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ABSTRACT

Mahler measure of an algebraic mteger o, denoted by M («), 1s the product of all the
conjugates of « that lies outside the unit circle of the complex plane. One of the longstand-
g open problem related to the Mahler measure 1s the Lehmer problem which asks for an
absolute constant ¢ > 1 such that M («) > ¢ for any nonzero algebraic integer o which 1s
not a root of unity. Though this problem has been verified for various classes of algebraic
integers, including the class of nonreciprocal algebraic integers, the general case remains
open. In this thesis, we study the relationship between the lower bounds of the Mahler
measure and the splitting of primes m number fields. As a consequence of our results, we
answer the Lehmer problem affirmatively for various classes of algebraic integers. For ex-
ample, one of our results imply that if all the residual degrees of primes in Og,) Which
lie above 2 are any fixed positive integer n, then either M(a) = 1 or M(«) > QT |
In another direction, we obtain a lower bound for the Mahler measure for a class of re-
ciprocal algebraic integers, which improves the best unconditional lower bound given by
Dobrowolski for this class. We also study in this thesis some upper bounds for the number
of algebraic points of bounded degrees and bounded Mahler measures on the Weierstrass
sigma function o(z). Recently, Boxall et al. gave such bounds for the number of algebraic
pomts on o (z) under some conditions on the imaginary part of the quotient 7 = wy/wy of
an order Z-basis {w,ws} for the lattice associated to o(z). Our results are based on the

quasi-periods of the Weierstrass zeta function ((z) associated to o(z).
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Summary

A longstanding open problem related to the Mahler measure asks for an absolute constant
¢ > 1 such that for any nonzero algebraic integer v which is not a root of unity, the Mahler
measure of «, denoted by M («v), 1s at least ¢. This problem is due to Lehmer, and is com-
monly called the L.ehmer problem. Though this problem is still open, it has been solved
for various classes of algebraic integers. For example, Smyth [43] proved it for the class
of nonreciprocal algebraic integers. In [4], Amoroso and Dvornicich proved it for elements
which lie in an abelian extension of @. In [2], Amoroso and David proved it for the gen-
erators of any Galois extension. In [12], Borwein, Dobrowolski and Mossinghoff proved
it for the class of algebraic integers whose minimal polynomial over @ having odd mte-
gers. The best unconditional lower bound for the Mahler measure, upto a constant, 1s due
to Dobrowolski [17]. In this thesis, we obtain a lower bound for the Mahler measure for a
class of reciprocal algebraic integers, which improves the best unconditional lower bound
given by Dobrowolski for this class. In another direction, we study the relationship be-
tween the lower bounds of the Mahler measure and the splitting of primes in number fields.
Consequently, we answer Lehmer’s problem affirmatively for various classes of algebraic
mtegers. For example, we prove that if all the residual degrees of primes i Og,) which
lie above 2 are any fixed positive integer n, then either M(«) =1 or M(a) > QT T,
The problem of counting integral points on graphs of different kinds of functions can
be traced back to the work of Jarnik [24]. In 2011, Masser [30] proved the following up-
per bound for the Riemann zeta function: For any integer H > 3, the number of ratio-
nal ¢ with ¢ € (2, 3) such that both ¢ and ((¢g) have denominator at most A 1is at most
C (log H/loglog H )2, for some effective absolute constant C' > 0. In the same paper,

Masser suggested to extend his method to other classes of functions. Based on his sug-



CONTENTS

gestion, several mathematicians have extended his method to various classes of functions.
For example, Jones and Thomas [25] gave a bound for the algebraic points of bounded
degrees and bounded Weil heights on the graph of Weierstrass zeta function. Boxall and
Jones [[14] gave such bounds for the entire functions with finite order and positive lower
order. Recently, Boxall, Chalebgwa and Jones [13]] proved various such upper bounds for
the Weierstrass sigma function o (z) under some conditions on the imaginary part of the
quotient 7 = wy/wy of an Z-basis {wy,ws} for the lattice ) associated to the Weierstrass
sigma function. In this thesis, we extend the main results of [13] under the assumption that
p = 12/m 1s a nonzero real number, where 7; = (o(w;/2) 1s the quasi-period of the Weier-
strass zeta function ((2) associated to w; (i = 1, 2). With this assumption, we are able to
count the algebraic points of o(2) of bounded degrees and bounded Weil heights in some
unbounded subset of C under three conditions: (1) lattice points are algebraic; (i1) invariants

associated to lattice are algebraic; (111) algebraic points are away from lattice points.



Chapter 1

Introduction to Lehmer’s problem

In this chapter, we give an overview on the state of the art of Lehmer’s problem.

1.1 History of Lehmer’s problem

We start with the following definition.

Definition 1.1. For a nonzero polynomial f(z) = agz® + --- + ag € C|x], its Mahler

measure is defined by
d
M(f) = |aa| ][ max{1, [as]},
i=1

where arq, . . ., «vg are the roots of f in C. Mahler measure of an algebraic number «v, denoted

by M (), 1s defined by the Mahler measure of the minimal polynomial of «v over Z.
In the above definition, an empty product is assumed to be 1.

Definition 1.2. For an algebraic number « of degree d over Q, its Weil height, also known

as absolute logarithmic height, 1s defined by
1
hia) = Elogf‘.f{a}. (1.1)

In 1933, D.H. Lehmer [28] gave a factorization method to produce large prime numbers.

His method was to define a sequence

d

Aa(f) = [Ier = 1), (neN)

i=1
where f 1s a monic integer polynomial with vy, . . ., a4 are its roots. By choosing the poly-

nomial f(z) = = — 2, we get AA,,(f) = 2" — 1, which are Mersenne numbers. Note that

3



I Introduction to Lehmer s problem

whether or not there are infinitely many primes of the form 2" — 1 is an open problem. So,
the motivation to define such a sequence might be to generalize the notion of Mersenne
numbers. Lehmer was able to produce some large prime number as values of A, (f) for

suitable f and n. For example, if f(z) = 2® — z — 1, then Lehmer showed that
Aqp3(f) = 63088004325217

and

A7 (f) = 3233514251032733

are prime numbers. He measured the growth of this sequence and observed that the se-
quence (A, (f))nen 1s more likely to produce large prime numbers if it does not grow too

quickly. He proved the following.

Theorem 1.3 ([28]). Let f(x) be a monic integer polynomial with no roots on the unit circle.

Then
. An_l{f)' Tt
lim |————=| = | | max{l, ||},
ns0o | An(f) H

where «, . .., aq are the roots of f.

Motivated by the above theorem, Lehmer searched for algebraic integers with small

Mahler measure. He found that the polynomial

9 7 6 4

04 ? — " — S 41

has Mahler measure 1.176... and he was not able to find any other polynomial whose
Mahler measure smaller than 1.176 .. .. At this juncture, he asked the following question.
Lehmer’s problem. Does there exists a constant ¢ > 1 such that M («) > ¢, for any
nonzero algebraic integer « which is not a root of unity?

In terms of Weil height, it reads as follows.



I Introduction to Lehmer s problem

Lehmer’s problem (In terms of Weil height). Does there exists a constant ¢ > 0 such
that h(a) > ¢/d, for any nonzero algebraic integer o of degree d which is not a root of
unity?

Till now, we are not able to find any algebraic integer whose Mahler measure is less

than 1.176 .. .. So, Lehmer’s problem remains open.

1.2 Properties of Mahler measure
Theorem 1.4. For any fixed D > 1 and M > 1, the set

S(M,D) = {a €Q:[Q(a): Q| < D and M(a) < ‘lf}
is finite, where Q is an algebraic closure of Q.

Proof. For simplicity, let S = S(M, D). Leta € S and f(x) = agz®+ag_129 1+ +ag

be the minimal polynomial of « over Z. Let oy = v, . . ., o be the roots of f(z) in C. The

factorization of f(x) m terms of its roots gives

1<iy <ot <d
So, we obtain |ag_x| < () M(a). Also, jag| < M(a) < M. Sinced < D and M(a) < M,
there are only finitely many possible choices for the minimal polynomials of elements of

5. Therefore, the set S 1s finite. O
The following result is due to Kronecker [26].

Theorem 1.5. Let «v be a nonzero algebraic integer. Then M (c) = 1 if and only if v is a

root of unity.

Proof. Let M(c) = 1. Then M(a™) = 1 forall n € N. Since forall n € N, [Q(a") :
Q] < [Q(a) : Q] and M(a™) = 1, by Theorem [1.4, the sequence (a”),ey contains only

5



I Introduction to Lehmer s problem

finitely many elements. So o’ = o/, for some i # j. Thus « is a root of unity. Conversely,
if v 1s a root of unity, then all the conjugates of « have absolute value equal to 1. Thus

M(a) = 1. O

Next, we prove an integral representation for the Mahler measure. First, we start with

the following.

Proposition 1.6. For 0 £ f(z) € Clz|, put

M*(f) = exp (41 log‘f{eh“)‘ d.t) .

Then for any f.g € Clz] and a € C\ {0}, we have
(i) M*(fg) = M*(f)M"(g).
(i) M*(a) = |o].
(iii) M*(z — a) = max{1, |a|}.

Proof. First two relations follows from the definition of A*. Third relation follows from
the fact that the function log |z — «af (resp. log|1 — z@|) 1s harmonic in the unit disk if
|| > 1 (resp. || < 1). Finally, the case |«| = 1 is deduced by continuity. For more

details, see [9, p. 23]. O

From Proposition [.6, both A/ and M/ * multiplicative on Z[z] \ {0} and they agree on

polynomials of degree < 1. Hence, we obtain the following.

dt) |

Theorem 1.7. Let o be a nonzero algebraic number. Then

M(a) = exp ( /0 l log (f(ew)

where [ is the minimal polynomial of « over 7.



I Introduction to Lehmer s problem

1.3 Unconditional lower bounds

In 1965, Schinzel and Zaassenhaus gave the following first unconditional lower bound in

the direction of Lehmer’s problem.

Theorem 1.8 ([41]). Let o be an algebraic integer of degree d, which is neither zero nor a
root of unity. Then there exists a constant ¢ > 0, which is independent of o, such that

&

J.I[a) = 1+2d

(12)

In 1971, using methods from Fourier analysis, Blanksby and Montgomery drastically
improved the lower bound ([.2) and proved the following.

Theorem 1.9 ([8]). If « is an algebraic integer of degree d, which is neither zero nor a root
of unity, then
1
M >14+ — 13
(@) > 1+ o i Tog(6d) (5)
In 1978, using techniques from transcendental number theory, Stewart obtained the fol-

lowing lower bound.

Theorem 1.10 ([44]). If « is an algebraic integer of degree d > 1, which is neither zero
nor a root of unity, then

M(a) > 1+ (1.4)

1
10%dlogd
Though the lower bound is slightly weaker than the lower bound ([1.3)), the method
of the proof is entirely different. Stimulated by the method of Stewart, Dobrowolski suc-

cessfully extended his argument to prove the following lower bound.

Theorem 1.11 ([17]). If v is an algebraic integer of degree d > 2, which is neither zero

nor a root of unity, then

1 [loglogd\®
Ogog). (1.5)

1V > ]
M{a) 2 leoo( logd

7



I Introduction to Lehmer s problem

Later, Voutier [43] improved the lower bound by a constant, which is the best

unconditional lower bound in the direction of Lehmer’s problem till now.

Theorem 1.12 ([45]). If o is an algebraic integer of degree d > 2 which is neither zero nor

a root of unity, then

-1 [loglogd I
FiY > — .
U[a}_l+4( logd )

1.4 Conditional lower bounds

Though, the Lehmer’s problem remains open, it has been solved for various classes of
algebraic integers. Recall that an algebraic number « is said to be reciprocal if ! is also a
conjugate of « over Q. Otherwise, it 1s called nonreciprocal. In 1951, Breusch [15] proved
the following lower bound of the Mahler measure for the class of nonreciprocal algebraic

mtegers.

Theorem 1.13 ([[15]). Let o be an algebraic integer which is neither zero nor a root of
unity. Suppose « is nonreciprocal. Then
M(a) > M(z® — 22 —1/4) =1.17% ... (1.6)
In [43], Smyth improved the lower bound ([1.6), which is the best possible lower bound
for all nonreciprocal algebraic integers.
Theorem 1.14 ([43]). If o is a nonreciprocal algebraic integer which is neither zero nor a
root of unity, then M (o) > M(x® —x —1) = 1.3247 .. ..
In 1999, Amoroso and David [2] proved the following lower bound for the generators

of Galois extensions.

