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ABSTRACT

In this thesis, we discuss four problems in the theory of modular forms. The
first problem deals with the various properties of nearly holomorphic Poincaré series,
such as the Fourier expansions, the holomorphic projections, etc. We also obtain
some limiting properties of certain Fourier coefficients involving nearly holomorphic
Poincaré series.

The second problem is about computing the adjoints of higher order Serre deriva-
tive maps. We give a formula for the adjoints of the higher order Serre derivative
maps with respect to the Petersson inner product in terms of special values of certain
shifted Dirichlet series attached to modular forms. As an application, we obtain some
identities involving Fourier coefficients of some specific cusp forms and special values
of certain shifted Dirichlet series.

The third problem is on the analytic properties of L-series associated to quasi-
modular forms. We obtain an analogue of Weil’s converse theorem for quasimodular
forms.

In the fourth problem, we define L-series associated to weakly holomorphic quasi-
modular forms of level N and study the analytic properties of these L-series twisted
by Dirichlet characters. We also establish a converse theorem for weakly holomor-
phic quasimodular forms which is an analogue of Weil’s converse theorem for weakly

holomorphic quasimodular forms.
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Summary

We discuss various properties of nearly holomorphic Poincaré series, such as the
Fourier expansions, the holomorphic projections, etc. We also obtain some limit-
ing properties of certain Fourier coefficients involving nearly holomorphic Poincaré
series. We obtain adjoint maps of higher order Serre derivative maps. As an appli-
cation, we obtain some identities involving Fourier coefficients of some specific cusp
forms and special values of certain shifted Dirichlet series.

We study analytic properties of L-series associated to quasimodular forms. We
also obtain a converse theorem for quasimodular forms. We discuss L-series associated
to weakly holomorphic quasimodular forms and prove a converse theorem for weakly

holomorphic quasimodular forms.



Notations

We denote by N, Z,Q, R, and C respectively the sets of natural numbers, integers,
rational numbers, real numbers and complex numbers. We denote by R, the set of
all positive real numbers. We denote by H the complex upper half-plane. For a,b € Z
we write a|b if b is divisible by a. For a,b € Z, the notation a (modb) means that a
varies over a complete set of residue classes modulo b and the symbol (a,b) denotes
the greatest common divisor of a and b. For z € C, we denote by Re(z) the real part
of z and by Im(z) the imaginary part of 2. We use e(z) = €?™* with i = \/—1. We

2miz

also use ¢ := e*™*. For a square matrix 7, we write det(vy) and tr(vy) respectively for
the determinant and the trace of the matrix y respectively. We denote by C'*°(H) the

set of all real analytic functions on H.



Chapter 1

Preliminaries

In this chapter we introduce basic definitions and some basic results of different

automorphic forms.

1.1 Modular forms

The group

GLI(Q) = {(Z Z) la,b,c,d € Q,ad — be > 0}

acts on the complex upper half-plane H = {z € C|Im(z) > 0}, by the fractional linear

Z) € GL3(Q) and z € H, the action of

transformation as follows. For any v = (Z

v on z is defined by

az+b

VE= (1.1)

a b

For any integer k and v = (c d) € GL3(Q), the slash operator on a function

f:H — C is defined by
(fle7) (2) := (det(7))*2(cz +d) ™" f(72). (1.2)
The full modular group SLs(Z) is defined by

SLy(Z) = {(i Z) la,b,¢,d € Z,ad — be = 1}.



1 Preliminaries

For a positive integer NV, we define

To(N) = {(i 2) € SLy(Z)[c =0 (modN)}.

Definition 1.1.1 (Modular form). Let k and N be positive integers. Let x be a
Dirichlet character modulo N satisfying x(—1) = (=1)k. A modular form of weight

k, level N and character x is a holomorphic function f :H — C such that

(1) for ally = (ﬁ Z) € I'h(N),

[y = x(d) f;

(2) for all v € SLy(Z),
[l (2) Z a,(n n/h
n=0

where h|N.

Moreover, if the constant terms a.,(0) are zero for all v € SLy(Z), then f is said to be
a cusp form. We denote the space of all modular forms and the subspace of all cusp
forms of weight k, level N and character x respectively, by My (N, x) and Si(V, x).
We simply write M and Sj if N =1 and x is trivial. The followings are some basic

examples of modular forms on SLy(Z).

Example 1.1.2. Let k be an even integer greater than 2. The normalized Eisenstein
series Ey, of weight k on SLo(Z) is defined by

1
Ek(2> = = Z
(m,n)€Z?\(0,0
(m,n)=1

1
) (mz+n)k

It is well known that Ej is a modular form of weight k& on SLo(Z) with Fourier

expansion given by

2 o0
Ei( —1——k20k1 : (1.3)

knl

4



1 Preliminaries

where oy_1(n) = > djn d*=! and By’s are the Bernoulli numbers defined by

T > xk

k=0

em

Remark 1.1.3. If k = 2, the Fisenstein series Ey is given by

Eyz)=1-24 i o1(n)q". (1.4)

It is well known that Es is not a modular form. It satisfies the transformation property

6 c
micz +d

az+b
cz+d

(cz+d) B, ( ) = FEy(2) + (1.5)

for all <Z Z) € SLy(Z) and z € H.

Example 1.1.4. The Ramanujan delta function is defined by

1 3 2
A2) = 1o (Ba(2)’ = Eo(2)?).

It is a cusp form of weight 12 on SLy(Z) with Fourier expansion
Alz) =g [[(1—g")* =3 r(n)g",
n=1 n=1

where T(n) is the Ramanujan tau function.

Definition 1.1.5 (Weakly holomorphic modular form). Let k be an integer and
let N be a positive integer. Let x be a Dirichlet character modulo N satisfying x(—1) =
(—=1)*. A weakly holomorphic modular form of weight k, level N and character x is

a holomorphic function f : H — C such that

(1) for all v = (‘2 Z) € To(N),

fley = x(d) f;
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(2) for all v € SLy(Z),

o0

flev(z) = 32 ay(n)g""

n>-—ng

for some ng € N and h|N.

Moreover, if a.,(0) are zero for all v € SLy(Z), then f is said to be a weakly holomor-
phic cusp form. We denote the space of all weakly holomorphic modular forms and
the subspace of all weakly holomorphic cusp forms of weight k, level N and charac-

ter x respectively, by M} (N, x) and Si(N,x). For a positive integer N, the Fricke

0 -1
we=(x o)

The following result is well known [23, Lemma 4.3.2 |.

involution Wy is defined by

Lemma 1.1.6. If f € My(N,x), then f|Wn € Mx(N,X) and if f € Sk(N, x), then
fleWn € Sk(N,X)-
Definition 1.1.7 (Petersson inner product). Let f,g € My (N, x) be such that at

least one of them is a cusp form. Writing z = x + iy, the Petersson inner product of

f and g is defined by

1 —— . dxdy
(f.9):=— f(2)a(2)y" =5, (1.6)
MFFO(N/)\H Y

where To(N) \ H is a fundamental domain, d;gy s a invariant measure under the

action of SLy(Z) on H and pr denotes the index of To(N) in SLy(Z).

It is well-known that Sy (N, x) is a finite-dimensional Hilbert space with respect to
the Petersson inner product. The following familiar result tells about the growth of
the Fourier coefficients of a modular form. The first statement can be easily obtained

[10, Theorem 9.2.1] and the second is due to P. Deligne [11].

Proposition 1.1.8. If [ = ioj a(n)q" € My(N,x), then for any ¢ > 0, we have
n=1

a(n) < n*=1re If f € Sp(N,x), then a(n) < nare,

6



1 Preliminaries

1.1.1 Hecke operators

For any positive integer n, let

Xn:{<8 Z) ]a,b,deZzo,ad:n,O§b<d}.

Definition 1.1.9. For a positive integer k, the n-th Hecke operator T,, on a function

f:H — C is defined by
E_
Tnf:n2 ! Z f|/€p

pEXn

The above expression means that for any function f : H — C, we have

(HICEERD MW (AT D P ol o) I

ad=n bmod d ad=n 0<b<d

The following result is well known [10, Proposition 10.2.3].

Theorem 1.1.10. Let n be a positive integer. If f € My, then T,f € M. Also if
f S Sk, then Tnf € S.

1.1.2 Poincaré series

Beside Eisenstein series, a very important class of modular forms is constructed via
the method of averaging. For any non-negative integer m, the m-th Poincaré series
of weight k on SLy(Z) is defined by

Pral2)= ¥ elma)ly, (18)
’YEFOO\SLQ(Z)

where 'y, = {j: (é 7;) 'n € Z} is the stabilizer of the cusp oo for the action of
SLy(Z) on H. It is well known that for k > 4, the series in (1.8) converges absolutely
and uniformly on any compact subset of H and it is a modular form of weight k£ on

SLy(Z). In particular, for m = 0, Pyx(z) = Ex(z). Also, for m > 1, P, x(2) is a
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cusp form of weight k on SLs(Z). To state the Fourier series expansion of Poincaré
series, we need the definitions of Kloosterman sum and J-Bessel function. For integers

n, m, ¢, the Kloosterman sum is given by

K(n,m; C) _ Z e27ri(m"—&-mr—1)/c7 (19)

where 7! denotes the inverse of r modulo ¢ and for a non-negative integer ¢ and a

real number z, the J-Bessel function of index ¢ is given by

i _1)61)71;% . (1.10)

We have the following theorem [10, Theorem 8.4.5.].

Theorem 1.1.11. For any integer m > 1, the Fourier expansion of P, is given by,

= Z A,k (n)qna
n=1

where

i) = B+ (D2 (1) 7 3 n (”ﬁ) (111)

and Oy, 15 the Kronecker symbol.

The following theorem [10, Theorem 8.2.3.] is an important property of Poincaré

series.
Theorem 1.1.12. If f(2) = % a(n)q™ € Sk, then for any integer m > 1, we have
n=1
I'(k—1)
Poi) = —2" 2 him). 1.12
(- Po) = esra(m) (112)
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By the above theorem, for any f € Sk, we can write

f) =3 %u, P (1.13)

n=1

Using the relation (1.13) and the non-degeneracy of the Petersson inner product,
one obtains that the series P, %, m > 1 span the space S;. The next result [10,

Proposition 10.3.19] is about the action of Hecke operators on Poincaré series.

Proposition 1.1.13. Let m,n be positive integers and let T,, be the n-th Hecke op-
erator of weight k on SLy(Z). Then

n\ k-1
Tan,k = Z (d) P%,k.
d|(m,n)

1.2 Nearly holomorphic modular forms

Definition 1.2.1 (Nearly holomorphic modular form). Let k, N be positive
integers and let p be a non-negative integer. Let x be a Dirichlet character modulo
N satisfying x(—=1) = (=1)*. A function F : H — C is called a nearly holomorphic
modular form of weight k, depth p, level N and character x if the following conditions
hold.

(1) There exist holomorphic functions fo, f1,--- , f, (called the component functions

of f) on H with f, # 0 such that
F(2) =3 f(2ig).

(2) For ally — (Z Z) € To(N), Fliy = x(d)F.

(3) For each j € {0,1,...,p}, there exists a; > 0 such that
fi(z) = O(((1 + |2]*) /Im(2))*) asIm(z) — co and Im(z) — 0.
In this case, we say that f; is polynomially bounded.

9
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We denote by M, ,?2(]\[ , X) the set of all nearly holomorphic modular forms of weight
k, depth p, level N and character x and we denote by M,?flgp(N ,X) the space of all
nearly holomorphic modular forms of weight k, depth < p, level N and character
X. We denote by M ,?}; the set of all nearly holomorphic modular forms of weight k,
depth p on SLy(Z) (i.e. N = 1 and y is trivial) and we denote the space all nearly
holomorphic modular forms of weight k, depth < p on SLy(Z) by M,f},hgp. We also
denote by Mp" = U,M}'L the space of all nearly holomorphic modular forms of

weight k on SLy(Z).
Definition 1.2.2. The Maass-Shimura operator Ry, on f € MM is defined by

Ruf(:) = 5 (21’;() n j) f(e).

The operator Ry takes M into M, ,;122 Thus it is called Maass-raising operator.
We write R := Ry om 200 Rpyo0 Ry with R =id and Ri = Ry, where id is the

identity map. The following lemma gives an explicit formula of R}".
Lemma 1.2.3. For k,€ Z, m € Z>o and f € C*(H), we have

me 1 & (m\(k+m-1)! 1 Of
/'S = (2m’)mZ (l) (k+1—1) (2iy)m1 ozt

=0

Proof. Using induction on m, one obtains the required formula. O]

We state the following decomposition theorem of the space of nearly holomorphic

modular forms [30, Lemma 7.8].

Theorem 1.2.4. Let k > 2 be even. If f € M  and p < k/2, then
p
M’;hﬁp = @ R};—?TM’C*?T?
r=0

and if p > k/2, then

k1
2 Ey
ML, = @ Ri_s,My—o ®CR; B,

r=0

10
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where E3(2) := Fy(z) —

() is a nearly holomorphic modular form of weight 2 and

depth 1 on SLy(Z).

Following Shimura [30, pp. 32|, we define the slowly increasing and rapidly de-
creasing functions in M. Shimura has defined slowly increasing and rapidly de-

creasing functions in a broader space than M}". Here we define those in M.
Definition 1.2.5. Let f € M. Then f is called a

 slowly increasing function if for all « € SLy(Q), there exist positive con-

stants A, B and ¢ depending on f and o such that

| Im(a2)*? f(az)| < Ay® if y = Im(2) > B;

 rapidly decreasing function if for all « € SLy(Q) and a positive real number

¢, there exist positive constants A and B depending on f,« and ¢ such that

| Im(az)** f(az)| < Ay~ if y = Im(z) > B.

Remark 1.2.6. If f € My, then f is a slowly increasing function. In addition, if
f € Sk then f is a rapidly decreasing function. From the above definitions we observe
that the product of a rapidly decreasing function with any nearly holomorphic modular

form results in a rapidly decreasing function.

Let Sl?,hﬁp be the subspace of M,f;lflgp consisting of rapidly decreasing functions.
Using the property of rapidly decreasing functions and Theorem 1.2.4, we obtain the

following result.

Proposition 1.2.7. Let k > 2 be even integer and let p be any non-negative integer.

Then

p
nh __ T
Sk,gp - @ Ry 9, Sk—2r-
r=0

11
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Definition 1.2.8 (Nearly weakly holomorphic modular form). Let k, N, p be
integers with N > 1 and p > 0. Let x be a Dirichlet character modulo N satisfying
x(=1) = (=1)*. A function F : H — C is called a nearly weakly holomorphic modular

form of weight k, depth p, level N and character x if the following conditions hold.

(1) There exist holomorphic functions fo, f1,--- , f, (called the component functions

of f) on H with f, # 0 such that
F(z) =3 fi(2iy) ™.
=0

(2) For ally = <(é Z) e L'o(N), Flpy = x(d)F.

(3) For each j € {0,1,...,p}, there exist positive constants c;, €; and a polynomial
Pj(2) € Cle=?™2] such that f;(z) = O(e%'Y) as y — 0 and f;j(z) — Pi(z) =

O(e=9Y) as y — o0.

The set of nearly weakly holomorphic modular forms of weight k, depth p, level
N and character x is denoted by M, ,?};’!(N ,X). If x is the trivial character, then we

denote the corresponding set by M, ,?,l;’!(N )

1.3 Quasimodular forms

The Eisenstein series E5 and the derivatives of modular forms are not modular forms.
But they play important roles in the theory of modular forms. They are quasimodular
forms. In 1995, M. Kaneko and D. Zagier [16] introduced the notion of a quasimodular

form.

Definition 1.3.1 (Quasimodular form). Let k, N be positive integers and let p be

a non-negative integer. Let x be a Dirichlet character modulo N satisfying x(—1) =

12
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(—=1)*. A holomorphic function f : H — C is called a quasimodular form of weight

k, depth p, level N and character x if the following conditions hold.

(1) There exist holomorphic functions fo, f1,- -, f, (called the component functions

of f) on H with f, # 0 such that for any v € I'o(N), we have

P () =30 356 (55) (1.14)

(2) For each j € {0,1,...,p}, f; is polynomially bounded.

The set of all holomorphic quasimodular forms of weight k, depth p, level N and
character x is denoted by M}J(N,x). If x is the trivial character, then we denote

the corresponding set by M,')'(N).

Definition 1.3.2 (Weakly holomorphic quasimodular form). Let k, N,p be
integers with N > 1 and p > 0. Let x be a Dirichlet character modulo N satisfying
x(=1) = (=1)k. A holomorphic function f : H — C is called a weakly holomorphic
quasimodular form of weight k, depth p, level N and character x if the following

conditions hold.

