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SUMMARY
The specific arrangement of the magnetic moments in a magnetic material controls

the physical properties of the system. In most of the cases, the parallel and an-

tiparallel arrangements of the moments are studied rigorously. However, as the field

progress, a new type of magnetic state, namely the non-collinear magnetic order,

has attracted much interest. In particular, the non-collinear antiferromagnets are

the subject of special attention due to the recent findings of non-trivial magnetic

and transport properties. Like the collinear antiferromagnets, non-collinear antifer-

romagnets also exhibit faster dynamics and exclude the effect of stray fields. In this

direction, the kagome lattice compound Mn3Sn is one of the most exciting antiferro-

magnets that exhibits a triangular antiferromagnetic ordering. Despite having zero

magnetic moment, Mn3Sn displays a large anomalous Hall effect due to the presence

of cluster octupole magnetic order that breaks the time reversal symmetry.

Though the room temperature magnetic ground state of the Mn3Sn is well

known, the modification of the magnetic state with temperature is still not fully un-

derstood. Different Mn3Sn samples displays two types of temperature dependency,

one where the magnetization drops to zero suddenly below 200 K and the second one

where the magnetization rises sharply below 50 K. The sudden reduction in magne-

tization in some of the samples at 200 K shows a helical modulation of the regular

spin structure. The source for the rise in the magnetization in the other case is not

well understood. This thesis reveals the mechanism of these temperature-induced

magnetic transitions in different Mn3Sn samples.

The magnetization and Hall transport measurements on the polycrystalline sam-

ples of Mn3+xSn1−x show that the helical phase transition can be stabilized for the

Mn3.03Sn0.97 sample, whereas the Mn3.05Sn0.95 sample only shows the low tempera-

ture transition involving rise in the magnetization. It is found that the application
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of external isotropic pressure leads to a phase transition from the inverse triangular

structure to the helical phase for Mn3.05Sn0.95. This magnetic phase transition leads

to a switching of the anomalous Hall signal of the samples. Theoretical calculations

reveal that the exchange frustration of out-of-plane exchange interactions stabilizes

the helical magnetic phase. It is also shown that the trimerization of the kagome

lattice with an application of pressure plays a deterministic role in the exchange

interaction.

It is found that the low temperature transition can be stabilized for the high

electron doping samples. In this regard, single crystalline samples of Mn3.09Sn0.91,

Mn2.7Fe0.3Sn and Mn2.5Fe0.5Sn are synthesized. The crystal direction-dependent

magnetization measurements reveal that the magnetic moment exhibits a sudden

rise when the field is applied along the c-axis of the sample. With higher Fe doping,

the net magnetization along the c-axis and the temperature corresponding to the

magnetization transition keeps increasing. The neutron diffraction measurements

and the density functional theory (DFT) calculations confirms the partial reorien-

tation of the magnetic moments of the inverse triangle structure along the c-axis,

resulting in a canted magnetic ground state. A remarkable feature is noticed for the

canted magnetic state, where the in-plane octupole order coexists along with the

out-of-plane non-coplanar order. The presence of distinct Hall signals characteriz-

ing these two different magnetic orders is also demonstrated. Lastly, the theoretical

calculations show that the canted state is stabilized by the high-order 4-spin and

6-spin exchange interactions.

Finally, the role of electron doping in stabilizing the canted state and thus the

high order exchange interaction is probed by an alternate way of electron doping by

replacing the nonmagnetic Sn atoms with the Sb atoms. However, the stabilization

of the low temperature canted magnetic state is not observed. Instead, the Sb

doping leads to the formation of the helical phase, which also shows a new magnetic
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transition inside the helical phase for the high Sb doped samples.
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Chapter 1

Introduction

This thesis concerns different magnetic ground state spin structures in magnetic

materials. To be specific, the present thesis covers the stabilization mechanisms,

observable properties, and potential use of different spin structures in spintronic de-

vices. The well-known noble prize-winning phenomenon of giant magnetoresistance

(GMR) shows the importance of the relative orientation of magnetic moments to

achieve desirable properties.1,2 In case of GMR, the alignment of the two magnetic

layers separated by a non-magnetic spacer layer dictates the overall electrical resis-

tance of the system. The magnetic moments of two magnetic layers can align either

parallel or antiparallel depending on the the thickness of the non-magnetic layer.3,4

It was observed that the resistance of such a system changes with the parallel or

antiparallel arrangement of the spins, where parallel arrangement of magnetic mo-

ments leads to a low resistance state and the antiparallel orientation gives a high

resistance state. Thus, by controlling the direction of magnetic moments, the re-

sistance of a device can be efficiently controlled. Following the discovery of GMR,

tunneling magnetoresistance (TMR) was observed in magnetic/insulating/magnetic

multilayer systems, where the difference between the high and low resistance states

was found to be extremely large.5 The read heads in vastly used hard disk drives

(HDD) use the TMR phenomenon for reading the information stored in magnetic

bits.
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From the TMR-based read heads to the magnetic domains-based HDD, most

of the devices currently use ferromagnetic (FM) materials. However, with the in-

creasing demand for high density and high speed storage devices, improving upon

the current FM based techniques is challenging. Many inherent side effect of ferro-

magnets like the stray fields and fragility to the high external magnetic field limit

their use in densely packed devices. On the other hand, the antiferromagnets with

net-zero magnetic moments are free of these problems. Antiferromagnetic (AFM)

materials are immune to external magnetic fields and do not affect a neighboring

antiferromagnetic domain in a closely packed storage device. On top of that, anti-

ferromagnets also show faster dynamic responses and can have nano-sized magnetic

domains.6 However, this innocuous behaviors of antiferromagnets make them invis-

ible to traditional magnetic probing techniques, making it difficult to implement

them in spintronic devices.

In this regard, non-collinear antiferromagnets present an excellent prospect akin

to their non-trivial transport properties. One can find many exciting and complex

AFM materials that show a variety of non-AFM-like responses. As exemplified in

case of GMR/TMR, the relative orientation of magnetic moments can completely

redefine the physical properties of a material. Thus the complex magnetic structures

of the non-collinear antiferromagnets offer a limitless opportunity for the realization

of desirable properties. The most important aspect of these non-collinear AFM state

is the possibility of finding a better way to externally control them in comparison

to the conventional AFM materials. This can only be achieved by fundamental un-

derstanding of different mechanisms that stabilizes these non-collinear AFM states.

Thus the study of different physical properties of these complex magnetic states and

understanding their underlying mechanisms is of utmost importance for the real-

ization of low power, faster and smaller technological devices desired in the field of

spintronics.

In the following a brief discussion is focused on various fundamental aspects of

magnetic interactions that are being enforced in the present thesis work. In addition,

a through literature survey is presented based on the main theme of the work carried
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out in the present thesis.

1.1 Magnetic energy landscape: Exchange inter-

actions

The stabilization of a magnetic ordered states can be understood through the min-

imization of energy contributing to the magnetic Hamiltonian. While discussing

the magnetism of solid-state systems, the smallest unit of magnetic moment can be

considered to be arising from an atom. The magnetic moment of the atom may

arise due to the orbital motion or the intrinsic quantum mechanical spin angular

momentum of the electrons. Different magnetically ordered states are in general

stabilized as a result of the collective interaction among the magnetic moments of

atoms in a crystal lattice. Similar to the interaction between two electric dipoles or

two nearby current-carrying wires, two magnetic dipoles sitting close to each other

also interact. This interaction is called the dipole-dipole interaction and can be

written as,

H = − µ0

4π|r3|
[3(m1.r̂)(m2.r̂)−m1.m2]. (1.1)

Here µ0 is the permeability of vacuum, r is the distance between the magnetic

dipoles, m1 and m2 are the magnetic dipole moments of the two atoms and r̂ is

the unit vector pointing from m1 to m2. The dipole interactions can be substantial

at a macroscopic level, but their comparative energy at microscopic scale is small.

It is exemplified by the fact that the ordering temperature of most of the common

ferromagnets can not be explained based on the strength of dipole-dipole interaction

only. The dipole-dipole interaction is the weakest one among different magnetic

interactions through which two spins in a solid-state lattice interact. Thus, let us

first look at different interactions in magnetic materials that lead to the stabilization

of magnetic ground states. Afterward, a detailed discussion on different magnetic

states that are being stabilized by these interactions will be focused.

The exchange interaction is the primary force behind the stabilization of or-
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dered magnetic states. Like the existence of mediators for the fundamental forces,

the exchange interactions are also mediated by the motion of electrons in the lattice.

Depending on the nature of the system, the exchange interaction can be of ferro-

magnetic or antiferromagnetic in nature. The exchange Hamiltonian can be written

as,

H = −Jij(Si.Sj), (1.2)

where J is the exchange strength constant and Si and Sj are spin magnetic moments

at the ith and jth sites. The exchange interactions can broadly be divided into two

categories: the direct exchange and the indirect exchange.

1.1.1 Direct Exchange

The simplest and most fundamental form of exchange interaction is the direct ex-

change. This kind of exchange arises when the orbitals of two neighboring ions

directly overlap with each other. During such overlapping, the spin part of the sys-

tem can either exist in the triplet state or in the singlet state. The singlet state with

antiparallel orientation of the spins minimizes the total energy of the system against

the electrostatic force. Thus, an antiferromagnetic exchange develops between the

magnetic moments of atoms. Direct exchange, although looks fundamental but is

seldom observed in real systems. The actual systems mostly show the exchange

interactions of indirect nature.

1.1.2 Indirect Exchange

The indirect exchange can be of different types, but all are a results of the motion of

the electrons in the crystal lattice. It is well known that the energy of an electron in

a 1-D box is inversely proportional to the length of the box. Similarly, an electron

on a lattice site tries to move to other lattice sites to ’increase’ the length of the box

to which it is confined. By doing so, it lowers the kinetic energy, a process called

hopping. The hopping of the electrons from site A to site B is possible only under
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Figure 1.1: Schematic representation of possible hopping scenarios of electrons in
two sites ’A’ and ’B’. (a) Hopping on a half filled three degenerate energy levels. (b)
Hopping parameters on two sites with split energy levels.

two circumstances. 1. The target orbital at site B is completely empty. 2. The

unpaired electrons in the site B exhibit an opposite spin alignment to the spin of

the electron at site A. This restriction is a direct consequence of Pauli’s exclusion

principle. Let us consider a simple example of a system with three degenerate

energy levels at sites A and B [Fig. 1.1 (a)]. We first consider half-filled orbitals

with three unpaired electrons. Now, if the electron spins at each site points in

the same direction, it is apparent that the electrons can not hop to the following

sites, as hopping preserves the direction of the electron spin. Thus, the spins at

sites A and B must align oppositely for the hopping to occur. Hence, this process

leads to an antiferromagnetic exchange. Now, let us consider a system as shown in

Fig. 1.1 (b), with three orbitals and two electrons at each site. In this case, the

nature of exchange will depend on the strength of the hopping parameter t. If t11 is
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Figure 1.2: Schematic of superexchange mechanism leading to an antiferromagnetic
exchange between two Mn atoms.

substantially stronger than t12, then again, antiferromagnetic exchange is preferred.

On the contrary, when t12 is stronger, a ferromagnetic exchange is possible. In

physical system, the indict exchange appears mostly as superexchange and double

exchange.

1.1.2.1 Superexchange

In this type of exchange, the interaction between two magnetic moments may occur

through a non-magnetic atom.7 An example of this type of exchange is the stabi-

lization of antiferromagnetic order in MnO, where two Mn atoms are separated by a

significant distance; thus, a direct hopping of electrons is not possible. The hopping

between d orbitals of Mn atoms is facilitated through the p orbitals of the oxygen

atom. Figure 1.2 shows the schematic diagram of the superexchange process. When

the two electrons at two different Mn ions align antiferromagnetically, the electrons

can easily hop between different sites. On the other hand, for a ferromagnetic align-

ment, electron hopping is forbidden. Thus, a robust antiferromagnetic exchange is

stabilized.
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Figure 1.3: Energy level schematic of double exchnage interaction between two Mn atoms
with different oxidation states.

1.1.2.2 Double exchange

The double exchange phenomenon occurs in magnetic systems where mixed valency

of the same magnetic ion is present. The double exchange interaction is also a type

of superexchange, but the presence of the same ion with two different oxidation

states leads to a modification of exchange interaction. The double exchange was

proposed by Zener in La1−xSrxMnO3.8 LaMnO3 and SrMnO3 are antiferromagnetic

insulators, with Mn having an oxidation state of 3+ and 4+, respectively. The

antiferromagnetic exchange in the end compounds is mediated by superexchange

and can be understood from the Fig. 1.2. It is clear that for Mn atoms with the

same oxidation state, oxygen-mediated antiferromagnetic coupling is possible. Now,

for the Sr doped LaMnO3, the Mn ions exist in both the 3+ and 4+ oxidation states.

This scenario is represented as energy levels in the Fig. 1.3. The extra electron from

the Mn3+ site can easily hop to the corresponding empty level on the Mn4+ ionic

site. However, due to strong Hund’s coupling between eg and t2g electrons, it is

not energetically favorable for the electron to hop to an eg orbital where the t2g
are aligned oppositely. Thus the ferromagnetic exchange is the dominant exchange

interaction in this case and the earlier insulating antiferromagnetic state transforms

to a conducting ferromagnetic state.9,10
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1.1.3 Asymmetric or chiral exchange

All the exchange interactions discussed in the previous sections can be modeled

with the same Heisenberg exchange Hamiltonian with the dot product of magnetic

moments at two sites (eq. 1.2). Hence, the exchange interaction is symmetric

with respect to an interchange of magnetic moments between two sites as (Si.Sj)

= (Sj.Si). For asymmetric exchange interactions, the interchange of magnetic sites

leads to a change in the sign of the energy term. The asymmetric exchange is also a

manifestation of the processes described above in section 1.1.2, but with an added

effect of spin-orbit coupling (SOC).11 The spin-orbit coupling controls the normal

hopping of the electrons to the excited state of the system and leads to an exchange

term that is vectorial. The Dzysloshnkii-Moriya Interaction (DMI) is a well-known

example of such chiral exchange, which can be written as

H = −Dij(Si × Sj). (1.3)

.

While the Heisenberg exchange interactions lead to a parallel or anti-parallel

arrangement of spins, the DMI interaction tries to align spins at 90◦ to each other.

This interaction was initially found in antiferromagnet α-Fe2O3.12 In Fe2O3, the

strong antiferromagnetic exchange tries to align spins antiparallel to each other,

whereas the DMI interaction prefers an angle of 90◦ between the two neighboring

spins. This leads to a small canting of the spins from the 180◦ antiferromagnetic

structure. The DMI plays an important role in the research related to the chiral

magnetic textures. The DMI can only be found in systems with broken inversion

symmetry.

1.1.4 Higher order exchange

The exchange interactions are mediated by hopping of electron between lattice sites.

When we consider the Heisenberg exchange interaction, an electron hops from a site
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Figure 1.4: Schematic of 2-spin and different 4-spin exchange interactions.

i to j and then j to i. [Fig. 1.4 (a)]. In the t
U

expansion of Hubbard model,

the strength of this interaction is proportional to t2

U
( t2ij

U
), where U is the on-site

energy.13,14 Although most of the magnetic ordered states can be explained by the

Heisenberg exchange interactions, higher order exchange interaction are also per-

mitted and can contribute in many materials.

These higher order terms involve multiple hopping of electrons, and can couple

multiple spins at multiple sites. The most common addition are the 4-spin exchange

interactions, whose strength in the t
U
expansion is proportional to t4

U3 . Consider four

sites on a square lattice as shown in fig. 1.4 (d). The process of hopping from and

to the site ’1’ can be achieved in a ring manner. For this ring exchange case, the



10 Introduction

electron makes four jumps around the lattice points sitting on a square/rectangular

position. The exchange mediated in this case is brought about by four hopping,

and information about four sites is included in this process. The strenght for this

case is proportional to t12t23t34t41
U3 . This exchange process is called a 4-spin-four-site

interaction.

