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Synopsis

Understanding chemical reactions in order to gain control has baffled chemists for

decades. There have been numerous experiments designed to understand chemical reac-

tions at the atomic level, and theoretical models such as transition state theory (TST) and

Rice-Ramsperger-Kassel-Marcus (RRKM) theory which can be used to estimate reaction

rates for unimolecular reactions using energetics of the system. It is now established that

dynamics plays a crucial role in accurately describing chemical reactions and that, the static

picture alone based on energetics and statistical theories may be insufficient. To this end,

the Ph.D. work reported here is divided into two parts. The first part deals with representing

potential energy surfaces (PES) using machine learning (ML) methods. The second part re-

ports energy transfer at gas-surface interfaces. We focus on inelastic non-reactive inelastic

scattering of formaldehyde scattered from two surfaces- gold and graphene.

Chapter 1 gives an introduction of the basic concepts in chemical reaction dynamics,

the tools required to understand chemical reactions computationally; (i) the construction of

PESs, (ii) classical trajectory simulations, (iii) sampling methods and (iv) fundamentals of

two ML methods, gaussian processes for regression (GPR) and artificial neural networks

(ANN) for representing PESs.

Chapter 2 reports the ML representation of the PESs of two 4-dimensional systems,

HeH++H2 andC5N−+H2 and a 5-dimensional systemC−
2 +H2, that are importantmolecules

in the interstellar medium. For the HeH++H2 system, the HeH+ and the H2 were treated

as rigid rotors. The PES was represented using the variables R, α, β and θ where R is the

center of mass distance between the two rotors, and α, β, θ correspond to the angles which

define the orientation of the rotors with respect to each other. Using 14741 potential values

computed at the CCSD(T)/CBS level of theory in the range -12000 cm−1 to 10000 cm−1, the

PES was fitted using GPR and ANN ML algorithms and different sampling schemes. We

found that the fit was better when we sampled the points randomly than by using the Latin

Hypercube Sampling (LHS). The final fit had an RMSD of 35.4 cm–1 for all the data. The

fit was appended with the corrected long range potential and was converted to a FORTRAN

code, which could then be used to study inelastic rotational cross sections usingMOLSCAT.

In addition, a deep neural network fit was also done for this system, with two hidden layers
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and and 40 nodes in each layer, which resulted in an RMSD of 4.9 cm−1. As in the case

with HeH++H2, the C5N−+H2 system was also 4-dimensional with rigid C5N− and H2,

but the well depth for this systemwas at most 600 cm−1. Using 16000 data points computed

at CCSD(T)-F12b with aug-cc-PVTZ level of theory, additional data points were generated

using symmetry of the system resulting in a total of 45000 points. We used shallow neural

network as well as deep neural network for this system. The RMSD of the shallow neural

network was 9.27cm−1 while for deep neural network fit it was 0.87 cm−1. The deep neural

fit was converted to a FORTRAN code, and the asymptotically correct long range potential

was appended to the code, which was then used for quantum scattering calculations. For the

C2 + H2 5-dimensional system, the total number of data points computed at CCSD(T)-F12b

with aug-cc-PVTZ level of theory, was 68011. Fitting was done using deep neural network

and the best fit obtained had an RMSD of 0.82 cm−1.

Chapter 3 reports the “on-the-fly” representation of the PES of a system during ab initio

trajectory simulation (AICT). Studying the dynamics of large systems using AICT are often

impeded by the high CPU cost to compute forces during the trajectory calculation. In order

to generate statistically significant results, we need to compute many trajectories. In this

work we look at the possibility of representing the PES “on-the-fly” using GPR and ANN

methods. In the first scheme we store the data, the internal coordinates and the potential

values at those coordinates for a few pilot trajectories. After that for any new trajectory if the

trajectory is near to any part of the configuration space where we have stored prior data, we

use the stored data to interpolate using GPR. In the second scheme, the PES is represented a

sum of ANNs (V NN
i ) that each define a different region of the PES. The individual ANNs,

V NN
i are trained using data obtained from different trajectories. The two schemes were

implemented with 2-dimensional and 6-dimensional model potentials and the robustness of

the algorithm was tested.

Chapter 4 reports the non-reactive scattering of formaldehyde on gold surface. Recent

quantum state resolved molecular beam experiments[Phys. Chem. Chem. Phys. 19, 19904,

(2017)] have revealed that formaldehyde upon scattering from Au(111) surface, do not fol-

low a Boltzmann distribution of rotational states, rather rotational excitation along a specific

axis is preferred than the others, which in literature is known as “Rotational Rainbow”. We

used classical trajectory simulations using Sutton-Chen potential for gold, Lennard-Jones
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potential for gold-formaldehyde interaction and Bowman’s potential for formaldehyde, to

model and study the dynamics of this system. We compute trajectories for different col-

lision energies, surface temperatures and orientations. Our trajectory results are in good

accord with the experimentally observed values for axis-specific rotational energies and

trapping probabilities. We found that the average rotational energy of scattered formalde-

hyde increases as a function of collision energy. To understand the origin of the rotational

rainbow we looked into the possible mechanism of scattering. We find that the rotational

rainbow is dictated by the minimum energy surface of the interaction potential. Further the

rotational rainbow seems to be independent of the surface temperature.

In Chapter 5 we look at the scattering of formaldehyde on a single layer graphene sur-

face. Wemodel the graphene potential usingAMBER force fields, the graphene-formaldehyde

interaction using modified Buckingham’s potential and Bowman’s potential for formalde-

hyde. We find that the trapping probability of formaldehyde on graphene sheet decreases

with increasing collision energy, however it is much greater than that from gold surface. De-

spite having very different interaction surface than gold-formaldehyde, our results indicate

that the average rotational energy of the direct-scattered molecules from graphene surface

are very similar to that of gold-formaldehyde system. However, the rotational rainbow in

this system is dependent on the collision energy of formaldehyde.
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Chapter 1

Introduction
Chemistry is the study of matter at the atomistic level. How electrons are bound to the nu-

cleus of an atom, and how these atoms interact with other atoms/molecules/light, gives rise

to many types of interesting chemical phenomenon. Understanding chemical reactions and

controlling them, such as the use of fire to extract metals from ores, or extracting chemi-

cals from plants to be used as medicine, have been the cornerstone for modern civilization.

Knowledge of chemistry has advanced not only the material industry, but also has led us to

deepen our understanding of biological systems and the universe.

Experimental methods to study fundamental processes governing chemical reactions,

like energy transfer have their limitations. Experiments are challenging to design and the

observations are difficult to assign to individual events. On the other hand, statistical theo-

ries such as transition state theory1,2 (TST) and Rice-Ramsperger-Kassel-Marcus theory2–5

(RRKM) can give accurate rate constants for a great deal of chemical reactions6,7 based on

the energetics of the system, but there have been exceptions to this.8–10 They fail to capture

the dynamical nature of chemical reactions.

One way to overcome this issue is to use computations, starting from fundamental prop-

erties of sub-atomic particles, like the interaction between electrons and the nucleus of

atoms, all the way to simulating entire chemical reactions, which give atomistic insights

into the very fundamental processes. However, this method can overwhelm most current

computational facilities for systems involving only a few tens of atoms. Thus, approxi-

mations are made, such as decoupling nuclear and electronic motion and using analytical

representations of potential energy surfaces (PESs) to simulate reactions. However repre-
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1 Introduction

sentation of PES using analytical functions is itself quite challenging and has been limited

to systems with only a few atoms (less than 10 atoms) and is not routine.

To this end, this thesis is divided into two types of work. The first two chapters discuss

the use ofMachine Learning (ML)methods to represent PES. The next two chapters explore

inelastic non-reactive scattering of the polyatomic molecule H2CO on surfaces.

PESs are fundamental to understand chemical reaction dynamics. Having the knowl-

edge of the PES, one can simulate a reaction in order to get dynamical information about

how the reaction proceeds. It has been observed that dynamical interpretation of chemical

reactions can often differ from that predicted by statistical theories. One way to study the

dynamics is by using classical mechanics i.e., solving the Newton’s11 equations of motion

(EOM) for the system. But to do that, we need accurate information about the PES because

forces acting on each atom at any given time depends on the gradient of PES. For a system

ofN atoms, the PES is a function of 3N −6 variables which becomes a bottleneck for sim-

ulating larger systems. And in order to generate statistically significant observables from

computer simulations, an ensemble of trajectories need to be computed.

Ab initio dynamics, also known as direct dynamics solves the issue of tackling larger

systems, albeit at the expense of computational cost. This algorithm solves the classical

EOMs using quantum chemical methods to generate forces at each time step. The forces

are calculated by solving the electronic time-independent Schrödinger equation (TISE), for

a given a set of nuclear coordinates.

In what follows, is a brief introduction of PES, the methods used for computing trajec-

tories, the details of two machine learning (ML) methods, namely Gaussian Processes for

Regression (GPR) and Artificial Neural Networks (ANN).

2
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1.1 Potential Energy Surface (PES)

Given a molecule with N atoms, the non-relativistic Hamiltonian of the system in atomic

units is,12

Ĥ = −1

2

N∑
α

1

mα

∇2
α − 1

2

∑
i

∇2
i +

N∑
α

N∑
β>α

ZαZβ

Rαβ

−
∑
α

∑
i

Zα

riα
+
∑
j

∑
i>j

1

rij
(1.1)

where α and β are the indices of the nuclei, and i and j are the indices of the electrons.

m is the mass of the nuclei, Z is the nuclear charge, and R is the distance between two

nuclei, riα is the distance between electron and nuclei, and rij is the distance between two

electrons. The first and the second terms in Eqn. 1.1 are the kinetic energy of the nuclei

and electrons respectively. The third term is the nuclear-nuclear repulsion term, fourth the

electron-nuclei attraction term and the last term is the electron-electron repulsion term. The

time-independent Schrödinger equation is then,

Ĥψ(qi, qα) = Eψ(qi, qα) (1.2)

where ψ(qi, qα) is the wavefunction of the molecule, qα are the nuclear coordinates, and qi

are the electronic coordinates. By invoking Born-Oppenhiemer (BO) approximation, which

states that due to the electronic motion being much faster than the nuclear motion, we can

separate the wavefunction into nuclear part and electronic part and thus we can write the

wavefunction as a product of the two. The wave function hence can be written as,

ψ(qi, qα) = ψel(qi; qα)ψn(qα) (1.3)

where ψel is the electronic wavefunction and ψn is the nuclear wavefunction. The electronic

wavefunction depends parametrically on the nuclear coordinates. The electronic Hamilto-

nian is then,

Ĥel = −1

2

∑
i

∇2
i −

∑
α

∑
i

Zα

riα
+
∑
j

∑
i>j

1

rij
(1.4)
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The electronic energies for a given set of nuclear coordinates can be computed by solving,

Ĥelψel = Eelψel (1.5)

The potential energy surface (V ) is defined as the sum of electronic energy (Vel) and the

nuclear-nuclear repulsion term (Vnn),

V = Eel + Vnn (1.6)

For anN atom system there are 3N Cartesian coordinates describing the nuclear geometry

of the molecule; we can remove the translations and the rotations and write the nuclear

coordinates in the form of 3N − 6 internal coordinates (Q). The form for the PES is then

written as,

V (q1, q2, . . . , q3N) ≡ V (Q1, Q2, . . . , Q3N−6) (1.7)

where, {
q1, q2, . . . , q3N

}
≡

{
(x1, y1, z1), (x2, y2, z2), . . . , (xN , yN , zN)

}
(1.8)

As an example see Figure 1.1 for the potential energy curve (PEC) of H2 molecule, which

is a function of only the internuclear distance r, computed using the coupled cluster singles

and doubles (CCSD) method and the aug-ccpVTZ basis set.
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Figure 1.1: Potential energy curve of H2 molecule.

Forces on any atom can be computed by taking derivative of the PES with respect to

its coordinates. Once the forces are computed, the trajectory of the entire system can be

simulated by integrating the classical EOMs of the system, and the system evolves with

time as illustrated in the following section.

1.2 Classical Trajectory Simulations

A trajectory of a molecule is defined as the set of coordinates and momenta of all atoms

as a function of time. To compute trajectories we need the initial conditions, specifically

the initial positions and momenta. A trajectory of the ith atom in the system then can be

defined as, (
xi(t), yi(t), zi(t), p

i
x(t), p

i
y(t), p

i
z(t)

)
(1.9)
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where i goes from 1 to N . After an infinitesimally small amount of time ∆t, according to

the Taylor expansion of Eqn 1.9 the new position of the ith atom can be written as,

xi(t+∆t) = xi(t) + ẋi(t)∆t+
1

2
ẍi∆t

2 + . . .

yi(t+∆t) = yi(t) + ẏi(t)∆t+
1

2
ÿi∆t

2 + . . .

zi(t+∆t) = zi(t) + żi(t)∆t+
1

2
z̈i∆t

2 + . . .

(1.10)

We can truncate the series after three terms because the higher powers of ∆t tend to zero.

The first term in Eqn 1.10 is the initial position (at time t) of the ith atom, the ẋi(t) is the

velocity at time t, and ẍi = aix is the acceleration felt by the ith atom at time t due to the

force. The acceleration of the ith atom with mass mi can be computed using F⃗i = mi · a⃗i,

which can be written in the Cartesian coordinates as,

Fxi
= − ∂V

∂Qi

× ∂Qi

∂xi

Fyi = − ∂V

∂Qi

× ∂Qi

∂yi

Fzi = − ∂V

∂Qi

× ∂Qi

∂zi

(1.11)

1.2.1 Velocity-Verlet Integration

Velocity Verlet integration scheme is an algorithm to compute trajectories. In this scheme

the steps are,

• Calculate new positions using, xi(t+∆t) = xi(t) + ẋi(t)∆t+ ẍi(t)∆t
2

• Compute ẍi(t+∆t) from potential.

• Calculate new velocities using, ẋi(t+∆t) = ẋi(t) +
1
2

(
ẍi(t) + ẍi(t+∆t)

)
∆t.

1.2.2 Sampling

To compute trajectories, the initial conditions, i.e., the momenta and coordinates are needed.

Each combination of momenta and coordinates defines a point in the 6N dimensional phase
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space, and each point has its corresponding total energy. The total energy of the molecule

can also be expressed as,

ETotal = Eel + Evibrational + Erotational + Etranslational (1.12)

where Eel is the electronic energy, Evibrational is the energy associated with the oscillatory

motion of all the nucleus in the system, Erotational is the kinetic energy corresponding to the

rotation of the molecule and Etranslational is the kinetic energy of translation for the molecule.

Sampling is the technique used to select an ensemble of trajectories for which either the

total energy is constant (NVE), or the temperature is constant (NVT). For different types of

reactions one could do different types of sampling. For example, for a gas phase bimolecular

collision reaction, the kinetic energy of approach of the two molecules can be chosen from

a Boltzmann distribution of velocities corresponding to a given temperature. Other modes

of kinetic energy such as rotational energy and vibrational energy can also be chosen in a

similar way.

In this thesis, we have sampled rotational energies and vibrational energies for the

ground electronic state of the polyatomic molecule formaldehyde, using Boltzmann dis-

tribution. The rotational energy at a temperature of Trot is sampled assuming Ix < Iy = Iz,

where x defines the symmetry axis. The x component (Jx(z)) of the total angular momentum

(J) is sampled using the probability distribution,13

P (Jx(z)) = e−Jx(z)
2/2Ix(z)kBTrot 0 ≤ Jx(z) ≤ ∞ (1.13)

P (J) = Je−J2/2Iz(x)kBTrot Jx(z) ≤ J ≤ ∞ (1.14)

where Jx(z) is sampled from P (Jx(z)) by the rejection method. J is sampled by the cumu-

lative distribution formula.

J =
[
Jx(z)

2 − 2Iz(x)kBTrot ln (1−R1)
]2 (1.15)

7
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where R1 is a freshly chosen random number uniformly distributed between 0 to 1.

Similarly the normal mode vibrational energies are sampled from a Boltzmann distri-

bution at temperature Tvib, in which the quantum number ni in the ith mode (vibrational

frequency νi) is sampled using the probability distribution,

P (ni) = e

(
−nihνi
kBTvib

)[
1− e

(
hνi

kBTvib

)]
(1.16)

1.3 Machine Learning

Machine learning, as the name suggests is the study of making man-made machines, in this

case computers, learn, recognize patterns and predict events before they occur.14 This came

into existence to meet engineering demands, such as computer codes which can handle

events for which they have not been coded for, like recognizing speech or handwritten

letters, and in the field of weather prediction. ML deals with representing data obtained by

experiments. Traditionally, such problems have been dealt with using procedures known

as “regression” methods, such as Linear Least Square method. They solve the problem by

fitting the observed data to some analytical function. This method requires the nature of the

function to be known beforehand, and becomes increasingly difficult for higher dimensional

data.