(1) There exist holomorphic functions fo,--- , f, (called the component functions
of f) on H with f, # 0 such that for any v = (CCL Z) € I'o(N), we have

flir (= Zi: <cz(—:|—d>j'

(2) Foreach j € {0,1,...,p}, there exist positive constants c;, €; and a polynomial

P

J

(2) € Cle™2™%] such that f;(z) = O(e%/Y) asy — 0 and f;(2) — Pj(z) =

O(e9Y) as y — o0.

13
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The set of all weakly holomorphic quasimodular forms of weight &k, depth p, level
N and character y is denoted by M,?ﬂr;’!(]\f ,X). If x is the trivial character, then we

denote the corresponding set by M, ,?f;’!(N ).

14



Chapter 2

Nearly Holomorphic Poincaré Series

2.1 Introduction

Poincaré series give a large class of cusp forms and they form a basis of the vector
space of all cusp forms of fixed weight on SLy(Z). Also they have many applications
in the theory of automorphic forms.

In this chapter, we study nearly holomorphic Poincaré series on the full modular
group. More precisely, we discuss the Fourier expansions, holomorphic projections etc.
of nearly holomorphic Poincaré series. We also discuss some limiting properties of
certain Fourier coefficients involving nearly holomorphic Poincaré series. The results

of this chapter are contained in [7].

2.1.1 Nearly holomorphic Poincaré series

Let k£ > 4 be an even integer and let m and p be integers with m > 1 and 0 < p <
k/2 — 1. The m-th nearly holomorphic Poincaré series of weight k£ and index p on
SLo(Z) is defined by
Pri(z)= > (y"e(mz))ly. (2.1)
YET o \SL2(Z)
Theorem 2.1.1. The Poincaré series P,';’k is a nearly holomorphic modular form of

weight k and depth < p on SLy(Z).

15



2 Nearly Holomorphic Poincaré Series

Proof. Since for m > 1 and v € SLy(Z),

p
e(myz)| < Y

yPj(y, 2) P
= i(y, 2)|F2?

J(v, 2)k
the series in the right hand side of (2.1) is absolutely convergent for all & > 4 and
0 < p < k/2. Now we show that the Poincaré series P, , is a polynomial in 1/y of
degree < p whose coefficients are holomorphic functions on H. The Maass lowering

operator L on a function f: H — C is defined by

0
z

With respect to the slash operator (1.2), L satisfies the intertwining property

L(flxy) = (Lf)|k—27 (2.2)

for any k € Z and v € SLy(R). It is easily observed that a smooth function f on H
is a polynomial in 1/y of degree < p whose coefficients are holomorphic functions on
H (nearly holomorphic) if and only if LP*!'f = 0. Since L satisfies the intertwining
property (2.2) and LP*'(yPe(mz)) = 0, the Poincaré series Py , is a polynomial
in 1/y of degree < p whose coefficients are holomorphic functions on H. Also the
Poincaré series P}, satisfies the modularity relation, i.e. Py ,[xy = P, for all
v € SLy(Z) . Therefore Py , is a nearly holomorphic modular form of weight & and
depth < p on SLy(Z). O

The following result [7, Proposition 3.1] gives a relation between holomorphic and

nearly holomorphic Poincaré series via Maass-Shimura operator.

Proposition 2.1.2. For integers m, k,p with m > 1, k > 4 even and p > 0, we have

REPnale) = (=i 3 (p) D Camny P @
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2 Nearly Holomorphic Poincaré Series

Proof. For v = (Z 2) € SLy(Z), let afy,z) = rd

Then we have

Now, by using (2.4), we have

yPj(y, 2) P

e A 2Ry (1 = 2iya(y, 2))”.

Simplifying the last term of the above equality, we get

u AP kg [ ’

— o IR o —aly,2) ) (2.5)
3y, 2)F 2iy

For any non-negative integer | and any holomorphic function f on H, repeatedly

differentiating the identity
Fler(z) = 5(v, )" f(v2)

yields
U BTEIED o) (e Ko S LN 0

r=0 T' r j(’% Z)]H_QT

for all v € SLy(Z). Now using Lemma 1.2.3, we get

o g ()t 5 o)

=0 v€T'oo\SL2(Z)

:(2711')1) 2 i() Z:];)) (2¢y1)p—lj,;<€(mz)|w>‘

'YGFOO\SLQ(

Using (2.6) in the above expression, we obtain

1 Pl 1)l (k4 p— 1) 2mim) aly, 2)T
RmeJg(Z) — : : )
' (2mi)? ‘/Gfoo%h( lz; _l =)tk +r =18 j(y, )k
1
X 7(2iy)pile(mvz).

17



2 Nearly Holomorphic Poincaré Series

Simplifying the last two sums of the right hand side of the above expression, we obtain

e(m~yz) -
~€T 0o\ SLa(Z) =0 (k +r—1)! J(% z)kt2

(2mi)p
d 1) - 04( )
X Z W1 —7r)! (2iy)P—

l=r

Replacing [ by [ 4+ r in the last sum of the above expression, we deduce that

P pll(k + p)(2mim)"
Z 6<m7 >ZT'F(k‘+T) (”7 Z)k-l—Zr

YEL o \SL2(Z) 0

XZ a(y,2) 1
(p—r =Dl (2iy)r—
5 (e

r=0 el \La(z) \21Y
e(myz)
(7, z)Fr2-2n)

PP —
BiPnal?) = 5o

X

By using (2.5) in the above equality, we obtain

vp (o — L\~ (P\L(E+p) 2rim) y~ i (v, 2) PP e(myz)
BiBna(2) = (27”)'97;) (7") L(k+7) (20)p" weroo%Lg(Z) j(y, z)k=2
= 1 p M —4mm T *(])77‘)6 mz
(_47)7)7;) T> F(k+7’)( Amm) 'yEFOO%S;LQ(Z)(y ()i
1 P (p\T'(k + p) -
i 2 () e ) PR

Replacing k by k — 2p in (2.3), we obtain

R£72ppm7k,2p<2) = (—iﬂ')p sz;) (f) l—m(_étﬂm)rpﬁl,kr(z) (27)

for 0 <p< g — 1. Solving the system of linear equations (2.7), we obtain P} , as a
linear combination of Rj_,, P, k—2,, 0 <1 < p. Therefore from Proposition 1.2.7, we
get P? k€ S,f;h<p for 0 <p < £ — 1. As an application of Proposition 2.1.2, we have

the following result [7, Proposition 3.2].

18



2 Nearly Holomorphic Poincaré Series

Proposition 2.1.3. Suppose that k > 4 even and 0 < p < g — 1. Then the space
S;;};p is spanned by the Poincaré series Py, (m >1, r=0,...,p).

Proof. It is well known that the holomorphic Poincaré series P, (m > 1) span the

space Si. Now the result follows from Proposition 2.1.2 and Proposition 1.2.7. O]

2.2 Fourier expansions

In this subsection we compute the Fourier expansion of nearly holomorphic Poincaré

series. To establish the Fourier expansion of P? ;. we need the following lemmas.

m,k>

Lemma 2.2.1. Ify > 0, k > 2, p and m are integers with 0 < p < k/2 — 1, then we

have
/OO |.CL’ + inp 727rimxd Op Zf m < 07
— ¢ T = Nl—2
—oo (T +iy)k N (’l’)(—4ﬂy)p’l%mk’p’l’le’2”my if m > 0.
=0 :

To prove the above lemma we recall the following result from [10, Corollary 3.1.19)].

Lemma 2.2.2. Let y be a positive real number and let k,m be integers with k > 2.

Then, we have

0 ifm <0,

00 —2mimax
/ mdl’:

—o0 (T ] .
Y (727rz)kmk71

= e~y if m > 0.

Proof of Lemma 2.2.1. We have

e

/OO |.1' + Z.?/|2p6—27rimzdx _ /OO (ili' _‘ Zy)p —27rimxdx _ /oo (.CL' + Zy ‘_ Ziy)p6—27rimzd$'
oo (z +iy)* oo (@ + iy)*P oo (Tt iy)EP

Expanding (z + iy — 2iy)P, we obtain

00 |$ + iy|2p o p P . [ e 2mimx
M 1. 9 P / d
/_Oo (z +Z'y)k€ z ; ] (—2iy) o (2 + dy)Fp! r

Now by using Lemma 2.2.2, we get the result. ]
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2 Nearly Holomorphic Poincaré Series

Lemma 2.2.3. Let A, B and y be real numbers with A > 0 and y > 0. Let k, p be

integers such that k> 2, 0 <p<k/2—1. Set

(A, Byy) = [ wm o=2mi(A/ (a+ig)+Bla+iy) gy

Then we have

i~k (B/A)TF

x>0 () Zprlepll(@r\/E) if A>0 and B > 0,
I(A, Byy) = { (—2mi)k—2r pk=2p-1

X > ()( dryB)YP~t/(k —p—1—1)! if A=0 and B > 0,
0 if B<0.

Proof. Using the series expansion of e 2™4/(*+%) we get

(A Biy) / 27TZA i \iU + dy|* o 2miB(w+iy) g, (2.8)
(z + iy)k+i

By the uniform convergence, we get

(=21 A) oo o+ iy Bt
(A, Byy) = | / W1 —2miBatiy) gy 2.9
( ) jZ::O J! —oo (X + iy)Fti (2.9)
By Lemma 2.2.1, we have

© iyl ity 0 if B <0,
/_ ( 4 )k—i—je dx = P (P (4P (=2mi)kti—2p BEti—p=1=1 if B> 0
oo (T 41y I—o (% (—4my) T i > 0.

(2.10)

Using (2.10) in (2.9), we get I (A, B;y) =0 if B <0 and

P —4n2AB)’
Iv(A, Byy) = —47y) 2mi)k—2p ph—pi—t (
) %() vz ;)J(k p—1+j-1)

if B> 0.
(2.11)
Therefore for A =0 and B > 0, we get

o o 1 —4yB)P~
I.(A, B;y) = (—2mi)F2rpr—2r-1 E (p) ( .
i y) = ) =\l (k-p—1-1)

For A > 0 and B > 0, using (1.10) in (2.11), we obtain

p
I,(A, B;y) Z( ) —4my)P~H(—=2mi) kP BRI (n (AB) YRR (4 (AB)Y?).
l

[]
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2 Nearly Holomorphic Poincaré Series

We have the following result [7, Theorem 1.4], which is analogous to Theo-

rem 1.1.11 for nearly holomorphic Poincaré series.

Theorem 2.2.4. For integers m > 1 and 0 < p < g— 1, we have the Fourier

exrpansion

PP (2) = ap . (n,y)q",
n=1

where

k—2p—1

_ o= K(n,m;c)
afn,k(”a@/) =y’ m Z .

Onm + (—1)k_22p s (n)

c=1

> (?) (—2yc\/Z)p_l Jeopion <4\/;%> ] (2.12)

=0

where K(n,m;c) is the Kloosterman sum defined in (1.9), Jy_p,—i—1 is the J-Bessel

function defined in (1.10)and 0y, ., is the Kronecker symbol.

Proof. Using the definition of nearly holomorphic Poincaré series (2.1) and the bi-
jection between ', \I" and {(c,d) € Z*: ¢ > 0,(¢,d) =1 and d = 1 if ¢ = 0}, we can

write

(2.13)

y~Plcz + d|*P ( az + b)

P;D — P 2mimz
m,k(z) y e + Z mCZ + d

c,d€Z (CZ + d)k
c>1, (¢, d)=1

So, we have

P:;,k(z) - y—p€2m’mz +yP Z Z |CZ + d’2p(CZ + d)—k€27rim(az+b)/(cz+d) (214)

c=1 deZ
(e,d)=1

Putting d = r 4+ nc when ¢ # 0 in the above equation and noting that if agr — bgc = 1,
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2 Nearly Holomorphic Poincaré Series

then aogd — (by + nag)c = 1, we obtain

P:;7k(z) _ y—p627rimz + y—p Z Z Z |CZ 4+ 7’LC|2p(CZ +r+ nc)—k627rim(az+b)/(cz+r+nc)

c=17r mod cn€Z

(r,e)=1
=y P 4y PR N N v fe+nP(z+r/e+n)
c=1 7(’m())dlcn€Z
r,c)=

% 627rz'(m/c) (ao(z+n)+(aor—1)/c)/(z+r/c+n) ]

(2.15)
Putting

S(C, T) _ Z |Z + T/C + n|2p(z + T/C + n)—k€27ri(m/c)(r_1(z—o—n)—l—(T_lr—l)/c)/(z—l-r/c—l-n)’
nez

where r~!(= ag) denotes an inverse of r modulo ¢, (2.15) can be written as:

PTI:L,IC<Z> — y*p€27m'mz + y*p Z C2p*k Z S(C, 7’). (216)
c=1 r mod ¢
(r,e)=1

For fixed y, we set f(x) = |z + iy|?(x + iy) Fe274/@+W) with A = m/c?. It is clear
that S, = 2/ s> f(x +r/c+n). Now by Poisson summation formula, we

get

6—27ri(m/c)r*1S(C7 7“) _ Z f(l' + T/C—l— TL) _ Z f(n)627rin(x+r/c) — Z f(n)e%rinr/ce%rinw’
nez

nez nes
(2.17)
where
A o |z iy oy :
f(n) = / o~ 2mi( A/ (atig)tna) g
—o (z +iy)k
is the Fourier transform of f evaluated at n. By Lemma 2.2.3, we have
0 ifn =20,
fln) = { e 2mmwi =200 ((n/m)c?) (2.18)

X >0 (6’) (—2yc\/%)pil Jy—p—i—1 (47r@) ifn>0,m>0.
Using (2.18) in (2.17), we obtain

00
S(C, 7,,) _ 627ri(m/c)7”*1 Z 627rim“/c627rin:c€—2ﬂ'nyz~—(k—2p)QW((n/m)CQ)%
n=1
P p=l
D n mn
X -2 > Jh—p—i—1 | 4 .
550 (o) e ()
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2 Nearly Holomorphic Poincaré Series

Hence

00 00
D __ =P, 2mimz —p 2p—k 2mi(m/c)r—1 2minr/c 2winx  —27ny —(k—2p
Py u(z) =y e +y Py ¢ Y Pmilm/arT N g2minr/egiine i~ (k=2p)

c=1 r mod ¢ n=1
(r,e)=1
—op1 & p—l /mn.
X QW((n/m)CQ)k EnS > (p) (—2yc,/n> Je—pi—1 <47r mn>
= \! m c

k—2p—1

) 00 p p—l1
_ P 2mimz -p(_1 k_22p2 (TL) 2 2mnz —1 p (_2 TL)
y Pe +y P(—1) T nz::l - ™y ¢ g l yey/ -

c=1

% Jk—p—l—l <4van> Z 627ri(nr+mr_l)/c

c r mod ¢
(r,e)=1
k=2p—1

_ _ e A\ 2 o K(n,m;c)
— P 4y P(—1) 202 <) 4, m,c)
y "y (1) 7?1:[ - >

c=1

ng @ (—ch\/Z)p_l Tyt (%@) ]q”.

=

C

]
2.2.1 Hecke operators and Petersson inner product
For f € MM the action of the n-th Hecke operator on f is defined by
k_
(Taf)(z) =n>"" > flep, (2.19)
peXn
where
Xn_{<8 3)|a,b,deZZO,ad—n,O§b<d}. (2.20)

For each integer n > 1, T,, maps M to M and SP* to Spt. We have the fol-
lowing result [7, Theorem 1.10], which is analogous to Proposition 1.1.13 for nearly

holomorphic Poincaré series.

Theorem 2.2.5. Let m,n,p be integers with m,n > 1 and 0 < p < g and let T, be

the n-th Hecke operator. Then

P n kot P PP
d|(m,n)
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2 Nearly Holomorphic Poincaré Series

Proof. From (2.19) we have

(TuPh)(z) =n?™" 3 ( > pe(mZ))lw) [kp-

pEXn \vEl\T

Using a similar idea as in the proof of [10, Theorem 4.4.4.], we get

E_ _
(ToPp ) (z) =nz"t ( > (y pe(m»Z))lkP) kY-
Y€l \SL2(Z) \ pEXn
Now by (2.20), we get
T, PP (z)zng’1 > S > (v Pe(ma))| a b ey
YEl\I' \ad=nb (modd)

Simplifying the term in the right hand side of the above identity, we get

T,P} () = T N e (y‘pe (ZTZ)) Ik

ad=n YEL\I'
dlm
k—p—1
- > (£ d’Ph, .
d a2

d|(m,n)

]

If f and g are two nearly holomorphic cusp forms of weight & on SLy(Z), then

the Petersson inner product of f and g is defined by

—— pdzd
(Foye= [, FEIE S

We have the following result [7, Theorem 1.7], which is analogous to Theorem 1.1.12

for nearly holomorphic Poincaré series.

