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ABSTRACT

In this thesis, we discuss four problems in the theory of modular forms. The
first problem deals with the various properties of nearly holomorphic Poincaré series,
such as the Fourier expansions, the holomorphic projections, etc. We also obtain
some limiting properties of certain Fourier coe�cients involving nearly holomorphic
Poincaré series.

The second problem is about computing the adjoints of higher order Serre deriva-
tive maps. We give a formula for the adjoints of the higher order Serre derivative
maps with respect to the Petersson inner product in terms of special values of certain
shifted Dirichlet series attached to modular forms. As an application, we obtain some
identities involving Fourier coe�cients of some specific cusp forms and special values
of certain shifted Dirichlet series.

The third problem is on the analytic properties of L-series associated to quasi-
modular forms. We obtain an analogue of Weil’s converse theorem for quasimodular
forms.

In the fourth problem, we define L-series associated to weakly holomorphic quasi-
modular forms of level N and study the analytic properties of these L-series twisted
by Dirichlet characters. We also establish a converse theorem for weakly holomor-
phic quasimodular forms which is an analogue of Weil’s converse theorem for weakly
holomorphic quasimodular forms.
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Summary

We discuss various properties of nearly holomorphic Poincaré series, such as the

Fourier expansions, the holomorphic projections, etc. We also obtain some limit-

ing properties of certain Fourier coe�cients involving nearly holomorphic Poincaré

series. We obtain adjoint maps of higher order Serre derivative maps. As an appli-

cation, we obtain some identities involving Fourier coe�cients of some specific cusp

forms and special values of certain shifted Dirichlet series.

We study analytic properties of L-series associated to quasimodular forms. We

also obtain a converse theorem for quasimodular forms. We discuss L-series associated

to weakly holomorphic quasimodular forms and prove a converse theorem for weakly

holomorphic quasimodular forms.
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Notations
We denote by N,Z,Q,R, and C respectively the sets of natural numbers, integers,

rational numbers, real numbers and complex numbers. We denote by R+ the set of

all positive real numbers. We denote by H the complex upper half-plane. For a, b œ Z

we write a|b if b is divisible by a. For a, b œ Z, the notation a (mod b) means that a

varies over a complete set of residue classes modulo b and the symbol (a, b) denotes

the greatest common divisor of a and b. For z œ C, we denote by Re(z) the real part

of z and by Im(z) the imaginary part of z. We use e(z) = e
2fiiz with i =

Ô
≠1. We

also use q := e
2fiiz. For a square matrix “, we write det(“) and tr(“) respectively for

the determinant and the trace of the matrix “ respectively. We denote by C
Œ(H) the

set of all real analytic functions on H.
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Chapter 1

Preliminaries

In this chapter we introduce basic definitions and some basic results of di�erent

automorphic forms.

1.1 Modular forms

The group

GL
+
2 (Q) :=

IA
a b

c d

B

|a, b, c, d œ Q, ad ≠ bc > 0
J

acts on the complex upper half-plane H = {z œ C| Im(z) > 0}, by the fractional linear

transformation as follows. For any “ =
A

a b

c d

B

œ GL
+
2 (Q) and z œ H, the action of

“ on z is defined by

“z := az + b

cz + d
. (1.1)

For any integer k and “ =
A

a b

c d

B

œ GL
+
2 (Q), the slash operator on a function

f : H æ C is defined by

(f |k“) (z) := (det(“))k/2(cz + d)≠k
f(“z). (1.2)

The full modular group SL2(Z) is defined by

SL2(Z) :=
IA

a b

c d

B

|a, b, c, d œ Z, ad ≠ bc = 1
J

.

3



1 Preliminaries

For a positive integer N , we define

�0(N) :=
IA

a b

c d

B

œ SL2(Z)|c © 0 (mod N)
J

.

Definition 1.1.1 (Modular form). Let k and N be positive integers. Let ‰ be a

Dirichlet character modulo N satisfying ‰(≠1) = (≠1)k. A modular form of weight

k, level N and character ‰ is a holomorphic function f : H æ C such that

(1) for all “ =
A

a b

c d

B

œ �0(N),

f |k“ = ‰(d)f ;

(2) for all “ œ SL2(Z),

f |k“(z) =
Œÿ

n=0
a“(n)qn/h

,

where h|N .

Moreover, if the constant terms a“(0) are zero for all “ œ SL2(Z), then f is said to be

a cusp form. We denote the space of all modular forms and the subspace of all cusp

forms of weight k, level N and character ‰ respectively, by Mk(N, ‰) and Sk(N, ‰).

We simply write Mk and Sk if N = 1 and ‰ is trivial. The followings are some basic

examples of modular forms on SL2(Z).

Example 1.1.2. Let k be an even integer greater than 2. The normalized Eisenstein

series Ek of weight k on SL2(Z) is defined by

Ek(z) := 1
2

ÿ

(m,n)œZ
2\(0,0)

(m,n)=1

1
(mz + n)k

.

It is well known that Ek is a modular form of weight k on SL2(Z) with Fourier

expansion given by

Ek(z) = 1 ≠ 2k

Bk

Œÿ

n=1
‡k≠1(n)qn

, (1.3)

4



1 Preliminaries

where ‡k≠1(n) = q
d|n d

k≠1 and Bk’s are the Bernoulli numbers defined by

x

ex ≠ 1 =
Œÿ

k=0
Bk

x
k

k! .

Remark 1.1.3. If k = 2, the Eisenstein series E2 is given by

E2(z) = 1 ≠ 24
Œÿ

n=1
‡1(n)qn

. (1.4)

It is well known that E2 is not a modular form. It satisfies the transformation property

(cz + d)≠2
E2

A
az + b

cz + d

B

= E2(z) + 6
fii

c

cz + d
(1.5)

for all
A

a b

c d

B

œ SL2(Z) and z œ H.

Example 1.1.4. The Ramanujan delta function is defined by

�(z) := 1
1728(E4(z)3 ≠ E6(z)2).

It is a cusp form of weight 12 on SL2(Z) with Fourier expansion

�(z) := q

ŒŸ

n=1
(1 ≠ q

n)24 =
Œÿ

n=1
·(n)qn

,

where ·(n) is the Ramanujan tau function.

Definition 1.1.5 (Weakly holomorphic modular form). Let k be an integer and

let N be a positive integer. Let ‰ be a Dirichlet character modulo N satisfying ‰(≠1) =

(≠1)k. A weakly holomorphic modular form of weight k, level N and character ‰ is

a holomorphic function f : H æ C such that

(1) for all “ =
A

a b

c d

B

œ �0(N),

f |k“ = ‰(d)f ;

5



1 Preliminaries

(2) for all “ œ SL2(Z),

f |k“(z) =
Œÿ

nØ≠n0

a“(n)qn/h

for some n0 œ N and h|N .

Moreover, if a“(0) are zero for all “ œ SL2(Z), then f is said to be a weakly holomor-

phic cusp form. We denote the space of all weakly holomorphic modular forms and

the subspace of all weakly holomorphic cusp forms of weight k, level N and charac-

ter ‰ respectively, by M
!
k(N, ‰) and S

!
k(N, ‰). For a positive integer N , the Fricke

involution WN is defined by

WN =
A

0 ≠1
N 0

B

.

The following result is well known [23, Lemma 4.3.2 ].

Lemma 1.1.6. If f œ Mk(N, ‰), then f |kWN œ Mk(N, ‰) and if f œ Sk(N, ‰), then

f |kWN œ Sk(N, ‰).

Definition 1.1.7 (Petersson inner product). Let f, g œ Mk(N, ‰) be such that at

least one of them is a cusp form. Writing z = x + iy, the Petersson inner product of

f and g is defined by

Èf, gÍ := 1
µ�

⁄

�0(N)\H

f(z)g(z)yk dxdy

y2 , (1.6)

where �0(N) \ H is a fundamental domain, dxdy
y2 is a invariant measure under the

action of SL2(Z) on H and µ� denotes the index of �0(N) in SL2(Z).

It is well-known that Sk(N, ‰) is a finite-dimensional Hilbert space with respect to

the Petersson inner product. The following familiar result tells about the growth of

the Fourier coe�cients of a modular form. The first statement can be easily obtained

[10, Theorem 9.2.1] and the second is due to P. Deligne [11].

Proposition 1.1.8. If f =
Œq

n=1
a(n)qn œ Mk(N, ‰), then for any ‘ > 0, we have

a(n) π n
k≠1+‘. If f œ Sk(N, ‰), then a(n) π n

k≠1
2 +‘.

6



1 Preliminaries

1.1.1 Hecke operators

For any positive integer n, let

Xn =
IA

a b

0 d

B

| a, b, d œ ZØ0, ad = n, 0 Æ b < d

J

.

Definition 1.1.9. For a positive integer k, the n-th Hecke operator Tn on a function

f : H æ C is defined by

Tnf = n
k
2 ≠1 ÿ

flœXn

f |kfl.

The above expression means that for any function f : H æ C, we have

(Tnf)(z) = n
k
2 ≠1 ÿ

ad=n

ÿ

b mod d

f |k
A

a b

0 d

B

= 1
n

ÿ

ad=n

a
k

ÿ

0ÆbÆd

f

A
az + b

d

B

(1.7)

The following result is well known [10, Proposition 10.2.3].

Theorem 1.1.10. Let n be a positive integer. If f œ Mk, then Tnf œ Mk. Also if

f œ Sk, then Tnf œ Sk.

1.1.2 Poincaré series

Beside Eisenstein series, a very important class of modular forms is constructed via

the method of averaging. For any non-negative integer m, the m-th Poincaré series

of weight k on SL2(Z) is defined by

Pm,k(z) =
ÿ

“œ�Œ\SL2(Z)
e(mz)|k“, (1.8)

where �Œ =
I

±
A

1 n

0 1

B

: n œ Z

J

is the stabilizer of the cusp Œ for the action of

SL2(Z) on H. It is well known that for k Ø 4, the series in (1.8) converges absolutely

and uniformly on any compact subset of H and it is a modular form of weight k on

SL2(Z). In particular, for m = 0, P0,k(z) = Ek(z). Also, for m Ø 1, Pm,k(z) is a

7



1 Preliminaries

cusp form of weight k on SL2(Z). To state the Fourier series expansion of Poincaré

series, we need the definitions of Kloosterman sum and J-Bessel function. For integers

n, m, c, the Kloosterman sum is given by

K(n, m; c) =
ÿ

r mod c
(r,c)=1

e
2fii(nr+mr≠1)/c

, (1.9)

where r
≠1 denotes the inverse of r modulo c and for a non-negative integer ¸ and a

real number x, the J-Bessel function of index ¸ is given by

J¸(x) =
Œÿ

n=0

(≠1)n(x
2 )2n+¸

n!(¸ + n)! . (1.10)

We have the following theorem [10, Theorem 8.4.5.].

Theorem 1.1.11. For any integer m Ø 1, the Fourier expansion of Pm,k is given by,

Pm,k(z) =
Œÿ

n=1
am,k(n)qn

,

where

am,k(n) = ”n,m + (≠1) k
2 2fi

3
n

m

4 k≠1
2 Œÿ

c=1

K(n, m; c)
c

Jk≠1

A
4
Ô

nm

c

B

(1.11)

and ”n,m is the Kronecker symbol.

The following theorem [10, Theorem 8.2.3.] is an important property of Poincaré

series.

Theorem 1.1.12. If f(z) =
Œq

n=1
a(n)qn œ Sk, then for any integer m Ø 1, we have

Èf, Pm,kÍ = �(k ≠ 1)
(4fim)k≠1 a(m). (1.12)

8



1 Preliminaries

By the above theorem, for any f œ Sk, we can write

f(z) =
Œÿ

n=1

(4fin)k≠1

�(k ≠ 1) Èf, Pn,kÍqn
. (1.13)

Using the relation (1.13) and the non-degeneracy of the Petersson inner product,

one obtains that the series Pm,k, m Ø 1 span the space Sk. The next result [10,

Proposition 10.3.19] is about the action of Hecke operators on Poincaré series.

Proposition 1.1.13. Let m, n be positive integers and let Tn be the n-th Hecke op-

erator of weight k on SL2(Z). Then

TnPm,k =
ÿ

d|(m,n)

3
n

d

4k≠1
Pmn

d2 ,k.

1.2 Nearly holomorphic modular forms

Definition 1.2.1 (Nearly holomorphic modular form). Let k, N be positive

integers and let p be a non-negative integer. Let ‰ be a Dirichlet character modulo

N satisfying ‰(≠1) = (≠1)k. A function F : H æ C is called a nearly holomorphic

modular form of weight k, depth p, level N and character ‰ if the following conditions

hold.

(1) There exist holomorphic functions f0, f1, · · · , fp (called the component functions

of f) on H with fp ”= 0 such that

F (z) =
pÿ

j=0
fj(2iy)≠j

.

(2) For all “ =
A

a b

c d

B

œ �0(N), F |k“ = ‰(d)F .

(3) For each j œ {0, 1, . . . , p}, there exists –j > 0 such that

fj(z) = O(((1 + |z|2) / Im(z))–j ) as Im(z) æ Œ and Im(z) æ 0.

In this case, we say that fj is polynomially bounded.

9



1 Preliminaries

We denote by M
nh
k,p(N, ‰) the set of all nearly holomorphic modular forms of weight

k, depth p, level N and character ‰ and we denote by M
nh
k,Æp(N, ‰) the space of all

nearly holomorphic modular forms of weight k, depth Æ p, level N and character

‰. We denote by M
nh
k,p the set of all nearly holomorphic modular forms of weight k,

depth p on SL2(Z) (i.e. N = 1 and ‰ is trivial) and we denote the space all nearly

holomorphic modular forms of weight k, depth Æ p on SL2(Z) by M
nh
k,Æp. We also

denote by M
nh
k = fipM

nh
k,Æp the space of all nearly holomorphic modular forms of

weight k on SL2(Z).

Definition 1.2.2. The Maass-Shimura operator Rk on f œ M
nh
k is defined by

Rkf(z) = 1
2fii

A
k

2i Im(z) + ˆ

ˆz

B

f(z).

The operator Rk takes M
nh
k into M

nh
k+2. Thus it is called Maass-raising operator.

We write R
m
k := Rk+2m≠2 ¶ · · · ¶ Rk+2 ¶ Rk with R

0
k =id and R

1
k = Rk, where id is the

identity map. The following lemma gives an explicit formula of R
m
k .

Lemma 1.2.3. For k, œ Z, m œ ZØ0 and f œ C
Œ(H), we have

R
m
k f = 1

(2fii)m

mÿ

l=0

A
m

l

B
(k + m ≠ 1)!
(k + l ≠ 1)!

1
(2iy)m≠l

ˆ
l
f

ˆzl
.

Proof. Using induction on m, one obtains the required formula.

We state the following decomposition theorem of the space of nearly holomorphic

modular forms [30, Lemma 7.8].

Theorem 1.2.4. Let k Ø 2 be even. If f œ M
nh
k,Æp and p < k/2, then

M
nh
k,Æp =

pn

r=0
R

r
k≠2rMk≠2r,

and if p Ø k/2, then

M
nh
k,Æp =

k
2 ≠1n

r=0
R

r
k≠2rMk≠2r ü CR

k
2 ≠1
2 E

ú
2 ,

10



1 Preliminaries

where E
ú
2(z) := E2(z) ≠ 3

fi Im(z) is a nearly holomorphic modular form of weight 2 and

depth 1 on SL2(Z).

Following Shimura [30, pp. 32], we define the slowly increasing and rapidly de-

creasing functions in M
nh
k . Shimura has defined slowly increasing and rapidly de-

creasing functions in a broader space than M
nh
k . Here we define those in M

nh
k .

Definition 1.2.5. Let f œ M
nh
k . Then f is called a

• slowly increasing function if for all – œ SL2(Q), there exist positive con-

stants A, B and c depending on f and – such that

| Im(–z)k/2
f(–z)| < Ay

c if y = Im(z) > B;

• rapidly decreasing function if for all – œ SL2(Q) and a positive real number

c, there exist positive constants A and B depending on f, – and c such that

| Im(–z)k/4
f(–z)| < Ay

≠c if y = Im(z) > B.

Remark 1.2.6. If f œ Mk, then f is a slowly increasing function. In addition, if

f œ Sk then f is a rapidly decreasing function. From the above definitions we observe

that the product of a rapidly decreasing function with any nearly holomorphic modular

form results in a rapidly decreasing function.

Let S
nh
k,Æp be the subspace of M

nh
k,Æp consisting of rapidly decreasing functions.

Using the property of rapidly decreasing functions and Theorem 1.2.4, we obtain the

following result.

Proposition 1.2.7. Let k Ø 2 be even integer and let p be any non-negative integer.

Then

S
nh
k,Æp =

pn

r=0
R

r
k≠2rSk≠2r.

11



1 Preliminaries

Definition 1.2.8 (Nearly weakly holomorphic modular form). Let k, N, p be

integers with N Ø 1 and p Ø 0. Let ‰ be a Dirichlet character modulo N satisfying

‰(≠1) = (≠1)k. A function F : H æ C is called a nearly weakly holomorphic modular

form of weight k, depth p, level N and character ‰ if the following conditions hold.

(1) There exist holomorphic functions f0, f1, · · · , fp (called the component functions

of f) on H with fp ”= 0 such that

F (z) =
pÿ

j=0
fj(2iy)≠j

.

(2) For all “ =
A

a b

c d

B

œ �0(N), F |k“ = ‰(d)F .

(3) For each j œ {0, 1, . . . , p}, there exist positive constants cj, ‘j and a polynomial

Pj(z) œ C[e≠2fiiz] such that fj(z) = O(ecj/y) as y æ 0 and fj(z) ≠ Pj(z) =

O(e≠‘jy) as y æ Œ.

The set of nearly weakly holomorphic modular forms of weight k, depth p, level

N and character ‰ is denoted by M
nh,!
k,p (N, ‰). If ‰ is the trivial character, then we

denote the corresponding set by M
nh,!
k,p (N).

1.3 Quasimodular forms

The Eisenstein series E2 and the derivatives of modular forms are not modular forms.

But they play important roles in the theory of modular forms. They are quasimodular

forms. In 1995, M. Kaneko and D. Zagier [16] introduced the notion of a quasimodular

form.

Definition 1.3.1 (Quasimodular form). Let k, N be positive integers and let p be

a non-negative integer. Let ‰ be a Dirichlet character modulo N satisfying ‰(≠1) =

12



1 Preliminaries

(≠1)k. A holomorphic function f : H æ C is called a quasimodular form of weight

k, depth p, level N and character ‰ if the following conditions hold.

(1) There exist holomorphic functions f0, f1, · · · , fp (called the component functions

of f) on H with fp ”= 0 such that for any “ œ �0(N), we have

f |k“ (z) = ‰(“)
pÿ

j=0
fj(z)

3
c

cz + d

4j

. (1.14)

(2) For each j œ {0, 1, . . . , p}, fj is polynomially bounded.

The set of all holomorphic quasimodular forms of weight k, depth p, level N and

character ‰ is denoted by M
qm
k,p (N, ‰). If ‰ is the trivial character, then we denote

the corresponding set by M
qm
k,p (N).

Definition 1.3.2 (Weakly holomorphic quasimodular form). Let k, N, p be

integers with N Ø 1 and p Ø 0. Let ‰ be a Dirichlet character modulo N satisfying

‰(≠1) = (≠1)k. A holomorphic function f : H æ C is called a weakly holomorphic

quasimodular form of weight k, depth p, level N and character ‰ if the following

conditions hold.

(1) There exist holomorphic functions f0, · · · , fp (called the component functions

of f) on H with fp ”= 0 such that for any “ =
A

a b

c d

B

œ �0(N), we have

f |k“ (z) = ‰(“)
pÿ

j=0
fj(z)

3
c

cz + d

4j

.

(2) For each j œ {0, 1, . . . , p}, there exist positive constants cj, ‘j and a polynomial

Pj(z) œ C[e≠2fiiz] such that fj(z) = O(ecj/y) as y æ 0 and fj(z) ≠ Pj(z) =

O(e≠‘jy) as y æ Œ.

13



1 Preliminaries

The set of all weakly holomorphic quasimodular forms of weight k, depth p, level

N and character ‰ is denoted by M
qm,!
k,p (N, ‰). If ‰ is the trivial character, then we

denote the corresponding set by M
qm,!
k,p (N).

14



Chapter 2

Nearly Holomorphic Poincaré Series

2.1 Introduction

Poincaré series give a large class of cusp forms and they form a basis of the vector

space of all cusp forms of fixed weight on SL2(Z). Also they have many applications

in the theory of automorphic forms.

In this chapter, we study nearly holomorphic Poincaré series on the full modular

group. More precisely, we discuss the Fourier expansions, holomorphic projections etc.

of nearly holomorphic Poincaré series. We also discuss some limiting properties of

certain Fourier coe�cients involving nearly holomorphic Poincaré series. The results

of this chapter are contained in [7].

2.1.1 Nearly holomorphic Poincaré series

Let k Ø 4 be an even integer and let m and p be integers with m Ø 1 and 0 Æ p <

k/2 ≠ 1. The m-th nearly holomorphic Poincaré series of weight k and index p on

SL2(Z) is defined by

P
p
m,k(z) =

ÿ

“œ�Œ\SL2(Z)
(y≠p

e(mz))|k“. (2.1)

Theorem 2.1.1. The Poincaré series P
p
m,k is a nearly holomorphic modular form of

weight k and depth Æ p on SL2(Z).