The 4-spin exchange can further be present in the form of a 4-spin-two-site and

4-spin-three-site exchange. For the 4-spin-two-site interaction, the electron hops

between two ionic sites twice [1.4 (b)]. This can only be possible when multiple

energy levels are present on the ions, i.e. S > 1
2
systems. The 4-spin-two-site

exchange can be understood in detail from the fig. 1.5. Let us consider two sites with

two energy levels. The hopping strength parameters t11, t12 and t22 are as marked in

figure. Now, if the strength of t11 is dominant over other hopping parameters, then

an antiferromagnetic exchange is most viable. But, depending on the strength of

other hopping parameters, the electron can hop between two sites following t12 —>

t22 —> t12 —> t11. This process is similar to the 4-spin-four-site ring exchange,

but the double hopping takes place among two sites only. The strength in this

case is proportional to t212t22t11
U3 . Similarly, the 4-spin-three-site exchange can take

place through four hopping on three sites. Fig. 1.4 (c) shows the schematic of

such 4-spin-three-site interaction. The strength of 4-spin-three-site interaction is

proportional to t212t
2
23

U3 . Beyond 4-spin exchange, the 6-spin exchange can also exist

in some materials.15 The full Hamiltonian with 2-spin, 4-spin and 6-spin terms can

be written as

H =
∑
ij

Jij(Si.Sj) +
∑
ij

Bij(Si.Sj)
2

+
∑
ijk

Yijk[(Si.Sj)(Sj.Sk) + (Sj.Si)(Si.Sk) + (Si.Sk)(Sk.Sj)]

+
∑
ijkl

Kijkl[(Si.Sj)(Sk.Sl) + (Si.Sl)(Sj.Sk)− (Si.Sk)(Sj.Sl)]

+
∑
ijk

Xijk(Si.Sj)(Sk.Sl)(Sl.Si). (1.4)
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Figure 1.5: Energy level schematic of a model system with non-degenerate energy
levels. The hopping parameters for different possible hopping are marked (left).
Multi hopping process leading to a 2-spin-two-site bi-quadratic interaction (right).

The B, Y , K and X are the strength parameters of different high order terms. Only

the 6-spin-three-site form of 6-spin exchange is written in Hamiltonian 1.4. Other

form of 6-spin exchange include two-site and a six-site ring exchange. A detailed

mathematical analysis for these exchanges can be found in a report by Hoffmann

et al..16 In addition to the higher-order analog of the Heisenberg exchange, the

higher-order analog of asymmetric exchange can also be found.17
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1.2 Magnetically ordered states

1.2.1 Collinear magnetic states

Now that we have discussed different magnetic exchange interactions, let us look

at possible magnetically ordered ground states that can be stabilized by one or a

combination of these interactions. The most common magnetic orderings that we

come across are the ferromagnetic and antiferromagnetic states. The basis of the

ferromagnetic/antiferromagnetic states, which can be described as collinear mag-

netic alignment, is the manifestation of sign of the exchange constant J as given in

Equation-1.2. In the simplest case, where the exchange exists between the nearest

neighbors, a positive/negative sign of the exchange constant J leads to the ferro-

magnetic/antiferromagnetic (Fig. 1.6) ordering. In this case, the ordering tempera-

ture depends directly on the strength of J . Beyond these simple collinear magnetic

ground states, more complex arrangement of the magnetic spins can also be possible

in magnetic materials. The main work of this thesis is focused on these complex

magnetic ground states. A comprehensive understanding of these noncollinear mag-

netic ground state is discussed below.

1.2.2 Noncollinear magnetic states

1.2.2.1 Exchange frustration

Now lets consider a situation where the exchange constant J has contribution from

both nearest neighbor exchange (J1) and next nearest neighbor exchange (J2). The

introduction of the J2 drastically affects the magnetic ground state of the system.

Let us first consider the ferromagnetic ground state with positive J1. If the J2 is also

having same sign, then the ferromagnetic state remains the ground state. However,

for the case when J2 is antiferromagnetic, the ferromagnetic ground state of the

system is no longer compatible. Now depending on the relative strength of the J2

and J1, a noncollinear magnetic state can be stabilized. In some cases, a spin spiral
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Figure 1.6: (a) A 1-D chain of atoms with possible magnetic states for different
kind of exchange interactions. The exchange interactions between different sites
are marked. (b) Ground state magnetic structure representation of a frustrated
triangular lattice with in-plane and out-of-plane magnetic anisotropy.

state can also be stabilized where every spin orients with an angle θ to its nearest

neighbor [Fig. 1.6 (a)]. The relative angle between the neighboring spin in this case

is given by the minima of −J1cos(θ) + J2cos(2θ). Similarly, an antiferromagnetic

J1 with an antiferromagnetic J2 can also lead to a frustrated magnetic state. In

an equivalent manner the exchange frustration can also arise in case of 2D lattices

with multiple exchange parameters and without a unique collinear magnetic state.

Besides the spin spirals, the exchange frustration also leads to canted magnetic spin

structure in many materials, where different magnetic sublattices orient with an

angle to each other.

1.2.2.2 Geometrical frustration

In some cases the geometry of the crystal lattice of a system dictates the nature of

the magnetic ordering. In particular, the triangular lattice geometry leads to the

stabilization of frustrated magnetic states in magnetic system with magnetic atoms

sitting at the corner of triangle. A ferromagnetic exchange between the magnetic

moments always leads to the stabilization of ferromagnetic order state. On the other

hand, a unique ground state can not be found if the nearest neighbor exchange
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Figure 1.7: Spin spirals of different handedness along with the direction of DMI vector
for minimum energy in each state .

interaction is antiferromagnetic in nature. As depicted in the Fig. 1.6 (b), when

two nearest spins point in opposite direction, then there is no unique direction along

which the third spin may align to minimize the energy. Such a scenario is termed as

geometric frustration. For a geometrically frustrated system, a unique ground state

is only possible with an easy plane anisotropy. In this case, the minima in energy

is found when the magnetic moments align at an angle of 120◦ to each other. The

120◦ triangular spin structure is shown schematically in Fig. 1.6 (b).

1.2.2.3 Non-trivial spin structures stabilized by DMI

Another way to stabilize a canted magnetic state is the presence of DMI. As discussed

in the section 1.1.3, the DMI interaction tries to align two magnetic moments at an

angle of 90◦. Hence, the competition between the DMI and the Heisenberg exchange

can lead to a canted structure or spin spiral. The canted magnetic state induced

by DMI is generally found in case of antiferromagnetic samples. In ferromagnetic

materials, the competition of these two energies leads to a spin spiral structure

in most of the cases. In general, the energy contribution of DMI is smaller than

that of exchange interaction. Thus the length of the spin spirals stabilized by the

DMI is larger than that set by the exchange frustration. Moreover, the magnetic

states stabilized by the DMI exhibit a well-defined handedness due to the vector

product form of the DMI. As shown in the Fig. 1.7, the spin spiral stabilized by the
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exchange frustration can have both left-handed and right-handed sense of rotation

as the ground state. In the two spirals shown in this figure, spins rotate clockwise

in the top spiral and anticlockwise in the bottom. These two spirals are degenerate

states when looked at from the perspective of the Heisenberg exchange. The DMI

lifts this degeneracy between left and right-handed rotation and leads to a chiral

spin spiral state. In general, the direction is shown by ’×’ (into paper) and ’o’ (out

of paper) symbol. Due to the chiral nature, the DMI also stabilizes different types

of topological spin textures, such as skyrmion18,19 and antiskyrmions.20,21

1.2.2.4 Modification of magnetic structure due to higher order exchange

interactions

The higher order exchange interaction include multiple hopping between same or

different pair of spins. These interactions are generally weak and rarely observed in

magnetic systems, hence are mostly neglected from a general magnetic Hamiltonian.

Although their strength is usually small, but their effect can be dominant in some

materials. Let’s consider the Heisenberg exchange and 4-spin-two-site exchange as

given below.

H2−spin = Jij(Si.Sj) (1.5)

and

H4−spin = Bij(Si.Sj)(Si.Sj) (1.6)

Let’s assume that the strength of pre-factor B is an order smaller than that of

J . Consequently, for magnetic spin of unit length, the energy contribution due to

the higher order also remains an order smaller con comparison to the Heisenberg

exchange. However, for a system with larger magnetic moment, keeping the pre-

factor same, the energy contribution due to the higher order interaction catches

up with that of Heisenberg exchange. Even increasing the moment of size 4 units,

the energy contribution due to the B exceeds that of J . Hence, the higher order

interactions can also be of importance in systems with high magnetic moment.
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Table 1.1: Energy contribution for
the 2-spin and 4-spin exchange with
constant J and K with different val-
ues of magnetic moment.

Energy

S (a.u.) J (Si.Sj) B (Si.Sj)2

1 0.1 1

2 4 1.6

3 9 8.1

4 16 25.6

5 25 62.5

To understand the effect of higher order

interactions on magnetic states, let’s look at

the functional form of the 4-spin-2-site ’bi-

quadratic’ interaction. For Heisenberg ex-

change J , the minima in energy for a pair of

two spins is obtained at either 0◦ or 180◦ align-

ment. But for the biquadaratic exchange in-

teractions, the function cos2(θ) gives minima

at 90◦ or leads to a degenerate state at 0◦ and

180◦. Thus the presence of biquadaratic ex-

change interaction along with Heisenberg can

give rise to unexpected ground states. Beyond

the 4-spin-two-site interaction, multiple spins at different sites are involved and the

ground state in those cases strongly varies from system to system. The most promi-

nent feature associated with the 4-spin-three-site and 4-spin-four-site interactions is

the stabilization of multi-Q spin spiral states.22 These multi-Q states were recently

observed in monolayer magnetic systems.23,24,25 Figure 1.8 (a) shows the scanning

tunneling microscopy (STM) image of a spin spiral stabilized by the exchange frus-

tration on a Mn/W(001) lattice.26 As we discuss earlier, the spin spirals stabilized

by exchange interaction are degenerate with respect to the reversal of q vector. In

addition, due to the crystal symmetry restriction, these spirals exhibits q vector

direction along a set of symmetric points. The higher order exchange interactions

can couple these different q spiral phases. For example, the three-site interaction

couples two spirals with opposite q vector.27 The resultant magnetic ground state is

the sum of the two spirals, as shown in Fig. 1.8(b). The longitudinal component of

the spins cancels each other and a magnetic state of the form uudd is stabilized.28

Similarly, for Mn/Cu(111) system, a 3Q state is stabilized due to effects of higher

order exchnage interactions.23
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Figure 1.8: (a) scanning tunneling microscopy (STM) graph of spin spiral measured
on Mn/W(001) lattice (top) and a spin schematic of same spiral state (bottom).26 (b)
Different multi-Q states in the Brillouin zone of a hexagonal system. Spin schematic
for multi-Q state corresponding to different q values is also shown.27

1.3 Electrical transport of magnetic systems

It is well known that a charged particle moving in a transverse magnetic field experi-

ences a Lorentz force in a direction orthogonal to both the velocity and the external

magnetic field. To explore the possibility of a similar effect on the conduction elec-

trons of a metal, E. H. Hall performed the transverse resistivity measurement in

gold foil in 1879 (E. H. Hall did try other metallic materials before finally observing

the effect in gold). The setup is shown in Fig. 1.9 (a), with current along x , mag-

netic field along z, and the measured voltage along y direction. A transverse signal
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Figure 1.9: (a) Schematic of Hall voltage measurement setup. Plot of typical Hall
voltage signal vs magnetic field for (a) ordinary and (b) anomalous Hall systems.

linearly proportional to the applied magnetic field was observed for the gold. This

signal is a consequence of Lorentz force acting on electrons and was named the Hall

effect. Mathematically, the Hall signal can be written as ρxy = R0H. Here R0 is the

Hall coefficient that is inversely proportional to the charge carrier concentration.

The Hall signal is depicted in Fig. 1.9 (b). Two years later, Hall carried out the

same experiment with ferromagnetic materials iron and nickel. He measured a trans-

verse voltage signal with an order of magnitude larger than that was earlier found

in nonmagnetic metals. This new Hall signal, which mimicked the hysteresis loop of

the ferromagnetic material, was termed as anomalous Hall effect (AHE). The word

”anomalous” was used as the origin of the effect was not known that time. A typical

anomalous Hall signal is shown in Fig. 1.9 (c). A simple scaling analysis indicates

that the anomalous Hall signal is directly proportional to the magnetization of the

sample, with the proportionality constant being a material-dependent parameter. A

natural and logical explanation was then followed, describing this effect as arising
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due to the ’internal’ magnetic field due to the ferromagnetic order of the samples. A

more complex and detailed theoretical understanding of the anomalous Hall effect

was materialized as time progressed. According to modern theories, the anomalous

Hall effect can arise due to two different mechanisms. The first explanation is based

on the introduction of the Berry phase. In this case, the anomalous Hall effect

is a manifestation of the Berry phase that an electron picks up during its motion

through magnetic materials. The second one is based on the spin-orbit coupling in-

duced scattering of electrons. Based on these two mechanisms, the anomalous Hall

contribution in various materials can be divided into two broad categories: intrinsic

and extrinsic. The intrinsic component is the one that arises due to the ’intrinsic’

properties of a periodic arrangement of atoms, i.e., a perfect crystal structure. Ex-

trinsic contribution is mainly the effect of irregularities/defects in the crystal. Let

us discuss these contributions in detail and also familiarize ourselves with the scaling

laws governing different AHE contributions.

1.3.1 Intrinsic contribution

Intrinsic refers to the contribution from the crystal lattice itself. In the condensed

matter systems, the properties of the periodic crystal lattice can be described on

the basis of momentum space band structure. In case of anomalous Hall effect,

the intrinsic contribution refers typically to the Hall signal that arises due to the

Berry phase acquired by electrons when they move in the periodic lattice. When an

electron moves in a periodic potential, its state can be written in the form of Bloch

function as given below.

|Ψkn⟩ = eik.r|ukn⟩ (1.7)

If the electron state changes adiabatically with time, then the nth eigenstate of

H (t=0) evolves to a nth eigenstate of H (t=t), while picking a phase factor. The

states at t are then given as :

Ψn(t) = ei[θn(t)+γn(t)]Ψn(t), (1.8)
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where θn(t) = − 1
h

∫ t

0
En(t)dt is the dynamical phase and

γn(t) =
∫ t

0
⟨Ψn(t)| ∂∂t |Ψn(t)⟩dt is the geometrical phase. This geometrical phase is

referred to as the Berry phase. The Berry curvature then is given by

Ωn(k) = ∇k × an(k) (1.9)

where

an(k) = ⟨Ψn(k)|
∂

∂k
|Ψn(k)⟩ (1.10)

The Hall conductivity from the Berry curvature can be calculated as

σxy =
e2

~
∑
n

∫
BZ

dk

(2π)d
f(εn)Ωxy(k) (1.11)

Here, the integration of Berry curvature is taken over the whole Brillouin zone. The

distribution of Berry curvature in the Brillouin zone of a crystal is constrained by the

symmetries of the lattice. For a time-reversal invariant system, Ωn(k) = −Ωn(−k).

Similarly, the presence of inversion center leads to Ωn(k) = Ωn(−k). Thus, if both

time-reversal and inversion symmetries are present, the Berry curvature tends to zero

at all points of the Brillouin zone. Breaking of inversion symmetry of lattice leads to

a finite Berry curvature at different points of momentum space. However, the total

sum over the whole Brillouin zone still goes to zero. A finite Beery curvature can

be found when integrated over the whole Brillouin zone only upon breaking time-

reversal symmetry. Hence, breaking time-reversal symmetry is an important pre-

condition for the presence of anomalous Hall signal in a system. In a ferromagnetic

system, the finite moment breaks the time-reversal symmetry. As a result, a finite

anomalous Hall effect can be found due to the presence of non-vanishing Berry

curvature.

The Berry curvature in the band structure of a material is connected to various

points of the band structure. These are mainly close to the band-crossing points

without spin-orbit coupling. It can be seen from the Fig. 1.10 (a) where the Berry
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Figure 1.10: (a) Band structure of RbMnCl3/graphene hetrostructure with band
crossing points and corresponding Berry curvature.29 (b) Schematic of a pair of Weyl
points with opposite chirality. (c) The Berry phase originating form both points.30

curvature is highly localized at the band crossing points for RbMnCl3/graphene

hetrostructure.29 Additionally, topologically protected band crossing points such as

Weyl points also lead to a finite Berry curvature. The Weyl points are a pair of

band crossing separated in momentum space. These crossing always appear as a

pair [Fig. 1.10 (b)]. A pair of Weyl points act as source and sink of the Berry phase

[Fig. 1.10 (c)] and impart an effective magnetic field to an electron.

1.3.2 Extrinsic contribution

In extrinsic contribution of AHE, the Hall signal arises due to the spin-dependent

scattering at the defect sites of a material.31,32,33 The extrinsic part further contains
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two contributions: skew-scattering and the side jump phenomena. In case of skew

scattering, the effective change in the crystal potential at the defect site leads to

an effective magnetic field that deflects the electrons in an orthogonal direction.