Theorem 2.2.6. Let m,p and q be integers such that m > 1 and 0 < p,q < g —1.

If f e M}Q}; is a rapidly decreasing function, then we have

& T(k—p—1-1)
- Z (47m)k—p—1-1

=0

a;(m),

where a;(m) is the m-th Fourier coefficient of the l-th component of f.
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2 Nearly Holomorphic Poincaré Series

Proof. We have

dxdy

5

(FP) = [, 0 Gy EPRET )

YET oo \SLs(Z) y

Interchanging the sum and the integral and using the identity

Im(2)
Im(yz) = :
174 (2)?
we obtain
———dzdy
(fy Phi) = / m(y2)" 7 f(72)e(mz) g
’YEFOO\SLQ SL2 y

1

By the change of variable z +— 77"z in the above expression and using the Rankin’s

unfolding argument, we obtain

P = [ s Ema g

oo rl .
— / / yk7p72f(l, + Z-y)ef%mmxef%rmydxdy‘
0 0

q o0
Putting f(z) = 2 (Z al(n)e(nz)> y~! in the above expression, we obtain

9 o0 oo rl )
(f, Pog) =D_ 2 ai(n) /0 /0 yf P2 2mitnmm)a o =2m(nkm)y o gy

=0 n=1

q 0o
_ Z al(m) /O yk—p—l—2€—27r(n+m)ydxdy
=0

I T(k—p—1-1)
2 (4rm)k—p=i=1

=0

ai(m).

~

This proves the result. [

Remark 2.2.7. From the above theorem, we get the system of linear equations

I I'k—p—1-1)
g 47Tm k—p—1—1 l(m) forp:0,17---,q. (221)

After solving the above system of linear equations, we can get a result like (1.13). But

it is very hard to solve the system of linear equations (2.21) for arbitrary non-negative
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2 Nearly Holomorphic Poincaré Series

integer q. For ¢ =0 we get (1.13) and for ¢ =1 we get

Sy CU I e e

n=1t=0 1=0

for all weight k > 4, depth 1 rapidly decreasing nearly holomorphic forms f on
SLy(Z).

As a consequence of the above theorem, we obtain the following result [7, Corollary

1.8].

Corollary 2.2.8. For integers m,n,p,q withm,n >1 and 0 < p,q < g — 1, we have

(P Pag) =

m,k)* n,k

T(k—p—q—1)(4mr)PTImPna bty K(m,n;c) I (p
(47 /)R S+ (~1) 772 Z c lz% <l>

() 55,’::;:;:11%—@4—1 (=) |

Proof. By Theorem 2.2.6 and (2.12), we get

c=1

NP D(k—qg—1—1 4/nm
(—20 ) (k=g >Jk7p7171 (

(4mrn)k—a-1-1

k—2p—1

Opm + (—1)@27T <n> ’

Tk —p—q—1)(4n)P"9mPns
1

(/)
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2 Nearly Holomorphic Poincaré Series

When p = ¢ and m = n, we obtain the following result [7, Corollary 1.9].

Corollary 2.2.9. For integers m,p with m > 1 and 0 < p < g — 1, we have

I(k—2p—1) Ry X K(m,m;e) - (p
Gt o K )

(2;7071>pl Fl(“k(:]g__pg; l__l)l) Jrp-1-1 (47:”) ] : (2.23)

2.3 Holomorphic projection

(P

m,k>

PTP;L,]C> =

Nearly holomorphic modular forms are not holomorphic but are C'**° functions. It is
natural to find their projections on the space of holomorphic cusp forms. In [31], J.
Sturm gives a complete description of holomorphic projection. The following theorem

is a special case of [31, Theorem 1].

Theorem 2.3.1. Let k > 4 be an even integer and let
fla+iy) =) aln,y)d" € M"

n=0

be a rapidly decreasing function. Let

(4mn)*t /°° —drny, k=2
= m . 2.24
Then h(z) = § b(n)q" is a cusp form of weight k on SLs(Z). Moreover (g, f) =
n=1

(g, h) for all cusp form g of weight k on SLy(Z).

The function A is called the holomorphic projection of f. As an application of

Theorem 2.3.1, we have the following theorem [7, Theorem 1.6].

Theorem 2.3.2. For integers m > 1 and 0 < p < % — 1, the holomorphic projection

of Ph 1 (2) is (dxm)P it P ().
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2 Nearly Holomorphic Poincaré Series

To prove the above theorem, we need the following result on J-Bessel function.

Lemma 2.3.3. For non-negative integers k and p with k — 2p > 0, we have
P
p 12 \pe —1)
Jp(x) = —1) (=) S Tk pi(T).
)= 3 () G e i)
Proof. Tt is well known that the J-Bessel function satisfies the recurrence relation [33,

§2.12]

Jk_l(.T) + Jk+1($) = kaijk(.’ﬂ)

The proof of the lemma follows by using the above identity and induction on p. [

Proof of Theorem 2.5.2. Let h(z) = § b(n)g"™ be the holomorphic projection of P? .
n=0 ’

Then by using (2.12) in (2.24), we have

 (4mn)Ft

) ==y y v

5 ) () s (S o

=0

k—2p—1)/2 o0 .
B+ (—1)=20)/29 <n)( PR g Kn,mic)
m

C

Using the definition of the gamma function and simplifying the above integral, we

obtain

_ (4mm)PT'(k —p—1)
bn) = T(k—1)

(k=1)/2 > K .
5o+ (—1)"/227 <n> g Knmic)
m

c=1 ¢

B () () Fim e (4]

Now by using Lemma 2.3.3, we obtain

(47rm)PT(k —p —1) ) n\*-1/2 20 K(n,m;c) 4/nm
b(n) = S + (—1)F/22 () — T
(n) I'k—1) m + (=1)772m m czz:l c Je-1 c
~ (4mm)PT'(k —p—1)
where p,, x(n) be the n-th Fourier coefficient of the Poincaré series P, k. O
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2 Nearly Holomorphic Poincaré Series

Remark 2.3.4. Theorem 2.3.2 asserts that the holomorphic projection of the m-th
nearly holomorphic Poincaré series is nothing but some scalar multiple of the holo-

morphic Poincaré series of the same weight.

2.4 Non-vanishing of nearly holomorphic Poincaré
series

The non-vanishing of holomorphic Poincaré series is an interesting problem. It is a
conjecture that none of these holomorphic Poincaré series vanish. R. A. Rankin [27]

proved the following result [27, Theorem 1].

Theorem 2.4.1. There exist positive constants kg and B, with B > 4log 2 such that

for all even integers k > ko and all positive integers m with

—Blog k;>

< klexp [ —2-28F
M= Rexb <1oglogk;

the holomorphic Poincaré series Py, ;(z) does not vanish identically.

Later, C. J. Mozzochi [24] and J. Lehner [22] generalized Rankin’s result for
Poincaré series on I'g(N) and arbitrary Fuchsian group respectively. Moreover, the
non-vanishing of the Poincaré series is related to the famous conjecture of Lehmer
[21], which asserts that 7(n) # 0, for all n > 1, where 7 is the Ramanujan 7-function.
It is natural to obtain the non-vanishing property of nearly holomorphic Poincaré
series. We have the following theorem [7, Theorem 1.12] which is a generalization of

Theorem 2.4.1.

Theorem 2.4.2. For a fixed non-negative integer p there exist positive constants ko
and B, where B > 4log 2, such that for all even integers k > ko + 2p and all positive

integers

m < (k- 2p)? exp (‘B logi(k — 2”)),

log log(k — 2p)
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2 Nearly Holomorphic Poincaré Series

the nearly holomorphic Poincaré series sz,k(z) does not vanish identically.

Proof. Tt is clear that if f(z) = 3V, fi(z)y~" is a nearly holomorphic modular form,
then

f=0iff ff=0forall [=0,...,p. (2.25)

Using (2.5) in (2.1), we can write Py, (2) = Yi_q fhx(2)y~", where

b= (D)2 S aa it ) 26)

~ET s \SLa(Z)

is the [-th component of P} ,(2). Also it is observed that

mi(2) = > ()T re(my2)
/YEFOO\SLQ(Z)

is the m-th holomorphic Poincaré series of weight k—2p. Now the result easily follows

from Theorem 2.4.1. O

Remark 2.4.3. We see that the leading coefficient of P, . (as a polynomial of 1/y)
18 Py j—2p. In Theorem 2.1.1, we proved that Pﬁ;k is a nearly holomorphic Poincaré
series of weight k and depth < p on SLs(Z). But if we assume the conjecture that
none of the holomorphic Poincaré series vanish, then Pf:hk is a nearly holomorphic

Poincaré series of weight k and depth p on SLo(Z).

In [18, Proposition 1|, E. Kowalski et al. obtained the following orthogonality

properties of the Fourier coefficients of holomorphic Poincaré series.

Proposition 2.4.4. If a,,,(n) is the n-th Fourier coefficient of the holomorphic

Poincaré series Py, (2), then for fized positive integers m and n, we have
lim a,,x(n) = d(m,n).
k—o0 ’

In [18], the authors gave a simple proof of the above proposition. Using a similar
method, we obtain the following orthogonality relation of the Fourier coefficients of

nearly holomorphic Poincaré series |7, Proposition 1.14].
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2 Nearly Holomorphic Poincaré Series

Proposition 2.4.5. If afmk(n) is the n-th Fourier coefficient of ffn’k, the [-th com-
ponent of the nearly holomorphic Poincaré series P£7k(z), then for fixed non-negative

integers p,m and n with m,n > 1, we have

lim al, ,(n) = d(m,n)é(p,1) for 0 <1< p.

k—00

Proof. 1f | = p, Proposition 2.4.4 gives the result. If 0 <[ < p, we shall prove that

I
= > .
Ig&a x(n) =0 forany m,n > 1

Since af,, .(n) is the n-th Fourier coefficient of f}, ,, we have
= /U fron(z)e(—nz)dz, (2.27)
where U is a suitable horizontal interval of length one in H. We choose
U= {z+iyo: |z| <1/2}
for some fixed yo > 1. By taking the limit as & — oo on both sides of (2.27), we get

lim al, ,(n hm/frlnk nz)dz (2.28)

k—o0 k—o0

We show that for all z € U, f}, ,(z) = 0 as k — oo. From (2.26), we have
p \p— 1. —
b= ()2t S et e, 29
YET e\ S L2 (Z)

By taking the limit as & — oo on both sides of (2.29), we get

i £ = ()20 Tl i) em). (230

k—so0 * l k—00

'YEFOC\S[Q(Z)

Since m > 1 and vz € H for z € H and v € SLy(Z), we have

fk+2p€(

(v, 2)P (v, 2) myz)| < la(y, 2) [P~ (v, 2)| 7F (2.31)
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2 Nearly Holomorphic Poincaré Series

But for z € Uand ¢,d € Z , we have
lcz +d|* = (cx + d)* + Py > Pyg > asyp > 1. (2.32)

Therefore

(v, 2)| = \CZ <1 (2.33)

for all v = <CCL 2) € SLy(Z). Using (2.33) in (2.31), we deduce that

(v, 2)P (7, 2) FFPe(myz)| < fez 4+ d|TFP (2.34)

for all v = <CCL Z) € SLy(Z). Now we show that for any v = (Z Z) € ' \SLs(Z),

we have
aly, )P (v, 2) FPe(myz) — 0 as k — oo.
Ifc=0, a(y,2)P (v, 2) F2Pe(myz) = 0. If ¢ # 0, then c*y2 > 1. Hence from (2.32)

and (2.34), we obtain

1
oy, 277 (3, 2) P e(mr2)] € —— = 0 as k - oo.

(c*yg) =
Now from (2.34), we deduce that
lac(y, 2)P 7 (7, 2) T e (my2)| < ez + d| (2.35)

for k > 2p+4 and v € T', )\ SLy(Z). Therefore by applying the dominated convergence

theorem on the right hand side of (2.30), we obtain
. 1 .
Jim f7, 4 (2) =0
for all z € U. Using (2.34) in (2.29), we obtain

a < ()2 X et

~ET 0o \S L2 (Z)
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2 Nearly Holomorphic Poincaré Series

for £ > 2p + 4. Since U is compact, by applying dominated convergence theorem on

the right hand side of (2.28), we obtain

. l .
’}erolo Ay (1) = 0.

]

As a consequence of Proposition 2.4.5, we obtain the following result [7, corollary

1.15].

Corollary 2.4.6. For fized non-negative integers m and p with m > 1, there exists
a sufficiently large positive even integer k such that the nearly holomorphic Poincaré

series Py (z) does not vanish identically.

Proof. From Proposition 2.4.5, we have

P _
]}LIEO Ay (M) = 1.

Hence, there exists a positive integer ko such that for all k& > ko, a}, ,(m) # 0.
Equivalently, f} ,(z) (the p-th component of P}, ,(z)) is not the zero function. Now

using (2.25), we get the result. O
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Chapter 3

The adjoints of higher order Serre
derivative maps

3.1 Introduction

In this chapter, we compute adjoints of higher order Serre derivative maps with
respect to the Petersson scalar product. As an application, we obtain some identities
involving Fourier coefficients of some cusp forms and special values of certain shifted
Dirichlet series.

In [17], using methods of linear algebra and properties Poincaré series, Kohnen
constructed explicitly the adjoint map of the product map (product by a fixed cusp
form) on the space of cusp forms Sy for a fixed weight k. Following Kohnen’s method,
several authors obtained adjoints of various linear maps on the space of cusp forms.
The Serre derivative of f € M is defined by

k

Of=Df — EEQJC,

where E, is defined as in (1.4) and D := ;14 is the differential operator. It is well
known that ¥ maps My, to M2 [4, Section 5.1]. It preserves the space of cusp forms
also. Using the theory of nearly holomorphic modular forms, Kumar [19] constructed
the adjoint of the Serre derivative map with respect to the Petersson scalar product.

In this chapter, we consider the higher order Serre derivative maps (see subsection
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3 The adjoints of higher order Serre derivative maps

3.2.1 for the precise definition) and find the adjoints of these maps with respect to
the Petersson inner product. Our method is different from the method of Kumar. we
do not use the theory of nearly holomorphic modular forms to prove our results. The

results of this chapter are contained in [6].

3.2 Preliminaries
3.2.1 Higher order Serre derivatives

Let f be a modular form of weight k£ on SLs(Z). For any even integer k > 4, the
higher order Serre derivatives are defined as the following [4, pp. 55].

Define

k
O f = f and ﬁQ]f:ﬂkf:Df—EEQf.

For n > 1, define

~n(k+n—1)

[n—1]

= 90 (01 f)

(In particular, 19%”] is not simply the n-th iterate of ¥;). These functions are given in

the closed form by

I f() =3 (") ktn=D'goyroypse). (32

= \r)(k+n—r—1)

This closed form can be obtained by using induction on n. We call 19211 the n-th order

Serre derivative.

Theorem 3.2.1. Let n be a non-negative integer. If f € My, then 19Ln]f € Myyiop.
Also if f € Sy, then 9\ f € Syion.

Proof. The proof of the theorem follows by using induction on n. m
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3 The adjoints of higher order Serre derivative maps

3.2.2 Poincaré series associated to any ¢ series

Let ¢(q) = i_ojoa(n)q” be any g-series on the upper half-plane H, where a(n) grow
sufficiently srll(;w for all n > 0. Following [35], we define the Poincaré series associated
to ¢ by

Pe(@)(z) = > dl(2) (3.3)

Y€l \SL2(Z)
In [35, Section 3], B. Williams proved that the series represented by Px(¢) converges

absolutely and uniformly on any compact subset of H if the coefficients of ¢ satisfy the
bound a(n) = O(n*/273/2+¢) for some € > 0. It is clear that Py(¢)|sy = Pi(¢) for all
v € SLy(Z). Hence P(¢) is a modular form of weight k on SLo(Z). Also if a(0) = 0,
then Py(¢) is a cusp form of weight k on SLy(Z). In particular, for m > 1, Px(¢™) is
the m-th classical Poincaré series defined in (1.8). Now we recall the following result

[35, Theorem 4], which will play an important role in finding the adjoint of ﬁgﬂ.

Theorem 3.2.2. For any non-negative integers n, m and a positive even integer k

with k > 2n + 2, set

o) =3 (1) D Bty e (3.4

k+n—r—1)!
Then

IPL(g™) = Prrom(9).
3.3 Main Theorem

From Theorem 3.2.1 we know that for any n > 0, 1921} is a linear map from Sy to

Siton. Thus the adjoint ﬁLn]* of 1921] is a linear map from Sjs, to S) satisfying
WM g) = (f,00g) for all f € Spia, and g € S. (3.5)

For n =0, ﬁLO] is the identity map and its adjoint is itself. In the following result [6,

Theorem 1.4], we obtain the Fourier expansion of 19211* f for f € Skio, and n > 1.
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3 The adjoints of higher order Serre derivative maps

Theorem 3.3.1. For a positive integer n and a positive even integer k with k > 2n+2,

the image of f(z) = ioj a(0)q" € Spyon under 9 is given by
i=1

L'k + 2n —
(k-

O f(z) =

a(t +m)EN. )\,
2nz_ (Z t+mk+2n1>q’

0

where

0 =3 (1) g () e 36

= E+n+r—1)!
and e,(t) is the t-th Fourier coefficient of E}.