Theorem 1.15 ([2)]). There exists an absolute constant ¢ > 1 such that the following holds:

Let o« be an algebraic integer which is neither zero nor a root of unity. Suppose Q(«)/Q is

Galois. Then M(«) > c.



I Introduction to Lehmer s problem

In 2016, Amoroso and Masser [5] proved the following better result for the generator

of the Galois extension.

Theorem 1.16 ([5]]). Let « be an algebraic integer which is neither zero nor a root of unity.

£

For any € > 0, there exists ¢(c) > 0 such that if Q(«)/Q is Galois, then h(a) > Cé—)

Amoroso and Dvornicich [4] proved the following strong result by putting some addi-

tional conditions on the Galois extension.

Theorem 1.17 ([4]). Assume « is an algebraic integer which lies in an abelian extension

of Q and is neither zero nor a root of unity. Then
M(a) > 5Y'% = 1.1435%, where d = [Q(a) : Q). (1.7)

Also, the authors of [4] shown that /5 on the right hand side of ([L.7) cannot be replaced
by any number greater than %/7. Later, the lower bound was improved to (1.1677)4
by Ishak, Mossinghoff, Pinner and Wiles [23].

In [6], Amoroso and Zannier proved the following general lower bound for the Weil
height of elements of an abelian extension of K in terms of [K : Q).

Theorem 1.18 ([6]). Let K be a number field of degree D over Q. Suppose L /K is abelian.

1

Then for any o € L which is neither zero nor a root of unity, h(r) 2 3557

In [40], Schinzel proved the following result for the totally real algebraic integers.

Theorem 1.19 ([40]). If « # *1 is an algebraic integer such that all the conjugates of o
_\ /2
over Q are real, then M («) > (l_T‘/:) , where d = [Q(«) : Q.
In [20], Garza generalized the above result.

Theorem 1.20 ([20]). Lef o be an algebraic number of degree d and S be the set of all real

conjugates of o and suppose that|S| # 0. Let 3 = (|S| — d)/|S|. Then either

. |51/2
N (zﬁ wm)
> é _

M) =10r M(a)

9



I Introduction to Lehmer s problem

For more results on Lehmer’s problem, we refer the interested readers to the excellent

survey article by Smyth [42].

1.5 Absolute values

In this section, we recall some theory of absolute values on number fields. These are re-
quired to give an equivalent definition of the Mahler measure in terms of absolute values

on number fields.

1.5.1 Definition and Examples
Definition 1.21. An absolute value on a field A is a function
-]+ K —[0,00)

which satisfies the following three conditions:

1. |o| =01fand only if o = 0.

2. |ap| =a||f| forall a, 5 € K.

3. Ja+pl <la|+|flforall o, f € K.
An absolute value is said to be nonarchimedean 1f it satisfy the stronger inequality

|o + 3| < max{|e|,|5|} forall o, 5 € K.

Otherwise, it 1s called archimedean absolute value.

Example 1.22. For any field K, define |0| = 0O and |a| = 1 foralla« € K\ {0}. Itisclearly

an absolute value on /i and is called the trivial absolute value.

Example 1.23. Consider KX = Q. One can easily prove that for ¢ € @, |¢|.. = max{q, —q}

is an absolute value on Q. Similarly, for any fixed prime p € Nand ¢ € Q, write ¢ = p™ 3,

10



I Introduction to Lehmer s problem

where a,b € Zand p { ab. Put |g|, = p~™. Then for each prime p, | - |, 1s an absolute value

on @ and is called the p-adic absolute value on Q.

Lemma 1.24. 4n absolute value | - | on a field K is nonarchimedean if and only if |n| < 1

Joralln € N.

Proof. If | - | 1s nonarchimedean, then |n| < |1| = 1 for all » € N. Conversely, suppose

|n| < 1foralln € N. So, fora € K, |na| = |n||a| < |a|. Now fora, § € K,

|Ct _'_J‘n _ Z (:) Ctkﬁn_k < Z ‘a|k|ﬁ|n—k < (ﬂ—f— ]_)Sn,

k=0 ' k=0

th

where s = max {|a|, ||} . Taking n"" root and allowing n — oo, we obtain
o+ 5| < max{lal, |51}
This completes the proof of the lemma. Ol

An immediate consequence 1s the following.

Corollary 1.25. Any absolute value in a field of positive characteristic is nonarchimedean.

Moveover, in the case of finite field, there is only one absolute value, namely, the trivial one.
Let K be any field with a nontrivial absolute value | - | . Then for a, 5 € K,
d(a, B) = o — 6]

defines a metric on KA. Therefore, it induces a topology on KA. Two absolute values on K

are said to be equivalent if they induce the same tolopolgy on K.

Proposition 1.26 ([39, p. 10]). Two absolute values | - |1 and | - |2 are said to be equivalent

if and only if there exists an 1) > 0 such that for all « € K
o = |al3.

In particular, a nontrivial absolute value is not equivalent to the trivial absolute value.

11



I Introduction to Lehmer s problem

A natural question 1s that if | - | 1s an absolute value, then which powers of | - | 1s also an

absolute value. The next lemma gives the answer.

Lemma 1.27 ([B9, p. 10]). Let | - | is an absolute value on K. Consider
S = {n > 0:|-|"is an absolute vah;e} .

Then S is either (0,00) or (0, 7] withr > 1.

Remark 1.28. Consider the ordinary absolute value |- | on R. Then |- |" is an absolute value
ifand only if 0 < n < 1. Indeed, if » > 1., then (1+1)” > 1 + 1. So the triangle nequality
fails if » > 1. The same holds for C.

Remark 1.29. Suppose | - | 1s a p-adic absolute value on @. Then for any > 0,
la+ B|" < (max{|a|, |3]})" < max{|a|", |3["}, forall a, 5 € Q.
Thus, forall » > 0, | - |7 is also an absolute value.

The following proposition classifies all absolute values on @ upto equivalence. For the

proof, see [39, Theorem 1].

Proposition 1.30. Every absolute value on Q is equivalent to either | - |, or | - |,, for some

prime number p.

15.2 Completion

Let K be a field with a nontrivial absolute value | - |. A sequence {a, } e of elements of
K is said to be Cauchy if for any £ > 0, there exists N € N such that for all n,m > N,

|y — | < €.

‘We say that K 1s complete if every Cauchy sequence in K& converges in K.
The following results give information on completion of a number field with respect to

an absolute value.

12



I Introduction to Lehmer s problem

Proposition 1.31 ([27, Ch. 12, Proposition 2.1]). Let K be a field with a nontrivial absolute
value | - |. Then there exists a pair (L, c), consisting of a field L which is complete with
respect to an absolute value | - || and an embedding o : K — L such that o(K) is dense in
Land |a| = |o(a)|y for all o € K. Moreover, if (L', 0') is another pair, then there exists a

unique isomorphism ¢ : L — L' which preserves the absolute value and ¢ o 0 = o'.

Proposition 1.32 ([27, Ch. 12, Proposition 2.5]). Let K be a field which is complete with
respect to a nontrivial absolute value | - |. If L is a finite and separable extension of K, then
there exists a unique absolute value | - |1 on L which extends the absolute value | - | on K

and L is complete with respect to | - |1.

1.5.3 Absolute values on number fields

Let K be a number field and O be the ring of integers of K. For any embeddding ¢ of
K mto C, ||, = |o(a)| defines an archimedean absolute value on K, where | - |, 1s
the usual absolute value on C. The following theorem classifies all archimedean absolute

values on I’; see [22, Proposition B.1.3] for the proof.

Theorem 1.33. Let K be a number field of degree n over Q. Let o4, . ..,0,, be the real
embeddings of K and (11,71), ..., (Tyy, Tr, ) be the vy pairs of complex embeddings of K,
where ry + 2ry = n. If | - | is an archimedean absolute value on K, then | - | is equivalent

to| - |sforsomeo € {01,090, ....00 ,T1, T2y . Tr, )

For a prime ideal P in Oy and o € K, ep(«) denotes the exponent of P in the prime

factorization of Q. If

a0y = [[ P,
P

then
—PB((\‘l

alp = pePer

13



I Introduction to Lehmer s problem

defines a nonarchimedean absolute value on K, where P N Z = pZ. So |p|p = 1/p. The
following theorem classifies all nonarchimedean absolute values on K’; see [22, Proposition

B.1.3] for the proof.

Theorem 1.34. Let K be a number field and | - | be a nonarchimedean absolute value on

K. Then there exists a prime ideal P of O such that | - | is equivalent to | - |p.

In each equivalence class v of nontrivial absolute values on a number field K, we choose

the representative | - | which 1s normalized by

x|, = ifr € Q,x > 0,and v is archimedean,
lp|, = 1/p 1fv extends the p-adic absolute value on Q.

Let My be the set of all nontrivial normalized absolute values on K and M C My be
the set of all archimedean absolute values on K. For v € Mg, K, denotes the completion
of K with respect to the absolute value | - |,. For a finite extension L over K and w € M,
we denote w | v if w 1s an extension of v. The local and global degrees of an extension is

related by the following degree formula; see [27, Ch. 12, Proposition 3.3] for the proof.

Proposition 1.35. Let L /K be a separable extension and v € My. Then

LK = Y [Ly: K]

weMp wlv

We have the following product formula; see [22, Proposition B.1.2] for the proof.

Proposition 1.36. Let o be a nonzero element of a number field K. Then

[l =1,

veE My

where Q, is the completion of Q at the restriction of v to Q.

14



I Introduction to Lehmer s problem

1.6 Relation of Absolute values with Mahler measure

In this section, we prove an equivalent definition of the Mahler measure in terms of absolute
values on number fields. For v € M, denote d,, = [K, : @,]. First, we need the following

lemma; see [47, Lemma 3.1] for the proof.

Lemma 1.37. Let K be a number field and p € N a prime number. Let o« € K be an
algebraic number of degree d over Q with leading coefficient ay. Then
_ dy |
|aal, H max {1, o], }"" = 1.
vE My v|p
The following is an equivalent definition of the Mahler measure in terms of absolute

values on number fields.

Proposition 1.38. Ler o be an algebraic number. Then
M(a) = H max{1, o], .
L"E;"lrf_;{(_\j
Proof Let K = Q(«). If v € Mp? corresponds to a real embedding, then d, = [K, :
Q,] = 1. If v € M® corresponds to a complex embedding, then d, = [K, : Q] = 2.
Using this and the definition of the Mahler measure, we get
M(a) = |ag] J] max{1,|al,}%.
veEM3E
By the product formula, |a4| = Hp |a.d|;1. So
M(a) =[] lad,* J] max{1,|al,}®
P veEM
By Lemma [1.37,
jagly* =[] max{1,|al,}*.

veE Mg vlp

15



I Introduction to Lehmer s problem

Hence
M(a)= [ max{t]al,}* ] max{1,|al,}*
ve My \Mp? vEM
= H max{1, o], }%.
‘L'Eﬂif}(
This completes the proof of the proposition. O

Proposition 1.39. Let K be any number field containing an algebraic number «. Then

1

h(a) = — d,logmax {1, |e|,} .
EEPPR
Proof. This follows from Proposition and ([L.1)). O

Remark 1.40. The Weil height of an algebraic number « is independent of any number

field K containing «. It follows from [22, Lemma B.2.1 (¢)].

16



Chapter 2

Lower bound for the Mahler measure

2.1 Introduction

As mentioned in Chapter 1, Lehmer’s problem has been solved for various classes of alge-
braic integers; however, the general case remains open. As seen in Theorem [1.12], the best

unconditional lower bound for the Mahler measure is given by

.1 [loglogd ?
Ma)>1+= 2.1
() > 1+ 1 ( logd ) , (2.1)

where d 1s the degree of «v. Notice that if the answer to the Lehmer problem is yes, then we

_ 3
can replace the quantity % (1_0%3_55) on the right hand side of (2.1) by a constant ¢ > 0,

which is independent of « and d. In this direction, one may ask the following: Can we

3 3
replace the term (%) in (2.1)) by a function f of d such that (101%1;555) /f(d) — 0

as d — oo? In this chapter, we show the existence of such an f for a class of algebraic
mtegers. We need the following definition to state our theorem. For any algebraic integer

« of degree d, define

Ao = { € C: dist (g arg{z/a),Z) < %, forallk e {1,..., Ll%OOlong}}
and
Al = { € C : dist (éarg(,m),Z) < % forall k € {1,..., 19600 logdj}},

where for any real number » € R, dist(r, Z) := min,cz [r — n|.