In other fields of science including chemistry, ML has found many applications.15 The

two main problems that ML deals with is that of regression and classification. For regres-

sion related problems, ML has been used to represent high dimensional PESs,16–19 using

∆−machine learning methods20 to bring DFT-based PESs to CCSD(T) accuracy, predict-

ing bulk properties of materials and even coming up with new potential materials which

will have a certain desired property.21 On the other hand classification related problems

have more diverse applications, such as predicting product distributions given the initial

8
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state of the reactants,22 classification of spectra for different materials,23 identification of

mechanism of reactions using kinetic data,24 etc.

Two of the popular ML methods will be discussed here briefly, namely artificial neural

networks25 and gaussian processes for regression.26

1.3.1 Gaussian Processes for Regression

GPR is a kernel based statistical learning technique, also known as “kriging”. It was first

developed by Daniel G. Krige in the 1950s,27 for finding out mineral concentrations at

unknown places in a mine, based on samples collected elsewhere. And in 1960, French

mathematician Georges Matheron continued work on it and developed the field of geo-

statistics.28 More recently, GPR has found application in the field of representing PES.16

It has been used to represent the 6-dimensional PES of N4 using only 240 points. Further,

a representation of the PES using around 1500 points using GPR, whose accuracy was

comparable to a traditional fit using 16000 ab initio points was also illustrated.

A one-dimensional Gaussian is given by,

f(x|µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 (1.17)

where µ is the mean, and σ2 is the variance. In Gaussian process, each point of training data

output, is considered as a Gaussian. WithN data points, one ends upwith anN -dimensional

Gaussian distribution.

Consider a q dimensional real valued function, F : Rq 7→ R, for which the values at N

points are known. This constitutes the training set,

Y N = {F (x⃗1), F (x⃗2), ..., F (x⃗N)}, (1.18)

x⃗i = (xi1, x
i
2, ..., x

i
q)

T (1.19)

9
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We assume that multiple outputs of GP at the given N points follow a multivariate normal

distribution, i.e. they are jointly distributed as,

Y N ∼MVN(β, σ2A), (1.20)

where β is the mean vector, and A is an N ×N matrix, defined by,

A =


1 R(x⃗1, x⃗2) . . . R(x⃗1, x⃗N)

R(x⃗2, x⃗1) 1
...

... . . .
R(x⃗N , x⃗1) . . . 1

 (1.21)

and,

R(⃗x, x⃗
′
) =

{ q∏
i=1

exp

(
− (xi − xi

′
)2

ωi
2

)}
(1.22)

is the correlation function. For demonstration purpose we have chosen it to be a squared

exponential function. Other types of correlation functions maybe used, such as Matérn cor-

relation function. The best strategy that has been suggested involves building accurate PES

with the smallest number of potential energy calculations.29 The GPR model is determined

by correlations between points in a multidimensional configuration space. The correlation

function captures how far the inputs (x⃗i and x⃗j) are from each other as shown in Figure 1.2.

The closer they are, we can expect the value of the correlation function to be higher. And

it can be said that the value of the function, F (x⃗i) and F (x⃗j) will be similar.

The log-marginal-likelihood function is given by,

logL(ω | Y N , X) = −1

2
(N log σ̂2 + log (det(A)) +N) (1.23)

where,

σ̂2(ω) =
1

N
(Y N − β)TA−1(Y N − β), (1.24)

β̂(ω) = (ITA−1I)−1ITA−1Y N (1.25)

are the maximum likelihood estimators, and I is the identity matrix. These estimators are

computed by taking the derivative of the log-marginal-likelihood function with respect to

10
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Figure 1.2: Squared exponential function correlation function.

the σ2 and β, and setting them to zero. Once the maximum of log-likelihood function is

iteratively determined, with respect the ωis, we call the system to have been trained, and

prediction at an untried point x⃗ = x⃗0 can be made, by considering the point Y0 = F (x⃗0) to

be jointly distributed as,(
Y0
Y N

)
∼MVN

[(
1
I

)
, σ2

(
1 A0

T

A0 A

)]
(1.26)

where A0 = (R(x⃗0, x⃗1), R(x⃗0, x⃗2), . . . , R(x⃗0, ⃗xN))T is a column vector determining the

correlation of the new point to all other points. The mean of the prediction is now given by,

µ̃(x⃗0) = β + AT
0A−1(YN − β) (1.27)

and the conditional variance as,

σ̃2(x⃗0) = σ2(1− AT
0A−1A0) (1.28)
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GPR by construction, does not have the problem of overfitting, and are guaranteed to be-

come more accurate when trained using more points. As can be seen from Eqn 1.24 and

Eqn 1.25, training for GPR consists of inverting a square matrix of size N ×N iteratively,

which becomes a bottleneck as the number of training points (N ) increases.

1.3.2 Artificial Neural Network

ANNs, also known as “Multilayer Perceptron”, try to mimic the neurons of mammalian

brains, in order to solve problems of similar nature described in the previous section. It

consists of interconnected nodes, which pass information between each other. Every in-

terconnection between nodes, has a direction, and a weight associated with it. How these

nodes are connected to each other gives the ability to the neural network to form complex

relationships.

Figure 1.3: An example of an ANN with two hidden layers, consisting ofN1 andN2 nodes
in each layer.

ANNs usually consists of three types of nodes, which can be categorized into input layer,

hidden layer/layers, and output layer, and information flow occurs according to this given

12
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order, see Figure 1.3. Each node, other than the input layer nodes, receives multiple inputs,

which are then summed, see Figure 1.4. Inputs to each node are modified by an associated

weight. And the output of each node is the summation of the weighted inputs, which then is

passed through a transfer function. Example of a transfer function is shown in Figure 1.5.

The only restriction is that the output of any node from a layer, has to move forward to the

next layer of nodes, hence they are also referred to as “Feed Forward Network”.

Figure 1.4: Schematics of the input to a node in the neural network and the output through
a transfer function.

The size of the neural network (number of hidden layers and the number of nodes in

each layer) depends on the complexity of the function one is trying to fit. Training involves

of dividing the entire data set into two sets, training set and test set. Training set is used to

train the network, whereas the test set is used to validate the fitting, and making sure that

network has not been over trained (over-fitting). This division is often done by randomly

dividing the set into a ratio of 80:20 (training set:test set) or 70:30. In our case, we have

also done fitting with 98% of data in the training set.

13
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Figure 1.5: Plot of the sigmoid type transfer function.

The weights and biases (parameters) of the network are selected randomly. The process

of training involves optimizing the parameters in such a way that the output of the network

becomes closer to the real value of the function. This is done by first dividing the training set

into equal sized batches. Each batch is fed to the network, and the errors are computed. The

weights are modified in such a way that the error for the entire batch is reduced. First the

parameters of connections between the penultimate layer and the output layer are modified.

And then the connections in the layer before that are modified, this is done till the weights

in the input layer and first hidden layer are modified. This process is known as “back

propagation of errors”.

This is done iteratively for all the batches, and the process of exposing the entire training

data to the neural network once, is known as an “epoch”. Training involves multiple epochs,

and is stopped when the desired level of accuracy is achieved. It should be noted that for

function fitting, multiple starting conditions for the parameters need to be tested. If a given

size of network is not able to achieve the desired level of accuracy, a larger network is

14
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recommended. This is done on a hit and trail basis. Nevertheless, this method is preferred

over traditional curve-fitting methods because of its simplicity and that, a functional form

need not be defined.

There is no straightforward way to select the network architecture and network size. In

principle, one starts of with a small network size, and keeps increasing the network size

(the number of layer/number of nodes in each layer) till the level of desired accuracy is

achieved. Having more number of layers have been shown to be effective in classifica-

tion tasks, whereas increasing the depth of the network seems to impede the quality of

predictions for regression tasks.30 Hence it is suggested to use a wider network for PES

representations. It should be pointed out that having a network which is too large can result

in overfitting. Appropriate cross-validation checks need to be in place so that overfitting is

avoided. The correct network size for a given problem can be estimated in this way, where

the network is large enough to represent the data, but not so large that the predictions at test

data (data not used for training) have large errors. Having similar residuals for both training

data and test data is recommended.

The learning rate is a parameter, which decides how much the weights are modified

in during each iteration (epoch). Having a low learning rate ensures that while optimizing

the weights, the network avoids going into a local minima. Which is essential during any

optimization task. The training time depends on a few factors, such as the network size, the

size of the training data, the complexity of the function one is trying to fit and also the level

of accuracy that is required. For fitting potential energy surfaces, we also need to make sure

that the function behaves smoothly where no data is available.

15



Chapter 2

Representation of potential energy surfaces
using GPR and ANN
Astrochemistry is the interdisciplinary science of studying the formation and destruction

of molecules in the astrophysical environment, which occur under the umbrella of gas-

phase reactions or reactions at surfaces (dust grains). Understanding fundamental reactions

in the interstellar medium (ISM) helps us to build a network of reactions, and studying

their underlying energy transfer processes gives us answers to the possible origin of stars.

Concentration of different light elements/ions in interstellar clouds greatly impact the fu-

ture of the cloud. The ISM is very different from the typical environment observed on

earth. The molecular densities are of the order of 1014 molecules/cm3 compared to about

1021 molecules/cm3 found on earth. Also the temperature ranges from 5 K to about a 100

K in the ISM, which makes studying these processes in detail in a laboratory environment

challenging. On the other hand, direct observation of abundances in the ISM are made us-

ing sub-millimeter radio telescopes to observe line spectra of different molecules. But due

to the presence of multiple types of molecular species in the ISM, it becomes difficult to

categorize them.

Astrophysical detection relies heavily on the spectroscopic investigations of such species

in the laboratory and on matching sighted lines with those observed in the laboratory. Ex-

periments are regularly conducted to compute rate coefficients for formation and destruc-

tion of different molecules in laboratory mimicking as closely as possible, the conditions

in ISM, which then helps in deciphering the observed data from telescopes. Another way

to overcome this problem is to study these chemical reactions using computer simulations,

16



2 Representation of potential energy surfaces using GPR and ANN

either using quantum dynamics or classical dynamics to compute rate coefficient, which in

turn can give an estimate of the abundances of such chemicals in the ISM and helps us to

understand the evolution of these chemicals. In such types of studies, the fitting of PES

is important to carry out further calculations. To this end, two ML methods were used to

fit the PESs of three molecular systems found in the ISM. Here we fitted the PES of three

systems. HeH++H2, C5N−+H2 and C−
2 + H2, using ANN and GPR methods. The fitted

PESs were then used to compute rate coefficients for rotational excitation processes. The

rate coefficients were computed by our collaborators† and hence not reported here.

2.1 HeH++ H2 ab initio PES

When the temperature of the universe cooled to about 4000 K, hundred thousand years

after the big bang, ions of lighter elements started recombining in the reverse order of their

ionization potential.31 So He++ formed before He+, followed by H+. HeH+ was long

believed to be the first compound in the universe formed via radiative association of neutral

helium and H+,

H+ + He −→ HeH+ + hν (2.1)

which would lead to the formation of H+
2 by reaction with hydrogen atoms.

HeH+ + H −→ H+
2 + He (2.2)

The H+
2 can then undergo charge transfer reaction to form H2 molecule,

H+
2 + H −→ H2 + H+ (2.3)

† Electronic structure calculations were done by E. Yurtsever, Department of Chemistry, Koc University
Rumelifeneriyolu, TR 34450 Istanbul, Turkey;. Quantum scattering calculations were done by K. Giri, De-
partment of Computational Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; and L.
González-Sánchez, Departamento de Química Física, University of Salamanca, 37008 Salamanca, Spain;,
and analysis was done by F. A. Gianturco, Institut für Ionenphysik und Angewandte Physik, Universität Inns-
bruck, A-6020 Innsbruck, Austria; and N. Sathyamurthy, Indian Institute of Science Education and Research
Mohali, SAS Nagar, Punjab 140306, India. For details see J. Phys. Chem. A (2022), 126, 14, 2244–2261.
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2 Representation of potential energy surfaces using GPR and ANN

But this compound (HeH+) had not been observed until recently in 2019, by Gusten et al,32

analyzing the data from Stratospheric Observatory for Infrared Astronomy (SOFIA) in the

NGC 7027 planetary nebula. So it becomes important to study the dynamics of HeH+ when

colliding with other partners. Interaction of HeH+ with H2 is known to be reactive giving

the following reaction,

HeH+ + H2 −→ He+ H+
3 (2.4)

Adams et al33 estimated the rate coefficient of this reaction to be greater than 3.5 ×

10–11 cm3 molecule–1 s–1 at 200 K (≈ 0.017 eV) using flowing afterglow method. Ryan and

Graham34 measured it to be (1.4 ± 0.2) × 10–9 cm3 molecule–1 s–1 at a mean ion energy of

0.1 eV using an ion trap in an ion source mass spectrometer. By investigating crossed ion

beam-neutral gas collisions, Rutherford and Vroom35 estimated the rate coefficient value to

be 2.3 × 10–9 cm3molecule–1 s–1 at a mean energy of 0.3 eV. They reported the reaction cross

section to be 38 Å2 for a relative translational energy (Etrans) of 0.3 eV, which decreases to

≈ 1 Å2 around Etrans = 6 eV. They also found the decay in the reaction cross section to be

inversely proportional to the relative velocity of the reactants for Etrans in the range 0.4–2

eV, as predicted by Gioumousis and Stevenson.36

Here we report the ANN representation of the PES for the HeH++ H2 system.
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2 Representation of potential energy surfaces using GPR and ANN

2.1.1 Data Set

Figure 2.1: Coordinate system used to describe the HeH+ + H2 system.

The coordinate system used to describe the HeH+ + H2 system is shown in Figure 2.1. Ab

initio calculations were done at the CCSD(T)/CBS level of theory to obtain the energies of

different conformations, by varying the four variables described in Figure 2.1. The distance

R was varied from 1.0 Å to 12 Å, θ from 0
◦ to 180

◦ , α from 0
◦ to 180

◦ , and β from 0
◦

to 180
◦ . A total number of 15928 points were calculated. The electronic energies were

calculated by our collaborator Ersin Yurtsever.

2.1.2 GPR

In this work, from the low energy points (less than 3000 cm−1), we used the LatinHypercube

Sampling37 (LHS) to choose a data set of 1732 points to use in the GPR. LHS previously

has been shown to perform better for representing multidimensional systems.16

The GPR representation of the PES using the 1732 data points gave a root mean square

deviation (RMSD) of 1415.43 cm−1 for the entire data set. To improve the fitting, we ex-

plored other methods to fit the data.
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2 Representation of potential energy surfaces using GPR and ANN

2.1.3 Shallow Neural Network

The four dimensional PES for HeH+ + H2 was represented using ANN. The MATLAB38

software was used to train the ANN, and also to generate the subroutine for the given net-

work. We used a shallow network consisting of one hidden layer with 60 nodes shown in

Figure 2.2. A modified logistic sigmoid function of the form,

σ(a) =
2

1 + e−2a
− 1 (2.5)

where a is the sum of inputs to any given node, and σ(a) is the output of the node, was used

as the transfer function. Training was done till the RMSD reached acceptable levels, after

which the fits were tested for overfitting using the data points not included in the training

set.

Figure 2.2: Neural Network design for the four dimensional PES function.

First low energy data points (total 14741 points) were used for training. Five types
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2 Representation of potential energy surfaces using GPR and ANN

of fitting were performed with different choices of data sets. In data sets 1 and 2, the ab

initio points were sampled randomly using 70% and 98% of the data respectively. In set

3, the points were chosen using a uniform grid considering 50% of the data and including

boundary data points. Sets 4 and 5 were chosen using LHS scheme of different sizes.

Table 2.1: Table of different sampling methods and their corresponding RMSD values of
the trained ANN. “+” symbol for Set 6 signifies that it included higher energy data points.

