose a modified real time dynamic scheme in the directed basis towards inexpensive

estimation of optical absorption threshold.

3.1 Introduction

Setting a minimal TB basis for a given systems of atoms calls for appropriate ori-

entation of orbitals at each atomic site in accordance with their immediate atomic

neighborhood, so that the nearest neighbor interactions can be represented by the

least number of orbitals. In this direction, hybrid atomic orbitals have been used

by quantum chemists since their introduction65,66 almost a century ago. Rational

approaches for their construction67,68,69,70,71 over the last several decades have been

primarily focussed on partitioning systems into substructures which are spanned

by groups of hybrid orbitals, leading to unambiguous partitioning of electrons into

bonding orbitals and lone-pairs, and further into atomic orbitals. For such partition-

ing, notionally similar several approaches68,70,72,73,74,75 have been proposed grossly

based on the maximum overlap condition which in effect leads to localization of

orbitals within the chosen subspace of molecular orbitals. In these approaches, ei-

ther the overlap matrix68,70 or the first-order density matrices,74,76 both of which

are calculated typically in the basis of either the Slater type orbitals(STO)77 or

the Gaussian type orbitals(GTO),78,79 are generally transformed into block diagonal

forms each spanned by orbitals centered on nearest neighbor atoms. The resultant

hybrid orbitals involving atomic orbitals centred on more than one atoms71,80 render

unambiguous bonding orbitals and bond-orders, while the ones like the natural hy-

brid orbitals(NHO),76 the effective atomic orbital(EAO),75 the oriented quasi-atomic

orbitals,81 or the ones constructed using the maximal orbital analysis82 approach, at-

tempts to describe the state of the orbitals of the atoms as they participate in bonds.

Hybrid orbitals in the line of NHOs have been popularly constructed ab-initio at
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the HF level.83,84

A more explicit approach85,86 has been to construct the generalized hybrid or-

bitals(GHO) as combinations of STO with common Slater exponent and fixed posi-

tion of nodes along bonds to assign their orientation. Expedient to clarify that in

this paper we refer to bonds simply as the linear connectivity between atoms which

are primarily nearest neighbors if not mentioned specifically. Much of these efforts

were undertaken in aid to molecular mechanics calculation87,88 where the description

of interactions between sub-structures eases with use of orbitals which are directed

along bonds. Effective analytical models for such interactions have also been de-

veloped89 recently for inexpensive deductive computation of properties of bulk as

well as clusters of spx hybridized covalent systems. Notably unlike the GHOs, the

NHOs or the EAOs by construction may not be oriented exactly along the bonds.

In general for all such hybrid orbitals, their directed nature, maximal localization

and ortho-normality are not guaranteed simultaneously by construction. In a part

of this work we explore simultaneity of these conditions in construction of hybrid

atomic orbitals from first-principles proposed in this work.

Instead of overlap or density matrices, in this work we take recourse to the first

moment matrices (FMM) due to their direct correspondence to localization. FMMs

are known not to commute among each other in more than one dimension if projected

on to a finite subspace of orthonormal states. We propose construction of hybrid

atomic orbitals(HAO) as approximate eigenstates of the FMMs within a finite sub-

space of Kohn-Sham (KS) states of isolated atoms. Orientation and hybridization

of the proposed orbitals can be a-priori naturalized as per their anticipated neigh-

borhood. This substantially eases the effort of orientating them appropriately while

transferring them from isolated atoms to the real systems, which eventually eases

the interpretation of elements of the Hamiltonian. An orthonormal set of localized

Wannier orbitals resembling the HAOs is further constructed in the basis of KS

single particle states of the given system. These Wannier orbitals, which we refer

in this paper as the hybrid atomic Wannier orbitals (HAWO), constitute a multi-

orbital tight-binding (TB) basis locked to their immediate atomic neighborhood by
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construction, and render hopping parameters involving effectively only two orbitals

per bond. HAWOs thus offer easy transfer of the corresponding TB parameters

to other iso-structural systems exclusively through mapping of neighborhoods and

projection of charge centres learned from HAOs. Effective transfer of TB parame-

ters is demonstrated in nano-ribbons of graphene and hexagonal boron-nitride, C60,

and nano-diamonds and their silicon based counterparts. In particular, we show

in the HAWO basis that it is possible to effectively transfer self-energy(SE) correc-

tion(SEC) of single particle levels from smaller reference systems to much larger iso-

structural systems through TB parameters with minimal additional computational

expense through the proposed mapping of multi-orbital TB parameters beyond the

nearest neighborhood.

3.2 Methodological details

3.2.1 Construction of hybrid orbitals

In a given direction, for example along x̂, the most localized orbitals {φ} would

diagonalize the corresponding FMM:

Xij = 〈φi | x | φj〉. (3.1)

This becomes clear by noting that the total spread of a finite set of N number of

orbitals along x̂ is given by:

Ωx =
∑
i=1,N

[
〈φi|x2|φi〉 − |〈φi|x|φi〉|2

]
, (3.2)
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which can be expressed as:

Ωx =
∑
i=1,N

(
∞∑
j=1

XijXji −XiiXii

)

=
∑
i=1,N

∞∑
j 6=i

|Xij|2

=
∑
i=1,N

(
N∑
j 6=i

|Xij|2 +
∞∑

j=N+1

|Xij|2
)
. (3.3)

Diagonalization of X in the N × N subspace would therefore sets the first term

in Eqn.(4.2) to zero, leading to minimization of total spread. Notably, X can be

calculated directly as in Eqn.(3.1) only for isolated systems well separated from

their periodic images. For periodic system with non-zero crystal momentum, com-

putation of X would essentially involve evaluation of geometric phases[90] of Bloch

electrons evolved across the Brillouin Zone.91,92 Nevertheless, there exists therefore

a unique set of orbitals which completely diagonalize X, and would also thereby

have maximum localization along x̂. Similar unique sets exist for ŷ and ẑ directions

as well. However, the matrices X, Y and Z, when projected into a finite subspace

of orthonormal states, do not commute with each other in general unless mandated

by symmetries. This implies that a unique set of orbitals with maximum localiza-

tion simultaneously in all three orthogonal directions would not exist in general.

The same is true for Wannier functions (WF) in case of periodic systems with non-

zero wave-vectors. Numerically localized Wannier functions93,94therefore are not be

unique and the choice of gauge used for their construction depends on the chosen

criteria of localization.

We chose to look for the possibility to construct a set of localized orbitals which

will be a reasonable compromise between the three unique sets of orbitals having

maximum localization along the three orthogonal directions. We thus resorted to the

condition of simultaneous approximate joint diagonalization95 of the three FMMs:

X, Y and Z. To compute such an approximate eigen sub-space of the three FMMs,

we adopted an iterative scheme based on generalization of the Jacobi method of
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matrix diagonalization,96 wherein, off-diagonal elements are iteratively minimized

by applying rotation of coordinates by an optimally chosen angle. The extension

of the method to more than one square matrices irrespective of whether they are

commuting or not, is based on a proposed95 choice of angle of rotation leading to

complex rotation matrix U which has been proven95 to minimize the composite

objective function defined as :

off(UXU †) + off(UY U †) + off(UZU †) (3.4)

where off(A) =
∑

1≤i 6=j≥N |Aij|2 for an N × N matrix A. N being the number

of orthonormal states used to compute X, Y and Z. U is a product of all the

N(N − 1)/2 complex plane rotations, one each for each pairs of (ij) for i 6= j. For

a given (ij) the plane rotation R(i, j) is an N ×N identity matrix except for:

 rii rij

rji rjj

 =

 c s

−s c

 (3.5)

where c, s ∈ C, |c|2 + |s|2 = 1.

It has been shown95 that the objective function defined in Eqn.(3.4) is minimized

if U is a product of R(i, j) matrices as shown in Eqn.(3.5) whose elements are given

as:

c =

√
x+ r

2r
; s =

y − iz√
2r(x+ r)

(3.6)

where

r =
√
x2 + y2 + z2

and [x, y, z]† being the eigen-vector corresponding to the highest eigen-value of a
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3×3 matrix:

G(i, j) = Real
(
h†(X, i, j)h(X, i, j)

)
+ Real

(
h†(Y, i, j)h(Y, i, j)

)
+ Real

(
h†(Z, i, j)h(Z, i, j)

)
with:

h(A, i, j) = [aii − ajj, aij + aji, i(aji − aij)]. (3.7)

Notably, given the form of R(i, j), for a rotated matrix A′ = R(i, j)AR†(i, j)

corresponding to plane rotation for the (ij)-th pair of elements of A, it is easily seen

that a′kk = akk for k 6= i and k 6= j, leading to the invariance:

off(A′) + |a′ii|2 + |a′jj|2 = off(A) + |aii|2 + |ajj|2.

owing to preservation of norm in similarity transformation. Therefore, minimiz-

ing off(A′) would naturally imply maximizing |a′ii|2 + |a′jj|2, which further implies

maximizing |a′ii − a′jj|2 since:

2
(
|a′ii|2 + |a′jj|2

)
= |a′ii + a′jj|2 + |a′ii − a′jj|2

and

a′ii + a′jj = aii + ajj

owing to invariance of trace under similarity transformation. Therefore in our case

the minimization of the objective function[Eqn.(3.4)] implies maximizing the sep-

aration between the charge centres of the i-th and the j-th orbitals, which is thus

similar to the principle of the Foster and Boys97 scheme of orbital localization. This

becomes clear by rewriting the total spread [Eqn.(4.2)] for N orbital {φi, i = 1, N}

as:

Ω =
∑
k=1,3

∑
i=1,N

(
N∑
j 6=i

|akij|2 +
∞∑

j=N+1

|akij|2
)

(3.8)
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where Ak=1,2,3 = X, Y, Z. Eqn.(4.20) clearly suggests that minimization of the

objective function in Eqn.(3.4) would minimizes the first term in Eqn.(4.20), leading

to minimization of the total spread. Eqn.4.20 also suggests that the total spread will

reduce with increasing number of states (N) in the basis of which the first moment

matrices are constructed.

We test the proposed approach first with FMMs computed in the basis of GTOs

constructed for Ti with parameters from Ref..98 In Fig.3.1 we plot the charge

centres(〈φ|~r|φ〉) of the approximate eigen states of the first moment matrices. Evi-

  

Figure 3.1: Plots of charge centres (shown in gray) of the hybrid orbitals formed
by the group of GTOs representing 3s, 3p and 3d orbitals of Ti (shown in yellow)
constructed as per Ref.98 .

dently, the charge centres constitute coordination polyhedra around isolated atoms

which are consistent in shape with those tabulated in Figs.6-8 in Ref..99 This agree-

ment confirms the identity of the resultant orbitals as the hybrid orbitals and numer-

ically establishes the connection between maximal localization and hybridization.

Such a connection between sp3 hybridization and minimization of total quadratic

spread of s and the three p orbitals has been analytically proven.100 In this work

however we do not use GTOs further and rather resort to KS states of isolated atoms.

For example, for atoms of the p block, such as boron, carbon, nitrogen and silicon
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dealt with in this work, if the first moment matrices are constructed in the basis

of three(four) KS states with lowest energies, namely, the one s like non-degenerate

having the lowest energy and two ( three) of the three p like degenerate states above

the s like state, the approximate eigen-subspace would render three(four) 2sp2(2sp3)

hybridized orbitals. Notably, for isolated systems like molecules, clusters and nano-

structures, the approximate common eigen spectrum of the FMMs computed within

the manifold of occupied KS states results into partitioning101,102,103 of the ground

state charge density into bonding and localized orbitals.

3.2.1.1 Orientation and transfer of orbitals

Although as evident above that construction of HAOs for an isolated atom as such

do not require any pre-defined directionality, the orientation of the HAOs associated

with an atom can be nevertheless locked to their anticipated neighborhood by placing

the isolated atom within an external potential which represents the generic or exact

atomic neighborhood of the given atom in the actual system in which the HAOs

are to be used. We construct such externals potentials by placing weakly confining

spheres with small constant negative potentials inside the spheres in place of exact or

generic locations of neighboring atoms as present in the actual system. For example,

to lock sp3 HAOs to a four coordinated tetrahedral neighborhood, a tetrahedra of

confining spheres is placed around the host C atom, leading to orientation of the

sp3 orbitals maximally in the direction of the confining spheres as seen in Fig.3.5(a).

Typically we find confining potential amplitudes in the order of 0.01 eV and radius

0.5Åto be sufficient for the purpose. Such weak confinement in the vicinity causes

change of KS energy eigen-values of isolated atoms in the order of 0.001 eV, and

retains the shape of the lowest KS states which are used for construction of the

HAOs, effectively unaltered. For sp3 HAOs, the tetrahedra of the confining spheres

can be an exact tetrahedra, as in case of bulk Si, or a strained tetrahedra, as in case

of cyclopropane. As evident in Fig.3.2(a) for cyclopropane, and in Fig.3.2(b-e) for

planar molecules CnHn, the projected charge center of the HAOs (shown in gray)

symmetrically deviate away from the C-C bonds with decreasing C-C-C angle as we
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go from C6H6 to C3H3. For all of these molecules the HAOs were constructed with

the weakly confining spheres placed around the host C atom exactly as per their

nearest neighbors in the molecules, resulting into HAOs largely retaining their pure

sp3 nature but oriented symmetrically about the directions of the confining spheres

from the host atoms. The placement of confining potential spheres thus provide a

gross directional reference for orientation of the full set of the HAOs.

Position of charge centres of the HAOs are learned in terms of the directions of the

confining spheres from the isolated host atom. Such learnings are subsequently used

(c)(b) (d) (e)(a)

Figure 3.2: Projected charge centres of HAOs are shown by gray spheres depicting
their orientations around their host C atom shown in yellow.