Since for n > 1, arg(z") = narg(z) = 2xl with [ € N, we obtain

log(13/5
Ao = {,‘c eC: ‘arg[z”‘) —arg(a?)| < L/)

17



2 Lower bound for the Mahler measure

and

! . log(13/5
Al = {z eC: ‘arg(,z%) + arg{am‘)‘ < log(13/5)

Indeed, suppose =z € C be such that |arg(z%") — arg(a?*)| < 280¥5) forall k € N. Then

for some /;,1; € N,

[2k arg(z) £ 271y — 2k arg(a) & 27ls| < w
So,
2 ang(e) ~ ) 211 1 < 22,
which implies
‘%arg(z/a) +2klz £l £ < % for some I3 € N.

Thus, forany k € N,

. 2 k log(13/5
dist (; aIg[z/a),Z) < ‘;alg(z/a) +2kl3+ 1 1| < giTﬁr/)

Similarly, the other implication also follows.

‘We prove the following result.

Theorem 2.1 ([36]). Let o be an algebraic integer of degree d which is neither zero nor

a root of unity, and let oy = «, . . ., «g be the conjugates of « over Q. Suppose «; €

RUALUA,, forallic{1,..., d}. Then M(a) > 1 + qrmoogga:

2.2 Auxiliary lemmas

For the proof of Theorem P.1], we need the following lemmas.

Lemma 2.2 ([44)). Letoy, .. .. o4 denote the embeddings of a number field K into C, where

d=[K:Q]. Letb;; (1 <i< N;1<j< M) be algebraic integers in the field K, with at

18



2 Lower bound for the Mahler measure

least one of them is nonzero. Let
d
= o, T (s b))

k=1
If N > 2dM, then the system of equations
N
Y bgri=0 (1<j< M),
i=1
has a nontrivial solution in rational integers x1, . . . xy withmax <<y |z;| < V2NUY4,

Lemma 2.3 ([46]). Let ry, 75 be two positive real numbers with r| < ry. Suppose f is

a nonzero analytic function in the open disc |z| < ry and continuous in the closed disc

_J'Vl‘
2 2
T +?"2
|f|7‘1 S |f|7‘2 ( ) 1

|z| < r9. Then

2rirey
where |f|, = max.—, |f(z)| and N is the number of zeros (counting multiplicities) of f in

|z| < 7.

Lemma 2.4. Let K be a subfield of C and u € K*. Assume that there exists a nonzero
polynomial F € K[X,Y| with degy < dy and degy < dy such that F(n,u") = 0 for all

n € NU{0}, then u is a root of unity.

Proof. This is an application of Philippon’s zeros estimate to the algebraic group G =
G, x G,, where G,, G,, respectively the additive and multiplicative groups of complex
numbers, see [47, Theorem 5.1] for more details. Note that the only proper connected

algebraic subgroups G are
0), (0) x Gy, G, x(0).
Let S be any positive integer and let

Y ={(n.a"): neNU{0}, n< S}

19



2 Lower bound for the Mahler measure

Also, let
D 2]={(n,a"): n e NU{0}, n <25},
Since the polynomial F(X,Y) vanishes on $°[2], by [47, Theorem 5.1], for any proper

connected algebraic subgroup G* of G, at least one of the following holds:

) card(zgf’“) < ddod i G* = (0):

(ii) card(EG:G‘) < 2dy if G* = (0) X Gyp;

(i) card(Zg,,—G‘) < 4dy i G* = G, x (0).

If (1) holds then card(zg.c') > 2S. But S can be any natural number. Hence (1) cannot

hold. Similarly, if (ii) holds then in this case also card (EC_—C) > 2S. Therefore, (iii) must

hold. This means not all the integral powers of « are distinct.This proves that « is aroot of

unity, and the proof is complete. ]
Lemma 2.5. The function f(n) = @ is a strictly decreasing function of positive
integers.

Proof. Letn € N. Smce
QI | S Gt RS
n+1/ n+1 21 (n+1)2 (n+1)"
<1l4n<5n+5,

we have
5n +10\"

( P ) < on 4+ 5.

This implies
nlog(5n + 10) < (n + 1)log(5n + 5).
Thus we get
log(5n + 10) - log(5n + 5)

n+1 n '

the lemma follows. O
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2 Lower bound for the Mahler measure

2.3 Proof of Theorem 2.1

Throughout this section, we choose the branch of the logarithm such that —7 < Im(log =) <
m, where Im( z) denotes the imaginary part of z. For areal number x, | = | denotes the greatest
integer less than or equal to . Let GG be the set of all embeddings of Q@ () into C over Q.
If o(«) € R for all 0 € G then by Theorem [1.19, the theorem follows. So, we assume that
there exists o € G such that o(a) ¢ R. Without loss of generality, we take o = I'd. Also,
by Theorem [1.14], we may assume that « is reciprocal.

We prove Theorem by contradiction. We can assume d > 50000. Indeed, if d <
50000, then

1 1 [loglogd s
M@)—1< ——— < = :
(@) =1= J5700010gd = 1 ( logd ) /

and hence by Theorem [1.12, « is a root of unity.

Put
d 490U K3
Ky = , K3 =|8logd|, Ky=d+ ————
2 {801()ng. 3 = [80logd]|, K, + p
and
Ky K3
U= .
5
Letry, ry, ..., 7k, be K3 positive integers with
1§T‘1 <rg<---<TK, §245Rr3
and
max |arg (a®™) — arg (o®")| < i
1<s<t<I3 — 245

Note that by the pigeon-hole principle such a list of integers always exist. Put

) : 27y —f. _ﬂ— .
191_1%}33{3&1@(& ) and 19_6'1+245
Thus
2r _ gl < .
131%?(:} ‘arg (a ) 9‘ 245 22)
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2 Lower bound for the Mahler measure

If for some 0 € G, o(a) € A, U A, then using (2.2), we have

‘arg (o(@)*™) £ 9‘ = ‘arg (o(a)?) — arg (@) + arg (") + 9‘

log(13/5) T i
<t — < — 2.3
- 7 N 245 — 21 (2.3)
The proof of Theorem 2.1 now proceeds by several lemmas.
Lemma 2.6. There exist integers
aijr(1<i<d;1 <5< Kyl <k<Kjy)
such that the function
d Ky K
ff(z) = Z Z Z a; jro' 2 exp (zlog o)
i=1 j=1 k=1
satisfy
ff(n)=0 (2.4)
foralln =1,...,U with
0 < max @i < V2(dE 3 K3)M ()5 ke,
i,
Proof The system of equations (2.4)) is equivalent to
d K K
SN wgatai =0 (n=1,...,0) 25)
i=1 j=1 k=1

with unknowns a; ;5. This is a system of U < K,K3/2 equations in d K; K3 unknowns

@i jk- Note that

. i . i+2nry,
max max ‘J(QH?‘”” nf')‘ < max max [ n’ max {1, !cr(a) !}
1<n<U i,k 1<n<U i,k
Tgely TgeG

d+490nK;

S UKQ dﬂ-’f(ﬂ ) d-+49017 K3 )
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2 Lower bound for the Mahler measure

Hence, by Lemma P.J, there exist integers a; jr with

, o, \ Ve
0 < max| a4 | VI K (UK (o) 00V )
i,k

1 490U Ky

=V2(dK,K3) M (o)t 1 UK,

such that (2.5) holds foralln =1, ..., U. This completes the proof of the lemma. |

For each o € G, define

d K Kz

folz) = Z Z Z a.i__j_.;;cr[a)"zj exp (z log cr{a)zr’“) .

i=1 j=1 k=1
That 1s, £ is obtained from f* by replacing o with o(«v). Note that f7,(z) = f*(2).

Next we show that f also vanishes on {1,2,... U} forall o € G.

Lemma 2.7. For all 0 € G, we have f;(n) =0, foralln < {1, ..., U}.

Proof Let o € G. By Lemma 2.6, we have

foralln e {1,..., U}. Applying o on both sides, we get

foralln e {1,..., U'}. From this we easily get that f¥(n) =0, foralln e {1,...,U}. O

To obtain a required contradiction, we need to slightly change the function f?. For each

o € G, we define
exp(—ifz)fi(z) ifo(a) e A,
fo(z) = exp(ifz)fi(z) ifo(a)e A,
fi(z) ifo(a) € R.
Note thatif ¢ = Id, then f;4(z) = exp(—ifz) f*(z). From Lemma 2.7, we see that £, (n) =

0, forn=1,..., U and forallo € G.

23



2 Lower bound for the Mahler measure

Lemma 2.8. Let 0 € G. Suppose for an integer J > U, we have f,(n) = 0 foralln < J.
Then | fo(J + 1)| < V2(dK2K3)* M (o) U2 (5] + 5)52 exp(—.J(0.056)).

Proof Since f,(z) has at least .J zeros in the region |z| < J + 1, applying Lemma .3 to
the function f, withr = .J 4+ 1and R = 5(J + 1), we get

1
{fg{J-l— 1){ < |fcr|J+1 < |f“|5~’+5m.

Next, we calculate an upper bound for | f,| . Using Lemma P.4 and || < M(a),

3J+5

we obtain

| fols s SV2(dEK3)2M(a)KsU 2 (5.7 + 5)%2 exp ((5J +5) (log ()2 + -in?o)) ,
where
-0 ifo(a) € A,,
bo=1< +0 1ifo(a)c A,
0 ifo(a)eR
So
folsres € V2(dKaK3) M (a) U2 (57 + 5)%2 exp ((57 +5) 1) ,
where

A = max [logo(a)?™ +ify| <  Inax 490K 3 log |o ()| + i (arg (o()*™) + 6'0) ‘ .

If for some o € G, |o(«)| > 1 thenlog|o(a)| < log M («). Otherwise, if |o(a)| < 1

-1

then since « is reciprocal, both o(«) and o(«a)~! are conjugates of o over Q. Therefore,

1
mzland

|loglo(a)|| = —log|o(a)| = log < log M (a).

1
|o(a)|
Therefore,

1/ i 2r
A <  Inax 490K 3 log M () + i (arg (o(a)™™) + 90) .

24



2 Lower bound for the Mahler measure

If o(a) € A, U A, then using (2.3), we get

A< max 1490K3 log M () + i(/21)| .

Using K3 < 80logd and log M(«) < 1/(407000logd), we get 490K5log M(a) <
0.0964. So

A < 1/0.09642 + (m/21)? < 0.17797,

whence

(13/5) T exp((5.J + 5)A) < (13/5) T exp((5.J +5)0.17797) < exp(—.J(0.056)).
Thus,
|fo(T+1)| < | folsys (13/5)7 < V2(dK K 3) M (o) U2 (57 +5) %2 exp(—J (0.056)).

If o(a) € R, then forany k € {1,... K3}, arg (o(a)”*) = 0. Therefore,

A < 490K3log M(a) < 0.0964.

Finally, we have

(13/5) " exp((5J + 5)A) < (13/5)  exp((5.7 +5)0.0964) < exp(—.J(0.056)),
whence
|fo(J 4+ 1)| < | Folsyes (13/5)77 < V2(dKoK3)2M (o) U2 (57+5)%2 exp(—J (0.056)).
This completes the proof of the lemma. O

Lemma 2.9. Let 0 € G and let J > U be an integer. Suppose f,(n) = 0 for all n < .J.