Data
Set

Sampling No. of
Training
points

Maximum
error
(cm−1)

RMSD (cm−1)

1 Random(70%) 10318 208 11.10
2 Random(98%) 14446 -158 8.70
3 Grid 9026 9026 10.11
4 LHS1 2124 5462 107.10
5 LHS2 4055 -16027 244.00
6 Random(98%)+ 15610 -934 35.35

The accuracy of the different ANNs produced are compared in Table 2.1 and Figures 2.3

and 2.4. All though the RMSD values reported here are reasonable, all fits (other than Set 6)

suffered from over-fitting for different combinations of α and β. Over-fitting occurs when

the RMSD of a fit is low, yet the ANN fit does not vary smoothly over all the variables,

yielding erroneous values where the values of the function are not known. It can be seen

that the LHS performed poorly for the current system. This can be attributed to the fact

that the number of points for the LHS were much lower compared to other schemes of

sampling. LHS is done by iteratively finding points in n-dimensional space, in this case

four dimensions. Every new point added to the set of generated LHS points has to be

optimized with respect to all the points that have already been generated. Hence it becomes

difficult to generate LHS points for higher dimensions when the number of points needed

is large.
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2 Representation of potential energy surfaces using GPR and ANN
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Figure 2.3: Comparison of residuals (cm−1) with respect to different sampling methods.
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Figure 2.4: Scatter plot for the residuals of ANN (Set 6) compared to the ab initio data
across the energy range of the PES. Darker regions shows higher concentration of points.

For Set 6 we added higher energy points to the data set, taking the total number of points

to 15928 and did another ANN fit by randomly choosing 98% of the data for training. The

data sampled for the fit is shown in Figure 2.5 for α = 0◦ and β = 0◦. We can see that

the data covers the full region of the PES. This fit gave an overall RMSD of 35.35 cm−1

and a maximum error of -934 cm−1 at θ = 30◦, α = 180◦, β = 0◦ and R = 1.6 Å for

V = 7597.80 cm−1. The RMSD for the test set was 43.7 cm−1 and that for the training set

was 35.2 cm−1. The residuals for all the data points obtained from the ANN fit are shown

in Figure 2.4. The residuals near the minimum energy region of the PES is less than 200
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2 Representation of potential energy surfaces using GPR and ANN

cm−1, which is optimal for using the ANN PES for scattering calculations. This fit also

avoided over-fitting, i.e, the value of V varied smoothly over α and β variables as shown

in Figure 2.6.
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Figure 2.5: Slice of training data for α = 0◦ and β = 0◦ generated by sampling 98% of the
ab initio data randomly, which was used to train the ANN for Set 6.
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(left) and the blue plot (right) are for values of α and β where data is available, and the
green plot (center) is for α = 45◦ and β = 45◦, where no data was available.
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2 Representation of potential energy surfaces using GPR and ANN

The PES and their corresponding contours for three different sets of fixed values of α

and β are plotted as a function of R and θ in Figure 2.7. We can see that the ANN potential

represents the ab initio data accurately without overfitting.
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Figure 2.7: Plot of the PES (left) obtained from ANN predictions and ab initio data (blue
dots) plotted againstR, θ. The respective potential energy contour plots (right), for different
sets of α and β.
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Figure 2.8: Plot of the PES obtained from ANN predictions plotted against R, θ for long
range (R up to 30 Å). The yellow points show V (R) for the upper limit of R up to which
data is available (R ≤ 12 Å).

2.1.4 Extension to Long Range

The fit was tested if it could be used to extrapolate at the long range (upto 30 Å). The long

range PES plotted against R and θ for different values of α and β are shown in Figure 2.8.

As Neural networks are known to be poor at extrapolating beyond the range of the

training data, we can see that the ANN fit dies off to a value of −2.822 cm−1 at large R

values, hence another approach is required to include the long range part of the PES. Since

the input data for the 4D PES was available for R ≤ 12 Å, we used the asymptotically

correct long range potential,39 VL for larger R values:
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2 Representation of potential energy surfaces using GPR and ANN

VL = −α0/(2R
4) + (2α0µ/R

5) cos θ, (2.6)

The first term arises due to the charge of HeH+ interacting with the polarizability of H2

molecule, whereas the second term arises due to the dipole-polarizability interaction term,

where α0 = (α∥ + 2α⊥)/3 and α2 = α∥ - α⊥. Using the results of α∥ = 6.38049 and α⊥ =

4.57769 au for r = 1.4 au (0.7408 Å) of H2 reported by Kolos et al,40 α0 = 5.1786 au. It

is worth re-iterating that θ = 0 corresponds to the He end of HeH+ and θ = 180◦ to the H

end. r(HeH+) = 0.774 Å, r(H-H) = 0.744155 Å. The final long range behavior of the PES

is shown in Figure 2.9.
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2 Representation of potential energy surfaces using GPR and ANN

MATLABwas used to produce a standalone C++ code for the ANNwith Random (98%)

sampling (Set 6), which contained all the optimized weights and biases. It was further con-

verted to FORTRAN programming language, so that it can be used with quantum scattering

packages, such as MOLSCAT.41 The long range part was also added to the FORTRAN code

with a switching function.

2.1.5 Deep Neural Network

The results of the different fits undertaken are summarized in Table 2.2 and compared with

that of the single-layer 60 node fit. We can see that expanding the network architecture

resulted in better fits. For the test data, the RMSD of the (20, 20) network was 82 cm−1

which improved to 7.7 cm−1 for the (30, 30) neuronal fit. A further increase in the network

size to (35, 35) resulted in a similar fit with an RMSD of 8.0 cm−1. The (40, 40) network

gave an improved fit with an RMSD of 6.4 cm−1 for the test data and 4.95 cm−1 for the

entire data set. Increasing the nodes to 50 in each layer gave a low RMSD of 1.0 cm−1 for

the training data, however, a large RMSD of 582 cm−1 for the test data indicating over-

fitting. To check if the fit can further be improved, we chose a three-hidden layer network.

From Table ??, we can see that increasing the number of hidden layers did not improve

the fit with large RMSD values for the test data again indicating over-fitting. Thus, for the

HeH+-H2 system, the (40, 40) network size seems to be optimal and have been chosen as

the best fit to represent the PES. The RMSD for this fit was 4.9 cm−1. A slice of the PES

is shown in Figure 2.10, and the residual for this fit is shown in Figure 2.11. The maximum

error for the fit was found to be 164.843 cm−1 at θ = 170◦, α = 120◦, β = 60◦, andR = 1.4

Å for V = 2799.66 cm−1.
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Figure 2.11: Residuals for deep neural network representation of the PES.
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Table 2.2: Comparison of fits obtained using different
networks

Network NTPa RMSD (cm−1) MEb

Training Test (cm−1)

60 15610 35.2 43.7 −934
(20, 20) 14335 18.8 81.9 1478
(30, 30) 14335 7.6 7.7 166
(35, 35) 14335 6.1 8.0 170
(40, 40) 14335 4.8 6.4 −165
(50, 50) 14335 1.0 581.8 −19 488
(30, 30, 10) 14335 22.0 40.9 1386
(30, 30, 20) 14335 23.6 92.0 656
(30, 30, 30) 14335 19.3 56.4 1199
(30, 40, 30) 14335 6.6 421.0 1113

a Number of training points b Maximum error

As can be seen from the fits and the previous section that a deep neural network gives

a much more accurate PES for this system. However, further detailed checks show that

salient features of the excitation function for different inelastic processes remain unaltered

in going from shallow to deep neural network, although there are quantitative differences

between the state-to-state integral cross section data on the two fitted surfaces (not reported

here).
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2 Representation of potential energy surfaces using GPR and ANN

2.2 C5N−+ H2 ab initio PES

Dalgarno and McCray42 first pointed out the importance of negative ion chemistry in the

ISM. They hypothesised that in interstellar clouds which have a source of ionization, neg-

ative ions may play an important role in forming complex molecules. In recent years many

C-bearing and (C,N)-bearing chains of molecular anions have been observed at various sites

in the ISM.43–47 The molecular anions detected so far in the interstellar and circumstellar

gas are all fairly heavy linear carbon chains consisting of three or more carbon atoms, and

with neutral counterparts with large electron affinities: C4H−,45 C6H−,47 C8H−,46 C3N−,43

and C5N−.43 Cernicharo et al first detected C3N− and C5N− nitrile anions towards the cold

dark core TMC-1 (Taurus molecular cloud), using the Yebes 40 m telescope. The Taurus re-

gion is a stellar nursery 430 ly away from earth, containing hundreds of newly formed stars.

The abundance of these anions relative to the neutral counterparts increases with both size

and the electron affinity of the neutral molecule, as expected for formation by Radiative

Electron Attachment (REA).48 However, this process fails to explain the abundance of the

shortest observed anions. While a more direct chemical route by reaction of the HC5Nwith

H− has also been put forward49 since the calculated rates were found to be large enough to

be relevant within the chemical evolution producing these anions.

In this work, we present the ab initio potential energy data, generated by our collaborator

Ersin Yurtsever, for the surface describing the interaction of the linear anion (C5N−+) with

H2. We employ a deep ANN fit for representing the PES. The fitted PES, was further

used to carry out quantum scattering calculations, by our collaborators, Kaushik Giri, Lola-

Gonzàlez Sànchez and Anzhela Veselinova Marinova, to yield rotationally inelastic cross

sections for collisions with H2 and obtain the corresponding inelastic rate coefficients as a

function of temperature.
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2 Representation of potential energy surfaces using GPR and ANN

Figure 2.12: The four variables used to generate the PES for the C5N−+ H2 system.

2.2.1 Data Set

The four dimensional coordinate system is given in Figure 2.12. Both C5N− anion and

H2 considered to be rigid. MOLPRO50 was used to generate the ab initio data points at

the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Furthermore, they are corrected for basis

set superposition error (BSSE). 16025 points were generated by varying the four variables

θ = 0◦ to θ = 180◦, α = 0◦ to α = 150◦, β = 0◦ to β = 90◦ and R = 2 Å to R = 25 Å.

The electronic energies were calculated by our collaborator Ersin Yurtsever.

The ANN representation of the PES requires smooth data over the range of variables.

In order to generate smooth data of the PES, the number of data points were increased (see

Table 2.3).

For uniform distribution of data across various values of α and β, additional data points

This is a collaborative work, electronic structure calculations were done by E. Yurtsever. R. Biswas and
U. Lourderaj were responsible for ANN fiting and the FORTRAN subroutine, K. Giri, L. Gonzalez and A.
Veselinova were responsible for quantum scattering calculations, and analysis was done by F. A. Gianturco
and N. Sathyamurthy.
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(around 4000) were added. For α = 180◦ and β = {30◦, 60◦, 90◦}, V (β = 0◦, α = 0◦)

energy values were used. Using the symmetry of the system, additional data was added

considering the parameter β. For example potential for β = 60◦ is the same as the potential

for β = 120◦. The density of points at high R values (R > 10Å) was less and this region

is prone to overfitting. For this reason we used one dimensional cubic spline method to

interpolate potentials at larger Rs (see Figure 2.13) and added around 15000 points. We

had a total of 761 different combinations of θ, α and β, and for each combination we select

7 points which has R value greater than or equal to 8 Å. We define a cubic polynomial be-

tween any two consecutive points (6 polynomials in total), defined by 4 coefficients each.

Each of these polynomials are further subjected to 4 conditions, the first being the require-

ment that the polynomials should pass through the known points. Secondly we impose that

the tangents at the known points of any two consecutive polynomial, should be the same.

Additional two conditions are then put, which are that at the beginning and the end of the

data set the slope goes to zero. With these conditions in place, it is possible to find out all

the coefficients for the 6 polynomials. In this scheme, we have three points before R = 11

Å, ensuring that the interpolation between R = 10 Åand R = 12 Å, are correct. All the

cubic splines were computed using MATLAB.38 Lastly, we added data points beyond the

limits of θ variable, for example V (θ = 200◦) is equal to V (θ = 160◦). This was done

so that the ANN fit behaves smoothly at the limits of θ. These points will not be used in

predictions, they will only be used for training the ANN. The domain of θ remains between

0◦to 180◦.
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Table 2.3: This table summarizes the different data sets generated and used to do the fitting.

Data Set Description Number of points

1 Original set 16025
1a Set 1 + 4000 20000
2 Symmetry β 29897
3 Set 2 + cubic splines 46064
4 Set 3 + Boundary 58448
5 Set 4 (V < 2000/cm−1) 52734
6 Set 5 (w.o. boundary) 44915
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Figure 2.13: Example of cubic spline interpolation for θ = 10◦, α = 90◦and β = 90◦.

The data Set 5was used fit the PES usingANN for potential energies less than 2000 cm−1.

Set 6 was used to test the performance of the neural networks. For the transfer function we

use a modified version of the logistic sigmoid function given by Eqn 2.5. The Bayesian

Regularization51 optimizer is used to train the network as implemented in MATLAB.38
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2.2.2 Shallow Neural Network

We started with a shallow neural network with 60 neurons and increased the number of

neurons in the hidden layer upto 300. We did multiple fits and checked the performance

of the fit. The best fit we obtained used a network consisting of 300 neurons in one layer,

and had an RMSD of 9.27 cm−1 with maximum error of 176 cm−1 at θ = 160◦, α = 150◦,

β = 90◦andR =5.1 Å for V =1966.88 cm−1 as shown in Figure 2.14. The maximum well

depth was 600 cm−1 compared to 12000 cm−1 for the HeH++H2 system described in the

previous section, coupled with the fact that the rotational constant of C5N− is fairly small

(0.04633 cm−1), we can say that our fit quality was poor. So we switched to a deep neural

network.
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Figure 2.14: Plot of residuals for the PES fitted using a shallow neural network for C5N−+
H2.
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2 Representation of potential energy surfaces using GPR and ANN

Table 2.4: Training and network performance for different networks when 100% data was
used.

Fit h1 h2 RMSD/cm−1 Max Error/cm−1

1 30 30 5.09 101.8 at V = 1950
2 30 30 2.99 52.42 at V = 1671
3 30 30 1.03 35.3 at V = 778
4 30 30 0.87 38 at V = 778
5 35 35 0.68 35.7 at V = 778

Table 2.5: Training and network performance for different networks when 70% data was
used.

Fit h1 h2 RMSD RMSD30 MaxAll Max30
6 35 35 2.4 2.59 42 at V = 778 −36 at V = 1687
7 35 35 1.51 1.61 38 at V = 778 −23 at V = 73
8 30 30 1.5 1.56 45 at V = 778 −24 at V = 1980

2.2.3 Deep Neural Network

We used networks consisting of two hidden layers (h1 and h2) and varied the number of

nodes in each hidden layer. Figure 2.15 shows the schematics of the network. First we use

100% of the data to train the network. The performance of the network is given in Table

2.4. Then we tried using only 70% of the data (from Set 5) and the performances of which

are summarized in Table 2.5. RMSD30 is the root mean square deviation of the data points

(from Set 6) which are not included in the training data, similarly Max30 is the maximum

deviation for the same. After this we also tried using LHS37 in the four input dimensions

to train the network using less number of data points. The results are summarized in Table

2.6. LHS did not yield a good fit as the maximum error was -624.1 cm−1, so we chose to

work with Fit 4 which had an RMSD of 0.87 cm−1 and was better in terms of fitting (no

overfitting) in comparison to Fit 5. The schematics of the ANN for Fit 4 are given in Figure

2.15 and the residual plot is given in Figure 2.16.
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2 Representation of potential energy surfaces using GPR and ANN

Figure 2.15: Neural Network used to train C5N−+H2 PES.Weights are in black, and biases
in red. Numbers inside the bracket are the corresponding number of parameters.

Table 2.6: Training and network performance for different networks for LHS sampling.
Brackets show % of data used for training of these networks.

Fit Number of points (%) h1 h2 RMSD/cm−1 Max Error/cm−1

LHS1 1000(1.9) 35 35 148.367 1159.91 at V = −299.793
LHS2 1334(2.5) 35 35 129.317 −1705.48 at V = 260.675
LHS3 1667(3.2) 35 35 116.17 1321.86 at V = −545.714
LHS4 2000(3.8) 35 35 58.2475 706.121 at V = −120.537
LHS5 3334(6.3) 35 35 86.0675 1145.16 at V = −578.757
LHS6 7717(14.6) 30 30 15.4669 536.445 at V = 1400.92
LHS7 7717(14.6) 35 35 11.54 −624.175 at V = 1950.47

37



2 Representation of potential energy surfaces using GPR and ANN

−40

−30

−20

−10

 0

 10

 20

 30

 40

−500  0  500  1000  1500  2000

R
e
s
id

u
a
ls

/c
m

−
1

V/cm
−1

Figure 2.16: Plot for residuals for Fit 4.
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Figure 2.17: Plot for Fit 4 compared to data points, for α = 0◦ and β = 0◦.
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Figure 2.18: Plot for Fit 4 compared to data points, for α = 60◦and β = 60◦.
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Figure 2.19: Plot for Fit 4 compared to data points, for α = 90◦ and β = 90◦.
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2 Representation of potential energy surfaces using GPR and ANN

2.2.4 Extension to Long Range

The asymptotically correct long range potential is given by,

VL(θ) = − a0
2R4

+
2a0µ

R5
cos(θ) (2.7)

where a0 = (a⊥ + 2a∥)/3 and a2 = a∥ − a⊥. Using the results of a∥ = 6.38049 au and

a⊥ = 4.57769 au for r = 1.4 au (0.7408 Å) of H2 reported by Kolos and Wolniewicz,40

a0 = 5.7186 au. The relaxed dipole moment of C5N anion is µ = 3.31370 au.