15



2 Nearly Holomorphic Poincaré Series

Proof. Since for m Ø 1 and “ œ SL2(Z),
-----
y

≠p|j(“, z)|2p

j(“, z)k
e(m“z)

----- Æ y
≠p

|j(“, z)|k≠2p
,

the series in the right hand side of (2.1) is absolutely convergent for all k Ø 4 and

0 Æ p < k/2. Now we show that the Poincaré series P
p
m,k is a polynomial in 1/y of

degree Æ p whose coe�cients are holomorphic functions on H. The Maass lowering

operator L on a function f : H æ C is defined by

L = ≠2iy
2 ˆ

ˆz̄
.

With respect to the slash operator (1.2), L satisfies the intertwining property

L(f |k“) = (Lf)|k≠2“ (2.2)

for any k œ Z and “ œ SL2(R). It is easily observed that a smooth function f on H

is a polynomial in 1/y of degree Æ p whose coe�cients are holomorphic functions on

H (nearly holomorphic) if and only if L
p+1

f = 0. Since L satisfies the intertwining

property (2.2) and L
p+1(y≠p

e(mz)) = 0, the Poincaré series P
p
m,k is a polynomial

in 1/y of degree Æ p whose coe�cients are holomorphic functions on H. Also the

Poincaré series P
p
m,k satisfies the modularity relation, i.e. P

p
m,k|k“ = P

p
m,k for all

“ œ SL2(Z) . Therefore P
p
m,k is a nearly holomorphic modular form of weight k and

depth Æ p on SL2(Z).

The following result [7, Proposition 3.1] gives a relation between holomorphic and

nearly holomorphic Poincaré series via Maass-Shimura operator.

Proposition 2.1.2. For integers m, k, p with m Ø 1, k Ø 4 even and p Ø 0, we have

R
p
kPm,k(z) = 1

(≠4fi)p

pÿ

r=0

A
p

r

B
�(k + p)
�(k + r)(≠4fim)r

P
p≠r
m,k+2p(z). (2.3)
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2 Nearly Holomorphic Poincaré Series

Proof. For “ =
A

a b

c d

B

œ SL2(Z), let –(“, z) = c
cz+d .

Then we have

|j(“, z)|2 = j(“, z)2(1 ≠ 2iy–(“, z)). (2.4)

Now, by using (2.4), we have

y
≠p|j(“, z)|2p

j(“, z)k
= j(“, z)2p≠k

y
≠p(1 ≠ 2iy–(“, z))p

.

Simplifying the last term of the above equality, we get

y
≠p|j(“, z)|2p

j(“, z)k
= j(“, z)2p≠k(2i)p

A
1

2iy
≠ –(“, z)

Bp

. (2.5)

For any non-negative integer l and any holomorphic function f on H, repeatedly

di�erentiating the identity

f |k“(z) = j(“, z)≠k
f(“z)

yields
d

l

dzl
(f |k“(z)) =

lÿ

r=0
(1)l≠r l!

r!

A
k + l ≠ 1

l ≠ r

B
–(“, z)l≠r

j(“, z)k+2r
f

(r)(“z) (2.6)

for all “ œ SL2(Z). Now using Lemma 1.2.3, we get

R
p
kPm,k(z) = 1

(2fii)p

pÿ

l=0

A
p

l

B
�(k + p)
�(k + l)

1
(2iy)p≠l

d
l

dzl

Q

a
ÿ

“œ�Œ\SL2(Z)
e(mz)|k“

R

b

= 1
(2fii)p

ÿ

“œ�Œ\SL2(Z)

pÿ

l=0

A
p

l

B
�(k + p)
�(k + l)

1
(2iy)p≠l

d
l

dzl

3
e(mz)|k“

4
.

Using (2.6) in the above expression, we obtain

R
p
kPm,k(z) = 1

(2fii)p

ÿ

“œ�Œ\SL2(Z)

pÿ

l=0

lÿ

r=0

(≠1)l≠r
p!

(p ≠ l)!r!(l ≠ r)!
(k + p ≠ 1)!
(k + r ≠ 1)!

(2fiim)r
–(“, z)l≠r

j(“, z)k+2r

◊ 1
(2iy)p≠l

e(m“z).

17



2 Nearly Holomorphic Poincaré Series

Simplifying the last two sums of the right hand side of the above expression, we obtain

R
p
kPm,k(z) = 1

(2fii)p

ÿ

“œ�Œ\SL2(Z)
e(m“z)

pÿ

r=0

p!(k + p ≠ 1)!(2fiim)r

r!(k + r ≠ 1)!j(“, z)k+2r

◊
pÿ

l=r

(1)l≠r
–(“, z)l≠r

(p ≠ l)!(l ≠ r)!
1

(2iy)p≠l
.

Replacing l by l + r in the last sum of the above expression, we deduce that

R
p
kPm,k(z) = 1

(2fii)p

ÿ

“œ�Œ\SL2(Z)
e(m“z)

pÿ

r=0

p!�(k + p)(2fiim)r

r!�(k + r)j(“, z)k+2r

◊
p≠rÿ

l=0
(≠1)l –(“, z)l

l!(p ≠ r ≠ l)!
1

(2iy)p≠r≠l

= 1
(2fii)p

pÿ

r=0

A
p

r

B
�(k + p)
�(k + r)(2fiim)r

ÿ

“œ�Œ\SL2(Z)

A
1

2iy
≠ –(“, z)

Bp≠r

◊ e(m“z)
j(“, z)k+2p≠2(p≠r) .

By using (2.5) in the above equality, we obtain

R
p
kPm,k(z) = 1

(2fii)p

pÿ

r=0

A
p

r

B
�(k + p)
�(k + r)

(2fiim)r

(2i)p≠r

ÿ

“œ�Œ\SL2(Z)

y
≠(p≠r)|j(“, z)|2(p≠r)

e(m“z)
j(“, z)k≠2p

= 1
(≠4fi)p

pÿ

r=0

A
p

r

B
�(k + p)
�(k + r)(≠4fim)r

ÿ

“œ�Œ\SL2(Z)
(y≠(p≠r)

e(mz))|k+2p“

= 1
(≠4fi)p

pÿ

r=0

A
p

r

B
�(k + p)
�(k + r)(≠4fim)r

P
p≠r
m,k+2p(z).

Replacing k by k ≠ 2p in (2.3), we obtain

R
p
k≠2pPm,k≠2p(z) = 1

(≠4fi)p

pÿ

r=0

A
p

r

B
�(k ≠ p)

�(k ≠ 2p + r)(≠4fim)r
P

p≠r
m,k (z) (2.7)

for 0 Æ p <
k
2 ≠ 1. Solving the system of linear equations (2.7), we obtain P

p
m,k as a

linear combination of R
r
k≠2rPm,k≠2r, 0 Æ r Æ p. Therefore from Proposition 1.2.7, we

get P
p
m,k œ S

nh
k,Æp for 0 Æ p <

k
2 ≠ 1. As an application of Proposition 2.1.2, we have

the following result [7, Proposition 3.2].
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2 Nearly Holomorphic Poincaré Series

Proposition 2.1.3. Suppose that k Ø 4 even and 0 Æ p <
k
2 ≠ 1. Then the space

S
nh
k,Æp is spanned by the Poincaré series P

r
m,k (m Ø 1, r = 0, . . . , p).

Proof. It is well known that the holomorphic Poincaré series Pm,k (m Ø 1) span the

space Sk. Now the result follows from Proposition 2.1.2 and Proposition 1.2.7.

2.2 Fourier expansions

In this subsection we compute the Fourier expansion of nearly holomorphic Poincaré

series. To establish the Fourier expansion of P
p
m,k, we need the following lemmas.

Lemma 2.2.1. If y > 0, k Ø 2, p and m are integers with 0 Æ p < k/2 ≠ 1, then we

have

⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k
e

≠2fiimx
dx =

Y
_]

_[

0 if m Æ 0,
pq

l=0

1
p
l

2
(≠4fiy)p≠l (≠2fii)k≠2p

(k≠p≠l≠1)!m
k≠p≠l≠1

e
≠2fimy if m > 0.

To prove the above lemma we recall the following result from [10, Corollary 3.1.19].

Lemma 2.2.2. Let y be a positive real number and let k, m be integers with k Ø 2.

Then, we have

⁄ Œ

≠Œ

e
≠2fiimx

(x + iy)k
dx =

Y
___]

___[

0 if m Æ 0,

(≠2fii)k

(k≠1)! m
k≠1

e
≠2fimy if m > 0.

Proof of Lemma 2.2.1. We have

⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k
e

≠2fiimx
dx =

⁄ Œ

≠Œ

(x ≠ iy)p

(x + iy)k≠p
e

≠2fiimx
dx =

⁄ Œ

≠Œ

(x + iy ≠ 2iy)p

(x + iy)k≠p
e

≠2fiimx
dx.

Expanding (x + iy ≠ 2iy)p, we obtain

⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k
e

≠2fiimx
dx =

pÿ

l=0

A
p

l

B

(≠2iy)p≠l
⁄ Œ

≠Œ

e
≠2fiimx

(x + iy)k≠p≠l
dx

Now by using Lemma 2.2.2, we get the result.
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2 Nearly Holomorphic Poincaré Series

Lemma 2.2.3. Let A, B and y be real numbers with A Ø 0 and y > 0. Let k, p be

integers such that k Ø 2, 0 Æ p < k/2 ≠ 1. Set

Ik(A, B; y) =
⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k
e

≠2fii(A/(x+iy)+B(x+iy))
dx.

Then we have

Ik(A, B; y) =

Y
_________]

_________[

i
≠(k≠2p)2fi(B/A) k≠2p≠1

2

◊ qp
l=0

1
p
l

2
(≠2y

Ò
B/A)p≠l

Jk≠p≠l≠1(4fi
Ô

AB) if A > 0 and B > 0,

(≠2fii)k≠2p
B

k≠2p≠1

◊ qp
l=0

1
p
l

2
(≠4fiyB)p≠l

/(k ≠ p ≠ l ≠ 1)! if A = 0 and B > 0,

0 if B Æ 0.

Proof. Using the series expansion of e
≠2fiiA/(x+iy), we get

Ik(A, B; y) =
⁄ Œ

≠Œ

Œÿ

j=0

(≠2fiiA)j

j!
|x + iy|2p

(x + iy)k+j
e

≠2fiiB(x+iy)
dx. (2.8)

By the uniform convergence, we get

Ik(A, B; y) =
Œÿ

j=0

(≠2fiiA)j

j!

⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k+j
e

≠2fiiB(x+iy)
dx. (2.9)

By Lemma 2.2.1, we have
⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k+j
e

≠2fiiB(x+iy)
dx =

Y
]

[
0 if B Æ 0,
qp

l=0
1

p
l

2
(≠4fiy)p≠l (≠2fii)k+j≠2p

(k+j≠p≠l≠1)!B
k+j≠p≠l≠1 if B > 0.

(2.10)

Using (2.10) in (2.9), we get Ik(A, B; y) = 0 if B Æ 0 and

Ik(A, B; y) =
pÿ

l=0

A
p

l

B

(≠4fiy)p≠l(≠2fii)k≠2p
B

k≠p≠l≠1
Œÿ

j=0

(≠4fi
2
AB)j

j!(k ≠ p ≠ l + j ≠ 1)! if B > 0.

(2.11)

Therefore for A = 0 and B > 0, we get

Ik(A, B; y) = (≠2fii)k≠2p
B

k≠2p≠1
pÿ

l=0

A
p

l

B
(≠4fiyB)p≠l

(k ≠ p ≠ l ≠ 1)! .

For A > 0 and B > 0, using (1.10) in (2.11), we obtain

Ik(A, B; y) =
pÿ

l=0

A
p

l

B

(≠4fiy)p≠l(≠2fii)k≠2p
B

k≠p≠l≠1(2fi(AB)1/2)1≠k+p+l
Jk≠p≠l≠1(4fi(AB)1/2).
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2 Nearly Holomorphic Poincaré Series

We have the following result [7, Theorem 1.4], which is analogous to Theo-

rem 1.1.11 for nearly holomorphic Poincaré series.

Theorem 2.2.4. For integers m Ø 1 and 0 Æ p <
k
2 ≠ 1, we have the Fourier

expansion

P
p
m,k(z) =

Œÿ

n=1
a

p
m,k(n, y)qn

,

where

a
p
m,k(n, y) = y

≠p

S

U”n,m + (≠1)
k≠2p

2 2fi

3
n

m

4 k≠2p≠1
2 Œÿ

c=1

K(n, m; c)
c

pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

Jk≠p≠l≠1

A
4
Ô

nm

c

B T

V, (2.12)

where K(n, m; c) is the Kloosterman sum defined in (1.9), Jk≠p≠l≠1 is the J-Bessel

function defined in (1.10)and ”n,m is the Kronecker symbol.

Proof. Using the definition of nearly holomorphic Poincaré series (2.1) and the bi-

jection between �Œ\� and {(c, d) œ Z
2 : c Ø 0, (c, d) = 1 and d = 1 if c = 0}, we can

write

P
p
m,k(z) = y

≠p
e

2fiimz +
ÿ

c,dœZ

cØ1, (c, d)=1

y
≠p|cz + d|2p

(cz + d)k
e

A

m
az + b

cz + d

B

. (2.13)

So, we have

P
p
m,k(z) = y

≠p
e

2fiimz + y
≠p

Œÿ

c=1

ÿ

dœZ

(c,d)=1

|cz + d|2p(cz + d)≠k
e

2fiim(az+b)/(cz+d) (2.14)

Putting d = r +nc when c ”= 0 in the above equation and noting that if a0r ≠ b0c = 1,
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2 Nearly Holomorphic Poincaré Series

then a0d ≠ (b0 + na0)c = 1, we obtain

P
p
m,k(z) = y

≠p
e

2fiimz + y
≠p

Œÿ

c=1

ÿ

r mod c
(r,c)=1

ÿ

nœZ

|cz + r + nc|2p(cz + r + nc)≠k
e

2fiim(az+b)/(cz+r+nc)

= y
≠p

e
2fiimz + y

≠p
Œÿ

c=1
c

2p≠k
ÿ

r mod c
(r,c)=1

ÿ

nœZ

|z + r/c + n|2p(z + r/c + n)≠k

◊ e
2fii(m/c)(a0(z+n)+(a0r≠1)/c)/(z+r/c+n)

.

(2.15)
Putting

S(c, r) =
ÿ

nœZ

|z + r/c + n|2p(z + r/c + n)≠k
e

2fii(m/c)(r≠1(z+n)+(r≠1r≠1)/c)/(z+r/c+n)
,

where r
≠1(= a0) denotes an inverse of r modulo c, (2.15) can be written as:

P
p
m,k(z) = y

≠p
e

2fiimz + y
≠p

Œÿ

c=1
c

2p≠k
ÿ

r mod c
(r,c)=1

S(c, r). (2.16)

For fixed y, we set f(x) = |x + iy|2p(x + iy)≠k
e

≠2fiiA/(x+iy) with A = m/c
2. It is clear

that Sc,r = e
2fii(m/c)r≠1 q

nœZ
f(x + r/c + n). Now by Poisson summation formula, we

get

e
≠2fii(m/c)r≠1

S(c, r) =
ÿ

nœZ

f(x + r/c + n) =
ÿ

nœZ

f̂(n)e2fiin(x+r/c) =
ÿ

nœZ

f̂(n)e2fiinr/c
e

2fiinx
,

(2.17)
where

f̂(n) =
⁄ Œ

≠Œ

|x + iy|2p

(x + iy)k
e

≠2fii(A/(x+iy)+nx)
dx

is the Fourier transform of f evaluated at n. By Lemma 2.2.3, we have

f̂(n) =

Y
___]

___[

0 if n = 0,

e
≠2finy

i
≠(k≠2p)2fi((n/m)c2) k≠2p≠1

2

◊ qp
l=0

1
p
l

2 1
≠2yc

Ò
n
m

2p≠l
Jk≠p≠l≠1

1
4fi

Ô
mn
c

2
if n > 0, m > 0.

(2.18)

Using (2.18) in (2.17), we obtain

S(c, r) = e
2fii(m/c)r≠1

Œÿ

n=1
e

2fiinr/c
e

2fiinx
e

≠2finy
i
≠(k≠2p)2fi((n/m)c2)

k≠2p≠1
2

◊
pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

Jk≠p≠l≠1

A

4fi

Ô
mn

c

B

.
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2 Nearly Holomorphic Poincaré Series

Hence

P
p
m,k(z) = y

≠p
e

2fiimz + y
≠p

Œÿ

c=1
c

2p≠k
ÿ

r mod c
(r,c)=1

e
2fii(m/c)r≠1

Œÿ

n=1
e

2fiinr/c
e

2fiinx
e

≠2finy
i
≠(k≠2p)

◊ 2fi((n/m)c2)
k≠2p≠1

2

pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

Jk≠p≠l≠1

A

4fi

Ô
mn

c

B

= y
≠p

e
2fiimz + y

≠p(≠1)
k≠2p

2 2fi

Œÿ

n=1

3
n

m

4 k≠2p≠1
2

e
2finz

Œÿ

c=1
c

≠1
pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

◊ Jk≠p≠l≠1

A

4fi

Ô
mn

c

B
ÿ

r mod c
(r,c)=1

e
2fii(nr+mr≠1)/c

= y
≠p

q
m + y

≠p(≠1)
k≠2p

2 2fi

Œÿ

n=1

C 3
n

m

4 k≠2p≠1
2 Œÿ

c=1

K(n, m; c)
c

pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

Jk≠p≠l≠1

A

4fi

Ô
mn

c

B D

q
n
.

2.2.1 Hecke operators and Petersson inner product

For f œ M
nh
k the action of the n-th Hecke operator on f is defined by

(Tnf)(z) = n
k
2 ≠1 ÿ

flœXn

f |kfl, (2.19)

where

Xn =
IA

a b

0 d

B

| a, b, d œ ZØ0, ad = n, 0 Æ b < d

J

. (2.20)

For each integer n Ø 1, Tn maps M
nh
k to M

nh
k and S

nh
k to S

nh
k . We have the fol-

lowing result [7, Theorem 1.10], which is analogous to Proposition 1.1.13 for nearly

holomorphic Poincaré series.

Theorem 2.2.5. Let m, n, p be integers with m, n Ø 1 and 0 Æ p Æ k
2 and let Tn be

the n-th Hecke operator. Then

TnP
p
m,k =

ÿ

d|(m,n)

3
n

d

4k≠p≠1
d

p
P

p
mn
d2 ,k.
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2 Nearly Holomorphic Poincaré Series

Proof. From (2.19) we have

(TnP
p
m,k)(z) = n

k
2 ≠1 ÿ

flœXn

Q

a
ÿ

“œ�Œ\�
(y≠p

e(mz))|k“

R

b |kfl.

Using a similar idea as in the proof of [10, Theorem 4.4.4.], we get

(TnP
p
m,k)(z) = n

k
2 ≠1 ÿ

“œ�Œ\SL2(Z)

Q

a
ÿ

flœXn

(y≠p
e(mz))|kfl

R

b |k“.

Now by (2.20), we get

TnP
p
m,k(z) = n

k
2 ≠1 ÿ

“œ�Œ\�

Q

a
ÿ

ad=n

ÿ

b (mod d)
(y≠p

e(mz))|k
A

a b

0 d

BR

b |k“.

Simplifying the term in the right hand side of the above identity, we get

TnP
p
m,k(z) = n

k≠p≠1 ÿ

ad=n
d|m

d
2p≠k+1 ÿ

“œ�Œ\�

3
y

≠p
e

3
mn

d2 z

44
|k“

=
ÿ

d|(m,n)

3
n

d

4k≠p≠1
d

p
P

p
mn
d2 ,k.

If f and g are two nearly holomorphic cusp forms of weight k on SL2(Z), then

the Petersson inner product of f and g is defined by

Èf, gÍ :=
⁄

SL2(Z)\H
f(z)g(z)yk dxdy

y2 .

We have the following result [7, Theorem 1.7], which is analogous to Theorem 1.1.12

for nearly holomorphic Poincaré series.

Theorem 2.2.6. Let m, p and q be integers such that m Ø 1 and 0 Æ p, q <
k
2 ≠ 1.

If f œ M
nh
k,q is a rapidly decreasing function, then we have

Èf, P
p
m,kÍ =

qÿ

l=0

�(k ≠ p ≠ l ≠ 1)
(4fim)k≠p≠l≠1 al(m),

where al(m) is the m-th Fourier coe�cient of the l-th component of f .
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2 Nearly Holomorphic Poincaré Series

Proof. We have

Èf, P
p
m,kÍ =

⁄

SL2(Z)\H
y

k
f(z)

ÿ

“œ�Œ\SL2(Z)
y

≠p|j“(z)|2p
j“(z)≠k e(m“z)dxdy

y2 .

Interchanging the sum and the integral and using the identity

Im(“z) = Im(z)
|j“(z)|2 ,

we obtain

Èf, P
p
m,kÍ =

ÿ

“œ�Œ\SL2(Z)

⁄

SL2(Z)\H
Im(“z)k≠p

f(“z)e(m“z)dxdy

y2 .

By the change of variable z ‘æ “
≠1

z in the above expression and using the Rankin’s

unfolding argument, we obtain

Èf, P
p
m,kÍ =

⁄

�Œ\H
y

k≠p
f(z)e(mz)dxdy

y2

=
⁄ Œ

0

⁄ 1

0
y

k≠p≠2
f(x + iy)e≠2fiimx

e
≠2fimy

dxdy.

Putting f(z) =
qq

l=0

3 Œq
n=1

al(n)e(nz)
4

y
≠l in the above expression, we obtain

Èf, P
p
m,kÍ =

qÿ

l=0

Œÿ

n=1
al(n)

⁄ Œ

0

⁄ 1

0
y

k≠p≠l≠2
e

2fii(n≠m)x
e

≠2fi(n+m)y
dxdy

=
qÿ

l=0
al(m)

⁄ Œ

0
y

k≠p≠l≠2
e

≠2fi(n+m)y
dxdy

=
qÿ

l=0

�(k ≠ p ≠ l ≠ 1)
(4fim)k≠p≠l≠1 al(m).