We need the following lemma to prove the above theorem.

Lemma 3.3.2. Let n be a positive integer and let k be a positive even integer with

k> 2n+ 2. Then for any f € Skyon, the series

_ dxd
[ L@y | S
SLy(Z)\H

YET o \S L2 (Z) Yy

converges, where ¢ is as given in (3.4).

Proof. Let f(z) = 5 a(0)q" € Skyan. By Proposition 1.1.8, we have a(f) = O(£(++2n=1)/2+¢)
=1

for any € > 0. Also ,(¢) = O(£*"~'*€) for any € > 0, where &,(¢) is the ¢-th Fourier

coefficient of Ej. Now using the change of variable z — 71z, Rankin’s unfolding

argument and substituting the expression for ¢ from (3.4), we obtain

—_ | dzdy
/ ‘f(2)¢’k7 Y+ ‘ s
EFOO\SL( ) SL2(Z)\H y

(k+n—1 I\ o ppon| dad
=3 () i () e [ B

Using the Fourier expansions of f and £}, we deduce that

/rw\H‘ﬂ 2)E3(2) myk“”‘ drdy :/oo

y2

dxdy
Y

Z Z a(g)gr (t)q(€+t+m)yk+2n

(=1t=0
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3 The adjoints of higher order Serre derivative maps

Using the triangle inequality and the estimates for the Fourier coefficients a(¢) and
e-(t), we deduce that the right hand side of the above expression is less than or equal

to
o\ 3242 —om o drdy
/ Z Z(g +t+ m)"’/2+3 3/2+2€,—2 (Z+t+m)yyk+2 -, (3.7)
Feo\H y =7 120 Y

where C' is a positive constant. We have

o dxd
Z (C+t+ m)k/2+3n—3/2+2e e—27r(€+t+m)yyk+2n Y
Foo \H y2

(=11t=0
0o 00

ZZ(E+t+m)k/2+3n—3/2+25 /OO /1 2T (HEm)y k22 g
1 y=0 Jx=0

~
Il
~
Il
(en)

k/2+3n-3/2+2¢ L (k+2n—1)
(6 +t+ m)k-‘,—Qn—l :

o
hE

(l+t+m)

T
Il
o~
]
o

The condition k > 2n+2 ensures that the above summation is convergent. Therefore

by Fubini’s theorem, we obtain that the integration in (3.7) is convergent. O

Proof of Theorem 3.3.1. Let ﬁLn]*f(z) = § b(m)q™. By Lemma 1.1.12, we have

m=1

(47m)k—1

b(m) = 1%_1)@9;?]7, Pr(q™))-

Using (3.5), we get
O F. Bela™) = (f. 0 Pula™).
Now by Theorem 3.2.2, we obtain

(f, I PL(@™) = {f, Priza(9)).

From (3.3) and using the definition of Petersson inner product, we obtain

PPl = [ f6) X ok S @)

SL2(ZNH - ep \SLa(2)
By Lemma 3.3.2, we can interchange the summation and the integral in the right hand

side of (3.8). Using Rankin’s unfolding argument and substituting the expression for
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3 The adjoints of higher order Serre derivative maps

¢ from (3.4), the right hand side of (3.8) becomes
—_— dedy < (n\ (E+n—1)! -I\"
k+2n — - n—r
[ s (), (3

Y = k+n—r—1)! (3.9)
<[ BEE T
Too\H y
Using the Fourier expansions of f and EJ, we obtain
[ R =
= / / a (t)eQm(z_t_m)x6_2”(£+t+m)yyk+2n_2dxdy. (3.10)

=0 y—1 ¢t=0

Using a similar technique as in the proof of Lemma 3.3.2, we can interchange the
integrals and the summations in the right hand side of (3.10). Then we obtain

dxdy
Er m k+27’L
Jo S EBEG

ia(g)ar(t) /oo /1 627ri(f—t—m)xe—27r(€+t+m)yyk+2n—2dxdy
y=0 Jx=0

=1t=0

Il
ng

8

_ Za(t +m)e,(t) /:O e

) —47r(t+m)yyk+2n—2dy

F(k +2n —1) X alt + m)e,(t)
(dm)+2n1 £ (4 )hton1

Therefore
I'(k+2n—1) a(t + m)é’,g”n(t)

(47T)k+2n—1 tZZO (t+m)k+2n—1 :

O f, Pr(g™) =

3.4 Applications

We apply Theorem 3.3.1 in some particular cases and find some identities involv-
ing special values of certain shifted Dirichlet series. For & = 12,16, 18, we denote
the unique normalized cusp forms of S, by A, with Fourier expansion Ag(z) =
i_ojl Tr(n)g". Note that Ajs(2) = A(z), whose Fourier coefficients are 7(n), Ramanu-

jan’s tau functions.
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3 The adjoints of higher order Serre derivative maps

Taking n = 2 and k = 8 in Theorem 3.3.1, we obtain 19%2}*(A) € Sg = {0}. Now
using Theorem 3.3.1, we get

D1 & (& T+ mERD) .
F(7)(4ﬂ)4w;1m (Z (t+m)! )q -0

t=0

This implies that, for all m > 1

T(m )5§n2 > t+m5§n2()

Z (t+m)H

t=1

= 0. (3.11)

mil
If €,.(t) is the t-th Fourier coefficient of Ej, then we have £,.(0) = 1 for all » > 0.
and for any ¢ > 1, we have gyo(t) = 0 and &,(t) = —2404(t). Using the identity
E3 = B4+ 12D FE,, we obtain that for any ¢ > 1, e5(t) = 24003(t) — 288t (t). Now

from (3.6), we have

Eg(0) = 7;) <i> © ?!r)! (;)TmQ_Ter(O) =m? — ;m + ; (3.12)

And for any ¢ > 1, we have

En(t) = ;::0 <72"> (9?‘7”)' (E)T m* e, (t) = (36m — 144t)o(t) + 12003(t). (3.13)

Using (3.12) and (3.13) in (3.11), we obtain

24m!! i (3m — 12t)o4(t) + 1003(t)
2m? —3m+1 = (t+m)H

T(m) = — 7(t +m) for all m > 1.

This identity was obtained by B. Williams [35, Example 11] also.
Similarly, taking n = 2,k = 14 in Theorem 3.3.1, using Theorem 3.3.1 and the
fact that S14 = {0}, we obtain

240m!7 5 (6m — 420)0, (t) + 3503 (t)
24m? — 60m + 135 - (t +m)'7

Tig(m) = — 718(t +m) for all m > 1.

Similarly, taking n = 3 and k = 10 in Theorem 3.3.1, we obtain ﬁég]*(A) € S =

{0}. Now using Theorem 3.3.1, we get

[(15) & 45 (K mslt+m)ERs0)\ .
oty 2 (5 )7

m=1 t=0
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3 The adjoints of higher order Serre derivative maps

This implies that for all m > 1, we have

T16(m)EN3(0) & Ti6(t +m)ETG 5(t)

mld t; (t+m)b

— 0. (3.14)

Using the identity F3 = Eg + 9DFE, + 72D?*E,, we obtain that for any ¢ > 1, e3(¢) =

—50405(t) + 2160tos(t) — 1728201 (t). Now from (3.6), we have

5. (3 12! —1\" 4, 11 55
gﬁlm(()) = Z ( >(1), (12> m3 e-(0) = m® — 3m? + Zm — (3.15)

o\ 2—r

For any t > 1, we have

etia =3 () gyt (33) e

r=0

= (72m?* — 792mt + 1320t*)0 () + (440m — 1650t)03(t) + 38505(t). (3.16)

Using (3.15) and (3.16) in (3.14), we obtain

72mte

60 = T 9 16mE § 198m — 5
> (72m? — 792mt + 13202 t 440m — 1650t t 3850+ (t
><22( m mt + Jor(t) + ( 15m Yos(t) + 05(>7'16(t+m)
P (t+m)
for all m > 1.
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Chapter 4

Converse theorem for quasimodular
forms

4.1 Introduction

In this chapter, we consider twisted Dirichlet series attached to quasimodular forms,
study their analytic properties, and prove an analogue of Weil’s converse theorem for
quasimodular forms. We also give some applications of our results to certain ¢-series
and sign changes of the Fourier coefficients of quasimodular forms.

A converse theorem in the theory of automorphic forms establishes a correspon-
dence between the functions that satisfy certain transformation properties, on one
hand, and Dirichlet series satisfying certain analytic properties, on the other hand.
For example, the well-known Hecke’s converse theorem [13] establishes an equivalence
between modular forms on SLy(Z) and Dirichlet series satisfying a certain functional
equation, meromorphic continuation, and boundedness in the vertical strips. A very
significant and useful generalization of Hecke’s converse theorem to congruence sub-
groups I'g(IV) was done by Weil [34] which illustrates the meaning of a converse
theorem more closely in our context. The converse theorem for GL, automorphic
representations was achieved in the works of several authors in papers [9], [14] and

15].
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4 Converse theorem for quasimodular forms

Any quasimodular form of level N (see subsection 4.2.1 for definition) has a Fourier
expansion and hence we can associate a Dirichlet series to it. In [20], Lagos considered
Dirichlet series attached to quasimodular forms of depth 1 on SLs(Z) and generalized
Hecke’s converse theorem to his settings. This converse theorem has been generalized
to quasimodular forms of any depth for the group SLs(Z) in [1]. In this chapter,
we consider twisted Dirichlet series associated to quasimodular forms of level N by
Dirichlet characters. We investigate analytic properties of these twisted Dirichlet se-
ries and establish an analogue of Weil’s converse theorem for quasimodular forms.
Then we discuss two applications of our results. The first one discusses the quasi-
modularity of a certain g-series considered by Ramanujan [26], and the second one
establishes the occurrence of infinitely many sign changes for the Fourier coefficients

of certain quasimodular forms. The results of this chapter are contained in [8].

4.2 Preliminaries
4.2.1 Quasimodular forms

Let k£, N be positive integers and let p be a non-negative integer. Let y be a Dirichlet
character modulo N satisfying x(—1) = (—=1)*. Let f € M"J(N, x) with components
fos fi, ..., fp- We also denote f by f= (fo, f1,---, fp). By the transformation prop-
erty (1.14) for the identity matrix, we get that fo = f. Moreover, the following result
8, Proposition 2.2] shows that each component f; of f is again a quasimodular form
of weight k& — 27 and depth p — j. The proof of this result is similar to the proof of

[29, Proposition 3.3]. Therefore we omit the proof here.

Proposition 4.2.1. Let f € M) (N,x) with components fo, f1,...,f,. Then for

every 0 < 7 < p, we have

p—J

Bheana) =x) 3 (7)) KO for aty € D)

v=0
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4 Converse theorem for quasimodular forms

Remark 4.2.2. From Proposition 4.2.1, we see that f, is a modular form of weight
k—2p, level N and character x. Since there are no non-zero modular forms of negative
weight, we have p < k/2. Moreover, if p = k/2 then f, is a constant, and hence x

has to be trivial.

Now, we state two lemmas [8, Lemma 2.4, 2.5] which are useful to establish
the desired Fourier expansions for all the components of a quasimodular form and

estimates for their Fourier coefficients.

Lemma 4.2.3. Let f : H — C be a holomorphic function given by the Fourier

exrpansion

f<z> = Z anq",

neZ

where a, € C. Then the following two statements are equivalent.

(1) The function f is polynomially bounded.

(2) We have a,, = 0 for n < 0. Moreover, f(z)—ag= O (e‘Qﬂm(z)) as Im(z) — oo,

and f(z) = O(Im(z)~%) as Im(z) — 0, for some o > 0, uniformly in Re(z).
Proof. For a proof, see [10, Lemma 5.1.11, Corollary 5.1.17]. O

Lemma 4.2.4. Let f : H — C be a holomorphic function given by the Fourier

exrpansion

f2) =3 a(m)g",

n=

where a(n) € C. Suppose that f(z) = O(Im(2)™") uniformly in Re(z) as Im(z) — 0

o

for some v > 0. Then a(n) = O(n”) for alln > 1.
Proof. For a proof, see [23, Corollary 2.1.6]. ]

Now we apply the above two lemmas to get the following proposition [8, Proposi-

tion 2.6].
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4 Converse theorem for quasimodular forms

Proposition 4.2.5. Let f € M) (N, x) with components fo, f1,..., f,. Then each
fj has a Fourier expansion of the form
filz) =3 aj(n)q",
n=0
where aj(n) € C with a;(n) = O(n*), for some v; > 0.

Proof. By Proposition 4.2.1, each f; is a quasimodular form. Therefore we have

fij(z4+1) = f;(2). This gives us a Fourier expansion

fiz) = > aj(n)q",

nez
which converges absolutely and uniformly on any compact subset of H. Since f; is
polynomially bounded, by Lemma 4.2.3 and Lemma 4.2.4 together, we have that

aj(n) =0 for n < 0 and a;(n) = O(n*) for some v; > 0. O

We finish this subsection by stating a result [8, Lemma 2.7] which will be useful

in the proof of Theorem 4.4.7. For a proof of this lemma, see [23, Lemma 4.3.3].

Lemma 4.2.6. For a sequence (a(n)),>o of complex numbers, let

f(z) = f: a(n)q".

If a(n) = O(n”) for some v > 0 then the above series defining f(z) converges abso-

lutely and uniformly on any compact subset of H and hence f(z) is holomorphic on
H. Moreover, f(z) —a(0) = O (e_%lm(z)) as Im(z) — oo and f(z) = O(Im(z)™"1)
as Im(z) — 0 uniformly on Re(z).

4.2.2 Nearly holomorphic modular forms

In this subsection, we briefly review some results on nearly holomorphic modular

forms and their relations with quasimodular forms.
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4 Converse theorem for quasimodular forms

If F'e M{%(N,x), then we write
Z fi(z)(2iy)~ z=x+ 1y,
0<j5<p
for some holomorphic functions f; on H which are polynomially bounded. The follow-
ing result [8, Proposition 2.9] gives a relation between nearly holomorphic modular

forms and quasimodular forms.

Proposition 4.2.7. Let fo, f1,..., fp be polynomially bounded holomorphic functions
on H. Define the function F': H — C by
Z fi(2)(2iy)~ z=x+1y.
0<5<p

Then the following two statements are equivalent.
(1) The function F € M2 (N, x).
(2) The function fo € M) (N, x) with components fo, f1,..., fp.
Proof. For a proof, see [10, Theorem 5.1.22]. m

Unfortunately, the image of a quasimodular form of level NV under the usual Fricke
involution operator Wy is not a quasimodular form. This adds difficulty in getting
the functional equation for the attached Dirichlet series. Therefore we modify the
operator Wy appropriately with the help of Proposition 4.2.7 to overcome this diffi-
culty. First, let us discuss the behavior of a nearly holomorphic modular form under
the action of the Fricke involution. Let

= Y fu(2)(2iy)"™ € MPE(N, x).

0<m<p

For any v = (%) € GL3 (Q), we have

Fliy =Y (dety)*? fou(v2)i (v, )™ (j (7, 2) — 2icy)™ (dety) ™™ (2iy) ™.

0<m<p
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4 Converse theorem for quasimodular forms

Simplifying, we obtain

0<l<p \l<m<p

Fliy= Y ( > (?) (dety)*>~™ £ (v2)4 (7, Z)m+’“”“(—0)me> (2iy) .

In particular, for v = Wy := (5 '), we have

FliWx = 3 fol(2)(2iy) ", (4.1)

0<t<p

where

filz) = % (?)(—1)m-fjvk/2-ffm (-j&z) (Nz)mHF, (4.2)

£<m<p

By the transformation property of F with respect to the group I'g(N) and (4.2),

we obtain the following [8, Lemma 2.10].
Lemma 4.2.8. If F € Mi%(N, x), then F|,Wy € Mih(N,X).

In the view of Proposition 4.2.7 and Lemma 4.2.8, we define the operator Wi

Definition 4.2.9. Let f € M’} (N, x) with components fo, f1, ..., fp. Iff = (fo, f1,---

then the action of Wy on f is defined by

— o~

f‘kWN: (%7};7-“7};)7

where

D Sl A O e O KN ET ST

1<j<p Nz

We have the following result [8, Proposition 2.12].