The final form of the potential using the switching function is given by,

Vf = fsVANN + (1− fs)VL (2.8)

where the switching function is,

fs(R) =
1

e
(R−R0)

∆R + 1
(2.9)

and R0 = 22 Åand ∆R = 0.5 Å.

2.2.5 FORTRAN code for ANN

The final fit was converted to C++ code usingMATLAB coder, and was further converted to

a FORTRAN subroutine. The asymptotically correct long range potential with a switching

function was also added to the FORTRAN code.

2.3 C−
2 +H2 ab intitio PES

Controlling quantum states of atoms and molecules have potential applications in many

fields of science, such as quantum information, state specific chemistry or even studying

important processes found in the ISM. Precise control of molecules started with the inven-

tion of supersonic molecular beams for cooling52 and coherent control for manipulation

of internal states.53 However, cooling molecular gases where quantum phenomena can be
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2 Representation of potential energy surfaces using GPR and ANN

observed is relatively recent development.54 Cooling and controlling quantum states of

molecular ions55–57 has opened up a large field of research on precise studies of elastic and

inelastic collision processes,58–60 controlled chemical reactions,61,62 as well as on precision

spectroscopy and measurements of fundamental constants.63–65

Research of negative ions gained interest due to their proposed application to sympathet-

ically cool antiprotons,66 hence providing a new method of generating cold antihydrogen67

in large abundance. However, the loosely bound excess electron in an anion makes it a more

fragile system in which multiple electronic states are rarely encountered unless in the form

of a dipole bound state close to the detachment threshold. Only few atomic negative ions are

known to possess valence excited electronic states. To prepare for negative ion laser cool-

ing these anions have been explored in high-resolution spectroscopy.68–70 An interesting

alternative are small molecular anions, in particular the carbon dimer anion C−
2 .71

Recent experiments conducted by Wester et al,72 demonstrate optical pumping of the

C−
2 anion into its first vibrational level v = 1 with high efficiency. They also measured the

absolute rate coefficient for collisional quenching back into the ground vibrational level v

= 0 in collisions with molecular hydrogen at a temperature of 18 K. Further, the measured

rate is compared with theoretical calculations. The theoretical curves obtained by reduced-

dimensional quantum scattering calculations carried out using the coupled channel method

for scattering of an atom with a diatomic molecule as tests of the ab initio calculations

have shown that they are not expected to change significantly with a larger basis set or an

explicitly correlated method of computation. The experimentally observed quenching rate

is an order of magnitude smaller than those obtained by theory, which is attributed to the

fact that the six internal degrees of freedom in the C−
2 + H2 system had to be reduced to

three to perform the calculation with ASPIN.73

To this end, in the work reported here we represent the five dimensional PES of C−
2 +H2,

where the H2 is fixed at its equilibrium geometry, using ANN.
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2 Representation of potential energy surfaces using GPR and ANN

Figure 2.20: The five variables defining the C−
2 + H2 system.

2.3.1 Data Set

The five dimensional coordinate system is given in Figure 2.20. H2 molecule is considered

to be rigid. MOLPRO50 was used to generate the ab initio data points at the CCSD(T)-

F12b/aug-cc-pVTZ level of theory. 68011 points were generated by varying the five vari-

ables θ = 0◦ to θ = 90◦, α = 0◦ to α = 180◦, β = 0◦ to β = 90◦ , R = 3.5 Å to

R = 25 Å and r = 1.18 Å to r = 1.4 Å. The data was generated by our collaborator Jan

Franz.

2.3.2 Deep Neural Network

Weused a deep neural network consisting of two layers as shown in Figure 2.21. We kept the

number of nodes in the first layer to be 30, and varied the number of nodes in the second

hidden layer from 30 to 60. For training we used 98% of the data, which was selected

randomly and the rest 2% was used for testing. The performance of the fits are given in

Table 2.7. The best fit (Fit 5) obtained (shown in red in Table 2.7) had an RMSD of 0.829

cm−1, and the maximum error of 36.20 cm−1 at R = 3.6 Å, r = 1.4 Å, θ = 0◦, α = 150◦,

β = 30◦for V =4123.57 cm−1. The residuals for this fit are shown in Figure 2.22 and the

quality of fit are shown for two slices in Figures 2.23 and 2.24.
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2 Representation of potential energy surfaces using GPR and ANN

Input Layer Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.21: Neural network design for C−
2 + H2 system.

Table 2.7: Table of different fits for the C−
2 + H2 system. Best fit is given in red. The

numbers under the column “Network” indicate the number of nodes in each hidden layer.

Fit Network RMSDtraining (cm−1) RMSDtest (cm−1) RMSDtotal (cm−1)

1 30,40 0.98 1.2 0.99
2 30,50 1.13 1.3 1.14
3 30,60 0.96 1.2 0.96
4 30,60 0.86 1.19 0.87
5 30,60 0.82 1.04 0.83
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Figure 2.22: Plot for residuals for the best fit, Fit 5
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Figure 2.23: Slice of the potential energy surface for θ = 40, α = 60 and β = 90.
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Figure 2.24: Slice of the potential energy surface for θ = 90, α = 180 and β = 30.
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2.4 Summary and Conclusions

We have successfully represented the PESs of two 4-dimensional systems, HeH++H2 and

C5N−+H2 and a 5-dimensional system C−
2 + H2, that are important molecules in the in-

terstellar medium. The representation was done using ML methods, GPR and ANN. We

found that for low number of points GPR tends to work better, however it becomes dif-

ficult to represent the PES using GPR when higher number of data points are used. On

the contrary, ANN works better with higher number of points. Moreover, we found that

deep neural networks perform better over shallow neural networks. All the representations

of the PESs are converted to FORTRAN code and can be merged with quantum dynamics

software like MOLSCAT.

In conclusion we find that ML method, ANN, works well for four and five dimensional

systems. Yet the correct network size for any given data set needs to be optimized. From

our work we find that it is better to start with a smaller network (in terms of number of

nodes per layer), and increase the size incrementally. Smaller networks will not be able to

represent the data set, yielding larger RMSDs. We increase the network size to the point

where the network overfits the data. The optimal network size is often the network used

before the overfitting happens.
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Chapter 3

“On-the-fly” Representation of Potential
Energy Surfaces usingMachine Learning
Methods
Potential energy surfaces are fundamental to understand the dynamics of chemical reactions.

In direct dynamics, the classical trajectories are calculated using the forces computed “on-

the-fly” at a given level of theory.74–84 This step becomes increasingly CPU intensive with

increasing system size. The aim of this project is to store the force and potential energy data

generated during ab initio dynamics and use them to predict forces for future trajectories.

Using the data obtained from the trajectories, the PES is represented using ML methods.

The PES is then improved with more data available from new trajectories making it an “on-

the-fly” PES.85–88 The GPR,88 ANN89 and interpolating moving least square methods85,90

have been used to represent the PES “on-the-fly”. GPR has been shown to work very well

with less number of data points to represent high dimensional data,16,91, 92 and it has been

established that the GPR method becomes more accurate with the increase in the number

of data points. However, the training time and prediction time scales poorly with respect

to the number of training points. This is due to the fact that the training of the GPR model,

for a data set of N points the design matrix of size N × N , has to be inverted iteratively

until convergence.26,92 So, one has to invoke the concept of “Active Data Selection”, where

during the trajectory of a system only few crucial data points are stored. In the context of

PESs, the term “crucial” has been defined in multiple ways over the years,85,90, 93, 94 with the

common aim of improving the PES representation. To this end, sampling methods based on

trajectories and distance between data points for interpolating moving least-squares90 and
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ANN89 have been proposed. Selecting new ab initio energy points with large deviations

between different NN fits among all the points generated by running trajectories on one of

the NN PESs has also been explored.95 In other fields, Ramakrishnan et al96 and Krause et

al97 have explored the idea of selecting data points based on entropy criterion and mutual

information, so that the final quality of predictions improves. However, these methods

become challenging for problems beyond two dimensions.

Here, we propose two “proof of concept” methods, one using gaussian processes for

regression and the other using artificial neural networks, to represent the PES “on-the-fly”

during direct dynamics. For the purposes of developing algorithms, ab initio data that are

required in our methods are replaced by model potentials which have an analytical form. In

what follows we present the two algorithms and discuss the results obtained on two model

potential energy functions: 2D malonaldehyde potential and 6D potential of formaldehyde.

3.1 “On-the-fly” Representation using GPR

The first algorithm uses GPR and tries to interpolate potential and forces locally. This al-

gorithm is divided into two parts. The first step is “active data selection” phase, which is

then followed by “prediction” phase. Active data selection involves the storage of poten-

tial energy and/or force data obtained from trajectory calculated using a suitable electronic

structure method. To start, the first point Q1 and the associated energy V1 of the first tra-

jectory is stored in the set P . Then, any point (Qi) generated during the trajectory is stored

based on a distance criteria. The euclidean norm of the all the points (in set P ) with respect

to Qi is calculated. If distance between Qi and the rest of the points is greater than the

predefined trust radius (s0), the point Qi and its energy Vi is added in to the set P . This

is continued for a set of pilot trajectories. After the pilot trajectories, we execute the pre-

diction phase where we run trajectories and start predicting the potentials and forces at the
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point Q(tn) based on how far it is from all the stored data within a new trust radius (p0)

for the prediction step. If the number of data points are high we do a local GPR to predict

the potential and forces using data points within p0. Thus, the current algorithm defines a

local PES for the system at a given point during the trajectory, in contrast to “on-the-fly”

PES developed by others.88 The working of the algorithm is illustrated in Figure 3.1 and

the algorithm is presented in Figure 3.2. In Figure 3.1 panels a) and b) show the active data

selection phase whereas panels c) and d) show prediction phase. Further, we demonstrate

the working of the algorithm using a 2D system.

For the two dimensional case, we use malonaldehyde potential,98 which is a function of

two coordinates (x, y) given by,

V (x, y) = 2y + y2 + (y + 0.4x2))x2 (3.1)

and the physical meaning of x, y are shown in Figure 3.3.98 The x and y coordinates corre-

spond to the coordinates of the proton involved in the transfer, with the origin corresponding

to the transition state. We run trajectories for a particle of unit mass subjected to the 2D

potential given by Eqn. 3.1. The initial conditions are selected such that the total energy of

the particle is 30 arbitrary units, and the time step is taken to be 0.1 units. We use velocity-

Verlet to integrate the trajectories. The first step is to collect data which is generated during

ab initio dynamics. For this we run 40 trajectories of 1000 time steps, and collect data using

distance criteria, i.e. we only select data which are sufficiently far from each other. When

the trajectory starts, we store the first point, i.e. the internal coordinates and the poten-

tial at that point (r⃗ = (xt=0, yt=0), V (r⃗)) into the data set. For every new point r⃗j (where

r⃗j = (xtn , ytn)) during the trajectory, we calculate the distance of r⃗j from r⃗is ( i index runs

over all stored data) as dij given by,

dij =
√

(xi − xj)2 + (yi − yj)2 (3.2)

If dijs for all elements in the stored data are greater than some trust radius (in the 2D case
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Figure 3.1: Illustration of active data selection and prediction in the “on-the-fly” local GPR
PES algorithm (a) A 2D representative direct dynamics trajectory, Red dots show points
where the forces and potential energy were computed and the black line shows the trajec-
tory. (b) Green dots show the data points that have been stored using the distance criteria
mentioned in the text. (c) Blue dot shows the first point of the next trajectory. (d) The blue
circle is based on the trust radius for prediction (p0), within which three stored points lie,
which will be used to predict the forces and potentials at the coordinate given by the blue
dot.

presented here the trust radius was chosen to be 0.8 arbitrary units), we store the new point.

If not, which signifies, we have at least one point already stored, in the vicinity of the new

point so as to predict the potential energy, and hence we do not store this new point. The

data collected is known as the training data. The second step is the prediction step, which

starts from 41st trajectory. We calculate the number of points in the training data which are
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Active Data Selection Predictions

Figure 3.2: Algorithm for “on-the-fly” local PES using GPR.

nearby (defined by the prediction trust radius p0, for the current case we used 1.0) to the

current position. If the number of points is high (in this case, more than 50 data points), we

use GPR to predict the forces and potential, else we use ab initio method. For this step we

use all the nearby points which fall within the trust radius, to train a local GPR model.

After 40 trajectories, the number of points selected were 4821, see Figure 3.5. We can

see that the data points are equally spaced in terms of x and y.

For the 41st trajectory we run two trajectories simultaneously, with the same initial con-

ditions, one using the GPR predictions and the second using the potential given in equation

3.1. Figure 3.6 shows the 41st trajectory, green is for the trajectory in which forces are

predicted using GPR, and red is the trajectory where forces are computed using 3.1. It

can be seen that both the trajectories deviate after a few steps, although the total energy is

conserved.
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Figure 3.3: The left and the right figures show the reactant and product of malonaledehyde,
whilst the one in between shows the transition state for the proton transfer reaction.
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Figure 3.4: Two-dimensional PES contours for malonaldehyde system.98 There is a tran-
sition state at x = 0, y = 0. To the left and right of (0,0), there are two minimas which
correspond to the reactant and product regions.