This effect depends on the electron transport lifetime τ and is not a dissipation-

less current. In addition to the defects within a crystal, recent theoretical and

experimental studies have also shown the appearance of skew-scattering contribution

due non-coplanar spin structures,34,35 which can act as a defect potential in a perfect

lattice system. The skew scattering contribution is primarily observed in clean lattice

systems, where the longitudinal conductivity of a sample is very high. Although the

skew scattering is intrinsic to every materials, the effect is mainly observed for

clean and high conductivity metals.33 Another scattering like extrinsic mechanism

is the side jump contribution, where a displacement of the Gaussian wave packet

of electrons in the transverse direction happens upon encountering a defect in the

crystal. The side jump mechanism is not commonly seen in magnetic materials, and

its clear understanding remains unknown.

1.3.3 Scaling of anomalous Hall

The intrinsic as well as the extrinsic mechanisms of AHE can coexist in a material.

Experimentally, the separation of intrinsic and extrinsic contribution is required to

understand the underlying mechanism of AHE. The Berry phase induced intrinsic

contribution is dissipation-less; the anomalous Hall signal for this case does not

depend on the electron transport lifetime τ . On the other hand, the scattering-

dependent contribution depends on time τ . This fact leads to distinct dependence

of ρAHE
xy on the ρxx. For the intrinsic contribution, the ρAHE

xy ∝ ρ2xx,36,37 whereas

for extrinsic part ρAHE
xy ∝ ρxx.31,32 Hence the total contribution due to intrinsic and

extrinsic as a function of resistivity can be written as:

ρAHE
xy = aρxx + bρ2xx (1.12)
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Later, Tian et al.38 presented a detailed relations as,

ρAHE
xy = aρxx0 + βρ2xx0

+ bρ2xx. (1.13)

Here the first two terms represent the extrinsic contribution in which aρxx0 is the

skew scattering part, and the βρ2xx0
is due to the side jump. The last term corre-

sponds to the intrinsic contribution. If we ignore the side jump term, the equation

can be written as

log(ρAHE
xy ) = αlog(ρxx). (1.14)

α = 1 implies extrinsic contribution and 2 suggest intrinsic contribution.38
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1.4 Kagome lattice system Mn3Sn

This thesis explores the non-collinear and non-coplanar magnetic ground states and

their transport properties. As we discussed in the previous section, the non-collinear

states can be realized by different mechanisms. However, a robust non-collinear

ground state can be achieved through exchange or geometrical frustration. Spin

structures stabilized by these effects can not be perturbed easily by the external

magnetic fields. Thus, the geometrical frustration and exchange frustration cases

are most suitable for studying the non-trivial magnetic states. In this regard, a

triangular lattice structure is an ideal candidate to host the said phenomenon, as

it can give both geometrical and exchange frustration. The kagome lattice antifer-

romagnetic compound Mn3Sn presents an excellent prospect for studying complex

magnetic states. Along with the advantages of being of an antiferromagnetic com-

pound, Mn3Sn displays many properties that are unique to its magnetic structure.

1.4.1 Crystal structure and magnetic ground state of Mn3Sn

Crystal Structure : Let us first discuss the crystal structure of Mn3Sn, where the

kagome lattice consists of corner-sharing triangles and can be seen as a derivative

of a triangular lattice with one of the lattice sites removed from the unit cell. The

triangular lattice consists of four equal symmetric lattice positions in a unit cell,

as depicted in Fig. 1.11 (a) with four different colors. The kagome lattice can be

derived from this triangular lattice by removing any one of these lattice site. The

resultant kagome structure is depicted in Fig. 1.11 (b). In the case of Mn3Sn, the

Mn atoms occupy the kagome lattice sites, while the Sn atoms sit at the vacant

position of the kagome lattice, the extra position of the triangular lattice [Fig. 1.12

(a)]. In addition to this, each unit cell of the Mn3Sn contains two layers of kagome

lattice separated by half a unit cell distance. The two layers are rotated by 180◦ with

respect to each other, as can be seen from Fig. 1.12 (a-b). Figure 1.12 (c) shows the

resultant hexagonal Mn3Sn structure generated by the combination of two rotated
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layers. A side view of the structure is shown in Fig. 1.12 (d). The red Mn atoms lie

in the bottom plane, whereas the blue are on the top plane. Each point in the upper

layer is connected to a point in the bottom layer through the inversion center of the

hexagonal unit cell. The atoms connected through the inversion center of sample

are also depicted in Fig. 1.12 (d). The hexagonal unit cell of Mn3Sn crystallizes in

space group P63/mmc with a = b = 5.46 and c = 4.52 .

Magnetic Structure : The general magnetic ground state spin structure of

a kagome lattice follows closely to that of a triangular lattice. A ferromagnetic

Heisenberg exchange leads to a ferromagnetic structure for a monolayer kagome

lattice, whereas an antiferromagnetc exchange leads to the geometrical frustration.

To elucidate the exact magnetic structure of Mn3Sn, neutron diffraction measure-

ments were carried out by different authors.39,40 It was found that Mn3Sn exhibits

a non-collinear triangular antiferromagnetic (T-AFM) structure,39,40 a trademark of

a geometrically frustrated systems. The magnetic moments in a T-AFM structure

lie at 120◦ to each other. The antiferromagnetic nature of the nearest neighbor ex-

change and easy plane magnetic anisotropy leads to the stabilization of this T-AFM

spin structure. The easy plane anisotropy of the sample results from the c/a <1.

Let us look at the magnetic ground state and the exchange interaction of Mn3Sn in

detail. As the Mn3Sn unit cell contains two kagome layers, the exchange parameters

can be divided into two groups, intra-layer (Jout) and inter-layers (J in). The two

Figure 1.11: Schematic of a layer of (a) triangular and (b) kagome lattice. The
unit cell for each lattice is marked with wine color. Different colors have been used
to show lattice points in a unit cell.
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Figure 1.12: (a-b) Kagome with Sn at hexagon centres and a 180◦ rotates kagome
lattice. (c) Mn3Sn lattice made up of the two rotated kagome lattices. (d) Side view
showing a shift along c-axis between two kagome layers.

nearest exchange interactions for both groups are marked in Fig. 1.13 (a-b). The

nearest neighbor exchange interaction corresponding to the inter-layer exchange is

marked as Jout
1 . The inter-layer next nearest exchange interaction Jout

2 is between

two sites connected through the inversion center of unit cell. Both Jout
1 and Jout

2 are

also shown in Fig. 1.13 (b). The nearest neighbor intra-layer J in
1 corresponds to the

exchange in a spin triangle of the kagome lattice, while the J in
2 connects the larger

triangle around the Sn site [Fig. 1.13 (b)].

It has been theoretically found that the in-plane nearest exchange J1
in as well

as the second exchange constant J2in are antiferromagnetic in nature,41 which leads

to the stabilization of 120◦ T-AFM ground state. The inter-layer J1
out and J2

out

are found to be antiferromagnetic and ferromagnetic, respectively. The magnetic

moments connected by J2
out point parallel to each other, which leads to a 120◦

angle between spins of J1out pair. Thus, the overall T-AFM structure is stabilized
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Figure 1.13: (a) Spin structure of Mn3Sn sample where exchange parameters are
marked by lines. (b) Extended Mn3Sn lattice with various exchange interactions
as marked by colored lines. (c) Degenerate triangular and inverse triangular spin
structure stabilized by exchange frustration on layered kagome lattice of Mn3Sn.

by a total of four exchange interaction. The resultant magnetic structure, as shown

in Fig. 1.13 (a) and (b) preserves the inversion center of the underlying lattice

structure.

Additionally, the 120◦ T-AFM structure stabilized in a geometrically frustrated

kagome lattice consists of two degenerate spin structures. The 120◦ rotation of spins

in either clockwise or anticlockwise fashion leads to two different magnetic states,

as visible in Fig. 1.13 (c). This degeneracy can be lifted by the presence of DMI

interaction between atoms corresponding to J1
in. The DMI for Mn3Sn is such that

the magnetic structure exhibits an inverse vector chirality, i.e., rotation of spins in

the opposite sense to the order of spins on the lattice. The magnetic structure with

inverse vector chirality is named as inverse triangular antiferromagnetic structure

(iT-AFM).



28 Introduction

Figure 1.14: (a) Anomalous Hall signal as observed for Mn3Sn at room temperature
for fields applied along different directions. (b) Hall signal for field applied along
[011̄0] direction at different temperatures.42 (c) Anomalous Nernst signal measured
in diffrent geometries.43 (d) Thermal Hall effect signal for the Mn3Sn samples at
room temperature.44

1.4.2 Important aspects of iT-AFM structure in Mn3Sn

Transport properties : Owing to the iT-AFM structure, the magnetic moment

of the three Mn atoms sitting on a triangle cancel out each other, resulting in a

net zero magnetic moment for Mn3Sn. Thus, the sample is categorized as an anti-

ferromagnetic material. The research interest in Mn3Sn was redeveloped after the

finding of a large anomalous Hall signal (AHE), despite being an antiferromagnet.42

Figure 1.14 (a) shows the Hall resistivity measurements as performed on a single
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Figure 1.15: (a) Brillouin zone of Mn3Sn showing a pair of Weyl points around K
points. (b) Band structure along high symmetry points for Mn3Sn. Blue and red
arrows mark the Weyl points with opposite chirality. Figures taken form reference
[45].

crystal of Mn3Sn in different geometries.42 A large anomalous Hall signal was ob-

served when a magnetic field was applied in the ab-plane of the hexagonal structure.

On the contrary, only a linear Hall signal of small strength is seen when the field

was applied along the c-axis. The large anomalous Hall signal was found robust in a

large temperature range [Fig. 1.14 (b)]. In addition to the large Hall signal, another

transverse transport signature, the Nernst effect was also observed in Mn3Sn.43 In a

Nernst setup, a temperature gradient or heat current is applied instead of a charge

current. The resulting Hall voltage due to this heat current is called Nernst voltage.

Figure 1.14 (c) shows the Nernst signal as a function of the magnetic field. Similar

to the Hall signal, a large Nernst signal was seen when the magnetic field was applied

in the ab plane. The Nernst signal converts the heat signal to an electric signal, thus

making it possible to use Mn3Sn in thermoelectric systems. Lastly, a thermal Hall

signal can also be observed, where a heat current leads to a temperature gradient

in the transverse direction. Figure 1.14 (d) shows the magnetic field dependence of

thermal Hall effect at room temperature. All of these transport signatures closely

mimic the magnetization v field [M (H)] measurements. The M (H) plot is shown

in Fig. 1.14 (c) along with the Nernst signal. Both the curves reverses at the same
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Figure 1.16: (a) Octupole polarization for different domains of iT-AFM structure
of Mn3Sn. (b) Magneto-optic Kerr effect (MOKE) images of Mn3Sn thin films.
Different contrast correspond to oppositely oriented octupole domains.46

point, thus suggesting that the observed transport signatures are a consequence of

the magnetic structure of Mn3Sn.

Band structure of Mn3Sn : The above discussed transport signatures make

Mn3Sn a very compelling candidate for use in future spintronic devices. These

transport properties mainly arise due to the iT-AFM structure of Mn3Sn. As we

learned in section 1.3, the Hall signal can be scattering-driven or intrinsic due to

Berry phase effects. The former contribution normally arise for clean samples with

high conductivity. Mn3Sn does not display a high conductivity, hence a rich Berry

physics can be expected. An analysis of band structure for the iT-AFM state re-

vealed the presence of topological Weyl points in the non-collinear phase of the

system [Fig. 1.15 (b)].47 We can see two linearly dispersing Weyl crossing points

around K point of the Brillouin zone. These Weyl nodes can act as source and

sink of Berry curvature, which generates the large AHE signal. The orientation of

these Weyl nodes was found to be easily rotated with the application of a magnetic
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field. As shown by the dotted circle in Fig. 1.15 (a), the blue and red pair of Weyl

points can rotate freely depending on the direction of applied magnetic fields. Thus,

switching the magnetic field leads to reversal in the sign of anomalous Hall effect.

The Weyl points generated by the linear crossing at K point are separated by small

distance in the k-space, hence are not expected to play a major role in transport

properties of sample.48

Octupole order : TheWeyl nodes in a material are only formed when either the

time-reversal symmetry or inversion symmetry is broken in a system. As discussed

earlier, the iT-AFM state preserves the inversion symmetry of the lattice. Also, as

Mn3Sn is an antiferromagnetic material, the time-reversal symmetry is preserved

due to zero magnetic dipole moment. Hence the question of satisfying the minimum

condition to observe the AHE troubled researchers for a while. Then, Suzuki et

al. proposed the presence of cluster multipole in the magnetic ground state of

Mn3Sn.49 It was argued that even though the total dipole moment of the samples

is zero, Mn3Sn shows an cluster octupole moment due to the shifted layered nature

of the unit cell. This octupole order reverses upon the reversal of magnetic dipoles,

thus breaking the time-reversal symmetry of the sample, as shown schematically in

Fig. 1.16 (a). The breaking of time-reversal symmetry due to the octupole order

facilitates the observation of finite AHE in Mn3Sn. The octupole domains have also

recently been directly observed at room temperature.46,50,51 Figure 1.16 (b) shows

the polar Kerr rotation contrast of Mn3Sn thin films. Similar to the domain structure

of ferromagnetic material, octupole domains can be distinguished by the dark and

bright contrast of the magneto-optic Kerr effect (MOKE) images. The bright area

in the Fig. 1.16 (b) corresponds to octupole order with particular polarization, while

the dark area corresponds to opposite polarization of the octupole domains. For the

intermediate fields of positive and negative values, both dark and white contrast

areas are visible. In the staurated state, the MOKE images show opposite contrast

for the entire region.

In addition to the above-discussed properties, Mn3Sn exhibits many more excit-

ing properties. Some of these are listed below.
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• Large magnet-optic Kerr rotation.46

• High damping of octupole moment.50

• Spin Hall effect (SHE) and inverse spin Hall effect.52

• Topological defects.53

• Topological hall effect54,55

• Planar Hall effect.56

• Chiral domain walls.57

• Terahertz anomalous Hall effect and Terahertz emission.58,59

• Kondo effect.60

Electrical switching : After the observation of above mentioned different

properties in Mn3Sn, the electrical manipulation of the magnetic state of Mn3Sn

was finally demonstrated in the year 2020.61 Figure 1.17 (a) shows the schematic

of the thin film structure of polycrystalline thin films of Mn3Sn/X with X Pt, Cu,

and W. It was found that the magnetic domains Mn3Sn thin films can be switched

by sending a current through the Pt layer. This effect is similar to switching fer-

romagnetic thin films upon injection of a spin current into the magnetic layer.63,64

The spin current arises due to the spin Hall effect (SHE)65 in the high spin-orbit

coupling material Pt. Figure 1.17 (b) shows the Hall signal as a function of current

applied to the thin-film system. It is visible that a switching of the Hall signal is

only possible for the high spin-orbit coupling materials Pt and W. For the case of

Mn3Sn/Cu layer, the switching could not be seen. Also, the opposite sign of the Hall

signal for the W and Pt layer suggests the SHE mechanism is the dominant force

behind the switching of magnetic states. The demonstration of electrical switching

signify the importance of Mn3Sn for the perspective device applications.

To sum up, Mn3Sn exhibits a non-collinear spin structure stabilized due to the

geometrical frustration of the kagome lattice. Additionally, the double kagome
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Figure 1.17: (a) Schematic of polycrystalline Mn3Sn/Pt layer. The green arrows in
Pt layer represent splitting of electrons of opposite spins due to spin orbit coupling.
(b) Write current v. Hall signal plot fro difference Mn3Sn/X films, where X = Pt,
Cu and W. Figures taken from reference [61].

layered unit cell of Mn3Sn stabilizes a cluster octupole order in the system. This

octupole order breaks the time-reversal symmetry and leads to topological band

structure. The combination of antiferromagnetic non-collinear state, octupole order,

and non-trivial bands topology leads to fascinating properties in Mn3Sn.

1.4.3 Open questions

The iT-AFM spin structure for Mn3Sn has been studied in great detail at room

temperature. The iT-AFM spin structure has been categorically established as the

ground-state magnetic structure at room temperature for Mn3Sn. This particular

magnetic structure facilitates the presence of above discussed physical properties.