(a)                    (b)                    (c)                    (d)                    

Figure 3.3: (a-d): Evolution of a pure 2pz orbital[(a)] from sp2 hybridization back-
ground, to an sp3 hybridized orbital due to increased deviation of the centres (cyan
spheres) of the three confining potential spheres from co-planarity with the host
atom (yellow sphere). Centres of HAOs are shown by gray spheres.

in projecting centres of HAOs around the corresponding atom in a given system, as

seen for the molecules in Fig.3.2, and nano-diamonds in Fig.3.4. While transferring

HAOs from their nursery of isolated host atoms, to their matching host atoms in

a given system, HAOs are rotated such that their actual charge centres align along

the direction of their projected centers from the matching host atoms.
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In addition to providing reference for orientation, the confining spheres can have

an important role in deciding the level of hybridization of the HAOs. This becomes

evident by noting that if we use four KS states and three confining sphere coplanar

with the host atom, then instead of forming four sp3 orbitals, the HAOs separate

into three 2sp2 orbitals and one 2pz orbital, as evident from the unhybridized shape

of the 2pz orbital in Fig.3.3(a). Fig.3.3(a-d) shows evolution of the 2pz HAO from

a pure orbital perpendicular to the plane of sp2 hybridization, towards a 2sp3 hy-

bridized orbital, with increasing non-coplanarity of the confining spheres with the

host atom. HAOs with such intermediate hybridization (2sp2+ + 2p+
z ) has been

used for C60[Fig.5.7]. However, stronger confining potentials are found necessary

to influence hybridization of KS states, typically in the order of 1eV for C atoms,

such that the orbitals align along the confining spheres. The confining potentials in

this case therefore does lead to minor modification of shape of the KS states, and

thereby of the HAOs as well, although not quite obvious at the iso-surfaces plot-

ted in Fig.3.3(a-d). However the values of TB parameters calculated in the basis

of their Wannierized counterparts in C60 suggests that the overall shape of those

orbitals are largely retained close to the sp2 orbitals. Notably, we could have used

stronger confinement to align the HAOs in C3H6, C3H3 or C4H4 as well like we did

for C60, but the degree of confinement would have to be much high than that used

for C60, which would have substantially altered the shape of the HAOs themselves,

since it is obvious that with pure s, px, py, pz orbitals it is impossible to form any set

of hybrid orbitals in which two orbitals can have relative orientation less than 90◦.

3.2.2 Wannier functions based on HAOs

The next step is to construct orthonormalized Wannier functions from the KS states

following the HAOs transferred to a given system. The transferred HAOs constitute

a non-orthogonal basis of hybridized atomic orbitals. In the general framework

of periodic systems with non-zero wave-vectors (~k) we begin with constructing a
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Figure 3.4: CnHm systems with projected charge centre of HAOs shown as gray
spheres, used in this work as example of sp3 hybridized covalent systems.

non-orthogonal set of quasi-Bloch states as:

ψ̃~k,j(~r) =
1√
N

∑
~R

ei
~k·~Rφ~R,j(~r), (3.9)

where φ~R,j(~r) is the j-th HAO localized in the unit-cell denoted by the lattice vector

~R spanning over N unit-cells defining the Born-von Karman periodicity. The pro-

jections of the non-orthogonal quasi-Bloch states on the orthonormal Bloch states

constructed from the KS single-particle states at all allowed ~k, are calculated as:

O~k,m,j = 〈ψKS~k,m
| ψ̃~k,j〉. (3.10)

Elements of O thus record the representation of the HAOs within the manifold of KS

bands considered. Overlaps between the non-orthogonal quasi-Bloch states within

the manifold of the considered KS states are therefore calculated as:

S~k,m,n =
∑
l

O∗~k,l,mO~k,l,n. (3.11)

The degree of representability of HAO φn, within the set of KS states considered,
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(a)                    (b)                    (c)                    

Figure 3.5: (a): HAO representing a sp3 orbital of an isolated C atom (yellow
sphere) used in this work. Charge centre of the orbital is shown in gray. Centres
of the confining spheres used to determine gross orientation are shown in cyan. (b):
HAO shown in (a) transfered to a C atom an adamantane(C10H16) molecule, (c):
the corresponding HAWO.

is guaranteed by setting a lower cutoff on individual S~k,n,n values to be typically more

than 0.85. For all the system studied in this work, the above criteria is found to

be satisfied by the lower bound on the number KS states, which is set by the total

number of valence orbitals of all atoms of a given system. A new set of orthonormal

Bloch states from the KS single particle states are subsequently constructed using

the Löwdin symmetric orthogonalization [104] scheme as:

Ψ~k,n(~r) =
∑
m

S
− 1

2

~k,m,n

∑
l

O~k,l,mψ
KS
~k,l

(~r), (3.12)

where the sum over l spans the KS states considered and the sum over m takes care

of the orthonormalization. Subsequently, a localized set of orthonormal Wannier

functions are constructed as:

Φ ~R′,j(~r) =
1√
N

∑
~k

e−i
~k· ~R′

Ψ~k,j(~r). (3.13)

In this process the Löwdin symmetric orthogonalization clearly provides a choice of

gauge for linear combination of KS states such that the resultant Wannier functions{
Φ ~R′,j(~r)

}
resemble the corresponding HAOs [

{
φ~R,j(~r)

}
] as much possible within
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the manifold of KS states considered. Hence we refer to these Wannier functions as

the hybrid atomic Wannier orbitals (“HAWO”). In Fig.3.5 we show an HAO before

and after transfer to adamantane and the corresponding HAWO constructed from

the KS states of adamantane. HAWOs can thus be considered as analogue of NHOs

constructed from a given set of KS states with acceptable representability.

Figure 3.6: (a): TB parameter calculated for cyclopropane; (b): Nearest neighbour
TB parameters between in-plane and out of plane orbitals in C3H3, C4H4, C5H5

and C6H6 molecules (shown in Fig.3.2) arranged as a function of C-C bond lengths
available in the molecules. (c) DOS calculated from 50 lowest KS eigen-values, com-
pared with DOS from eigen-values of TB Hamiltonian constructed from 18 lowest
KS states, 18 being the total number of valence orbitals of cyclopropane.

Notably, following the same approach, template of bonding and lone pair orbitals

made of HAOs can be used to construct localized Wannier functions rendering orbital

resolved description of the valence band.93,94 Similarly , template of anti-bonding

orbitals made of HAOs can be used to extract a meaningful description of the un-

occupied bands in the line of the valence virtual orbitals.105
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Figure 3.7: For C10H16, (a-d): Evolution of density of states(DOS) with increase in
range of hopping starting from (a): the nearest neighbour (nn) to (d): all avaliable
hopping graduating through hopping between second (2n) and third (3n) nearest
neighbours and beyond. Convergence of (e): TB parameters and (f): spatial local-
ization of 2sp3 orbitals, and (g): TB DOS, in terms of the number of KS states used
in construction of HAWOs as mentioned in the legend of (f). KS DOS is shown
below (g).

3.2.2.1 TB parameters in HAWO basis

TB parameters in the HAWO basis are computed from energetics of KS single par-

ticle states as:

t ~R′, ~R,i,j = 〈Φ ~R′,i | H
KS | Φ~R,j〉

=
∑
~k

ei
~k.( ~R′−~R)

∑
l

(OS−
1
2 )∗li(OS

− 1
2 )ljE

KS
~k,l

(3.14)

Notably, similar TB parameters have been derived in the last two decade from first

principles based on the either the maximally localized Wannier function106,107,108,109,110,111

or atomic orbitals112,113 constructed from KS states. Much effort has been reported

in deriving TB parameters through projection of KS states on pseudo-atomic or-

bitals114,115 as well. However, attempts to calculate TB parameters in hybrid atomic

orbital basis constructed from first-principles, as proposed in this work, has been

limited so far primarily to analytical models.116,117

In Fig.3.6(a) for cyclopropane, we plot the TB parameters calculated as per
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Eqn.(4.10) for two HAOs participating dominantly in a C-C bond and a C-H bond.

The tsp3,sp3 is comparable to the that in adamantane (C10H16)[Fig.3.9] despite the

substantial misalignment[Fig.3.2] of HAO and the C-C bond in cyclopropane while

perfect alignment of the two in C10H16. The hopping parameters are obtained with

18 KS states which is same as the total number of valence orbitals of all the atoms,

resulting thereby into density of states in exact agreement with that obtained from

DFT [Fig.3.6(c)] as discussed above in the next paragraph. In Fig . 3.6(b) we plot

hopping parameters for π and σ bonds as a function of C-C bond lengths available

in planar C3H3 to C6H6 molecules. As evident in Fig.3.2, the best alignment of the

HAOs along the C-C bond is possible for C6H6 and the worst is obviously for the

shorter bond of C3H3 and similarly for C3H6. Yet, the highest in-plane hopping

parameter in terms of magnitude is found for the shorter bond of C3H3, which is

about 20 % more than that of the C-C in-plane bond of benzene, whereas the C-

C bond length in benzene only about 2.2 % more than the shorter bond of C3H3.

Similarly, the C-C nearest neighbour hoping parameter as well as the bond length in

C3H8, both are within 1 % of those of C3H6, whereas in C3H8 the HAOs are almost

perfectly aligned along the C-C bond [Fig.3.4] while in C3H6 they are misaligned by

more than 20◦. These results can possibly be explained by the inherent bent nature

the bonds[118] in C3H6 and C3H3, reflected by the symmetric misalignment of the

HAOs along the two C-C bonds while maintaining perfect alignment along the C-H

bonds. We plan to examine this aspect for bent bonds in details in future.

As evident in Fig.3.7(a) for C10H16 the edge of the valence band is already well

described if we consider only the nearest neighbor hopping in the HAWO basis.

However, as shown in Fig.3.7(b) onwards, the match of DOS from TB and DFT

improves drastically with increasing extent of hopping considered up to the sec-

ond nearest neigbour. This is immediately understood by noting the non-nominal

positive valued of the second nearest hopping element plotted in figure Fig.3.7(e),

arising due to proximity of lobes of different signs of the two HAOs. In Fig.3.7(e-g),

we demonstrate evolution of the TB parameters, HAWOs, and DOS from TB, as

function of number of KS states considered for construction of HAWOs. The ratio-
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nale for this analysis is the possibility that the anti-bonding subspace may not be

adequately represented by the unoccupied KS states if we restrict the total number

of KS states to be same as the total number of HAOs associated with all the atoms,

which is same as the total number of valence orbitals of all the atoms. Indeed we

see clear convergence of shape of HAWO [Fig.3.7(f) ] as well as the corresponding

TB parameters[Fig.3.7(e)] if we consider KS states in excess of the total number of

HAOs. However, the TB DOS expectedly starts deviating from the DFT DOS more

in the conduction band [Fig.Fig.3.7(g)] if we include more KS states beyond the

total number of HAOs, owing to the semi-unitary nature of the net transformation

matrix (OS
1
2 ) implied in Eqn.(4.7) which will be rectangular in such scenarios. It is

thus important to decide on the number of KS states to be considered depending on

the purpose. If the aim is to represent only the valence bands through well localized

HAWOs, then it may be prudent to look for convergence of HAWOs in terms of KS

states. But if band-gap needs to be represented accurately by the TB parameters

then the number of KS states should be kept same as the total number of valence

orbitals.

3.2.3 Bottom-up mapping of TB parameters

The HAWO basis derived from the KS states offer a multi-orbital TB basis which

are by construction locked to the local coordination as per the atomic neighbor-

hood of each atom. The TB parameters derived in such a basis should therefore

be transferable from one system to another with matching atomic environment. A

key aim of this work is to demonstrate such transferability for effective transfer of

multi-orbital TB parameters in the HAWO basis from smaller reference systems to

larger target systems. The mapping of TB parameters is done in two steps.

(1) Pairs of atoms of the target system, not limited to nearest neighbors, are mapped

on to pairs of atoms in the reference system based on a collection of criteria.

(2) Among the mapped pair of atoms, pair of system orbitals are mapped to pair

of reference orbitals through mapping of their respective projected charge centres.
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In step (1) the criteria to map pairs of atoms include matching structural param-

eters such as their spatial separation and their individual nearest neighborhoods

characterised in terms of the type of neighboring atoms and angles made by nearest

neighbors on the atoms. In particular, we use a parameter calculated as:

ζi =

Ni∑
j

Zjw(ri,j) (3.15)

where Ni is the number of neighbors of the i-th atom within a suitably chosen cutoff

radius, w being a weight factor which is a function of the distance ri,j of the j-th

neighbor of the i-th atom, and Zi a characteristic number to be associated with

each type of atom. Zi can be chosen to be the atomic weight, as we mostly used

in this work, or a similar number which can facilitate identification of a type of

neighborhood or a region of the system through values of ζ. In this work we chose

the weight factor w to be 1.0 within half of the cutoff radius beyond which the

factor is smoothly reduced to zero using a cosine function. The choice of cutoff

radius depends on the size of the reference system. It should neither be too large

for variations to average out, nor should it be too small to become insensitive to

morphological variations in the reference system itself. ζ allows us to map atom pairs

effectively through prudent choice of values of {Zi} since it would allow assessment

of proximity of atoms to edges, interfaces or any kind of structural inhomogeneity

without any exhaustive structural relaxation.

In step 1, the minimum of the deviation:

|ζtarget
1 − ζreference

1 |+ |ζtarget
2 − ζreference

2 |

obtained within a range of allowed deviation of structural parameters, is used as the

criteria to choose matching pairs of atoms between target and reference systems.

Like in step 1, in step 2 as well, the mapping of one or a pair of HAOs from

the reference to target systems is done based on matching structural parameters, as



3.2 Methodological details 69

well as a parameter calculated as:

ξi =

Ni∑
j

ζjw
WC(ri,j) (3.16)

where ζj corresponds of the j-th atom in the neighborhood defined by wWC around

of the projected charge centre of the i-the HAO. Angle made by the directions of

the projected charge centres of the HAOs from their respective host atoms is a

key matching parameter in step 2. Additionally, if the HAOs belong to different

atoms then the dihedral angle made by the centres of the HAOs through the axis

connecting their host atoms, is also a key parameter. Thus in step 2, the minimum

of the deviation

|ξtarget
1 − ξreference

1 |+ |ξtarget
2 − ξreference

2 |

within acceptable deviations of structural parameters, defines matching pairs of

HAOs.