3.1.1 Advantages and Drawbacks

This algorithm is relatively easy to implement, and because we are interpolating locally, the

GPR training time is low with high accuracy. However, as we can see from the previous

section the number of points collected for a two dimensional system is 4821. In order to

increase GPR prediction accuracy, it is imperative that we store more data. This number

becomes a bottleneck in the algorithm, and tends to increase rapidly as we go for higher
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Figure 3.5: Training data collected during 40 trajectories. Number of points here are 4821.
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Figure 3.6: First 100 steps of the 41st trajectory. Red line is the true trajectory and green
line is the trajectory obtained using local GPR PES.

dimensions. That means the for every nth time step, we have to search through all the

stored data, which can become very CPU intensive. One way to overcome this issue is
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to store less data, which comes at the cost of poorer accuracy. Another problem that we

encounter is the problem of defining a boundary (for a given total energy). For example, in

Figure 3.6, lets say we want to predict at x = −4 and y = −12. Using the distance criteria

mentioned earlier we will find that the number of stored data points around this point is

high, yet if we use these points to predict the potential, it will be highly erroneous because

the data is distributed unevenly, and the GPR model will be extrapolating. We see this in

the 2D case, that for potential energy prediction at the edges where data has been collected,

the errors in the prediction are higher. For systems with higher dimensions the boundary

becomes more difficult to visualize. One work around is to use some kind of measure which

will ensure that the data is evenly distributed around the point of interest. We can divide

the configuration space into grids with dimensions close to that of the trust radius used for

prediction, and then check for if the point of interest (where we want to predict) lies in

any one of the grids, which is populated evenly. For that, after the active data collection

phase, all the grid points need to be classified as either “evenly distributed” or “unevenly

distributed”, and we predict only in those grids which are “evenly distributed”. However,

the minimum number checks required for each time step is 22 i.e., 4 checks. For example

we can divide the entire configuration space into an m × n grid, of grid size gx and gy in

the x and y directions respectively. For any new point (x, y), we need to check iteratively

if,

M ∗ gx > x ≥ (M − 1) ∗ gx and, (3.3)

N ∗ gy > y ≥ (N − 1) ∗ gy (3.4)

where the indexM runs from 1 tom and the indexN runs from 1 to n. For a system of six

dimensions, the number of checks goes to 26, which becomes infeasible. Other methods for

the check of uniform distribution have been implemented.99

54



3 “On-the-fly” Representation of Potential Energy Surfaces using Machine Learning
Methods

3.2 “On-the-fly” Representation using ANN

To overcome the problems presented in the previous section, we tried using ANN to repre-

sent the PES. ANNs are known to be poor in extrapolating.100 In this algorithm, the poten-

tial energy data obtained from each trajectory is represented by a NN (local representations,

V NN ) and stored. In addition, the coordinates (domain) corresponding to each trajectory is

represented by another NN (ANN ). Thus, the V NN learns the energy information while the

ANN learns the coordinate information. The global PES of the system is then represented

by the linear combination of the local V NN
i s weighted by the coefficients (Ci) given by

Vp =
n∑

i=1

V NN
i × Ci (3.5)

where,

Ci =
ANN

i

Sn

(3.6)

and,

Sn =
n∑

i=1

ANN
i (3.7)

Thus, the coefficients are related to the domain ANN
i s by Eqn. 3.6. V NN

i is a neural

network which is trained on the data with coordinates as input and the potential energy as

output. ANN
i is a neural network which is trained on the data with coordinates as input and

the outputs 0 or 1. The index i runs over all the trajectories. The training data for ANN is

obtained as follows. From the trajectory, we obtain coordinates where energy information is

available and is assigned a value of 1 as output. In addition, random coordinate points where

energy data is not available are generated and assigned a value of 0 as output. Together,

these two sets of data form the training set forANN . TheANN data with 0 outputs are at least

half the number of points from the trajectory data. This ensures that Ci smoothly go to 0

where energy data is not available. The scheme is illustrated using two sample trajectories
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on a one dimensional chemisorption potential well in Figure 3.7. If Ci is close to 0, the

prediction will be poor, however if it is close to 1, we know that a prior trajectory has gone

near this point and a prediction maybe valid. In the case when two trajectories have gone

through the same region in the configuration space, we have multiple ANNs representing

the same region of the PES. Eqn. 3.5 ensures that the final prediction is a weighted average

over all the representations. Thus, given enough representations, the final prediction (Vp)

is expected to tend towards the true potential. One of the main advantages of this design is

that we do not store any data for the energies (we can discard potential data after training a

network).

a)

b)

c)

d)

V

Sn

V

V
V

V NN
1

V NN
2

ANN
1

ANN
2

V
Vp

Figure 3.7: Illustration of the working of V NN and ANN in “on-the-fly” NN PES. (a) Rep-
resentative chemisorption potential energy function given in purple, and data collected dur-
ing two trajectories (blue and green). (b) Two corresponding ANNs produced (V NN

1 and
V NN
2 ) by training on the trajectory data. (c) Two domain ANNs (ANN

1 and ANN
2 ) which

were trained to learn the coordinate information and (d) Final prediction (in red) using the
scheme (Vp).
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We implemented this algorithm on the 2D malonaldehyde potential. For this, we ran 40

trajectories, each for thousand time steps and train them and start predicting from the 41st

trajectory. In the training process each of the first 40 trajectories is trained individually to

V NN
i and ANN

i , for i=1 to 40. For V NN the training data is the set containing the set of

triplets (xi(t), yi(t), V i(t)) for t=1 to 1000. For ANN the input is the set of all the points

that the trajectory has visited, that is (xi(t), yi(t)) for t=1 to 1000, and the output for those

input points are selected to be 1. We add another randomly generated 500 points (xj, yj) to

this set that are far away from the trajectory points (greater than r0) with an output value of

0. The parameter r0 controls how fastANN should die off to zero. For the 2D case, we have

set r0 = 1. A sample trajectory is given in Figure 3.8. For each V NN and ANN , we select a
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Figure 3.8: Blue line shows a sample trajectory, black dots show the random points selected
where the output of ANN is expected to be 0, and red dots represent where ANN is 1.
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neural network consisting of two hidden layers, with 10 nodes in each layer. The amount of

data generated for each trajectory in terms of memory is 3∗1000 double precision variables.

On the other hand, each NN after being trained consists of 151 (130 weights and 21 biases)

double precision variables, and because there are two NNs for each trajectory, we store

302 variables. As with the GPR algorithm, we start predicting from the 41st trajectory, and

for comparison we have taken the initial conditions of this trajectory to be the same.

Run n pilot trajectories

For each trajec-
tory, train V NN

i

For n = n + 1 trajectory

Generate random points
for ANN

i , train ANN
i

Q(t), P (t)

Is Sn greater
than 0.95 × n?

• Calculate potential
energy and forces at
Q(tn) using ab initio
methods.

• Count and store un-
predicted points.

• tn = tn +∆t

Predict V and forces
using VP , tn = tn + ∆t

If step count is
greater than 50%,

train V NN
i and ANN

i

Is trajectory
over?

NO

YES

NO

YES

Figure 3.9: Outline of the algorithm used for on the fly representation of PES using ANNs.
The prediction part is shown with red arrows.

The algorithm is shown in Figure 3.9 and the 41st trajectory using this algorithm is shown

in Figure 3.10. During prediction phase, for every timestep we compute the denominator
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of Eqn. 3.5 for the current x and y. If it is greater than 0.95 times the total number of

trajectories run, we use the “on-the-fly” NN PES, if not, we use ab initio forces. Eqn. 3.7

is computed before Eqn. 3.5 so that we avoid dividing by zero, if no representations are

present at that point. Also, after the completion of the set of pilot trajectories, for each new

trajectory we count the number of points that have been predicted by the algorithm. If less

than 50% of points are predicted, we append the set of NNs with the representation of this

new trajectory.
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Figure 3.10: Blue line the ANN predicted trajectory, red line is the true trajectory. This
shows 200 time steps.

To compare both the methods, we use the euclidean norm of predicted trajectories with

respect to true trajectory for each time step of integration. This tells us how much and how

fast a predicted trajectory is deviating from the true trajectory. Given enough time, it is

expected that the predicted trajectory and the true trajectory will deviate into two different

trajectories because of accumulation of errors. See Figures 3.11 and 3.12 for comparison

of the methods.
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Figure 3.11: Comparison of the performance of “on-the-fly” GPR and NN algorithms for
200 integration steps.
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Figure 3.12: Comparison of norms of “on-the-fly” GPR and NN algorithms with the true
trajectory.
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We also test for the consistency of this method by generating grid of points on the PES,

where the potential energies are less than or equal to 30 units. This grid contained 2417

points and was used to test how the algorithm performs as we add more representations

by checking the residuals at these points using 10, 20, 30, 40 and 50 representations. The

performance of the algorithm is given in Figure 3.13. It can be seen from this figure that as

we add more representation, the RMSD over the grid of points tends to decrease. Further

the maximum error also decreases.

We can see that the ANN method works better for the two dimensional case, and also

that no data had to be stored. It is worth pointing out that the potential used here is non-

reactive. If there were a region in the configuration space where the reactant can go through

to perform a reaction, results of the predictions will be very different as we will show later

on in the 6 dimensional case of formaldehyde.

3.2.1 Six Dimensional Non-Reactive ANN

For the 6-D case we used Bowman’s101 potential for formaldehyde. We use 6 internuclear

distances to represent the potential, i.e. V (R1, R2, R3, R4, R5, R6) The six internal coordi-

nates are given in Figure 3.14.

We use the ANN approach to fit the potential, given by equation 3.5. With this we set

n = 10, that is we ran 10 trajectories of 0.8 ps, with a time step of 0.2 fs to generate data for

training. The neural networks used here consists of two hidden layers containing 25 nodes

each, for both V NNs and ANNs. The r0 value used in this system is 0.05. The total energy

was set to be 102 kcal/mol, which is below the bond breaking threshold. From the 11th

trajectory onwards we started predicting. The prediction criteria was set as Sn ≥ 0.95× n.

Note that in the 6-D case, if less than 90% of points are predicted, we append the set of NNs

with the representation of the new trajectory. As in the case of 2D, here also we run another

trajectory simultaneously which uses the ab initio potentials. The results are summarized
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Figure 3.13: Residuals across the potential energy range as a function of the number of
representations (in this figure, given by Sn). The numbers in the bracket represent the
RMSD in arbitrary units.
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Figure 3.14: The six internal coordinates used to represent the PES of formaldehyde.
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in Figure 3.15.
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Figure 3.15: Illustration of the working of “on-the-fly” NN PES algorithm for formalde-
hyde for the 11th trajectory. (a) Internal coordinates as a function of time (dotted lines for
predicted, and solid lines for true trajectory), (b) euclidean norm of the internal coordinates
compared to the true trajectory, (c) potential as a function of time, red is the potential used
for integration, and black shows where the algorithm reverted to using ab initio points, (d)
Sn values, and (e) shows the total energy as a function of time.

In Figure 3.15 (b) we see that the amount of time required for the predicted trajectory to

deviate from the true trajectory was about 100 fs. Other trajectories showed similar results.

Figure 3.15 only shows 1000 steps of the trajectory, it can be seen that around 97% of time,

the representation could predict the forces, however for the entire length of the trajectory

only 53% of the points were predicted. Figure 3.16 shows how the algorithm performs for

the six dimensional case. It can be seen that after around 25 trajectories, almost 100% of
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all data points could be predicted.
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Figure 3.16: Percentage of points predicted during the trajectory as we add more and more
representations.

3.2.2 Six Dimensional Reactive ANN

For the case of reactive trajectories, we set the total energy at 110 kcal/mol. We ran 10

reactive trajectories with a time step of 0.25 fs, for a maximum trajectory length of 1 ps.

We further divided the trajectory into two parts, reactive and non-reactive. We trained each

part as individual neural network (Figure 3.17). If any internal coordinate goes above 3.5

Å, we call the reaction to have occurred.

For the trajectory shown in Figure 3.17 we computed the potentials using the reactive

ANNs as well as the non-reactive ANNs, see Figures 3.18 and 3.19. Here we did not use
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Figure 3.17: Internal coordinates as a function of time for a representative reactive trajec-
tory, where the products formed are H2 and CO.

“on-the-fly” forces to compute the trajectory, rather we are only comparing “on-the-fly”

potential energy values computed during the 11th trajectory with ab initio potentials. We

find that the non-reactive ANNs can predict the non-reactive region well. However the

performance of these are not good when we only trained the ANNs on the reactant well

region, as shown in the previous section. Figure 3.19 shows the performance of reactive

ANNs, when the trajectory is in the reactant well, as well as when the bond-breaking occurs.

It can be seen that the performance of these set of ANNs is not as good in the reactant region,

which is expected because they were not trained on any data from this region. However,

the set of reactive ANNs were also performing poorly during bond breaking. This can be

attributed to the fact that the amount of data generated in the reactive region is less. This type
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Figure 3.18: Non-reactive ANNs prediction for the entire trajectory. The black line at
around 500 fs shows where the reaction has occurred.

of behavior is expected in the reactive region, and a better algorithm needs to be developed.

3.3 Summary and Conclusions

The problem of representing PESs “on-the-fly” is different from traditional PES fitting. The

available data comes as a time series, and with respect to predictions, it is difficult to say

which data point will be important. To this end, we developed two algorithms to tackle

the problem of “on-the-fly” representation of PESs, one using GPR, and the other using

ANNs. The local GPR PES works well for low-dimensional systems. On the other hand,

“on-the-fly” NN PES works better for 2D and works reasonably well for 6D.
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Figure 3.19: Reactive ANNs prediction for the entire trajectory. The black line at around
500 fs shows where the reaction has occurred.

For the case of ANNs, another approach would be to use all data generated during

the dynamics from one of the trajectories to train an ANN and for that we can not say

with any certainty that, the ANN will be able to predict energy and forces for the next

trajectory. While one can always retrain the ANN, but then the network will not work for

the first trajectory. In order to make it work for both the trajectories, all the prior information

(trajectories one and two) needs to be stored, and then the network needs to be retrained on

the combined data. In this respect “on-the-fly” NN PES, avoids the problem of retraining

by storing individual representations (V NN
i ), rather than the data. Further the problem of

ensuring that an individual ANNwill always be interpolating, a parallel ANN (ANN
i ) learns

the domain information.
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Further, in traditional ANN fitting from our experience we find that usual network size

for a six dimensional system is expected to be around at least of the order of 100 neurons

per hidden layer, with two hidden layers, which yields a total of 10500 weights and bi-

ases. However, if we split the representation into smaller ones, we can use smaller neural

networks as shown in this chapter. Yet, the cost (in terms of memory) of storing multiple

neural networks is higher (≈ 37500 weights and biases for 25 representations). Multiple

modifications can be made to the “on-the-fly” NN PES algorithm to improve it, for example

discarding representations which have a poor performance. The algorithm is in principle,

completely parallelizable, that is the output for each NN can be computed by a different

CPU. After a bunch of ab initio trajectories have been computed, one ends up with multiple

representations, which can be used elsewhere. One major problem here is that there is no

quality check for the predictions because no data is being stored to compare it with. Further,

the training time for each V NN
i for the 2D case was around 1 minute each, whereas for the

6D case it varied from 20 minutes to 1 hour and in general the training time of ANN
i was

faster, around 5 minutes each for the 6D case. These CPU times are much larger than typi-

cal ab initio force calculation CPU times. However, if the ANN fits are already available,

in a region of the PES, the computation time for the potential energy and force calculations

(numerical derivatives for 12 cartesian coordinates) with 25 representation was around 3 to

4 seconds for each time step, which is faster than the usual ab initio calculations.

In conclusion, we find from our study that ANNs perform well at learning the PES “on-

the-fly” for reactant region, however more work needs to be done to make it work for reac-

tive regions of the PES. In most molecular systems, the amount of time the reactant spends

in the reactant or the product well is large. To this end, our “On-the-fly” ANN approach

can greatly reduce computational cost of computing forces/potentials in these regions once

many trajectories have sampled those regions. On the other hand, reactive regions often are

less likely to be sampled during trajectories. Hence it is reasonable to assume that the data
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collected in these regions would be less. It would be beneficial to store points at the reactive

region from multiple reactive trajectories till the concentration of the points in this region

is high enough. After that a single ANN can be trained to represent the reactive region.

Consequently, when going from reactant well to reactive region, the algorithm can shift to

the reactive PES as and when required.
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Chapter 4

Gas-Surface dynamics: Formaldehyde on
Au(111) surface
Inelastic scattering between gas molecules and surfaces is a fundamental process that has

been investigated extensively.102–112 During this process, energy exchange between the gas

and the surface results in changes in the internal and translational degrees of freedom of the

scattered gas molecules. However, the mechanism of energy transfer between the molecule

and surface is still not well understood. In recent gas-surface scattering experiments113 on

formaldehyde scattering off the gold surface, a high propensity to excite twirling motion

about the C-O bond axis was observed for the scattered formaldehyde molecules.

In the work presented here, we used classical trajectory simulation to understand energy

transfer in formaldehyde-surface collisions, to probe the mechanism of interconversion of

translational energy to rotational energy. Our simulations capture the trend of the experi-

ments for the formaldehyde-Au scattering, both in terms of rotational energy distribution,

as well as trapping probabilities.

The interaction of molecules with surfaces result in the physisorption and/or chemisorp-

tion of the adsorbate which are generally the initial steps in catalytic processes. Hence, the

interaction of atoms or molecules with solid surfaces has been a topic of research for almost

a century due to its importance in heterogeneous catalysis. In particular, several studies

have focused on investigation of the energy transfer between the adsorbate and the surface

since it directly influences the rate of adsorption and the ‘stickiness’ of the adsorbate on the

surface.104,106,114–116 The amount of time the atoms or molecules spend at the gas-surface

interface determines the extent to which energy transfer takes place.117 Also, the interac-
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tion between the adsorbate and substrate opens up channels of energy transfer between the

rotational, vibrational, and translational degrees of freedom of the species.105,118–121

Rainbow in atom-atom scattering has been observed in experiments,122,123 where there

lies a singularity in scattering intensity with respect to the scattering angle, which can

be mapped as a function of the impact parameter between the two colliding atoms.111,124

Similarly, rainbow scattering has been observed in scattering of atoms from a surface, in

which the scattering intensity also turns out to be a function of impact parameter for the

surface.107–110,125,126 Furthermore, rotational rainbow where one or both of the scattered

molecules is rotationally hot, has been observed for molecule-molecule collisions,122,123,127

and in diatomic molecules scattering from surfaces.126 In the latter case it has been pointed

out that the amount of rotational excitation of the departing molecule depends on the in-

cident orientation with respect to the surface. Experiments where such singularities are

observed, either in scattering intensities as a function of scattering angle or rotational excita-

tions with respect to orientation angle, in principle make it possible to deduce the interaction

potential between the two by looking at the scattered products.