An exciting development is the study of the temperature dependence of the iT-

AFM structure. The observations presented in the literature for the temperature
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Figure 1.18: (a) Magnetization as a function of temperature plots under constant
magnetic field for Mn3Sn single crystals. (b) Hall resistivity measured as a function
of magnetic field at 5K, 100K, and 300K. (c) Temperature dependence of Hall re-
sistivity. All plots are taken from reference [62].

dependence of magnetic ground state are quite confusing and interesting. A litera-

ture survey broadly reveals two different trends in the temperature dependence of

magnetization [M(T )] in Mn3Sn. A representative of first kind of M (T) plot, as

reported by Sung et al., is shown in Fig. 1.18 (a).62 The zero field cooled (ZFC)

and field cooled (FC) M(T ) curves are plotted for fields applied along c-axis ([0 0 0

1]) and perpendicular to c-axis ([0 1 1̄ 0]). For the field applied in the ab plane, it

can be seen that the magnetization suddenly drops to a low value upon reduction in

temperature to 250 K. Afterward, the magnetization stays at a low value up to the

lowest temperature measured. The Hall signal measured at different temperatures

for same sample is shown in Fig. 1.18 (b).
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Figure 1.19: The neutron powder diffraction data for Mn3Sn at (c) 190 K and
(d) 270 K under different magnetic fields around (101) reflection. The satellite
reflections (101)± are visible at 190 K. (c) A schematic representation of the iT-
AFM and helically modulated magnetic structure. Plots are taken from reference
[66, 67].

The large AHE is visible at room temperature, confirming the magnetic state as

being iT-AFM. On the contrary, no Hall signal was found at temperatures below

the sudden transition. Figure 1.18 (c) shows the Hall resistivity as a function of

temperature. The Hall signal drops to zero at the temperature corresponding to

this additional transition. Neutron diffraction studies have revealed that the tran-

sition to a low moment state corresponds to a helical modulation of the iT-AFM

structure.41,66 Figure 1.19 (a-b) shows the neutron diffraction data for Mn3Sn sam-

ple below and above the sudden magnetic transition. At 270 K, the data around the

(101) peak is shown. The (101) peak corresponds to the nuclear as well as magnetic
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Figure 1.20: (a) Magnetization as a function of temperature plots under constant
magnetic field for Mn3Sn sample. (b) Magnetization and Hall resistivity measured
as a function of magnetic field at 2K. Both plots are taken from reference [54].

reflections. Below the transition, it is clear that two satellite peaks arise around the

(101) peak, which is a signature of a finite modulation of the magnetic structure.

In this helically modulated structure, all the spins individually stabilize a helical

phase along the c-axis of the sample. A schematic of the helical spin structure is

shown in Fig. 1.19 (c). The octupole polarization of the samples also rotates along

the c-axis due to the helical modulation of the iT-AFM structure. This continuous

rotation of octupole order leads to a net-zero Hall signal, as the Hall contribution

corresponding to each unit cell is canceled out by an opposite counterpart of the

helical structure. The mechanism and possible control of this helical transition is yet

to be explored.

In stark contrast to the M (T) data presented in Fig. 1.18 (a), the observation

of M(T ) data similar to that is shown in Fig. 1.20 (a)54 has also been reported.

Here, no transition was observed around 200 K; rather, a different type of transition

can be seen at very low temperatures. At around 50 K, the magnetization suddenly

increases to a high value, and the zero field cooled (ZFC) and field cooled (FC)M(T )

curves show a large bifurcation. This phase has not been studied in detail and was

termed as a spin-glass phase without any substantiated data.68 In a recent report,

Rout et al. have observed a complex Hall signature in this phase. Figure 1.20 (b)
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shows the Hall signal as found at 2 K. The M(H) measurement has shown that a

large ferromagnetic-like hysteresis is present in this phase. The Hall signal reveals a

topological Hall-like feature, where the Hall resistivity increases to a maximum with

increasing fields and then reduces to a small value. The authors have suggested a

field-induced non-coplanar state to be the source of this Hall signal, but a detailed

understanding is still to be achieved. These unknown aspects of modification of the

iT-AFM state of Mn3Sn make it a very compelling system for further exploration

of the intertwined nature of the magnetic ground states and various observable

signatures.

1.5 Outline of the Thesis

In the work carried out in this thesis, a detailed study on the modified iT-AFM

state of Mn3Sn is carried out. The unanswered questions relating to the mechanism

and control of the helical transition, along with the low-temperature transition are

tackled using magnetic, transport, and neutron diffraction studies. The first part of

the work, i.e., chapter 3 is concentrated on the understanding of the mechanisms of

helical phase transition and its control to facilitate the use of AHE in devices. The

second part of the work, i.e., chapter 4 and 5 are devoted on the understanding of

the unknown magnetic phase at the low temperature.





Chapter 2

Experimental techniques and

methods

This chapter focuses on the specific instruments and methods used to carry out the

work in the present thesis. First, a discussion on the experimental techniques used

for the present thesis will be presented, followed by a summary of the theoretical

tools employed. The experimental research in condensed matter/material science

starts with a motivation to understand a physical phenomenon or properties using a

specific material. For the work carried out in this thesis, polycrystalline and single

crystal samples of different electron doped Mn3Sn system are synthesized. Let’s

start with the process of sample preparation.

2.1 Sample preparation

Polycrystalline samples : The polycrystalline samples used for the present thesis

are synthesized using an arc melting furnace, where constituent metallic elements

of the required sample are melted together at high temperatures. The arc melting

furnace used for the present sample synthesis is depicted in Fig. 2.1. It consists

of a sharp-tipped tungsten electrode, a copper hearth, vacuum chamber, pumping

system, and a current source. The sharp-tipped tungsten electrode is held close to
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Figure 2.1: Arc-melting furnace used to melt and synthesize polycrystalline sample.

the surface of a copper hearth, where the samples are melted in cylindrical grooves.

The chamber is first purged with high purity argon gas and pumped several times.

To eliminate any remaining oxygen, a pure titanium ingot is utilized as a getter to

absorb oxygen. A high current is applied between the electrodes which ionize the

argon gas, and an arc is formed between the tungsten electrode and copper hearth.

It is expected that temperatures as high as 3000◦C can be generated by the arc. The

copper hearth and the power input are cooled using a constant flow of chilled water.

After exposure to the arc, the resultant material forms an ingot of the constituent

materials. The ingots are generally flipped several times and remelted to achieve a

homogeneous composition. The final sample produced by the melting at a very high

temperature can exhibit a poor crystalline nature. Hence, the as-melted ingots are

annealed at a material-specific temperature to improve crystallinity and promote a
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Figure 2.2: Binary phase diagram for Mn-Sn elements.69

single phase. The annealing temperature is set to be roughly 70-80% of the melting

point of the material. In the present case, different electron doped Mn3Sn samples

are annealed for a week at 800◦C.

Single crystals : To obtain single-crystal samples used for the present thesis,

the self flux technique is employed. The polycrystalline samples obtained following

the previous process are first powdered. The powdered samples are then sealed in

pointed alumina crucibles. Following that, the samples are mixed and homogenized

at a temperature above the melting point. The phase diagram of Mn-Sn is shown

in Fig 2.3 (a). From the phase diagram, we observe that the melting point of Mn:

Sn = 3:1 mixture is around 970◦C. Thus, the furnace was heated to 1000◦C for

24 hours for our purpose. Then, the furnace was kept there for another 24 hours.

The temperature was then gradually reduced at a rate of 1◦C/hr. Following this

procedure, we move from a liquid Mn-Sn phase to the Mn3Sn phase in the phase

diagram. This process slowly forms single crystals of the required Mn3Sn materials.
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Figure 2.3: Temperature profile used for the synthesis of single crystalline samples.
The pointed alumina crucible was used to keep the powdered samples in furnace.

It was discovered that a mixture of Mn: Sn in the ratio 3.09: 0.91 resulted in

the formation of larger single crystals, whereas a ratio with less Mn resulted in

the formation of tiny crystals. The final temperature of 900◦C was chosen to stay

above the crystallization temperature of Mn2Sn. For the Fe doped samples, this

temperature was chosen to be a bit below 900◦C. The furnace was turned off and left

to cool naturally after another 24 hours at 900◦C. Figure 2.3 shows the temperature

profile employed for the single crystal preparation. For the Mn3.09Sn0.91 composition,

this procedure produced large crystals of length about 5 mm. It is found that the

size of the Fe doped single crystals decreases with increasing Fe concentration. It

is also important to mention that, the above discussed procedure can be utilized

to generate single crystals directly from a mixture of constituent elements without

following the arc melting procedure.
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Figure 2.4: Schematic representation of x-ray diffracting from planes of atoms.

2.2 Structural characterization

The structural properties of the samples were determined using x-ray diffraction

(XRD) technique.

2.2.1 X-ray Diffraction

The samples described in section 1.4 are crystalline in nature. To confirm the phase

purity and crystalline nature, XRD measurements are carried out on the samples.

The spacing between atoms in a crystalline material is usually of the order of few .

Hence, x-rays are an excellent source for studying the crystal structure. The XRD

measurement works on the basis of Bragg’s law. Consider a plane of atoms, as

shown in Fig. 2.4. Here we consider a simple rectangular lattice, with the distance

between planes to be d. When a parallel beam of x-rays falls on this plane, the

incident rays get diffracted by different layers of the atomic planes. The reflected
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beams from different planes acquire a finite path difference. For an incident angle of

θ, the path difference between two rays is 2dsin(θ). The reflected rays can undergo

constructive or destructive interference depending on the path difference created and

the wavelength of incident light. Mathematically, constructive interference occurs

when

2dsin(θ) = nλ. (2.1)

The above equation is called Bragg’s condition. Thus, knowing the incident angle

and the wavelength of x-rays, the value of d can be deduced by scanning the theta.

The exact process can be repeated for different planes, and a detailed crystal struc-

ture can be resolved. For the work presented in this thesis, the room temperature

XRD measurements were performed using a Rigaku SmartLab x-ray diffractometer.

The x-ray was operated at 40 kV and 30 nA current. A Cu-Kα source with an

x-ray wavelength of 1.54182 was used. The diffraction data were recorded using

the 2θ range 10◦ to 90◦. The temperature dependent x-ray data were measured by

employing a PANalytical diffractometer, with temperature range of T = 15 K to

650 K.

2.2.2 Extreme condition XRD

Extreme pressure XRD measurements were performed at the Raja Ramanna Centre

for Advanced Technology’s INDUS-II synchrotron radiation source in Indore, India.

The BL-11 Beamline is a specialized instrument for XRD measurements in a variety

of extreme conditions. The option to measure the XRD pattern at extreme pressure

was used for the present study. A diamond anvil cell (DAC) was utilized for the high

pressures. The powder samples were placed between the end of two small diamond

pieces. The powder is kept inside a small hole in the metal gasket that separates

the diamond heads. The diamond anvil cell holder was then subjected to external

pressure. The DAV holder is depicted schematically in Fig. 2.5. Small ruby pieces

were placed in the sample area in addition to the powder sample for determining the
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Figure 2.5: (a) A schematic representation of a diamond anvil cell.70

amount of pressure applied to the sample area. Ruby shows a well-defined shift in the

photoluminescence spectra with applied pressure.71 The PL spectra are measured

with a laser before and after pressure is applied. The wavelength used for the

experiments in the synchrotron was 0.500022 . The diffracted rays were detected

using a high purity Germanium detector.

2.3 Magnetic characterization

Following the determination of crystal structure of the materials studied in this

thesis, the characterization of the magnetic properties was performed with varying

the temperatures and applied magnetic fields. For this purpose, a vibrating sample

magnetometer (VSM) attached to a superconducting quantum interference device

(SQUID) magnetometer was utilized (MPMS-3, Quantum Design).
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2.3.1 Vibrating sample magnetometer

In a typical magnetometer, measuring the magnetic moment of a sample involves

two steps. The sample’s magnetic signal is first transformed into an electric signal

by using the Faraday’s law of electromagnetic induction, which can be written as,

Vcoil =
dϕ

dt
. (2.2)

Here, Vcoil is the induced voltage, ϕ is the magnetic flux enclosed in the loop, and

t is the time. Due to the induced voltage, a current is generated. In the vibrating

sample magnetometer, the sample is made to oscillate along the axis of a circular

loop. The oscillations are required to generate a finite time-dependent change in

magnetic flux across the loop. The center of the oscillation is fixed at the center of

the conducting loop. This oscillatory motion is carried out using a linear motor, to

which the sample is connected through a sample rod. When the sample starts to

oscillate around the center of the loop, the Equation 2.2 can be rewritten as

Vcoil =
dϕ

dz
.
dz

dt
(2.3)

where z is the direction of oscillation. This can further be reduced to the following

equation for a sinusoidal oscillation.

Vcoil = 2CmA
√
fsin(2

√
ft) (2.4)

As a result, the current created in the loop provides direct information about

the sample’s magnetic moment. A four coil setup is used to pick up the VSM signal

in a real system. The four coils are arranged as shown in Fig. 2.6. Such a configu-

ration reduced the effect of any constant magnetic field and generated a pure signal

from the sample. Next, the generated current signal is measured to calculate the

magnetic moment of the sample. The precision of magnetic measurements depends

on the instrument’s capacity to measure this current. A Superconducting Quantum
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Figure 2.6: The schematic diagram of a VSM coils attached with SQUID sensor.
Picture taken from Quantum Design MPMS-3 user’s manual.

Interference Device is utilized to measure this current efficiently.

2.3.2 Superconducting Quantum Interference Device

The SQUID is based on the concept of two Josephson junctions joined in a supercon-

ducting loop. The Josephson junction is a setup of two superconductors separated

by thin insulation of a metallic barrier (right side of Fig. 2.6). The thickness of

the barrier is small such that the Cooper pairs can tunnel through the junction. If

an insulator is used, the thickness is usually of the order of tens of , whereas for

a metallic barrier, the thickness can be microns thick. The critical current around

this superconducting loop depends on the mutual phase difference of the two cur-

rents flowing through the two Josephson junctions. When the dc SQUID is current

biased, the voltage measured about the two ends of the SQUID oscillates between

a high and low value with an oscillating period equal to ϕ0 (= h
2e
). This voltage

generated by the change of a single quantum of magnetic flux can then be measured

by conventional electronic systems. The current signal created by the sample move-

ment is then inductively connected to the SQUID magnetometer. Thus, the current
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Figure 2.7: Real and schematic picture of the Quantum Design made magnetic
pressure cell.

signal detected by the coil in VSM mode is detected by the highly efficient SQUID.

The SQUID device is installed at a distance from the VSM area and is covered in a

superconducting shield to minimize any external noise in the SQUID system.

2.3.3 High pressure magnetic measurements

The high-pressure magnetic measurements were carried out using a Quantum Design

(QD)-made high-pressure cell. The body of the pressure cell is made up of beryllium

copper (Be-Cu) alloy for its high strength and non-magnetic nature of the material.

The schematic and picture of the pressure cell used in the SQUID magnetometer

are shown in Fig. 2.7. The central part (1) is a half hollow Be-Cu cylinder. A

Teflon cylindrical vessel with pressure transmitting liquid and sample is inserted

into the central Be-Cu part. The Teflon cylinder is closed from both sides with

Teflon caps. Afterward, two long Be-Cu cylindrical-shaped hollow cylinders [part

(2)] are tightened at both sides of the central part (1). Two pistons are inserted into

these cylinders. Lastly, at the ends of part (2) cylinders, pressure is applied to the
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central Teflon tube by tightening the screws [part (3)] from both ends of the sample

holder. A superconducting material like In or Sb is added along with a sample in the

Teflon tube. The superconducting transition temperature is measured to calculate

the applied pressure upon tightening screws. The maximum pressure that can be

applied using QD magnetic pressure cell is 1.5 GPa.

2.3.4 Neutron diffraction

Just as an x-ray is used for determining the crystal structure of a sample, the neutron

can also be used for the determination of crystal as well as the magnetic structure of

the samples. The De-Broglie wavelength of the neutrons is comparable to that of the

lattice spacing. The thermal neutrons typically posses a wavelength of about 1-4 .

The use of neutron source gives some advantages like 2θ independent scattering and

higher resolution for the detection of isotopes and lighter elements. Apart from these

properties, the main advantage of using neutrons lies in the fact that the neutrons

exhibit a finite magnetic moment, which enables the interaction of neutrons with

the magnetic moment of the electrons in the materials. Thus, neutron diffraction

can be used to extract information regarding the magnetic structure in addition to

the crystal structure.

The neutron diffraction generates a diffraction pattern depending on the mag-

netic ground state of the sample. Let us understand better with the help of Fig.