This proves the result.

Remark 2.2.7. From the above theorem, we get the system of linear equations

Èf, P
p
m,kÍ =

qÿ

l=0

�(k ≠ p ≠ l ≠ 1)
(4fim)k≠p≠l≠1 al(m) for p = 0, 1, . . . , q. (2.21)

After solving the above system of linear equations, we can get a result like (1.13). But

it is very hard to solve the system of linear equations (2.21) for arbitrary non-negative
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2 Nearly Holomorphic Poincaré Series

integer q. For q = 0 we get (1.13) and for q = 1 we get

f(z) =
Œÿ

n=1

1ÿ

t=0

1ÿ

l=0

(≠1)t+l�(k + t + l ≠ 3)y≠t

�(k ≠ 2)�(k ≠ 3) Èf, P
l
n,kÍqn (2.22)

for all weight k Ø 4, depth 1 rapidly decreasing nearly holomorphic forms f on

SL2(Z).

As a consequence of the above theorem, we obtain the following result [7, Corollary

1.8].

Corollary 2.2.8. For integers m, n, p, q with m, n Ø 1 and 0 Æ p, q <
k
2 ≠ 1, we have

ÈP p
m,k, P

q
n,kÍ = �(k ≠ p ≠ q ≠ 1)(4fi)p+q

m
p
n

q

(4fi
Ô

mn)k≠1

S

U”m,n + (≠1)
k≠2p

2 2fi

Œÿ

c=1

K(m, n; c)
c

pÿ

l=0

A
p

l

B

A
≠c

2fi
Ô

mn

Bp≠l �(k ≠ q ≠ l ≠ 1)
�(k ≠ p ≠ q ≠ 1)Jk≠p≠l≠1

A
4fi

Ô
mn

c

B T

V.

Proof. By Theorem 2.2.6 and (2.12), we get

ÈP p
m,k, P

q
n,kÍ = �(k ≠ p ≠ q ≠ 1)

(4fin)k≠p≠q≠1

S

U”n,m + (≠1)
k≠2p

2 2fi

3
n

m

4 k≠2p≠1
2 Œÿ

c=1

K(n, m; c)
c

Jk≠2p≠1

A
4
Ô

nm

c

B T

V + (≠1)
k≠2p

2 2fi

3
n

m

4 k≠2p≠1
2 Œÿ

c=1

K(n, m; c)
c

p≠1ÿ

l=0

A
p

l

B

3
≠2c

Ú
n

m

4p≠l �(k ≠ q ≠ l ≠ 1)
(4fin)k≠q≠l≠1 Jk≠p≠l≠1

A
4
Ô

nm

c

B

= �(k ≠ p ≠ q ≠ 1)
(4fin)k≠p≠q≠1

S

U”n,m + (≠1)
k≠2p

2 2fi

3
n

m

4 k≠2p≠1
2 Œÿ

c=1

K(n, m; c)
c

pÿ

l=0

A
p

l

B

A
≠c

2fi
Ô

mn

Bp≠l �(k ≠ q ≠ l ≠ 1)
�(k ≠ p ≠ q ≠ 1)Jk≠p≠l≠1

A
4fi

Ô
mn

c

B T

V

= �(k ≠ p ≠ q ≠ 1)(4fi)p+q
m

p
n

q

(4fi
Ô

mn)k≠1

S

U”m,n + (≠1)
k≠2p

2 2fi

Œÿ

c=1

K(m, n; c)
c

pÿ

l=0

A
p

l

B

A
≠c

2fi
Ô

mn

Bp≠l �(k ≠ q ≠ l ≠ 1)
�(k ≠ p ≠ q ≠ 1)Jk≠p≠l≠1

A
4fi

Ô
mn

c

B T

V.
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2 Nearly Holomorphic Poincaré Series

When p = q and m = n, we obtain the following result [7, Corollary 1.9].

Corollary 2.2.9. For integers m, p with m Ø 1 and 0 Æ p <
k
2 ≠ 1, we have

ÈP p
m,k, P

p
m,kÍ = �(k ≠ 2p ≠ 1)

(4fim)k≠2p≠1

S

U1 + (≠1)
k≠2p

2 2fi

Œÿ

c=1

K(m, m; c)
c

pÿ

l=0

A
p

l

B

3 ≠c

2fim

4p≠l �(k ≠ p ≠ l ≠ 1)
�(k ≠ 2p ≠ 1) Jk≠p≠l≠1

34fim

c

4 T

V. (2.23)

2.3 Holomorphic projection

Nearly holomorphic modular forms are not holomorphic but are C
Œ functions. It is

natural to find their projections on the space of holomorphic cusp forms. In [31], J.

Sturm gives a complete description of holomorphic projection. The following theorem

is a special case of [31, Theorem 1].

Theorem 2.3.1. Let k Ø 4 be an even integer and let

f(x + iy) =
Œÿ

n=0
a(n, y)qn œ M

nh
k

be a rapidly decreasing function. Let

b(n) = (4fin)k≠1

�(k ≠ 1)

⁄ Œ

0
a(n, y)e≠4finy

y
k≠2

dy. (2.24)

Then h(z) =
Œq

n=1
b(n)qn is a cusp form of weight k on SL2(Z). Moreover Èg, fÍ =

Èg, hÍ for all cusp form g of weight k on SL2(Z).

The function h is called the holomorphic projection of f . As an application of

Theorem 2.3.1, we have the following theorem [7, Theorem 1.6].

Theorem 2.3.2. For integers m Ø 1 and 0 Æ p <
k
2 ≠ 1, the holomorphic projection

of P
p
m,k(z) is (4fim)p �(k≠p≠1)

�(k≠1) Pm,k(z).
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2 Nearly Holomorphic Poincaré Series

To prove the above theorem, we need the following result on J-Bessel function.

Lemma 2.3.3. For non-negative integers k and p with k ≠ 2p Ø 0, we have

Jk(x) =
pÿ

l=0

A
p

l

B

(≠1)l( 2
x

)p≠l �(k ≠ l)
�(k ≠ p)Jk≠p≠l(x).

Proof. It is well known that the J-Bessel function satisfies the recurrence relation [33,

§2.12]

Jk≠1(x) + Jk+1(x) = 2k

x
Jk(x).

The proof of the lemma follows by using the above identity and induction on p.

Proof of Theorem 2.3.2. Let h(z) =
Œq

n=0
b(n)qn be the holomorphic projection of P

p
m,k.

Then by using (2.12) in (2.24), we have

b(n) = (4fin)k≠1

�(k ≠ 1)

⁄ Œ

0
y

≠p

S

U”n,m + (≠1)(k≠2p)/22fi

3
n

m

4(k≠2p≠1)/2 Œÿ

c=1

K(n, m; c)
c

pÿ

l=0

A
p

l

B 3
≠2yc

Ú
n

m

4p≠l

Jk≠p≠l≠1

A
4
Ô

nm

c

B T

Ve
≠4finy

y
k≠2

dy.

Using the definition of the gamma function and simplifying the above integral, we

obtain

b(n) = (4fim)p�(k ≠ p ≠ 1)
�(k ≠ 1)

S

U”n,m + (≠1)k/22fi

3
n

m

4(k≠1)/2 Œÿ

c=1

K(n, m; c)
c

pÿ

l=0

A
p

l

B

(≠1)l

A
c

2fi
Ô

nm

Bp≠l �(k ≠ l ≠ 1)
�(k ≠ p ≠ 1)Jk≠p≠l≠1

A
4
Ô

nm

c

B T

V.

Now by using Lemma 2.3.3, we obtain

b(n) = (4fim)p�(k ≠ p ≠ 1)
�(k ≠ 1)

S

U”n,m + (≠1)k/22fi

3
n

m

4(k≠1)/2 Œÿ

c=1

K(n, m; c)
c

Jk≠1

A
4
Ô

nm

c

B T

V

= (4fim)p�(k ≠ p ≠ 1)
�(k ≠ 1) pm,k(n),

where pm,k(n) be the n-th Fourier coe�cient of the Poincaré series Pm,k.
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2 Nearly Holomorphic Poincaré Series

Remark 2.3.4. Theorem 2.3.2 asserts that the holomorphic projection of the m-th

nearly holomorphic Poincaré series is nothing but some scalar multiple of the holo-

morphic Poincaré series of the same weight.

2.4 Non-vanishing of nearly holomorphic Poincaré
series

The non-vanishing of holomorphic Poincaré series is an interesting problem. It is a

conjecture that none of these holomorphic Poincaré series vanish. R. A. Rankin [27]

proved the following result [27, Theorem 1].

Theorem 2.4.1. There exist positive constants k0 and B, with B > 4 log 2 such that

for all even integers k Ø k0 and all positive integers m with

m Æ k
2 exp

A
≠B log k

log log k

B

,

the holomorphic Poincaré series Pm,k(z) does not vanish identically.

Later, C. J. Mozzochi [24] and J. Lehner [22] generalized Rankin’s result for

Poincaré series on �0(N) and arbitrary Fuchsian group respectively. Moreover, the

non-vanishing of the Poincaré series is related to the famous conjecture of Lehmer

[21], which asserts that ·(n) ”= 0, for all n Ø 1, where · is the Ramanujan · -function.

It is natural to obtain the non-vanishing property of nearly holomorphic Poincaré

series. We have the following theorem [7, Theorem 1.12] which is a generalization of

Theorem 2.4.1.

Theorem 2.4.2. For a fixed non-negative integer p there exist positive constants k0

and B, where B > 4 log 2, such that for all even integers k Ø k0 + 2p and all positive

integers

m Æ (k ≠ 2p)2 exp
A

≠B log(k ≠ 2p)
log log(k ≠ 2p)

B

,
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2 Nearly Holomorphic Poincaré Series

the nearly holomorphic Poincaré series P
p
m,k(z) does not vanish identically.

Proof. It is clear that if f(z) = qp
l=0 fl(z)y≠l is a nearly holomorphic modular form,

then

f © 0 i� fl © 0 for all l = 0, . . . , p. (2.25)

Using (2.5) in (2.1), we can write P
p
m,k(z) = qp

l=0 f
l
m,k(z)y≠l, where

f
l
m,k(z) =

A
p

l

B

(≠2i)p≠l
ÿ

“œ�Œ\SL2(Z)
–(“, z)p≠l

j(“, z)≠k+2p
e(m“z) (2.26)

is the l-th component of P
p
m,k(z). Also it is observed that

f
p
m,k(z) =

ÿ

“œ�Œ\SL2(Z)
j(“, z)≠k+2p

e(m“z)

is the m-th holomorphic Poincaré series of weight k≠2p. Now the result easily follows

from Theorem 2.4.1.

Remark 2.4.3. We see that the leading coe�cient of P
p
m,k(as a polynomial of 1/y)

is Pm,k≠2p. In Theorem 2.1.1, we proved that P
p
m,k is a nearly holomorphic Poincaré

series of weight k and depth Æ p on SL2(Z). But if we assume the conjecture that

none of the holomorphic Poincaré series vanish, then P
p
m,k is a nearly holomorphic

Poincaré series of weight k and depth p on SL2(Z).

In [18, Proposition 1], E. Kowalski et al. obtained the following orthogonality

properties of the Fourier coe�cients of holomorphic Poincaré series.

Proposition 2.4.4. If am,k(n) is the n-th Fourier coe�cient of the holomorphic

Poincaré series Pm,k(z), then for fixed positive integers m and n, we have

lim
kæŒ

am,k(n) = ”(m, n).

In [18], the authors gave a simple proof of the above proposition. Using a similar

method, we obtain the following orthogonality relation of the Fourier coe�cients of

nearly holomorphic Poincaré series [7, Proposition 1.14].
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2 Nearly Holomorphic Poincaré Series

Proposition 2.4.5. If a
l
m,k(n) is the n-th Fourier coe�cient of f

l
m,k, the l-th com-

ponent of the nearly holomorphic Poincaré series P
p
m,k(z), then for fixed non-negative

integers p, m and n with m, n Ø 1, we have

lim
kæŒ

a
l
m,k(n) = ”(m, n)”(p, l) for 0 Æ l Æ p.

Proof. If l = p, Proposition 2.4.4 gives the result. If 0 Æ l < p, we shall prove that

lim
kæŒ

a
l
m,k(n) = 0 for any m, n Ø 1.

Since a
l
m,k(n) is the n-th Fourier coe�cient of f

l
m,k, we have

a
l
m,k(n) =

⁄

U
f

l
m,k(z)e(≠nz)dz, (2.27)

where U is a suitable horizontal interval of length one in H. We choose

U = {x + iy0 : |x| Æ 1/2}

for some fixed y0 > 1. By taking the limit as k æ Œ on both sides of (2.27), we get

lim
kæŒ

a
l
m,k(n) = lim

kæŒ

⁄

U
f

l
m,k(z)e(≠nz)dz. (2.28)

We show that for all z œ U , f
l
m,k(z) æ 0 as k æ Œ. From (2.26), we have

f
l
m,k(z) =

A
p

l

B

(≠2i)p≠l
ÿ

“œ�Œ\SL2(Z)
–(“, z)p≠l

j(“, z)≠k+2p
e(m“z). (2.29)

By taking the limit as k æ Œ on both sides of (2.29), we get

lim
kæŒ

f
l
m,k(z) =

A
p

l

B

(≠2i)p≠l lim
kæŒ

ÿ

“œ�Œ\SL2(Z)
–(“, z)p≠l

j(“, z)≠k+2p
e(m“z). (2.30)

Since m Ø 1 and “z œ H for z œ H and “ œ SL2(Z), we have

|–(“, z)p≠l
j(“, z)≠k+2p

e(m“z)| Æ |–(“, z)|p≠l|j(“, z)|≠k+2p
. (2.31)
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But for z œ Uand c, d œ Z , we have

|cz + d|2 = (cx + d)2 + c
2
y

2
0 Ø c

2
y

2
0 > c

2 as y0 > 1. (2.32)

Therefore

|–(“, z)| =
---

c

cz + d

--- < 1 (2.33)

for all “ =
A

a b

c d

B

œ SL2(Z). Using (2.33) in (2.31), we deduce that

|–(“, z)p≠l
j(“, z)≠k+2p

e(m“z)| < |cz + d|≠k+2p (2.34)

for all “ =
A

a b

c d

B

œ SL2(Z). Now we show that for any “ =
A

a b

c d

B

œ �Œ\SL2(Z),

we have

–(“, z)p≠l
j(“, z)≠k+2p

e(m“z) æ 0 as k æ Œ.

If c = 0, –(“, z)p≠l
j(“, z)≠k+2p

e(m“z) = 0. If c ”= 0, then c
2
y

2
0 > 1. Hence from (2.32)

and (2.34), we obtain

|–(“, z)p≠l
j(“, z)≠k+2p

e(m“z)| Æ 1
(c2y2

0) k≠2p
2

æ 0 as k æ Œ.

Now from (2.34), we deduce that

|–(“, z)p≠l
j(“, z)≠k+2p

e(m“z)| Æ |cz + d|≠4 (2.35)

for k Ø 2p+4 and “ œ �Œ\SL2(Z). Therefore by applying the dominated convergence

theorem on the right hand side of (2.30), we obtain

lim
kæŒ

f
l
m,k(z) = 0

for all z œ U . Using (2.34) in (2.29), we obtain

|f l
m,k(z)| Æ

A
p

l

B

2p≠l
ÿ

“œ�Œ\SL2(Z)
|cz + d|≠4
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for k Ø 2p + 4. Since U is compact, by applying dominated convergence theorem on

the right hand side of (2.28), we obtain

lim
kæŒ

a
l
m,k(n) = 0.

As a consequence of Proposition 2.4.5, we obtain the following result [7, corollary

1.15].

Corollary 2.4.6. For fixed non-negative integers m and p with m Ø 1, there exists

a su�ciently large positive even integer k such that the nearly holomorphic Poincaré

series P
p
m,k(z) does not vanish identically.

Proof. From Proposition 2.4.5, we have

lim
kæŒ

a
p
m,k(m) = 1.

Hence, there exists a positive integer k0 such that for all k > k0, a
p
m,k(m) ”= 0.

Equivalently, f
p
m,k(z) (the p-th component of P

p
m,k(z)) is not the zero function. Now

using (2.25), we get the result.
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Chapter 3

The adjoints of higher order Serre
derivative maps

3.1 Introduction

In this chapter, we compute adjoints of higher order Serre derivative maps with

respect to the Petersson scalar product. As an application, we obtain some identities

involving Fourier coe�cients of some cusp forms and special values of certain shifted

Dirichlet series.

In [17], using methods of linear algebra and properties Poincaré series, Kohnen

constructed explicitly the adjoint map of the product map (product by a fixed cusp

form) on the space of cusp forms Sk for a fixed weight k. Following Kohnen’s method,

several authors obtained adjoints of various linear maps on the space of cusp forms.

The Serre derivative of f œ Mk is defined by

Ëkf := Df ≠ k

12E2f,

where E2 is defined as in (1.4) and D := 1
2fii

d
dz is the di�erential operator. It is well

known that Ëk maps Mk to Mk+2 [4, Section 5.1]. It preserves the space of cusp forms

also. Using the theory of nearly holomorphic modular forms, Kumar [19] constructed

the adjoint of the Serre derivative map with respect to the Petersson scalar product.

In this chapter, we consider the higher order Serre derivative maps (see subsection
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3 The adjoints of higher order Serre derivative maps

3.2.1 for the precise definition) and find the adjoints of these maps with respect to

the Petersson inner product. Our method is di�erent from the method of Kumar. we

do not use the theory of nearly holomorphic modular forms to prove our results. The

results of this chapter are contained in [6].

3.2 Preliminaries

3.2.1 Higher order Serre derivatives

Let f be a modular form of weight k on SL2(Z). For any even integer k Ø 4, the

higher order Serre derivatives are defined as the following [4, pp. 55].

Define

Ë
[0]
k f = f and Ë

[1]
k f = Ëkf = Df ≠ k

12E2f.

For n Ø 1, define

Ë
[n+1]
k f = Ëk+2n(Ë[n]

k f) ≠ n(k + n ≠ 1)
144 E4Ë

[n≠1]
k f. (3.1)

(In particular, Ë
[n]
k is not simply the n-th iterate of Ëk). These functions are given in

the closed form by

Ë
[n]
k f(z) =

nÿ

r=0

A
n

r

B
(k + n ≠ 1)!

(k + n ≠ r ≠ 1)!(≠E2(z)/12)r
D

n≠r
f(z). (3.2)

This closed form can be obtained by using induction on n. We call Ë
[n]
k the n-th order

Serre derivative.

Theorem 3.2.1. Let n be a non-negative integer. If f œ Mk, then Ë
[n]
k f œ Mk+2n.

Also if f œ Sk, then Ë
[n]
k f œ Sk+2n.

Proof. The proof of the theorem follows by using induction on n.
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3 The adjoints of higher order Serre derivative maps

3.2.2 Poincaré series associated to any q series

Let „(q) =
Œq

n=0
–(n)qn be any q-series on the upper half-plane H, where –(n) grow

su�ciently slow for all n Ø 0. Following [35], we define the Poincaré series associated

to „ by

Pk(„)(z) :=
ÿ

“œ�Œ\SL2(Z)
„|k“(z). (3.3)

In [35, Section 3], B. Williams proved that the series represented by Pk(„) converges

absolutely and uniformly on any compact subset of H if the coe�cients of „ satisfy the

bound –(n) = O(nk/2≠3/2+‘) for some ‘ > 0. It is clear that Pk(„)|k“ = Pk(„) for all

“ œ SL2(Z). Hence Pk(„) is a modular form of weight k on SL2(Z). Also if –(0) = 0,

then Pk(„) is a cusp form of weight k on SL2(Z). In particular, for m Ø 1, Pk(qm) is

the m-th classical Poincaré series defined in (1.8). Now we recall the following result

[35, Theorem 4], which will play an important role in finding the adjoint of Ë
[n]
k .

Theorem 3.2.2. For any non-negative integers n, m and a positive even integer k

with k Ø 2n + 2, set

„(z) = q
m

nÿ

r=0

A
n

r

B
(k + n ≠ 1)!

(k + n ≠ r ≠ 1)!(≠E2(z)/12)r
m

n≠r
. (3.4)

Then

Ë
[n]
Pk(qm) = Pk+2m(„).

3.3 Main Theorem

From Theorem 3.2.1 we know that for any n Ø 0, Ë
[n]
k is a linear map from Sk to

Sk+2n. Thus the adjoint Ë
[n]ú
k of Ë

[n]
k is a linear map from Sk+2n to Sk satisfying

ÈË[n]ú
k f, gÍ = Èf, Ë

[n]
k gÍ for all f œ Sk+2n and g œ Sk. (3.5)

For n = 0, Ë
[0]
k is the identity map and its adjoint is itself. In the following result [6,

Theorem 1.4], we obtain the Fourier expansion of Ë
[n]ú
k f for f œ Sk+2n and n Ø 1.
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3 The adjoints of higher order Serre derivative maps

Theorem 3.3.1. For a positive integer n and a positive even integer k with k Ø 2n+2,

the image of f(z) =
Œq

¸=1
a(¸)q¸ œ Sk+2n under Ë

[n]ú
k is given by

Ë
[n]ú
k f(z) = �(k + 2n ≠ 1)

�(k ≠ 1)(4fi)2n

Œÿ

m=1
m

k≠1
A Œÿ

t=0

a(t + m)Em
k,n(t)

(t + m)k+2n≠1

B

q
m

,

where

Em
k,n(t) =

nÿ

r=0

A
n

r

B
(k + n ≠ 1)!