There have been a few experimental studies looking at rotational rainbow of polyatomic

molecules from collision on surfaces,113,128,129 CH4 from LiF(100), NH3 from Au(111) and

H2CO on Au(111). The study involving NH3 scattering from Au(111) surface, was sup-

ported by classical trajectory simulations,130 where they find a high propensity for rotation-

ally cold NH3 molecules to be scattered into low-k states (tumbling rather than twirling).

The rotational rainbow was attributed to dynamical steering effect, where the rotationally

cold NH3 molecules had enough time to reorient itself in a particular orientation due to the

nature of interaction potential, before the collision.

Recent series of quantum state-resolved REMPI experiments have shown high propen-

sity to excite a-axis in collisions of formaldehyde with Au(111) surface.113,117 They find

that direct scattered formaldehyde molecules follow a non-maxwellian distribution in terms
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of rotational states.

In this study, we propose mechanisms which could explain what happens at molecule-

surface scattering, before and after the collision. The raison d‘être for the rotational rain-

bow turns out to be a consequence of dynamics on the interaction potential between the

formaldehyde and Au(111) surface. In what follows, we first reproduce the experimental

trends. Then we move on to the effect of surface temperature and orientation and finally

we look at energy transfer.

4.1 Methods

4.1.1 Potential energy model

The inelastic scattering of formaldehyde on gold surface was studied using all-atom classi-

cal trajectory simulations. The potential energy of the system is written as

V = Vgold + Vform + Vint (4.1)

where, Vgold, Vform, and Vint are potential energies of gold surface, formaldehyde, and the

interaction between gold surface and formaldehyde respectively. We used a rectangular-

shaped HCP lattice of gold (111) surface which consisted of three layers of Au atoms, with

a total (ng) of 1045 atoms. The bottom layer comprised of 342 gold atoms, while the middle

and top layers contained 361 and 342 atoms each. The four corner atoms of the first two

layers and all the atoms of the bottom layer were kept static through out the simulations. The

many-body semi-empirical Sutton–Chen (SC) interaction potential131 was used to represent

the bulk of gold atoms,

Vgold = ϵ

ng∑
i

[1
2

ng∑
j ̸=i

( a

rij

)n

− c
√
ρi

]
, (4.2)

ρi =
∑
j ̸=i

( a

rij

)m

. (4.3)
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where, ϵ = 1.2793 × 10−2 eV, a = 4.08 Å, m = 8, n = 10, and c is a dimensionless

quantity with a value of 34.408.

The formaldehyde was represented using Bowman’s 6D potential (Vform),101 which is

direct product of multinomials in Morse variables for six internuclear distances, r1, . . . , r6.

The interaction between gold and formaldehyde was represented using the 12-6 Lennard-

Jones (L-J) potential,

Vint =
∑
X

∑
Y

VXY (4.4)

where, the Xs are the Au atoms of the surface and Ys are the C, H, and O atoms of formalde-

hyde. The parameters used in the three types of L-J potential are given in Table 4.1.

Table 4.1: Definition of L-J parameters used to represent gold-formaldehyde interaction.

X Y ϵXY (kcal/mol) σXY (Å)
Au C 0.295 2.99132
Au H 0.002 3.95133
Au O 0.863 3.18133

4.1.2 Trajectory Simulations

All trajectory calculations were done with velocity Verlet algorithm using VENUS chemical

dynamics software package.134 The initial conditions used in the simulations were chosen

to model the experiments by Wodtke and coworkers.113 First, the gold surface was equi-

librated, for 40 ps with velocities re-scaled at every 60 fs to a desired temperature of Ts

K. After this, the surface was annealed for another 40 ps. The average temperature during

annealing was monitored and was found to be Ts K. This set of momenta and coordinates

of the gold atoms obtained at the end of the annealing were used as the initial conditions

for the gold surface for that trajectory.

For formaldehyde, the rotational temperature was set to 15 K, and a vibrational temper-

ature of 15Kwas sampled from a Boltzmann distribution. The angle between the formalde-
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hyde beam and the surface normal was kept at 0◦. Trajectories were initiated keeping the

distance between the center-of-mass (COM) of formaldehyde and the aiming point on the

surface at 20 Å and the system was time evolved for a maximum of 10 ps. Trajectories

were stopped if the distance between the COM of formaldehyde and the surface attained a

distance of 22 Å or if the COM of formaldehyde was close to the edge of the surface.

More than 8000 trajectories were carried out to study the formaldehyde-gold scattering

for five incident kinetic energies (collision energies): 0.33, 0.39, 0.47, 0.88 and 1.21 eV at

a surface temperature of 300 K which correspond to the experimental conditions.113

To study the effect of surface temperature on the dynamics at gas-surface scattering,

more than 2500 trajectories were calculated for each collision energy, for five different set

of surface temperatures, which are Ts = 140, 200, 300, 400 and 480 K. The temperature

range was chosen to be such based on the experimental setup of Wodtke and coworkers.113

Furthermore, to understand the effect of orientation around 1000 trajectories were ini-

tiated for each collision energy for a given set of five orientation, with the initial rotational

temperature set at 0 K. Three surface temperatures were simulated, which are Ts = 200,

300, and 400 K. Table A.1 gives the list of all computed trajectories.

4.1.3 Trajectory Analysis

To understand trapping probability, each set of trajectories were divided into two categories,

either trapping, or scattered. Any trajectory in which the formaldehyde was scattered away

by a distance of 22 Å after integration time of 10 ps, were classified as scattered. For

the rest of the trajectories, if the formaldehyde was still close to the surface after 10 ps,

we calculated formaldehyde’s kinetic energy in the positive z-direction along the surface

normal and compared it to the interaction potential. If the kinetic energywas greater than the

interaction potential, we considered the trajectory as scattered. The rest of the trajectories

were classified as trapped. The ratio of the number of trapped trajectories with respect to
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the total trajectories defined the trapping probability.

For all other analysis presented in this work, like average rotational energies, angular

distribution, we considered only those trajectories which were away from the surface by a

distance of 22 Å after 10 ps of integration time. Further, out of those trajectories we only

consider the ones in which the final vibrational energy of formaldehyde was greater than

the zero point energy.

The rotational energy of the direct scattered formaldehyde was studied in the three

axis of rotation, which are a-axis (twirling), b-axis (tumbling) and c-axis (cartwheeling)

as shown in the Figure 4.1. The blue arrow indicates the principle axis(x) of rotation. The

total rotational energy of formaldehyde is given by,

Erot = Ea + Eb + Ec (4.5)

Erot =
Lx

2

2Ix
+
Ly

2

2Iy
+
Lz

2

2Iz
(4.6)

where Lx, Ly and Lz are the rotational angular momenta of formaldehyde, Ix, Iy and Iz

are the moment of inertia tensor elements and x, y and z are the orthogonal directions in

the molecular frame of formaldehyde shown by blue, green and red arrows respectively

in Figure 4.1. The three molecular axis are shown as red, green and yellow. The rotation

with the blue axis as the axis of rotation denotes a-axis rotation. Similarly the rotation with

rotation with the green axis as the axis of rotation denotes b-axis rotation and the rotation

with the red axis as the axis of rotation denotes c-axis rotation is the After the end of each

scattered trajectory, we calculate the rotational energy in each axis averaged over another

300 time steps to get the final rotational energy.
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(a) (b) (c)

Figure 4.1: The three axes of rotation of formaldehyde. (a) Shows a-axis rotation, similarly
(b) and (c) show b-axis rotation and c-axis rotation respectively.

4.2 Results and discussion

For Ts = 300 K, a total of 8000 trajectories are analysed for each incident kinetic energy.

Figure 4.2 shows the average rotational energies of formaldehyde and trapping probabilities

for different collision energies obtained from the experiments.113 It also shows the rotational

energy distributions along the three axes of rotation obtained from simulations by Wodkte

et al.113 From our simulations, as shown in Figure 4.3(a), it can be seen that the average

total rotational energy (Erot) increases almost linearly with increase in collision energy, and

the magnitude of the rotational energies are comparable to experimentally observed values,

see Figure 4.2.113 And for all collision energies other than 0.33 eV, rotational energy in the

a-axis(Ea) dominates. The slight dip in the a-axis rotational energy when going from 0.88

to 1.21 eV is also observed in the experiments, but it is less pronounced than in experiments.

Figure 4.3(b) shows the trapping probabilities as a function of collision energy, compared

to the experimentally observed values. At low collision energies formaldehyde has enough

time to interact with the gold sheet, and it is expected that the trapping probability will tend

towards unity. Figure 4.4 shows the distribution ofErot for collision energy of 0.33 and 1.21

eV. The insets show the distribution in the individual axis of rotation. These distributions

are very different in terms of magnitude to the previously reported data (see panels (c), (d)

and (e) in Figure 4.2).113 We can see that, for 0.33 eV, the Erot distribution is exponential in

nature, while for 1.21 eV, it is not. It has signatures of a Gaussian centered around 0.5 eV.
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(c) (d) (e)

(a) (b)

Figure 4.2: This figure shows results fromWodtke et al’s work.113 Panels (a) and (b) shows
the average rotational energies and the trapping probabilities obtained from experiments.
Panels (c), (d) and (e) show the distribution of rotational energies for the three axis of rota-
tion computed from simulations.

4.2.1 Direct vs indirect scattering

Some trajectories fall under the category of trapping-desorption, where the formaldehyde

molecule bounces multiple times on the surface before leaving. Such trajectories have a

different distribution of final states. Figure 4.5 shows percentage of trajectories showing

trapping desorption as a function of collision energy for Ts = 300 K. It can be seen that

regardless of collision energy most of the trajectories are single bounce (direct scattered).

For all collision energies the percentage of direct scattered trajectories is more than 90%.
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Figure 4.3: (a) Rotational energies of formaldehyde as a function of collision energy and (b)
Trapping probabilities as a function of collision energy for Ts = 300K. The error associated
with the trapping probabilities is maximum for 0.39 eV at 1.04 %.
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Figure 4.4: Population distribution of rotational energies of formaldehyde for (a) 0.33 eV
and (b) 1.21 eV(b) of collision energies and Ts = 300 K.

Further, the percentage of direct scattered trajectories increases as a function of collision

energy. Trajectories having more than one bounce all have been clumped together in Figure

4.6 to show the average total rotational energy.

From Figure 4.6 it is clear that the more amount of time formaldehyde spends on the

surface, the more energy it can gain from the surface. Also the amount of rotational excita-

tion seems to be higher for higher collision energies which is known as “memory effect”.135

It states that the projectile’s final distributions in internal and external degrees of freedom
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Figure 4.5: Number of bounces as a function of collision energy.

depend on incidence parameters.117 And yet the contribution of trapping-desorption tra-

jectories to total rotational energy distribution of formaldehyde is hardly significant as the

number of trajectories is very low.

Figure 4.7 shows the distribution of direct and indirect scattered formaldehyde. It is

evident from the figure that the trajectories exhibiting multiple bounces tend to leave the

surface with much higher rotational energies.
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4.2.2 Effect of Temperature

To understand the role of the surface temperature (Ts) on the dynamics of rotational exci-

tation of formaldehyde, we simulated trajectories for different surface temperatures.

Figure 4.8(a) shows the Erot as a function of collision energy for different surface tem-

peratures. For low collision energy (Ts of 140K) the average rotational energy is the lowest

and increases almost linearly with the temperature. This clear distinction washes away as

we increase the collision energy. Figure 4.8(b) shows the average of individual compo-

nents of rotational energy. It can be clearly seen that a-axis rotation dominates through out

the surface temperature range sampled in this study. Figure 4.8(c) shows that the trapping

probability is mostly independent of the surface temperature. The slight rise in trapping
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Figure 4.7: Rotational energy distribution of trapping-desorption (multiple bounce) trajec-
tories (shown in red) and direct-scatter (single bounce) trajectories (shown in blue) for 1.21
eV of collision energy and Ts = 300 K. Please note that the populations are not additive
and each distribution is normalized independently for clarity.

probability seen for Ts = 400K at 1.21 eV of collision energy was checked by doubling the

number of trajectories, and it still remained. Population distribution of rotational energies

of formaldehyde are also very similar for different surface temperatures (not shown).
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Figure 4.8: Effect of surface temperature on (a) average rotational energy, (b) a-axis(blue),
b-axis(green) and c-axis(red) rotational energies, and (c) the trapping probabilities. The
maximum error associated with trapping probabilities is 2.1% for Ts = 200 K and collision
energy of 0.39 eV.

Scattering Angle

Scattering angle is defined as the angle subtended by the ejected molecule with respect to

the surface normal (n⃗1). Figure 4.9 shows the scattering angle for all surface temperatures

and collision energies considered in this study. It can be seen that the scattering angle for

high collision energies are lower than that of low collision energies. The mean scattering

angle for 0.33 eV collisions, regardless of surface temperature, is around 30◦, whereas the

mean scattering angle for 1.21 eV is around 15◦. Interestingly, low collision energies have

a higher variation of scattering angle.

4.2.3 Effect of orientation

Five different orientations used in this study to seewhat could be the source of the propensity

for a-axis rotation is shown in Figure 4.10. The orientations named OR1 to OR5 are chosen

in such a way that different orientations are expected to lead to different dynamics. 1024

trajectories were initiated for each collision energy, for each orientation. Also three Ts
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were sampled, which are 200, 300 and 400 K. For these set of trajectories the rotational

temperature was chosen to be 0 K.

Figure 4.11(a) shows the trapping probabilities of different orientations. It can be seen

that orientation plays an important role in the dynamics with respect to trapping probabili-

ties. At lower collision energies these effects are more pronounced. Figure 4.11(b) shows

the average trapping probabilities for the five orientations compared to the set of trajectories

for random orientation, Ts = 300 K, which shows a similar trend.
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OR1 OR2 OR3 OR4 OR5

Figure 4.10: Different orientations used in this study.
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Figure 4.11: (a) Trapping probabilities as a function of collision energy for different orienta-
tions and (b) trapping probabilities as a function of collision energy averaged over different
orientations compared to that of random orientation for Ts = 300 K.

Figure 4.12 (a) shows the average rotational energy for different orientations as a func-

tion of collision energy. OR1, in which oxygen atom is facing away from the gold surface

has the highest average rotational energy at high collision energies. This is attributed to the

high rotational excitation of b-axis and c-axis, as shown in Figure 4.12(b). For OR5, where

the formaldehyde molecule is parallel to the surface, the total average rotational energy de-

creases at higher collision energies. From Figure 4.12, it is evident that two orientations,
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OR3 and OR4 contribute to a-axis rotation and OR1 is responsible for high energy tail for

total average rotational energy.
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Figure 4.12: Effect of orientation on (a) total average rotational energy, (b) a-axis, b-axis
and c-axis rotational energies, for Ts = 300 K.
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Figure 4.13: Effect of orientation on (a) total average rotational energy, (b) a-axis, b-axis
and c-axis rotational energies for Ts = 200 K.

We carried out trajectories to understand orientation effect for Ts = 200 K and Ts =

400 K also (see Figures 4.13 and 4.14). Irrespective of the surface temperature we see

that average rotational energies for different orientations, change as a function of collision

energy. At higher collision energies, OR1 gives rise to high rotational excitation, while for

low collision energies, OR3 seems to dominate.
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Figure 4.14: Effect of orientation on (a) total average rotational energy, (b) a-axis, b-axis
and c-axis rotational energies for Ts = 400 K.

4.2.4 Energy Transfer

To understand the source of the rotational energy excitations, we looked at the energy trans-

fer of formaldehyde to the gold surface. When the formaldehyde is far away from the gold

surface, their total energies are independent of each other. The total energy of formaldehyde

is given as,

ETotal = V (r1, . . . , r6) +K

ETotal = V (r1, . . . , r6) + Erot + Etrans + Evib

(4.7)

where V (r1, . . . , r6) is the potential energy of formaldehyde, Erot is the total rotational en-

ergy for formaldehyde,Etrans is the kinetic energy of the center of mass of formaldehyde and

Evib is the vibrational energy. We calculated all the components of the total energy before

the collision and compared them with the components after the collision, when formalde-

hyde is not interacting with the surface anymore. The difference among the individual

components gives insight to the source of rotational excitation. Figure 4.15 shows the dif-

ferent distributions for energy transfer for Ts = 300 K and 1.21 eV collision energy, for

formaldehyde initiated with random orientation.