Then we have |f,(J + 1)| < 1.
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2 Lower bound for the Mahler measure

Proof. We prove by confradiction. Suppose ! fo(J+ 1)! > 1. Then from Lemma P.§, we

have
1< |fo(J+1)| € V2(dK2K3)*M (o)1 UR2 (5] + 5) %2 exp(— J(0.056)).
Taking logarithm both sides, we have
(0.056).J < logV/2 + 2log(dK,K3) + Kylog M () + Ky logU + Ky log(5. + 5),
which implies

0.056 <

logv2 2log(dK,K3) Ky, K, K>
7 + 7 + TIOgJ-I{a) + 710gU—1— 710g(5J—|—5).
Since J > U, by Lemma P.§, we have

log(5.J + 5) » log(5U + 5)
J - U

So

0.056 <

logv2 2log(dKyK3) Ky, Ky K
i + 0 + T log M (ev) + T logU + I log(5U + 5). (2.6)
Since d > 50000, we have

logv2 _ 0.00001387, 2108(dK2K5)

K,
< 0.001732, 74 log M (ev) < 0.0000026595,

and

K. K.
FQ logU < 0.025, FZ log(5U +5) < 0.02500554.

Hence, the right hand side of (2.6) is at most 0.0518. And this contradiction proves that
{ fo(J + 1){ < 1. This completes the proof of the lemma. O

Lemma 2.10. For all n € N, we have f;4(n) = 0.
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2 Lower bound for the Mahler measure

Proof. We prove this by induction on n. By Lemma 2.7, we assume that for some integer
J > U, fra(n) = 0foralln = 1,..., J, and then we will prove that f;4(J+1) = 0. This will
then complete the induction step. From Lemma 2.9, we have { falJ + 1){ = { fo(J + 1){ <
1 for all ¢ € GG. However, all the conjugates of the algebraic integer f*(.J + 1) over Q are
of the form f(.J + 1) with o € G. Therefore, by Theorem 1.3, f*(/ + 1) is either a root of
unity or zero. But since !f*(J + 1)| < 1, we must have f*(J+1) = 0. So fa(J+1) =0.

The proof of lemma is complete. O]

Proof of Theorem P21 et Ajp = Ele a; jra'. Since o has degree d, at least one A, . is
nonzero. So,

KQ K:-}

AX,)Y) = Z Z 4,’-1j‘kaY2rk

j=1 k=1

is a nonzero polynomial. Using Lemma R.10, we get
A(n,a") = f*(n) = fra(n)exp(ifn) =0

for alln € NU {0}. Applying Lemma R 4 , we see that « is a root of unity. This completes
the proof of Theorem 2.1,

2.4 Construction of reciprocal algebraic integers

In this section, we construct examples of reciprocal algebraic integers satisfying the condi-

tions of Theorem P.1]. More precisely, we prove the following,

Theorem 2.11. There exist infinitely many reciprocal algebraic integers (0, )nen of un-

bounded degrees over Q satisfying the hypothesis of Theorem 2.1

We need some definitions. For subfields K and L of C, we say that K is linearly disjoint

from L over Q if for any finite set of elements of A which is linearly independent over @
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2 Lower bound for the Mahler measure

1s still linearly independent over L. Let n € N. A set of complex numbers /3y, s, ..., 5,
are said to be linearly disjoint over Q if for each j with 1 < j < n, the field Q(5;) 1s

linearly disjoint from Q(31, 52, ..., Bj—1,Bj+1, . - ..

) over Q. Note that if 31, F2,..., 5

are linearly disjoint over Q then 3; ¢ Qforl < j < n.

We first prove the following lemma.

Lemma 2.12. Let o and 3 be two reciprocal algebraic integers with conjugates o, . . . , fa T

and 31, ..., Bn, respectively over Q. Assume that —a & {aq, ..., an}. Further, suppose

that the fields Q(au, ..., o) and Q(51, . . ., 3,) are linearly disjoint over Q. Then o3 is

reciprocal algebraic integer of degree mn over Q.

Proof. First we show that o3 has degree mn over @. That is, we need to show that for

integers ¢, j, k, ¢ with1 < i,k <m, 1 < j,¢ < n we have
Qiﬁj = akﬁg

ifand only if # = k,j = (. To see this, suppose «;/3; = o3, for some integers i, j, k, ¢
in the above range. This means, the set {«;, o} is linearly disjoint over Q(5y, ..., Br)-
Hence, we must have

ac; = by,

for some nonzero integers a. b. Taking norm on both sides, we deduce ™ = ™. So, a = £b
and thus a; = +ay. If a; = ay, then we are done. Otherwise, we must have —a €
{a1,...,a,}. This is a contradiction to one of our assumptions on «. Hence «/3 must be of
degree mn over Q.
Finally, since
%E{ailﬁj: 1<i<m, 1<j<n},

we see that a3 1s a reciprocal algebraic mteger of degree mn over Q. This completes the

proof of the lemma. O
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2 Lower bound for the Mahler measure

Corollary 2.13. Let « be a reciprocal algebraic integer such that —« is not a conjugate
of o over Q. Then there exist an injective sequence (v,)n>1 of totally positive reciprocal
algebraic integers such that forn > 1, we have deg(~,) > n, a, reciprocal, deg(a~y,) =

deg(a) deg(yn) and arg(ary,) = arg(a).

Proof. For simplicity, for an algebraic number «, let @,(«) denotes the normal closure of
Q(«) over Q in C. Let B, be the collection of totally positive reciprocal algebraic integers

with the following three properties.
(1) For each 3 € B,, we have all the conjugates of 3 are totally positive.
(11) For each 3 € B,, we have Qy(/3) 1s linearly disjoint to Q.(«) over Q.

(111) For any two distinct elements 3, 3 € B,, we have Q,(/3) and Q, (/') are linearly

disjoint over Q.

The set B, is infinite. Indeed, there exist infinitely many prime integers p such that the
extensions Q(,/p)/Q’s are pairwise linearly disjoint over Q and linearly disjoint to Qy ()
over Q. For each such prime p, let @ € N be such that the equation pX? — a® +1 = 0 has
a solution in Z. Then the largest root, d, = a + v/a? — 1, of the polynomial X? — 2a.X + 1
belongs to 5,,.

Choose an infinite sequence (3, ),>; of elements of 3, such that for all n > 1 we have
(1v) (31 - - 3, 1s reciprocal;
(v) Qu(By -+ Bu_1¢) 1s linearly disjoint to Q,(/3,) over Q;
(vi) —f1 -+ Bp—1c¢ 1s not conjugate to (31 - - - F,—1v; and

(vit) [Q(B1--- Bn) : Q] = n.
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2 Lower bound for the Mahler measure

[Q((SPL “'5}%) Q] = [Q(\/p_l\/p_e) : @] :23.

Hence one can inductively construct an injective sequence of prime integers (py ),>1 such
that the associated sequence (0, ),>1 have all the properties (iv) — (vii).

Now setting v, = 31+ B, (n > 1) we see from Lemma that vy, 1s reciprocal,
deg(ay,) = deg(a)deg(y,) > n and arg(a~,) = arg(«). Hence the sequence (7,,),>1
have all the properties stated in the corollary, and this completes the proof of the corollary.

O

Now we prove Theorem P.11]. Let o be any nonzero reciprocal algebraic integer sat-
isfying the hypothesis of Theorem P.1|. (For example, we can take « to be any one of the
complex roots of f () = 2®+7z*+ 1. This polynomial is irreducible over Q. By using Wol-
framAlpha software we see that all the roots of this polynomial have arguments +6, 6 =«
such that 0 < 6 < 7/2.) By Corollary R.13, we obtain an injective sequence (Vn)n>1 of to-
tally positive reciprocal algebraic mtegers with (deg(+;,))»>1 such that foralln > 1 wehave
ayy, 1s reciprocal, deg(ay,) > n, and arg(ay,,) = arg(«). Then the sequence (avy,,)n>1 18
an injective sequence of reciprocal algebraic integers with the properties thatdeg(av,) > n
and the conjugates of ay,, have arguments lie in {+6, +6 F 7 }. Define §,, = ay,,. Then all
the conjugates of 4,, lie in either A;, or Aj . This completes the proof of Theorem B.11.
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Chapter 3

Splitting of primes and Absolute Weil height

3.1 Introduction

As mentioned in Chapter 1, an equivalent definition of Weil height in terms of absolute

values in number fields is given by

hia) = m Z dylogmax {1, |, }

veM
where K is any number field containing «. Since nonarchimedean absolute values on K
correspond to the prime ideals in Ok, one may expect connection between lower bounds
for the Weil height and splitting of primes in number fields. This has been explored by
several Mathematicians. For example, Bombieri and Zannier [[11]] studied for totally p-adic
algebraic numbers. Recall that, for a rational prime p, an algebraic number « is said to be
totally p-adic if p splits into [Q(«r) : Q] distinct prime ideals in Ogq). For each rational

prime p, define
o(p,Q) = inf { h(ar) : o is totally p-adic and /2(a) > 0} -

Bombieri and Zannier [11] showed that for each prime p,

logp
.Q) > . 3.1
U(p.Q)_Q@H) (3.1
The lower bound for (p, Q) in (B.1)) was slightly improved by Fili and Petsche [19] to
2{;25%, and significantly improved by Pottmeyer [34] to 1"%}%»

For each rational prime p, define

7(p, Q) = inf{ h(a) : o is totally p-adic algebraic unit and () > 0} -
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Recall that an algebraic integer « is said to be a unit if o~ is also an algebraic integer.

Petsche [32] drastically improved the lower bound (B.1]) for algebraic units and proved that

T(p, Q) > w’ (3.2)

Later, the lower bound for 7(p, Q) in (B.Z) was slightly improved by Dubickas and Moss-
mghoff [18, Theorem 4.2].

For unramified primes, Mignotte [31]] proved the following lower bound for M («).

Theorem 3.1 ([31]). Let o« be an algebraic integer of degree d which is neither zero nor a
root of unity. If there exists a rational prime p < dlog d which is unramified in Q(«), then

M(a) > 1.2. In particular, by taking d > 3, if 2 is unramified in Q(«v), then M (o) > 1.2.

In [21], Garza proved a natural counterpart to Mignotte’s result for the case of total

ramification. He proved the following.

Theorem 3.2 ([21]). Let ov be an algebraic integer of degree d which is neither zero nor a
root of unity. If 2 is totally ramified in Q(«), then M (o) > ~/2. Further, if there exists a

rational prime p > [Q(«) : Q| which is totally ramified in Q(«), then M(«a) > +/5 — 1.

Looking at the above results, a natural question is what can we say about M (a) 1f 2 1s
neither unramified nor totally ramified in @(«)? In the next section, we shall explore this

case and provide some lower bound for M («v) in this direction.

3.2 Lower bound under prime factorization of 2

Let K be a number field. For a prime ideal P in Oy, define fp = [O /P : Z/pZ], where
pZ = P N Z. The following theorem proves a lower bound for M («) under the prime

factorization of 20q(a).
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Theorem 3.3 ([38]). Let n € N and let

S = {a cQ: 20g() = P1' Py - - Prm with fp, =n, foralli=1,.. .,:P} .

Then for all o« € S, either M («) > 27T T or M(a) =1.
An immediate consequence of Theorem .3 for n = 1 is the following.

Corollary 3.4. Let o be an algebraic integer of degree d which is neither zero nor a root
of unity. Suppose 20q ) = Pi' Py* - - - Pir, where Py, . . . P, are distinct prime ideals of

Ogla) with €1+ €3 + -+ + e, = d. Then M (o) > v2 =1.189.. ..
Note that the case » = 1 in Corollary B.4 corresponds to the first part of Theorem B.2.