2.8. When neutron diffraction is used on a non-magnetic lattice, it generates Bragg’s

peaks similar to the x-ra, as shown in case-1. When we consider a ferromagnetic

sample, as considered in the 2, the magnetic reflections appear on top of the nuclear

reflections. When an antiferromagnetic is used, as shown in 4, magnetic reflections

appear at half the value of the earlier nuclear reflections. This is because the mag-

netic unit cell has a periodicity of 2a for the antiferromagnetic state. In the case

of ferrimagnets, as shown in 3, we observe half indexed as well as integer indexed

magnetic reflections. For a non-collinear state, as shown in 5 and 6, the magnetic

unit cell shows a length of 4a. Thus quarter indexed magnetic peaks are observed.
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Figure 2.8: Different magnetic states and their respective magnetic reflections along
with the nuclear reflections.. Picture taken from reference [72].

Apart from the reflection appearing due to modification of the length of the mag-

netic unit cell, another magnetic state with incommensurate modulations can also

be detected using neutron diffraction. One such state is depicted in 7, where the

magnetic moments change slowly. In this case, the magnetic unit cell do not show

an integer multiple of the lattice unit cell. Hence, satellite-like magnetic reflections

are observed on both sides of the nuclear peaks.

For the work in this thesis, the neutron diffraction data were taken on a PD2

neutron diffractometer with λ = 1.2443 at Dhruva reactor, Bhabha Atomic Research

Centre, Mumbai, and at high resolution neutron powder diffractometer ECHIDNA

of Australian Nuclear Science and Technology (ANSTO) with a monochromatic

neutron wavelength of λ = 2.44 .
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Figure 2.9: A schematic of the connection made so as to measure (a) longitudnal
resistivity using four probe method and (b) Hall resistivity using five probe method.

2.4 Electronic transport measurements

Hall bars fabrication

The electronic transport properties f the samples were recorded on rectangular

shapes Hall bar samples, with typical lengths of 5mmx1mmx0.5 mm for the polycrys-

talline samples and similar shapes but with a smaller size for the single crystalline

samples. The Hall bars were shaped using a diamond and wire cutter for precise

cutting. These Hall bars were then used for transport properties.
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Electronic transport measurement details

A Quantum Design Physical Property measurement System (PPMS) was used to

evaluate the electronic transport properties. The longitudinal and transverse resis-

tivity of the samples were measured using the AC transport (ACT) option of the

PPMS. A constant current was applied along the length of a rectangular-shaped

sample to determine its resistivity. The current contacts are made across the entire

cross-section of the sample to flow a homogeneous current through out the sample.

The voltage drop was measured using two voltage probes in the four-probe configu-

ration. The connection diagram is shown in Fig. 2.9 (a) The measure voltage signal

was then converted into resistivity by using the relation.

ρxx =
A

l

V

I
. (2.5)

Here A is the cross-section area of the sample, l is the distance between the volt-

age leads, V is the voltage drop measured, and I is the applied current.

Figure 2.10: Picture of
the ACT high pressure
cell used.

The same four-probe technique can be utilized for Hall

measurement, as shown in Fig. 2.10(b). In four-probe

configuration the voltage connections must be made op-

posite to each other at the two sides of the sample to

detect a pure Hall signal. In practice, achieving such a

precise alignment of voltage probes is difficult, and we

invariably end up with a magnetoresistance signal in ad-

dition to the desired Hall signal. A five-probe approach

with an additional voltage probe is employed to solve this

problem. At zero magnetic field, the excess voltage sig-

nal is initially neutralized. The nullification is achieved

by using a potentiometer between the two contacts to

achieve a zero voltage before measurements. This signif-

icantly reduces the contribution of magnetoresistance to

the measured Hall signal.
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In addition, the QD-PPMS allows detecting resistiv-

ity in both DC and AC modes. The ACT option of the

PPMS was used to conduct all of the resistivity measure-

ments reported in this thesis as it offers the benefit of a

signal filtering process. The AC bias can be set with a

frequency anywhere between 1 Hz and 1 kHz, which improves measurement preci-

sion. The time-dependent profile and frequency of the target signal to be detected

are identical to those of the applied AC current. Frequency-dependent noise, DC

offset, and instrumental drift can be reduced in the ACT measurement mode.

The high-pressure transport properties were also measured using the ACT op-

tion in the PPMS. A QD-made Be-Cu high-pressure cell was used to measure the

pressure-dependent transport properties (Fig. 2.10). The working principle of the

ACT pressure cell is similar to the magnetic pressure cell. The sample and a super-

conducting wire were installed in the Teflon cylinder with pressure transmitting oil

inside for the ACT case. The sample was fixed on a small custom-made Teflon base,

and the required Hall or longitudinal resistivity connections were made. The pres-

sure is measured by measuring the superconducting transition of the superconductor

after applying pressure to the cell.

The above-mentioned magnetic and transport measurements are measured under

magnetic fields up to 5 Tesla. The magnetic field is generated using superconducting

magnet that is immersed in a cold He-liquid chamber of the measurement unit. The

He is liquefied using a cold head, through which highly pressurized He flows. The

cold head employs the Joule-Thomson Cooling effect to reduce the temperature

further. A controlled flow of He from Dewar to the chamber is used to cool down

the sample chamber temperature in the range from 2 K to 400 K.

2.5 Analysis and theoretical methods

Once the required data was collected, the next step is the modeling and analysis of

the data. The work related to data fitting, and analytical modeling of Hamiltonian
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was performed using self-written python codes. In addition to an analysis of the

model Hamiltonian, the ab-initio calculations is used extensively in this thesis to

understand the experimental data and elucidate the hidden physics.

2.5.1 Density functional theory (DFT)

The problem of theoretically evaluating the properties of a system can be achieved

by solving the Hamiltonian of a system. The equation to solve for the periodic

lattices of condensed matter systems is a many-body Hamiltonian involving the

nucleus and electrons. The nuclear and electron motion can be decoupled using the

Born Oppenheimer approximation, leaving us with solving a many-body electron

system. Subsequently, the Hartree-Fock (HF) formalism was introduced to obtain

many body wave functions, where the many body wave function is assumed to

be a product of the wave functions of individual electrons. Later, the proposal

to use density in place of the 3N electron coordination was put forward. Finally,

with the efforts of Kohn, Hohenberg, and Sham, the current form of DFT was put

forward. The DFT theory reduces the system to a non-interacting particle system.

An external potential is used on a particle in such a way that particle density and

total energy of the system match to that of an interacting many-body system. The

density functional used in DFT can be written as,

F (n) = TS(n) + EH(n) + Eex(n). (2.6)

Here, the first term is the kinetic energy of the system, the second term is the

Hartree function, and the third term represents the exchange-correlation. The HF

model incorporates the Coulomb interaction and direct exchange interaction terms.

All other interactions like exchange due to Pauli’s exclusion principle and correlation

effects are included in the Eex term.

These pieces of information are incorporated into a DFT calculation by means of

a pseudo-potential. These are the effective potential that acts on the valance elec-
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trons of a system. These are calculated from all-electron calculations considering a

rigid ion core with nuclei and strongly bound core electrons. In the pseudo-potential

approach, the ion core is assumed to not participate in the chemical bonding. The

Kohn-Sham equation of DFT is solved in a self-consistent way, where the Kohn-

Sham potentials are calculated from an initial guess (input density state) of the

density. The Kohn-Sham Hamiltonian is then solved on the system with an input

density state. A new (output) density state is calculated from this solution, which

is then compared with the old density state. A match under a cutoff difference ends

the calculation, and else the process is repeated with the output density state as the

new input.

The exact form of the Eex is not known, and various approximations have been

used for practical calculations. The most basic and frequently used exchange-

correlation functionals are those with local density approximation (LDA) and gen-

eralized gradient approximation (GGA).

Local Density Approximation (LDA)

In this form of approximation, the system is divided into small volumes, and the

density inside these volumes is taken to be constant. The exchange-correlation

energy for each volume is evaluated by calculating the energy of uniform electron

gas at the same density. The exchange correlation energy for LDA can be written

as,

ELDA
ex =

∫
ρ(r)ϵunifex [ρ(r)]dr, (2.7)

where ϵunifex [ρ(r)] is the exchange-correlation energy density for the interacting elec-

tron gas of density ρ(r). Thus, the potential in the case of LDA only depends on

the density of the system. These potentials have been found to work very well for

metallic systems.
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Generalized Gradient Approximation (GGA)

The LDA can then be improved by including the variation in density in the exchange-

correlation functional. The GGA exchange-correlation functionals can be written in

the form

EGGA
ex =

∫
fGGA
ex [ρ(r),∇ρ(r)]dr. (2.8)

The GGA potentials improve over LDA results in some cases. As mentioned ear-

lier, the LDA potentials work well for the metallic materials and is used for the

calculations used to carry out the work of this thesis.

2.5.2 Calculation details

The first principle calculations have been performed by using the Vienna ab initio

simulation package (VASP). VASP is a plane wave pseudopotential-based code used

extensively to perform DFT calculations. The spin-polarized calculations were per-

formed within the projector augmented wave (PAW) method73 as implemented in

VASP.74,75,76,77 The generalized gradient approximation (GGA) exchange-correlation

potential in the form of Perdew-Burke-Enzerhof (PBE)78 was used. A Γ-centered k-

point grid of 8×8×9 is used for the Brillouin-Zone (BZ) integration. The plane-wave

cut-off energy is set as 500 eV. The noncollinear version of the VASP code is used

to perform the magnetic calculations for the current hexagonal system. The lattice

constants are fixed as the experimentally obtained values for the lattice relaxation,

while the internal coordinates are relaxed till the forces become less than 1 meV/Å.

Further, the spin-spiral calculations are performed using the full-potential linearized

augmented plane wave (FLAPW) method implementing the noncollinear version of

the FLEUR code.79 The energy of the SS state characterized is calculated using the

generalized Bloch theorem.80 A mesh of 16×16×18 is used for k-points in the full-BZ

and a cutoff of Kmax = 4.1 a.u.−1 to expand the LAPW basis functions.



Chapter 3

Pressure induced switching of

noncollinear magnetic state in

Mn3Sn

A review of the literature and different methods for carrying out the work in the

present thesis have been provided in the previous two chapters. The present chapter

will focus on some of the important works that have been carried out in this thesis.

The main objective of this thesis is to examine and comprehend the temperature

evolution of the magnetic ground state of the extremely important noncollinear

antiferromagnetic compound Mn3Sn. In this chapter, the findings of a detailed

study on the helical phase transition of the iT-AFM spin structure are presented.

As it is discussed in chapter 1, the helical transition in some of the Mn3Sn samples

appears around 200-250 K, while it is absent in few Mn3Sn samples. As the helical

phase transition does not always show up in the temperature dependence of the

magnetic ground state of Mn3Sn, it becomes imperative to synthesize samples with

reproducible magnetic properties. Thus to conduct the intended study, the first step

is to prepare samples that host the helical phase of the iT-AFM state.

It is found from the literature survey that a stoichiometric ratio of 3:1 for the

Mn3Sn compound is not stable. The hexagonal phase of Mn3Sn is stable with some



58 Pressure induced switching of noncollinear magnetic state in Mn3Sn

level of electron doping in Mn3+xSn1−x. The large AHE has been initially reported

in Mn3.02Sn0.98, i.e., x = 0.02. On the other hand, the large THE was discovered

for of x = 0.05, i.e. Mn3.05Sn0.95 . The value of x reach as high as 0.09 and 0.16 for

single crystalline samples and epitaxial thin films, respectively.45,60

Motivated by these studies, polycrystalline samples of Mn3+xSn1−x are synthe-

sized with x = 0.03, 0.04, and 0.05 to explore a link between the electron doping

and dissimilar temperature dependency of the magnetic ground state. The samples

are synthesized using arc melting technique as described in chapter 2. The XRD

measurements at room temperature are used to confirm the crystal structure of

the samples. Magnetic and transport measurements are carried out to explore the

physical properties of the samples. A theoretical understanding of the helical phase

transition is realized using the information from the experimental characterization

of the samples. Utilizing this newly acquired knowledge, the external control of the

helical phase transition that leads to the switching of the anomalous Hall signal is

also demonstrated.

3.1 Sample characterization

3.1.1 Determination of sample structure

Table 3.1: The structural informa-
tion of the Mn3Sn unit cell.

Space group = 196

Wyckoff Position

Mn 6h (x,2x,1/4)

x = 0.1616

Sn 2d (1/3,2/3,3/4)

Powder XRD measurements are performed to

confirm the hexagonal crystal structure of the

Mn3+xSn1−x samples. The XRD data are

recorded for 2θ values between 10◦ to 90◦, at a

step of 0.01◦. The XRD patterns for the three

samples are shown in Fig. 3.1 (a-c). The scat-

tered data shown in blue color correspond to

the experimental data. The structural infor-

mation is extracted from the XRD data using

the Rietveld refinement. The initial structural information of the Mn3Sn was ob-



3.1 Sample characterization 59

2 0 3 5 5 2 7 0 9 0
- 1

0

1

2

3

4

2 0 3 5 5 2 7 0 9 0 - 2
- 1
0
1
2
3
4

2 0 3 5 5 2 7 0 9 0- 1

0

1

2

3

4

0 . 0 3 0 . 0 4 0 . 0 5

0 . 0 9

0 . 0 6

0 . 0 3

0 . 0 0

 O b s e r v e d
 C a l c u l a t e d
 D i f f e r e n c e
 B r a g g  P o s i t i o n s

Int
en

sity
 (a

.u.
)

2 θ ( ο)

M n 3 . 0 3 S n 0 . 9 7( 2 0 1 )

( 2 0 0 )

( 0 0 2 )

( 1 0 1 )
( 2 0 2 ) ( 2 2 0 ) ( 2 0 3 )

( a ) ( b )

( c ) ( d )

( e )

 O b s e r v e d
 C a l c u l a t e d
 D i f f e r e n c e
 B r a g g  P o s i t i o n s

Int
en

sity
 (a

.u.
)

2 θ ( ο)

M n 3 . 0 4 S n 0 . 9 6

int
en

sity
 (a

.u.
)

2 θ ( ο)

M n 3 . 0 5 S n 0 . 9 5

( 1 0 1 )

( 2 0 1 )

Ch
an

ge
 (%

)

x

 a
 c

0 . 0 3 0 . 0 4 0 . 0 55 . 6 5 0

5 . 6 5 2

5 . 6 5 4

5 . 6 5 6

5 . 6 5 8

 a
 c

x

a (
Å)

M n 3 + x S n 1 - x

4 . 5 2 1

4 . 5 2 2

4 . 5 2 3

4 . 5 2 4

c (
Å)

Figure 3.1: XRD patterns with Rietveld refinement for (a) Mn3.03Sn0.97, (b)
Mn3.04Sn0.96, and (c) Mn3.05Sn0.95. Some high intensity peaks are labeled in the
figure (a). The legend for first three plots is shown in figure (b). (d) Calculated a
and c values from the Rietveld refinement.

tained from the literature as tabulated in table 3.1. The fitted curves, the Bragg

peak positions, and the difference between calculated and recorded data are also

plotted in the Fig. 3.1 (a-c) for the three samples. It can be seen that the XRD pat-

terns can be fitted nicely taking the hexagonal crystal structure of the samples. All

the peaks can be indexed to the various reflections of the hexagonal Mn3Sn struc-

ture. The mismatch in the intensities of calculated and measured XRD data mostly

originates from the preferred orientation of the grains in the sample. Nevertheless,

the perfect indexing of all the peaks confirms the presence of a single hexagonal
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phase of Mn3Sn for all the samples. The lattice parameters for the samples are

plotted in Fig. 3.1 (d). A small reduction in lattice parameters is observed with

increasing Mn concentration, but the observed change is less than 0.1%.

3.1.2 Magnetic properties

After successful synthesis and structural characterization, the magnetic properties

of theses samples are studied. The temperature dependent magnetization [M(T )]

measurements are performed in the zero field cooled (ZFC) and field cooled (FC)

modes in the presence of a field of 1000 Oe. The M(T ) graphs are shown in Fig. 3.2.