We can see that formaldehyde always loses vibrational energy (green) to the gold sur-
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face. Interestingly, the blue curve which depicts the loss in translational energy of formalde-

hyde matches in magnitude to the gain in rotational energy. For different orientations, i.e.,

OR1 to OR5, we see very similar trends (not shown). The change in vibrational energy of

formaldehyde was found to be independent for all orientations, other than OR5, where we

see that the scattered formaldehyde molecules are somewhat vibrationally cold.
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Figure 4.15: Distribution of energy transfer between formaldehyde and the gold sheet for
1.21 eV of collision energy and Ts = 300 K, calculated from trajectories, starting with
random orientation. Black line in the middle corresponds to 0 eV transfer.

To confirm that the exact source of the rotational energy excitation was in fact the initial

kinetic energy of the incident formaldehyde molecule, we looked at the correlation between

Etrans and Erot as shown in Figure 4.16. We divided the rotational distribution into three

groups, with average rotational energy gain of 0.1 eV, 0.48 eV and 0.76 eV. For these three

groups we plotted the gain in rotational energy with loss in translational energy (Figure

4.16(a)), and loss in total energy (Figure 4.16(b)). It becomes evident that as the formalde-
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hyde rotational excitation increases, it is more likely that the formaldehyde would have lost

translational kinetic energy. It should be pointed out that these results are independent of

the grouping considered here. Figure 4.17 shows the same analysis for OR1 and similar

trends are observed.
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Figure 4.16: (a) shows gain in rotational energy of formaldehyde compared to the loss in
translational energy and (b) shows gain in rotational energy of formaldehyde compared to
the loss in total energy for Ts = 300K. The gain in rotational energy is divided into 3 regions
marked by the color pink, yellow and black. For the same trajectories the graph on the
left shows the corresponding loss in translational energy(a), and (b) Total energy.(Random
orientation).
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Figure 4.17: (a) shows gain in rotational energy of formaldehyde compared to the loss in
translational energy and (b) shows gain in rotational energy of formaldehyde compared to
the loss in total energy for Ts = 300 K. The gain in rotational energy is divided into 3
regions marked by the color pink, yellow and black. For the same trajectories the graph on
the left shows the corresponding loss in translational energy(a), and (b) Total energy.(OR1).
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4.2.5 Mechanism of Energy Transfer

To understand the importance of the orientation on rotational excitation and to deduce the

mechanism of energy transfer, we generated the interaction potential of formaldehyde with

that of the gold surface (for the equilibrium geometries of formaldehyde and gold). The

coordinate system used for the generation of the interaction potential is given in Figure

4.18. Here, β is the angle between the normal of the plane containing CH2 group (n⃗2) and

surface normal (n⃗1), γ is the angle between vector C⃗O and surface normal (n⃗1) and Cz the

distance of center of mass of formaldehyde from the surface. We assume that the geometries

of gold and formaldehyde do not change much from their equilibrium structures during the

dynamics.

Figure 4.18: Illustration of β, γ angles and Cz distance. n⃗1 is the gold surface normal, n⃗2 is
the normal of the surface containing CH2 (denoted by blue). β(blue) is the angle between
n⃗1 and n⃗2, γ(red) is the angle between n⃗1 and C⃗O and Cz(green) is the distance of center of
mass from the gold surface.

The interaction potential Vint(β, γ, Cz) is shown in Figure 4.19 (a). Green colour rep-
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resents negative Vint values, whereas red colour represents positive values, and black cor-

responds to Vint = 0 eV. When the distance of formaldehyde from the surface is large, Vint

goes to 0 eV. But as it decreases, we can see that the different orientations feel different

interaction energies.
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Figure 4.19: Interaction potential as a function of β, γ and Cz. (a) Four contour plots,
starting from the bottom, of the interaction potential at Cz values of 3.7, 4.2, 4.7 and 5.2
Å are shown. (b) The minimum energy surface for all possible orientations.

Figure 4.19 (b) shows the minimum energy surface for all possible orientations. The

energy spanned by the minimum energy surface goes from −0.1 eV (β = 90◦, γ = 36◦,

Cz = 4.3 Å) to −0.3 eV (β = 178.8◦, γ = 88◦, Cz = 3.19 Å). The iso-energetic surface

corresponding to 1.21 eV, which is the “repulsive wall”, happens to be almost identical in

shape to the minimum energy surface, but about 1.5 Å lower than it (not shown).

To investigate themechanism of rotational rainbow, we divided the scattered trajectories

for Ts = 300 K, starting with random orientations into two sets. Set 1 has trajectories in

which Ea ≥ (Eb + Ec), and rest of the trajectories are in Set 2. Figure 4.20 shows the

starting orientation of the two sets. Set 1 has 47% of scattered trajectories, whereas Set 2

has 53%. We then plotted the orientations at the point of closest approach, of these two sets

of trajectories as shown in Figure 4.21. We can clearly see that as the formaldehyde comes
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Figure 4.20: The initial orientations at the starting of the trajectory (dots) projected on the
surface for interaction potential of formaldehyde with the gold surface at a distance of 3.7
Å for trajectories where (a) Ea ≥ Eb + Ec and (b) Ea < Eb + Ec.

closer to the gold surface, only some orientations are selected, which can be attributed to the

shape of the minimum potential energy surface in Figure 4.19(b). Additionally, the colour

of the dots represent Erot, which gives us information about the underlying mechanism of

rotational excitation. We can see that most of the trajectories with low rotational excitation,

approach the minimum energy region with an orientation similar to that of OR5. For the

rest of the trajectories the orientation in which the oxygen atom is pointing towards the gold

surface (OR2) is almost always selected.

To understandwhy a-axis rotation is higher, we looked at the dynamics, after themolecule

has reached the point of closest approach. It should be pointed out that oscillations in β cor-

responds to a-axis rotation, and oscillations in γ angle or oscillations in a combination of β

and γ angles correspond to b-axis or c-axis rotations. There are some orientations for which

the (β,γ) combination will not work. For example if the formaldehyde is undergoing a-axis

rotation but the C⃗O is exactly parallel or anti-parallel to the surface normal (n⃗1), then the β
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4 Gas-Surface dynamics: Formaldehyde on Au(111) surface

angle will remain constant as a function of time.
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Figure 4.21: The dots represent the orientation at the point of closest approach, and the
surface is the interaction potential of formaldehyde with the gold surface at a distance of
3.7 Å. (a) and (c) are for trajectories whereEa ≥ Eb+Ec and (b) and (d) are for trajectories
where Ea < Eb + Ec.

Figure 4.22 shows a few steps after the molecule has reached the point of closest ap-

proach, and is en route to scatter, for those trajectories in which the amount of rotational

excitation is greater than 0.3 eV. Part (a) of Figure 4.22 is for cases where a-axis rotation

is more, and we see that the orientation shifts towards lower γ value, which corresponds

to c-axis rotation, but before the molecule can exit, it is affected by the barrier that lies at
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4 Gas-Surface dynamics: Formaldehyde on Au(111) surface

γ = 36◦ (≈ 0.18 eV).
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Figure 4.22: Dynamics after the point of closest approach for the two sets (a) Set 1 (b) Set 2,
projected onto the minimum energy surface. All the trajectories shown here have Erot > 3
eV. Only 200 trajectories for each set are plotted for clarity. Each arrow signifies a timestep
of 2 fs, and 10 fs worth of trajectories have been plotted after the formaldehyde reaches the
point of closest approach.

The barrier induces a torque on formaldehyde along the CO-axis, converting the c-axis

angular momentum to a-axis rotation (oscillations along β). In part (b) of Figure 4.22,

we see that β and γ start changing at the same time, and gives rise to b-axis rotation, or

the oscillations in γ take over, but by then the molecules are already far enough from the

surface to be affected by the barrier. This explains the near 50% probability of getting a-axis

rotation.

4.3 Summary and Conclusions

In this study, we model and simulate the scattering of formaldehyde from gold(111) surface

using classical mechanics. We could reproduce the trends seen in experiment,113 both in

terms of rotational energies as well as trapping probabilities. Moreover the translational
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energies of scattered formaldehyde also matched with the experiments.117 We classified

trajectories based on the number of bounces as direct scattered or indirect scattered and we

found that indirect scattered trajectories had higher rotational energies. After that we looked

in to the effects of surface temperature, andwe found that the final product state distributions

were independent of the surface temperature. We also looked at the orientation effect, and

it turns out to play an important role in deciding the final state distributions. Further, we

looked at the energy transfer of formaldehyde to the surface, and it was found that the

source of the rotational excitation was the initial kinetic energy of formaldehyde. Finally,

we looked at the rotational dynamics and we could identify a mechanism which shows why

the scattered formaldehyde molecules shows rotational rainbow in a-axis. It turns out that

most of the scattered trajectories at the point of closest approach, have oxygen atom pointed

towards the gold surface. Around 50% of these trajectories move towards a barrier in the

interaction potential and then are deflected by the barrier, giving rise to a-axis rotation. Rest

of the trajectories end up having either b-axis rotation or c-axis rotation as the dominant

rotational mode.

In conclusion, we could understand the mechanism of rotational rainbow arising from

the interaction of polyatomic gas molecule with a metal surface at the atomistic level. The

interaction of the gas molecule with the minimum energy surface seems to give rise to the

rotational rainbow. During collision, the formaldehyde reorients to access certain regions of

the PES following the minimum energy path. Such orientational steering has been reported

in earlier work for CO126 and NH3.130 Futhermore, the transfer of energy from translational

to rotational mode, may help in trapping of such molecules when gold is used as a catalyst

and the surface involved is coarse or irregular.
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Chapter 5

Gas-Surface dynamics: Formaldehyde on
graphene surface
To continue our investigation of gas-surface interaction, we looked into the rotational exci-

tation of formaldehyde upon scattering from a single layer graphene (SLG) sheet. Graphene

has been used as a surface in a number of surface scattering experiments. Inelastic scatter-

ing of hydrogen atoms from graphene sheet has been studied by Wodkte et al,136 and they

find that the dynamics of adsorption of hydrogen atoms to the graphene surface involves

atleast four carbon atoms. Hydrogen atom colliding with graphene sheet with defects has

also been modeled computationally, by Lischka et al.137 They reported the collision of hy-

drogen atoms around an already existing sp3 CH defect on a single layer graphene sheet.

They found that despite the energy surface being globally repulsive, local channels can

be created because of the defect on the surface, through which reactants (other hydrogen

atoms) can move and react without a barrier. Recently, the scattering of NO from graphene

sheet has been explored both experimentally138,139 as well as theoretically140 by Koehler et

al, and it was seen that the scattered NO exhibited rotational rainbow.

Graphene as surface is very different from gold, in terms of rigidity and molecular mo-

tion. Also, the interaction of formaldehyde atoms with graphene quite different from that

of gold surface. In gold-formaldehyde, the interaction of oxygen atom with gold atoms was

attractive, whereas for the graphene surface, the hydrogen atom facing the C-atoms is the

most attractive.141 Thus, the dynamics of formaldehyde on this surface is expected to be

different.

In this chapter, the study of formaldehyde scattering from SLG sheet using classical
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5 Gas-Surface dynamics: Formaldehyde on graphene surface

20 Å

Figure 5.1: The graphene surface and the formaldehyde at the starting geometry. All atoms
in this image are at 0 K, but for trajectories we equilibriate the surface to 300 K.

trajectory simulations is reported.

5.1 Potential Energy Model

The graphene was modelled using a single layer of size 100 × 100 Åconsisting of 3986

sp2-hybridized carbon atoms. Four atoms at the edges of the sheet were fixed during the

course of the simulations. The system is shown in Figure 5.1. The potential of the system

is given by,

V = VFormaldehyde + VGraphene + Vinteraction (5.1)

where VFormaldehyde is the 6D potential of formaldehyde given by Bowman,101 VGraphene is the

potential of graphene surface modelled using AMBER force fields and Vinteraction is the inter-

action potential between graphene surface and formaldehyde. The graphene-formaldehyde

interaction potential141 was expressed as the sum of two-body interactions between the
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5 Gas-Surface dynamics: Formaldehyde on graphene surface

atoms X of graphene sheet and the atoms Y of formaldehyde, given by,

Vinteraction =
∑
X

∑
Y

VX...Y (5.2)

where,

VX...Y = Ae−Br + f(r)

[
C

r2
+
D

r4
+
E

r6
+
F

r8

]
(5.3)

and,

f(r) =

{
e−
(

R
r
−1
)2

, r < R

1, r ≥ R
(5.4)

The parameters used in the interaction potential are given in Table 5.1.

Table 5.1: Parameters for graphene-formaldehyde interaction.

X . . . Y A B C D E F R

Cp . . .C 8305 2.87 1.00 -55.40 -145 -2184 2.4
Cp . . .O 42624 3.36 0.81 84.80 -1442 -3720 2.3
Cp . . .H 9719 3.50 -1.00 1.85 -222 -334 2.3

The SLG sheet represented using the AMBER142 force field is given by,

VGraphene = Vstretch + Vbend + Vdihedral (5.5)

where Vstretch is the two-body potential given by,

Vstretch =

Nstretch∑
i=1

1

2
fr(ri − r0)

2 (5.6)

Vbend is the three-body potential given by,

Vbend =

Nbend∑
i=1

1

2
fθ(θi − θ0)

2 (5.7)

and Vdihedral are the four-body potentials given by,

Vdihedral =

Ndihedral∑
i=1

knd
2

[
1 + cos(nϕ− γn)

]
(5.8)
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5 Gas-Surface dynamics: Formaldehyde on graphene surface

5.1.1 Trajectory Simulations

All trajectory calculations were done with velocity-Verlet algorithm using VENUS chem-

ical dynamics software package.134 The surface was equilibrated for 2 ps, with velocities

rescaled every one fs, to a temperature of 300 K. Further, the surface was annealed for an-

other 60 ps. The list of trajectories calculated for different conditions is given in Table B.1.

We start the trajectories with formaldehyde randomly oriented, at a distance of 20 Å above

the surface. The vibrational temperature and the rotational temperature of formaldehyde is

set at 15 K sampled from a Boltzmann distribution which correspond to typical chamber

conditions in molecular beam experiments for formaldehyde-gold system.113 As in the case

of formaldehyde-gold system, we sample five collision energies (Ecoll) i.e., 0.33, 0.39, 0.47,

0.88 and 1.21 eV. For each collision energy we run, ≈ 2500 trajectories for 10 ps. Further,

to study the effect of orientations, three orientations were sampled which are OR1, OR2,

OR5 (shown below). In this case, the rotational temperature of formaldehyde was set to be

0 K and the vibrational temperature was set at 15 K, sampled from a Boltzmann distribution.

For each of these orientations, we sampled the five collision energies of formaldehyde and

for each combination, around 6000 trajectories were computed. In all the analysis reported

here, if after 10 ps, the formaldehyde was less than 20 Å away from the surface we labelled

the trajectories as trapped, else the trajectories were classified as scattered. The scattered

trajectories were analyzed and their internal energies (Etrans, Erot and Evib) of formaldehyde

were calculated.

5.2 Results and Discussion

The calculated trapping probability of graphene-formaldehyde system are compared to that

of gold-formaldehyde system in Figure 5.2. From the figure it can be seen that the trapping

probabilities are much higher than for the gold-formaldehyde system. Further, the decline

101



5 Gas-Surface dynamics: Formaldehyde on graphene surface

in trapping probability with increase in collision energy is nearly linear for this system.

The large trapping probability of formaldehyde seen in the formaldehyde-greaphene system

is possibly due to strong interaction between formaldehyde and graphene and their higher

propensity for attractive interaction due to the two hydrogen atoms of formaldehyde. Figure

5.3 shows the distribution of Cz for trapped formaldehyde. It can be seen that more than

96% of trapped formaldehyde are below 10 Å after 10 ps of trajectory simulation.
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Figure 5.2: Trapping probability as a function of collision energy for formaldehyde-gold
(purple) and formaldehyde-graphene (green) systems.

The average total rotational energies (〈Erot〉), of scattered formaldehyde for different

collision energies are shown in Figure 5.4. Despite having very different trapping probabil-

ities, 〈Erot〉 follow a similar trend to that seen in the gold-formaldehyde system. However,

the formaldehyde are rotationally hotter in the formaldehyde-graphene system and the con-

tribution from each rotational differ for each collision energy. At 0.33 eV collision energy

we see that a-axis rotation dominates and yet, above 0.88 eV the rotational rainbow can be

seen in the b and c axis. The population distribution of rotational states for collision energy
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Figure 5.3: The distribution of Cz for the trapped formaldehyde.

of 1.21 eV, decreases as an exponential function, unlike in the case of gold-formaldehyde

system where a gaussian hump could be seen in the total rotational energy distribution,

centered at around 0.5 eV, see Figures 4.4 and 5.5. In the inset of Figure 5.5, population

distribution of rotational states are shown for different axis of rotation. The a-axis rotation

has more population with low energies, whereas b-axis and c-axis have longer tails with

high rotational energies, which results in higher average rotational energies in those modes

of rotation.