(k + n + r ≠ 1)!

3≠1
12

4r

m
n≠r

Ár(t) (3.6)

and Ár(t) is the t-th Fourier coe�cient of E
r
2.

We need the following lemma to prove the above theorem.

Lemma 3.3.2. Let n be a positive integer and let k be a positive even integer with

k Ø 2n + 2. Then for any f œ Sk+2n, the series

ÿ

“œ�Œ\SL2(Z)

⁄

SL2(Z)\H
| f(z)„|k“ y

k+2n | dxdy

y2

converges, where „ is as given in (3.4).

Proof. Let f(z) =
Œq

¸=1
a(¸)q¸ œ Sk+2n. By Proposition 1.1.8, we have a(¸) = O(¸(k+2n≠1)/2+‘)

for any ‘ > 0. Also Ár(¸) = O(¸2r≠1+‘) for any ‘ > 0, where Ár(¸) is the ¸-th Fourier

coe�cient of E
r
2 . Now using the change of variable z ‘æ “

≠1
z, Rankin’s unfolding

argument and substituting the expression for „ from (3.4), we obtain

ÿ

“œ�Œ\SL2(Z)

⁄

SL2(Z)\H

---f(z)„|k“ y
k+2n

---
dxdy

y2

=
nÿ

r=0

A
n

r

B
(k + n ≠ 1)!

(k + n ≠ r ≠ 1)!

3 1
12

4r

m
n≠r

⁄

�Œ\H

---f(z)Er
2(z)qmy

k+2n
---

dxdy

y2 .

Using the Fourier expansions of f and E
r
2 , we deduce that

⁄

�Œ\H

---f(z)Er
2(z)qmy

k+2n
---

dxdy

y2 =
⁄

�Œ\H

-----

Œÿ

¸=1

Œÿ

t=0
a(¸)Ár(t)q(¸+t+m)

y
k+2n

-----
dxdy

y2 .
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3 The adjoints of higher order Serre derivative maps

Using the triangle inequality and the estimates for the Fourier coe�cients a(¸) and

‘r(t), we deduce that the right hand side of the above expression is less than or equal

to
⁄

�Œ\H

Œÿ

¸=1

Œÿ

t=0
(¸ + t + m)k/2+3n≠3/2+2‘

e
≠2fi(¸+t+m)y

y
k+2n dxdy

y2 , (3.7)

where C is a positive constant. We have

Œÿ

¸=1

Œÿ

t=0

⁄

�Œ\H
(¸ + t + m)k/2+3n≠3/2+2‘

e
≠2fi(¸+t+m)y

y
k+2n dxdy

y2

=
Œÿ

¸=1

Œÿ

t=0
(¸ + t + m)k/2+3n≠3/2+2‘

⁄ Œ

y=0

⁄ 1

x=0
e

≠2fi(¸+t+m)y
y

k+2n≠2
dxdy

=
Œÿ

¸=1

Œÿ

t=0
(¸ + t + m)k/2+3n≠3/2+2‘ �(k + 2n ≠ 1)

(¸ + t + m)k+2n≠1 .

The condition k Ø 2n+2 ensures that the above summation is convergent. Therefore

by Fubini’s theorem, we obtain that the integration in (3.7) is convergent.

Proof of Theorem 3.3.1. Let Ë
[n]ú
k f(z) =

Œq
m=1

b(m)qm
. By Lemma 1.1.12, we have

b(m) = (4fim)k≠1

�(k ≠ 1) ÈË[n]ú
k f, Pk(qm)Í.

Using (3.5), we get

ÈË[n]ú
k f, Pk(qm)Í = Èf, Ë

[n]
k Pk(qm)Í.

Now by Theorem 3.2.2, we obtain

Èf, Ë
[n]
k Pk(qm)Í = Èf, Pk+2n(„)Í.

From (3.3) and using the definition of Petersson inner product, we obtain

Èf,Pk+2n(„)Í =
⁄

SL2(Z)\H
f(z)

ÿ

“œ�Œ\SL2(Z)
„(z) |k “ y

k+2n dxdy

y2 . (3.8)

By Lemma 3.3.2, we can interchange the summation and the integral in the right hand

side of (3.8). Using Rankin’s unfolding argument and substituting the expression for
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3 The adjoints of higher order Serre derivative maps

„ from (3.4), the right hand side of (3.8) becomes
⁄

�Œ\H
f(z)„(z)yk+2n dxdy

y2 =
nÿ

r=0

A
n

r

B
(k + n ≠ 1)!

(k + n ≠ r ≠ 1)!

3≠1
12

4r

m
n≠r

◊
⁄

�Œ\H
f(z)Er

2(z)qmy
k+2n dxdy

y2 .

(3.9)

Using the Fourier expansions of f and E
r
2 , we obtain

⁄

�Œ\H
f(z)Er

2(z)qmy
k+2n dxdy

y2

=
⁄ Œ

y=0

⁄ 1

x=0

Œÿ

¸=1

Œÿ

t=0
a(¸)Ár(t)e2fii(¸≠t≠m)x

e
≠2fi(¸+t+m)y

y
k+2n≠2

dxdy. (3.10)

Using a similar technique as in the proof of Lemma 3.3.2, we can interchange the

integrals and the summations in the right hand side of (3.10). Then we obtain
⁄

�Œ\H
f(z)Er

2(z)qmy
k+2n dxdy

y2

=
Œÿ

¸=1

Œÿ

t=0
a(¸)Ár(t)

⁄ Œ

y=0

⁄ 1

x=0
e

2fii(¸≠t≠m)x
e

≠2fi(¸+t+m)y
y

k+2n≠2
dxdy

=
Œÿ

t=0
a(t + m)Ár(t)

⁄ Œ

y=0
e

≠4fi(t+m)y
y

k+2n≠2
dy

= �(k + 2n ≠ 1)
(4fi)k+2n≠1

Œÿ

t=0

a(t + m)Ár(t)
(t + m)k+2n≠1 .

Therefore

ÈË[n]ú
k f, Pk(qm)Í = �(k + 2n ≠ 1)

(4fi)k+2n≠1
ÿ

tØ0

a(t + m)Em
k,n(t)

(t + m)k+2n≠1 .

3.4 Applications

We apply Theorem 3.3.1 in some particular cases and find some identities involv-

ing special values of certain shifted Dirichlet series. For k = 12, 16, 18, we denote

the unique normalized cusp forms of Sk by �k with Fourier expansion �k(z) =
Œq

n=1
·k(n)qn. Note that �12(z) = �(z), whose Fourier coe�cients are ·(n), Ramanu-

jan’s tau functions.
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3 The adjoints of higher order Serre derivative maps

Taking n = 2 and k = 8 in Theorem 3.3.1, we obtain Ë
[2]ú
8 (�) œ S8 = {0}. Now

using Theorem 3.3.1, we get

�(11)
�(7)(4fi)4

Œÿ

m=1
m

7
A Œÿ

t=0

·(t + m)Em
8,2(t)

(t + m)11

B

q
m = 0.

This implies that, for all m Ø 1

·(m)Em
8,2(0)

m11 +
Œÿ

t=1

·(t + m)Em
8,2(t)

(t + m)11 = 0. (3.11)

If Ár(t) is the t-th Fourier coe�cient of E
r
2 , then we have Ár(0) = 1 for all r Ø 0.

and for any t Ø 1, we have Á0(t) = 0 and Á1(t) = ≠24‡1(t). Using the identity

E
2
2 = E4 + 12DE2, we obtain that for any t Ø 1, Á2(t) = 240‡3(t) ≠ 288t‡1(t). Now

from (3.6), we have

Em
8,2(0) =

2ÿ

r=0

A
2
r

B
9!

(9 ≠ r)!

3≠1
12

4r

m
2≠r

Ár(0) = m
2 ≠ 3

2m + 1
2 . (3.12)

And for any t Ø 1, we have

Em
8,2(t) =

2ÿ

r=0

A
2
r

B
9!

(9 ≠ r)!

3≠1
12

4r

m
2≠r

Ár(t) = (36m ≠ 144t)‡1(t) + 120‡3(t). (3.13)

Using (3.12) and (3.13) in (3.11), we obtain

·(m) = ≠ 24m
11

2m2 ≠ 3m + 1

Œÿ

t=1

(3m ≠ 12t)‡1(t) + 10‡3(t)
(t + m)11 ·(t + m) for all m Ø 1.

This identity was obtained by B. Williams [35, Example 11] also.

Similarly, taking n = 2, k = 14 in Theorem 3.3.1, using Theorem 3.3.1 and the

fact that S14 = {0}, we obtain

·18(m) = ≠ 240m
17

24m2 ≠ 60m + 135

Œÿ

t=1

(6m ≠ 42t)‡1(t) + 35‡3(t)
(t + m)17 ·18(t + m) for all m Ø 1.

Similarly, taking n = 3 and k = 10 in Theorem 3.3.1, we obtain Ë
[3]ú
8 (�) œ S10 =

{0}. Now using Theorem 3.3.1, we get

�(15)
�(9)(4fi)6

Œÿ

m=1
m

13
A Œÿ

t=0

·16(t + m)Em
10,3(t)

(t + m)15

B

q
m = 0.
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3 The adjoints of higher order Serre derivative maps

This implies that for all m Ø 1, we have

·16(m)Em
10,3(0)

m15 +
Œÿ

t=1

·16(t + m)Em
10,3(t)

(t + m)15 = 0. (3.14)

Using the identity E
3
2 = E6 + 9DE4 + 72D

2
E2, we obtain that for any t Ø 1, Á3(t) =

≠504‡5(t) + 2160t‡3(t) ≠ 1728t
2
‡1(t). Now from (3.6), we have

Em
10,3(0) =

3ÿ

r=0

A
3
r

B
12!

(12 ≠ r)!

3≠1
12

4r

m
3≠r

Ár(0) = m
3 ≠ 3m

2 + 11
4 m ≠ 55

72 . (3.15)

For any t Ø 1, we have

Em
10,3(t) =

3ÿ

r=0

A
3
r

B
12!

(12 ≠ r)!

3≠1
12

4r

m
3≠r

Ár(t)

= (72m
2 ≠ 792mt + 1320t

2)‡1(t) + (440m ≠ 1650t)‡3(t) + 385‡5(t). (3.16)

Using (3.15) and (3.16) in (3.14), we obtain

·16(m) = ≠ 72m
15

72m3 ≠ 216m2 + 198m ≠ 55

◊
Œÿ

t=1

(72m
2 ≠ 792mt + 1320t

2)‡1(t) + (440m ≠ 1650t)‡3(t) + 385‡5(t)
(t + m)15 ·16(t + m)

for all m Ø 1.
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Chapter 4

Converse theorem for quasimodular
forms

4.1 Introduction

In this chapter, we consider twisted Dirichlet series attached to quasimodular forms,

study their analytic properties, and prove an analogue of Weil’s converse theorem for

quasimodular forms. We also give some applications of our results to certain q-series

and sign changes of the Fourier coe�cients of quasimodular forms.

A converse theorem in the theory of automorphic forms establishes a correspon-

dence between the functions that satisfy certain transformation properties, on one

hand, and Dirichlet series satisfying certain analytic properties, on the other hand.

For example, the well-known Hecke’s converse theorem [13] establishes an equivalence

between modular forms on SL2(Z) and Dirichlet series satisfying a certain functional

equation, meromorphic continuation, and boundedness in the vertical strips. A very

significant and useful generalization of Hecke’s converse theorem to congruence sub-

groups �0(N) was done by Weil [34] which illustrates the meaning of a converse

theorem more closely in our context. The converse theorem for GLn automorphic

representations was achieved in the works of several authors in papers [9], [14] and

[15].
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4 Converse theorem for quasimodular forms

Any quasimodular form of level N (see subsection 4.2.1 for definition) has a Fourier

expansion and hence we can associate a Dirichlet series to it. In [20], Lagos considered

Dirichlet series attached to quasimodular forms of depth 1 on SL2(Z) and generalized

Hecke’s converse theorem to his settings. This converse theorem has been generalized

to quasimodular forms of any depth for the group SL2(Z) in [1]. In this chapter,

we consider twisted Dirichlet series associated to quasimodular forms of level N by

Dirichlet characters. We investigate analytic properties of these twisted Dirichlet se-

ries and establish an analogue of Weil’s converse theorem for quasimodular forms.

Then we discuss two applications of our results. The first one discusses the quasi-

modularity of a certain q-series considered by Ramanujan [26], and the second one

establishes the occurrence of infinitely many sign changes for the Fourier coe�cients

of certain quasimodular forms. The results of this chapter are contained in [8].

4.2 Preliminaries

4.2.1 Quasimodular forms

Let k, N be positive integers and let p be a non-negative integer. Let ‰ be a Dirichlet

character modulo N satisfying ‰(≠1) = (≠1)k. Let f œ M
qm
k,p (N, ‰) with components

f0, f1, . . . , fp. We also denote f by f̨ = (f0, f1, . . . , fp). By the transformation prop-

erty (1.14) for the identity matrix, we get that f0 = f . Moreover, the following result

[8, Proposition 2.2] shows that each component fj of f is again a quasimodular form

of weight k ≠ 2j and depth p ≠ j. The proof of this result is similar to the proof of

[29, Proposition 3.3]. Therefore we omit the proof here.

Proposition 4.2.1. Let f œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp. Then for

every 0 Æ j Æ p, we have

fj|k≠2j“(z) = ‰(“)
p≠jÿ

v=0

A
j + v

v

B

fj+v(z) (X(“)(z))v for all “ œ �0(N).
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4 Converse theorem for quasimodular forms

Remark 4.2.2. From Proposition 4.2.1, we see that fp is a modular form of weight

k≠2p, level N and character ‰. Since there are no non-zero modular forms of negative

weight, we have p Æ k/2. Moreover, if p = k/2 then fp is a constant, and hence ‰

has to be trivial.

Now, we state two lemmas [8, Lemma 2.4, 2.5] which are useful to establish

the desired Fourier expansions for all the components of a quasimodular form and

estimates for their Fourier coe�cients.

Lemma 4.2.3. Let f : H ≠æ C be a holomorphic function given by the Fourier

expansion

f(z) =
ÿ

nœZ

anq
n
,

where an œ C. Then the following two statements are equivalent.

(1) The function f is polynomially bounded.

(2) We have an = 0 for n < 0. Moreover, f(z)≠a0 = O

1
e

≠2fiIm(z)
2

as Im(z) æ Œ,

and f(z) = O(Im(z)≠‡) as Im(z) æ 0, for some ‡ > 0, uniformly in Re(z).

Proof. For a proof, see [10, Lemma 5.1.11, Corollary 5.1.17].

Lemma 4.2.4. Let f : H ≠æ C be a holomorphic function given by the Fourier

expansion

f(z) =
Œÿ

n=0
a(n)qn

,

where a(n) œ C. Suppose that f(z) = O(Im(z)≠‹) uniformly in Re(z) as Im(z) æ 0

for some ‹ > 0. Then a(n) = O(n‹) for all n Ø 1.

Proof. For a proof, see [23, Corollary 2.1.6].

Now we apply the above two lemmas to get the following proposition [8, Proposi-

tion 2.6].
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4 Converse theorem for quasimodular forms

Proposition 4.2.5. Let f œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp. Then each

fj has a Fourier expansion of the form

fj(z) =
Œÿ

n=0
aj(n)qn

,

where aj(n) œ C with aj(n) = O(n‹j ), for some ‹j > 0.

Proof. By Proposition 4.2.1, each fj is a quasimodular form. Therefore we have

fj(z + 1) = fj(z). This gives us a Fourier expansion

fj(z) =
ÿ

nœZ

aj(n)qn
,

which converges absolutely and uniformly on any compact subset of H. Since fj is

polynomially bounded, by Lemma 4.2.3 and Lemma 4.2.4 together, we have that

aj(n) = 0 for n < 0 and aj(n) = O(n‹j ) for some ‹j > 0.

We finish this subsection by stating a result [8, Lemma 2.7] which will be useful

in the proof of Theorem 4.4.7. For a proof of this lemma, see [23, Lemma 4.3.3].

Lemma 4.2.6. For a sequence (a(n))nØ0 of complex numbers, let

f(z) =
Œÿ

n=0
a(n)qn

.

If a(n) = O(n‹) for some ‹ > 0 then the above series defining f(z) converges abso-

lutely and uniformly on any compact subset of H and hence f(z) is holomorphic on

H. Moreover, f(z) ≠ a(0) = O

1
e

≠2fiIm(z)
2

as Im(z) æ Œ and f(z) = O(Im(z)≠‹≠1)

as Im(z) æ 0 uniformly on Re(z).

4.2.2 Nearly holomorphic modular forms

In this subsection, we briefly review some results on nearly holomorphic modular

forms and their relations with quasimodular forms.
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4 Converse theorem for quasimodular forms

If F œ M
nh
k,p(N, ‰), then we write

F (z) =
ÿ

0ÆjÆp

fj(z)(2iy)≠j
, z = x + iy,

for some holomorphic functions fj on H which are polynomially bounded. The follow-

ing result [8, Proposition 2.9] gives a relation between nearly holomorphic modular

forms and quasimodular forms.

Proposition 4.2.7. Let f0, f1, . . . , fp be polynomially bounded holomorphic functions

on H. Define the function F : H ≠æ C by

F (z) =
ÿ

0ÆjÆp

fj(z)(2iy)≠j
, z = x + iy.

Then the following two statements are equivalent.

(1) The function F œ M
nh
k,p(N, ‰).

(2) The function f0 œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp.

Proof. For a proof, see [10, Theorem 5.1.22].

Unfortunately, the image of a quasimodular form of level N under the usual Fricke

involution operator WN is not a quasimodular form. This adds di�culty in getting

the functional equation for the attached Dirichlet series. Therefore we modify the

operator WN appropriately with the help of Proposition 4.2.7 to overcome this di�-

culty. First, let us discuss the behavior of a nearly holomorphic modular form under

the action of the Fricke involution. Let

F (z) =
ÿ

0ÆmÆp

fm(z)(2iy)≠m œ M
nh
k,p(N, ‰).

For any “ = ( a b
c d ) œ GL+

2 (Q), we have

F |k“ =
ÿ

0ÆmÆp

(det“)k/2
fm(“z)j(“, z)m≠k(j(“, z) ≠ 2icy)m(det“)≠m(2iy)≠m

.
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4 Converse theorem for quasimodular forms

Simplifying, we obtain

F |k“ =
ÿ

0Æ¸Æp

Q

a
ÿ

¸ÆmÆp

A
m

¸

B

(det“)k/2≠m
fm(“z)j(“, z)m+¸≠k(≠c)m≠¸

R

b (2iy)≠¸
.

In particular, for “ = WN := ( 0 ≠1
N 0 ) , we have

F |kWN =
ÿ

0Æ¸Æp

Âf¸(z)(2iy)≠¸
, (4.1)

where
Âf¸(z) =

ÿ

¸ÆmÆp

A
m

¸

B

(≠1)m≠¸
N

k/2≠¸
fm

3
≠ 1

Nz

4
(Nz)m+¸≠k

. (4.2)

By the transformation property of F with respect to the group �0(N) and (4.2),

we obtain the following [8, Lemma 2.10].

Lemma 4.2.8. If F œ M
nh
k,p(N, ‰), then F |kWN œ M

nh
k,p(N, ‰).

In the view of Proposition 4.2.7 and Lemma 4.2.8, we define the operator ÊWN .

Definition 4.2.9. Let f œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp. If f̨ = (f0, f1, . . . , fp),

then the action of ÊWN on f̨ is defined by

f̨ |k ÊWN = (Êf0, Êf1, . . . , Êfp),

where

Âf¸(z) =
ÿ

¸ÆjÆp

A
j

¸

B

(≠1)j≠¸
N

k/2≠¸(Nz)j+¸≠k
fj

3
≠ 1

Nz

4
, 0 Æ ¸ Æ p. (4.3)

We have the following result [8, Proposition 2.12].

Proposition 4.2.10. If f̨ = (f0, f1, . . . , fp) œ M
qm
k,p (N, ‰) then

f̨ |k ÊWN = (Êf0, Êf1, . . . , Êfp) œ M
qm
k,p (N, ‰),

where Âf¸ is defined by (4.3). Moreover, for 0 Æ ¸ Æ p, we have

f¸(z) = i
2k

ÿ

¸ÆjÆp

A
j

¸

B

(≠1)j≠¸
N

k/2≠¸(Nz)j+¸≠k Âfj

3
≠ 1

Nz

4
, (4.4)
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4 Converse theorem for quasimodular forms

and

f̨ |k ÊWN |k ÊWN = (≠1)k
f̨ .

Proof. Since each component of f̨ is polynomially bounded, from (4.3) it is clear that

each component of f̨ |k ÊWN is also polynomially bounded. By Proposition 4.2.7, we

deduce that

F (z) :=
ÿ

0ÆjÆp

fj(z)(2iy)≠j œ M
nh
k,p(N, ‰).

Now by Lemma 4.2.8 and Proposition 4.2.7, we deduce that

Âf := Êf0 œ M
qm
k,p (N, ‰)

with components Êf0, Êf1, . . . , Êfp. Since W
2
N =

A
≠N 0

0 ≠N

B

, we have

F |kW
2
N = (≠1)k

F.

Therefore applying (4.1) twice, we get (4.4).

4.2.3 Some analytic results

In this subsection, we recall Phragmén-Lindelöf theorem and the Stirling’s estimate

of gamma function which are useful to prove Theorem 4.3.1. See [23, Lemma 4.3.4,

(3.2.8)] for more details.