As an example we show mapping from a small curved finite patch[Fig.5.7(a)]

to C60. Since C60 constitutes a curved surface without any edge, mapping should

be done from the inner most neighborhood of the chunk. Since in C60, the angles

made by nearest neighbors at a given atom differ distinctly depending on whether an

angle opens inside a pentagon or a hexagon, the matching parameters for mapping

are mostly structural, primarily the direct and dihedral angles. The reference patch

is cropped from C60 and passivated by H. We fix ζ tolerance to zero which implies

that C60 is getting mapped from only six C atoms of the patch [Fig.5.7(a)] having

all C neighbors. Given the curvature of C60, we chose to use confining spheres to

influence the hybridization of sp2 HAOs in order to break their co-planarity and

align them along nearest neighbor C-C bonds, as shown in Fig.3.3(c) where the

placement of confining potential spheres are as per the nearest neighborhood in C60.

The projected charge centres of HAOs with intermediate hybridization (2sp2++2p+
z )

between (sp2+pz) and sp3 shown in Fig.5.7(c), is used to map from that of the
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reference shown in Fig.5.7(b). TB parameters t2sp2+,2sp2+ for the shorter and longer

C-C bonds are about -6.9 eV and -6.5 eV, whereas t2p+z ,2p+z are about -2.36 eV and

-2.0eV. The match of the DFT DOS with the DOS from TB parameters mapped

from the reference system is shown in Fig.5.7(d), which can be further improved

beyond the valence bond by considering HAOs for excited states, which will be

taken up in a subsequent work on optical properties.
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Figure 3.8: (a): Structure of reference system, and (b): the corresponding charge
centres of HAOs with intermediate hybridization (2sp2++2p+

z ) between sp2 and sp3.
(c): Projected charge centre with similar hybridization for C60. (d): Corresponding
matches of DFT DOS with TB DOS with parameters mapped from the reference
system.

3.2.4 Self-energy correction of TB parameters

Self-energy corrected TB parameters
{
tQP~R′, ~R,i,j

}
in the HAWO basis are calculated by

substituting EKS
~k,n

in Eqn.(4.10) by quasiparticle energies EQP
~k,n

obtained at the G0W0

level which is the first order non-self-consistent GW approximation of MBPT61.5
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Within the GW approximation, the quasi-particle energies are approximated as:

EQP
~k,n

= EKS
~k,n

+ 〈ψKS~k,n
| Σ− V KS

xc | ψKS~k,n
〉, (3.17)

where V KS
xc is the mean-field exchange-correlation potential and Σ15 is the self-

energy operator derived by considering the many-electron effects as perturbation

treated within a self-consistent framework of Dyson’s equation formulated in terms

of the one-particle dynamic non-local Green’s function constructed from the KS

states. Similar efforts have been reported in recent years on incorporating SEC in

TB parameters computed in terms of the MLWFs.119,120,121Incorporation of SEC in

TB parameters has also been attempted through matching specific bands of the QP

structure.122,123,124

3.3 Computational Details

Electronic structures of the ground states of all the systems considered in this work

are calculated using the Quantum Espresso (QE) code125 which is a plane wave based

implementation of DFT. We have used norm conserving pseudo-potentials with the

Perdew-Zunger (LDA) exchange-correlation126 functional and a plane wave cutoff

of 60 Rydberg for wave-functions and commensurately more for charge density and

potential. Self-energy correction to single particle levels have been estimated at the

non-self-consistent G0W0 level of GW approximation implemented in the Berke-

leyGW code.127 To calculate the static dielectric matrix required for computation of

the self-energy operator, the generalized plasmon-pole model15 is used to extend the

static dielectric matrix in the finite frequencies. For all the nanoribbons parameters

are chosen from Ref..128 In house implementation interfaced with the QE code is

used for generation of HAOs, HAWOs from KS states, calculation of TB parame-

ters in the HAWO basis, and mapping of TB parameters from reference to target

systems.
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3.3.1 Mapping self-energy corrected TB parameters in HAWO

basis
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Figure 3.9: TB parameters involving a C atom in C10H16 with three C neighbors,
computed using 56 KS states with and without SEC at the G0W0 level, and plotted
as a function of distance from the atom. TB parameters from DFT are same as
those plotted in Fig.3.7(e).

Fig.3.9 suggests that the extent of SEC to TB parameters are spatially limited

mostly within the third nearest neighborhood, implying possible transferability of SE

corrected TB parameters to large covalent systems from smaller reference systems

of which are large enough to accommodate the full spatial range of non-nominal

SEC to TB parameters. Accordingly, mapping in nano-diamonds is demonstrated

with C3H8 and C10H16 (adamatane) as reference systems to map to nano-diamonds

C26H32 (pentamantane) and C84H64.

We start with attempts to map C10H16, C26H32 and C84H64 targets from C3H8

reference in sp3 HAO basis. The mapping process starts with plotting the distance of

atom pairs (C-H, C-C, H-H) for target and reference systems. As seen in Fig.3.10(a)

there is one-to-one correspondence of C-C bonds between C3H8 and all targets up

to approximately 2.5Å, which is the second nearest C-C distance. For C-H and H-H

pairs, such correspondence exists up to about 3Å and 3.75Å respectively. These

correspondences decide the range of hopping parameters to be mapped. Notably,
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Figure 3.10: Distribution of distance between pairs of atoms in (a): reference (C3H8)
and (b): target (C10H16) systems. (c-d) Match between DFT DOS and mapped TB
DOS as demonstrated of efficacy of mapping of TB parameters from C3H8 to C10H16

with increasing spatial range of neighborhood considered for mapping. (e) Match
between DFT+G0W0 DOS and mapped self-energy corrected TB DOS.
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Figure 3.11: Distribution of distance between pairs of atoms in (a): reference (C3H8)
and (b): target (C26H32) systems. (c-d): Match between DFT DOS and mapped TB
DOS as with an increasing spatial range of neighborhood considered for mapping.
(e): Match between DFT+G0W0 DOS and mapped self-energy corrected TB DOS.

C3H8 has two varieties of C atoms - one with two(two) C(H) neighbors, and the

other with one(three) C(H) nearest neighbors, whereas, C10H16 has C atoms with

three(one) C(H) neighbors and two(two) C(H) neighbors. Additionally, C26H32 and
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C84H64 have C atoms with all C nearest neighbors(nn). Exact match of ζ between

all atoms of reference and target systems is thus impossible in these examples.

Matching ζ and ξ will therefore be less effective in mapping from C3H8. Also,

since there is only one C atom with two(two) C(H) neighbors in C3H8, matching

ζ can be restrictive in terms the variety of orientations. We thus opt for matching

structural parameters within a tolerance for ζ set to the minimum difference of

ζ values between similar type of atoms in reference and target systems to ensure

maximal matching of ζ besides finer matching of structural parameters. As obvious,

a better choice of reference system than C3H8 with C atoms having all varieties of

neighborhood can be easily made. However, we deliberately chose to test mapping

from C3H8 which is the smallest possible reference system with just one C atom

with two(two) C(H) neighbors, since such C atoms dominates the surfaces of the

nano diamonds and are thereby expected to host the states at the edges of the

valence and conduction bands. Surprisingly, as evident in Fig.3.10(c), with mapping

of only the nn-hopping terms from C3H8 to C10H16, the mapped TB DOS already

matches reasonable well with DFT DOS of C10H16 in terms of the band-gap and DOS

around band edges. With increase in range of hopping to 2.7Å(nn,2n), 3Å(nn,2n,3n)

and 4Å(2n,3n,4n)) for C-C, C-H and H-H pairs based on availability of one-to-one

mapping[Fig.3.10(a,b)] the match of mapped TB DOS and DFT DOS[Fig.3.10(d)]

extends deeper into the valence band. The quality of match improves further with

additional mapping of C-H and H-H atom pairs up to 4.5Å [Fig.3.10(e)] without

compromising on tolerance factors. Notably, the range of hopping of C-H and H-

H, although more than that of C-C, are actually consistent with the range of C-

C hopping, since the farthest H atoms considered are associated with two second

nearest C atoms. The same mapping parameters are then used to map self-energy

corrected TB (SEC-TB) parameters of C3H8 to C10H16 leading to a good match of

not only the SEC-TB mapped band-gap and the QP band-gap calculated at the

G0W0 level, but also the SE corrected DOS of the valence band[Fig.3.10(f)].

Next we attempt mapping C26H32 from smaller references, starting with mapping

from C3H8 to C26H32, which is about five times increase in system size.Mapping of
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only nearest neighbor C-C and C-H hopping underestimates band-gap by about

15%[Fig.3.11(c)]. Mapping all hopping parameters up to upto 4.5Å which is the

maximum range of hopping available in the reference, drastically improves overall

match of not only mapped TB DOS and DFT DOS[Fig.3.11(d,e)] but also mapped

SEC-TB DOS and DFT+G0W0 DOS[Fig.3.11(f)], as is seen in case of mapping

C10H16 from C3H8.
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Figure 3.12: Distribution of distance between pairs of atoms in (a): reference
(C10H16) and (b): target (C84H64) systems. (c-d): Match between DFT DOS and
mapped TB DOS as with an increasing spatial range of neighborhood considered for
mapping. (e): Match between DFT+G0W0 DOS and mapped self-energy corrected
TB DOS.

Finally we demonstrate mapping to C84H64 from C10H16, which is about six time

enhancement in system size. Mapping of only the nearest neighbor C-C and C-H

bonds results into good match of the mapped TB band-gap[Fig.3.12(c)] with the

DFT band-gap. With further mapping of hopping parameters upto 2.75Å(nn,2n),

4Å (nn,2n+) and 4Å (2n,3n+)[Fig.3.12(a,b)] for C-C, C-H and H-H pairs, satisfac-

tory match of the entire valence band and a good match[Fig.3.12(d)] of the band-gap

is achieved. Mapping of SEC of TB parameters from C10H16 to C84H64 results into

a QP band-gap of about 7.2 eV which is within 5% deviation from the QP band-gap

implied in literature.129,130,131,132



76
Hybrid atomic orbital basis from first principles: Bottom-up mapping of self-energy

correction to large covalent systems

In Fig.3.13 we show similar mapping of TB parameters at the DFT and DFT+G0W0

levels for Si based nano-diamonds. Like in case of nano-diamonds, mapping of hop-

ping up to second nearest Si neighbours and H atoms associated with them from

Si3H8, renders good match of the SEC-TB band-gap with the explicitly estimated

DFT+G0W0 band-gap almost up to six times escalation of system size. These results

imply consistency in transferability of SEC corrected TB parameters with increasing

principal quantum number of valence orbitals.
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Figure 3.13: (a,c): Match between DFT DOS and TB DOS with parameters mapped
from Si3H8. (b,d): Match between DFT+G0W0 DOS and SEC-TB DOS using
mapped self-energy corrected TB parameters from Si3H8.

3.4 Conclusion

In conclusion, construction of naturalized hybrid atomic orbitals(HAO) is proposed

as the common eigen-states of the non-commuting set of finite first-moment ma-

trices corresponding to the orthogonal directions. Hybridization and orientations

of HAOs are numerically naturalized as per their anticipated immediate atomic
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neighborhood. Choice of gauge based on the HAOs leads to the construction of

the hybrid atomic Wannier orbitals (HAWO) from Kohn-Sham(KS) single parti-

cle states, rendering a multi-orbital orthonormal tight-binding(TB) basis locked to

the nearest neighborhood. HAWO basis allows calculation of single TB parameters

per bond from first principles, and facilitate their easy transfer across iso-structural

systems through mapping of immediate atomic neighborhoods and projection of

charge centres learned in the process of naturalization of the HAOs. The mapping

allow effective bottom-up transfer of self-energy corrected TB parameters estimated

within the GW approximation of many-body perturbation theory in HAWO basis,

from smaller reference systems to much larger target systems having similar co-

valent atomic neighborhoods, suggesting a possible route towards computationally

inexpensive estimation of quasi-particle structures of large covalent systems within

acceptable range of accuracy, with extra computational cost scaling as N2, beyond

the explicit computation of self-energy correction for smaller reference systems which

typically scale as N4. Demonstrated in nano-diamond systems, the transferability

of self-energy corrected multi-orbital TB parameters in HAWO basis, is rooted at

the spatial localization of the extent of self-energy correction predominantly within

the third nearest neighborhood.





Chapter 4

Maximally valent orbitals in

systems with non-ideal

bond-angles: Atomic Wannier

orbitals guided by Mayer bond

order

In the previous chapter we described the construction of the hybrid atomic Wannier

orbital (HAWO) based on the template of de-generate hybrid orbitals, which by

construction are directed towards the nearest coordination in the system with ideal

bond angle.

In this chapter we focused on system with non ideal bond angle. In search of

an optimally directed minimal set of basis for such systems, in the work presented

in this chapter we find the exact orientation of the major overlapping orbitals along

the nearest neighboring coordination segments in a given systems such that they

maximally represent the covalent interactions through out the system. We compute

Mayer’s bond order, akin to the Wiberg’s bond index, in the basis of atomic Wannier
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orbitals with customizable non-degenerate hybridization leading to variable orienta-

tions, constructed from first principles, in a representative variety of molecules. We

put them in perspective with unbiased maximally localized descriptions of bonding

and non-bonding orbitals, and energetics to tunneling of electrons through them

between nearest neighbors, to describe the different physical aspects of covalent in-

teractions, which are not necessarily represented by a single unique set of atomic or

bonding orbitals.