Proposition 4.2.10. If f = (fo, fi,-- 5 fp) € MIEJ(N, x) then

—- o~

f|kWN = (%7}:17 B 7}:;7) € Ml?,r;<Nay>7

where fy is defined by (4.3). Moreover, for 0 < ¢ < p, we have

R = 3 (o ()

1<j<p Nz
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4 Converse theorem for quasimodular forms

and
FleWaleWy = (1) f.
Proof. Since each component of f is polynomially bounded, from (4.3) it is clear that

each component of f| Wi is also polynomially bounded. By Proposition 4.2.7, we

deduce that

F(z):= > fi(2)2iy) ™ € Mi(N, x).

0<j<p

Now by Lemma 4.2.8 and Proposition 4.2.7, we deduce that

f:: ?(/) € Ml?,r;yl(Nv y)

-N 0

with components fo, f1, ..., f,. Since W2 = < 0 _N

), we have
F|yW = (-1)FF.
Therefore applying (4.1) twice, we get (4.4). O

4.2.3 Some analytic results

In this subsection, we recall Phragmén-Lindel6f theorem and the Stirling’s estimate
of gamma function which are useful to prove Theorem 4.3.1. See [23, Lemma 4.3.4,

(3.2.8)] for more details.

Theorem 4.2.11 (Phragmén-Lindelof). For two real numbers vy, vy with vy < v,
put
A={seC:v <Re(s) <w}.

Let ¢ be a holomorphic function on a domain containing A satisfying
[6(5)] = O™ (| Im(s)| = 00),
uniformly on A with 6 > 0. For a real number b, if
|p(s)] = O(Im(s)®) (|Im(s)| — o0), on Re(s) = vy and Re(s) = vy,
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4 Converse theorem for quasimodular forms

then

|9(s)| = O(Im(s)®) (|Im(s)] = o0), wuniformly on A.
Stirling’s estimate: For a complex number s = o + iT,
T(s) ~ V2rro 2 ™T/2 a5 |7|— 0o (4.5)
uniformly on any vertical strip.

4.3 Hecke’s converse theorem for quasimodular forms

For a holomorphic function

on H with a(n) = O(n”), we put

L(f,s) = ,i aflf).
Since a(n) = O(n”), L(f,s) converges absolutely and uniformly on any compact
subset of Re(s) > 1+ v. Therefore it is holomorphic on Re(s) > 1+ v. We call
L(f, s) the Dirichlet series associated to f. For N > 1, we put

27

o) = () T

Now we prove the following result [8, Theorem 3.1] which is an analogue of Hecke’s
converse theorem for quasimodular forms of level N. This also generalizes the main

result of [1] to level N.

Theorem 4.3.1. Let k, N be positive integers and let p be a non-negative integer
with p < £. For each integer 0 < j < p, let (a;(n))n>0 and (bj(n))u>o0 be a pair of
sequences of complexr numbers. Assume that there exists a real number v > 0 such

that a;(n) and bj(n) are bounded by O(n”). Put

B = S ad's g2)= S e, 0<i<p (46

n=0
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4 Converse theorem for quasimodular forms

Let f: (fo, frs---. fp) and § = (90, 91, -, 9p). Assume also that f, and g, are non-

zero constant functions if p = k/2. Then the following two statements are equivalent.
(1) flxWn=4g.

(2) Foreachyj € {0,1,...,p}, the completed Dirichlet series An(f;,s) and Ax(gj, s)
admit meromorphic continuations to the whole s-plane and they satisfy the fol-

lowing functional equations

m +m .
~n(fjs) Z FEmm N <‘7 ) AN(Gjem, k— 2] —m —s). (4.7)
Moreover, for each j € {0,1,...,p}, the functions
aj(() Pl i+ m *F=2 NS, (0)
i B (1)

L b0 jA+m\ i~ N g (0)
An(a: o;\Y) j+m
¥l +;o< ) k—2j—m=—s

are holomorphic on the whole s-plane and bounded on any vertical strip.

Proof. Let us first prove (1) = (2). If p = k/2, then An(f,,s) and Ay(g,, s) are
identically zero. Therefore the claimed analytic properties for j = p trivially follow
by the fact that f, = g, = a,(0) = b,(0).

Ifp=Fk/2and j€{0,1,....p—1}or 0<p< k/2and j € {0,1,...,p}, then for

Re(s) > v+ 1, we have

o0 it Lt
An(fjss) = /0 (fj (JN) (O)> -
1 1 dt o0 dt
= . _— t_si / . t_
/of”<ﬁt> t+1f]<¢_t> t
With the change of variable ¢t — 1/t in the first integral, we obtain
it dt 1 Sdt
A 4 = / 5= -
N(fj:8) . fi (\/—> ; + ) f] (\/_t> P

- [ (5 (2%) o) et [ () e - 2O




4 Converse theorem for quasimodular forms

Since f |¢Wx = §, using (4.4) we obtain

An(fi ) = /100 (fj <\/ZtN> _ (0)> tscit

it isdt  aj(0)
l ]N l+]+k/ Zi tk’ l—j—s2" ™73 ]
N L A [

I<I<p

So we have

An(fi:8) = /loo <fj <\7ﬁ> - <0)> tsit

" <J> v [ (m (;%) —b,(o)> ottt
L > <Z.>(—1)lelEjil+j+kbl(0)

5 g M k—l-j—s

Simplifying the last sum of the right hand side of the above identity, we deduce that

i = [ (5(J) - (O)> &

o2 (e P af5) wo)e s
_M_ Z (lfj>Néik+2j_l bi(0)

s o<icy; \ J k—1—-2j—s

Similarly for Re(s) > v + 1, one deduces that

An(gj,8) = /100 (gj (\;%) - bg(0)> t° Cit

B T
b0 _ > <l+~j>Nér(’f—2j>—’ a(0)

s o<tz \ ] k—1—-2j—s
The expressions deduced in (4.9) and (4.10) provide the claimed analytic properties
of An(fj,s) and An(gj,s) of meromorphic continuation and boundedness in vertical

strips.
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4 Converse theorem for quasimodular forms

Now we establish the claimed functional equation. From (4.8) we obtain

An(fj,8) = /1"0 <fj <\7N) — aj(0)> tscit |2tk /100 <gj (\/th> B bj(0)> tk;—?j—sit
! = N ik [ it \ g josdt  a;(0)  by(0)iH
+ Z <]>(—1) N2 /1 gl<m>t el _k;—Qj_S'

J+1<I<p
(4.11)

Using (4.3), we observe that for each 1 <[ < p, we have

. MU\ (et g Bt gtk pmet -k i
n(gx)= 2, (1), (05).

Using the above identity in (4.11), we obtain
AN(fja S)

o it b g [ it oyt
:/1 (fj (\/W) - aj(0)>t - i k/1 (gj (\/N) - bj@)) t* "

l . l—j . oo m m—1 Z .
+ ' -1 l—]NTZ-l-‘r]-HC/ < > -1 m—lN S Z-m—l—l—kfm < > fm—i=s
2 <J>( ) ! lg%:gp )Y VNt

JH1<I<p
00) b0
s k—2j—s

Interchanging the summations in the last integral of the right hand side of the above

identity, using the combinatorial identity (?) (m) = (Zn) (mfj ) and changing the vari-

! m—I1

able t — 1/t, we obtain

) = [ (5 () =) e [ (5 () ) et

+if Y (—1)m‘jN”éj<Zfb>z‘mﬂ"’“ > (Z:?)W/Olfm(\;tﬁ)tsﬂ—m

J+1<m<p jH+1<I<m
_ay(0) (0
s k—2j—s

(4.12)
Now observe that
5 (m—j>izz S ( m—.j >(_1)l
jiciem \1 =1 I<igm—j \ = J =1
Y —j o 4.13)
— ZZ] Z (m j) (_1>l o 22] (
0<i<m—j !
=0—i7 = —i%.
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4 Converse theorem for quasimodular forms

Using (4.13) in (4.12), we obtain

An(fj, s) :/1 (fj (\;%) - aj(0)> tstt +i23+k/1 (9j (\;%) - bj@)) tk_zj_stt
25k M yymei g gmi—k 1 () perem
_Z+j+1;1<p<j>( N /Oﬁn(\/_)t+ ¢
a;(0)  b;(0)i***
a k—2j—s

0 it S o f ot Ny —oj-sdt
-, (fj <\m>‘“j“”>tt“ ) Mm) W))tk t
by m mj gk [ it o\ stj—m A
> (j)“” NI | (f’”<\/ﬁ> “’““”)“ t

j+1<m<p
a;(0) B b;(0)3+F _ ek Z <m>(_1)m_ij2jim+j_k a, (0) |
j+1<m<p \J s+J—m

S k—27—s
(4.14)

Similar to the expression for Ay(f;,s) in (4.11), we obtain the following expression

for An(gj,s) in a similar way.

Anlgirs) = /100 (gj (jﬁ) - bj(0)> tscit + %k /100 (fj <\/lﬁt> _ aj(o)> tk—%‘—sit
t i (?) (N [ (fm (j%) - am(0>> t""m—j—scit

J+1<m<p

bj (0) CL]‘(O)Z'jSk L iArm=d i a'm(())
- — — —1)mIN Tk
S k—2j—s Z (=1) !

j+1<m<p —J~

m-—s

(4.15)

Now from (4.14) and (4.15), we obtain

An(gj, 8) — i FAN(fj, k — 25 — s)

= > <?>(—1)m—JN"Bjim+j"“ /OOO (fm (\}%) — am(())) tk—m—j—scit

J+1<m<p

. m 1 m_jNM .m+j_kA k .

= Z j (—) 21 N(fma —m—j—S).
J+1<m<p

Rearranging the terms we get

. (k—27)—m nT | +m .
An(gj,s) = Z i) N2<jm >AN(fm+jak_2]_m_S>'

0<m<p—j
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4 Converse theorem for quasimodular forms

Similarly we obtain

G—2jem e (]t .
AN(fjas) = Z FTHTMN <j mm> AN(ngrj,k—Z] —m—s).

m=0
We now prove (2) = (1). If p = k/2 then the condition (4.7) implies that
a,(0) = b,(0) and hence f, = g, = a,(0) = ,(0). If p=Fk/2 and j € {0,1,...,p— 1}
or0<p<k/2andje{0,1,...,p— 1}, then we need to show that
50 = T (VTN RN (a0)
j<i<p N
Since both sides of (4.16) are holomorphic functions, it suffices to show the equality

(4.16) on the vertical line z = it/v/N,t > 0. For ¢ > v + 1, we have

it —2znt 1 s
0 (m) 0+ Xbyme F =00+ [ Awlg ) ds.

2me
nzl Re(s)=0

Since L(g;, s) is bounded on Re(s) = o, by (4.5), we deduce that on Re(s) = o, for

any p > 0, we have
[An(gs.8) = O(|m(s)[#) as [fm(s)] = oc.
Similarly one proves that on Re(s) = o, for any p > 0, we have
An(f5.9)] = O(Im(s)| ™) as [Im(s)| — oo.

Now choose any real number § such that k—2j—p—0 > v+1. Then by the functional

equation, on Re(s) = 0, for any p > 0, we have

Pl i+ m .
[An(gj,s)| < Y N> ( >|AN(fj+mak_2J_m_5>| = O(|Im(s)| ") as [Im(s)| — oo.
m=0

By assumption, the function

5 (j ) m) N a4m(0)

h(s) = An(g;,s) + 50) k—2j —m—s



4 Converse theorem for quasimodular forms

is bounded and holomorphic on the vertical strip § < Re(s) < o. Therefore by
applying Phragmén-Lindel6f theorem (Theorem 4.2.11) for h(s), we deduce that in

the domain ¢ < Re(s) < o, we have

L) L (w6 N e, (0) .
ntaps) + 20§53 (70 ) L2 2N el ) ) s fim(s)] o

From this we deduce that in the domain 6 < Re(s) < o, we have Ay(g;,s) =
O(|Im(s)[7!) as |Im(s)] — oo. Without loss of generality we assume that o >
k and § < min{0,k — 3p}. The function Ay(g;,s)t° has simple poles at s =
0and s = k —2j —m for m = 0,1,---,p with the respective residues —b;(0)
and (Jjnm) ~k=2)-mNT g, (0)#2 M=k Now shifting the path of integration from
Re(s) = o to Re(s) = 0, we obtain

it 1 + MY ki) e
95 <\/N> ~2mi / An(gj, 8)tds + Z (J ) U N T g (0)£27F 7,
Re(s)=0

Using the functional equation (4.7), we obtain

it p=j 4 m(j+m\ 1
(L :}j'<“ﬂ>mzvz<] ) / An(Fiom k —2j —m — s)t=*
g 1 , N(fivm, j—m — st °ds
J<VN> o) . ’

m ) 2m
Re(s)=6
p—J
+ <] + m>2~—(k—2]) MmN g N (0)t2j+m—k
m=0 m

With the change of variable kK — 25 — m — s+ s in the integral above, we get

ud = j m(j+m\ 1 '
] — — --(k’—?])_mN7 R / A . tS—k+2]+md
4 <\/N> mZ::oZ ( m ) 211 N(fj4m, 8) S

Re(s)=k—2j—m—4

p—J + ) ) m .

+ (.7 mm Zf(k72j)me5aj+m(0)t2]+m7k
m=0

P—J 1

LN k2 m (j ;m> 27 m R g (0) + 2—7” / AN (fivm, s)t°ds
=0 Re(s)=k—2j—m—§

3
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4 Converse theorem for quasimodular forms

Also one has

o (7 ) = 5504 X e

1 S
= a1 (0) + i / AN (fi4m, 8)t7ds.
Re(s)=k—2j—m—0

Therefore we have

()-Er e

]

4.4 Weil’s converse theorem for quasimodular forms

Let f; (0 < j < p) be as defined in (4.6). For any Dirichlet character ¢ of conductor

my, we twist the Fourier series of each f; to get the twisted Fourier series

fiw(z Z w(n (4.17)

The twisted Dirichlet series associated to f; by the character v is the same as the

Dirichlet series attached to f;,, that is,

L(fj.s.) = i )

n=1

For N > 1, we put

2

Awlfyrs.0) = (mw Te) TOLGs

The twist of f = (fo, f1,-- -, fp) by the character v is defined by ﬁ = (fos fr-- s fow)-

Let F' be the function which is a polynomial in 1/y associated to (fo, fa,... f,) as in

Proposition 4.2.7. Then the twist of F' by the character v is defined by

= > fru(2)(2iy) " (4.18)

0<t<p
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4 Converse theorem for quasimodular forms

Proposition 4.4.1. Let k, N be positive integers and let p be a non-negative integer
with p < %. For each j € {0,1,...,p}, let (a;(n)),o, (bj(n))nzo,fj,gj,ﬁﬁ be as in
Theorem 4.3.1. Let 1) be a primitive Dirichlet character of conductor my(> 1). Then

the following two statements are equivalent.
(1) FoleWe = Cuds

(2) The completed Dirichlet series An(f;,s,v) and An(gj,s,v),0 < j < p, can be
analytically continued to the whole s-plane, are bounded on any vertical strip,

and satisfy the functional equation

Lo SN {7+ . —
AN(fj?‘g?w) :C¢22k % l(mwN)z (jl )AN(gj+lak_2]_l_s7w)7

1=0
(4.19)
with
Cy = x(my)P(=N)T(1) /7)) = X(my ) (N)T(1)* /my, (4.20)
where (1)) = % P(a)e? /™ s the Gauss sum associated to 1).
a=1

Proof. This follows from Theorem 4.3.1 by taking f; = fj4.9; = Cpg; 5 and N =
N mi [l
We next state the following result [23, Lemma 4.3.10]. In the statement of [23,

Lemma 4.3.10], it is assumed that the function f is holomorphic. But the proof works

even if f is not holomorphic.

Lemma 4.4.2. Let k > 1 be any integer and let [ be a (not necessarily holomorphic)
function on H with Fourier series expansion f(z) = Z a(n,y)q™. Let be a primitive

Dirichlet character of conductor my, and let f, = Z Y(n)a(n,y)q™. For any real
n=0

number r, let T" = (§1). Then we have
fo=1()" Z¢ <|kTu/mw>,
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4 Converse theorem for quasimodular forms

. My . _
where (1)) = Y. (a)e?™ /™ s the Gauss sum associated to the character .
a=1

Proposition 4.4.3. Let f € M’} (N, x) with components fo, fi,..., f,. Let m, be the
conductor of the character x and let 1 be a primitive Dirichlet character of conductor
my. Let M =lem(N, m3, mymy). If p=k/2 and my > 1, then fy, € M7 (M, x1p?)
with components foy, fi, .- fow- If 0 < k/2 ormy =1, then f, € M) (M, X¥?)

with components fop, fiap, -, fp—10-

Proof. If p = k/2 then f, is a constant and therefore f,, is zero for nontrivial .
If p < k/2 or ¢ is trivial then f,, is non-zero. It is clear that all the functions
fow, fiw, - fpy are polynomially bounded functions. Therefore we only need to
establish the transformation property of f,. Let v = (%, %) € To(M). Then it is easy

to verify that
N = Tmen =4 me ¢ Do(M) C To(N).