Remark 3.5. The lower bound +/2 in the Corollary B.4 cannot be attained by any algebraic
integer, i.e. there does not exist any algebraic integer o which satisfy the conditions of
Theorem B3 such that M(a) = /2. Indeed, since M(a) = +ay chn-|>1 «;, where ag4 1s
the leading coefficient of the minimal polynomial of o over Z and «; are its conjugates,
Mahler measure of any algebraic number is always a Perron number. (Recall that a positive
real number « is said to be a Perron number if |ov,| < o for any conjugate o, # o of ).
This was first observed by Adler and Marcus [[1]. However, v/2 is not a Perron number and

therefore v/2 # M (a) for any algebraic integer o

Proof of Theorem B.3. Let n, S be in Theorem B.3. Suppose M («) # 1. By Theorem [[.14,
we can assume that « is a reciprocal algebraic integer, because if « is nonreciprocal, then
M(a) > M(2® — 2z — 1) = 1.3247... > /2. So 1/« is also an algebraic integer. Thus a
1saunit in Ok. Put K = Q(«). By our assumption

20K = P{Pg - PE

with fp, = nforalli =1,..., r. Since n = (O /P; : Z/2Z], we have !OK/’P,;| =2

foralli € {1,..., r}.Soa? —a € P foralli € {1,..., r}. Since « is a unit, we have
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For each i € {1,...,r}, choose s; minimal such that 2% > e,;. For any fixed 7, by
the minimality of s;, we have 2™ < ¢;, forallm = 0,1,...,s; — 1. Since 20 =
PP P C PEC P oforallm = 0,1,...,s — 1, we have 2 € P?" for all
m =0,1,...,5;, —1.Since 2 € Pyand o®*" ' —1 € P, wehave a? 1 — 1+ 2 =
o1 11 € P;; whence a??"~) — 1 € P2 Since 2 € P?" forallm = 0,1,...,s; — 1,
repeating this argument, we get 22"~ — 1 ¢ P¥" C P Since 2 € P/, we have

a2 1 12 =@ 11 e PE Thus, foralli e {1,... 7},

s +1on__ . >
T g e pia

Define s = max{sy, sy, ..., s, }. Without loss of generality, assume s = s;. So,

W7D g ¢ pler

Take any i # 1. Then o221 — 1 € P Since 2 € P, and o> 2"~D — 1 € P;, we
get o211 11 e Pi; whence o220 — 1 e P Applying the same method
inductively, we get o2 (2D 1 g PAATIT Thus o2 2D — 1 e P C

P So, foralli € {1,...,r} we have

[y

st1lian _ 1 ﬂ ]_ s+1liagn _
‘az ey 1‘73{ <24 = 1 < ZmaX{ls |Q|Pt}2 e,
Ifo | oo, then [ '@ ~D — 1 < |a2" 'V 41 < 2max{1, o2V},
Thus, we have
Lmax{1,|af }2 @D if v | 2,
(af’-“‘“@“—” —1| << max{1,|o|,}*" @D ifvt2 vt oo, (3.3)

}Ze-l-l 211_1)

2max{l, |a|, if v | co.

Since « is not a root of unity, o2 (2" -1 — 1 £ 0. Applying the product formula (1.36) to
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the element o2 @" =) — 1 and using (B.3), we get

0= 3 [K,:Q)log (af’-"‘“(f’-"—ﬂ 1

t

vE Mg
< 2:[1‘6L - Qu){—log4 + 2°71(2" — 1) max{0, log ||, } }+
v|2
D Ky Q{27 (2" — 1) max{0, log ||, } }+
vf2,vfo0
D K, - @){log2 +2°71(2" — 1) max{0, log|al,}}
v|oo
= Z _[K“U : Qv] log4 + Z[Kv : Qv] log 2+
v|2 v|oo
D 22— 1) max{0. logal, } [K, : Q).
vEMK
By (1.35). we have
YK, :Q]=[K:Q and > [K,: Q)=[K:Q].
v[2 v|oo
By (1.39), we have
> K, : QJmax{0,loglal,} = [K : QJh().
veE M
Therefore,
0 < —[K:Q]logd + [K : Q|log2 +2°7(2" — 1)[K : Qlh(a),
which implies
ha)> 1082
1'('3) - 25+1{2n _ 1)

Using the minimality of s, we have 2°7! < 4e; < 4[Q(a) : Q). So

log M () - log2
[Q(a) : Q] ~ 4Q(e) : Q](2" - 1)

Thus, we have M («) > 97717 This completes the proof of Theorem B.3. O

35



3 Splitting of primes and Absolute Weil height

3.3 Lower bound under prime factorization of odd ratio-
nal prime

In the previous section, we prove a lower bound for M («) subject to the prime factorization
0f 20g(4)- So, 1t 1s natural to ask a lower bound for M () in terms of the prime factorization
of an odd rational prime p in Ogy,). We prove two results in this direction. The first one 1s

the following.

Theorem 3.6 ([38]). Let o be an algebraic integer of degree d which is neither zero nor a

root of unity. If there exists an odd rational prime p such that pOg.) = Py' Py -+ Ps",

where Py, . .., Py, are distinct prime ideals of Og(a), withmaxi <i<,{e;} < pand S 6=
d, then
1 2
h(a) 2 M .
(p—1)

Moreover, if p < \/dlogd, we have M («) > ¢, for some ¢ > 1.

We first proved the last part of Theorem B.6 by assuming only p < v/d. During a
discussion with Prof. M. Waldschmidt, he pointed out that the same conclusion holds for
p < 4/dlogd.

An immediate consequence of Theorem 8.4 is the following.

Corollary 3.7. Let o be an algebraic integer of degree d such that 1 < M(a) < ¢;.

Consider any rational prime p with 2 < p < \/dlogd. If
POa(e) = Pi'P§ - PE,

then either

e; > p, forsomei € {1,... ,r}

or

[Og(a)/Pj : Z/pZ] > 1, for some j € {1,...,1}.
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Proof of Theorem B.4. As in the proof of Theorem B.3, we assume that o is a unit. Put

K = Q(«). Given that there exists an odd prime p such that
POK = P{'P§* - i,
where max, ;<. {e;} <pand ) _,e; =d. Since y ., e; = d, we have

fr, =[Ok /P : Z/pZ] =1, foralli e {1,..., r}.

So !OK/R-| =p, forallie {1,..., r}. Thus o —a € P; foralli € {1,..., r}. Since «v 18

aunit, we have o?~' — 1 € P, foralli € {1,..., r}.So (aP~!' — 1) € PP C Pf'. Hence

by binomial theorem, we get o?P~1 — 1 P foralli =1,...,r. So
(-1) = _1_ 1 vpp-1)
‘ap —1‘ <pe = - < —max{l, |a|, PP
P; P P ‘
If v | o0, then (ap(p—ﬂ — 1| <oV 41 < 2max{1, |af*V}.

v

Thus, we have

Lmax{1, |a] ) ifv | p,
< max{1, |a| PPN ifvip,vfoc, (3.4)

‘QP(P—U —1
2max{1, |o| PP~V ifv | occ.

]

Since « is not a root of unity, a?P~Y — 1 £ 0. Applying the product formula ([.36) to the

element o”P~1) — 1 and using (B.4), we get

0= Y [K,: Q) 1og(aP(P—U —1

veEM K

T

< Y K, : Q){-logp + p(p — 1)max{0, log|al,}}+
lp

> (K, Ql{p(p — 1)max{0,log|al,}}

vp,vtoo

Z[K“ : Qu{log2 + p(p — 1) max{0,log |al,} }

v|oo

= _Z[K“ : Q) logp +Z[K‘“ :Q,)log2 + Z p(p — 1) max{0, log |a| }[ K, : Q@,].

vlp v|mo ve Mg
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By ({1.35), we have
> K, :Q)=[K:Q] and §|:[Ku :Q.) =K : Q.
op oo
By ([1.39), we have
gymﬂ@mﬂwmwmrﬂmemy
veMx
Therefore,
0<—[K:QJlogp+ [K :Q]log2+ p(p — 1)[K : Qlh(a),
which implies
h(a) > log(p/2)

“rlp—1)
This completes the proof of the first part of Theorem [3.4.

For the last part, if p < v/d, then p(p — 1) < d. So 1;%;1‘1%) > 1°g(§/2]- Thus, we have

M(a) = p/2.IfVd < p < \/dlog d, then for d > 16,

log(p/2) _ log(vd/2) _ 1.
plp—1) = dlogd — 4d

Thus, M («) > /e. This completes the last part of the proof. O
The second result for odd rational prime is the following.

Theorem 3.8 ([38]). Let v be an algebraic integer of degree d which is neither zero nor a
root of unity. If there exists an odd rational prime p such that pOg o) = P1Py - - - Py, where

P1. ..., Pqare distinct prime ideals of Oy, then

h(or) > log(p/2)
S

Moreover, if p < dlogd, we have M («x) > ¢y, for some constant ¢y > 1.
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We first proved the last part of Theorem B.8 by assuming only p < d. During a dis-
cussion with Prof. M. Waldschmidt, he pointed out that the same conclusion holds for
p<dlogd.

As mentioned in the introduction, Pottmeyer [34, Theorem 1.1] also proved the first

part of Theorem .8, but our method of proof is simple and different.

Proof As in the proof of Theorem B.3, we assume that o is a unit. Put ' = Q(«). Given

that there exists an odd prime number p such that
POk =P1P;---Pu,

Since p splits completely in K, we have [Ox /P, : Z/pZ] = 1 foralli € {1,..., d}. Thus

{OK/”P@{ =pforalli e {1,..., d}. Thusa? —a € P;foralli e {1,..., d}. Since v is a

unit, we have o' — 1 € P; foralli € {1,..., d}. So

i

' I 1 o
ot -1, <= < —max{1,|a|, }F .
ot 1], < 0 < Cmax{L ol }
Ifv | oo, then |ap_l - 1|U < \aﬁ_l + 1 < 2max{1, |Ct|f._l}.
Thus we have

| élnax{l, lo] 77 ifw | p,
lo?~t — 1| << max{1,|al }"!  ifvip vtoo, (3.5)
2max {1, |a|, }P7 ifv | oco.

Since o is not a root of unity, a?~' — 1 # 0. Applying the product formula (I.3G) to the
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element o?~! — 1 and using (B.5), we get

0= Z [KU . QU] 10g |QP—1 B 1|‘U

vE Mg
< Ky Qu{—logp + (p — 1) max{0, log || }} +
vlp
Z [Ky - QuJ{(p — 1) max{0,log |, }} +
vip,vfoo
> K, : Qu){log2 + (p — 1) max{0, log|a/,}}
v|oo
=— Z[Ku : Qy]logp + Z[Kv : Q] log2 + Z (p — 1) max{0,log|a|,}[ Ky : Q.
v|p v|oo vEM ¢
By ({1.35), we have

DK :Q)=[K:Q and Y [K,:Q,)]=[K:Q)

vlp v|oo

Also, by (L.39), we have

Y [Ky: Q) max{0.loglal,} = [K : QJh(a).

veE Mk
Therefore,

0< —[K:Q]logp+ [K : Qlog2 + (p — 1)[K : QJA(a),

which implies

log(p/2)
p—1

This completes the proof of the first part of Theorem B.§.

h(a) >

For the last part, if p < d, then bg‘tf(a) > 1°§E”12) > 1og(§/2)_ Thus, M(a) > p/2.

Ifd < p <dlogd, then ford > 4,

p—1 = dlogd — 2d

log(p/2) _ log(d/2) _ 1

Thus, M («) > /e. This completes the last part of the proof. (]
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An immediate corollary of Theorem j.§ is the following.

Corollary 3.9. Let o be an algebraic integer of degree d such that 1 < M («) < c2. Then

there are no odd rational prime p with p < dlogd that splits completely in Q(c).

3.4 Base field is a number field

In this section, we generalize the results of Section B.2 and Section B.3 to number fields K.
Here, our results are based on how primes in O splits in O (q).

First, we need to generalize the definition of totally p-adic algebraic unit to a number
field K. For any prime ideal P € O and any o € Q\ {0}, we say that « is totally P-adic,
if P splits into [ («r) : K| distinct prime ideals in O ). Define

(P, K) = inf{h(a) . a € Q is totally P-adic algebraic unit and (a) > o} :

Petsche [32] proved that

log (||P||/21%9)
T(P,K) > ~T
S T L)
where || P|| is the absolute norm of 7. Note that the lower bound (B.6) is only nontrivial

(3.6)

when || P|| > 2[5°¥ A natural question is whether or not we can give a similar lower bound
for () for other classes of algebraic units. We prove two results regarding this question.

The first result is the following.

Theorem 3.10 ([35]). Let o be an algebraic unit which is not a root of unity. Let P be a
prime ideal, which lies above a rational odd prime p, of the ring of integer O of a number
field K of degree d over Q. Suppose

POk(a) = P1'Py* -+ P77,

where 22, . .., P, are distinct prime ideals of O (o) with ey + - - + ¢, = [K (o) : K] and
maxi<;<,{e;} < p. Then h(c) > ¢, where ¢ > 0 is a constant depending only on p and
[K:Q]=d
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Note that whene; = 1 foralli =1, ..., 7 in Theorem B.10], we get 7(P, K) > ¢, where

¢ > 0 is a constant which depends only p and [K : Q]. Hence, in this case, our lower bound
is always nontrivial, unlike (8.6).

Our second result is the following.

Theorem 3.11 ([35]). Let «v be an algebraic unit which is not a root of unity. Let P be a
prime ideal, which lies above 2, of the ring of integer Oy of a number field K of degree d

over (9. Suppose
POk(a) = PPyt P,

where 21, ..., Py are distinct prime ideals of Oy with e1 + --- + ¢, = [K(a) @ K].