4.1 Introduction

To represent the electronic structure of a given covalent system with minimal tight-

binding parameters it is preferable to resort to a directed localized basis66,85,86,133

such that the basis orbitals maximally represent the dominant covalent interactions

in the system. At a fundamental level the problem is essentially that of finding the

orientation of the atomic orbitals such that a minimum number of them facilitate

maximum sharing or tunneling of electrons between neighboring atoms. An asso-

ciated problem is to partition the electrons in a covalent system among atoms and

bonds134 such that the population of bonds are contributed by a minimum number

of orbitals. Solutions are rather straightforward for systems with ideal bond-angles

corresponding to degenerate hybridizations like sp2,3. Complication arises with non-

ideal bond angles, since for such systems, as we show in this work, making a choice

becomes difficult, as different facets of covalent interactions are represented by dif-

ferent sets of orbitals for the same coordination. In fact, “bent bonds”118 have been

long suggested in such systems, indicating deviation of orientation of atomic orbitals

from the direction of coordination, as they take part in such covalent bonds.

Hybrid orbitals have been central to description of covalent bonding since their

introduction65,66 almost a century ago. Molecular orbitals theory based method-

ologies for construction of hybrid orbitals,68,70,72,73,74,75 predating the advent of the

Kohn-Sham(KS) density functional theory(DFT)9,27 based framework, have been

grossly based on the maximum overlap condition, wherein either the overlap ma-
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trix68,70 or the first-order density matrices,74,76 calculated typically in the basis of

Slater77 or the Gaussian78,79 type orbitals, are transformed into block diagonal forms,

where each blocks are spanned by orbitals centered on a pair of nearest neighbour-

ing atoms. The resultant variants of the hybrid orbitals like the natural hybrid

orbitals,76 the effective atomic orbital,75 the generalized hybrid orbitals,85,86 the ori-

ented quasi-atomic orbitals,81 or the ones constructed using the maximal orbital

analysis82 approach, constituted the bedrock for understanding chemical bonding

in molecules, although limited or biased by the selection of the semi-analytic basis

states with adjustable parameters. With the advent of DFT27 based computation

of electronic structure from first principles, attempts to construct localized descrip-

tion of electronic structure in the basis of the KS single particle states, has been

primarily undertaken in terms of the spatially localized Wannier functions(WF),8

which rendered bonding and non-bonding orbitals if constructed from the occupied

KS states. Since WFs cannot be uniquely localized in more that one direction simul-

taneously unless facilitated by symmetry, template based construction of WFs with

numerically chosen gauge for the KS states to ensure maximal localization,93,135 has

been the mainstay. However with only Γ point, as is the case for finite systems and

acceptable for large super-cells, the maximally localized WFs can be constructed

without using any template,102,135,136 as done in this work.

Methodologically, in this work we introduce the notion of maximally valent or-

bitals (MVO), which are essentially a selection of major overlapping orbitals along

coordinations, oriented such that a minimal of them maximally account for sum of

bond-orders along coordinations across the system, at the level of nearest neighbor-

hoods or beyond. Wannier function based on the template of MVOs thus consti-

tute the maximally covalent Wannier functions(MCWF). We demonstrate search of

MVOs within the sets of orthonormal Wannierized counterparts of non-degenerate

sp2and sp3orbitals, referred here onwards as the n-sp2and n-sp3orbitals, with cus-

tomizable orientation, constructed from first principles. The n-sp2and n-sp3orbitals

are the custom hybridized atomic orbitals(CHAO) with tunable hybridization as per

the geometry of nearest neighbor coordination around atoms in systems with non-
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ideal bond angles. CHAOs are generalization of degenerate HAOs constructed from

KS states of isolated atoms as demonstrated in Ref..10 Wannierization of CHAOs in

the basis of the KS states of a given system renders the custom hybridized atomic

Wannier orbitals(CHAWO), which constitute a set of orthonormal localized basis

which incorporates effects of local environment of a given atom in the system, no-

tionally similar to the quasi atomic orbitals.133,137 At the heart of the search of

MVOs is the formulation and computation of bond-order in the basis of CHAWOs,

as defined by Mayer138 and found analogous to the Wiberg’s bond index139 priorly in-

troduced. Mayer bond order, known to formally render values discernible as per the

classical definition of bond order,140,141,142 has been a powerful tool in probing and

quantifying the quantum nature of interaction between atoms in general.143,144,145

We further calculate energetics and tight-binding parameters in the basis of

CHAWOs, and calculate their projection on maximally localized WFs constructed

without any template of CHAOs, in order to compare MVOs and MCWFs with

other possible descriptions of atomic and bonding orbitals representing different

aspects of covalent interactions. Results have been demonstrated in a wide range

of systems starting with cyclopropane which has the smallest C-C-C bond angle, to

cyclobutadiene, diborane, ammonia and water, and finally fullerene, all with bond

angles different from that of degenerate sp2or sp3coordination.

4.2 Methodological details

In this section first we briefly outline the construction of the template free maximally

localized WFs used in this work, and the HAOs, following similar approach. Next we

describe construction of CHAOs from HAOs and their Wannierization, followed by

formulation of bond-order in terms of the Wannierized CHAO, that is, the CHAWOs.

Finally we introduce MVOs as a particular choice of CHAWOs, and MCWOs.

The construction of the template free variant of the maximally localized Wannier

functions (MLWF)102,136 to describe bonding and non-bonding orbitals in isolated

systems, is precursor to the construction of HAOs,10 in terms of the technique for
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spatial localization. The only difference is that the MLWFs are constructed exclu-

sively within the subspace of the occupied KS states of a given system, while the

HAOs are constructed within an extended sub-space beyond the occupied sub-space

of an isolated atom. The localization scheme in both cases is based on maximal

joint diagonalization of the generally non-commuting set of the first moment matri-

ces(FMM) which are the representation of the three position operators x̂, ŷ, ẑ within

a finite sub-space of basis states. The procedure follows from the fact that the total

spread of a set of finite (N) number of orbitals along x̂, given by:

Ωx =
∑
i=1,N

[
〈φi|x2|φi〉 − |〈φi|x|φi〉|2

]
, (4.1)

can be expressed as:

Ωx =
∑
i=1,N

(
N∑
j 6=i

|Xij|2 +
∞∑

j=N+1

|Xij|2
)
. (4.2)

where Xij = 〈φi | x | φj〉. The off-diagonal elements of the FMM in the first term in

the RHS of Eqn.4.2 are simultaneously minimized through an iterative scheme based

on the Jacobi method of matrix diagonalization, wherein the off-diagonal elements of

a single or a commuting set of matrices are set to zero through successive application

of two dimensional rotation. In case of a set of non-commuting matrices, a choice

of rotation matrices which will maximally diagonalize the non-commuting matrices

has been derived in Ref..95 The same has been used in this work, as well as for

construction of HAOs described in Ref.,10 which may be refer for relevant details of

computation of the rotation matrices.

Construction of CHAOs from HAOs involve two steps - (1) Reconstruction of un-

hybridized atomic orbitals(UAO) from degenerate HAOs, and (2) Re-hybridization

of UAOs to construct CHAOs. In step 1, for a given element, linear combina-

tion of HAOs render UAO aligned perfectly as per a preferred Cartesian system of

axes, with the variation of the radial part determined by the pseudo-potential used.

In principle this process is straightforward since the analytic hybridization matrix
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for degenerate spmdn hybridization is known. Surmountable technical complication

arises with the arbitrary overall orientation of the set of degenerate HAOs. Notably,

up to n = 2, UAOs obtained this way are essentially the rotated KS states, since

for elements with 2s and 2p valence electrons, the lowest three degenerate block of

KS states are the three orthonormal 2p states in random orientation. However, for

n > 2 arbitrary mixing of degenerate KS states of the valence shells makes it impos-

sible to directly use them individually as pure atomic orbitals after simple rotation.

UAOs obtained from the HAOs, which are maximally localized by construction, are

thus assured to render the most localized form of pure orbitals aligned along any

preferred set of Cartesian axes as per the pseudo-potential used.

Re-hybridization of UAOs to n-sp2or n-sp3CHAOs are performed using hybridiza-

tion matrices specific to symmetries as per that of the nearest neighborhoods. For

example, for CHAOs of the nitrogen atom in NH3 we use a hybridization of form



a b b c

a c b b

a b c b

d e e e





s

px

py

pz


. (4.3)

The unitarity of the matrix allows one independent parameter and if we choose it to

be c then the other parameters can be calculated as: a =
√
−1− 3c2 + 4c, b = c−1,

e = a, d =
√

1− 3a2. More generally, an irregular tetrahedral orientation of orbitals

can be assigned with hybridization matrix of form:



a 1√
2

√
1
2
− a2 0

a − 1√
2

√
1
2
− a2 0

b
√

1
2
− a2 0 −ab −

√
1− b2

2

√
2− b2

√
1
2
− a2 0 −a

√
2− b2 b√

2


(4.4)

with two independent parameters a and b representing the two angles which complete
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the assignment of four orthonormal orbitals. As evident in the matrix, we consider

two of the orbitals, the first two, oriented in xy plane symmetrically about the y

axis, while the other two orbitals are in the yz plane. The third and fourth orbitals

can also be chosen to be symmetric about the y axis, which reduces the number of

independent parameters to one, and geometrically akin to the majority of tetrahedral

coordination, like those of C in CnH2+2n.

Given a system of atoms, we construct separate sets of CHAOs for atoms of

different elements and relative orientation of nearest neighbors(nn) around them.

Through choice of parameters in the hybridization matrix we can orient the CHAOs

exactly along the direction of coordinations, or in any systematic variation express-

ible in terms of those directions. Sets of CHAOs constructed for each such types

of atoms are then transferred from their atomic nurseries to the given system and

oriented according to nn coordinations around each atom, to constitute a set of

localized non-orthogonal basis made of transferred CHAOs with intra-atomic or-

thogonality.

Wannierization of the transferred CHAOs, say N in number, in the basis of

NKS(≥ N) number of KS states, starts with construction of a set of quasi-Bloch

states
{
ψ̃~k,j(~r)

}
from CHAOs, and subsequently projecting them on the orthonor-

mal Bloch states constructed from the KS single-particle states:

O(~k)m,j = 〈ψKS~k,m
| ψ̃~k,j〉. (4.5)

Overlaps between the non-orthogonal quasi-Bloch states are calculated within the

manifold of the considered KS states as:

S(~k)m,n =

NKS∑
l

O(~k)∗l,mO(~k)l,n. (4.6)

Values of
∑

~k |S(~k)n,n|2/Nk implies representability of the n-th CHAO within the set

of KS states considered, and should be typically above 0.85 for good agreement of KS

band-gap and valence band width, with those calculated with the resultant tight-
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binding parameters, in the covalent systems made of p-block elements as mostly

studies in this work.

Through Löwdin symmetric orthogonalization(LSO)104 a new set of orthonormal

Bloch states can be constructed as:

Ψ~k,n(~r) =
N∑
m

S(~k)
− 1

2
m,n

NKS∑
l

O(~k)l,mψ
KS
~k,l

(~r), (4.7)

which can be used to construct an orthonormal set of localized Wannier functions

referred in this paper as the custom hybrid atomic Wannier orbitals (CHAWO):

Φ ~R′,j(~r) =
1√
Nk

∑
~k

e−i
~k· ~R′

NKS∑
l

U(~k)ljψ
KS
~k,j

(~r). (4.8)

where

U(~k) = O(~k)S(~k)−
1
2 . (4.9)

LSO chooses the appropriate linear combination of KS states such that resultant

CHAWOs are orthonormal yet substantially resemble the template of transferred

CHAOs. TB parameters in CHAWO basis is straightforwardly calculated as:

t ~R′, ~R,i,j = 〈Φ ~R′,i | H
KS | Φ~R,j〉

=
1

Nk

BZ∑
~k

ei
~k.( ~R′−~R)

NKS∑
l

U(~k)∗liU(~k)ljE
KS
~k,l
. (4.10)

where
{
EKS
~k,l

}
are KS energy eigenvalues. With NKS > N , U(~k) becomes semi-

unitary, and spatial localization of CHAWOs enhances and eventually converges

with NKS. However for this work we have restricted NKS = N so that U(~k) is

square matrix whose inverse can be unambiguously invoked in order to expand KS

states completely in terms of CHAWOs.

Notably, representability of the UAOs or HAOs or CHAOs in the KS states of

the given system where they are to be Wannierized, can be maximized by choosing
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to construct them using the same pseudo-potentials which are used to compute the

KS states of the given system. High degree of representability ensures consolidation

of the O matrix [Eqn.(4.5)] over fewer bands of KS states, which in turn consolidates

localization of the Wannierized orbitals. In principle, for a given system we could

also directly Wannierize a template of analytic or semi-analytic orbitals such as

the hydrogenic, Slater or Gaussian type orbitals, or their hybrids, instead of the

UAOs or the HAOs or CHAOs which are purely numerical in nature. However,

unlike the numerical ones which can be chosen to have maximum representability

by construction, the enhancement of representability of the analytic orbitals require

numerical optimization of parameters used in defining those orbitals.