Theorem 4.2.11 (Phragmén-Lindelöf). For two real numbers ‹1, ‹2 with ‹1 < ‹2,

put

A = {s œ C : ‹1 Æ Re(s) Æ ‹2}.

Let „ be a holomorphic function on a domain containing A satisfying

|„(s)| = O(e|Im(s)|”) (| Im(s)| æ Œ),

uniformly on A with ” > 0. For a real number b, if

|„(s)| = O(Im(s)b) (| Im(s)| æ Œ), on Re(s) = ‹1 and Re(s) = ‹2,
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4 Converse theorem for quasimodular forms

then

|„(s)| = O(Im(s)b) (| Im(s)| æ Œ), uniformly on A.

Stirling’s estimate: For a complex number s = ‡ + i· ,

�(s) ≥
Ô

2fi·
‡≠1/2

e
≠fi|· |/2 as |· |æ Œ (4.5)

uniformly on any vertical strip.

4.3 Hecke’s converse theorem for quasimodular forms

For a holomorphic function

f(z) =
Œÿ

n=0
a(n)qn

on H with a(n) = O(n‹), we put

L(f, s) =
Œÿ

n=1

a(n)
ns

.

Since a(n) = O(n‹), L(f, s) converges absolutely and uniformly on any compact

subset of Re(s) > 1 + ‹. Therefore it is holomorphic on Re(s) > 1 + ‹. We call

L(f, s) the Dirichlet series associated to f . For N Ø 1, we put

�N(f, s) =
A

2fiÔ
N

B≠s

�(s)L(f, s).

Now we prove the following result [8, Theorem 3.1] which is an analogue of Hecke’s

converse theorem for quasimodular forms of level N . This also generalizes the main

result of [1] to level N .

Theorem 4.3.1. Let k, N be positive integers and let p be a non-negative integer

with p Æ k
2 . For each integer 0 Æ j Æ p, let (aj(n))nØ0 and (bj(n))nØ0 be a pair of

sequences of complex numbers. Assume that there exists a real number ‹ > 0 such

that aj(n) and bj(n) are bounded by O(n‹). Put

fj(z) :=
Œÿ

n=0
aj(n)qn

, gj(z) :=
Œÿ

n=0
bj(n)qn

, 0 Æ j Æ p. (4.6)
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4 Converse theorem for quasimodular forms

Let f̨ = (f0, f1, . . . , fp) and g̨ = (g0, g1, . . . , gp). Assume also that fp and gp are non-

zero constant functions if p = k/2. Then the following two statements are equivalent.

(1) f̨ |k ÊWN = g̨.

(2) For each j œ {0, 1, . . . , p}, the completed Dirichlet series �N(fj, s) and �N(gj, s)

admit meromorphic continuations to the whole s-plane and they satisfy the fol-

lowing functional equations

�N(fj, s) =
p≠jÿ

m=0
i
k≠2j≠m

N
m
2

A
j + m

m

B

�N(gj+m, k ≠ 2j ≠ m ≠ s). (4.7)

Moreover, for each j œ {0, 1, . . . , p}, the functions

�N(fj, s) + aj(0)
s

+
p≠jÿ

m=0

A
j + m

m

B
i
k≠2j≠m

N
m
2 bj+m(0)

k ≠ 2j ≠ m ≠ s

�N(gj, s) + bj(0)
s

+
p≠jÿ

m=0

A
j + m

m

B
i
≠(k≠2j)≠m

N
m
2 aj+m(0)

k ≠ 2j ≠ m ≠ s

are holomorphic on the whole s-plane and bounded on any vertical strip.

Proof. Let us first prove (1) =∆ (2). If p = k/2, then �N(fp, s) and �N(gp, s) are

identically zero. Therefore the claimed analytic properties for j = p trivially follow

by the fact that fp = gp = ap(0) = bp(0).

If p = k/2 and j œ {0, 1, . . . , p ≠ 1} or 0 Æ p < k/2 and j œ {0, 1, . . . , p}, then for

Re(s) > ‹ + 1, we have

�N(fj, s) =
⁄ Œ

0

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t

=
⁄ 1

0
fj

A
iÔ
Nt

B

t
≠s dt

t
+

⁄ Œ

1
fj

A
iÔ
Nt

B

t
≠s dt

t
.

With the change of variable t ‘æ 1/t in the first integral, we obtain

�N(fj, s) =
⁄ Œ

1
fj

A
itÔ
N

B

t
s dt

t
+

⁄ Œ

1
fj

A
iÔ
Nt

B

t
≠s dt

t

=
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+

⁄ Œ

1
fj

A
iÔ
Nt

B

t
≠s dt

t
≠ aj(0)

s
.
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4 Converse theorem for quasimodular forms

Since f̨ |k ÊWN = g̨, using (4.4) we obtain

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t

+
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k
⁄ Œ

1
gl

A
itÔ
N

B

t
k≠l≠j≠s dt

t
≠ aj(0)

s
.

(4.8)

So we have

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t

+
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k
⁄ Œ

1

A

gl

A
itÔ
N

B

≠ bl(0)
B

t
k≠l≠j≠s dt

t

≠ aj(0)
s

≠
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k bl(0)
k ≠ l ≠ j ≠ s

.

Simplifying the last sum of the right hand side of the above identity, we deduce that

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t

+
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k
⁄ Œ

1

A

gl

A
itÔ
N

B

≠ bl(0)
B

t
k≠l≠j≠s dt

t

≠ aj(0)
s

≠
ÿ

0ÆlÆp≠j

A
l + j

j

B

N
l
2 i

k+2j≠l bl(0)
k ≠ l ≠ 2j ≠ s

.

(4.9)

Similarly for Re(s) > ‹ + 1, one deduces that

�N(gj, s) =
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
s dt

t

+
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j≠k
⁄ Œ

1

A

fl

A
itÔ
N

B

≠ al(0)
B

t
k≠l≠j≠s dt

t

≠ bj(0)
s

≠
ÿ

0ÆlÆp≠j

A
l + j

j

B

N
l
2 i

≠(k≠2j)≠l al(0)
k ≠ l ≠ 2j ≠ s

.

(4.10)

The expressions deduced in (4.9) and (4.10) provide the claimed analytic properties

of �N(fj, s) and �N(gj, s) of meromorphic continuation and boundedness in vertical

strips.

52



4 Converse theorem for quasimodular forms

Now we establish the claimed functional equation. From (4.8) we obtain

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+ i

2j+k
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
k≠2j≠s dt

t

+
ÿ

j+1ÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k
⁄ Œ

1
gl

A
itÔ
N

B

t
k≠l≠j≠s dt

t
≠ aj(0)

s
≠ bj(0)i2j+k

k ≠ 2j ≠ s
.

(4.11)

Using (4.3), we observe that for each 1 Æ l Æ p, we have

gl

A
itÔ
N

B

=
ÿ

lÆmÆp

A
m

l

B

(≠1)m≠l
N

m≠l
2 i

m+l≠k
t
m+l≠k

fm

A
iÔ
Nt

B

.

Using the above identity in (4.11), we obtain

�N(fj, s)

=
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+ i

2j+k
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
k≠2j≠s dt

t

+
ÿ

j+1ÆlÆp

A
l

j

B

(≠1)l≠j
N

l≠j
2 i

l+j+k
⁄ Œ

1

ÿ

lÆmÆp

A
m

l

B

(≠1)m≠l
N

m≠l
2 i

m+l≠k
fm

A
iÔ
Nt

B

t
m≠j≠s dt

t

≠ aj(0)
s

≠ bj(0)i2j+k

k ≠ 2j ≠ s
.

Interchanging the summations in the last integral of the right hand side of the above

identity, using the combinatorial identity
1

n
j

21
m
l

2
=

1
m
j

21
m≠j
m≠l

2
and changing the vari-

able t æ 1/t, we obtain

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+ i

2j+k
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
k≠2j≠s dt

t

+ i
k

ÿ

j+1ÆmÆp

(≠1)m≠j
N

m≠j
2

A
m

j

B

i
m+j≠k

ÿ

j+1ÆlÆm

A
m ≠ j

m ≠ l

B

i
2l

⁄ 1

0
fm

A
itÔ
N

B

t
s+j≠m dt

t

≠ aj(0)
s

≠ bj(0)i2j+k

k ≠ 2j ≠ s
.

(4.12)

Now observe that
ÿ

j+1ÆlÆm

A
m ≠ j

m ≠ l

B

i
2l = i

2j
ÿ

1ÆlÆm≠j

A
m ≠ j

m ≠ j ≠ l

B

(≠1)l

= i
2j

ÿ

0ÆlÆm≠j

A
m ≠ j

l

B

(≠1)l ≠ i
2j

= 0 ≠ i
2j = ≠i

2j
.

(4.13)
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Using (4.13) in (4.12), we obtain

�N(fj, s) =
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+ i

2j+k
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
k≠2j≠s dt

t

≠ i
2j+k

ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k
⁄ 1

0
fm

A
itÔ
N

B

t
s+j≠m dt

t

≠ aj(0)
s

≠ bj(0)i2j+k

k ≠ 2j ≠ s

=
⁄ Œ

1

A

fj

A
itÔ
N

B

≠ aj(0)
B

t
s dt

t
+ i

2j+k
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
k≠2j≠s dt

t

≠ i
2j+k

ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k
⁄ 1

0

A

fm

A
itÔ
N

B

≠ am(0)
B

t
s+j≠m dt

t

≠ aj(0)
s

≠ bj(0)i2j+k

k ≠ 2j ≠ s
≠ i

2j+k
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k am(0)
s + j ≠ m

.

(4.14)

Similar to the expression for �N(fj, s) in (4.11), we obtain the following expression

for �N(gj, s) in a similar way.

�N(gj, s) =
⁄ Œ

1

A

gj

A
itÔ
N

B

≠ bj(0)
B

t
s dt

t
+ i

2j≠k
⁄ Œ

1

A

fj

A
iÔ
Nt

B

≠ aj(0)
B

t
k≠2j≠s dt

t

+
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k
⁄ Œ

1

A

fm

A
itÔ
N

B

≠ am(0)
B

t
k≠m≠j≠s dt

t

≠ bj(0)
s

≠ aj(0)i2j≠k

k ≠ 2j ≠ s
≠

ÿ

j+1ÆmÆp

(≠1)m≠j
N

m≠j
2 i

m+j≠k am(0)
k ≠ j ≠ m ≠ s

.

(4.15)

Now from (4.14) and (4.15), we obtain

�N(gj, s) ≠ i
2j≠k�N(fj, k ≠ 2j ≠ s)

=
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k
⁄ Œ

0

A

fm

A
itÔ
N

B

≠ am(0)
B

t
k≠m≠j≠s dt

t

=
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

m≠j
2 i

m+j≠k�N(fm, k ≠ m ≠ j ≠ s).

Rearranging the terms we get

�N(gj, s) =
ÿ

0ÆmÆp≠j

i
≠(k≠2j)≠m

N
m
2

A
j + m

m

B

�N(fm+j, k ≠ 2j ≠ m ≠ s).
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Similarly we obtain

�N(fj, s) =
p≠jÿ

m=0
i
k≠2j≠m

N
m
2

A
j + m

m

B

�N(gm+j, k ≠ 2j ≠ m ≠ s).

We now prove (2) =∆ (1). If p = k/2 then the condition (4.7) implies that

ap(0) = bp(0) and hence fp = gp = ap(0) = bp(0). If p = k/2 and j œ {0, 1, . . . , p ≠ 1}

or 0 Æ p < k/2 and j œ {0, 1, . . . , p ≠ 1}, then we need to show that

gj(z) =
ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

k/2≠j
fl(≠1/Nz)(Nz)l+j≠k

. (4.16)

Since both sides of (4.16) are holomorphic functions, it su�ces to show the equality

(4.16) on the vertical line z = it/
Ô

N, t > 0. For ‡ > ‹ + 1, we have

gj

A
itÔ
N

B

= bj(0) +
ÿ

nØ1
bj(n)e≠ 2fintÔ

N = bj(0) + 1
2fii

⁄

Re(s)=‡

�N(gj, s)t≠s
ds.

Since L(gj, s) is bounded on Re(s) = ‡, by (4.5), we deduce that on Re(s) = ‡, for

any µ > 0, we have

|�N(gj, s)| = O(|Im(s)|≠µ) as |Im(s)| æ Œ.

Similarly one proves that on Re(s) = ‡, for any µ > 0, we have

|�N(fj, s)| = O(|Im(s)|≠µ) as |Im(s)| æ Œ.

Now choose any real number ” such that k≠2j ≠p≠” > ‹ +1. Then by the functional

equation, on Re(s) = ”, for any µ > 0, we have

|�N(gj, s)| Æ
p≠jÿ

m=0
N

m
2

A
j + m

m

B

|�N(fj+m, k≠2j≠m≠s)| = O(|Im(s)|≠µ) as |Im(s)| æ Œ.

By assumption, the function

h(s) := �N(gj, s) + bj(0)
s

+
p≠jÿ

m=0

A
j + m

m

B
i
≠(k≠2j)≠m

N
m
2 aj+m(0)

k ≠ 2j ≠ m ≠ s
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is bounded and holomorphic on the vertical strip ” Æ Re(s) Æ ‡. Therefore by

applying Phragmén-Lindelöf theorem (Theorem 4.2.11) for h(s), we deduce that in

the domain ” Æ Re(s) Æ ‡, we have
------
�N(gj, s) + bj(0)

s
+

p≠jÿ

m=0

A
j + m

m

B
i
≠(k≠2j)≠m

N
m
2 aj+m(0)

k ≠ 2j ≠ m ≠ s

------
= O(|Im(s)|≠1) as |Im(s)| æ Œ.

From this we deduce that in the domain ” Æ Re(s) Æ ‡, we have �N(gj, s) =

O(|Im(s)|≠1) as |Im(s)| æ Œ. Without loss of generality we assume that ‡ >

k and ” < min{0, k ≠ 3p}. The function �N(gj, s)t≠s has simple poles at s =

0 and s = k ≠ 2j ≠ m for m = 0, 1, · · · , p with the respective residues ≠bj(0)

and
1

j+m
m

2
i
≠(k≠2j)≠m

N
m
2 aj+m(0)t2j+m≠k. Now shifting the path of integration from

Re(s) = ‡ to Re(s) = ”, we obtain

gj

A
itÔ
N

B

= 1
2fii

⁄

Re(s)=”

�N(gj, s)t≠s
ds +

p≠jÿ

m=0

A
j + m

m

B

i
≠(k≠2j)≠m

N
m
2 aj+m(0)t2j+m≠k

.

Using the functional equation (4.7), we obtain

gj

A
itÔ
N

B

=
p≠jÿ

m=0
i
≠(k≠2j)≠m

N
m
2

A
j + m

m

B
1

2fii

⁄

Re(s)=”

�N(fj+m, k ≠ 2j ≠ m ≠ s)t≠s
ds

+
p≠jÿ

m=0

A
j + m

m

B

i
≠(k≠2j)≠m

N
m
2 aj+m(0)t2j+m≠k

.

With the change of variable k ≠ 2j ≠ m ≠ s ‘æ s in the integral above, we get

gj

A
itÔ
N

B

=
p≠jÿ

m=0
i
≠(k≠2j)≠m

N
m
2

A
j + m

m

B
1

2fii

⁄

Re(s)=k≠2j≠m≠”

�N(fj+m, s)ts≠k+2j+m
ds

+
p≠jÿ

m=0

A
j + m

m

B

i
≠(k≠2j)≠m

N
m
2 aj+m(0)t2j+m≠k

=
p≠jÿ

m=0
i
≠(k≠2j)≠m

N
m
2

A
j + m

m

B

t
2j+m≠k

Q

caaj+m(0) + 1
2fii

⁄

Re(s)=k≠2j≠m≠”

�N(fj+m, s)ts
ds

R

db .
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4 Converse theorem for quasimodular forms

Also one has

fj+m

A
iÔ
Nt

B

= aj+m(0) +
Œÿ

n=1
aj+m(n)e≠ 2finÔ

N
t

= aj+m(0) + 1
2fii

⁄

Re(s)=k≠2j≠m≠”

�N(fj+m, s)ts
ds.

Therefore we have

gj

A
itÔ
N

B

=
p≠jÿ

m=0
i
2j≠m≠k

N
m
2

A
j + m

m

B

fj+m

A
iÔ
Nt

B

t
2j+m≠k

.

4.4 Weil’s converse theorem for quasimodular forms

Let fj (0 Æ j Æ p) be as defined in (4.6). For any Dirichlet character Â of conductor

mÂ, we twist the Fourier series of each fj to get the twisted Fourier series

fj,Â(z) :=
Œÿ

n=0
Â(n)aj(n)qn

. (4.17)

The twisted Dirichlet series associated to fj by the character Â is the same as the

Dirichlet series attached to fj,Â, that is,

L(fj, s, Â) =
Œÿ

n=1

Â(n)aj(n)
ns

.

For N Ø 1, we put

�N(fj, s, Â) =
A

2fi

mÂ

Ô
N

B≠s

�(s)L(fj, s, Â).

The twist of f̨ = (f0, f1, . . . , fp) by the character Â is defined by f̨Â = (f0,Â, f1,Â . . . , fp,Â) .

Let F be the function which is a polynomial in 1/y associated to (f0, f2, . . . fp) as in

Proposition 4.2.7. Then the twist of F by the character Â is defined by

FÂ(z) =
ÿ

0Æ¸Æp

f¸,Â(z)(2iy)≠¸
. (4.18)
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4 Converse theorem for quasimodular forms

Proposition 4.4.1. Let k, N be positive integers and let p be a non-negative integer

with p Æ k
2 . For each j œ {0, 1, . . . , p}, let (aj(n))nØ0, (bj(n))nØ0, fj, gj, f̨ , g̨ be as in

Theorem 4.3.1. Let Â be a primitive Dirichlet character of conductor mÂ(> 1). Then

the following two statements are equivalent.

(1) f̨Â|k ÊWNm2
Â

= CÂg̨Â.

(2) The completed Dirichlet series �N(fj, s, Â) and �N(gj, s, Â), 0 Æ j Æ p, can be

analytically continued to the whole s-plane, are bounded on any vertical strip,

and satisfy the functional equation

�N(fj, s, Â) = CÂ

p≠jÿ

l=0
i
k≠2j≠l(m2

ÂN) l
2

A
j + l

l

B

�N(gj+l, k ≠ 2j ≠ l ≠ s, Â),

(4.19)

with

CÂ = ‰(mÂ)Â(≠N)·(Â)/·(Â) = ‰(mÂ)Â(N)·(Â)2
/mÂ, (4.20)

where ·(Â) =
mÂq
a=1

Â(a)e2fiia/mÂ is the Gauss sum associated to Â.

Proof. This follows from Theorem 4.3.1 by taking fj = fj,Â, gj = CÂgj,Â and N =

Nm
2
Â.

We next state the following result [23, Lemma 4.3.10]. In the statement of [23,

Lemma 4.3.10], it is assumed that the function f is holomorphic. But the proof works

even if f is not holomorphic.

Lemma 4.4.2. Let k Ø 1 be any integer and let f be a (not necessarily holomorphic)

function on H with Fourier series expansion f(z) =
Œq

n=0
a(n, y)qn

. Let Â be a primitive

Dirichlet character of conductor mÂ, and let fÂ =
Œq

n=0
Â(n)a(n, y)qn

. For any real

number r, let T
r = ( 1 r

0 1 ) . Then we have

fÂ = ·(Â)≠1
mÂÿ

u=1
Â(u)

1
f |kT

u/mÂ

2
,
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4 Converse theorem for quasimodular forms

where ·(Â) =
mÂq
a=1

Â(a)e2fiia/mÂ is the Gauss sum associated to the character Â.

Proposition 4.4.3. Let f œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp. Let m‰ be the

conductor of the character ‰ and let Â be a primitive Dirichlet character of conductor

mÂ. Let M = lcm(N, m
2
Â, mÂm‰). If p = k/2 and mÂ > 1, then fÂ œ M

qm
k,p (M, ‰Â

2)

with components f0,Â, f1,Â, . . . , fp,Â. If p < k/2 or mÂ = 1, then fÂ œ M
qm
k,p≠1(M, ‰Â

2)

with components f0,Â, f1,Â, . . . , fp≠1,Â.

Proof. If p = k/2 then fp is a constant and therefore fp,Â is zero for nontrivial Â.

If p < k/2 or Â is trivial then fp,Â is non-zero. It is clear that all the functions

f0,Â, f1,Â, . . . , fp,Â are polynomially bounded functions. Therefore we only need to

establish the transformation property of fÂ. Let “ = ( a b
cM d ) œ �0(M). Then it is easy

to verify that

“
Õ = T

u/mÂ“T
≠d2u/mÂ œ �0(M) ™ �0(N).

If “
Õ =

1
aÕ bÕ

cÕ dÕ

2
, then

d
Õ = d ≠ cd

2
uM/mÂ © d (mod m‰) .

Therefore we have

f |k“
Õ = ‰(d)

pÿ

j=0
fj

Q

a cM

cMz + d ≠ cd2uM
mÂ

R

b
j

. (4.21)

Since

T
u/mÂ“ = T

u/mÂ“T
≠d2u/mÂT

d2u/mÂ ,

we also have

f |kT
u/mÂ“ =

1
f |kT

u/mÂ“T
≠d2u/mÂ

2
|kT

d2u/m = f |k“
Õ
T

d2u/mÂ .
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4 Converse theorem for quasimodular forms

Now by (4.21), we have

f |k
1
T

u/mÂ“

2
=

Q

ca‰(d)
pÿ

j=0
fj

Q

a cM

cMz + d ≠ cd2uM
mÂ

R

b
j
R

db |kT
d2u/mÂ

= ‰(d)
pÿ

j=0

1
fj|k≠2jT

d2u/mÂ

2 3
cM

cMz + d

4j

. (4.22)

By (4.22) and Lemma 4.4.2, we have

fÂ|k“ = ·(Â)≠1
mÂÿ

u=1
Â(u)

Q

a‰(d)
pÿ

j=0

1
fj|k≠2j|T d2u/mÂ

2 3
cM

cMz + d

4j
R

b

= ‰(d)Â(d2)
pÿ

j=0

A

·(Â)≠1
mÂÿ

u=1
Â(d2

u)
1
fj|k≠2j|T d2u/mÂ

2B 3
cM

cMz + d

4j

.