Then M(a) > C(K), where C(K) > 1 is a constant which depends only on [K : Q] = d.
3.4.1 Prime factorization of primes lying above odd rational prime

In this section, we prove Theorem [3.10. First, we prove the following auxiliary lemma. It

is a slight generalization of [3, Lemma 2.1]. The proof follows their technique.

Lemma 3.12. Let K be a number field and 31, 3o € Oy. Let S be a finite set of places of

K which lies over a rational prime p. Suppose n > 0 be such that for all v € S
|31 — Ba|, <p " (3.7
Then for any n € N, there exists a positive real number s, ,(n), such that for all v € S
|57 —88"| < proratn
with sp,(n) — oo asn —+ oo.

Proof. Letv € S.Forany n € N, (,» denotes a primitive root of unity of order p". We

denote the only valuation of K (¢, ) extending v by the same letter v. For any j € N, since
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p1s totally ramified in Q((; ), we have |1 — (i |, = ;t::_l/r"’j_L (P=1) Also, since 3y € O and

v 13 a nonarchimedean absolute value, |32], < 1. Using this and @, we obtain

||,31 — ijﬁQ‘U = |.J31 — B2+ (11— ij)-’32|tl

é max {p_nﬂp_l)/p’_L[p_l)}

- l.mu{pj_l'{p—l.]u.l.}

=p pl—L{p—1)

Since
T

B =85 = (B - B) [T ] (51 = i),

=1 G
where the second product is taken over all the roots of unity ¢,; of order p/, we obtain

‘.ﬁfu - .ﬁgu‘u =161 = Bal, [T 11081 = GuB2)],

=1 ¢,

n
<p " [[p e o0
j=1

Ty Sy minp ! (p-Ln.1)

—8

=P
where

5=7 +Zmin{pj_l(p —1)n,1}.
j=1
Define an mteger & = k,, by k = 01f (p — 1)1 > 1 and by

PPrp-1m<1<pfp—1)

otherwise. Then

k n
s=n +ij_l[p —1)n+ Z 1 = p"n 4+ max{0,n — k}.
J=1 j=k+1
By taking
spn(n) = p*n +max{0,n — k}
completes the proof of the lemma. O
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Proof of Theorem .10, Put L = K («). Given that P is a prime ideal in O such that
PNZ=pZand

PO = PH PG ... P

where max, ;<. {e;} <pand ) | ;e; =[L: K].Since Y ;e; = [L: K], we have

Or/ % : Ok /P] =1, foralli e {1,...,r}.

Let f be the inertia degree of P over p. So {OL/E%{ = {OK/P{ = pf, foralli ¢

@ 1| < pFE =p
2

~1/e ~1/d

sp

where e is the ramification degree of P over p. Applying Lemma .12, we deduce that there
exists a A which depends only on p and d such that

‘Qp(pf_lij - 1‘@ <p ™ foralli=1,... r

Ifv | oo, then [a?® 07" 1| < ja /7P 4+ 1 < 2max(1, |al, P,

U

Thus we have

p?max{l, |a| PP VP ifu | P,
@07 1| < dmax(Ljal 0D ifefPuis,  (8)
2max{1, |a|,}P#' =D ifv | cc.

Since a is not a root of unity, a?®’ ~DP" — 1 =£ 0. Applying the product formula (I:36) to
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the element o?®’ ~1P* — 1 and using (B.8§), we obtain

0= 3" [Ly: Q] log|a?® 0" — 1

v

veEMf,
< [Ly - Qul{—dlogp + p(p’ — 1)p* max{0,log|a| } }+
v|P
D Ly Ql{p(p — 1)p*max{0, log |a|, } }+
vt P utoo
Z[L” - Qu){log2 + p(p’ — 1)p* max{0, log|al,}}
vloo
= Z _[LU . Qv]dll[)gp + Z[LU : QU] lOg 2+
v|P Voo
Z p(" = 1)p[L, : @ max{0,log|al,}.
veMy,
By ({1.39), we have
> Ly : @Jmax{0,log|al,} = [L: Ql(a),
veEMp
and by ([1.39)), we have

> L Q] =[L: Q).

v|oo

Therefore,

0 < —dlogp [Ly : Kp|[Kp: Q) +[L: Qlog2+ p(p/ — 1)p*[L : Qlh(a).

v|P
Since
D L Kpl=[L: K],
v|P
we have
Kp - L:
0< —d.logp[ P [I?%’]é] Q +[L : Q]log2 + p(p! — 1)p*[L : Qlh(a).
So
[Kp : Qy)logp —log2 _ log(p/2) log(p/2)
hia) > > > .
() 2 p(p/ — p* ~p(pf = T p(pt - 1)p?
Since A is only a function of p and d, this completes the proof of Theorem [.10. O
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3.4.2 Prime factorization of primes lying above 2
In this section, we prove Theorem B.11].

Proof of Theorem B_1]. Put L = K (o). Given POy, = P 25 .. P where ] + e +
«o4e.=[L:K|.So, [0O/Z;: Og/P] =1,foralli € {1,..., r}. Let f be the inertia

degree of P over 2. So {OL/L%{ = {OK/’P{ =2/ foralli € {1,...,r}. Thus

o —ae P, forallie {1,....r}.

Since «v 1s a unit, we have

¥ ' —1e 2, forallie {1,...,r}

Foreachi € {1,..., r}, choose s; minimal such that 2% > ¢;. For any fixed 7, by the

minimality of s;, we have 2" < ¢;, foralln =0,1,...,s; — 1. Since
PO = PPy Pir C PFC P

foralln =0,1,...,s,—1,wehave2 € 2% foralln =0,1,...,s;— 1. Since 2 € 2; and
o1 1€ 2, wehave o’ 1 — 142 =0a?"141¢€ P; whence ¥’ "' "2 — 1 € P2
Using 2 € 222" foralln = 0,1,...,s; — 1 and applying the same method inductively, we
get

o2 e 2 CpE

. ) ) f+s _o:
Define s = max{sy, sy, .. ., s, }. Without loss of generality, assume s = s;. So, a?' "~ —

1 € 2% Takeanyi # 1. Thena? ™ —2" _1 ¢ P¢. Since 2 € P anda? "2 1 ¢ P,

2f+s(- —25; 2f+s(-+L_2£(-+L

we get +1 € Z2;; whence « —1e L@f"’l. Applying the same method

. . Flaits—si_9sits—s; . 45— frs_o i s—
inductively, we get o2 " TETTT 1 € 25T Thus o Y — 1€ TN C

25 So, foralli e {1,..., r} we have

‘a2f+s_2.‘s . J_‘ S 2:?{:? — 27 S ZT-_.
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where e is the ramification degree of P over 2. Applying Lemma .12, we deduce that there
exists a A which depends only on d such that

If v | oo, then ‘a@“s‘zﬂ)z’\ —1

< |a|£l2f+s72.e)2f\ +1 < 2max{1, |al,}@ 202",
v

Thus we have

Z‘deax{l, ‘Q|U}(zf+s_2s)2,\ if v |7)’
< { max{1, |af }&" 202 ifotP,vtoo,  (3.9)

‘Q(QHS—Q-“)Z’\ 1
" 2max{1, af }@22 iy | oo,

Since a is not a root of unity, o(?"**=22* _ 1 £ 0. Applying the product formula (I.36) to

the element 2" ~2"2" _ 1 and using (8.9), we obtain

0= Z [L‘U . Q‘U] 10g ‘a[2f+-‘i_28]2)\ 1

U

veEM,
<Y Ly Q){—2dlog2 + (2/7* — 2°)2* max{0, log |a|, } } +
v|P
3 Lo Q{27 — 292" max{0, log o], }}+
v{P vteo
> Ly QuJ{log2 + (27 — 2%)2* max{0, log|al,}}
v|oo
= —[L,: QJ2dlog2+ > [L,: Q,]log 2+
v|P v|oo
> (@ —29)2ML, : Q) max{0, log|al,}.
veMp,
Since
> [Ly : Q. max{0, log|al,} = [L : Q]h(e)
veM,
and

D Ly Q] =[L: Q)

vloo
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we get

0< —2dlog2 ¥ [Ly: Kp][Kp : Q] + [L: Q]log2 + (2% — 2%)2*[L : QJh(a).

u|P

Using

Y [Lo:Kp] =L : K],

v|P
we have

0 < —2d10g 2P QUL QL 1000 4 (28 992\ (L - QlA().
[ Q]
Thus
h(a) > [Kp : Qy]logd — log2 - log 2

(2FFs —29)28 T 22 —1)2%
Using the minimality of s, we have 2° < 2¢; < 2[K (o) : K] < 2[Q(«) : Q]. Also, since

f<d. we get
log M («v) o log2
[Q(a) : Q] ~ 2[Q(a) : Q)27 — 1)2*"

Thus, we have

_ log 2
Since )\ is only a function of d, this completes the proof of Theorem B.11]. ]
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Chapter 4

Algebraic points of Weierstrass sigma func-
tions

4.1 Introduction

The problem of counting integral points on graphs of different kinds of finctions can be
traced back to the work of Jarnik [24]: he proved that a strictly convex arc y = f(z) of
length / contains at most

3(4?:_)—1,/312/3_1_0(!.1/3) (41)

mtegral points. Recall that f(z) = O(g(x)) if there exists a real number M > 0 and a
real number x; such that | f(z)| < Mg(z) for all z > . In (4.1)), the exponents and the
constants are best possible. In the seminal paper of Bombieri and Pila [10], along with
several other results, they proved an upper bound for the number of integral points on the
homothetic dilation of transcendental real analytic functions. If I' is the graph of f, then

the homothetic dilation of I" by a real number ¢ > 0, denoted by I, is defined by

tr = {(tz,tf(z)) : (z, f(z)) €T} .

Theorem 4.1 ([10]). Let I be the graph of a real analytic transcendental function f on a
closed and bounded interval I of R. For any € > (), there exists a constant C1(f,€) such
that, forallt > 1,

[t0 N Z%| < Ci(f,e)t.

Note that, if ¢ = H is an positive integer, then the number of rational points on I" of

denominator / 1s same as the number of integral points on HI' and therefore, there are at
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4 Algebraic points of Weierstrass sigma functions

most C(f,e)H*® such points. Later, Pila [33] generalized this theorem by counting rational
points whose absolute values of both numerator and denominator at most # on I'. He proved

the following.

Theorem 4.2 ([33]). Let I be the graph of a real analytic transcendental function f on a
closed and bounded interval I of R. Let € > 0. Then there exists a constant Cy( f,€) such
that, for any H € N, the number of rational points whose numerator and denominator have

absolute values at most H on I is at most Ca( f,e)H*.

It is also shown in [10] that these bounds are best possible in general. However, for
some special functions, the upper bound could be improved to one of the form ¢(log H)",

for some ¢, > 0. For example, Masser [30] proved such bound for the Riemann {-function.

Theorem 4.3 ([30]). There exists an absolute constant C3 > 0 such that for any integer
H > 3, the number of rational qwith q € (2, 3) such that both q and ((q) have denominator
at most H is at most Cy (log H/loglog H)2 .

In the same paper, Masser suggested to prove analogue of his theorem for other func-
tions; namely, the Weierstrass zeta function, Euler Gamma function, Weierstrass sigma

function and so on.

For a lattice {2 = Zw; + Zw» in C, the corresponding Weierstrass sigma function is

2 z 22
oq(z) =z H (1 - j) exp (: + sz) ,

weQ\ {0}

defined by

while the associated Weierstrass zeta function is defined by

Galz) = 228,

oa(z)

o

For an algebraic number « of degree d, its multiplicative height 1s defined by H(«) =

(M (a))l/ g , Where M («) 1s its Mahler measure. For a pair «, 3 of algebraic numbers, we
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4 Algebraic points of Weierstrass sigma functions

put H (e, ) = max{ H(«), H(3)}. Following the suggestion of Masser, Jones and Thomas
[25] proved the following density result for the Weierstrass zeta function along with several

other results.

Theorem 4.4 ([25]). Let 2 = Zw, + Zws be a lattice in C and (o () be the corresponding
Weierstrass (-function. Then there exist constants R = R()) > 0 and Cy = Cy(d,2) > 0
such that there are at most Cy(log H)'® algebraic points = which satisfy [Q(z, (q(z)) : Q] <

dand H(z,(0(2)) < H and |z - %‘ <R.