It is quite interesting that although all the samples exhibits same crystal structure

with a small variation of lattice parameters, although the M(T ) curves are not

identical. For the Mn3.03Sn0.97 sample [Fig. 3.2 (a)], the magnetization starts at a

finite value at room temperature. Upon lowering the temperature, a sharp fall in

the magnetization is observed around 200 K, before starts to climb upwards below

50 K. The first derivative of the FC curve is also plotted along with FC and ZFC

magnetization curves. The first derivative show two distinct extrema, one around

200 K and another below 50 K. The transition around 200 K corresponds to the

helical phase transition of the iT-AFMmagnetic phase (chapter 1). Moving on to the

Mn3.04Sn0.96 sample [Fig. 3.2 (b)], a similar trend with different relative magnitude

of the two magnetic transitions is found. The high-temperature transition is now

dominated by a contribution from the low temperature transition. The derivative of

the FC curve shows a clear signature of both the transitions. A significant bifurcation

between the ZFC and FC curves also appears at low temperatures. Lastly, for the

sample Mn3.05Sn0.95 [Fig. 3.2 (c)], the high temperature transition is absent, while

a large transition at the low temperatures appears. The temperature corresponding

to both the transitions as extracted from the derivative of the FC curve is plotted

in Fig. 3.2 (d). The helical phase transition temperature decreases with electron

doping and is absent for Mn3.05Sn0.95 sample, while the critical temperature of low

temperature transition keeps on increasing. In the present chapter, the manipulation
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Figure 3.2: Temperature dependence of zero field cooled (ZFC) and field cooled (FC)
magnetization [M(T )] for (a) Mn3.03Sn0.97, (b) Mn3.04Sn0.96 and (c) Mn3.05Sn0.95 sam-
ples. The first derivative of FC curve is also plotted as black line. (d) Temperature
corresponding to low temperature and high temperature transition for three sam-
ples. The transition temperatures are calculated from derivative of FC curve.

of the helical phase transition is mainly taken into consideration. Therefore, from

here on, the discussions will be only limited to physical properties for temperatures

greater than 50 K.

Next, the field dependent magnetization [M(H)] measurements are performed

to probe the magnetic state at different temperatures. Figure 3.3 (a-b) shows the

M(H) plots for Mn3.03Sn0.97 and Mn3.05Sn0.95 samples. Both samples show near

linear M(H) behavior for measurements performed at different temperatures above
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Figure 3.3: Field dependent isothermal magnetization [M(H)] loops for (a)
Mn3.05Sn0.95 and (c) Mn3.03Sn0.97 sample measured at different temperatures. Mag-
nified view of the low field regions of the M(H) loops for both the samples are shown
in (b) and (d).

50 K. The linear behavior results from the antiferromagnetic nature of the samples.

A magnified view of the M(H) curves is shown in Fig. 3.3 (c) and (d). From the low

field plots, it is seen that theM(H) curves show a small ferromagnetic-like hysteresis

at 300 K for both the samples. However, a linear behavior is observed below the

transition at 200 K for Mn3.03Sn0.97 sample. The presence of linear behavior further

suggests the presence of the helical phase. As the magnetic moments rotate by full

360◦ for the helical phase, the net magnetic moment reaches zero. On the other

hand, the Mn3.05Sn0.95 sample shows hysteresis behaviors in the whole temperature

range. As a result, a clear relationship is established between the temperature-

dependent magnetic ground state and the electron doping. These findings reveal a
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straightforward method for producing Mn3Sn samples, both with and without the

helical phase.

3.1.3 Confirmation of magnetic ground state : neutron diffrac-

tion (ND)

Although the samples have been characterized by the help of macroscopic magnetic

measurements, these measurements only act as an indication of the magnetic tran-

sition. To validate the magnetic ground state, neutron diffraction measurements

are performed on Mn3.03Sn0.97 and Mn3.05Sn0.95 samples. Figure 3.4 shows the room

temperature and 150 K neutron diffraction data for Mn3.03Sn0.97. The ND data at

300 K and the Rietveld fitting for the iT-AFM structure are shown in Fig. 3.4

(a). It is visible that the room temperature ND data can be easily fitted with the

iT-AFM magnetic structure. For the 150 K data, extra peaks are visible in the pat-

tern. Specifically, two very clear peaks can be seen around the (101) peak around

( 20◦). The fitting of the 150 K data with iT-AFM structure is shown in 3.4 (b).

It is observed that the above mentioned extra peaks could not be accounted for by

the iT-AFM structure. These new peaks and the full pattern can only be taken into

account by including a finite modulation vector for the iT-AFM magnetic structure.

The fitting after incorporating the helical phase is shown in Fig. 3.4 (c). The helical

modulated structure nicely fits the ND data at 150 K. Thus, it is clear that the

Mn3.03Sn0.97 samples exhibits a helical magnetic phase at 150 K. To correlate the

helical phase with temperature, the zoomed-in range of ND data for various tem-

peratures is plotted in Fig. 3.5 (a). It is visible that the satellite peaks start to arise

around the same temperature as that of transition in M(T ) plots. The extracted q

vector of the helical phase is also plotted in Fig. 3.5 (b), where the finite q value

is observed below the magnetic transition. Thus the neutron diffraction measure-

ments, in addition to the magnetic characterization, confirm the presence of helical

magnetic ground state in the samples.
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different temperatures. (b) Value of the helical phase modulation vector as extracted
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3.1.4 Electronic transport properties

The transport properties are investigated in order to learn more about the helical

phase transition. The strongest feature of the iT-AFM spin structure of Mn3Sn is

the presence of non-trivial Hall signal. The Hall transport (ρxy), as well as the longi-

tudinal resistivity (ρxx) of the samples, are measured using a the Physical Property

Measurement System (PPMS). Figure 3.6 shows the longitudinal resistivity data

recorded in cooling and heating modes for the Mn3.03Sn0.97 and Mn3.05Sn0.95 sam-

ples. Both samples show metallic behavior, as can be seen from the reduction in

resistivity with a decrease in temperature. The data for Mn3.05Sn0.95 sample only

shows the standard metallic curve, and no other features are visible. The peak at

50 K is due to the Inconel effect,81 which arises due to the measurement setup.

For the Mn3.03Sn0.97 sample, in addition to the metallic nature, a small feature is

visible around 200 K. The magnified inset in the figure shows a clear thermal hys-

teresis, which corresponds to the helical phase transition observed in the magnetic

measurements. The thermal hysteresis arises due to the first-order nature of the

helical transition. The residual resistivity of the higher electron-doped sample is

comparatively larger than other samples. It is even more evident from the room

temperature normalized resistivity plots in Fig. 3.6 (b) for the two samples. This
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Figure 3.6: (a) Temperature dependent longitudinal resistivity (ρxx) plots for
Mn3.03Sn0.97 and Mn3.05Sn0.95 samples. Inset shows a magnified view of the tem-
perature around helical transition. (b) ρxx(T )/ρxx(300 K) plot for the two samples.

difference could be a consequence of the extra Mn atoms sitting at the Sn sites. The

presence of Mn atoms in place of the Sn atom can lead to an enhanced scattering.

The Hall data at different temperatures are plotted in Fig. 3.7. The samples

show a large anomalous Hall signal at 300 K. The presence of the AHE at room

temperature reaffirms earlier deductions that the samples stabilize in the iT-AFM

magnetic ground state. Below the room temperature, Mn3.03Sn0.97 sample does

not show any Hall signal in the helical phase. The temperature dependence of Hall

resistivity and conductivity is shown in Fig. 3.7 (c-d). These results match well with

the earlier prediction that the helical phase does not host any AHE. The absence of

the Hall signal is a consequence of the rotating spin structure of the helical phase.

The AHE signal from each layer of the helical modulated structure generates a

Hall signal in a particular direction. Different layers generate the Hall signal in all

directions, making a vanishing the resultant signal. The Mn3.05Sn0.95 sample, on the

other hand, shows the Hall signal in the whole temperature range. This holds well

with the fact that the Mn3.05Sn0.95 sample does not show any magnetic transition

up to 50 K. The Hall resistivity shows a maximum value at 200 K while the Hall

conductivity keeps on increasing till the lowest temperature. These trends match

well with earlier results.42
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Figure 3.7: Field dependence of Hall resistivity for (a) Mn3.03Sn0.97 and (b)
Mn3.05Sn0.95 samples at different temperatures. Temperature dependence of (c) Hall
resistivity and (d) Hall conductivity for three samples.

A correlation between the electron doping and the magnetic ground state has

been established. The magnetic, neutron and the transport measurements confirm

the presence of the helical phase in Mn3.03Sn0.97, whereas it is absent in case of

Mn3.05Sn0.95 sample. Now that the desired samples have been obtained, the task at

hand is to gain a complete understanding of the helical transition. As the helical

phase appears with a reduction of temperature, the temperature dependent crys-

tal structure of these samples is studied in details to explore the presence of any
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modification of crystal structure due to the helical phase transition.

3.2 Temperature dependence of crystal structure

The temperature-dependent XRD measurements are performed on the Mn3.03Sn0.97

and Mn3.05Sn0.95 samples to find out the effect of magnetic phase transition on the

structure. Figure 3.8 and 3.9 shows the XRD plots for Mn3.05Sn0.95 and Mn3.03Sn0.97

samples at some temperatures. Both the samples do not show any structural tran-

sition up to the lowest temperature measured. Figure 3.10 (a) and (b) shows the

temperature variation of lattice parameters extracted from the Rietveld refinement

of temperature dependent XRD data. The lattice parameters decrease overall with

reducing the temperature for both the samples. However, for the Mn3.03Sn0.97 sam-

ple, a sudden change in the lattice parameters is observed around the helical phase

transition temperature. The lattice parameter a decreases suddenly at the stabi-

lization point of the helical phase, while a small change is also seen in c. The above

observation can be seen more clearly in the unit cell volume vs. temperature plot

as shown in Figure 3.10 (c) and (d). An abrupt feature is seen for the volume of

Mn3.03Sn0.97 sample, whereas the Mn3.05Sn0.95 does not show any distinguishable fea-

ture. This sudden change happens precisely at the helical phase. Thus a correlation

can be expected between the lattice size and the magnetic ground state. Motivated

by this result, the pressure-dependent magnetic and transport measurements are

carried out for these samples.

3.3 Pressure dependent ground state and switch-

ing of anomalous Hall effect

The magnetic and transport properties of the samples are characterized as a function

of pressure. First the pressure dependent magnetic property is discussed, followed

by the discussion of pressure dependent transport properties.
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Figure 3.8: Temperature dependent XRD patterns with Rietveld refinement for
Mn3.05Sn0.95 samples at (a) 13 K, (b) 150 K and 300 K.
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Figure 3.9: Temperature dependent XRD patterns with Rietveld refinement for
Mn3.03Sn0.97 samples at (a) 13 K, (b) 150 K and 300 K.

3.3.1 Magnetic properties

The pressure dependent magnetic measurements are performed to uncover the role

of pressure on the magnetic phase transitions. Figure 3.11 shows the M(T ) mea-
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Figure 3.10: Temperature dependent lattice parameters a and c for (a) Mn3.05Sn0.95

and (b) Mn3.03Sn0.97 sample. (c-d) shows the unit cell volume as a function of
temperature for the two samples.

surements performed at different pressure for different samples. For the Mn3.05Sn0.95

sample, the application of pressure leads to a modification of the magnetic ground

state. Figure 3.11 (a-d) shows the ZFC measurements at different pressure values.

The M(T ) taken at 0.5 GPa shows similar behavior to that at ambient pressure.

However, further increasing the pressure to 0.9 GPa, a transition starts to appear

around 150 K. Finally, at a pressure of about 1.2 GPa, the M(T ) curve shows a clear

transition at 150 K. The transition shows a similar characteristic to that of a helical

phase transition found at ambient pressure for Mn3.04Sn0.96 and Mn3.03Sn0.97. For

the Mn3.04Sn0.96 sample, the application of pressure shifts the helical phase transi-

tion to higher temperatures. Finally, the application of pressure on the Mn3.03Sn0.97

sample changes the critical temperature of the helical phase by a small value only.

To gain more insight, the M(H) measurements were performed on Mn3.05Sn0.95

sample at 100 K and 300 K. Figure 3.12 shows the field-dependent magnetization
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Figure 3.11: Temperature dependent ZFC magnetization curves for (a-d)
Mn3.05Sn0.95, (e-f) Mn3.04Sn0.96 and (g-h) Mn3.03Sn0.97 at different values of external
pressure.

loops at various pressure values. It is very much evident that the M(H) data at

100 K show a considerable change with the application of pressure. The hysteretic
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Figure 3.12: (a-d) Field dependent isothermal M(H) loops for Mn3.05Sn0.95 sample
at 100 K and 300 K under application of different external pressure. The low field
region of M(H) data is shown in (c-d) for both temperatures.

behavior of the M(H) loop at ambient temperature changes to a near-linear type

with application of pressure. A similar linear M(H) curve is observed in the helical

phase of the Mn3.03Sn0.97 sample. Thus, the M(H) measurements also point to the

stabilization of the helical phase with the application of pressure in Mn3.05Sn0.95

sample at 100 K. On the contrary, the M(H) loops at 300 K do not vary with

the application of pressure, pointing to a robust iT-AFM state. These magnetic

measurements hence point toward increased stability of the helical phase with the

application of pressure.
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Figure 3.13: (a-b) Field dependent Hall resistivity for Mn3.05Sn0.95 sample at 100 K
and 300 K under application of different external pressure. (c-d) Temperature de-
pendent zero field longitudinal resistivity measured at 0 GPa and 1.5 GPa pres-
sure for Mn3.05Sn0.95 sample. (d) The magnified view around the pressure induced
transition. (e-f) Pressure dependent lattice parameters and unit cell volume for
Mn3.05Sn0.95 sample.
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3.3.2 Electronic transport properties

A unique signal to differentiate the helical to iT-AFM state is the presence of large

AHE in the iT-AFM state of the sample. This Hall resistivity signal usually is

absent for the helical phase. In this regard, pressure-dependent Hall resistivity

measurements are performed on the Mn3.05Sn0.95 samples. Figure 3.13 (a-b) shows

the Hall resistivity as a function of the magnetic field at various pressure values.

At room temperature, the application of pressure does not change the Hall signal.

This corroborates well with the earlier observation from the magnetic measurements

that a robust iT-AFM state is always present at room temperature. At 100 K, it is

seen that the Hall resistivity reduces and finally goes to zero with the application

of pressure. Figure 3.13 (c-d) shows the longitudinal resistivity vs. temperature

plots at different pressure values. It can be seen that the pressure induces a small

hysterics behavior in the resistivity data, similar to that of Mn3.03Sn0.97 sample. The

hysteresis in resistivity data can be clearly seen in the enlarged view plot in Fig. (d).

Finally, to verify the nature of the pressure-induced transition, pressure-dependent

XRD measurements are performed to rule out any structural phase transition. The

lattice parameters as extracted from the pressure-dependent XRD are plotted in

Fig. 3.13 (e-f ) along with the unit cell volume. No structural transition is observed.

The sample shows only a smooth reduction in the lattice parameters up to 10 GPa.

Thus the switching of the Hall signal does not depend on the change in the crystal

structure, rather entirely a consequence of the pressure-driven transition of the iT-

AFM state to a helical modulation.

Thus, the transition of the iT-AFM state to the helical phase can be used to

switch the AHE in Mn3.05Sn0.95. The switching is brought about by the application

of external isotropic pressure.
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3.4 Theoretical understanding

The switching of the AHE is brought about in the present case by a change in

the magnetic ground state. Thus, understanding the switching process requires un-

tangling the mechanism of helical phase transition. The stabilization of different

magnetic states in magnetic materials can be understood in terms of the exchange

interaction among the magnetic moments. As discussed in chapter 1, the iT-AFM

structure stabilizes by a combination of antiferromagnetic and ferromagnetic ex-

changes. Two nearest in-plane and out-of-plane exchange parameters were discussed

in chapter 1. These exchange parameters are again labeled in Fig. 3.14 of the Mn3Sn

kagome lattice. The sign of the exchange constants up to the second nearest neigh-

bor is in accordance with the observed iT-AFM state. Therefore, we must go beyond

the second nearest-neighbor interaction to explore the possibility of stabilizing the

helical phase. Additionally, the role of DMI in the stabilization of helical phase

can be ruled out based on two observations. First, the helical phase is stable up to

very high magnetic fields, which implies stronger interaction at play rather than the

comparatively weaker DMI. Secondly, the presence of an inversion center rules out

the possibility of any long-range magnetic states stabilized by DMI.11

In the helical phase of the Mn3Sn, the intra-layer 120◦ spin structure remains

unchanged, i.e., the angle between spins in a single layer remains constant. However,

a finite rotation is observed between spins when we move along the c-axis. Thus,

any role of intra-layer exchange interaction can safely be excluded for the stabiliza-

tion of the helical phase. Therefore, only the inter-layer or out-of-plane exchange

parameters will be considered. The three nearest inter-layer exchange parameters

are labeled in Fig. 3.14 (b). The sign of the first two has already been discussed,

with Jout1 being AFM and Jout2 being FM in nature. Figure 3.14 (c-d) shows the total

number of neighboring sites corresponding to Jout1 and Jout2 . The magnetic moments

for Jout1 pairs lie at 120◦ to each other, which is a minimum energy state for AFM

exchange in a triangular lattice. The moments for Jout2 are parallel to each other,

which also is a minimum energy state for the ferromagnetic Jout2 . The third nearest
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Figure 3.14: A schematic of the kagome lattice structure of Mn3Sn showing three
nearest neighbor (a) intra-plane and (b) inter-layer exchange parameters. The num-
ber of nearest neighbor for Mn atoms are represented in (c) for Jout1 , (d) Jout2 and (e)
Jout3 . The arrows indicate the direction of magnetic moments.

exchange parameter connects spins in the next neighbor layer along the c-axis [Fig.