If v/ = (9%), then
d =d—cd*>uM/my=d (modm,).

Therefore we have

p M J

my
Since

Tu/mw,_)/ _ Tu/mwfyT—d2u/mwTd2u/mw ’
we also have

f‘kTu/M¢,y —_ (f‘k;Tu/mw’}/T_d2u/mw> ’deQ'u/m — f|k'-)//Td2u/mw-
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4 Converse theorem for quasimodular forms

Now by (4.21), we have

j
u/m. CM 2’U,T)’L
fle T/ ‘W ( Zf] _cdzuM> )de /my

20 cMz+d e

P 2 cM J
(d) Y (filoogTFme) (CMZ+d> . (4.22)

Jj=0

By (4.22) and Lemma 4.4.2, we have

foley =71 Z (

'M%

Il
o

J

2 /my cM J
a (fj|k—2j|Td / ) <cMz+d> )
U(d?) z: (T( E(d%) (fj\k—%!TdQu/mw)) (c]\jgj\ﬂdy

For each j, we have f;(z +1) = fj(z). Also, if u runs over all residue classes modulo

i M§

my then d?u runs over the same. Therefore we have
_ 2) g} (MY
ol = @03 (@) 30 (Bhewi) ) (72)

7=0
Again by applying Lemma 4.4.2, we have
p cM J
foliy = (x¥?) Z::fw (CMZJFCJ
O

Proposition 4.4.4. Let f and g be two quasimodular forms of weight k, depth p, level
N and characters x and X and components fo, ..., f, and go, ..., g, respectively. Let
Y be a primitive Dirichlet character of conductor my,. If (my, N) =1 and ﬂkWN =7,

then we have

ﬁl"kWNmfp = CyGy, (4.23)
where Cy, is as in (4.20).
Proof. Let
= > fi2)2iy)™" and G(2) = Y age(z)(2iy)". (4.24)
0<t<p 0<t<p
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4 Converse theorem for quasimodular forms

Since f|,Wy = §, we have F|,Wy = G. Now by Lemma 4.4.2 and (4.18), we have

My, My
@)Y Blw) (FRr/e) = ¥ (Twrl S B(w) (fg\k_w/mw)) (2iy) "
u=1 0<t<p u=1
= > feu2iy)™
0<t<p
= Fy.
(4.25)
Similarly, we have
my,
(@)Y B(u) (GIRT™ ) = 3 gou(2iy) ™" = Gy
u=1 0<e<p

For any integer u with (u, my) = 1, let n and v be integers such that nmy —Nuv =

1. Observe that

U/ My _ My 0 My, v v/my,
T WNmi ( 0 m¢> Wy (—uN n ) T ’

Therefore we have

u/my _ My —v v/ My

Since G is a nearly holomorphic modular form of weight &k, depth p, level N and

character Y, we have
FlTY™ Wz = X()G ™ = x(my) Gl T ™. (4.26)
By (4.25) and (4.26), we have
(@) FyliWamz = > B(u) Fle (T W2 )
u=1

— x(my)Y(~N) zﬁwvmm/mw

= X(my)Y(=N)7 ()G
Therefore

FylkWim, = CyGy,
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4 Converse theorem for quasimodular forms

and hence we conclude that
foleWime = Cyy,

as desired. n

For the next two lemmas, let us fix some terminology. Let k£, N be positive integers,

p be a non-negative integer with p < g and y be a Dirichlet character modulo N
satisfying x(—1) = (—1)*. For any two integers m, v with (m, Nv) = 1, let n,u € Z
such that mn — uNv = 1. Let v(m,v) := (_%u _n”> € I'g(N). Clearly v(m,v) is not

uniquely determined but u mod m is so. We have the following identity.
T W2 = mWyry(m, v)T™. (4.27)

Lemma 4.4.5. Let m be an odd prime number or 4 prime to N. Let f: (fo,--- fp)

and § = (go, - - - gp) be any two tuples of holomorphic functions satisfying f|yWn = ¢
and (4.23) for all primitive Dirichlet characters ¢ with conductor my = m. Let F
and G be the associated polynomials in 1/y to f and g respectively given by (4.24).

Then we have
Gli(x(m) =y (m, u))T*/™ = Gl(x(m) —~(m, o)) T*/™
for any two integers u' and v’ coprime to m.
Proof. In view of the definition (4.18) and by (4.23), we have
FQJkVVthi ::(j¢(;a.

Now by using Lemma 4.4.2, we obtain

My My
S B LT Wiy = x(my)o(=N) 3 b@)GLT™™.  (4.28)
u=1 u=1
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4 Converse theorem for quasimodular forms

For each u with (u, my) = 1, let v be such that —Nuv =1 (modm,). Then by (4.27)
we have

F|kT“/m¢WNmi = Gpy(my, v)TV™. (4.29)

Since the left-hand side of (4.29) is independent of the choice of a representative of
u (modmy), so is the right-hand side of the choice of v(my,v). Using (4.29), from
(4.28) we obtain

ZU:%D(U)GMX(mw) —y(my, v))T*™ = 0. (4.30)
Here v runs over a complete set of representatives of Z/m,Z. We note that (4.30) is
independent of the choice of representative of Z/m,Z. Let vy, vy be two integers co-
prime to my. Multiplying both sides of (4.30) by 1 (v1) —(v2), taking the summation

with respect to all nontrivial Dirichlet characters ¢ (modm,,), we get

> b)) = d(v2) 3 (0)Gle(x(my) — y(my, v))TV™ = 0. (4.31)
1/) v

non-trivial

Using the facts that ¥ (v;) — ¢¥(vy) = 0 if ¢ is trivial and all non-trivial Dirichlet
characters ¢ mod m,, are primitive characters as m,, is an odd prime or 4, we obtain

from (4.31) that

Glr(x(my) — y(my, w)T*™ = Gli(x(my) — y(my, v))T™.
]

Lemma 4.4.6. Let m and n (not necessarily distinct) be odd prime numbers or /
coprime to N. Let f and g be as in Lemma 4.4.5 satisfying ﬂkWN = ¢ and (4.23)
for all primitive Dirichlet characters ¢ with conductor my equal to m or n. Assume
that f, and g, are constants and x is trivial if p = k/2. Then for any j € {0,1,...p},

we have

gz =X() 3 (E.)W) (X (7) ()" (4.32)

J<L<p
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4 Converse theorem for quasimodular forms

for every v € To(N) of the form ~ = (_%u _n”) .
Proof. Let G be the polynomial associated to g given by (4.24). Put
h = Gli(x(m) =) = x(m)G = Glxy.

Using a similar technique as in the proof of [23, Lemma 4.3.14], we get h|.3 = h,

where

P _ 1 —2v/m m v
— 1 2v/n,p=2v/m _ I _
f=7"T v <2uN/n 4/mn—3>’ 7 (Nu n)

Now, we have

Glry = ( > g(2)(2iy)” ) %

0<l<p
= > 9:(v2)i(7,2) (7, 2) = 2iy)* (2icy)
0<t<p
- ¥ 009 ¥ ()it oen . am

Simplifying the right hand side of (4.33), we obtain

Ghy= Y (Z (é)(—l)f—j (37, 20 ge(v2)) Gy, 2) ! )(22y)

0<j<p \j<t<p \J
g) (=1)7 (geln—2e7) (Z)(X(W))H) (2iy)~

J

=z(z(

0<j<p \Jj<L<p

Therefore, we have

Z h;(z)(2iy)~

0<5<p

where

1) =3 ) = 3 ()0 o) G a3
By [10, Theorem 5.1.22], we have
l o—i
hilk—oiB = <> he (X () ()7

J<L<p
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4 Converse theorem for quasimodular forms

In particular, we get that h, is invariant under . By the assumption on m and n,
we obtain that [tr(5)] = [4/mn — 2| < 2 and |tr(8)| # 0, 1. Therefore /5 is an elliptic
matrix and any eigenvalue of 3 is not a root of unity. Let zy be the unique point of

H fixed by . Put
—%

p= (20— )" G ) € GLy(C)

and
p(w) = (hplr—app™")(w) = j(p~ " w) **h,(p~'w), weD,

where GLy(C) is the group of 2 x 2 complex invertible matrices and D is the unit

disc. The function p(w) is holomorphic on D. Writing

pBp~ ! = (8 QfL) with ¢ € C,
we have
p(pBp~ w) = (hpli-2p0"") (pBp~ ')
= j(pBp s w)* 7 (G(pBp " w) F P (hylkapp ") (pBp )

=5 (pBp™ W) (hy|—pBp~ ") (W)

Since h,, is invariant under /3, we get

p(pBp~"w) = j(pBp~ ", w)* P (hylk—opp™ ") (w).

Thus, we get that
p(pBp~ w) = j(pBp~" w)* P p(w).
Hence we have
p(CPw) = ¢ p(w).
Since p(w) is holomorphic on D, it has a Taylor expansion around w = 0. Let

p(w) = ioj a,w™ be the Taylor expansion of p(w) around w = 0. Then we have
n=0

(*a, = (~F*%q, for all n > 0. Since ( is an eigenvalue of 3 which is not a root of
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4 Converse theorem for quasimodular forms

unity, we get a,, = 0 for all n > 0 when p < k/2. This implies that h, = 0if p < k/2.
If p=k/2, then from (4.34) it is trivial to see that h, = 0 as g, is constant and x is
trivial. Thus we have

hp—1lk—2p-1)8 = Tp—1.
Following the above arguments again, we get h,_; = 0. Proceeding recursively, we
see that h; = 0 for every 0 < j < p. This means that

X(m)g; = Y <€-><—1>“ (geli-2e7) (X(7)(2))9, 0<j<p.

j<t<p \J

P 4
Let P(Y) = ) ¢;Y7 be a polynomial in Y. By using the above identity, we have
=0

PY)= Y gV =x(m) 3 (gele-27) (Y = X(3)(2))".
0<j<p 0<e<p
Putting Y =Y + X (7)(2) in the above equation, we get

Yo g (Y + X)) =x(m) Y. (gelr—2en) Y".

0<j<p 0<l<p

By comparing the coefficients of Y7 both sides and using the fact that y(m) = xY(n) =
X(7), we have (4.32). O

Now we are ready to state the main theorem of this chapter [8, Theorem 1.1]
which can be considered as an analogue of Weil’s converse theorem for quasimodular
forms. We denote P for a subset of positive integers such that any element of P is
either an odd prime or 4 which is relatively prime to N and for any two relatively
prime positive integers a and b, the intersection of P with the set {a +nb:n € Z} is

non-empty.

Theorem 4.4.7. Let k, N be positive integers and let p be a non-negative integer
with p < k/2. Let x be a Dirichlet character modulo N satisfying x(—1) = (=1)*,

and x 1is trivial when p = k/2. Let f: (fo, fr.---, fp) and G = (g0, 01, - - -, gp) be two
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4 Converse theorem for quasimodular forms

vectors, each one consisting of p + 1 functions given by the Fourier expansion (4.6)

corresponding to the sequences (a;j(n)) and (bj(n)) respectively, 0 < j < p. Moreover,

let f, and g, be non-zero constant functions if p = k/2. Assume that a;(n) and

bj(n) are bounded by O(n”) for some v > 0. Then the following two statements are

equivalent.

(1) The functions fy and go are quasimodular forms of weight k, depth p, level N

and characters x and X, component functions fo, fi,...,fp, and go,q1,-..,9p

respectively. Moreover, we have ﬂ Wy = g.

(2) (a)

(b)

—

k
For each j € {0,1,---,p}, the completed Dirichlet series An(fj,s) and
An(g;,5) admit meromorphic continuations to the whole s-plane and they
satisfy the following functional equations.
P—j .
An(fj 8) = mzjoz'k*%*m]\f% (j j:nm> AN(Gjtm. k—25 —m —s).

Moreover, for each j € {0,1,...,p}, the functions

j+m\ U mNED L, (0)
An(fj:5) +Z< ) k—2j—m~—s

p—J +m —(k—24)— mN%amO
An(gj. 5) 50 (‘7 ) #+m(0)

k—27—m—s

m=0

are holomorphic on the whole s-plane and bounded on any vertical strip.

For any primitive Dirichlet character 1 whose conductor my, € P, each of
the completed Dirichlet series An(fj,s,v) and An(gj,s,v) can be analyt-
ically continued to the whole s-plane, bounded on any vertical strip, and

satisfies the following functional equation.

= L(j+1 : —
AN(fjaqu/J) = Ci/}ZZk N l(miN)2 <] l )AN(g]+lyk_2] -1 - S’,l?b))
1=0
where Cy, is same as in (4.20).
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4 Converse theorem for quasimodular forms

Proof. We observe that the implication (1) = (2) follows immediately from our
previous results. By Theorem 4.3.1, we have (2)(a). By Proposition 4.4.4 and Propo-
sition 4.4.1, we have (2)(b).

Next we prove (2) = (1). By Lemma 4.2.6 and Lemma 4.2.3, we see that
fo, f1,--+, f, and go, 41, - , g, define holomorphic functions on H and all are poly-

nomially bounded functions. Now, by Theorem 4.3.1 and Proposition 4.4.1, we have

-~ —

f|k‘WN = g? ¢|kWNmi = ng_i

for any primitive Dirichlet character 1 whose conductor m,, € P. The constant Cy, is
same as in (4.20). We need to establish the quasimodular transformation properties

for fy and go. We first prove that for each j with 0 < 5 < p, we have

sy =30) ¥ (oG ot venm. s

J<t<p

Since each g; has Fourier series expansion given by (4.6), we have g;(z + 1) = g,.
Therefore, if

7= (& a) € Do)
and ¢ = 0, then we have (4.35) as x(—1) = (—1)*. Now assume that ¢ # 0. Since

(a,ecN) = (d,cN) = 1, there exist integers s, t such that a+tcN € P and d+scN € P.

Put
m = a + tcN,
n =d+ scN,
u = —c,

v=—(b+ sm+ stuN + nt).

= ()= ) i )6 )

Then we have
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By Lemma 4.4.6, we have

shear=sin (1 ) (0 7)
(50 3, (o (5250 s s )
—j
:Y( ]<€<p<> ( UNZ_S+n>
(v j<£<p< ) <ch+d>

This implies that go € M)} (N, X) with components go, g1, ..., g,. Since

I
><\

f= (=1 qWh,

by Theorem 4.2.10, we deduce that fo € M;)'(N,x) with components fo, fi,..., fp.

]

4.5 Applications

In this section, we provide some applications of Theorem 4.4.7. In his celebrated 1916
paper [26], Ramanujan introduced the following function. For any two non-negative
integers k and ¢ with k < ¢, define
- f: T ( 5 dz_k> .
m=1n=1 n=1 0<d|n

If 0 < ¢ < mand ¢+ mis odd then ®,,, is (up to a constant) the ¢-th derivative of
Eisenstein series E,, ¢.1. The Eisenstein series E,, ;1 is a modular form on SLy(Z)
ifm—0¢+1>4iseven. If m -0+ 1 =2, E, 4 is a quasimodular on SLy(Z).
For ¢/ = 0 and m odd, ®,,, is a scalar multiple of E,,;; up to an additive constant.
From this, it follows that for 0 < ¢ < m and ¢ + m odd, ®,,, is a quasimodular form

of weight ¢ +m + 1 and depth less than or equal to £ + 1 on SLy(Z). When ¢+ m
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4 Converse theorem for quasimodular forms

is even, it was proved in [1] that ¢ 4+ ®y,, is not a quasimodular form on SLy(Z) for
any complex number c. But it is not proved if ¢ + ®,,, is not a quasimodular form
of level N for any positive integer N > 1. We have the following result [8, Corollary

1.4] which proves exactly the same.

Corollary 4.5.1. Let 0 < ¢ < m be such that { +m is even. For any integer N > 1,
any Dirichlet character x modulo N and any constant ¢ € C, the function ¢+ @y ()

is not a quasimodular form of level N and character x.

Proof. Suppose that £4+m is even and there exists a constant ¢ € C such that c+ &,
is a quasimodular form of some weight and some depth, level N and character x for

some N > 1. Note that the completed Dirichlet series attached to ¢ + ®,,, is

Aoy, () = (j%) D(s)C(s — OC(s — ).