In [14], Boxall and Jones proved an upper bound by putting order condition on entire
functions. Recall that the order of an entire function f is defned by

p = lim sup M
r—00 log r
while its lower order is defined by
.. loglog M
A= lim inf —2 2= f(r).
00 lOg?"

where My (r) = max), <, | f(2)].

Theorem 4.5 ([14]). Ler f be a nonconstant entire function having p as its finite order and
A as its positive lower order. Suppose r > 0 be a real number. Then there exist positive
constants Cs = Cs(f,r) and n = n(p, \) such that for H > e, there are at most Cs(log H)"

rational numbers q € [—r,r] such that both q and f(q) have height at most H.

To state some results, we need following definitions. Let d > 1, H > 1 be real numbers.

For any function f and any subset Z C C, define

SH(Z.d, H) = {z eQ:ze Z.[Q f(2)): Q] < d, H(z [(2)) < H}

and
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Besson [[7] was the first to study the number of algebraic points of bounded degrees and

bounded heights on the graph of Weierstrass o-function. He proved the following.

Theorem 4.6 ([7]). For R > 2,defineZr = {z € Q : |z| < R}. Thenforalld > 1, H >3

d*(log H)?

Sy (Zr.d, H)| < C4RlogR———1
{ G’Sl( R ){— 6 0g log[dlogH)

for some effective constant Cg = Cg(2) > 0.

In this result, Besson counts algebraic points on a bounded domain. Recently, Boxall
et al. [13], by putting some additional conditions on the Weierstrass o-function, proves an
upper bound for the number of algebraic points of bounded degree and bounded height on
the entire graph of the Weierstrass o-function. They proved two such results. Let Re(z)
and Im(z) denote the real and imaginary part of a complex number =z, respectively. The

first result 1is the following.

Theorem 4.7 ([13]). Suppose Q) = Zw, + Zw, be a lattice with w1, wy both algebraic and
Im(ws /wy) < 1.9. Then there exists a constant C; = C7(Q2) > 0 such that for all d > e
and H > ef,

{Sgﬂ (d,H) { < C7d°(logd)(log H)*loglog H.

For the second result, consider the invariants

R=60 Y W' =10 Y o

weQ\{0} weQ\ {0}

associated to Q2.

Theorem 4.8 ([13]). Suppose Im(wz/w1) < 1.9 and g2 and g3 are both algebraic. Then

there exists a constant Cs = Cg(Q2) > 0 such that for all d > e and H > ¢,

|Sg [d,H)| < Ogd®(log d)>(log H)?loglog H.

0
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4 Algebraic points of Weierstrass sigma functions

One of the mam constrain of the above two results 1s that they hold for a restrictive
range of wy /wi. Our aim 1s to remove this constrain and extend these two results of [13] for
a general wy /w; € H under the assumption that p = 72 /1) is a nonzero real number, where
1; = 2(n(w;/2) 1s the quasi-period associated to w; (i = 1,2). With this assumption, we

are able to count the algebraic points of o () in an unbounded subset A, of C defined by

A — z=x+iyeC:xy>0 1fp=>0,
. z=x+iyeC:axy <0 ifp<0.

Our first result is an analogue of [13, Theorem 1.1] (see Section 4.4 for the proof).
Theorem 4.9 ([37]). Let () = Zw) + Zws be a lattice in C such that wy and wy both

algebraic. Assume that p = 1/ a nonzero real number. Then there exists a constant

Cy = Cy(82) > 0 such that for alld > e and H > e,
|Soq (Ap, d, H)| < Cod"(logd)(log H)* loglog H.

Our second result deals with the case that ¢,, g3 are algebraic. It is analogues to [13,

Theorem 1.2] (see Section .9 for the proof).

Theorem 4.10 ([37]). Let @ = Zw, + Zwsy be a lattice in C such that g, and g3 both
algebraic. Assume that p = 12 /11 a nonzero real number. Then there exists a constant

Cho = C10(R2) > 0 such that for all d > e and H > €,
|Soe(Ap,d, I)| < C10d* (logd)’(log H)*loglog I1.

We also prove the following more general result with no assumptions on the quantities
w1, wsy, g2 and gs. In this case, we are only able to count the algebraic points of o(z) which

are not close to the lattice points. The proof is given in Section [.d.

Theorem 4.11 ([37]). Let Q2 = Zw, + Zwy be a lattice in C. Assume that p = ny/m a

nonzero real number. Let 0 < § < min{l, |wy + wa|/2, |w1 — w2|/2}. Then there exists a
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4 Algebraic points of Weierstrass sigma functions

constant C1 = C11(0, Q) > 0 such that for all d > e and H > €°,
|Soq (Ap.d, H)N{z € A, : dist(z,Q) > §}| < Cryd*(logd)(log H)? loglog H,
where dist(z, ) = mineq |2 — w|.

Throughout this chapter, we fix an Z-basis {wy,ws} of Q such that 7 = wy/w lies in
the upper half plane H of C with || > 1 and the real part of 7 lies in the interval [—% é] .

Note that such a basis always exists.

4.2 Zero estimate and existence of nonzero polynomial

In this section, we state two results which are required for our proofs. The first is the zero

estimate for the Weilerstrass o-function.

Proposition 4.12 ([7, Théoréme 1.2]). Let T > 1 be an integer and R > 2 be a real
number. Consider any nonzero polynomial P(X,Y) € C[X,Y] of degree at most T in

each variable. Then there exists an effective constant C13 = C12(Q2) > 0 such that the

fumction P(z,00(2)) has at most C13T(R ++/T)*log(R + T) zeros in |z| < R.

Proposition 4.13 ([B0, Proposition 2]). Let A, Z, M and H with H > 1 be positive real
numbers. Let d € N and T > /8d. Assume f, g be two analytic functions on |z| < 2Z
and continuous on |z| < 2Z. Suppose that for all |z| < 2Z, |f(z)| < M, |g{z)| < M. Let

S C C be finite set such that for all =,z € S.

b
o
o,

|

LS
L
[

—
—

e
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4 Algebraic points of Weierstrass sigma functions

Ir

then there exists a polynomial P € Z[ X, Y|\ {0} of total degree at most T such that
P (f[z),g{z)) =0forall z € S.
4.3 Growth conditions

In this section, we prove an important growth condition for o (z). Let P be the fundamental

W =W

parallelogram for the lattice (2 = Zw; + Zws enclosed with vertices =72,

Proposition 4.14. Let Q) = Zw, + Zws be a lattice in C with p = n9/n) is a nonzero real
number. Then there exist positive constants v and C' depending only on S such that for all

z € A, with |z| > r, there exists 2z € P with
loa(2)] > |oa(z0)] €.

Proof As in the proof of [13, Proposition 2.1], we may assume that Q = Z + Zr with
T e H. Let z € A, and zp € P be such that z = zp + m + n, for some integers m and n.

Then we have

m

oa(zo +m +nt) = (1) (7)) emn ) Gty +57)

(see [29, p. 255]). Hence,

|7a(z0 +m + n7)| = |oa(z0) ™"

where R(m,n, z9) = Re[(mn + nn2)(z + 5 + 57)]. Note that

R(m,n,z)) =Re (%) m? + Re (%—H}'Z) mn + Re (%) n*+

Re (1129) m+ Re (17220) 1.
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4 Algebraic points of Weierstrass sigma functions

Further, using the Legendre’s relation n, 7 — 7y = 2mi, we obtain

Re(m7) = Re(n)

and
Re (%—Hﬁ) = Re(n2).
Moreover,
Re(no7) = Re(m1p7) = pRe(m7) = pRe(nz) = p? Re(ny).
Therefore,

. . 2 2
e (%) e (25 Y e () o = st (% +pmn+%n2)

Whence,

1
R(m.n,z) = 5Re(m) (np+m)”+Re(nzo)(np +m)

Re(m)
2

— (np+m) (np+m) +Re(ni20)

(Recall that by Dirichlet’s theorem, there are infinitely many pairs of integers (m, n) such
that either p+ 2 = O or |p+ 2| < -. Because of this reason, we need to restrict the values
of m,n). Also, since 15 /ry = 7 — 2mi /ny and 12/ 1s real, we have Im(7 — 27i /n) = 0.

So

Re(m) )
Re(n1)? + Im(n; )

Im(7) = 27 Re(1/m) =27

Since Im(7) > 0, we have Re(7;) > 0.

Case 1. p > 0. Suppose m > 0,n > 0. Then there exists a positive constant r = r({2)

such that whenever |z| > r, we have

R(m,n.z0) > ex(np +m)? > cymax(|m], |n])?,
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4 Algebraic points of Weierstrass sigma functions

for some positive constants ¢, ¢5 depending only on 2. On the other hand, we obtain

zo + m—+n7| < camax(|m/|, |n|)
for some constant ¢35 = ¢3(€2) > 0. Hence, we obtain that
loa(z0 +m 4 n7)| > |oq(z0)]ect 0t (4.3)

for some constant ¢; = ¢4(2) > 0. Now, if m < 0,n < 0 then consider the point —zy —

m — nt. Clearly, —z € P. Therefore, from (4.3)) we obtain that

2

loa(—20 — m — n7)| > |og(—z20) el ™ = g (—zq) |eCilzotminT
But, since oq(2) 1s an odd function, we have
loa(—20 —m —n7)| = |oa(zo + m+n7)|, and |oo(—2) = |7a(20)].

and hence the required result follows.

Case 2. p < 0. The proof of this case is similar to Case 1, and therefore we omit it

here. |

4.4 Lattice points are algebraic

In this section, we prove Theorem #.9 Throughout this section, let r and C' denote the
constants from Proposition #.14. In the following cs. . . . , ¢;7 denote positive constants de-

pending only on 2 (and are independent of d and H). Since

lim oa(2)

z—0 z

=1,
there exists an € with 0 < £ < 1/2 such that

z

<1 (4.4)

|log|oa(z)| — log

whenever < £. We fix such an ¢.

z

First, we prove several lemmas which are required for the proof of our theorem.
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4 Algebraic points of Weierstrass sigma functions

Lemma 4.15. Forsome d > eand H > e, suppose z € S,,(A,, d, H) and zy € P be such
that = — zp € Q with |20| > €. Assume that |z| > r. Then |z| < Ci3,/dlog H, for some

constant C13 = C13(92) > 0.

Proof. Let S = {z € P :|z| < e}. Note that P \ S is compact. Since (=) 1s continuous
and nonzero in P\ S, for all = € P\ S, we have |og(2)| > ¢5. Since |zg| > &, we have

loa(20)| > e5. Now from Proposition .14, we have
|Jg(z)| > |JQ(ZU)| €l

On the other hand, since [Q(oq(2)) : Q] < d and H(0g(z)) < H, we have |og(2)| < H?.

So
C|z)? < log|oq(z)| — log|oa(z)| < dlogH — logcs < cgdlog H,
and therefore, we have |z| < ¢7/dlog H. This completes the proof of the lemma. O

Lemma 4.16. For some d > e and H > e, suppose = € S,,(A,,d, H) and = € P be

such that = — z € Q with |z| < €. Assume that |z| > r. For all B > 0 and for all

N > +/dlog H, we have if | z| > w%f\ﬂ then log|z| < —BN?.

Proof. Let z € A, with |z| > r. Let zp € P be such that = — z, € 2. From Proposition
1.14, we have

loa(2)] = |oa(z0)] €.

Using |0 (z)| < H?and N > /dlog H, we obtain
C|z|* + log |oa(20)| < log|oa(z)| < dlog H < N*. (4.5)

Forany B > 0, put
24+ B
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4 Algebraic points of Weierstrass sigma functions

If|z| > AN, then from (4.5) we deduce that C A2N?+log |0 (20)| < N2.So,log|og(z0)| <

(1 — CA%)N?2. Since |zo| < ¢, applying (#.4), we obtain
log |z0| <logloa(z0)| +1
<(1—-CAHN? +1
<(2 — CAY)N?
=— BN2
Thus the result follows. O

Lemma 4.17. Assume that w, and wy both algebraic. For d > ¢ and H > e, let z €

Soo (A, d, H) be such that |z| > r. Then there exists a constant Cyy = C14(2) > 0 such
that |Z| < CHdulog H.

Proof Suppose z € A,. Choose zy € P such that = — z, € 2 If |29| > ¢, then by
Lemma §.13 we have |z| < ¢z1/dlog H. So we assume that |z| < £. Since wy/w; ¢ R, if

w =2z — 20 = kw1 + lwa € €2, then we obtain max(|%|, |/|) < co|w|. Therefore,
max [k, 1)) < eo(l2] + 20]) < ea(|] + | + Jwal) < eolzl.