3.14 (b,e)]. The spins corresponding to this exchange interaction are parallel in the

case of the iT-AFM structure. This is clearly visible in Fig. 3.14 (e), where the

Jout3 neighbors for a site are shown. As it is discussed in chapter 1, the exchange

frustration can stabilize a helical phase. For the present case, where the Jout1 and

Jout2 energy is minimum when spins for Jout3 are parallel, exchange frustration can

only arise if the Jout3 is antiferromagnetic. Thus a spin spiral state can be stabilized

due to a competition between the ferromagnetic J2 and antiferromagnetic J3.
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(a)

(b) (c)

Figure 3.15: (a) Phase diagram of minimum energy θ value as calculated for various
values of exchange Jout2 and Jout3 . The curves corresponding to purple and green star
are shown in (b) and (c) respectively.

3.4.1 Analysis of exchange Hamiltonian

To explore the possibility of stabilizing a helical phase, the exchange Hamiltonian

with three inter-layer exchange interactions is utilized. The exchange Hamiltonian

for a single site can be written as

H = 4Jout
1 cos(

2π

3
) + 6Jout

2 cos(0) + 2Jout
3 cos(0). (3.1)
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The helical phase induces a finite rotation between the magnetic moments when

moving along the c-axis. The spins in the +c direction are rotated by an angle θ

from the reference layer, while spins in the -c direction are rotated by -θ. Thus, the

Hamiltonian of the system in this case can be written as

H = 2Jout
1 cos(

2π

3
+ θ) + 2Jout

1 cos(
2π

3
− θ) + 6Jout

2 cos θ + 2Jout
3 cos(2θ). (3.2)

Here, the value of θ depends on the q vector of the helical modulation, and 2π
3
in J1

is the initial phase between two consecutive Kagome sublattices. Using the above

equation, the exchange energy as a function of θ is evaluated. The value of Jout2

and Jout3 is varied in the range 0-1 Jout1 , where Jout3 is taken as AFM. The minima in

energy lie at 0circ for the iT-AFM state and at finite θ for spin spiral states. The

typical plots for these two scenarios look like that in Fig. 3.15 (b-c). For Fig. 3.15

(b), the iT-AFM state is stable as energy is minimum at θ = 0. For the second plot,

a spiral state is stabilized with a finite value of θ. The full results are summarized

in the Jout2 vs. Jout3 phase diagram presented in Fig. 3.15 (a).

It is observed from the phase diagram that a region exists in the phase diagram

where the θ is finite, thus confirming the suggestion that the exchange frustration

can stabilize the helical phase. Secondly, there exists a minimum value of Jout3 , after

which the iT-AFM state transforms into the helical phase for a given value of Jout2 .

Naturally, the minimum value increase to larger values for an increase in the strength

of Jout2 . This is expected as the Jout2 ’fights’ for the iT-AFM structure while Jout3 tries

stabilizing a helical phase. Thus the helical phase can be stabilized due to exchange

frustration among the out-of-plane exchange interactions.

3.4.2 The real Mn3Sn Kagome lattice : Effect of trimeriza-

tion

Although the above discussed exchange model can explain the stabilization of helical

magnetic ground state, it is found that the crystal structure of Mn3Sn possesses a
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Figure 3.16: The crystal lattice of Mn3Sn with an (a) ideal kagome lattice, and (b)
trimerized lattice. The lengths of two corner sharing triangles are marked. (c) The
number of neighbors corresponding to the spitted Jout2 are shown by gray and red
lines joining the Mn sites.

little quirk that has gone unnoticed till now. The usual kagome lattice comprises

equilateral triangles connected at a common point, where two nearby triangles are

of equal in size [Fig. 3.16 (a)]. However, in the case of Mn3Sn, the two nearby

triangles are unequal. This is a consequence of the layered structure of the Mn3Sn,

where electrostatic interaction between the Sn atoms in one layer and the Mn atoms

in the other layer makes one of the Mn triangles larger than other [Fig. 3.16 (a)].

This phenomenon is termed trimerization, while the structure is referred to as the

breathing kagome lattice. The extent of trimerization can be quantified using the

trimerization parameter δ = l2−l1
l2+l1

, where l1 and l2 are the bond lengths for the

smaller and larger triangles. A consequence of the trimerization is the splitting of

the bond for Jout2 into two different bonds, one larger and one smaller than the earlier



3.4 Theoretical understanding 81

(a) (b)

(c) (d)

(e) (f)

Figure 3.17: (a) Phase diagram of minimum energy θ value as calculated for various
values of exchange Jout2 and Jout3 for the ideal kagome structure. (b-f) Js2 and Jl2 phase
diagram of minimum energy θ for the trimerized structure at different Jout3 .

one. The Heisenberg J ’s corresponding to these bonds is denoted by Js2 and Jl2 for

the smaller and larger bond, respectively. The Js2 and Jl2 are marked by grey and

red lines in Fig. 3.16 (c).

While the general information about the relative strength of Jout2 /Jout3 for helical

phase stabilization still holds for the trimerized structure, certain deviations are
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expected. Although the length of l1 and l2 change by the same amount, the strength

of the exchange parameters do not change equally. In addition, the Jout2 comes with

six neighbors, three in the upper and three in the bottom layers. However, after

trimerization, the small and large triangles do not share equal neighbors, instead

the larger one gets four, and the smaller gets two [Fig. 3.16 (c)]. The new exchange

Hamiltonian for the trimerized Mn3Sn lattice can be written as

H = 2J1 cos(
2π

3
+ θ) + 2J1 cos(

2π

3
− θ) + 2J l

2 cos(0 + θ) + 2J l
2 cos(0− θ)

+ Js
2 cos(0 + θ) + Js

2 cos(0− θ) + J3 cos(0 + 2θ) + J3 cos(0− 2θ) (3.3)

The effect of trimerization is investigated by calculating the exchange Hamiltonian

3.3. The Js2 and Jl2 exchange are modified in units of Jout1 for different values of Jout3 .

Figure 3.17 shows the phase diagrams for positive and negative values of Js2 and Jl2.

The phase diagram for the ideal kagome case is also plotted for reference. The Js2
vs. Jl2 phase diagrams are calculated for different values of Jout3 , which are marked in

Fig. 3.17 (a). First, we look at the phase diagram for Jout3 = 0.2 Jout1 . This value is

below the critical value for the stabilization of the helical phase in the ideal kagome

structure. Thus a θ = 0 state is found in the whole first quadrant. However, a finite

theta region is found for opposite values of Js2 and Jl2. The negative values mean

an antiferromagnetic Jout2 , which now fights against the iT-AFM state and favors a

helical phase. A sharp boundary is present in separating the non-helical from the

helical phase. This boundary moves to cover a larger part of the phase diagram as

the value of Jout2 increases.

To summarize the Hamiltonian analysis, exchange frustration among the

out-of-plane Js can stabilize the helical phase. The ferromagnetic Jout2 tries to stabi-

lize the iT-AFM state while an AFM Jout3 destabilizes it. Thus the appreciable value

of Jout3 is required to stabilize the helical phase. Additionally, the trimerization can

help in stabilizing the helical phase due to dissimilar changes in the strength of Js2
and Jl2. To establish the above findings and understand the role of pressure on the
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Figure 3.18: Spin spiral calculated energies as a function of q for different condition
of the Mn3Sn unit cell.

helical transition, DFT calculations are performed for Mn3Sn lattice using VASP

and FLEUR packages.

3.4.3 ab-initio calculations

The spin spiral (SS) calculations are performed using the FLUER code. The q=0

state is set to be the iT-AFM state. First, the SS calculation is performed using the

Mn3Sn experimental lattice parameters and an ideal kagome lattice. Figure 3.18

(a) shows the q vs. δE plots for the ideal kagome at 0 GPa. It can be seen that

the energy minima lie at q = 0, and the iT-AFM is the ground state. Next, the

calculations for the pressure of 5 GPa are carried out. The pressure was incorporated

by using the experimental lattice parameters. However, the application of pressure
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Table 3.2: δ, the measure of effective trimerization at different pressure values in
case of ideal and relaxed structures along with Mn Wyckoff position.

Pressure (GPa) x (6c: x,2x,0.25) δ (10−2)
0.0 (ideal) 0.1666 0.0
5.23 (ideal) 0.1666 0.0
0.0 (relaxed) 0.1626 2.4
2.75 (relaxed) 0.1605 3.7
5.23 (relaxed) 0.1493 10.3
0.0 (forced) 0.1466 12.0

even deteriorates the situation further. Here, not only does the ground state lie

at q = 0, but the energy cost for stabilizing a helical phase increases [Fig. 3.18

(b)]. Thus, applying pressure on an ideal kagome net alone can not explain the

experimental observation of change in the ground state. Hence, the above-discussed

trimerization must play a definite role in stabilizing the helical phase.

Next, the trimerized lattice of Mn3Sn is used for the SS studies. The structural

relaxation of the Mn3Sn unit cell is performed using the VASP code. The unit cell

size and volume are fixed for the structural relaxation, while the ionic positions

are relaxed to find the minimum energy crystal structure. The trimerized state is

allowed by the symmetry of the (x,2x,0.25) lattice position. After relaxation, the

value for the x is obtained, and the results are listed in the table 3.2. It is observed

that the trimerization parameter δ increases with increasing pressure. Figure 3.18

(c) shows the SS calculated energy for the relaxed lattice for 0 GPa and 5 GPa.

The SS data for the ideal 0 GPa case is also plotted for reference. For the relaxed

0 GPa structure, the energy cost to stabilize a spin spiral reduces drastically, but

the ground remains in the iT-AFM state.

Table 3.3: Out-of-pane exchange parameters as extracted by fitting the E(q) vs q
curves with the usual exchange Hamiltonian.

Jout1 (meV) Jout2 (meV) [-J2/J1] Jout3 (meV) [J3/J1]Jl2 (meV) [-Jl2/
J1]

Js2 (meV) [-Js2/J1]

0 GPa (Ideal) 20.83 -9.29 [0.445] 7.09 [0.340]
0 GPa (Forced) 13.12 -0.32 [0.024] 2.59 [-0.197] 4.41 [0.336]
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(a) (b)

Figure 3.19: Spin spiral energies (green symbols) and the fitting (purple line) with
eq. 3.3 for 0 GPa (a) ideal and (b) forced lattice structure.

On the other hand, the q vs. δE trend for the 5 GPa relaxed case changes

drastically. The energy curve for the finite q now displays a negative slope, opposite

to that of a positive one found for others. This implies that a minimum in energy

is to be found at a finite value of the q vector. It implies that the pressure on the

lattice increases the extent of trimerization, which then leads to the stabilization of

the helical phase. To clearly establish the effect of trimerization, the SS calculations

are performed with a forced trimerization case for the 0 GPa case. For this case,

the extreme trimerization also results in the stabilization of the helical phase. The

SS curves for the 0 GPa ideal and forced structure are fitted with eq. 3.3. The data

and the corresponding fitting curves are shown in Fig. 3.19. The fitting parameters

are tabulated in table 3.3. For the 0 GPa ideal lattice, the fitting reveals a dominant

Jout1 . The positive sign here implies an AFM exchange. Additionally, a ferromagnetic

Jout2 and an AF Jout3 are also obtained. Although the extracted sign of Jout3 is AFM in

nature, the relative strength of Jout3 is not large enough to stabilize a helical phase.

For the forced trimerization case, the relative strength of Jout3 is nearly the same

as the case of the ideal case, but a large change is observed for the splitted Jout2 .

The trimerization leads to a large reduction in the strength of Jl2, while a change in

sign is observed for Js2. This change in sign can lead to the stabilization of helical

phase, as can be interpreted from the phase diagrams plotted in Fig. 3.17. Thus, the
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pressure-induced trimerization is the main driving force behind the transformation

of the iT-AFM state to a helical modulated magnetic state.

3.5 Conclusion

The switching of the anomalous Hall signal is a highly studied topic for future tech-

nological applications. In ferromagnetic materials, switching of the Hall signal is

commonly accomplished by changing the ferromagnetic order parameter. The same

method has also been used for Mn3Sn, where the octupole order is reversed by em-

ploying a magnetic field or electric current. The results presented in the current

chapter show a pressure-induced switching of the anomalous Hall effect. The mech-

anism of helical phase transition is uncovered using a combination of experimental

and theoretical studies. It is found that the trimerization of kagome lattice can drive

the helical phase transition. In addition, the trimerization can be controlled using

the external pressure. This new mechanism to switch the anomalous Hall effect

expands the prospect of device based on antiferromagnetic materials.



Chapter 4

Higher order exchange interaction

driven noncoplanar magnetic state

in Mn3Sn

The last chapter was mainly focused on the temperature-dependent modification

of the magnetic ground state of layered kagome compound Mn3Sn. However, the

analysis of the ground state was limited to temperatures greater than 50 K. The

present chapter deals with the magnetic ground state at the lowest possible tem-

peratures and its origin in Mn3Sn. The most important factor that motivates us to

study the low-temperature magnetic ground is that the nature of magnetic ordering

at the said temperature regime was unclear till the present study. As discussed in

chapter 1, the magnetic ground state of a system controls various observable phys-

ical properties. The electronic, as well as the magnonic and phononic dispersion,

depend strongly on the magnetic ground state. Thus, resolving the low-temperature

magnetic ground state can reveal more details about the magnetic interactions and

energy landscape of the present system.

The only information available in literature beforehand about the low tempera-

ture magnetic state was the formation of glassy ferromagnetic phase.68 It was shown

that the real part of susceptibility exhibits a spin glass signature, along with the an
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additional ferromagnetic contribution. It was suggested that a long-range dominant

ferromagnetic order may present in the sample.68 The presence of the spin glass sig-

nal on top of the ferromagnetic phase was ascribed to the disordered occupation of

Mn atoms at Sn sites for Mn3+xSn1−x samples. However, no clear understanding of

the long-range ferromagnetic order or the mechanism of the magnetic ground state

is achieved so far. This chapter answers these questions through rigorous magnetic,

electronic transport, neutron diffraction, and theoretical studies. In doing so, a ’new’

Hall signal arising from the non-coplanar magnetic ground state is brought into the

light. Furthermore, the phenomena of dual magnetic ordering in a sample is seen

for the first time. The current chapter also establishes the presence of higher-order

exchange interaction, which modifies the energy landscape of magnetic interactions

in this well-studied kagome material.

The journey to uncover these properties again starts with the process of syn-

thesizing a suitable set of samples. As we learn in chapter 3, a correlation exists

between the magnetic ground state and the electron doping of the samples. A close

look at the Fig. 3.2 tells us that the high electron doping stabilizes samples with

only the low-temperature transition. Motivated by this, a series of electron-doped

samples were synthesized for the current study. As the samples beyond the doping

of Mn3.09Sn0.91 could not be acquired, a series of samples with Mn3−xMxSn were

synthesized. A natural candidate for the M element is the Fe atom, which has one

additional electron than Mn atoms. Thus, the Fe doping was chosen to expand the

limits of the possible electron doping and minimize the disordered occupation of

the Mn atoms at the Sn sites. Moreover, the Fe atoms also show large magnetic

moment which preserves the magnetic site and allows for synthesizing large doping

samples. In this regard, samples with composition Mn3.09Sn0.91 and Mn3−xFexSn

are synthesized. As the Mn3Sn samples exhibit highly anisotropic magnetic prop-

erties, the samples are synthesized in a single crystalline form to extract the exact

orientation-dependent physical properties. The synthesis details can be found in

chapter 2.
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Figure 4.1: XRD patterns with Rietveld refinement for the polycrystalline (a)
Mn2.7Fe0.3Sn, (b) Mn2.5Fe0.5Sn, and (c) Mn2.3Fe0.7Sn samples. Some high intensity
peaks are labeled in (a). The legends for the first three plots are shown in (b). (d)
XRD pattern as recorded for the (001) face of single crystal samples.