4.2.1 Bond-order in CHAWO basis

To derive an expression of bond-order(BO) similar to that proposed by Mayer13,138

, we start with the traditional or classical definition of BO involving the i-th and

j-th atomic orbitals for a given spin:

B ~R′ ~R,ij =
n+
~R′ ~R,ij

− n−~R′ ~R,ij

2
,

n±~R′ ~R,ij
being the occupation of the bonding(+) and anti-bonding(-) orbitals consid-

ered in the CHAWO basis as:

φ±~R′ ~R,ij
=

1√
2

(
Φ ~R′,i ± Φ~R,j

)
,

Within the subspace of KS states:

B~R′ ~R,ij = Re[〈Φ~R′,i | P̂ | Φ~R,j〉]

=
BZ∑
~k

NKS∑
l

f~k,l
Nk

Re[ei
~k.(~R′−~R)U(~k)∗liU(~k)lj] (4.11)
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where P̂ is the projection operator for a given spin:

P̂ =
BZ∑
~k

NKS∑
l

| ψKS~k,l
〉f~k,l〈ψ

KS
~k,l
|

f~k,l being the occupancy of the l-th KS state with wave-vector ~k. B~R′ ~R,ij in (4.11)

is essentially the Coulson’s bond order(CBO),146 used primarily in case of a single

orbital per atom, where i and j effectively become the atom indexes. For a given

covalent bond, CBO values, as evaluated in (4.11), can be positive or negative

depending on the relative phase of the two orbitals involved. This indicates that

CBO values can not be associated with any form of electron population. In fact,

the total number of electrons for a given spin:

Ne =
1

Nk

BZ∑
~k

NKS∑
l

〈ψKS~k,l
| P̂ | ψKS~k,l

〉

=
1

Nk

∑
~R

N∑
j

〈Φ~R,j | P̂ | Φ~R,j〉

=
1

Nk

∑
~R

∑
j

B~R~R,jj

=
∑
A

∑
j∈A

B00,jj =
∑
A

QA (4.12)

QA being the number of electrons which can be associated with atom A. Notably,

QA is analogous to the Mulliken’s gross atomic population,147 which is same as the

net atomic population in case of orthonormal basis, like the CHAWOs, since the

overlap population vanishes due to the orthonormality of the basis in the Mulliken’s

population analysis scheme. Eqn.(4.12) also reiterates that the CBO values can not

be used in partitioning of electrons into atoms or bonds since they do not contribute

to the total number of electrons, whereas, the general classical notion of bond-order

is that it is half the total number of electrons shared in a covalent bond including

both the spins.

However, using the indempotency of P̂ for integral occupancy of states for a
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given spin, we can write:

Ne =
1

Nk

BZ∑
~k

NKS∑
l

〈ψKS~k,l
| P̂ P̂ | ψKS~k,l

〉

=
1

Nk

∑
~R

N∑
j

〈Φ~R,j | P̂ P̂ | Φ~R,j〉 (4.13)

Inserting
∑

~R

∑N
l | Φ~R,l〉〈Φ~R,l | between the two P̂ in (4.13) we obtain:

Ne =
1

Nk

∑
~R

N∑
j

∑
~R′

N∑
l

B~R~R′,jlB~R′ ~R,lj

=
N∑
j

∑
~R′

N∑
l

B0~R′,jlB~R′0,lj (4.14)

using (4.11). In (4.14), for an atom in the 0-th unit-cell, all other atoms in the

0-th or in any other unit-cell(~R′) can be generalized as neighbors. Therefore we can

generalize (4.14) and partition Ne as:

Ne =
N∑
j

N×Nk∑
l

BjlBlj

=
Natom∑
A

[∑
j∈A

N×Nk∑
l

BjlBlj

]

=
Natom∑
A

[∑
j∈A

[∑
l∈A

BjlBlj +

N×Nk∑
l 6∈A

BjlBlj

]]

=
Natom∑
A

∑
j∈A

∑
l∈A

BjlBlj +
∑
j∈A

NkNatom∑
B(6=A)

∑
l∈B

BjlBlj


=

Natom∑
A

∑
j∈A

∑
l∈A

BjlBlj +

NkNatom∑
B(6=A)

(∑
j∈A

∑
l∈B

BjlBlj

)
=

Natom∑
A

QAA +

NkNatom∑
B(6=A)

QAB

 (4.15)

where QAA is the net atomic population of atom A and the QAB is the overlap
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population between atoms A and B, as defined by Mayer[134]. Note that this version

of overlap population is different from the Mulliken’s overlap population since the

later is zero for orthonormal basis. Therefore for an isolated molecule (Nk = 1):

Ne =
Natom∑
A

QAA +
Natom∑
A

Natom∑
B(6=A)

QAB

=
Natom∑
A

QAA +

Natom(Natom−1)/2∑
unique

atom pairs

2QAB,

(4.16)

since QAB = QBA. For periodic systems with Natom number of atoms inside an

unitcell:

Ne =
Natom∑
A

QAA +

Natom(Natom−1)/2∑
unique

atom pairs

within unitcell

2QAB

+
Natom∑
A

(Nk−1)Natom∑
B

QAB,

(4.17)

The quantityQAB was originally introduced as a bond-index139 following Wiberg’s

interpretation of covalent bonding capacity of a basis orbital, say Φj, as:

bj = 2Pjj − P 2
jj (4.18)

where P =
∑

σ P
σ. As easily seen, bj will be 1 if Φj takes part in a bonding orbital,
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and 0 if it is one in a lone-pair. Using the indempotency property of P̂ again,

bj = P 2
jj

which implies

bj =
∑
l∈A

PjlPlj +
∑
l 6∈A

PjlPlj

with more than one orbitals per atom. Noting Pij = Bij shown in Eqn.(4.11), we

can therefore write for atom A if j ∈ A :

∑
j∈A

bj = QAA +
∑
B 6=A

QAB,

where

QAB =
∑
j∈A

∑
i∈B

qAB,ij,

with

qAB,ij = PjiPij |i∈B,j∈A .

Thus with more than one basis orbitals centred on A, the net covalent bonding

capacity or the valency VA of atom A is assessed after subtracting the intra-atomic

term QAA from the net
∑

j∈A bj:

VA =
∑
j∈A

bj −QAA =
∑
B 6=A

QAB. (4.19)

This notionally identifies 2QAB, which is the net overlap population between A and

B, as the bond order in agreement with Eqn.43-44 in Ref.[134], in the classical sense

of valency of an atom in a covalent system.

In this work we calculated bond orders as defined by 2QAB and their decom-

position in orbital pairs, as a function of orientation of the CHAWOs, in order to

pin point the orientation which maximises the BO contribution from the dominant

orbital pairs for a given pair of nearest neighboring atoms. Since the net BO remains
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largely constant over different orientations [Fig.4.1] the dominant contribution can

be numerically traced as the maxima of the variance of contributions from different

pairs for a given coordination. In fact, the set of CHAWOs which maximizes the

sum of standard deviation of BO contributions of all the coordinations in a given

system should in principle pin point to the orientation of CHAOs which would render

CHAWOs such that a minimum of them would maximally incorporate covalent in-

teraction along all coordinations, led by the nn coordinations. We therefore propose

to seek the maxima of:

Ω =
∑
A

∑
B 6=A

∑
i∈A

∑
j∈B

(q̄AB − qAB,ij)2

nAnB
, (4.20)

where

q̄AB =
∑
i∈A

∑
j∈B 6=A

qAB,ij
nAnB

,

nA and nB being number of orbitals centered on atoms A and B respectively. CHAOs

corresponding to the maxima of Ω can thus be referred as maximally valent hy-

brid atomic orbitals(MVHAO). Correspondingly, WFs constructed using the tem-

plate of MVHAOs can thus be referred as the maximally covalent Wannier func-

tions(MCWF).

Notably, for systems with inequivalent atoms, finding Ω is in principle a multi-

variable maximization problem. In this work however we have restricted to sys-

tems where single variable maximization of Ω is sufficient or effectively so. For

example, the symmetry of cyclopropane, diborane and water molecules allow us to

vary a single angle α marked in Fig.4.1(1a,3a) and Fig.4.2(4a). Different sets of

non-degenerate sp3CHAOs are constructed using UAOs following the hybridization

matrix given in Eqn.(4.4) with a = b. A 3×3 variant of the same hybridization

matrix is used to construct non-degenerate sp2CHAOs for cyclobutadiene. Notably,

when the CHAOs are transferred to any given system from their atomic nurseries

they are oriented such that they maintain their intra-atomic orthonormality. In case

of cyclopropane, diborane and water molecules the principal symmetry axis of the
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transferred CHAOs coincides with the axis bisecting the HCH, HBH or HOH angles.

For ammonia, we have used the hybridization matrix given in Eqn.(4.3). The orien-

tation of the CHAWOs remain practically unaltered compared to the corresponding

CHAOs.

4.3 Computational details

All the ground state geometries as well as ground state electronic structures are

calculated using the Quantum Espresso (QE) code125 which is a plane wave based

implementation of density functional theory (DFT).9,27 The BFGS scheme has been

used to obtain the relaxed structures within the pseudo-potential used. The KS

ground states are calculated within the Perdew-Burke-Ernzerhof (PBE)148 approxi-

mation of the exchange-correlation functional. Plane wave basis with kinetic energy

cutoff of of 60 Rydberg has been used for all systems considered in this work.

For construction of WFs, CHAWOs and calculation of TB parameters and BO,

we use our in-house implementation which used the KS states computed by the QE

code. Towards construction of n-sp2and n-sp3CHAOs, the sp3HAOs for n = 2 are

constructed in this work for B, C, N, O using the lowest four KS states which include

a triply degenerate block.

4.4 Results and discussion

To choose the criteria of seeking optimal orientation of CHAOs as they take part

in covalent bonding, we can in principle take recourse to the different descriptions

of covalent bond based on different physical aspects of covalent interaction, for the

same coordination. Different choices of bonding orbital along a nn coordination,

can differ on the degree of sharing of electrons between atoms, or the degree of

spatial localization of electrons participating in the bond, besides the energetics of

the orbitals. Similarly, different choices of orientations of CHAOs would differ not

only on the degree of sharing of electrons they facilitate between atoms, but also on
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Figure 4.1: Plotted as function of relative angle α[(a)] between CHAOs, variations
of: (d) net BO and BO contributions from CHAWO pairs (whose charge centres
are marked in (b)), (e) Ω[Eqn.(4.20)], (f) hopping parameter between the major
overlapping CHAWOs, (g) projection of template free WFs (whose charge centres
are marked as in (c)) on CHAWOs marked in (b), (h) energetics of WFs made with
template of CHAOs.

energetics of hopping of electrons through them, which has bearing on the strength

of the covalent interaction they would support.

Since systems with non-ideal bond angles have been reported to have bent
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bonds,118 making a choice of an optimal orientation would also thus amount to sub-

stantiating the bent nature from the deferent perspectives of covalent interaction.

For a given nn coordination, we therefore first look for the peak for Ω [Eqn.4.20]to

find the orientation of the CHAOs which maximally hosts the covalent interactions

as described by BO. Secondly, the maxima of projection of the template free max-

imally localized bonding WFs on CHAWOs, with the aim of seeking the CHAOs

which would lead to the most localized description of the covalent interaction point-

ing arguably to the shortest path of tunneling of electrons. And thirdly the maxima

of the magnitude of the hopping parameter(t) between the two major overlapping

CHAWOs to find the energetically most favourable route of tunneling of electron

for the given coordination. Symmetry of cyclopropane allows a single variable max-

imization of Ω with one independent parameter in the hybridization matrix. As

evident in Fig.4.1(1d), the relative angle αBO, which is the α where the dominant

BO contribution maximize for a given coordination, are close for C-C and C-H

coordinations, and thus coincide with αΩ which is where the Ω [(1e)] maximizes.

The value of αWF , which is the α where the dominant projection of the template

free MLWF on CHAWOs maximize[Fig.4.1(1g)], for both the coordinations, is also

close to αΩ - at around 105◦. Thus the CHAWOs of C at αΩ, namely, the MVHAOs

of C as defined above, as well as the CHAWOs of C which have maximum overlap

with the MLWFs representing the bonds, both have similar orientation and deviate

from the directions of C-C and C-H by about 22.5◦ and 0.4◦ respectively. Therefore

for cyclopropane both the kinds of bonding orbitals - MLWFs as well as MCWFs, are

essentially same. Such identical nature of MLWFs and MCWFs can be attributed to

the fact that the charge density between the C atoms in this case in effect completely

deviate away from the direction of coordination. In fact, the similarity of MLWFs

and MCWFs exhaustively substantiate the strictly bent nature of the C-C sigma

bonds. Interestingly, while the values of αBO and αWF coincides with αΩ, the values

of αt, which is the α where |t| maximizes[Fig.4.1(1f)] for the major overlapping

CHAWOs, occur respectively at lower and higher angles than αΩ for the C-H and

C-C coordinations. Such a trends of αt values is consistent with the fact that the
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Figure 4.2: Similar to Fig.4.1, Plotted as function of α[(a)], variations of: (d) net
BO and BO contributions from CHAWO pairs marked in (b), (e) Ω, (f) hopping
parameter between the major overlapping CHAWOs, (g) projection of template free
WFs marked as in (c), on CHAWOs marked in (b), (h) energetics of WFs made
with template of CHAOs.

energies of the C-Hσ and C-Cσ WFs constructed based on template made of CHAOs,

show a crossing[Fig.4.1(1h)] around αΩ, with the C-C(C-H)σ being lower in energy

below(above) αΩ. These trends clearly suggest a competing preference of the two

bonds, to deviation or “bending” from their respective directions of coordinations,

above and below αΩ.

In case of cyclobutadiene, the optimization of CHAWOs of C atoms is essentially

a problem of two variable maximization of Ω owing to the lack of symmetry about

C due to the inequivalent C-C bonds. However, motivated by the small deviation

of MVHAOs from the C-H coordination in cyclopropane, we limit optimization of

CHAOs for cyclobutadiene to their symmetric orientations about the C-H coor-

dination, as evident in Fig.4.1(2a). Within such a constraint, the dominant BO
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contributors for the C-H and the longer C-C coordination occurs between 110◦ and

115◦ [Fig.4.1(2d)], while it is about 120◦ for the shorter C-C coordination, leading

to an αΩ arond 115◦, implying a deviation of MVHAOs from both the shorter and

longer C-C coordinations by about 12◦.

Similar to cyclopropane, firstly, the values of αWF [Fig.4.1(2g)] in this case are

also close to the respective values of αBO, and secondly, the values of αt [Fig.4.1(2f)]

for C-H σ and both the C-Cσ bonds, are respectively lower and higher than the αΩ

value. Competing preference to deviation from direction of coordination, as seen in

cyclopropane, is also evident in cyclobutadiene from the variation of energetics of

the C-H σ and the C-Cσ bonds [Fig.4.1(2h)] with α.