It is clear that Ag,, has poles at —r for each positive integer 7 such that —r — /¢
and —r — m are both odd. By Theorem 4.4.7, Ag, . (s) can not have a pole at any
negative integer due to the quasimodularity assumption on ¢ + ®,,,. This gives a

contradiction. ]

Next, we deduce the oscillatory behaviour of the Fourier coefficients of certain
quasimodular forms. Following [25], we say a sequence of complex numbers (an)n21
is oscillatory if for each real number ¢ € [0, ), either the sequence (Re (6_i¢a”))n>1
has infinitely many sign changes or is trivial. Observe that Re (e‘i¢an) is equal to
Re(a,) and Im(a,) if ¢ is equal to 0 and 7/2 respectively. We have the following

result which is special case of [25, Theorem 1].

o0

Theorem 4.5.2. Let (a,)n>1 be a sequence of complex numbers. Let D(s) =
n=1

an
ns

be a non-trivial Dirichlet series which converges somewhere. If the function D is

70



4 Converse theorem for quasimodular forms

holomorphic on the whole real line and has infinitely many real zeros, then (a,)n,>1 is

oscillatory.

We have the following result [8, Corollary 1.5] which proves that the sequence of

Fourier coefficients of a non-zero quasimodular forms of level N is oscillatory.

Corollary 4.5.3. Let f be a non-zero quasimodular form of weight k, depth p, level
N and character x such that the constant Fourier coefficient of f and that of all the
component functions of f|kf/I7N are zero. Then the sequence of Fourier coefficients

(a(n))n>1 of f is oscillatory.

Proof. Since the constant Fourier coefficients of f and all the component functions
of f |;J/T/N are zero, by the direct part of Theorem 4.4.7 we have that Ay(f,s) is
holomorphic on the whole complex plane. Since I'(s) has poles at all the non-positive

integers, the corollary follows from Theorem 4.5.2. O]
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Chapter 5

Converse theorem for weakly holo-
morphic quasimodular forms

5.1 Introduction

In this chapter, we define L-functions associated to weakly holomorphic quasimodular
forms and derive functional equations of these L-functions. We also obtain a converse
theorem for weakly holomorphic quasimodular forms.

Unlike modular forms, the usual L-series associated to a weakly holomorphic mod-
ular form is a nowhere convergent series since the Fourier coefficients grow exponen-
tially. In [2], certain L-functions associated to weakly holomorphic modular forms
have been defined. But the analytic properties of these L-functions have not been
studied. In [12], Diamantis et al. defined L-functions associated to weakly holomor-
phic modular forms and obtained their functional equations. The L-functions studied
in [12] are generalizations of the L-functions studied in [2]. In [12], Diamantis et al.
also obtained a converse theorem for weakly holomorphic modular forms.

A weakly holomorphic quasimodular form is a certain generalization of a quasi-
modular form (see Definition 1.3.2). In [32], Wang and Zhang defined and studied
weakly holomorphic quasimodular forms on SLy(Z). Following the methods of [2],

they defined L-functions associated to weakly holomorphic quasimodular forms on
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5 Converse theorem for weakly holomorphic quasimodular forms

SLy(Z) and obtained functional equation for these L-functions. Using the methods
of [12], we define L-functions associated to weakly holomorphic quasimodular forms
on I'o(N). Our L-functions are generalization of the L-functions defined in [32]. We
obtain functional equations for the L-functions associated to weakly holomorphic
quasimodular forms on I'g(N). We also obtain a converse theorem for weakly holo-

morphic quasimodular forms of level N. The results of this chapter are contained in

[5]-

5.2 Notations and preliminaries
5.2.1 Weakly holomorphic quasimodular forms

Let k£, N be positive integers and let p be a non-negative integer. Let y be a Dirichlet
character modulo N satisfying x(—1) = (—=1)*. Let f € M,g?’!(N, X) with components
fo, fi,-- -, fp- Wealso denote f by f= (fo, f1,---, fp). Asin the case of quasimodular
forms, we have fo = f in this case also. Moreover, the following proposition [5,
Proposition 2.2] shows that each component f; of f is again a weakly holomorphic
quasimodular form of weight k—2j and depth p—j. The proof of this result is similar

to the proof of [29, Proposition 3.3]. Therefore we omit the proof here.

Proposition 5.2.1. Let f € M,gr;’!(N, X) with components fo, f1,..., fp,. Then for

every 0 < 7 < p, we have

et =3 S (1) k) KON o aity € To(),

Now, we prove the following theorem [5, Theorem 2.3].

Theorem 5.2.2. Let | € M,gr;’!(]\f, X) with components fo, fi1,..., fp- Then each f;

has a Fourier expansion of the form

o0

fitz) = > a;(n)q",

n=-—ng
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5 Converse theorem for weakly holomorphic quasimodular forms

where aj(n) € C and ng > 0 with
a;j(n) = 0%V for some C; > 0. (5.1)

Proof. By Proposition 5.2.1, each f; is a weakly holomorphic quasimodular form.
Therefore each f; is holomorphic, periodic and it satisfies the condition (2) of Def-
inition 1.3.2. Now using the same idea used in [3, pp. 55], we obtain the required
Fourier expansion of f;. The bound for the Fourier coefficients of f; follows from |3,

Lemma 3.4]. O

We finish this subsection by stating a lemma [5, Lemma 2.4] which will be useful

in establishing Theorem 5.4.1.

Lemma 5.2.3. For a sequence (a;(n))n>—n, of complex numbers, let

n=-—ng

If a(n) = OV for some C' > 0, then the above series defining f(z) converges
absolutely and uniformly on any compact subset of H and hence f(z) is holomorphic
on H. Moreover, f(z) — P(z) = O (e7?™) as y — oo and f(z) = O(e/Y) as y — 0

uniformly on Re(z), where P(z) = % a(—n)e ?™"% qnd some € > 0.
n=0

Proof. Let z = x +iy. We have

oo ) m—1 00
Z |a<n)||€27rzz| < Z 60 \n|627r\n\y + Z GC\/ﬁe—any, (52)
n=-—ngo n=-—ng n=m

where m is a sufficiently large positive integer. Now on any compact subset of H, we

get
Z OV —2mny < Z eL(P\/E—")7 (53)

n=m n=m
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where L is a positive constant and p is a positive integer. Therefore from (5.2) and
(5.3), we get that f(z) is convergent absolutely and uniformly on any compact subset

of H. Similarly we obtain that f(z) — P(z) is bounded when y — co. Now put

o0

9(z) = > aln+1)e™.

n=0

Then ¢g(z) is also bounded as y — oco. Therefore we obtain
f(2) = P(2) = e*™*g(2) = O(e *™) as y — o<.

Now from (5.2), we get

fls S oV . 5 (Oigm
"t "
< S OVl | S o2
o /Il 2rlnl 3‘7
< n;no e e?rinly o
Since 1/y < e'/¥ as y — 0, we get f(z) = O(e/?) as y — 0 for some ¢ > 0. 0

5.2.2 Nearly weakly holomorphic modular forms

In this subsection, we briefly review some results on nearly weakly holomorphic
modular forms and their relation with weakly holomorphic quasimodular forms. If
F e Mal;’!(N, X), then we write
F(z)= > fi(2)(2iy)~
0<j<p
for some holomorphic functions f; on H which satisfy condition (2) of Definition
1.3.2. We have the following result which provides a relation between nearly weakly
holomorphic modular forms and weakly holomorphic quasimodular forms. The proof
of this result is similar to the proof of Proposition 4.2.7. Therefore we omit the proof

here.
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5 Converse theorem for weakly holomorphic quasimodular forms

Proposition 5.2.4. Let fo, fi,..., fp be holomorphic functions on H satisfying con-
dition (2) of Definition 1.3.2. Define the function F : H — C by
Z fi(2)(2iy)~
0<j<p

Then the following two statements are equivalent.
(1) The function F € M,ﬁg’!(N, X)-
(2) The function fo € M,gr;l’!(N, X) with components fo, fi,..., fp.

As in the case of quasimodular forms, the image of a weakly holomorphic quasi-
modular form of level N under the usual Fricke involution operator Wy is not a
weakly holomorphic quasimodular form. We use the same method of Chapter 4 to
define the operator Wy appropriately with the help of Proposition 5.2.4 to overcome
this difficulty. Let

= Y ful2)(2iy)™™ € MP(N, X).

0<m<p

For any v = (%) € GL3 (Q), we have

0<l<p \l<m<p

Flyy= Y ( > ( €>(dew)’“/2 " fn(72)3 (7, )m““”“(—C)me) (2iy) .

In particular, for v = Wy := (5 '), we have
FliWy = > fi(2)(2iy) ™, (5.4)
0<t<p

where

fl) =% (’Z) (1) NH () (N2 (5.5)

£<m<p

By the transformation property of F' with respect to the group I'o(V) and (5.5), we

get the following [5, Lemma 2.8].
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Lemma 5.2.5. If ' € My (N,x) then F|yWy € M (N,X).

In the view of Proposition 5.2.4 and Lemma 5.2.5, we define the operator Wy on

weakly holomorphic quasimodular forms of level N, which serves our purpose.

Definition 5.2.6. Let f € M,?;l’!(N, X) with components fo, f1,...,f, and let f=
(fo, frs---, [p). Then the action of Wy on the weakly holomorphic quasimodular form
f is defined by

- o~

FleWn = (fo, froo - fo),
where

R = X (e (<) osesn 69

1<j<p Nz

Proposition 5.2.7. If f = (fo, f1, .- - fp) € Ml?;l’!(N? x) then fliWx = (fo, fi, . o) €
M,??’!(N, X), where fo is defined by (5.6). Moreover, for 0 < ¢ < p, we have

B = ¥ (e (<) 6

L<j<p

and ﬂkWN|kWN = (—1)kf

Proof. Since each component of f satisfies condition (2) of Definition 1.3.2, from (5.6)
it is clear that each component of f|Wy also satisfies condition (2) of Definition
1.3.2. By Proposition 5.2.4, we get that the function F/(z) 1= <<, f;(2)(2iy) 7 €
M,QI;’I(N, X). Now by Lemma 5.2.5 and again Proposition 5.2.4, we see that f = % €
M,?f;’!(N, X) with components }”E, E, R E. Remaining part of the proof is similar to

the proof of Proposition 4.2.10. O
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5.3 L-series associated to weakly holomorphic quasi-
modular forms

Let C(R,C) be the space of piecewise smooth complex-valued functions on R. The

Laplace transform of a piecewise smooth complex-valued function ¢ on R is given by

(Lo)(s) = [ oty (5.8)

for each s € C for which the integral converges absolutely. Let f be a function on H
which is given by an absolutely convergent series
flz)= > aln)q". (5.9)
n=-—ng
Let F be the space of functions ¢ € C(RR, C) such that the integral defining (Lp)(s)

and the series
o0

> la(m)[(£L]el) (2mn) (5.10)

n=-—ng

converge.

Definition 5.3.1. Let f be a function on H given by the series expansion as in (5.9).
The L-series of f is defined to be the map Ly: Fy — C such that for each ¢ € Fy,

Li(p) = i a(n) (L) (2mn). (5.11)

Lemma 5.3.2. Let f be a function on H given by the series expansion as in (5.9).

For any ¢ € Fy, the L-series Ly(p) is given by

Lilg) = [~ st (5.12)

Proof. By Definition 5.3.1, for ¢ € Fy,

o0

Li(p) = > a(n)(Le)(2mn) (5.13)

n=—no

79



5 Converse theorem for weakly holomorphic quasimodular forms

and this series converges absolutely. Now by (5.8), we have

(L) (27n) = /0 T et o) dt. (5.14)

By using the above expression in (5.13), we get
Lip)= 3 /0 a(n)e= o (t)dt. (5.15)
n=-—ng
Since ¢ € Fy, we can interchange the order of summation and integration and we get

the result. O

Our goal in the remainder of this section is to obtain a functional equation for the
L-series L¢(p), where f € M,?f;;’!(N, x). Let fo, f1,..., f, be the component functions
of f. Then by Theorem 5.2.2, we have that for each 0 < j < p, f; has a Fourier

expansion of the form
o

fitz) = > a;j(n)g" (5.16)

n=-—ng

The L-series of each f; is defined to be the map Ly, : Fy, — C such that, for ¢ € Fy,,

Li(e)= Y ay(n)(Lp)(2mnn). (5.17)
By Lemma 5.3.2, we have
Ly(o) = [ Hng(r (5.18)

Let D be a positive integer. For a Dirichlet character v» modulo D, the twisted

function f; is defined by

o0}

e :=;w<w(fj|mw) (2) = > 7(n)a(n)q", (5.19)

n=-—ng

where T" = ( } 1) for any real number r and 7,,(n) = S, 1(u)e?™ 5 | the generalized

Gauss sum. Then for each p € Fy, , the L-series associated to f;, is given by
oo

Ly, (0) = > my(n)aj(n)(Le)(2mn). (5.20)

n=-—ng
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By Lemma 5.3.2, we have
Ly () = [ fulitye(t)d. (5.21)

Let the twist of f = (fo, fi,..., f,) by the character ¢ be fi = (fouss frw-- - fous) -

Let F' be the function which is a polynomial in 1/y associated to (fo, fi..., f,) asin
Proposition 5.2.4. Then the twist of I’ by the character v is defined by
= Y fu(2)(2y)” (5.22)
0<(<p
Proposition 5.3.3. Let f and g be two quasimodular forms of weight k, depth p, level
N with characters x and X and components fo, ..., f, and go, ..., g, respectively. Let
¥ be a Dirichlet character modulo D with (D, N) = 1. If ﬂkWN = ¢, then we have

FoliWape = X(D)(=N)gs. (5.23)
Proof. Let
= Y fi(2)2iy)™" and G(2) = > q(2)(2iy)” (5.24)
0</<p 0<t<p

Since f]kVT/N = ¢, we have F|;Wy = G. Now

D
Fy= > fruRiy)™" = > (Z@D (fz|k—2eT“/D>> 2iy) " =D U( (FIkT“/D).
0<4<p 0<t<p \u=1 u=1
(5.25)
Similarly, we have
D
Go=Y guy(2iy)” Z u) (GxT"/P) . (5.26)

0</<p
For any integer u with (u, D) = 1, let n and v be integers such that nD — Nuv = 1.
Observe that

. D 0 D v\
TPWyp: = (O D) Wy (_uN n”)T/D. (5.27)
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Therefore we have

u D —v v
FliTYPWype = G (_uN R ) /0.

Since G is a nearly weakly holomorphic modular form of weight k, depth p, level N

and character y, we have
Fl,TYPWype = x(n)G TP = x(D)G|, T"/P. (5.28)

By (5.25) and (5.28), we have
D
FyliWipz = X(D)Y(=N) 3 $()GRT*P = x(D)y(=N)Gy.
v=1

Therefore Fy|pWyp2 = x(D)y(—N)Gy and hence we conclude that ﬁ”kWNDz =

X(D)p(=N)g- O

For each a € Z, N € N and ¢: R, — C, we define

(PlaWi) () = (Nz) "% (Nla) for all = > 0. (5.29)

Since this action applies to functions on R and the action (1.2) to complex functions,
the use of the same notation should not cause a confusion but some caution is advised.

We also define a set of “test functions" we will be using in most of the remaining
results. Let S.(R.) be a set of complex-valued, compactly supported and piecewise
smooth functions on R, which satisfy the following condition: for any ¢ € R, , there
exists ¢ € S.(R;) such that p(t) # 0. We are ready to prove the following result
[5, Theorem 1.1] which gives functional equations for the L-function L;(¢) and its

twists.

Theorem 5.3.4. Let f be a weakly holomorphic quasimodular form of weight k,

depth p, level N and character x with component functions fo, fi1, ..., f, and let ¢ be
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a Dirichlet character modulo D with (D, N) = 1. Also let the tuple f = (fo, ..., f»)
satisfy ﬂkWA/J/\; = ¢, where § = (go,...,9p). For each j € {0,1,...,p}, consider the

map Ly, , + Fy,, — C given in (5.20). Set

p

p—J
Fro=1{11 {Qp €Fp ¢ Pla-th-m-2)Wn € fgj+m}'

7=0m=0

Then Fg, # {0} and for any ¢ € Fy, and j € {0,1,...,p}, we have

J+m
m

Ly () = x(D)Y(—=N) [g @'k2jm(ND2)1+mk—22j<

m=0

) LQHWZ (<P|2—(k—m—2j)WND2 )

Proof. Let ¢ € S.(Ry), with Supp(y) C (c1,c2), where ¢; and ¢ are positive real

numbers satisfying ¢; < ¢y, then for all z > 0, we get

L(eD)(@) = [ lp(t)le "t ey €7 (5.:30)

Cc1

Now by (5.1), we deduce that the series

[e.e]

> la;(m)I(Llgl) (27n) (5.31)

n=-—ng

is convergent for all 0 < j < p. Therefore S.(R;) C Fy, for all 0 < j < p. Since
Sc(Ry) is closed under the action of Wy, we have S.(R;) C Fy,. We further note
that if ¢ € Fy,, then ¢ € Fy,  for all 4. This follows from (5.20) and the boundedness
of m(n).