5.2.1 Direct vs Indirect Scattering

Similar to previous chapter, we classify trajectories as either trapping-desorption, when

the formaldehyde bounces multiple times on the graphene sheet before leaving the surface,

or as direct-scattered, where the formaldehyde bounces only once. Figure 5.6 shows the
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Figure 5.4: Average rotational energy of formaldehyde as a function of collision energy.
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Figure 5.6: Average rotational energy of trapping-desorption (multiple bounce) trajectories
shown in red, and direct-scattered trajectories (single bounce) are shown in blue.

average rotational excitation of formaldehyde for direct-scattered and trapping-desorption

trajectories. Interestingly, for graphene-formaldehyde we see that the direct-scattered tra-

jectories lead to higher rotational excitation of scattered formaldehyde. In contrast, in the

gold-formaldehyde system we observed trapping-desorption trajectories to have higher ro-

tational excitation.

5.2.2 Effect of Orientations

We simulated trajectories to understand the role of orientation of formaldehyde on the rota-

tional excitation. The three orientations used are shown in Figure 5.7, and the corresponding

trapping probabilities for these orientations are shown in Figure 5.8.
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OR1 OR2 OR5

Figure 5.7: Different orientations used in this study.
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Figure 5.8: Trapping probabilities for different orientations.

We can see that OR1 and OR5 follow similar trend, while for OR2, the trapping prob-

ability shows a sharp decrease before levelling off. This is consistent with the attractive

interaction felt in OR1 and OR5. The average total rotational energies for these three ori-
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Figure 5.9: Average total rotational energies for different orientations.

entations are shown in Figure 5.9. OR1 has the lowest rotational excitation throughout the

collision energy range covered in this study, and at collision energies beyond 0.39 eV, OR5

orientation has the highest rotational energies. Figure 5.10 shows the components of rota-

tional energy along the three axis of rotation for the three orientations. We can see that, for

OR1 and OR2, the Ea is nearly constant increase in Ecoll. However, for OR5, Ea increases

with Ecoll. In addition, for OR1, we see that Ea, Eb and Ec are nearly independent of the

collision energies indicating complimentaryEvib/Etrans excitation. Interestingly of OR2 and

OR5, Eb and Ec are higher than Ea.
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Figure 5.10: The components of rotational energies for different orientations. (a) OR1 (b)
OR2 and (c) OR5.
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5.3 Energy Transfer
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Figure 5.11: Minimum potential energy surface of formaldehyde-graphene interaction as a
function of angle β, γ and the center of mass distance of formaldehyde from the surface.
Different orientations are shown, with OR1 having the least potential well depth (white dot).
All energies are in eV.

To investigate the energy transfer process that happens during the scattering process, we

looked into the interaction potential during the approach of the projectile. The interaction

potential is defined as a function of the orientation of formaldehyde (equilibrium geometry),

by the angles β and γ, with respect to the plane defined by the rigid atoms of the graphene

sheet and the distance of the center of mass of formaldehyde to the plane of rigid atoms of
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5 Gas-Surface dynamics: Formaldehyde on graphene surface

graphene sheet, denoted as Cz. Figure 5.11 shows the minimum potential energy surface of

formaldehyde and graphene surface.
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Figure 5.12: The dots represent the orientation at the point of closest approach, and the
surface is the minimum interaction potential of formaldehyde with graphene surface. (a)
and (c) are for trajectories where Ea ≥ Eb + Ec and (b) and (d) are for trajectories where
Ea < Eb + Ec, (a) and (b) are for 1.21 eV collision energy, and (c) and (d) are for 0.88 eV
collision energy.
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We then identified the point of closest approach by following the Cz (i.e. the lowest

Cz). The point of closest approach for each trajectory is projected onto the minimum energy

surface in Figure 5.12 for two collision energies, 0.88 eV and 1.21 eV for trajectories with

random initial orientation. The color indicates the rotational excitation. It is evident from

the figure that at the point of closest approach only OR1, OR2 and OR5 are preferred. The

orientations where the plane of formaldehyde is perpendicular to the surface and the C⃗O is

parallel to the surface (region near β=90◦ and γ=90◦) are almost always avoided.
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Figure 5.13: The arrows represents 100 time steps or 20 fs worth of trajectory. (a) is for
trajectories where Ea ≥ Eb + Ec and (b) is for trajectories where Ea < Eb + Ec, both (a)
and (b) are for 0.88 eV collision energy.

We then followed the direction of trajectories on the (β, γ) plane for 20 fs from the

point of closest approach and are shown in Figure 5.13. From Figure 5.13, it is not very

clear how the mechanism proceeds. The only thing that we are confident about is that only

a few selected configurations take part in rotational excitation. All the rest of the collision

energies showed similar trajectories as shown in Figure 5.13. This can be attributed to

the fact that graphene sheet during simulations show large amplitude (in the z− direction,
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perpendicular to the plane of SLG) undulations moving across the surface, unlike in the case

of a hard surface like gold. It can be said that the projection of trajectories on the minimum

energy surface may be a good discription to identify the enerrgy transfer mechanism for

soft surfaces like graphene.

Figure 5.14, gives the energy transfer computed as the difference between the initial

and final energies of formaldehyde in the trajectories for Ecoll = 1.21 eV. It can be seen

that almost all of the trajectories lose most of its translational kinetic energy. Further, the

average loss in total energy of formaldehyde when scattering off of graphene surface larger

(0.87 eV), and than that for gold surface (0.55 eV).We also looked at the number of bounces

for 1.21 eV. Around 50% trajectories bounce multiple times on the surface before getting

scattered. Interestingly, we found that the average rotational excitation for trajectories with

multiple bounces in formaldehyde-graphene case was 0.13 eV, compared to single bounce

trajectories which had an average rotational energy of 0.21 eV. Also, for all the trajecto-

ries it can be seen that formaldehyde always loses total energy to the graphene sheet upon

collision.
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Figure 5.14: Energy transfer for 1.21 eV of collision energy.

5.3.1 Effect of Orientation on Energy Transfer

We also looked into the effect of orientation on energy transfer. The results are compiled in

Figure 5.15 forEcoll = 1.21 eV. Here also we find that in all the orientations sampled in this

study, yielded scattered formaldehyde molecules with less energy than that before collision

with the SLG. From Figure 5.15, we can see that OR1 is the orientation in which the least

amount of energy is transferred into the rotational modes (0.07 eV), followed by OR2 (0.13

eV) and OR5 (0.21 eV). Further, for the OR5 orientation, the formaldehyde loses most of

its translational kinetic energy (1.1 eV), and also it loses its vibrational energy (0.02 eV),

which are transferred to formaldehyde’s rotational modes.
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Figure 5.15: Energy transfer for 1.21 eV of collision energy for different orientations. (a)
OR1, (b) OR2 and (c) OR5.
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5 Gas-Surface dynamics: Formaldehyde on graphene surface

5.4 Summary and Conclusions

After studying two surfaces for scattering of formaldehyde, we can say that the surface plays

a vital role in final product state distribution and trapping probabilities. In the case of gold

and formaldehyde, we saw a rotational rainbow (both experimentally and computationally)

which was independent of the collision energy. Whereas for the formaldehyde-graphene

system, the rotational rainbow depends on the collision energy. Further, the rotational rain-

bow seen in graphene and formaldehyde is mostly in the b and c axis, unlike a axis rota-

tional rainbow in gold-formaldehyde system. The mechanism of such rotational rainbow

also seems to be different. Despite the different mechanisms, the average rotational energy

of scattered formaldehyde for graphene-formaldehyde system is comparable to that of gold-

formaldehyde system. In addition, the energy transfer between the surface and formalde-

hyde have distinctly different signatures. For the gold-formaldehyde system we saw that

the more time the formaldehyde spends on the surface (multiple bounce trajectories), the

more energetic (internal states) the scattered formaldehyde was. On the contrary, graphene

surface seems to reverse this effect, where the longer time the formaldehyde spends on the

surface the more energy is lost. We also looked at three orientations, and found that cer-

tain orientations (OR5) give rise to scattered formaldehyde with higher average rotational

energies. It must be stressed that these results for formaldehyde-graphene have no experi-

mental counterpart, however from preliminary calculations it is evident that the gas-surface

interaction decides the final internal states of scattered gas molecules.
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Chapter 6

Conclusions and Outlook
In this thesis, research on the use of machine learning methods to represent potential energy

surfaces and energy transfer in gas-surface scattering are reported. We summarize below

the important findings of the research work reported in the thesis.

• The potential energy surface for three systems that are important molecules in the

interstellar medium, namely HeH++H2, C5N−+H2 and C−
2 + H2 were investigated.

We used machine learning methods, vizGaussian process for regression and artificial

neural networks to represent highly accurate potential energy surfaces of each of these

systems. All the potential energy surfaces were generated as FORTRAN subroutines

that can be used for dynamical simulations.

• The possibility of representing the potential energy surface “on-the-fly” using ma-

chine learningmethods, during direct dynamics simulations have been explored. Two

algorithms were developed and tested, using Gaussian processes for regression and

neural networks. The Gaussian process for regression algorithm works well for low

dimension, whereas the neural network schemewas found to work upto 6 dimensions.

• The origin of the rotational rainbow observed in experiments113 during scattering of

formaldehyde from gold surface was investigated using classical trajectory simula-

tions. We found that the orientational steering driven by the minimum energy path

causes the rotational rainbow during the scattering process.

• The influence of the nature of the surface on the energy transfer in gas-surface scat-

tering was investigated by taking formaldehyde-graphene as a model system. The
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6 Conclusions and Outlook

results of the classical simulations point out that the rotational rainbow in this sys-

tem is different from that of formaldehyde-gold system and depends on the collision

energy of formaldehyde.

Machine learning has completely replaced the daunting task involved with fitting an

analytic functions to represent the potential energy surface for higher dimensional systems.

It has emerged as a successful alternative to the traditional process of “curve fitting” and

has been extended to systems as large as 21 dimensions. They generally involve huge data

in orders of millions of points for fitting. The representation of potential energy surfaces

by machine learning using minimum number of points is still a bottleneck. To this end, the

“on-the-fly” representation of potential energy surfaces provides an alternative. However,

efficient schemes for practical implementation need to be developed.

For the gas-surface scattering it would be interesting to investigate the dependence of

rotational rainbow on the incident angle. In addition, it is worth exploring the influence of

(i) the nature of the surface using different surfaces and (ii) different gas colliders.
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Appendix A

Table A.1: Statistics of the trajectories considered in the study for different initial conditions
for gold-formaldehyde system.

Surface
tempera-
ture, Ts(K)

Rotational
tempera-
ture (K)

Orientation Collision
energy
(eV)

No. of
trajecto-
ries

Scattered
(ZPE

corrected)

Trapped

1.21 2560 2504 (1346) 56
0.88 2560 2387 (1141) 173

140 15 random 0.47 2592 1737 (605) 855
0.39 2876 1401 (437) 1475
0.33 2560 931 (266) 1629
1.21 2560 2500 (1371) 60
0.88 2560 2401 (1171) 159

15 random 0.47 2560 1662 (578) 898
0.39 2286 1109 (346) 1177
0.33 2560 1019 (303) 1541
1.21 1024 996 (424) 28
0.88 1024 955 (420) 69

OR1 0.47 1024 790 (250) 234
0.39 1024 700 (229) 324
0.33 1024 622 (162) 402
1.21 1024 1024 (551) 0
0.88 1024 1022 (525) 2

OR2 0.47 1024 798 (380) 226
0.39 1024 618 (311) 406

200 0.33 1024 498 (221) 526
1.21 1024 1024 (554) 0
0.88 1024 1007 (515) 17

0 OR3 0.47 1024 472 (138) 552
0.39 1024 279 (67) 745
0.33 1024 196 (45) 828
1.21 1024 1024 (575) 0
0.88 1024 1017 (499) 7
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OR4 0.47 1024 754 (316) 270
0.39 1024 599 (236) 425
0.33 1024 467 (169) 557
1.21 1024 1024 (940) 0
0.88 1024 1022 (889) 2

OR5 0.47 1024 784 (528) 240
0.39 1024 670 (414) 354
0.33 1024 563 (313) 461
1.21 11880 11580 (6196) 300
0.88 9600 8935 (4262) 665

15 random 0.47 9600 6198 (2260) 3402
0.39 8807 4409 (1457) 4398
0.33 14982 5869 (1876) 9113
1.21 1024 968 (420) 56
0.88 1024 938 (369) 86

OR1 0.47 1024 767 (238) 257
0.39 1024 661 (196) 363
0.33 1024 589 (154) 435
1.21 1024 1021 (550) 3
0.88 1024 1005 (521) 19

OR2 0.47 1024 742 (351) 282
0.39 1024 594 (251) 430

300 0.33 1024 480 (218) 544
1.21 1024 1024 (567) 0
0.88 1024 984 (471) 40

0 OR3 0.47 1024 519 (169) 505
0.39 1024 347 (109) 677
0.33 1024 260 (85) 764
1.21 1024 1018 (568) 6
0.88 1024 1000 (499) 24

OR4 0.47 1024 724 (305) 300
0.39 1024 636 (244) 388
0.33 1024 460 (191) 564
1.21 1024 1024 (903) 0
0.88 1024 1017 (865) 7

OR5 0.47 1024 792 (555) 232
0.39 1024 668 (412) 356
0.33 1024 560 (348) 464
1.21 5276 5012 (2645) 264
0.88 5120 4696 (2168) 424

15 random 0.47 5256 3272 (1169) 1984
0.39 5096 2651 (902) 2445
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0.33 5120 2182 (685) 2938
1.21 1024 958 (414) 66
0.88 1024 928 (379) 96

OR1 0.47 1024 722 (223) 302
0.39 1024 639 (232) 385
0.33 1024 576 (170) 448
1.21 1024 1020 (482) 4
0.88 1024 998 (496) 26

OR2 0.47 1024 725 (312) 299
0.39 1024 587 (266) 437

400 0.33 1024 483 (194) 541
1.21 1024 1020 (550) 4
0.88 1024 974 (456) 50

0 OR3 0.47 1024 551 (210) 473
0.39 1024 381 (134) 643
0.33 1024 333 (107) 691
1.21 1024 1021 (551) 3
0.88 1024 993 (515) 31

OR4 0.47 1024 720 (311) 304
0.39 1024 589 (233) 435
0.33 1024 503 (173) 521
1.21 1024 1023 (887) 1
0.88 1024 1006 (839) 18

OR5 0.47 1024 764 (530) 260
0.39 1024 670 (465) 354
0.33 1024 555 (386) 469
1.21 2560 2492 (1339) 68
0.88 2560 2340 (1078) 220

480 15 random 0.47 2560 1703 (592) 857
0.39 2958 1589 (538) 1369
0.33 2728 1125 (344) 1603
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Appendix B

Table B.1: Statistics of the trajectories considered in the study for different initial conditions
for graphene-formaldehyde system.

Surface
tempera-
ture, Ts(K)

Rotational
tempera-
ture (K)

Orientation Collision
energy
(eV)

No. of
trajecto-
ries

Scattered
(ZPE

corrected)

Trapped

1.21 2500 988 (447) 1512
0.88 3200 810 (388) 2365

15 random 0.47 3840 259 (112) 3581
0.39 3840 173 (73) 3667
0.33 7680 271 (113) 7409
1.21 6400 2607 (1096) 3793
0.88 6400 1301 (515) 5099

OR1 0.47 6400 288 (74) 6112
0.39 6400 175 (46) 6225
0.33 20591 128 (0) 20463

300 1.21 6400 2281 (1134) 4119
0.88 6400 2192 (1061) 4208

0 OR2 0.47 6400 911 (435) 5489
0.39 6400 482 (205) 5918
0.33 20923 649 (160) 19644
1.21 6400 3178 (2625) 3222
0.88 6400 1566 (1285) 4834

OR5 0.47 6400 337 (177) 6063
0.39 6400 176 (123) 6224
0.33 20255 563 (530) 19692
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