Next we calculate CHAWOs for diborane molecule well known for the B-H-B

three centre two electron bond, which in this work is marked by the BO values of

B-B and B-H2 [Fig.4.1(3f)] of about 0.85 and 0.45 per spin, implying a total of

about (0.85 + 2× 0.45) = 1.75 electrons per spin for each of the two B-H-B bonds.

Symmetry of diborane allows single parameter maximization of Ω . Values of αBO

[Fig.4.1((3d))], although are generally close to α0, are larger for the B-H1 and B-H2

coordinations than that for the B-B coordination, leading to an intermediate value

of αΩ [(3e)] close to α0, implying a deviation of MVHAOs by about 4◦ from both the

B-H1 and B-H2 coordinations. Deviation of the αWF values[Fig.4.1(3g)] from α0 for

the B-H2-B and B-H1 WFs are similar to those of the respective αBO values. Thus

in this case also the MLWFs and the MCWFs suggest similar deviations of the B-

H2-B and B-H1 bonds from the directions of B-H2 and B-H1 coordinations. Among

the hopping parameters, like we saw in case of cyclopropane and cyclobutadiene,

the deviation of αt [Fig.4.1(3f)] of the B-H1, which is B-H σ in this case, is the least,

which is also corroborated by the energetics[(3h)] of the template based WFs, as it

shows that the B-H1 bonds do not prefer deviation, while the B-H2-B three centre

bonds do. Thus the competing energetics of B-B covalent interaction mediated by

the H, and that of the C-H σ bonding, with the latter dominating over the former

due to multiplicity, determines the structure of diborane.

Deviation of angle(αΩ ) between MVHAOs in cyclopropane, and diborane, from
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trajectory considered is plotted in 6a.

109◦ of ideal tetrahedra, is indicative of the fact that the lowering of kinetic energy

due to formation of a σ bonding orbital is competing with the lowering of electron

repulsion at each C atom. The same can be seen in case of cyclobutadiene as well,

where αΩ is between 110 degrees and 120 degrees. Whereas in case of a perfect

tetrahedral or honeycomb coordinations minimizations of kinetic energy in the di-
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rection of coordination and potential energy in the vicinity of atoms will cooperate

with each other to consolidate tetrahedral coordination leading to robust crystal

structures.

For molecules of water and ammonia[Fig.4.2], each with only one kind of coordi-

nation, αBO [Fig.4.2(4d,5d)] and αΩ [(4e,5e)] are same, and are clearly higher than

their corresponding αWF values [(4g,5g)], which interestingly almost coincides with

the actual bond angles α0 for both the molecules. Therefore, while the template

free MLWFs suggest no deviation in effect, the MCWFs would suggest deviations

of about 10◦ and 5◦ respectively from directions of of O-H and N-H coordinations.

Such substantial deviation between MLWF and MCWF can be attributed to the

fact that in these molecules the charge density exists along the direction of coordi-

nations as well as with modest deviation from it, allowing the MLWFs and MCWFs

to consolidate using different sets of states as majority contributors. Values of αt

[Fig.4.2(4f,5f)]for both the O-H and N-H σ bonds clearly suggest even larger devia-

tions, which is consistent with the energetics[Fig.4.2(4h,5h)] of the template based

WFs for both the molecules, since in both cases the bonding WFs energetically

prefers deviation which is opposed by the lone pairs.

In C60 the two different C-C bonds - the shorter ones shared by two adjacent

hexagons, and the longer ones shared by hexagons with adjacent pentagons, demand

a two parameter maximization of Ω in terms of α and β [Fig.4.3(6a)]. In this work

however we restrict effectively to a one parameter optimization by seeking maxima

of Ω along the (α, β) trajectory plotted in Fig.4.3(6a), which nevertheless brings out

the key aspect about the true nature of the MVHAOs. For both the C-C bonds the

αBO [Fig.4.3(6d)] and αΩ [(6e)] occur at around 111◦ where the three n-sp3orbitals

in effect become co-planar n-sp2 and the fourth one becomes pure pz implying a

+δ deviation of MVHAOs by about 13◦ and 11◦ from the direction of longer and

shorter C-C coordination respectively. Although the MLWFs [Fig.4.3(6c)] in this

case renders the π bond exclusively along the shorter C-C coordination since the

longer C-C bonds make pentagons, comparable BO contribution exists between

pzorbitals along the longer C-C [(6d)] coordination as well. In fact the BO values
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along the two C-C coordinations are much comparable, in exception to that implied

by MLWFs. Notably, for both the C-C, αt for t(2, 7) and t(5, 3) suggests strongest

σbond with similar or marginally less +δ deviation of participating CHOAs from the

C-C coordinations, compared to that implied by αΩ. However, for the shorter C-C,

the value of αt [Fig.4.3(6f)] for t(4, 6) suggests stronger πbond due to much larger

+δ deviation from C-C coordination than that implied by αΩ, which would push

the major lobe of the unpaired n-sp3orbital inside the fullerene cage. Thus the αΩ

allows strong enough σbonds but a weaker π-bond, reiterating that it is primarily

the C-C σbonds constituting the pentagons which are responsible for the curved

nature surfaces made of three coordinated carbon atoms with pentagon surrounded

by hexagons.
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Figure 4.4: Plotted as a function of α0, the deviation of the MVHAOs from the
coordination segment mentioned above the data points. The dashed line is at the
ideal bond-angle for tetrahedral coordination.

The deviation of MVHAOs from the direction of coordinations found in all the

systems studied in this work is summarized in Fig.4.4, where the deviations of

MVHAOs centred on four(three)-coordinated sites, are shown by up-traingles(circles).

Deviations of such MVHAOs increases in effect linearly with the degree of lowering

of bond angle from the ideal tetrahedral bond-angle, with clear pinch-off at the ideal

bond-angle. Deviations of MVHAOs centred on three coordinated sites also appears

to approache pinch-off at the ideal tetrahedral bond-angle with increasing tetrahe-

drality of the three nn coordinations and the lone-pair. Substantial deviations in
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case of cyclobutadiene and C60 are rooted at substantial differences among their

bond-angles. As obvious, the effectiveness of MVHAOs as minimal basis increases

with their increasing deviation from nn coordinations.

4.5 Conclusion

In search of an optimally directed basis, we begin this work with construction of

non-degenerate custom hybridized atomic orbitals(CHAO) with variable orientation,

from the degenerate set of hybridized atomic orbitals, in the basis of KS states of

isolated atoms. We next formulate Mayer’s bond order in the basis of the Wan-

nierized counterparts of the CHAO, constructed from the KS states of a given sys-

tem, and introduce the maximally valent hybrid atomic orbitals (MVHAO) and the

corresponding template based WFs as the maximally covalent Wannier functions

(MCWF), and use them to substantiate the deviation of hybrid atomic orbitals from

directions of coordinations as they participate in covalent bonding, as summarized

in Fig.4.4, leading to the bent nature of such bonds, in a host of molecules with

non-ideal bond angles. Through comparison of bond-order(BO) contributions and

hopping parameters from the Wannierized pairs of CHAOs, and their overlap with

template free maximally localized Wannier functions(MLWF), we point out how

maximally covalent representation of a given coordination can differ from its maxi-

mally localized, and energetically favourable representations of covalent interactions

in these systems, shedding light on different perspectives of inter-atomic sharing of

electrons in general.





Chapter 5

Optical excitation from

anti-causally corrected real-time

dynamics in a minimal tight

binding framework

In this chapter, we demonstrate workably accurate estimation of optical excita-

tion threshold for large systems comprising of hundreds of atoms through an anti-

causally corrected(ACC) real-time dynamics(RTD) approach implemented in a min-

imal tight-binding basis constituted by the directed hybrid atomic Wannier orbitals.

A correction to the Hamiltonian is applied anti-causally at all time steps to account

for electron-hole interaction using the density-density response function. Minimality

of basis and ease of transferability of parameters to large systems arises from the

directed nature of the Wannierized hybrid basis orbitals used. With self-energy cor-

rected TB parameters evaluated at the DFT +G0W0 level, the proposed ACC-RTD

scheme can be systematically parametrized to render optical excitation threshold for

systems of experimentally realizable length-scales through inexpensive computation.
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5.1 Introduction

Over the last few decades a key motivation to study nano-structures of a different

size and shape149,150 primarily of elemental or compound semi-conducting materi-

als, has been to manipulate light-matter interaction aimed at applications ranging

from controlled absorption, emission and harvesting of light.151,152 In this direc-

tion elements of the p-block having valence electrons in 2p, 3p and 4p orbitals, have

been in the forefront.18 Effective theoretical prediction of new device possibilities in

this direction thus crucially depends on accurate estimation of optical-gap of nano-

structures.20,21,153,154 However, they still consists of few hundreds to thousands of

atoms which makes it a considerable computational challenge to compute optical

excitations accurately.

Time dependent density functional theory(TDDFT) using the LDA exchange-

correlation (xc) has been traditionally used to compute optical excitation in extended

systems.20,153 However as system size shrinks, a more structured correlation among

electrons causes loss of accuracy of the ground-state calculation and also the de-

scription of electron-hole interaction with static local xc functionals used in DFT.

While the ground-state energetics can be improved using hybrid pseudo-potentials,50

the most accurate computation of the energetics of the ground-state starting with

the KS single particle levels, is obtained perturbatively as their self-energy correc-

tions due to a non-local and dynamic self-energy operator derived within the GW

approximation of the many-body perturbation theory.15,61,155 DFT+GW compu-

tation however is expensive due to convergence of the dielectric function and the

self-energy operator, with respect to unoccupied states, typically requiring in thou-

sands. Subsequently, TDLDA calculation with scissor correction as per the shift in

single particle levels as per their self-energy corrections, has been shown to render

correct optical gap for smaller carbon nano-diamonds.20 Scissor correction has also

been extended to the real time TDDFT156 to account for the band-gap problem

in optical excitation. For extended systems a long-range correction has been pro-

posed157 to approximately account for the inherent non-locality of screening, which



5.2 Methodology 105

however considerable increases the cost of computation. The most accurate estima-

tion of linear optical excitation is possible through solution of the Bethe-Salpeter

equation(BSE)64 in the basis of exciton amplitudes considered as products of KS

single particle levels from the valence and conduction bands. The high computa-

tional cost of BSE calculation stems from convergence of the interaction kernel and

the exciton amplitude with respect unoccupied states. In particular for the large

nano-diamond systems considered in this work, DFT+GW and subsequent BSE

calculations become computationally impossibly expensive.

In this work we propose a computationally much inexpensive alternate route

to estimate optical absorption spectra, primarily the threshold up to workable ac-

curacy, using the real time dynamics(RTD) approach, in a minimal tight-binding

basis constructed from first principles. The minimal nature of the basis stems from

the fact that the optimally directed hybrid orbitals,11 maximally incorporate all

covalent interactions prevalent in the system and thus represent nearest neighbor

covalent bonds predominantly by a single off-diagonal element. However given the

ideal nature of the bond angles in the systems consider in this work the degener-

ate hybrid orbitals10 constitute the minimal basis. We have recently demonstrated

effective transfer of self-energy correction from smaller reference system to much

larger isomorphic systems in the basis of such directed hybrid atomic Wannier or-

bitals (HAWO), to render estimates for quasi-particle band-gap10,158 of the large

systems with over 90% accuracy. In this work we use self-energy corrected tight-

binding parameters in the HAWO basis and introduce a justifiably parametrizable

anti-causal correction to RTD which indirectly accounts for the presence of excitons

in the Hamiltonian to render absorption threshold of large systems with workable

accuracy comparable to GW-BSE estimates.

5.2 Methodology

First we briefly sketch the construction of the tight-binding Hamiltonian from first

principles in the basis of HAWOs [10], which are constructed from the KS states of
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the given system as:

Φj(~r) =
∑
~k

ei
~k·~r
∑
l

UjlΨ
KS
~k,l

(~r) (5.1)

where the choice of gauge (U) is obtain though Lowdin symmetric orthogonalization

of the template made of hybrid atomic orbitals (HAO) projected on the KS states.

The four sp3 HAOs of C or Si atoms are obtained through maximal joint diagonaliza-

tion95 of the first moment matrices corresponding to the three orthogonal direction

in the basis of the lowest four KS states generated for an isolated atom using the

same pseudo potential used for the nano-diamond systems. HAWOs being directed

toward nearest neighbor coordination, TB parameters derived in such a basis are

therefore easily transferable from smaller to larger nano-diamond systems through

mapping of neighborhood. Self-energy corrected TB parameters for smaller refer-

ence systems are obtained in the HAWO basis using quasi-particle levels computed

at the G0W0 level.61,159

For time dynamics we use the standard Crank-Nicholson160 approach where the

time evolution operator is approximated as:

Û(t+ δt, t) =
1− iĤ(δt/2)

1 + iĤ(δt/2)
(5.2)

which is exact up to δt2 and assumes Ĥ to remain constant over the time interval

δt. In our implementation we have used a higher order formulation160 of Û(t+δt, t):

Û(t+ δt, t) =

(
I − iδt

2~H − 1/2(Hδt/2)2 + i1/6(Hδt/2)3
)(

I + iδt
2~H − 1/2(Hδt/2)2 − i1/2(Hδt/2)3

) (5.3)

We apply a small constant electric field across the system161 ~E(~r, t) = ~Iδ(t) in

the first time-step and revert back to the original unperturbed Ĥ from the second

time-step onwards. If the Ĥ is retained unchanged for all successive steps then the

absorption spectra obtained from the time evolved occupied states can be compared

to the spectra obtained at the independent particle level within linear response, as

demonstrated in Fig.5.1.
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Photo-absorption cross-section relevant to the direction µ is calculated as:

σµµ(ω) =
4πω

c
=[αµµ(ω)] (5.4)

where the polarizability αµµ(ω) is calculated from the µ-th component of the time

evolved net dipole-moment ~p(t), as:

αµµ(ω) =
1

Ẽµ(ω)

∫
dteiωtpµ(t), (5.5)

Ẽµ(ω) being the Fourier transform of the applied electric field component Eµ(~r, t).