For each j, we have fj(z + 1) = fj(z). Also, if u runs over all residue classes modulo

mÂ then d
2
u runs over the same. Therefore we have

fÂ|k“ = ‰(d)Â(d2)
pÿ

j=0

A

·(Â)≠1
mÂÿ

u=1
Â(u)

1
fj|k≠2j|T u/mÂ

2B 3
cM

cMz + d

4j

.

Again by applying Lemma 4.4.2, we have

fÂ|k“ = (‰Â
2)(“)

pÿ

j=0
fj,Â(z)

3
cM

cMz + d

4j

.

Proposition 4.4.4. Let f and g be two quasimodular forms of weight k, depth p, level

N and characters ‰ and ‰ and components f0, . . . , fp and g0, . . . , gp respectively. Let

Â be a primitive Dirichlet character of conductor mÂ. If (mÂ, N) = 1 and f̨ |k ÊWN = g̨,

then we have

f̨Â|k ÊWNm2
Â

= CÂg̨Â, (4.23)

where CÂ is as in (4.20).

Proof. Let

F (z) =
ÿ

0Æ¸Æp

f¸(z)(2iy)≠¸ and G(z) =
ÿ

0Æ¸Æp

g¸(z)(2iy)≠¸
. (4.24)
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Since f̨ |k ÊWN = g̨, we have F |kWN = G. Now by Lemma 4.4.2 and (4.18), we have

·(Â)≠1
mÂÿ

u=1
Â(u)

1
F |kT

u/mÂ

2
=

ÿ

0Æ¸Æp

A

·(Â)≠1
mÂÿ

u=1
Â(u)

1
f¸|k≠2¸T

u/mÂ

2B

(2iy)≠¸

=
ÿ

0Æ¸Æp

f¸,Â(2iy)≠¸

= FÂ.

(4.25)

Similarly, we have

·(Â)≠1
mÂÿ

u=1
Â(u)

1
G|kT

u/mÂ

2
=

ÿ

0Æ¸Æp

g¸,Â(2iy)≠¸ = GÂ.

For any integer u with (u, mÂ) = 1, let n and v be integers such that nmÂ ≠Nuv =

1. Observe that

T
u/mÂWNm2

Â
=

A
mÂ 0
0 mÂ

B

WN

A
mÂ ≠v

≠uN n

B

T
v/mÂ .

Therefore we have

F |kT
u/mÂWNm2

Â
= G|k

A
mÂ ≠v

≠uN n

B

T
v/mÂ .

Since G is a nearly holomorphic modular form of weight k, depth p, level N and

character ‰, we have

F |kT
u/mÂWNm2

Â
= ‰(n)G|kT

v/mÂ = ‰(mÂ)G|kT
v/mÂ . (4.26)

By (4.25) and (4.26), we have

·(Â)FÂ|kWNm2
Â

=
mÂÿ

u=1
Â(u)F |k

1
T

u/mÂWNm2
Â

2

= ‰(mÂ)Â(≠N)
mÂÿ

v=1
Â(v)G|kT

v/mÂ

= ‰(mÂ)Â(≠N)·(Â)GÂ.

Therefore

FÂ|kWNm2
Â

= CÂGÂ,
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4 Converse theorem for quasimodular forms

and hence we conclude that

f̨Â|k ÊWNm2
Â

= CÂg̨Â,

as desired.

For the next two lemmas, let us fix some terminology. Let k, N be positive integers,

p be a non-negative integer with p Æ k
2 and ‰ be a Dirichlet character modulo N

satisfying ‰(≠1) = (≠1)k. For any two integers m, v with (m, Nv) = 1, let n, u œ Z

such that mn ≠ uNv = 1. Let “(m, v) :=
1

m ≠v
≠Nu n

2
œ �0(N). Clearly “(m, v) is not

uniquely determined but u mod m is so. We have the following identity.

T
u/m

WNm2 = mWN“(m, v)T v/m
. (4.27)

Lemma 4.4.5. Let m be an odd prime number or 4 prime to N . Let f̨ = (f0, . . . fp)

and g̨ = (g0, . . . gp) be any two tuples of holomorphic functions satisfying f̨ |k ÊWN = g̨

and (4.23) for all primitive Dirichlet characters Â with conductor mÂ = m. Let F

and G be the associated polynomials in 1/y to f̨ and g̨ respectively given by (4.24).

Then we have

G|k(‰(m) ≠ “(m, u
Õ))T uÕ/m = G|k(‰(m) ≠ “(m, v

Õ))T vÕ/m

for any two integers u
Õ and v

Õ coprime to mÂ.

Proof. In view of the definition (4.18) and by (4.23), we have

FÂ|kWNm2
Â

= CÂGÂ.

Now by using Lemma 4.4.2, we obtain

mÂÿ

u=1
Â(u)F |kT

u/mÂWNm2
Â

= ‰(mÂ)Â(≠N)
mÂÿ

u=1
Â(u)G|kT

u/mÂ . (4.28)
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For each u with (u, mÂ) = 1, let v be such that ≠Nuv © 1 (mod mÂ) . Then by (4.27)

we have

F |kT
u/mÂWNm2

Â
= G|k“(mÂ, v)T v/mÂ . (4.29)

Since the left-hand side of (4.29) is independent of the choice of a representative of

u (mod mÂ) , so is the right-hand side of the choice of “(mÂ, v). Using (4.29), from

(4.28) we obtain
ÿ

v

Â(v)G|k(‰(mÂ) ≠ “(mÂ, v))T v/mÂ = 0. (4.30)

Here v runs over a complete set of representatives of Z/mÂZ. We note that (4.30) is

independent of the choice of representative of Z/mÂZ. Let v1, v2 be two integers co-

prime to mÂ. Multiplying both sides of (4.30) by Â(v1)≠Â(v2), taking the summation

with respect to all nontrivial Dirichlet characters Â (mod mÂ), we get

ÿ

Â
non-trivial

Â(v1) ≠ Â(v2)
ÿ

v

Â(v)G|k(‰(mÂ) ≠ “(mÂ, v))T v/mÂ = 0. (4.31)

Using the facts that Â(v1) ≠ Â(v2) = 0 if Â is trivial and all non-trivial Dirichlet

characters Â mod mÂ are primitive characters as mÂ is an odd prime or 4, we obtain

from (4.31) that

G|k(‰(mÂ) ≠ “(mÂ, u))T u/mÂ = G|k(‰(mÂ) ≠ “(mÂ, v))T v/mÂ .

Lemma 4.4.6. Let m and n (not necessarily distinct) be odd prime numbers or 4

coprime to N . Let f̨ and g̨ be as in Lemma 4.4.5 satisfying f̨ |k ÊWN = g̨ and (4.23)

for all primitive Dirichlet characters Â with conductor mÂ equal to m or n. Assume

that fp and gp are constants and ‰ is trivial if p = k/2. Then for any j œ {0, 1, . . . p},

we have

gj|k≠2j“ = ‰(“)
ÿ

jÆ¸Æp

A
¸

j

B

g¸(z) (X (“) (z))¸≠j (4.32)
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for every “ œ �0(N) of the form “ =
1

m ≠v
≠Nu n

2
.

Proof. Let G be the polynomial associated to g̨ given by (4.24). Put

h = G|k(‰(m) ≠ “) = ‰(m)G ≠ G|k“.

Using a similar technique as in the proof of [23, Lemma 4.3.14], we get h|k— = h,

where

— = “
≠1

T
≠2v/n

“
Õ
T

≠2v/m =
A

1 ≠2v/m

2uN/n 4/mn ≠ 3

B

, “
Õ =

A
m v

Nu n

B

.

Now, we have

G|k“ =
Q

a
ÿ

0Æ¸Æp

g¸(z)(2iy)≠¸

R

b |k“

=
ÿ

0Æ¸Æp

g¸(“z)j(“, z)¸≠k(j(“, z) ≠ 2iy)¸(2icy)≠¸

=
ÿ

0Æ¸Æp

g¸(“z)
ÿ

0ÆjÆ¸

A
¸

j

B

j(“, z)¸+j≠k(≠c)¸≠j(2iy)≠j
. (4.33)

Simplifying the right hand side of (4.33), we obtain

G|k“ =
ÿ

0ÆjÆp

Q

a
ÿ

jÆ¸Æp

A
¸

j

B

(≠1)¸≠j
1
j(“, z)2¸≠k

g¸(“z)
2

j(“, z)≠(¸≠j)
c

¸≠j

R

b (2iy)≠j

=
ÿ

0ÆjÆp

Q

a
ÿ

jÆ¸Æp

A
¸

j

B

(≠1)¸≠j (g¸|k≠2¸“) (z)(X(“))¸≠j

R

b (2iy)≠j
.

Therefore, we have

h(z) =
ÿ

0ÆjÆp

hj(z)(2iy)≠j
,

where

hj(z) := ‰(m)gj(z) ≠
ÿ

jÆ¸Æp

A
¸

j

B

(≠1)¸≠j (g¸|k≠2¸“) (z)(X(“)(z))¸≠j
. (4.34)

By [10, Theorem 5.1.22], we have

hj|k≠2j— =
ÿ

jÆ¸Æp

A
¸

j

B

h¸ (X (“) (z))¸≠j
.
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In particular, we get that hp is invariant under —. By the assumption on m and n,

we obtain that |tr(—)| = |4/mn ≠ 2| < 2 and |tr(—)| ”= 0, 1. Therefore — is an elliptic

matrix and any eigenvalue of — is not a root of unity. Let z0 be the unique point of

H fixed by —. Put

fl = (z0 ≠ z̄0)≠1
A

1 ≠z0
1 ≠z̄0

B

œ GL2(C)

and

p(w) = (hp|k≠2pfl
≠1)(w) = j(fl≠1

, w)≠k+2p
hp(fl≠1

w), w œ D,

where GL2(C) is the group of 2 ◊ 2 complex invertible matrices and D is the unit

disc. The function p(w) is holomorphic on D. Writing

fl—fl
≠1 =

A
’ 0
0 ’

≠1

B

with ’ œ C,

we have

p(fl—fl
≠1

w) = (hp|k≠2pfl
≠1)(fl—fl

≠1
w)

= j(fl—fl
≠1

, w)k≠2p
1
j(fl—fl

≠1
, w)≠k+2p(hp|k≠2pfl

≠1)(fl—fl
≠1

w)
2

= j(fl—fl
≠1

, w)k≠2p(hp|k≠2p—fl
≠1)(w).

Since hp is invariant under —, we get

p(fl—fl
≠1

w) = j(fl—fl
≠1

, w)k≠2p(hp|k≠2pfl
≠1)(w).

Thus, we get that

p(fl—fl
≠1

w) = j(fl—fl
≠1

, w)k≠2pp(w).

Hence we have

p(’2
w) = ’

≠k+2pp(w).

Since p(w) is holomorphic on D, it has a Taylor expansion around w = 0. Let

p(w) =
Œq

n=0
anw

n be the Taylor expansion of p(w) around w = 0. Then we have

’
2n

an = ’
≠k+2p

an for all n Ø 0. Since ’ is an eigenvalue of — which is not a root of
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unity, we get an = 0 for all n Ø 0 when p < k/2. This implies that hp © 0 if p < k/2.

If p = k/2, then from (4.34) it is trivial to see that hp © 0 as gp is constant and ‰ is

trivial. Thus we have

hp≠1|k≠2(p≠1)— = hp≠1.

Following the above arguments again, we get hp≠1 © 0. Proceeding recursively, we

see that hj © 0 for every 0 Æ j Æ p. This means that

‰(m)gj =
ÿ

jÆ¸Æp

A
¸

j

B

(≠1)¸≠j (g¸|k≠2¸“) (X(“)(z))¸≠j
, 0 Æ j Æ p.

Let P (Y ) =
pq

j=0
gjY

j be a polynomial in Y . By using the above identity, we have

P (Y ) =
ÿ

0ÆjÆp

gjY
j = ‰(m)

ÿ

0Æ¸Æp

(g¸|k≠2¸“) (Y ≠ X(“)(z))¸
.

Putting Y = Y + X(“)(z) in the above equation, we get

ÿ

0ÆjÆp

gj (Y + X(“)(z))j = ‰(m)
ÿ

0Æ¸Æp

(g¸|k≠2¸“) Y
¸
.

By comparing the coe�cients of Y
j both sides and using the fact that ‰(m) = ‰(n) =

‰(“), we have (4.32).

Now we are ready to state the main theorem of this chapter [8, Theorem 1.1]

which can be considered as an analogue of Weil’s converse theorem for quasimodular

forms. We denote P for a subset of positive integers such that any element of P is

either an odd prime or 4 which is relatively prime to N and for any two relatively

prime positive integers a and b, the intersection of P with the set {a + nb : n œ Z} is

non-empty.

Theorem 4.4.7. Let k, N be positive integers and let p be a non-negative integer

with p Æ k/2. Let ‰ be a Dirichlet character modulo N satisfying ‰(≠1) = (≠1)k,

and ‰ is trivial when p = k/2. Let f̨ = (f0, f1, . . . , fp) and g̨ = (g0, g1, . . . , gp) be two
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4 Converse theorem for quasimodular forms

vectors, each one consisting of p + 1 functions given by the Fourier expansion (4.6)

corresponding to the sequences (aj(n)) and (bj(n)) respectively, 0 Æ j Æ p. Moreover,

let fp and gp be non-zero constant functions if p = k/2. Assume that aj(n) and

bj(n) are bounded by O(n‹) for some ‹ > 0. Then the following two statements are

equivalent.

(1) The functions f0 and g0 are quasimodular forms of weight k, depth p, level N

and characters ‰ and ‰, component functions f0, f1, . . . , fp and g0, g1, . . . , gp

respectively. Moreover, we have f̨ |
k

ÊWN = g̨.

(2) (a) For each j œ {0, 1, · · · , p}, the completed Dirichlet series �N(fj, s) and

�N(gj, s) admit meromorphic continuations to the whole s-plane and they

satisfy the following functional equations.

�N(fj, s) =
p≠jÿ

m=0
i
k≠2j≠m

N
m
2

A
j + m

m

B

�N(gj+m, k ≠ 2j ≠ m ≠ s).

Moreover, for each j œ {0, 1, . . . , p}, the functions

�N(fj, s) + aj(0)
s

+
p≠jÿ

m=0

A
j + m

m

B
i
k≠2j≠m

N
m
2 bj+m(0)

k ≠ 2j ≠ m ≠ s

�N(gj, s) + bj(0)
s

+
p≠jÿ

m=0

A
j + m

m

B
i
≠(k≠2j)≠m

N
m
2 aj+m(0)

k ≠ 2j ≠ m ≠ s

are holomorphic on the whole s-plane and bounded on any vertical strip.

(b) For any primitive Dirichlet character Â whose conductor mÂ œ P, each of

the completed Dirichlet series �N(fj, s, Â) and �N(gj, s, Â) can be analyt-

ically continued to the whole s-plane, bounded on any vertical strip, and

satisfies the following functional equation.

�N(fj, s, Â) = CÂ

p≠jÿ

l=0
i
k≠2j≠l(m2

ÂN) l
2

A
j + l

l

B

�N(gj+l, k ≠ 2j ≠ l ≠ s, Â),

where CÂ is same as in (4.20).
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Proof. We observe that the implication (1) =∆ (2) follows immediately from our

previous results. By Theorem 4.3.1, we have (2)(a). By Proposition 4.4.4 and Propo-

sition 4.4.1, we have (2)(b).

Next we prove (2) =∆ (1). By Lemma 4.2.6 and Lemma 4.2.3, we see that

f0, f1, · · · , fp and g0, g1, · · · , gp define holomorphic functions on H and all are poly-

nomially bounded functions. Now, by Theorem 4.3.1 and Proposition 4.4.1, we have

f̨ |k ÊWN = g̨, f̨Â|k ÊWNm2
Â

= CÂg̨Â

for any primitive Dirichlet character Â whose conductor mÂ œ P. The constant CÂ is

same as in (4.20). We need to establish the quasimodular transformation properties

for f0 and g0. We first prove that for each j with 0 Æ j Æ p, we have

gj|k≠2j“ = ‰(“)
ÿ

jÆ¸Æp

A
¸

j

B

g¸ (X(“)(z))¸≠j for all “ œ �0(N). (4.35)

Since each gj has Fourier series expansion given by (4.6), we have gj(z + 1) = gj.

Therefore, if

“ = ( a b
cN d ) œ �0(N)

and c = 0, then we have (4.35) as ‰(≠1) = (≠1)k. Now assume that c ”= 0. Since

(a, cN) = (d, cN) = 1, there exist integers s, t such that a+tcN œ P and d+scN œ P.

Put

m = a + tcN,

n = d + scN,

u = ≠c,

v = ≠(b + sm + stuN + nt).

Then we have

“ =
A

a b

cN d

B

=
A

1 ≠t

0 1

B A
m ≠v

≠uN n

B A
1 ≠s

0 1

B

.
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By Lemma 4.4.6, we have

gj|k≠2j“ = gj|k≠2j

A
m ≠v

≠uN n

B A
1 ≠s

0 1

B

=
Q

a‰(n)
ÿ

jÆ¸Æp

A
¸

j

B

g¸

3 ≠uN

≠uNz + n

4¸≠j
R

b |k≠2j

A
1 ≠s

0 1

B

= ‰(d)
ÿ

jÆ¸Æp

A
¸

j

B

g¸

A
≠uN

≠uN(z ≠ s) + n

B¸≠j

= ‰(“)
ÿ

jÆ¸Æp

A
¸

j

B

g¸

3
cN

cNz + d

4¸≠j

.

This implies that g0 œ M
qm
k,p (N, ‰) with components g0, g1, . . . , gp. Since

f̨ = (≠1)k
g̨|k ÊWN ,

by Theorem 4.2.10, we deduce that f0 œ M
qm
k,p (N, ‰) with components f0, f1, . . . , fp.

4.5 Applications

In this section, we provide some applications of Theorem 4.4.7. In his celebrated 1916

paper [26], Ramanujan introduced the following function. For any two non-negative

integers k and ¸ with k Æ ¸, define

�k,¸(z) =
Œÿ

m=1

Œÿ

n=1
n

k
m

¸
q

mn =
Œÿ

n=1
n

k

Q

a
ÿ

0<d|n
d

¸≠k

R

b q
n
.

If 0 Æ ¸ < m and ¸ + m is odd then �¸,m is (up to a constant) the ¸-th derivative of

Eisenstein series Em≠¸+1. The Eisenstein series Em≠¸+1 is a modular form on SL2(Z)

if m ≠ ¸ + 1 Ø 4 is even. If m ≠ ¸ + 1 = 2, Em≠¸+1 is a quasimodular on SL2(Z).

For ¸ = 0 and m odd, �¸,m is a scalar multiple of Em+1 up to an additive constant.

From this, it follows that for 0 Æ ¸ < m and ¸ + m odd, �¸,m is a quasimodular form

of weight ¸ + m + 1 and depth less than or equal to ¸ + 1 on SL2(Z). When ¸ + m
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is even, it was proved in [1] that c + �¸,m is not a quasimodular form on SL2(Z) for

any complex number c. But it is not proved if c + �¸,m is not a quasimodular form

of level N for any positive integer N > 1. We have the following result [8, Corollary

1.4] which proves exactly the same.

Corollary 4.5.1. Let 0 Æ ¸ Æ m be such that ¸ + m is even. For any integer N Ø 1,

any Dirichlet character ‰ modulo N and any constant c œ C, the function c+�¸,m(z)

is not a quasimodular form of level N and character ‰.

Proof. Suppose that ¸+m is even and there exists a constant c œ C such that c+�¸,m

is a quasimodular form of some weight and some depth, level N and character ‰ for

some N Ø 1. Note that the completed Dirichlet series attached to c + �¸,m is

��¸,m
(s) =

A
2fiÔ
N

B≠s

�(s)’(s ≠ ¸)’(s ≠ m).

It is clear that ��¸,m
has poles at ≠r for each positive integer r such that ≠r ≠ ¸

and ≠r ≠ m are both odd. By Theorem 4.4.7, ��¸,m
(s) can not have a pole at any

negative integer due to the quasimodularity assumption on c + �¸,m. This gives a

contradiction.

Next, we deduce the oscillatory behaviour of the Fourier coe�cients of certain

quasimodular forms. Following [25], we say a sequence of complex numbers (an)nØ1

is oscillatory if for each real number „ œ [0, fi), either the sequence
1
Re

1
e

≠i„
an

22

nØ1

has infinitely many sign changes or is trivial. Observe that Re
1
e

≠i„
an

2
is equal to

Re(an) and Im(an) if „ is equal to 0 and fi/2 respectively. We have the following

result which is special case of [25, Theorem 1].

Theorem 4.5.2. Let (an)nØ1 be a sequence of complex numbers. Let D(s) =
Œq

n=1
an
ns

be a non-trivial Dirichlet series which converges somewhere. If the function D is
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4 Converse theorem for quasimodular forms

holomorphic on the whole real line and has infinitely many real zeros, then (an)nØ1 is

oscillatory.