On the other hand, since H(2) < H and [Q(2) : Q] < d, we deduce that |2| < H% So
H(k) = |k| < ew0]2| < croH? and similarly H(1) < c10H?. Now using the inequality

H(z) < 2H(2)H(w) < 4H(2)H(k)H (w)H(1)H (w;) < ¢ H¥H,

together with the bounds

and

M(z) = M(z5Y) > 1/]20).
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we deduce that
log|zo| = log(1/M(20)) = —[Q(z0) : Q]log(H(z0))
> —c19d((2d + 1) log H + logeny) > —eiad® log H

where M () 1s the Mahler measure of a. Applying Lemma with B = ¢j3and N =

d\/log H,we deduce |z| < ¢4d+/log H, where ¢4 = ‘/Z—*C?ﬁ. Taking C', = max{cs, c14},

we obtain the required result. O
Finally, we need the following result to prove our theorem.

Proposition 4.18 ([29]). There exists a constant C5 = C15(S2) such that for any R > 1,
|oa(z)| < CE, forall |2| < R.
Proof of Theorem . Define
Zi={z€ A, : [Qz,00()) : Q] < d, H(z00(2)) < HY.

Put
Z =4Cydy/logH, A=2/Z

From Lemma .17, we have |2| < C4d\/logH < Zand |z —2'| < 1/Aforall 2, 2’ € Z,.
On the other hand, from Proposition 4.18, there exists a constant ¢;; > 1 such that for

all 2 € A, |oa(z)] < ¢ff. Put M = & Then |2| < M and |oq(z)| < M for all

|z| < 2Z. With these choices of A, Z and M, conditions of Proposition are satistied.
If we take T = ¢15d° log H for a sufficiently large ¢ > 0, then (#.2)) is satisfied. Hence by
Proposition 4.13, there exists a nonzero polynomial P € Z[X, Y] of total degree at most T
such that

P (z, Jg(z)) =0forall z € Z;.
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Finally, taking R = C4d/log H and T = ¢14d° log H in Proposition .12, we deduce that
there are at most ¢,7d%(log d)(log H)? loglog H zeros of P(z,0q(z)) lie in the region |z| <
R. Hence the number of elements in the set Z is at most c17d°(logd)(log H)? log log H.

This completes the proof. O

4.5 Invariants are algebraic

In this section, we prove Theorem 4.10. Throughout this section, let 2 denote a lattice

in C with algebraic invariants g9, g3. In this section, ¢ys, . . . , o7 denote various constants

which depend only on €2. We first state the following transcendence measure for the nonzero

elements of €2, due to David and Hirata-Kohno.

Lemma 4.19 ([16]). Let 2 be a lattice in C. Let d > 1 and H > 3 be real numbers. Let o
be an algebraic number with (Q(«) : Q| < d and H () < H. Then there exists a constant

Ci6 = C16(02) > 0 such that
log o — w| > —Ciod*(log d)* (log H)|w|*(1 + max{0, log w|})?
forallw e Q\ {0}.
The following is an analogue of [13, Proposition 4.2].

Lemma 4.20. Assume that p = 19/, is a nonzero real number. Let d > 1,H > 3 be
real numbers. There exist positive constants C17, Cs depending only on 2 such that the
following holds. If z, 2" € A, be such that [Q(z,0q(2)) : Q] < d,[Q(,0q(2')) : Q] <,
H(z,00(2)) < Hand H(2',00(2")) < H, then

min{|z|, |2'|} < C17v/d°(logd)?log H
or there exists w,w' € Q such that

max{log |z — w|.log|z' — |} < —C13d°(logd)?log H
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with 2/ [z = W' /w € Q.

Proof. The proof follows along the same line of argument as in [[13, Proposition 4.2], so

we omit it here. O

Lemma 4.21. Assume that p = 13/, is a nonzero real number and g3, g3 both algebraic.
Letd > 1, H > 3 be real numbers. Let r be from Proposition and C7 be from Lemma
Y20 Consider the set

S = {z €A, [Q(z,00(2)): Q) <d H(z,0q(2)) < H and

|2| > max {:r, Cir+/d?(log d)? logH} }

Then there exists a positive constant C1g = C19(2) such that S has at most

Crov/d*(logd)2(log H)(1 + dlog H)?
many elements.

Proof. We follow the strategy given in [[13]. Suppose z, z' € S. Then

min{|z], |2} > Ci7\/d°(logd)?log H.
So by Lemma }1.20, there exists w, w’ € €2 such that
max{log |z — w|,log|z' — |} < —C3d°(logd)?log H

with 2’/ 2z = w'/w € Q. This implies z, 2’ are not periods of €2.

Put w'/w = q. Let w* € O\ {0} be of minimum modulus which lie on the line joining
0 and w. So w = mw* for some nonzero integer m. Let z* = z/m. Note that 2* € A,.
Also since w’ and w lie on the same line, we have w' = myw* for some m; € Z. So

gmw* = miw*. Hence gm = my. Now 2/ = gz = gmz* = myz*. So 2/ is an integer

multiple of z*. Thus if we show that whenever nz* € S for some n € 7Z implies
n? < egd®(logd)?(log H)(1 + dlog H)?,
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then we are done. Because, just now we have seen that if 2’ € S then 2’ = nz* for some
n € N. Accordingly, we assume nz* € S for some n € Z. Put nz* = 2”. Thus, we have
2" e A,. Let zp € P be such that 2" — 2y = w” € Q. Since both 2" and = belong to S, we
have 2" /z = w" /w. Hence, nz*/mz* = w" /mw”*, or equivalently we obtain thatw” = nw™.
Now 2" ¢ A, from Proposition we obtain
log|og(2")| = log|oa(z0)| + C|2"|.
Note that z; # 0. Therefore, |0q(zy) /20| > €“=. Hence, we obtain
logoq(=")] > log |z0| + eig + Cl"

=log|?" — W"'| + ci9 + CJ2"|?

> log [nz* — nw*| 4 19 + Cn?|2*?

>log |2 — w'| + c10 + Cn?| 2"
Write w = kw; + lwp with integers k, . As we have seen earlier in the proof of Lemma
4.17, max(|k|, [I|) < exlz| € c0H?. Further, since w = mw*, we obtain that m divides
both k, /. We deduce that |m| < c;0H?. So, log H(z*) = log H(z/m) < ¢dlog H. Since
2* = z/m is algebraic, by Lemma }.19, we deduce that

log|2" — w*| = — cg9d"(log d)?d(log H)|w*|* (1 + max{0, log |:.L;*|})3
> — c93d” (log d)*(log H)|2*|? (1 4 max{0, log |z"‘|})3 .
So,
—cg3d” (log d)*(log H)|=*|* (1 + max{0, log |z"‘|})3 + c19 + Cn?|2*|* <log |og(2")|
<dlog H.
In other words,
n? < egud®(logd)?(log H)(1 + dlog H).

This completes the proof of the lemma. O
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Proof of Theorem [4.10. In order to prove Theorem 4.10, by Lemma {1.21], we only need to

count the number of elements in the set

2y = { e A, :[Q(z 00(2)) : Q] < d, H(z,00(z)) < H and

2| < Crr/d(logd)? 1ogH}.

Put

Z = 4C1\/d°(logd)?log H, A=2/Z.

Then |z| < Zand |z — 2/| < 1/Aforall z 2" € Z5.

By Proposition .18, for all = € A,, we have |o(2)| < cii . Put M = ¢ Then |2| < M
and {Jg[z){ < M for all |z| < 2Z. With these choices of A, Z and M, conditions of
Proposition are satisfied. If we take T' = c55d'°(log d)? log H for a sufficiently large
a6 > 0, then (M.2)) is satisfied. Thus by Proposition #.13, we deduce that there exists a

nonzero polynomial P € Z[X, Y] of total degree at most 7" such that

P (z, Jg{z)) =0forall z € Z,.

Finally, taking R = Cj7y/d”(logd)?log H and T = c3d'’(logd)?log H in Proposition
U.12, we deduce that there are at most c2rd?°(log d)°(log H)? loglog H number of zeros of

P(z,0q(%)) lie in the region |z| < R. Hence the number of element in the set 25 is at most

co7d® (log d)®(log H)? log log H. Since

Veud®(logd)2(log H) (1 + dlog H)? < ¢y7d**(log d)®(log H)* log log H,
from Lemma we obtain
!SUQ(A,Q, d, H)| < 2¢97d® (log d)® (log H)? log log H.

This completes the proof of the theorem. O
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4.6 Algebraic points away from lattice points

In this section, we prove Theorem [.11. Throughout this section, let ¢, » denote constants
from the statement of Theorem and Proposition .14, respectively.

Lemma4.22. Let ) = Zw, +Zws be a lattice in Cwith p = 15/ is a nonzero real number.
Ford>eand H > e, let = € Sy, (A, d, H) be such that |z| > r and dist(z,)) > 4. Then
there exists a constant C'yg = C(0, 2) such that |z| < Cay+/dlog H.

Proof Letz € A,and 2, € Pbesuchthat z—z) = mjw+nw, € Q. Sincedist(z, Q) > 4,

we have = |z — myw; — mws| > J. Let € denote the constant from Lemma n.13.

20

Case 1. § > ¢. Since |z| > &, we have |z| > &. So by Lemma {.13, there exists a

constant cy5 = ¢25(€2) such that |z| < ¢95+/dlog H. Hence the lemma is proved.

Case 2. 0 < e. Suppose & < dist(z,€2) < £.S0d < |z| < £. Hence

- § _ £ i 1..'2
|20| > e logl/d > e dlog Hlog 1/4 —e BN 1

where B = log1/6 and N = \/dlog H. Since || < &, applying Lemma [{.16, we obtain

2+ log1/0
|z|§1|/++g/ dlog H,

where C be as in Lemma [.14.
Now suppose dist(z, 2) > £.So0 |z0| > €. Thenasin Case 1, we get |z| < cog+/dlog H.

Taking Cp = max (028, \/ ﬁcﬁl/o) , we get the required result. O
Proof of Theorem .11, Define

Zi={ze€ A, dist(z,Q) > 0,[Q(z,00(2)) : Q] < dand H(z,0q(2)) < H}.

Put
Z =4Cy~/dlogH, A=2/Z.
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4 Algebraic points of Weierstrass sigma functions

From Lemma §.22, we have |z| < Cyg\/dlogH < Zand |z — 2| < 1/Aforall 2,2 € Z;.
By Proposition [4.18, {Jg[z)
for all |z| < 2Z. With these choices of A, Z and M, conditions of Proposition are

~|2 .
< . Put M = ¢Z. Then

<M

A

< M and {Jg[z)

satisfied. If we take T' = c30d? log H for some sufficiently large constant c35 = c30(6, 2),
then (4.2)) is satisfied. Thus by applying Proposition 1.13, there exists a nonzero polynomial
P e Z[X, Y] of total degree at most 7" such that

P (z, Jg(z)) =0forall z € Z5.

Finally, taking R = Cyg+/dlog H and 7' = ¢39d? log H in Proposition 4.12, we deduce

that there are at most c3;d*(log d)(log H)? loglog H zeros of P(z, cq(z)) lie in the region

<

< R, for some constant 31 = ¢31(0,€2) > 0. Hence the number of elements in the set

Z3 is at most c31d*(log d)(log H)? loglog H. This completes the proof of the theorem. [

4.7 Concluding remarks

One of the general methods to prove an upper bound for the number of algebraic points of
bounded degrees and bounded heights on graphs of functions is to find a nonzero polynomial
(depending upon the original function considered) with certain conditions that vanishes at
certain points. Then we need to prove a zero estimate for the original function to conclude
the required upper bound. For the Weierstrass sigma function o (z), to produce the required
nonzero polynomial, we first proved a growth estimate for o(2) (Proposition §.14). To
prove this estimate, we used the functional equation for o (z) and calculated a lower bound
for a quadratic form. Then we applied [30, Proposition 2] to produce the required nonzero
polynomial. After this, we applied the zero estimate of o ( z), proved by Besson (Proposition
U4.19), to prove our results. In order to use this method to prove similar upper bounds for
other functions, for example sin(z), we need a zero estimate for sin(z) - which I currently

do not have.
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