In effect Ẽµ is constant in ω given the pulsed nature of the applied field. The net

dipole moment from the time evolved occupied states is calculated approximately

as:

~p(t) = −e
occ∑
i

∑
j

| Cij(t) |2 ~rj (5.6)

{~rj} being the charge centers of the directed hybrid orbital basis {φj}, and the

time evolved states in effect being
{
ψi(r, t) =

∑
j Cij(t)φj(r)

}
. Such a simultaneity

is prevented by the inherent non-commuting nature of more than one orthogonal

position operators if projected within a finite subspace. In Fig.5.1, we find good

agreement of threshold and initial peaks between the IP level spectra obtained within

linear response from the KS states and the RTD spectra rendered by the time evolved

occupied states in the HAWO basis.

In order to compute spectra beyond the independent particle level we invoke an

anti-causal correction, where Hamiltonian is updated at each time step as per the

evolution of the charge density in the previous step. A correction {δVj} is added

to the on-site terms of the unperturbed Hamiltonian H0 such that the eigenstate of

the modified Hamiltonian renders to charge density of the previous time step. The

applied correction is anti-causal since it is derived back from {δρj}(t−δt). The Ĥ(t)

is thus updated such that the instantaneous charge density will become increasingly
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Figure 5.1: RTD(IP) polarization in the directed TB basis without anti-causal cor-
rection, for :(a) C2H6, (c) Adamantane, (e) Pentamantane. The corresponding RTD
spectra for longer time, and the spectra obtained from the LR density-density re-
sponse function computed from the KS single-particle states, for he same systems
(b,d,f respectively).

similar to that of the previous step as time progresses, as we see in Fig.5.2(a). In

our implementation we compare the evolving charge density at each time step to

that of the ground state and use density-density response function or the dielectric

susceptibility (χ) computed from the ground state wave functions in the HAWO

basis.

At the outset, δV (~r) can be connected to δρ(~r′) through χ−1 as

δV (~r) =

∫
d~r′χ−1(~r, ~r′)δρ(~r′).
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With δρ(~r′) =
∑

j δρj(
~r′), j being orbital index. We can notionally discretized

χ−1(~r, ~r′) as χ−1
ij Θ(~r−~ri)Θ(~r′−~rj) using non-intersecting step-functions (Θ) centered

at orbital charge centers {ri}, leading to :

δVi(~r) =

∫
d~r′
∑
j

[χ−1
ij Θ(~r − ~ri)Θ(~r′ − ~rj)]δρj(~r′)

= Θ(~r − ~ri)
∑
j

χ−1
ij

∫
d~r′[Θ(~r′ − ~rj)]δρj(~r′), (5.7)

which implies

δVi =
∑
j

χ−1
ij ρj, (5.8)

where δVi(~r) = δViΘ(~r−~ri) and ρj =
∫
d~r′[Θ(~r′−~rj)]δρj(~r′). In our case we obtain:

δρj(t) =
occ∑
i

(| Cij(t) |2 − | C0
ij |2, (5.9)

where {Cij} are the elements of the i-th wave function, which are also used to

estimate χ in the static limit within linear response as:

χ(i, j) =
N∑
kl

(f 0
k − f 0

l )
C0
liC

0∗
kiC

0∗
lj C

0
kj

E0
k − E0

j + iη
, (5.10)

where f 0
i and E0

i respectively are the occupation and energy of the i-th level in the

ground state, and η is a broadening parameter.

Although partitioning the unit-cell into such non-intersecting domains around

the centers of each orbitals should in-principle possible, it would also results into

sharp changes in values of χ−1 across neighboring domains, which is unrealistic.

Instead, we can relax the criterion of non-intersection and let spherical domains de-

fined by a cut-off radius around the charge centers to enclose substantial fractions of

the respective orbitals, and introduce corrections to avoid multi-valuedness of con-

tributions to δVi due to overlapping orbitals. The unit cell can then be partitioned

into different regions of different numbers of overlapping orbitals. The total charge
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applied to the TB Hamiltonian of adamantane.
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of an orbital can be partitioned into such regions as:

ρi = ρii +
∑
j 6=i

ρij +
∑

(j<k)6=i

ρijk +
∑

(j<k<l)6=i

ρijkl + . . . (5.11)

where ρii is the part of ρi which has no overlap with any other orbital, while

{ρij,i6=j}, {ρijk,(j<k)6=i} and {ρijkl,(j<k<l) 6=i} are parts of ρi in regions with 2, 3 and

4 overlapping orbitals. Similar partitioning can be done for δρi where contributions

can be approximately obtained, for example, as:

δρijk = δρi
ρijk
ρi
. (5.12)

Values of the contributions would thus depend on the spherical volume considered

for each of the orbitals. In this work we find that it is appropriate to consider

a spherical region around the charge centers of each orbital such that the sphere

encloses about 60% of the total normalization of each orbital.

Adding the contribution from the different regions, we can write:

δVI =
N∑
j=1

{
δVIj +

N∑
k>j

{
δVIjk +

N∑
l>k>j

{δVIjkl + . . . }

}}

where we have followed the convention of denoting the overlap regions in an

ascending order of indexes to avoid over counting. Considering average contributions

from each of the regions of overlapping orbitals, we can write as:

δVI =
N∑
j=1

χ−1
Ij δρjj +

N∑
j=1

N∑
k>j

1

2

(
χ−1
Ij δρjk + χ−1

Ik δρkj
)

+
N∑
j=1

N∑
k>j

N∑
l<k<j

1

3

(
χ−1
Ij δρjkl + χ−1

Ik δρklj + χ−1
Il δρljk

)
+ . . .

=
N∑
j=1

χ−1
Ij

(
ρjj
ρj

+
1

2

∑
j<k

ρjk
ρj

+
1

3

∑
j<k<l

ρjkl
ρj

+ . . .

)
δρj
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using Eqn.(5.12), implying:

δVI =
N∑
j=1

χ−1
Ij αjδρj (5.13)

where

αj =

(
δρjj
ρj

+
1

2

∑
j<k

ρjk
ρj

+
1

3

∑ ρjkl
ρj

+ . . .

)
(5.14)

The values of {αj} are therefore a function of cut-off radius to be defined for the

orbitals. The role of {αj} is to rescale the contribution χ−1
Ij δρj to δVI due to overlap

of δρj with that of other orbitals δρi 6=j.

5.3 Computational details

Ground state electronics structure of all the systems considered were calculated using

the Quantum Espresso (QE) code,125 which is a plane wave based implementation

of density functional theory (DFT).9,27 We used norm-conserving pseudo-potentials

with the Perdew-Zunger (LDA) exchange-correlation33 functional and a kinetic en-

ergy cut-off of 80 Ry for plane wave basis and four time more for charge density.

Self-energy corrections to the single particle levels have been estimated at the non-

self-consistent single-shot G0W0 level of the GW approximation implemented in the

BerkeleyGW code.127 Generalized plasmon-pole (GPP) model15 was used to extend

the static dielectric function to the finite frequencies. Quasi-particle energies were

converged for pentamantane using excess of 4000 empty states. In-house implemen-

tations were used to construct HAOs and HAWOs respectively from the KS states

of isolated atoms and the given systems. TB parameters in the HAWO basis were

obtained using the self-energy corrected single particle levels. Self energy corrected

TB parameters were transferred from reference to target systems for nano-diamonds

larger than pentamantane through mapping of neighborhood beyond nearest neigh-

bors. The IP level absorption spectra from the density-density response function

has been calculated using the Yambo code.162
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Figure 5.4: ACC-RTD based optical absorption spectra of H passivated C clusters
and nano-diamonds for α = ᾱ = 0.55 (used up to propane) and α = αH = 0.75
(used for adamantane and beyond) corresponding to the enclosed normalization of
0.6. The dashed lines are experimental absortion thresholds [18, 19].
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Figure 5.5: ACC-RTD based optical absorption spectra of silicon clusters and nano-
diamonds for α = ᾱ = 0.55 (used for SiH4) and α = αH = 0.65 (used for Si3H8

onwards) corresponding to the enclosed normalization of 0.6. The dashed lines are
lowest experimental absorption peaks approximately estimated from literature [154,
163]

.
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5.4 Results and Discussion

To test the efficacy of the RTD approach at the IP level in the directed tight-

binding basis within linear response, we compare the spectra obtained using RTD

without any anti-causal correction to the spectra computed from the density-density

response function evaluated at the IP level162 using exactly the same KS states used

to compute the TB parameters. As suggested by Fig.5.1(a,c,e) polarization fluctu-

ation grows more non-uniform with increasing size of nano-diamonds due different

contributions from different regions like vertices, surfaces and ridges.

The agreement of peak positions in two spectra [Fig.5.1(b,d,f)], particularly near

the threshold, suggests nominal loss of spectroscopic information due to representa-

tion of polarization in terms of charge centers of the HAWO basis orbitals.

In Fig.5.2, we assess the effect of anti-causal correction, and duration of time step

(δt), on the evolution of polarization and the consequent absorption spectra. The

rate of decay in amplitude of polarization decreases with decreasing δt[Fig.5.2(a)],

implying expectedly, lesser perturbation at each step, and thereby lesser mixing

of states, leading to their increased life time, causing sharper absorption spec-

tra[Fig.5.2(b)]. Whereas, the red shift of the calculated absorption threshold with

increasing α is suggestive of less frequent polarization fluctuation as a result of

the anti-causal correction, which is evident in Fig.5.2(c) as we see lesser number

of polarization oscillation within same real time as α increases. Estimation of α is

thus crucial for accuracy of the absorption threshold rendered by the anti-causally

corrected RTD (ACC-RTD) proposed in this work.

As evident from the derivation of Eqn.5.14 the parameter α is essentially a cor-

rection factor to approximately account for over counting of charge density due to

overlapping of orbitals while associating net charges to orbital charge centers. The

approximation is exclusively based on a cutoff radius chosen to define a spherical

region around the charge center of each orbital. In fact, instead of fixing the cutoff

radius, we find it convenient to fix the normalization enclosed by the spherical region

to determine the cutoff radius. Notably, we need not restrict hopping parameters
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based on this cutoff radius in our calculation, since we use it only to derive correction

factors to account for dominant overlap of orbitals. For both the C and Si based
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Figure 5.6: Comparison of optical absorption threshold obtained using ACC-RTD
and estimates of HOMO-LOMO gaps with and without self-energy correction, for
pyramidal (a,c) and bi-pyramidal (b,d) systems made of C (a,b) and Si (c,d).

nano-diamonds we find normalization of about 0.6, implying cut-off radius of about

0.8Å 1.22Å and 0.92Å for orbitals of C, Si and H respectively, to render values of

α which match the observed absorption thresholds, well within an error of 0.5 eV.

Similar values of enclosed normalization should therefore work for molecules and

clusters with covalent bonds made of sp3 orbitals with principle quantum number

starting with 2 in general. Notable that these radius cutoffs are close to the the

covalent radii of C and Si in nano-diamonds and bulks. However, for stability of

the RTD evolution, we need to use a constant α since the unperturbed Hamiltonian

does not have any inhomogeneity other than the on-site terms. The choice of con-

stant α should depend on the orbitals which are the dominant contributors to the

net polarization. With growing system size the key contributions to polarization

increasingly arise from peripheral atoms due to cancellation of contributions from

neighboring atoms in the interior of the systems. This is evident in Fig.5.3, where we

have plotted contribution to polarization from different orbitals across adamantane

due to the uniform static electric field applied in the TB Hamiltonian. In fact, an
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effective value of α, between ᾱ and the α of the peripheral orbitals (αH in our case),

can in principle be derived as:

αeff =

∑
i δqixiαi∑
i δqixi

(5.15)

where δqi is a result of a uniform electric field applied in the TB Hamiltonian com-

parable to that applied in the initial pulse. In this work however we find it sufficient

to use a simpler average value (ᾱ =
∑N

i αi/N) for the smaller systems. Accordingly,

with increasing system size, from methane to adamantane (C10H16), we find that

the α required to match the experimentally observed18,19 absorption threshold, or

the GW+BSE based estimation20,21 of the onset of adsorption, evolves from being

closer to (ᾱ), to that of the peripheral 1s orbitals of H (αH). This is apparent in

Fig.5.4, where the values of α used for methane and propane are that of ᾱ, whereas

for adamatane onwards we have used αH . In-fact, for Si nano-clusters and nano-

diamonds[Fig.5.5], which are larger in size than their C based counterparts, αH

renders a satisfactory match with the observed absorption threshold163 or the same

estimated from GW+BSE,154 for Si3H8 itself. It is thus expected that for both, C

and Si based larger nano-diamonds, with αH as per a radius cutoff enclosing about

0.6 normalization, ACC-RTD would render absorption threshold well within an error

of 0.5eV, with self-energy corrected TB parameters transferred from pentamantane.