We have the following result [8, Corollary 1.5] which proves that the sequence of

Fourier coe�cients of a non-zero quasimodular forms of level N is oscillatory.

Corollary 4.5.3. Let f be a non-zero quasimodular form of weight k, depth p, level

N and character ‰ such that the constant Fourier coe�cient of f and that of all the

component functions of f |k ÊWN are zero. Then the sequence of Fourier coe�cients

(a(n))nØ1 of f is oscillatory.

Proof. Since the constant Fourier coe�cients of f and all the component functions

of f |k ÊWN are zero, by the direct part of Theorem 4.4.7 we have that �N(f, s) is

holomorphic on the whole complex plane. Since �(s) has poles at all the non-positive

integers, the corollary follows from Theorem 4.5.2.
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Chapter 5

Converse theorem for weakly holo-
morphic quasimodular forms

5.1 Introduction

In this chapter, we define L-functions associated to weakly holomorphic quasimodular

forms and derive functional equations of these L-functions. We also obtain a converse

theorem for weakly holomorphic quasimodular forms.

Unlike modular forms, the usual L-series associated to a weakly holomorphic mod-

ular form is a nowhere convergent series since the Fourier coe�cients grow exponen-

tially. In [2], certain L-functions associated to weakly holomorphic modular forms

have been defined. But the analytic properties of these L-functions have not been

studied. In [12], Diamantis et al. defined L-functions associated to weakly holomor-

phic modular forms and obtained their functional equations. The L-functions studied

in [12] are generalizations of the L-functions studied in [2]. In [12], Diamantis et al.

also obtained a converse theorem for weakly holomorphic modular forms.

A weakly holomorphic quasimodular form is a certain generalization of a quasi-

modular form (see Definition 1.3.2). In [32], Wang and Zhang defined and studied

weakly holomorphic quasimodular forms on SL2(Z). Following the methods of [2],

they defined L-functions associated to weakly holomorphic quasimodular forms on
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5 Converse theorem for weakly holomorphic quasimodular forms

SL2(Z) and obtained functional equation for these L-functions. Using the methods

of [12], we define L-functions associated to weakly holomorphic quasimodular forms

on �0(N). Our L-functions are generalization of the L-functions defined in [32]. We

obtain functional equations for the L-functions associated to weakly holomorphic

quasimodular forms on �0(N). We also obtain a converse theorem for weakly holo-

morphic quasimodular forms of level N . The results of this chapter are contained in

[5].

5.2 Notations and preliminaries

5.2.1 Weakly holomorphic quasimodular forms

Let k, N be positive integers and let p be a non-negative integer. Let ‰ be a Dirichlet

character modulo N satisfying ‰(≠1) = (≠1)k. Let f œ M
qm,!
k,p (N, ‰) with components

f0, f1, . . . , fp. We also denote f by f̨ = (f0, f1, . . . , fp). As in the case of quasimodular

forms, we have f0 = f in this case also. Moreover, the following proposition [5,

Proposition 2.2] shows that each component fj of f is again a weakly holomorphic

quasimodular form of weight k≠2j and depth p≠j. The proof of this result is similar

to the proof of [29, Proposition 3.3]. Therefore we omit the proof here.

Proposition 5.2.1. Let f œ M
qm,!
k,p (N, ‰) with components f0, f1, . . . , fp. Then for

every 0 Æ j Æ p, we have

fj|k≠2j“(z) = ‰(“)
p≠jÿ

v=0

A
j + v

v

B

fj+v(z) (X(“)(z))v
, for all “ œ �0(N).

Now, we prove the following theorem [5, Theorem 2.3].

Theorem 5.2.2. Let f œ M
qm,!
k,p (N, ‰) with components f0, f1, . . . , fp. Then each fj

has a Fourier expansion of the form

fj(z) =
Œÿ

n=≠n0

aj(n)qn
,
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5 Converse theorem for weakly holomorphic quasimodular forms

where aj(n) œ C and n0 Ø 0 with

aj(n) = O(eCj

Ô
|n|) for some Cj > 0. (5.1)

Proof. By Proposition 5.2.1, each fj is a weakly holomorphic quasimodular form.

Therefore each fj is holomorphic, periodic and it satisfies the condition (2) of Def-

inition 1.3.2. Now using the same idea used in [3, pp. 55], we obtain the required

Fourier expansion of fj. The bound for the Fourier coe�cients of fj follows from [3,

Lemma 3.4].

We finish this subsection by stating a lemma [5, Lemma 2.4] which will be useful

in establishing Theorem 5.4.1.

Lemma 5.2.3. For a sequence (aj(n))nØ≠n0 of complex numbers, let

f(z) =
Œÿ

n=≠n0

a(n)qn
.

If a(n) = O(eC
Ô

|n|) for some C > 0, then the above series defining f(z) converges

absolutely and uniformly on any compact subset of H and hence f(z) is holomorphic

on H. Moreover, f(z) ≠ P (z) = O (e≠2fiy) as y æ Œ and f(z) = O(e‘/y) as y æ 0

uniformly on Re(z), where P (z) =
n0q

n=0
a(≠n)e≠2fiinz and some ‘ > 0.

Proof. Let z = x + iy. We have

Œÿ

n=≠n0

|a(n)||e2fiiz| Æ
m≠1ÿ

n=≠n0

e
C
Ô

|n|
e

2fi|n|y +
Œÿ

n=m

e
C

Ô
n
e

≠2finy
, (5.2)

where m is a su�ciently large positive integer. Now on any compact subset of H, we

get
Œÿ

n=m

e
C

Ô
n
e

≠2finy Æ
Œÿ

n=m

e
L(pÔ

n≠n)
, (5.3)
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where L is a positive constant and p is a positive integer. Therefore from (5.2) and

(5.3), we get that f(z) is convergent absolutely and uniformly on any compact subset

of H. Similarly we obtain that f(z) ≠ P (z) is bounded when y æ Œ. Now put

g(z) =
Œÿ

n=0
a(n + 1)e2fiinz

.

Then g(z) is also bounded as y æ Œ. Therefore we obtain

f(z) ≠ P (z) = e
2fiiz

g(z) = O(e≠2fiy) as y æ Œ.

Now from (5.2), we get

|f(z)| Æ
m≠1ÿ

n=≠n0

e
C
Ô

|n|
e

2fi|n|y +
Œÿ

n=m

e
C

Ô
n
e

≠2finy

Æ
m≠1ÿ

n=≠n0

e
C
Ô

|n|
e

2fi|n|y +
Œÿ

n=m

e
≠2fiy

Ô
n

Æ
m≠1ÿ

n=≠n0

e
C
Ô

|n|
e

2fi|n|y + M

y4 .

Since 1/y Æ e
1/y as y æ 0, we get f(z) = O(e‘/y) as y æ 0 for some ‘ > 0.

5.2.2 Nearly weakly holomorphic modular forms

In this subsection, we briefly review some results on nearly weakly holomorphic

modular forms and their relation with weakly holomorphic quasimodular forms. If

F œ M
nh,!
k,p (N, ‰), then we write

F (z) =
ÿ

0ÆjÆp

fj(z)(2iy)≠j

for some holomorphic functions fj on H which satisfy condition (2) of Definition

1.3.2. We have the following result which provides a relation between nearly weakly

holomorphic modular forms and weakly holomorphic quasimodular forms. The proof

of this result is similar to the proof of Proposition 4.2.7. Therefore we omit the proof

here.
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Proposition 5.2.4. Let f0, f1, . . . , fp be holomorphic functions on H satisfying con-

dition (2) of Definition 1.3.2. Define the function F : H ≠æ C by

F (z) =
ÿ

0ÆjÆp

fj(z)(2iy)≠j
.

Then the following two statements are equivalent.

(1) The function F œ M
nh,!
k,p (N, ‰).

(2) The function f0 œ M
qm,!
k,p (N, ‰) with components f0, f1, . . . , fp.

As in the case of quasimodular forms, the image of a weakly holomorphic quasi-

modular form of level N under the usual Fricke involution operator WN is not a

weakly holomorphic quasimodular form. We use the same method of Chapter 4 to

define the operator WN appropriately with the help of Proposition 5.2.4 to overcome

this di�culty. Let

F (z) =
ÿ

0ÆmÆp

fm(z)(2iy)≠m œ M
nh,!
k,p (N, ‰).

For any “ = ( a b
c d ) œ GL+

2 (Q), we have

F |k“ =
ÿ

0Æ¸Æp

Q

a
ÿ

¸ÆmÆp

A
m

¸

B

(det“)k/2≠m
fm(“z)j(“, z)m+¸≠k(≠c)m≠¸

R

b (2iy)≠¸
.

In particular, for “ = WN := ( 0 ≠1
N 0 ) , we have

F |kWN =
ÿ

0Æ¸Æp

Âf¸(z)(2iy)≠¸
, (5.4)

where
Âf¸(z) =

ÿ

¸ÆmÆp

A
m

¸

B

(≠1)m≠¸
N

k/2≠¸
fm

3
≠ 1

Nz

4
(Nz)m+¸≠k

. (5.5)

By the transformation property of F with respect to the group �0(N) and (5.5), we

get the following [5, Lemma 2.8].
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Lemma 5.2.5. If F œ M
nh,!
k,p (N, ‰) then F |kWN œ M

nh,!
k,p (N, ‰).

In the view of Proposition 5.2.4 and Lemma 5.2.5, we define the operator ÊWN on

weakly holomorphic quasimodular forms of level N , which serves our purpose.

Definition 5.2.6. Let f œ M
qm,!
k,p (N, ‰) with components f0, f1, . . . , fp and let f̨ =

(f0, f1, . . . , fp). Then the action of ÊWN on the weakly holomorphic quasimodular form

f̨ is defined by

f̨ |k ÊWN = (Êf0, Êf1, . . . , Êfp),

where

Âf¸(z) =
ÿ

¸ÆjÆp

A
j

¸

B

(≠1)j≠¸
N

k/2≠¸(Nz)j+¸≠k
fj

3
≠ 1

Nz

4
, 0 Æ ¸ Æ p. (5.6)

Proposition 5.2.7. If f̨ = (f0, f1, . . . , fp) œ M
qm,!
k,p (N, ‰) then f̨ |k ÊWN = (Êf0, Êf1, . . . , Êfp) œ

M
qm,!
k,p (N, ‰), where Âf¸ is defined by (5.6). Moreover, for 0 Æ ¸ Æ p, we have

f¸(z) = i
2k

ÿ

¸ÆjÆp

A
j

¸

B

(≠1)j≠¸
N

k/2≠¸(Nz)j+¸≠k Âfj

3
≠ 1

Nz

4
, (5.7)

and f̨ |k ÊWN |k ÊWN = (≠1)k
f̨ .

Proof. Since each component of f̨ satisfies condition (2) of Definition 1.3.2, from (5.6)

it is clear that each component of f̨ |k ÊWN also satisfies condition (2) of Definition

1.3.2. By Proposition 5.2.4, we get that the function F (z) := q
0ÆjÆp fj(z)(2iy)≠j œ

M
nh,!
k,p (N, ‰). Now by Lemma 5.2.5 and again Proposition 5.2.4, we see that Âf := Êf0 œ

M
qm,!
k,p (N, ‰) with components Êf0, Êf1, . . . , Êfp. Remaining part of the proof is similar to

the proof of Proposition 4.2.10.
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5 Converse theorem for weakly holomorphic quasimodular forms

5.3 L-series associated to weakly holomorphic quasi-
modular forms

Let C(R,C) be the space of piecewise smooth complex-valued functions on R. The

Laplace transform of a piecewise smooth complex-valued function Ï on R is given by

(LÏ)(s) :=
⁄ Œ

0
e

≠st
Ï(t)dt (5.8)

for each s œ C for which the integral converges absolutely. Let f be a function on H

which is given by an absolutely convergent series

f(z) =
Œÿ

n=≠n0

a(n)qn
. (5.9)

Let Ff be the space of functions Ï œ C(R,C) such that the integral defining (LÏ)(s)

and the series
Œÿ

n=≠n0

|a(n)|(L|Ï|) (2fin) (5.10)

converge.

Definition 5.3.1. Let f be a function on H given by the series expansion as in (5.9).

The L-series of f is defined to be the map Lf : Ff æ C such that for each Ï œ Ff ,

Lf (Ï) =
Œÿ

n=≠n0

a(n)(LÏ)(2fin). (5.11)

Lemma 5.3.2. Let f be a function on H given by the series expansion as in (5.9).

For any Ï œ Ff , the L-series Lf (Ï) is given by

Lf (Ï) =
⁄ Œ

0
f(it)Ï(t)dt. (5.12)

Proof. By Definition 5.3.1, for Ï œ Ff ,

Lf (Ï) =
Œÿ

n=≠n0

a(n)(LÏ)(2fin) (5.13)
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and this series converges absolutely. Now by (5.8), we have

(LÏ) (2fin) =
⁄ Œ

0
e

≠2fint
Ï(t)dt. (5.14)

By using the above expression in (5.13), we get

Lf (Ï) =
Œÿ

n=≠n0

⁄ Œ

0
a(n)e≠2fint

Ï(t)dt. (5.15)

Since Ï œ Ff , we can interchange the order of summation and integration and we get

the result.

Our goal in the remainder of this section is to obtain a functional equation for the

L-series Lf (Ï), where f œ M
qm,!
k,p (N, ‰). Let f0, f1, . . . , fp be the component functions

of f . Then by Theorem 5.2.2, we have that for each 0 Æ j Æ p, fj has a Fourier

expansion of the form

fj(z) =
Œÿ

n=≠n0

aj(n)qn
. (5.16)

The L-series of each fj is defined to be the map Lfj : Ffj æ C such that, for Ï œ Ffj ,

Lfj (Ï) =
Œÿ

n=≠n0

aj(n)(LÏ)(2fin). (5.17)

By Lemma 5.3.2, we have

Lfj (Ï) =
⁄ Œ

0
fj(it)Ï(t)dt. (5.18)

Let D be a positive integer. For a Dirichlet character Â modulo D, the twisted

function fj,Â is defined by

fj,Â(z) :=
Dÿ

u=1
Â(u)

1
fj|kT

u/D
2

(z) =
Œÿ

n=≠n0

·Â̄(n)aj(n)qn
, (5.19)

where T
r = ( 1 r

0 1 ) for any real number r and ·Â(n) = qD
u=1 Â(u)e2fiin u

D , the generalized

Gauss sum. Then for each Ï œ Ffj,Â
, the L-series associated to fj,Â is given by

Lfj,Â
(Ï) =

Œÿ

n=≠n0

·Â̄(n)aj(n)(LÏ)(2fin). (5.20)
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By Lemma 5.3.2, we have

Lfj,Â
(Ï) =

⁄ Œ

0
fj,Â(it)Ï(t)dt. (5.21)

Let the twist of f̨ = (f0, f1, . . . , fp) by the character Â be f̨Â = (f0,Â, f1,Â . . . , fp,Â) .

Let F be the function which is a polynomial in 1/y associated to (f0, f1 . . . , fp) as in

Proposition 5.2.4. Then the twist of F by the character Â is defined by

FÂ(z) =
ÿ

0Æ¸Æp

f¸,Â(z)(2iy)≠¸
. (5.22)

Proposition 5.3.3. Let f and g be two quasimodular forms of weight k, depth p, level

N with characters ‰ and ‰ and components f0, . . . , fp and g0, . . . , gp respectively. Let

Â be a Dirichlet character modulo D with (D, N) = 1. If f̨ |k ÊWN = g̨, then we have

f̨Â|k ÊWND2 = ‰(D)Â(≠N)g̨Â. (5.23)

Proof. Let

F (z) =
ÿ

0Æ¸Æp

f¸(z)(2iy)≠¸ and G(z) =
ÿ

0Æ¸Æp

g¸(z)(2iy)≠¸
. (5.24)

Since f̨ |k ÊWN = g̨, we have F |kWN = G. Now

FÂ =
ÿ

0Æ¸Æp

f¸,Â(2iy)≠¸ =
ÿ

0Æ¸Æp

A
Dÿ

u=1
Â(u)

1
f¸|k≠2¸T

u/D
2B

(2iy)≠¸ =
Dÿ

u=1
Â(u)

1
F |kT

u/D
2

.

(5.25)

Similarly, we have

GÂ =
ÿ

0Æ¸Æp

g¸,Â(2iy)≠¸ =
Dÿ

u=1
Â(u)

1
G|kT

u/D
2

. (5.26)

For any integer u with (u, D) = 1, let n and v be integers such that nD ≠ Nuv = 1.

Observe that

T
u/D

WND2 =
A

D 0
0 D

B

WN

A
D ≠v

≠uN n

B

T
v/D

. (5.27)
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Therefore we have

F |kT
u/D

WND2 = G|k
A

D ≠v

≠uN n

B

T
v/D

.

Since G is a nearly weakly holomorphic modular form of weight k, depth p, level N

and character ‰, we have

F |kT
u/D

WND2 = ‰(n)G|kT
v/D = ‰(D)G|kT

v/D
. (5.28)

By (5.25) and (5.28), we have

FÂ|kWND2 = ‰(D)Â(≠N)
Dÿ

v=1
Â(v)G|kT

v/D = ‰(D)Â(≠N)GÂ.

Therefore FÂ|kWND2 = ‰(D)Â(≠N)GÂ and hence we conclude that f̨Â|kWND2 =

‰(D)Â(≠N)g̨Â.

For each a œ Z, N œ N and Ï : R+ æ C, we define

(Ï|aWN)(x) := (Nx)≠a
Ï

3 1
Nx

4
for all x > 0. (5.29)

Since this action applies to functions on R+ and the action (1.2) to complex functions,

the use of the same notation should not cause a confusion but some caution is advised.

We also define a set of “test functions" we will be using in most of the remaining

results. Let Sc(R+) be a set of complex-valued, compactly supported and piecewise

smooth functions on R+ which satisfy the following condition: for any t œ R+, there

exists Ï œ Sc(R+) such that Ï(t) ”= 0. We are ready to prove the following result

[5, Theorem 1.1] which gives functional equations for the L-function Lf (Ï) and its

twists.

Theorem 5.3.4. Let f be a weakly holomorphic quasimodular form of weight k,

depth p, level N and character ‰ with component functions f0, f1, . . . , fp and let Â be
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5 Converse theorem for weakly holomorphic quasimodular forms

a Dirichlet character modulo D with (D, N) = 1. Also let the tuple f̨ = (f0, . . . , fp)

satisfy f̨ |k ÁWN = g̨, where g̨ = (g0, . . . , gp). For each j œ {0, 1, . . . , p}, consider the

map Lfj,Â
: Ffj,Â

æ C given in (5.20). Set

Ff,g :=
p‹

j=0

p≠j‹

m=0

Ó
Ï œ Ffj : Ï|2≠(k≠m≠2j)WN œ Fgj+m

Ô
.

Then Ff,g ”= {0} and for any Ï œ Ff,g and j œ {0, 1, . . . , p}, we have

Lfj,Â
(Ï) = ‰(D)Â(≠N)

p≠jÿ

m=0
i
k≠2j≠m(ND

2)1+m≠ k≠2j
2

A
j + m

m

B

Lgj+m,Â̄
(Ï|2≠(k≠m≠2j)WND2).

Proof. Let Ï œ Sc(R+), with Supp(Ï) µ (c1, c2), where c1 and c2 are positive real

numbers satisfying c1 < c2, then for all x > 0, we get

L(|Ï|)(x) =
⁄ c2

c1
|Ï(t)|e≠xt

dt πc1,c2,Ï e
≠xc1 . (5.30)

Now by (5.1), we deduce that the series
Œÿ

n=≠n0

|aj(n)|(L|Ï|) (2fin) (5.31)

is convergent for all 0 Æ j Æ p. Therefore Sc(R+) µ Ffj for all 0 Æ j Æ p. Since

Sc(R+) is closed under the action of WN , we have Sc(R+) µ Ff,g. We further note

that if Ï œ Ffj , then Ï œ Ffj,Â
for all Â. This follows from (5.20) and the boundedness

of ·‰̄(n).

Now we obtain the functional equations for Lfj,Â
(Ï). From (5.21), we get

Lfj,Â
(Ï) =

⁄ Œ

0
fj,Â(it)Ï(t)dt. (5.32)

By changing the variable from t to 1
ND2t in the above equation, we obtain

Lfj,Â
(Ï) =

⁄ Œ

0
fj,Â

3
i

ND2t

4
Ï

3 1
ND2t

4
(ND

2)≠1
t
≠2

dt.

Using Proposition 5.3.3, we obtain

Lfj,Â
(Ï) = ‰(D)Â(≠N)

ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)

k≠2j
2 i

m+j+k

◊
⁄ Œ

0
gm,Â(it)Ï

3 1
ND2t

4
dt

ND2t2+m+j≠k
.
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5 Converse theorem for weakly holomorphic quasimodular forms

Simplifying the right hand side of the above identity, we obtain

Lfj,Â
(Ï) = ‰(D)Â(≠N)

ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)m+1≠ k

2 i
m+j+k

◊
⁄ Œ

0
gm,Â(it)Ï

3 1
ND2t

4
dt

(ND2t)2+m+j≠k
.

(5.33)

Using (5.29) in (5.33), we obtain

Lfj,Â
(Ï) = ‰(D)Â(≠N)

ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)m+1≠ k

2 i
m+j+k

◊
⁄ Œ

0
gm,Â(it)(Ï|2+m+j≠kWND2)(t)dt

= ‰(D)Â(≠N)
ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)m+1≠ k

2 i
m+j+k

◊Lg
m,Â

(Ï|2+m+j≠kWND2).

Rearranging the terms, we get

Lfj,Â
(Ï) = ‰(D)Â(≠N)

ÿ

0ÆmÆp≠j

A
m + j

j

B

i
k≠m≠2j(ND

2)m+1≠ k≠2j
2 Lg

m+j,Â
(Ï|2+m+2j≠kWND2).