Now we obtain the functional equations for Ly,  (¢). From (5.21), we get

Li(@) = [ Fuliip(t)d. (5.82)

in the above equation, we obtain

By changing the variable from t to s

- ; 1
L. :/ | ( ) ( ) N D212t
@)= | Fiv \§pz ) 2 \ 5o ) (VDY)

Using Proposition 5.3.3, we obtain

Ly, (¢) = X(DY$(~N) (m) (-1 (N D?)

k=2
2

L ymetjtk

. 1 dt
Bit)e (ND%) ND2g2tmij

X
o\
3
Q
3
<
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5 Converse theorem for weakly holomorphic quasimodular forms

Simplifying the right hand side of the above identity, we obtain

ij,w(SD):X(D)w(—N) Z <m>(—1)mj(ND2)mH§Z‘m+j+k

Jj<m<p J (533)
el y 1 dt
<, gmilithe (ND?t) (ND2gy2emsik’
Using (5.29) in (5.33), we obtain
m m—j m+1—E£ m+j
Lyl = X(D(-N) 5 () ppyne s
j<m<p \J
X |7 G 1)@y 1 Wipe) (1)t
m -J m+1—E£ m+j
DN X (M)
j<m<p \J
XLg,n’E(90|2+m+j—kWND2)'
Rearranging the terms, we get
M+ 7\ pem_2i ] k=2
Ly (9) = X(D)(-N) 3 ( | ) UNDY L, (plaemia i Wive).
0<m<p—j \ J ’
]
For any s € C, we define
ws() = ()" . (5.34)

Note that @1 = ¢. We have the following result [5, Theorem 1.2].

Theorem 5.3.5. Let f be a weakly holomorphic quasimodular form of weight k,
depth p, level N and character x with component functions fo, f1,..., fp,. Set g :=
(90,91,---,9p) and § = ﬂkWN Let ng be a natural number such that f(z) and g(z)
are O(e*™Y) as y = Im(z) — oo. Suppose that p € C(R,C) is a non-zero function
such that, for some € > 0, p(z) and (1) are o(e~2"("F9?) g5 1 — co. We further

assume that for each j € {0,1,--- | p}, the series

o0

> lay(m)] ((Llel*)(2mn))

n=-—ng

NI

(5.35)
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converges. Then for each j € {0,1,---  p}, the series

L<37 f]’?@) = ij(QDS) (5'36)

converges absolutely for Re(s) > %, has an analytic continuation to all s € C and

satisfies the functional equation

.m+27 m(]+m .
L(s, fjp) = > "N (‘7 )L(l =M =2 = 8, gmjs PlikWn). (5.37)

0<m<p-j m
Proof. By following in a similar way as in the proof of [12, Theorem 4.6, pp. 18],
we get that o, € Fy, for Re(s) > % and 0 < 7 < p. Therefore recalling the integral

representation of Ly, (¢s) = L(s, fj, ) in (5.18), we have

Lis i) = [ £ (it) et

With the change of variable ¢ — 1/Nt, we obtain

L(s, fj,¢) = /\;;1 fj(it)gp(t)tscf + i ( > <]\17t> (Nt)_sait'

Since f|,W = 7, using (5.7) we obtain

P S
j<i<p (5.38)
></oo (t) ( 1 )tk I—j— sdt
i .
v Nt t
Recall that
1
—) = t)(Nt)*
o (77) = ) (VD)
for any a € Z. With a =1 — k, we get, for Re(s) > 1,
> . At l I—j 722520k g,
Lis,fr0) = [ filietr T+ 3 () (-1 N
N Y (5.39)

0 - dt
it) (W)t 77—
oo it) (plWi) #7978

85



5 Converse theorem for weakly holomorphic quasimodular forms

Similarly for Re(s) > v + 1, we deduce that

> 2—2j—2s—k
L(s, g;, ) Z/\/ﬁ1 g;(it)e —+ ) ( ) 1) N ek
(5.40)

I<i<p

© ot
< [ ) (o) £

From (5.39), we see that L(s, f;, ) has analytic continuation to all s € C.

Now we establish the claimed functional equation. From (5.40) we obtain

o0 dt 2—2j—2s—k oo . __,_Sdt

L(s.g5.0) = [ ai)p(ir T+ N i) (el 071
l . 2-2j-2s5—k . o0 . dt

+ (=1 Z‘JNf@'“”‘k/ L Ailit) (@l W) #7177 =

2 (e B (oot it

(5.41)

Using (5.7), we observe that for each 1 <[ < p, we have

Hon (7).

=3 (77)( 1"

I<m<p

Using the above identity in (5.41), we obtain
00 dt 2 2; 25—k [OO . 77.7Sdt
L(s, g, ) _/ g (i)t — : +i¥TEN /\/N‘l filit) (ph—eWy) #1717 7

+ D <l~>(—1)l_jN22j225kz'”j"“

jri<i<p \J
/ > ( ) g (2> (lekWN)th*j*k*Sﬂ-
P Nt t

Interchanging the summations in the last integral of the right-hand side of the above
identity, using the combinatorial identity (jl) (Tl”) = (’;‘) (";L:g) and changing the vari-
able t — 1/Nt, we obtain

o o dt
) (W) 1

2] —k

o0 _ dt .
L(s, g;,¢) :/ml g;(it)p(t)t"— ; 42k Ny

+ih > (—1)mﬂ'<m>z’m“+’“ > (m:§>i2l/0\/ﬁlgm(z’t)np(t)tsﬂmcit.

j+1<m<p J j+1<i<m \™
(5.42)
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Using (4.13) in (5.42), we obtain

2] —k

o0 dt 2— 00 , i gdt
L(s,g5:0) = [ i)p(Ot S+ N [ i) (el 07

. N ot
— N <m> (—1)m—dgmeith / g (i) (£ —.
0

j+1<m<p \J

(5.43)
Similar to the expression we have got for L(s, g;, ) in (5.41), we obtain the following

expression for L(s, f;, ¢):

dt

o0 . Jdt 0 . g
L(S7 fj: (10) = /\/—_1 fJ(Zt)SD(t)t 7 + 2J+kN /\/N_l gj(Zt) ((PylkaN) tl % ?
dt

m 2— 2] o .
3 NI s [T (i) (W) £
+ <j>( ) a9 (it) (l1-xWn)

J+1<m<p t

(5.44)

22]2.sk

Now from (5.43) and (5.44), we obtain

25—k

94 2-2j— .
L(S7 fjv (20)_12]—”6]\7 2 L(l - 2] — 5,95, spll—k:WN)

= X (m) (1IN [T g (i) (ol W) <t>t1-m-j-“f

j+1<m<p \J
m i i 2-2j—2s—k .
= Z <]>(_1)m 71 +]+kN 2 L<1_m_.]_8)gm790|1—kWN)
J+1<m<p

Rearranging the terms we get

-m+2j m(]+m .
L fg) = 3 N(" )L(l—m—zy—s,gmﬂ,soh_kwm.

0<m<p—j m

5.4 Converse theorem

In this section, we obtain the converse of Theorem 5.3.4. The theorem is as follows

[5, Theorem 1.3].

Theorem 5.4.1. Let k,p and N be integers with p > 0, N > 1 and x let be a

Dirichlet character modulo N. For each integer 0 < j < p, let (a;(n))p>—n, and
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(b;(n))n>—n, for some integer ng, be a pair of sequence of complex numbers such that
a;j(n) = OV and b;(n) = O(e“VI") for some C > 0. Put

HEH =S g, gE= 3 b, 0<j<p.

n=-—ng n=—no

For any ¢ € S.(R,) and any Dirichlet character ) modulo D with D € {1,2,... N*—

1} and (D, N) =1, we assume that

Ly, (¢) = x(DYW(=N) Y i*=2-m(ND?)itm=r5" <j + m)

0<m<p—j m

(5.45)

XLy, (@loe—m—2j) WND2)-
Then the function fo(2) is a weakly holomorphic quasimodular form of weight k, depth

p, level N and characters x with component functions fy, fi,..., fp, and ﬂkWN =gq:=

(90, 91, - - -, gp), where f:: (fo, fi,- s fo)-

Proof. By using Lemma 5.2.3, we see that fo, fi,---, f, and go, g1, - - , gp define holo-
morphic functions on H and all satisfy the condition (2) of Definition 1.3.2. Likewise,

for any Dirichlet character v» modulo D, recall that, for 0 < 7 < p, by definition

fiw(2) = > ma(n)a;(n)q", (5.46)
n=-—ng
gi(2) = D 73(n)bi(n)q" (5.47)
n=-—ng
are absolutely convergent. Our aim is to show that for each j =0,1,--- ,p, we have

() = XDWEN* T (’f) () DR (N DRt ().
(5.48)
Since both sides of (5.48) are holomorphic functions, it suffices to show the equality
(5.48) on the vertical line z = it,t > 0. Note that for any s € C and ¢ € S.(R),
ps(t) = t°71p(t) € S.(Ry). We first show that ¢, satisfies (5.10) for f;, and g,

p
Jj=0,1,---,pand hence belongs to N (Fy, ,NFy, ). Indeed, since ¢ € S.(R,), there
j=0 ‘
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exist real numbers ¢; and ¢ with 0 < ¢; < ¢ and C' > 0 such that Supp(p) C [c1, co]

and |p(t)| < C for any t > 0. Then for n > 0,

= ot A1
a;(m)] (Ll ) (2mn) < Clay(m)] [~ #reem2mm
< Claj(n)|e” 2™ (cy — )max{cRe(S) ,c§e(5)‘1}.
Thus
> Imsmlla;(n)I(Lles))(2mn) < Z n)lla;(n)[(£L]es])(2mn)
+ C(cz — ) max{c*®! ! Z [75(n)|a;(n)]e > < oo (5.49)

for any s € C and any Dirichlet character ¢y modulo D. Similarly, for any s € C and

any Dirichlet character v» modulo D, we obtain
1b; ()| (L]gs]) (2mn) < Claj(n)]e2™ ¢y — er) max{c™ ™ 7*@ (5.50)

and
00 0

> [mamlla(m)(Llea)(2mn) < 3 [rg(n)lla;(n)|(£les]) (2mn)

n=-—ng n=—no

+ Oy — ¢1) max{cie@ =t Helo—1y Z 75(n)|la;(n)|e ™™ < co. (5.51)

P
Thus ¢, € jDO(Fij » N Fy,,) and by Weierstrass theorem, we see that for each
7=0,1,---,p, as functions of s, wa(gos) and Ly, (ps) are analytic functions. Then,

by inverse Mellin transform, we get

fialiho®) = 5= [ Ly (o)t ds (5.5

Re(s)=0c

for all o € R.
Now we will show that Ly, () — 0 as |Im(s)| — oo, uniformly for Re(s), in any

compact set in C. Indeed, from (5.18), we obtain

o0 d
Lol = [ fiuliyor S
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Using integration by parts and the fact that ¢(¢) vanishes in (0, €)U(1/¢, 00) for some

€ > (0, we obtain

Lo == [ S(fulien)rdr

Then
tRe®dt — 0 (5.53)

Lact0| < o [ (otineto)

as | Im(s)| = oo.
We can therefore move the line of integration in (5.52) from Re(s) = o to Re(s) = ¢.

Thus we have

: 1 s
fiwlit)ot) = 5= [ Ly (et ds (5.54)
Re(s)=d

Applying the functional equation (5.45) in (5.54), we obtain

Fiw(it)o(t) = x(D)Y(=N) Y (

0<m<p—j

k—2j

m + j) Fom=2i(y p2ymi- i

J
1 —S
X o / Lgmﬂ.@(%|2+m+2j—kWND2)t ds.

Re(s)=4¢
(5.55)

Changing the variable from s to kK —m — 2j — s in the above integral, we get

. M+ 7\ pm_oi 1 k=20
fiulit)o(t) = (D)e(-N) 3 ( | ) 23 (N D2y
0<m<p—j \ J
1 tin
X % / Lgmﬂﬂ(@kfmf%fs’2+m+2jkaND2)ts ot +2]d$.
Re(s)=k—m—2j—§
(5.56)
Now for each t > 0, we have
; 1
(Ph-m-2j-sl24mi2j—Wap2)(t) = (ND* )220 o < 3 )

ND*/ (5.57)

1
= (ND*)*! ( ) :
By (5.57) , we obtain

(Ph—m—2j—sl2+m+2j—kWnD2) :/o gm.;.j@(it)(spk—m—?j—s|2+m+2j—kWND2)(t)dt

oo 1
. (s 25 \s—1
= /0 Iz (ND*)* (NDQt) dt.

ngrj@

(5.58)
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Changing the variable from ¢ to 1/N D?t in the above integral, we obtain

1 o 1 —s5—1
Lgmﬂﬂ(@kfmf%fs’2+m+2jkaND2> = W/o Im+j <_2ND2t) p(t)t dt.

(5.59)
Now by the inverse Mellin transform, we have
1 ~1 1 .
N2 Im+i <,L]\]'l)2t> p(t) = o / Lgmﬂ.@(%pk‘—m—%’—s 2+m+2j—kWnp2)t*ds.
Re(s)=k—m—2j-9
(5.60)
Using (5.60) in (5.56), we obtain
Fiw(it)p(t) = X(D)¢(=N) > (m o )z"””j (ND2yn="3 g2k
0<m<p—j \ J (5.61)

—1
Gty (z’ND%) ()
Therefore if ¢ € Ry such that ¢(t) # 0, then from the above identity, we have

. M+ 7\ km—2; 2\m—EZ2  m4 25—k ( —1 )
o (1t) = x(D)Y(—N E J(ND T — .
Fiw(it) = x (D) ( ) 02 ( j ) t ( ) 2 Im+jp iN D2t

(5.62)

Now from the definition of S.(R), for each ¢t € R, there exists ¢ € S.(R) such that

©(t) # 0. Thus (5.62) is true for all t € R,. Therefore we get

k—2j

- 1
m 2\m— m+2j—k
)(_1) (ND) 5 Mt Iomii <_ND22>
(5.63)

m+j

Fiu() = X(D)o(=N)i 3 ( ]

0<m<p—j
Rearranging the terms, we obtain

fi(z) = X(DY(=N)* 37 (”7)(—1)mf<ND2)’f/2m(ND2z>m+ﬂ"fgmw< ! ).

j<m<p \J - ND?z
(5.64)
By Proposition 5.2.7, we have
Fiw = X(DYY(=N)(F;.516 Wy p2)- (5.65)
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5 Converse theorem for weakly holomorphic quasimodular forms

Let

= Y fiu(2)2iy)™" and Gy(2) = Y gey(2)(2iy) " (5.66)

0<t<p 0<t<p

Then by (5.65), we get
Fy = X(D)(=N)GgleWype. (5.67)

By (5.26), we have
w) G TP, (5.68)

||Mb

For any integer u with (u, D) = 1, let n and v be integers such that nD — Nuv = 1.

Observe that

_ 1/D 0 _ D —v
w/D 1 1 v/D
TYPWLL, ( ; 1/D> Wi (_uN - ) /P, (5.69)

Therefore using the identity F = G|,Wx"' (deduced by applying (5.67) with D = 1),

we have
G u/D D —v v/D
kT’ Wil ND2 = F|k “uN n T~ (5.70)
Hence
D —v v/D

Now from (5.67) and (5.71), we obtain

u=1 n
= x(D) iw(v)mk < b ”’) /P, (5.72)
= —ulN n
By (5.25), we have
D
Fy =Y ¢)F, TP, (5.73)

Now from (5.72) and (5.73), we obtain
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5 Converse theorem for weakly holomorphic quasimodular forms

D D
v D —v v
S U@)FTYP = x(D) Y- d(v)Flj ( N ) TP (5.74)
v=1 v=1 —u n
By the orthogonality of the multiplicative characters, after taking the sum over all

characters modulo D, we deduce that, for each integer v and v such that —Nuv =

1(mod D), we have

D —v
Pk Dy ). (5.75)
which implies
n v
Fli (uN D) — \(D)F. (5.76)

For each positive m, let t, s be any integers satisfying the condition that (th g) €
[o(N). For each congruence class modulo mN, let S, be the set consisting of exactly

t S .
one of these <m N D)' By [28, Proposition 3|, we know that the set

Qsofs(s )

generates I'g(IV). Therefore from (5.76), we obtain
Fliy = x(D)F (5.78)

for all v € T'o(N). Therefore F is a nearly weakly holomorphic modular form of
weight k, depth p, level N and character y. Now by Proposition 5.2.4, we get that
the function fy(z) is a weakly holomorphic quasimodular form of weight k, depth p,
level N and characters x with component functions fy, f1,..., f,- By using (5.65)
with D =1, we get ﬂkWN =g. O
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