In Fig.5.6 we summarize the comparison of the absorption threshold estimated using

the ACC-RTD approach for larger nano-diamonds starting with pentamantane, an

HOMO-LUMO gaps computed explicitly within DFT as well as DFT+G0W0, and

the same estimated using TB parameters transferred from pentamantane with and

without self-energy correction.
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5.5 Conclusion

In this work we present an anti-causally corrected real time dynamics (ACC-RTD)

approach within a self-energy corrected minimal tight-binding(TB) framework for

computationally inexpensive estimation of primarily the optical absorption thresh-

old for large systems with hundreds of atoms. The anti-causal correction based on

the density-density response function computed inexpensively in the minimal TB

basis constitutes the key mechanism incorporating the effect of transfer of electron

from valence to conduction band. The minimal multi-orbital TB basis is consti-

tuted by the hybrid atomic Wannier orbitals(HAWO) which are constructed from

the Kohn-Sham single particle states of the system and are directed towards the

nearest neighbor coordination by construction. Self-energy corrected TB (SEC-TB)

parameters in the HAWO basis are computed within the DFT+G0W0 framework

for smaller clusters and transferred to large nano-diamonds through mapping of

neighborhood. Thus for large systems, with transferred SEC-TB parameters, ACC-

RTD parametrized as per the major contributors to dipole-moment, can be expected

to render absorption thresholds comparable with GW-BSE based estimates with a

small fraction of computational resource required for explicit computation.
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5.6 Future Plan

So far in this chapter I have demonstrated the ACC-RTD scheme in system made of

sp3 hybridized four coordinated carbon and silicon. Next I plan to study planer and

curved systems made of atoms with sp2 and intermediate hybridization of valence

electrons. Given the unpaired nature of the π-electrons is such system, we expect

the values of α differ from that used for sp3 orbitals. So far I have calculated

the optical absorption of C60 within the IP level in the TB framework based on

non-degenerate HAWOs of sp2+ and p+
z characters. Next I plan to calculate the
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Figure 5.7: RTD based optical absorption spectra of C60 within the IP level.

absorption spectra using the proposed ACC-RTD approach to verify the the existing

experimental spectra. I plan to also compute absorption spectra of carbon nanotubes

and their heterojunctions.





Chapter 6

Optical excitation as a signature

of chemical activation

In this chapter we propose to determine the chemical activation of atomic sites in

chemically modified substrates through estimation of optical absorption threshold

in conformity with Coulson’s bond order and local magnetic moment, in agreement

with explicit estimation from first principles. We demonstrate the possibility in

carbon doped hexagonal boron nitride through correlation of absorption thresh-

old with coulson’s bond order(CBO) of the nearest neighbor coordinations around

sites synergistically with energetics of adsorption and consolidation of local mag-

netic moments on active sites. Accordingly, absorption threshold also seems to be

an effective indicator of possible catalytic role of such sites in facilitating oxygen

reduction reaction.

6.1 Introduction

Non-invasive estimation of level of chemical activation of substrates with possible

active sites can be beneficial in determining the catalytic efficiency of the substrate

without contaminating it. Estimation and comparison of chemical activation of

possible active sites(atoms) have been so far primarily made in terms of the ener-
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getics of adsorption of radicals and possible activation barrier,164,165,166 or the bond

dissociation energies accessed experimentally167,168 or calculated from first princi-

ples.169 In this work we present an alternate approach for easy estimation of the

level of activation of sites, and demonstrate the same in a family of low dimen-

sional systems of contemporary interest, namely carbon(C) doped hexagonal boron

nitride(hBN).170,171 These systems have been extensively explored in recent years

on account of their tunable electronic, magnetic and chemical functionalities102,172

rooted at the on-site Coulomb repulsion between electrons of opposite spins. Sites

with incomplete sub-shell filling in general are naturally expected to be chemically

active since they would energetically prefer formation of covalent bonds with reac-

tants in order to complete sub-shell filling. Often the incompleteness of sub-shell

filling is non-uniformly distributed over several sites leading to a variation in degree

of chemical activation across sites. Thus the level and distribution of chemical acti-

vation varies with shape and size of systems hosting the active sites. Indeed variable

degree of chemical activation and catalytic efficiency primarily in the light oxygen

reduction reaction(ORR) have been reported for different sizes of hBN-islands173,174

in graphene, as well as graphene-islands in hBN.103 For neutral sites, incomplete

sub-shell filling would imply retention of unpaired electron in the valence shell with

high kinetic energies leading effectively to rise of the valence-band-edge in energy,

thus lowering the band gap. Tracking of the absorption threshold thus appears to a

possible non-invasive route to identify the degree of chemical activation.

We also chose to use bond order(BO) as an indirect measure of localization, since

increase in the average order of all the bonds made by an atom would naturally im-

ply de-localization of the unpaired electron from the host atom to its neighboring

sites. We thus calculate average bond order(ABO) associated with a site(atom), as

a relative measure of its chemical activation and correlative with the optical ab-

sorption threshold and strength of local magnetic moment on sites. Coulson’s bond

order(CBO) computed for the π bond in the basis of pz orbital obtained from first

principles agrees with results available from MO calculations.I have already intro-

duced calculation of CBO in chapter 4. and computation of absorption spectra in
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the directed hybrid Wannier orbital basis in chapter 5. In the following first we

briefly recap computation of CBOs and define ABO, followed by demonstration of

the correlation of ABOs, magnetic moment and absorption threshold in differentiat-

ing chemical activation of C atoms in Gr islands embedded in hBN as catalytic host

of oxygen reduction reaction(ORR) which constitutes a crucial step in functioning

of fuel-cells with acidic electrolyte.

6.2 Methodological details

As define in chapter 4, the traditional or classical definition of BO involving the i-th

and j-th atomic orbitals for a given spin is

B ~R′ ~R,ij =
n+
~R′ ~R,ij

− n−~R′ ~R,ij

2
,

n±~R′ ~R,ij
being the occupation of the bonding(+) and anti-bonding(-) orbitals con-

sidered in a suitable localized orbital basis {Φ}, which in this chapter are the pz

orbitals of carbon atoms.

Within the subspace of KS states:

B~R′ ~R,ij = Re[〈Φ~R′,i | P̂ | Φ~R,j〉]

=
BZ∑
~k

NKS∑
l

f~k,l
Nk

Re[ei
~k.(~R′−~R)U(~k)∗liU(~k)lj] (6.1)

where P̂ is the projection operator for a given spin:

P̂ =
BZ∑
~k

NKS∑
l

| ψKS~k,l
〉f~k,l〈ψ

KS
~k,l
|

f~k,l being the occupancy of the l-th KS state with wave-vector ~k and {U} being the

unitary transformation (Eqn.4.9) from the Kohn-Sham single particle states to be pz

orbitals in this chapter. B~R′ ~R,ij in Eqn.(6.1) is the Coulson’s bond order(CBO),146
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used primarily in case of a single orbital per atom, as is the case in this chapter

where i and j are effectively the atom indexes.

Average bond order associated with the i-th site is calculated as:

ABOi =
1

Nnn

Nnn∑
j=1

B~R′ ~R,ij, (6.2)

where Nnn is numbers of nearest-neighboring(nn) around the i-th site.

Local magnetic moment are estimated as :

µi =
BZ∑
~k

NKS∑
l

f~k,l
Nk

(|U(~k)li,σ|2−|U(~k)li,σ′ |2) (6.3)

Estimation of adsorption energies of ORR intermediates and calculation of ABO

are performed with 8×8 super-cells, where as the absorption spectra are computed

using the RTD approach for large finite segments of nano-meter length scale.

TB parameters are transferred from smaller reference system to large target

systems through mapping neighborhood beyond nearest neighbor as shown in Fig.??

In this chapter, we calculate the absorption spectra of large systems only at

independent particle level(α = 0) as described in chapter 5 in the basis of sp2 and

pz HAWOs with TB parameters evaluated in the DFT levels.

6.3 COMPUTATIONAL DETALIS

First principles calculations have been performed using a plane wave based im-

plementation of DFT,125 where the screened ionic potentials are approximated by

ultrasoft175 pseudo-potentials. Exchange-correlation contribution to total energy is

estimated using a gradient corrected Perdew-Burke-Ernzerhof (PBE)176 functional.

Minimum energy configurations of different scenarios of substitutions are obtained

in 8×8 super-cell using the BFGS177 scheme of minimization of total energies, which

are converged with plane-wave cutoff 80 Ryd., k-mesh to 5×5 and forces less than
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10−3 Rydberg/Bohr for all atoms. Adsorption energies are estimated from total

energies(E) as Esubstrate+X − Esubstrate − EX , where X is the adsorbed species and

substrate corresponds to hBN with substitution by C in different configuration as

shown in Fig.6.1.

6.4 RESULTS AND DISCUSSION

It has been already shown103 that substitution by carbon(C) in hBN leads to forma-

tion of graphene islands. In this work, we consider substitution by C atoms leading

to formation of non-magnetic as well as magnetic islands of graphene respectively,

owing to different number of carbon atom in the two sub-lattices in case of the latter,

as per Lieb’s theorem. In Fig.6.1, we present a map of ABO values in C doped hBN

13C : 7B6N 13C : 6B7N 16C : 8B8N(e) (f)

(a) 1C : 1B 1C : 1N 3C : 1B2N

(d) 6C : 3B3N

C

N

B

(b) 4C : 1B3N4C : 3B1N(c)3C : 2B1N

Figure 6.1: Average bond order(ABO) values at different sites for different C-
substitution(gray circle) configurations: (a)single C(1C), (b)3C, (c)4C, (e)13C,
where red(black)circles represents the N-site rich(B-site rich) substitution, (d)6C
and (f)16C containing equal number of sites from both sub-lattices.

with increasing number of substitutions by C. Since we consider only 2pz electrons,

the BOs and subsequently the ABOs reported here are one less than their respective

total values on account of the absence of σ orbitals. As evident from the contour

plots, ABOs vary from peripheral sites to the inner sites based on shape and sizes of

the island. Since a lower value of ABO of a site corresponds to higher localization

of pz electron on the site, and thereby a higher level of chemical activation, sites
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at the periphery are thus relatively more chemically active than those within the

magnetic islands. Such variation is much weaker in the non-magnetic islands like

8B8N and completely absent in 3B3N which is arguably the least active akin to pris-

tine graphene. With increasing size of islands, ABOs of C-atoms at the periphery

increases systematically leading to modest activation crucial for catalysis, whereas,

expectedly the ABO values C-atoms deep inside the islands become increasingly

similar to that in infinite graphene.

In Fig.6.2 we present the correlation of ABO to magnetic moments localized on

C atoms due to localization of pz electrons. The expected correlation reinforces the

effectiveness of ABO as a measure of localization of pz electrons in magnetic islands.

0.36 0.39 0.42 0.45 0.48 0.51 0.54 0.57
ABO of C site

0

0.1

0.2

0.3

0.4

0.5

0.6

A
b
s.

 m
ag

n
et

ic
 m

o
m

en
t 

p
er

 s
it

e 
(a

.u
) C : 1B

C : 1N
C : 1B2N
C : 2B1N
C : 1B3N
C : 3B1N
C : 3B3N
C : 6B7N
C : 7B6N
C : 8B8N

Figure 6.2: Variation of magnetic moment(absolute value) per site with ABOs for
magneic and non-magnetic C-island. Non- magnetic C-islands(3B3N, 8B8N) are
represented with fill symbols. Legend as per Fig.6.1.

Next we present a detailed demonstration of correlation of ABO to chemical

activation estimated in terms of the energetics of adsorption of ORR intermediates.

Complete reduction of O2 to 2H2O starting with O2 adsorbed on an active site

proceeds in general in the following pathway [Eqn. 6.4−6.8].

∗+O2 = O∗2 (6.4)
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O∗2 + H+ + e− = OOH∗ (6.5)

OOH∗ + H+ + e− = O∗ + H2O (6.6)

O∗ + H+ + e− = OH∗ (6.7)

OH∗ + H+ + e− = H2O (6.8)

where “∗′′ denotes the substrate and X∗ denotes the chemisorbed X: O2, OOH, O,

and OH. Adsorption of O2 being generally weak, the major rate limiting steps are

the reduction of the intermediates OOH∗ and OH∗. We therefore study adsorption

of these intermediates in comparison with that of atomic H. As evident in Fig.6.3,

a modest level of adsorption favorable103 for effective catalysis is found for ABO

around 0.5. Comparing with magnetic moments of the active sites, it is clear that

higher the magnetic moment, higher the level of chemical activation and lower the

value of ABO.
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Figure 6.3: Adsorption energies of H, OH and OOH (as mentioned in the inset)
on inequivalent C atoms with respect to ABO of those sites, for both B-rich(up-
triangle) and N-rich (down -triangle) C-islands embedded in hBN. Non-magnetic
island(8B8N) represented by diamond symbol. Legend as per Fig.6.1.

Next we correlate the chemical activation of sites to their spectral signature.

We have calculated the IP level absorption spectra of realistically large segments of

hBN with substitution by C using the RTD approach with TB parameters in the

sp2 +pz HAWO basis transferred from smaller reference systems. To test the efficacy

of RTD approach in magnetic system, in Fig.6.4, we compare the IP level TDDFT

spectra with the same obtained with the RTD without the anti-causal correction
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proposed in chapter5, for a reference system with a magnetic moment of 2µb due to

substitution by four C atoms.
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Figure 6.4: Conformity test of RTD spectra of 4C@1B3N with respect to TDDFT
spectra at the IP level.

Finally in Fig.6.5, we plot the absorption thresholds of the different substitution

configurations. Fig.6.5 clearly suggests a lower absorption threshold for the chemi-

cally active magnetic islands than those of the non-magnetic islands, in agreement

with the trends suggested by the ABO values as well as the magnetic moments.

Among the non-magnetic islands, absorption threshold of 8B8N is lower than that

of smaller non-magnetic islands which is also consistent with the trend of chemical

activation among the non-magnetic islands, as also suggested by the ABO values.

6.5 CONCLUSION

In this work, we propose average of Coulson’s bond order of nearest neighbor coor-

dinations around a site, calculated in a minimal tight binding basis to be an effective

measure of chemical activation leading to possible oxygen reduction reaction catal-

ysis hosted by carbon doped hexagonal boron nitride surface. We also demonstrate

the absorption threshold to be an effective non-invasive probe to asses the level of

chemical activation of such systems. This application demonstrates the effective-
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Figure 6.5: Absorption spectra of the different substitution configurations. Legend
as per Fig.6.1.

ness of the tight binding based real time dynamics approach as an easy tool to asses

applicability of experimentally realizable nano-structures consisting of thousands of

atoms, for different technological applications.
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