For any s œ C, we define

Ïs(x) := Ï(x)xs≠1
. (5.34)

Note that Ï1 = Ï. We have the following result [5, Theorem 1.2].

Theorem 5.3.5. Let f be a weakly holomorphic quasimodular form of weight k,

depth p, level N and character ‰ with component functions f0, f1, . . . , fp. Set g̨ :=

(g0, g1, . . . , gp) and g̨ = f̨ |k ÊWN . Let n0 be a natural number such that f(z) and g(z)

are O(e2fin0y) as y = Im(z) æ Œ. Suppose that Ï œ C(R,C) is a non-zero function

such that, for some ‘ > 0, Ï(x) and Ï(x≠1) are o(e≠2fi(n0+‘)x) as x æ Œ. We further

assume that for each j œ {0, 1, · · · , p}, the series

Œÿ

n=≠n0

|aj(n)|
1
(L|Ï|2)(2fin)

2 1
2 (5.35)
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5 Converse theorem for weakly holomorphic quasimodular forms

converges. Then for each j œ {0, 1, · · · , p}, the series

L(s, fj, Ï) := Lfj (Ïs) (5.36)

converges absolutely for Re(s) >
1
2 , has an analytic continuation to all s œ C and

satisfies the functional equation

L(s, fj, Ï) =
ÿ

0ÆmÆp≠j

i
m+2j+k

N
m
2

A
j + m

m

B

L(1 ≠ m ≠ 2j ≠ s, gm+j, Ï|1≠kWN). (5.37)

Proof. By following in a similar way as in the proof of [12, Theorem 4.6, pp. 18],

we get that Ïs œ Ffj for Re(s) >
1
2 and 0 Æ j Æ p. Therefore recalling the integral

representation of Lfj (Ïs) = L(s, fj, Ï) in (5.18), we have

L(s, fj, Ï) =
⁄ Œ

0
fj (it) Ï(t)ts dt

t
.

With the change of variable t ‘æ 1/Nt, we obtain

L(s, fj, Ï) =
⁄ Œ

Ô
N

≠1 fj(it)Ï(t)ts dt

t
+

⁄ Œ
Ô

N
≠1 fj

3
i

Nt

4
Ï

3 1
Nt

4
(Nt)≠s dt

t
.

Since f̨ |k ÊW = g̨, using (5.7) we obtain

L(s, fj, Ï) =
⁄ Œ

Ô
N

≠1 fj(it)Ï(t)ts dt

t
+

ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

k≠2j≠2s
2 i

l+j+k

◊
⁄ Œ

Ô
N

≠1 gl(it)Ï
3 1

Nt

4
t
k≠l≠j≠s dt

t
.

(5.38)

Recall that

Ï

3 1
Nt

4
= (Ï|aWN) (t)(Nt)a

for any a œ Z. With a = 1 ≠ k, we get, for Re(s) >
1
2 ,

L(s, fj, Ï) =
⁄ Œ

Ô
N

≠1 fj(it)Ï(t)ts dt

t
+

ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

2≠2j≠2s≠k
2 i

l+j+k

◊
⁄ Œ

Ô
N

≠1 gl(it) (Ï|1≠kWN) t
1≠l≠j≠s dt

t
.

(5.39)
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Similarly for Re(s) > ‹ + 1, we deduce that

L(s, gj, Ï) =
⁄ Œ

Ô
N

≠1 gj(it)Ï(t)ts dt

t
+

ÿ

jÆlÆp

A
l

j

B

(≠1)l≠j
N

2≠2j≠2s≠k
2 i

l+j≠k

◊
⁄ Œ

Ô
N

≠1 fl(it) (Ï|1≠kWN) t
1≠l≠j≠s dt

t
.

(5.40)

From (5.39), we see that L(s, fj, Ï) has analytic continuation to all s œ C.

Now we establish the claimed functional equation. From (5.40) we obtain

L(s, gj, Ï) =
⁄ Œ

Ô
N

≠1 gj(it)Ï(t)ts dt

t
+ i

2j≠k
N

2≠2j≠2s≠k
2

⁄ Œ
Ô

N
≠1 fl(it) (Ï|1≠kWN) t

1≠l≠j≠s dt

t

+
ÿ

j+1ÆlÆp

A
l

j

B

(≠1)l≠j
N

2≠2j≠2s≠k
2 i

l+j≠k
⁄ Œ

Ô
N

≠1 fl(it) (Ï|1≠kWN) t
1≠l≠j≠s dt

t
.

(5.41)

Using (5.7), we observe that for each 1 Æ l Æ p, we have

fl(it) =
ÿ

lÆmÆp

A
m

l

B

(≠1)m≠l
N

2m≠k
2 i

m+l+k
t
m+l≠k

gm

3
i

Nt

4
.

Using the above identity in (5.41), we obtain

L(s, gj, Ï) =
⁄ Œ

Ô
N

≠1 gj(it)Ï(t)ts dt

t
+ i

2j≠k
N

2≠2j≠2s≠k
2

⁄ Œ
Ô

N
≠1 fl(it) (Ï|1≠kWN) t

1≠l≠j≠s dt

t

+
ÿ

j+1ÆlÆp

A
l

j

B

(≠1)l≠j
N

2≠2j≠2s≠k
2 i

l+j≠k

◊
⁄ Œ

Ô
N

≠1

ÿ

lÆmÆp

A
m

l

B

(≠1)m≠l
N

2m≠k
2 i

m+l+k
gm

3
i

Nt

4
(Ï|1≠kWN) t

1+m≠j≠k≠s dt

t
.

Interchanging the summations in the last integral of the right-hand side of the above

identity, using the combinatorial identity
1

l
j

21
m
l

2
=

1
m
j

21
m≠j
m≠l

2
and changing the vari-

able t æ 1/Nt, we obtain

L(s, gj, Ï) =
⁄ Œ

Ô
N

≠1 gj(it)Ï(t)ts dt

t
+ i

2j≠k
N

2≠2j≠2s≠k
2

⁄ Œ
Ô

N
≠1 fl(it) (Ï|1≠kWN) t

1≠l≠j≠s dt

t

+ i
≠k

ÿ

j+1ÆmÆp

(≠1)m≠j

A
m

j

B

i
m+j+k

ÿ

j+1ÆlÆm

A
m ≠ j

m ≠ l

B

i
2l

⁄ Ô
N

≠1

0
gm (it) Ï(t)ts+j≠m dt

t
.

(5.42)
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Using (4.13) in (5.42), we obtain

L(s, gj, Ï) =
⁄ Œ

Ô
N

≠1 gj(it)Ï(t)ts dt

t
+ i

2j≠k
N

2≠2j≠2s≠k
2

⁄ Œ
Ô

N
≠1 fl(it) (Ï|1≠kWN) t

1≠l≠j≠s dt

t

≠ i
2j≠k

ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
i
m+j+k

⁄ Ô
N

≠1

0
gm (it) Ï(t)ts+j≠m dt

t
.

(5.43)

Similar to the expression we have got for L(s, gj, Ï) in (5.41), we obtain the following

expression for L(s, fj, Ï):

L(s, fj, Ï) =
⁄ Œ

Ô
N

≠1 fj(it)Ï(t)ts dt

t
+ i

2j+k
N

2≠2j≠2s≠k
2

⁄ Œ
Ô

N
≠1 gj(it) (Ï|1≠kWN) t

1≠2j≠s dt

t

+
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
N

2≠2j≠2s≠k
2 i

m+j+k
⁄ Œ

Ô
N

≠1 gm(it) (Ï|1≠kWN) t
1≠m≠j≠s dt

t
.

(5.44)

Now from (5.43) and (5.44), we obtain

L(s, fj, Ï)≠i
2j+k

N
2≠2j≠2s≠k

2 L(1 ≠ 2j ≠ s, gj, Ï|1≠kWN)

=
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
i
m+j+k

N
2≠2j≠2s≠k

2

⁄ Œ

0
gm(it) (Ï|1≠kWN) (t)t1≠m≠j≠s dt

t

=
ÿ

j+1ÆmÆp

A
m

j

B

(≠1)m≠j
i
m+j+k

N
2≠2j≠2s≠k

2 L(1 ≠ m ≠ j ≠ s, gm, Ï|1≠kWN)

Rearranging the terms we get

L(s, fj, Ï) =
ÿ

0ÆmÆp≠j

i
m+2j+k

N
m
2

A
j + m

m

B

L(1 ≠ m ≠ 2j ≠ s, gm+j, Ï|1≠kWN).

5.4 Converse theorem

In this section, we obtain the converse of Theorem 5.3.4. The theorem is as follows

[5, Theorem 1.3].

Theorem 5.4.1. Let k, p and N be integers with p Ø 0, N Ø 1 and ‰ let be a

Dirichlet character modulo N . For each integer 0 Æ j Æ p, let (aj(n))nØ≠n0 and
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(bj(n))nØ≠n0 for some integer n0, be a pair of sequence of complex numbers such that

aj(n) = O(eC
Ô

|n|) and bj(n) = O(eC
Ô

|n|) for some C > 0. Put

fj(z) =
Œÿ

n=≠n0

aj(n)qn
, gj(z) =

Œÿ

n=≠n0

bj(n)qn
, 0 Æ j Æ p.

For any Ï œ Sc(R+) and any Dirichlet character Â modulo D with D œ {1, 2, . . . , N
2≠

1} and (D, N) = 1, we assume that

Lfj,Â
(Ï) = ‰(D)Â(≠N)

ÿ

0ÆmÆp≠j

i
k≠2j≠m(ND

2)1+m≠ k≠2j
2

A
j + m

m

B

◊Lgj+m,Â̄
(Ï|2≠(k≠m≠2j)WND2).

(5.45)

Then the function f0(z) is a weakly holomorphic quasimodular form of weight k, depth

p, level N and characters ‰ with component functions f0, f1, . . . , fp and f̨ |k ÊWN = g̨ :=

(g0, g1, . . . , gp), where f̨ := (f0, f1, . . . , fp).

Proof. By using Lemma 5.2.3, we see that f0, f1, · · · , fp and g0, g1, · · · , gp define holo-

morphic functions on H and all satisfy the condition (2) of Definition 1.3.2. Likewise,

for any Dirichlet character Â modulo D, recall that, for 0 Æ j Æ p, by definition

fj,Â(z) =
Œÿ

n=≠n0

·Â̄(n)aj(n)qn
, (5.46)

gj,Â(z) =
Œÿ

n=≠n0

·Â̄(n)bj(n)qn (5.47)

are absolutely convergent. Our aim is to show that for each j = 0, 1, · · · , p, we have

fj,Â(z) = ‰(D)Â(≠N)i2k
ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)k/2≠m(ND

2
z)m+j≠k

gm+j,Â

3 ≠1
ND2z

4
.

(5.48)

Since both sides of (5.48) are holomorphic functions, it su�ces to show the equality

(5.48) on the vertical line z = it, t > 0. Note that for any s œ C and Ï œ Sc(R+),

Ïs(t) = t
s≠1

Ï(t) œ Sc(R+). We first show that Ïs satisfies (5.10) for fj,Â and gj,Â,

j = 0, 1, · · · , p and hence belongs to
pu

j=0
(Ffj,Â

flFgj,Â
). Indeed, since Ï œ Sc(R+), there
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5 Converse theorem for weakly holomorphic quasimodular forms

exist real numbers c1 and c2 with 0 < c1 < c2 and C > 0 such that Supp(Ï) µ [c1, c2]

and |Ï(t)| Æ C for any t > 0. Then for n > 0,

|aj(n)|(L|Ïs|) (2fin) Æ C|aj(n)|
⁄ c2

c1
t
Re(s)

e
≠2fint dt

t

Æ C|aj(n)|e≠2finc1(c2 ≠ c1) max{c
Re(s)≠1
1 , c

Re(s)≠1
2 }.

Thus

Œÿ

n=≠n0

|·Â̄(n)||aj(n)|(L|Ïs|)(2fin) Æ
0ÿ

n=≠n0

|·Â̄(n)||aj(n)|(L|Ïs|)(2fin)

+ C(c2 ≠ c1) max{c
Re(s)≠1
1 , c

Re(s)≠1
2 }

Œÿ

n=1
|·Â̄(n)||aj(n)|e≠2finc1 < Œ (5.49)

for any s œ C and any Dirichlet character Â modulo D. Similarly, for any s œ C and

any Dirichlet character Â modulo D, we obtain

|bj(n)|(L|Ïs|) (2fin) Æ C|aj(n)|e≠2finc1(c2 ≠ c1) max{c
Re(s)≠1
1 , c

Re(s)≠1
2 } (5.50)

and

Œÿ

n=≠n0

|·Â̄(n)||aj(n)|(L|Ïs|)(2fin) Æ
0ÿ

n=≠n0

|·Â̄(n)||aj(n)|(L|Ïs|)(2fin)

+ C(c2 ≠ c1) max{c
Re(s)≠1
1 , c

Re(s)≠1
2 }

Œÿ

n=1
|·Â̄(n)||aj(n)|e≠2finc1 < Œ. (5.51)

Thus Ïs œ
pu

j=0
(Ffj,Â

fl Fgj,Â
) and by Weierstrass theorem, we see that for each

j = 0, 1, · · · , p, as functions of s, Lfj,Â
(Ïs) and Lgj,Â

(Ïs) are analytic functions. Then,

by inverse Mellin transform, we get

fj,Â(it)Ï(t) = 1
2fii

⁄

Re(s)=‡

Lfj.Â
(Ïs)t≠s

ds (5.52)

for all ‡ œ R.

Now we will show that Lfj‰(Ïs) æ 0 as | Im(s)| æ Œ, uniformly for Re(s), in any

compact set in C. Indeed, from (5.18), we obtain

Lfj,Â
(Ïs) =

⁄ Œ

0
fj,Â(it)Ï(t)ts dt

t
.
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Using integration by parts and the fact that Ï(t) vanishes in (0, ‘)fi (1/‘, Œ) for some

‘ > 0, we obtain

Lfj,Â
(Ïs) = ≠1

s

⁄ Œ

0

d

dt

1
fj.Â(it)Ï(t)

2
t
s
dt.

Then
---Lfj,Â

(Ïs)
--- Æ 1

|s|

⁄ Œ

0

-----
d

dt

1
fj,Â(it)Ï(t)

2----- t
Re(s)

dt æ 0 (5.53)

as | Im(s)| æ Œ.

We can therefore move the line of integration in (5.52) from Re(s) = ‡ to Re(s) = ”.

Thus we have

fj,Â(it)Ï(t) = 1
2fii

⁄

Re(s)=”

Lfj.Â
(Ïs)t≠s

ds. (5.54)

Applying the functional equation (5.45) in (5.54), we obtain

fj,Â(it)Ï(t) = ‰(D)Â(≠N)
ÿ

0ÆmÆp≠j

A
m + j

j

B

i
k≠m≠2j(ND

2)m+1≠ k≠2j
2

◊ 1
2fii

⁄

Re(s)=”

Lg
m+j,Â

(Ïs|2+m+2j≠kWND2)t≠s
ds.

(5.55)
Changing the variable from s to k ≠ m ≠ 2j ≠ s in the above integral, we get

fj,Â(it)Ï(t) =‰(D)Â(≠N)
ÿ

0ÆmÆp≠j

A
m + j

j

B

i
k≠m≠2j(ND

2)m+1≠ k≠2j
2

◊ 1
2fii

⁄

Re(s)=k≠m≠2j≠”

Lg
m+j,Â

(Ïk≠m≠2j≠s|2+m+2j≠kWND2)ts≠k+m+2j
ds.

(5.56)
Now for each t > 0, we have

(Ïk≠m≠2j≠s|2+m+2j≠kWND2)(t) = (ND
2
t)k≠m≠2j≠2

Ïk≠m≠2j≠s

3 1
ND2t

4

= (ND
2
t)s≠1

Ï

3 1
ND2t

4
.

(5.57)

By (5.57) , we obtain

Lg
m+j,Â

(Ïk≠m≠2j≠s|2+m+2j≠kWND2) =
⁄ Œ

0
gm+j,Â(it)(Ïk≠m≠2j≠s|2+m+2j≠kWND2)(t)dt

=
⁄ Œ

0
gm+j,Â(it)(ND

2
t)s≠1

Ï

3 1
ND2t

4
dt.

(5.58)
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Changing the variable from t to 1/ND
2
t in the above integral, we obtain

Lg
m+j,Â

(Ïk≠m≠2j≠s|2+m+2j≠kWND2) = 1
ND2

⁄ Œ

0
gm+j,Â

3
≠ 1

iND2t

4
Ï(t)t≠s≠1

dt.

(5.59)

Now by the inverse Mellin transform, we have

1
ND2 gm+j,Â

3 ≠1
iND2t

4
Ï(t) = 1

2fii

⁄

Re(s)=k≠m≠2j≠”

Lg
m+j,Â

(Ïk≠m≠2j≠s|2+m+2j≠kWND2)ts
ds.

(5.60)

Using (5.60) in (5.56), we obtain

fj,Â(it)Ï(t) = ‰(D)Â(≠N)
ÿ

0ÆmÆp≠j

A
m + j

j

B

i
k≠m≠2j(ND

2)m≠ k≠2j
2 t

m+2j≠k

◊gm+j,Â

3 ≠1
iND2t

4
Ï(t).

(5.61)

Therefore if t œ R+ such that Ï(t) ”= 0, then from the above identity, we have

fj,Â(it) = ‰(D)Â(≠N)
ÿ

0ÆmÆp≠j

A
m + j

j

B

i
k≠m≠2j(ND

2)m≠ k≠2j
2 t

m+2j≠k
gm+j,Â

3 ≠1
iND2t

4
.

(5.62)

Now from the definition of Sc(R+), for each t œ R+ there exists Ï œ Sc(R+) such that

Ï(t) ”= 0. Thus (5.62) is true for all t œ R+. Therefore we get

fj,Â(z) = ‰(D)Â(≠N)i2k
ÿ

0ÆmÆp≠j

A
m + j

j

B

(≠1)m(ND
2)m≠ k≠2j

2 z
m+2j≠k

gm+j,Â

3
≠ 1

ND2z

4
.

(5.63)

Rearranging the terms, we obtain

fj,Â(z) = ‰(D)Â(≠N)i2k
ÿ

jÆmÆp

A
m

j

B

(≠1)m≠j(ND
2)k/2≠m(ND

2
z)m+j≠k

gm+j,Â

3
≠ 1

ND2z

4
.

(5.64)

By Proposition 5.2.7, we have

f̨j,Â = ‰(D)Â(≠N)(g̨j,Â̄|k ÊW ≠1
ND2). (5.65)
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Let

FÂ(z) =
ÿ

0Æ¸Æp

f¸,Â(z)(2iy)≠¸ and GÂ(z) =
ÿ

0Æ¸Æp

g¸,Â(z)(2iy)≠¸
. (5.66)

Then by (5.65), we get

FÂ = ‰(D)Â(≠N)GÂ̄|kW
≠1
ND2 . (5.67)

By (5.26), we have

GÂ̄ =
Dÿ

u=1
Â(u)G|kT

u/D
. (5.68)

For any integer u with (u, D) = 1, let n and v be integers such that nD ≠ Nuv = 1.

Observe that

T
u/D

W
≠1
ND2 =

A
1/D 0

0 1/D

B

W
≠1
N

A
D ≠v

≠uN n

B

T
v/D

. (5.69)

Therefore using the identity F = G|kW
≠1
N (deduced by applying (5.67) with D = 1),

we have

G|kT
u/D

W
≠1
ND2 = F |k

A
D ≠v

≠uN n

B

T
v/D

. (5.70)

Hence

GÂ̄|kW
≠1
ND2 =

Dÿ

u=1
Â(u)F |k

A
D ≠v

≠uN n

B

T
v/D

. (5.71)

Now from (5.67) and (5.71), we obtain

FÂ = ‰(D)Â(≠N)
Dÿ

u=1
Â(u)F |k

A
D ≠v

≠uN n

B

T
v/D

= ‰(D)
Dÿ

v=1
Â(v)F |k

A
D ≠v

≠uN n

B

T
v/D

. (5.72)

By (5.25), we have

FÂ =
Dÿ

v=1
Â(v)F |kT

v/D
. (5.73)

Now from (5.72) and (5.73), we obtain
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Dÿ

v=1
Â(v)F |kT

v/D = ‰(D)
Dÿ

v=1
Â(v)F |k

A
D ≠v

≠uN n

B

T
v/D

. (5.74)

By the orthogonality of the multiplicative characters, after taking the sum over all

characters modulo D, we deduce that, for each integer u and v such that ≠Nuv ©

1(modD), we have

F = ‰(D)F |k
A

D ≠v

≠uN n

B

, (5.75)

which implies

F |k
A

n v

uN D

B

= ‰(D)F. (5.76)

For each positive m, let t, s be any integers satisfying the condition that
A

t s

mN D

B

œ

�0(N). For each congruence class modulo mN , let Sm be the set consisting of exactly

one of these
A

t s

mN D

B

. By [28, Proposition 3], we know that the set

N€

m=1
Sm fi

I

±
A

1 0
0 1

BJ

(5.77)

generates �0(N). Therefore from (5.76), we obtain

F |k“ = ‰(D)F (5.78)

for all “ œ �0(N). Therefore F is a nearly weakly holomorphic modular form of

weight k, depth p, level N and character ‰. Now by Proposition 5.2.4, we get that

the function f0(z) is a weakly holomorphic quasimodular form of weight k, depth p,

level N and characters ‰ with component functions f0, f1, . . . , fp. By using (5.65)

with D = 1, we get f̨ |k ÊWN = g̨.
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