4.1 Structural characterization of Mn3−xFexSn sam-

ples

The polycrystalline samples are prepared for the series Mn3−xFexSn, for x = 0.3, 0.5

and 0.7. The single crystal of Mn3.09Sn0p91, Mn2.7Fe0.3Sn and Mn2.5Fe0.5Sn are also

synthesized. Figure 4.1 shows the powder XRD patterns for the polycrystalline sam-

ples. The Rietveld refinement for all the samples are also shown in the figure. All the

observed reflections are well accounted for the hexagonal crystal structure of the sam-

ple.
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Table 4.1: Lattice parameters of
Mn3−xFexSn samples.

a c

Mn3Sn 5.65 4.52

Mn2.7Fe0.3Sn 5.63 4.50

Mn2.5Fe0.5Sn 5.60 4.49

Mn2.3Fe0.7Sn 5.59 4.47

The XRD analysis confirms that the electron

doping does not alter the crystal structure of

the samples. The extracted lattice parameters

are tabulated in the Table 4.1. The lattice pa-

rameters a and c monotonically decrease with

increasing Fe doping levels.

For the single crystalline samples, Fig. 4.1

(d) shows the recorded XRD patterns. It can

be seen from the figure that the XRD patterns

of Mn3.09Sn0p91 and Mn2.7Fe0.3Sn only show the (002) and (004) peaks. As the XRD

pattern was taken on the c plane of crystals, the observation of only two high intense

reflections confirms the single crystalline nature of the samples. A good XRD pattern

for the Mn2.5Fe0.5Sn could not be recorded due to very small size of the obtained

crystals. However, the morphology and the subsequent magnetic characterization

confirm the samples to be of single crystalline nature.

EBSD charaterization of single crystal samples : Additionally, the Elec-

tron Backscatter Diffraction (EBSD) measurements82 are performed to check the

single-crystalline nature of the samples. The EBSD patterns are recorded on dif-

ferent samples at various positions. All the samples show the same orientation of

the crystals. Figure 4.2 shows the EBSD patterns for the three samples recorded

on the [0001] face of crystals. The EBSD data also confirms the [0001] orientation

of samples, as is visible from the graphs. The data of Mn2.5Fe0.5Sn sample is com-

paratively noisy due to the small size of the crystal, which makes it challenging to

obtain a well-polished face to perform EBSD measurements.

4.2 Compositional analysis

To check the compositional homogeneity, the FESEM measurements are performed

on the Mn3−xFexSn sample as shown in Figure 4.3. The homogeneous contrast of

these images confirms the formation of single phase for all the samples. The exact
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Mn3.09Sn0.91

Color map for 
orientation

SEM 
Image

Mn2.7Fe0.3Sn

Mn2.5Fe0.5Sn

Figure 4.2: Recorded EBSD patterns for (a) Mn3.09Sn0p91, (b) Mn2.7Fe0.3Sn and (c)
Mn2.5Fe0.5Sn samples.

stoichiometry of the samples is studied with help of the EDS measurement and

nearly matched with the expected value.
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(a) Mn3.09Sn0.91

(b) Mn2.7Fe0.3Sn

(c) Mn2.5Fe0.5Sn

Element Weight % Atomic % Error %
SnL 37.5 21.7 2.2

MnK 62.5 78.3 2.4

Element Weight % Atomic % Error %
SnL 38.4 22.4 2.2

MnK 56.2 70.9 2.5
FeK 5.4 6.8 5.7

Element Weight % Atomic % Error %
SnL 38.8 22.8 2.2

MnK 52.8 66.8 2.5
FeK 8.4 10.5 4.4

Figure 4.3: The FESEM images and corresponding EDS results for Mn3−xFexSn
samples.

4.3 Magnetic properties of samples

The magnetic measurements are performed both on the single crystal and polycrys-

talline samples. Hereafter, the measurements on the single crystalline samples are

mainly focused.

Figure 4.4 displays the M(T ) data for three single crystalline samples measured

in the ZFC and FC modes at a field of 1000 Oe. The left column in Fig. 4.4 shows

the measured data when the magnetic field is applied parallel to the c-axis of the

hexagonal unit cell, while the data for H ⊥ c are plotted in the right column. Let
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Figure 4.4: Temperature dependent ZFC and FC M(T ) curves for (a-b)
Mn3.09Sn0.91, (c-d) Mn2.7Fe0.3Sn and (e-f) Mn2.5Fe0.5Sn samples measured in two
different orientations. The left column shows measurements for fields applied along
the c-axis, and the right column shows data for fields perpendicular to c-axis.
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Figure 4.5: (a) ZFC and FC M(T ) plots for polycrystalline Mn2.3Fe0.7Sn sample.
The inset shows zoomed in view of the Neel temperature. (b) Fe doping dependence
of spin reorientation transition temperature TSR and magnetic ordering temperature
TN .

us go through these plots individually. Figure 4.4 (a) and (b) show the M(T ) data

for the Mn3.09Sn0p91 sample. The data for the field applied perpendicular to the

c-axis exhibit a very small magnetic moment in the whole temperature range. For

the H ⊥ c, the data above 100 K remains essentially constant and featureless. No

signature of magnetic ordering temperature is visible in the measured data, as the

Neel temperature TN for the parent Mn3Sn is reported to be above 400 K.83

For the M(T ) measurements performed for H ∥ c, it is observed that the magne-

tization stays at a small value above 100 K. The magnetic moments in the iT-AFM

structure of the Mn3Sn sample lie in the basal plane of the hexagonal lattice struc-

ture. Hence, a vanishing magnetic moment is expected along the c-axis, which

matches well with the observation of negligible magnetic moment above 100 K.

However, when the temperature is decreased below 100 K, the magnetization value

rises dramatically. A significant bifurcation is also visible in the ZFC and FC M(T )

curves at low temperatures. The massive bifurcation points toward the presence of

high magnetic anisotropy in the sample. These results indicate that the samples

undergo a spin reorientation transition below 100 K. The spin reorientation temper-

ature TSR is obtained from the first derivative of the FC curve and is marked by a

dotted line in the plots.
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Now moving on to the Fe (higher electron) doped samples, Fig. 4.4 (c-d) and (e-f)

shows the M(T ) plots for Mn2.7Fe0.3Sn and Mn2.5Fe0.5Sn samples, respectively. For

these samples, the data for H ⊥ c show a clear signature of the Neel temperature.

The ordering temperature TN is marked in respective plots. The TN decreases with

increasing electron doping. Moreover, theH ∥ cmeasurements show a similar nature

of magnetization variation to that of the Mn3.09Sn0p91 sample, with an increase in

the spin reorientation temperature TSR. The magnetic moment and the extent of

bifurcation between the ZFC and FC M(T ) curves also increases. The single crystal

samples could only be synthesized up to Fe doping of 0.5. However, polycrystalline

sample of Mn2.3Fe0.7Sn is successfully obtained. Figure 4.5 (a) shows the M(T ) for

the polycrystalline Mn2.3Fe0.7Sn sample, which shows both the spin reorientation

transition and the ordering temperature TN . The TSR increases further for the

Mn2.3Fe0.7Sn sample while the TN decreases further. These results are summarized

in Fig. 4.5 (b), where the variation of TSR and TN with Fe doping is plotted for

both the single crystals as well as the polycrystalline samples. For the Mn2.3Fe0.7Sn

samples, TSR is approximately 200 K and nearly covers the entire magnetic ordered

phase.

The M(H) measurements for the three samples are shown in Fig. 4.6. Like

the M(T ) measurements, M(H) data are also taken by applying fields parallel and

perpendicular to the c-axis. The M(H) loop for the Mn3.09Sn0p91 sample with field

applied perpendicular to the c-axis shows a linear behavior, with a small hysteretic

loop at low magnetic fields [Fig. 4.6 (b)]. The behavior of the M(H) loop stays

nearly the same at 5 K. The nature of the M(H) loops for H perpendicular to c

matches well with that obtained for the iT-AFM spin structure.

For H ∥ c [Fig. 4.6 (a)], the room temperature data shows a perfect linear M(H)

loop, as the magnetic moments in the iT-AFM state lye in the basal plane. Thus,

the application of a magnetic field only tilts the Mn moments along the c-axis by

a minuscule value and results in the linear nature of the loop. Upon decreasing

the temperature, slope of the linear M(H) loop keeps on increasing. At 75 K,

a slight ferromagnetic hysteresis character starts to appear. Further reduction in
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Figure 4.6: Field dependent isothermal M(H) loops for (a-b) Mn3.05Sn0.95, (c-
d) Mn2.3Fe0.7Sn and (e-f) Mn2.5Fe0.5Sn samples at various temperatures. The left
column shows measurements for fields applied parallel to c-axis, and right column
shows data for H ⊥ c-axis.
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temperature leads to a ferromagnetic-like loop at 50 K. At 5 K, the sample shows

a large hysteresis loop with a large coercive field. As is evident from the M(H)

plots, the zero filed extrapolated moment, as well as the magnetic moment at 5 T,

keeps increasing with decreasing temperature. These results suggest the presence

of a c-axis oriented long-range ferromagnetic order. It is important to mention

here that the non-linear nature of the M(H) loop only starts appearing at the spin

reorientation transition shown in the M(T ) measurements.

For the Mn2.7Fe0.3Sn sample [Fig. 4.6 (c-d)], the in-plane M(H) loop exhibits a

linear behavior with small hysteresis at low as well as high temperatures. The room

temperature M(H) loop for H ∥ c shows a linear behavior, while the reduction in

temperature imparts a hysteretic nature below the TSR. The magnetic moment along

the c-axis also increases for Mn2.7Fe0.3Sn in comparison to that of Mn3.09Sn0p91. The

Mn2.5Fe0.5Sn sample follows the same trend [Fig. 4.6 (e-f)]. The coercive field value

reaches a very large value for the H ∥ c data, and the sample exhibits a magnetic

moment of nearly 2µB f.u.. The size of the moment for in-plane measurements also

increases significantly.

The magnetic measurements can be summarized as follows

1. The samples undergo a spin reorientation transition from in-plane to along

the c-axis at TSR.

2. The Samples exhibit a large coercive field and magnetic moment below the

TSR.

3. The in-plane characteristic of the magnetic moments stays nearly similar for

all samples

4. The out-of-plane and the in-plane magnetic moments increase with increasing

Fe doping.

Now let us try to comprehend these results. Based on the magnetic data, the

aim is now to build a model spin structure for the ground magnetic state below the
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Figure 4.7: (a) Schematic of the proposed model of spin reorientation transition
for the hexagonal Mn3Sn. (b) The triangular lattice site with two large Mn and one
smaller Fe moment.

spin reorientation transition. Subsequently, the proposed model will be validated

by using further theoretical and experimental studies.

4.4 ’True’ magnetic ground state of Mn3Sn

4.4.1 Proposed magnetic ground state

The room temperature iT-AFM structure of Mn3Sn is shown in Fig. 4.7 (a). All the

moments lie in the ab-plane of the hexagonal unit cell. In the 120◦ spin structure

of the iT-AFM structure, the total magnetic moment of a triangle perfectly cancels

each other out. The magnetic measurements indicate that a spontaneous magnetic

moment is present along the c-axis below TSR. This observation can be accounted

for by a simple canting of all the spins by an angle ϕ along the c-axis. Figure 4.7

(a) shows a schematic of such a canting of spins. The in-plane component of the

magnetic moment of such a canted state continues stabilizing the iT-AFM state, and
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thus the in-plane magnetic moment remains zero. The magnetic properties observed

for the Mn3.09Sn0p91 sample are well accounted for by this model.

Furthermore, an increase in the out-of-plane canting angle may cause the rise

of the magnetic moment along the c-axis with Fe doping. The increased in-plane

magnetic moment with Fe doping is probably a consequence of a smaller magnetic

moment on the Fe atoms compared to that of Mn. A schematic of such a situation

is shown in Fig. 4.7 (b), where the small magnetic moment of Fe ion leads to an

uncompensated magnetic moment perpendicular to c.

4.4.2 Neutron diffraction study of ground state

Neutron diffraction (ND) measurement is carried out to confirm the presence of

the purposed magnetic ground state at low temperatures. For this purpose, the

sample with composition Mn2.5Fe0.5Sn is utilized. The ND data for Mn2.5Fe0.5Sn

are collected at different temperatures including that of above the TN . Before an-

alyzing the neutron diffraction data, the effect of the out-of-plane canting on the

neutron pattern is simulated, as plotted in Fig. 4.8 (a). The data are simulated for

a wavelength of 1.24430 . The simulated data reveals an appreciable intensity re-

distribution in the neutron data for (200) and (201) peaks for different out-of-plane

canting angel.

The (201) and (200) peaks for the recorded data are shown in Fig. 4.8 (b-c)

at different temperatures. The neutron diffraction data are collected for neutron

wavelength λ = 2.43955 . It can be seen that the intensity of both the peaks

practically remains constant from room temperature to 150 K. Below 150 K, the

peak intensity starts to rise sharply. Finally, at the lowest temperatures, the peak

intensity enhances significantly for both the reflections compared to the data above

150 K. The increase in peak intensity is even more evident in Fig. 4.8 (d), where

the area of both peaks is plotted as a function of temperature. The area is assessed

using a Gaussian fit of the peaks. It is seen that the area of both peaks begins to

rise below 150 K and keeps rising all the way down to very low temperatures. This
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Figure 4.8: (a) Simulated neutron diffraction data for different out-of-plane canting
angles. ND data at different temperatures for (b) (201) and (c) (200) reflections.
(d) Temperature dependent area of the (201) and (200) peaks as evaluated by a
Gaussian fitting of the peaks.

finding follows well the trend observed in simulated data that a canting of spins

along the c-axis enhances the peak intensity of (200) and (201) reflections.

The Mn2.5Fe0.5Sn sample displays a magnetic ordering temperature of 320 K.

The ND data taken at 350 K is shown in Fig. 4.9 (c). As the sample shows no

magnetic ordering at 350 K, the data at 350 K is used to refine the structural details

of the sample. Once the 350 K data is refined, the refinement parameters are fixed.

Subsequently, the magnetic phase is added and refined using these parameters to fit

the data at low temperatures. From the structural part, only the lattice parameters

are refined for the lower temperatures. The Rietveld refinement of the 350 K data

shows a good fit with the hexagonal unit cell of the sample. The refined lattice

parameters are a = 5.6216 and c = 4.4944. The Wyckoff parameter x for the

6h(x,2x,0.25) ionic position of the Mn atom is 0.1585.
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Figure 4.9: Neutron diffraction data with Rietveld refinement at different tempera-
tures for Mn2.5Fe0.5Sn sample. (a) The 350 K data with only structural fit. (b) The
ND data at 300 K fitting with iT-AFM structure. (c) The fitting of 10 K data with
canted iT-AFM structure.
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Figure 4.10: Fitting of the 10 K ND data with and without canting. 2θ range for
the (201) and (200) peaks is shown.

The magnetic ground state for the sample up to 150 K can be nicely fitted with

the 120◦ iT-AFM structure. Figure 4.9 (b) shows the plots for room temperature

ND data. The data is well fitted with the iT-AFM structure. Below 150 K, the

data is only best fitted by including an out-of-plane canting of the magnetic spins.

The data at 10 K, along with Rietveld fitting, is shown in Fig. 4.9 (c). The canting

angle from the refinement comes out to be approximately 15◦. Figure 4.10 shows

a comparison of the data fitted with and without canting for the (200) and (201)

peaks at 10 K, which establishes the better inclusion of data with a canted state.

Thus the neutron diffraction measurements confirms the presence of the canted state

as the ground state.

Discussion on ’True’ magnetic ground state: Now that the magnetic struc-

ture below TSR is resolved, let us discuss in details about the consequence of the

present magnetic ground state. Due to the canted nature of the magnetic structure,

a non-coplanarity is induced. As discussed in chapters 1, a non-coplanar magnetic

state can contribute to an additional component to the Hall voltage. It is known that

Mn3Sn exhibits a large AHE due to the cluster octupole order of the non-collinear

magnetic ground state at room temperatures (chapter 1). For the canted ground

state, the in-plane component of the magnetic state remains the same. This implies

that one should be able to measure the octupole order-induced Hall signal in the
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samples at all temperatures down to the lowest one. Below the TSR, the spins cant

along the c-axis and generate a state with finite scalar spin chirality (SSC). The

scalar spin chirality is a measure of the non-coplanar nature of the spin structure

and is calculated as Si.(Sj × Sk). The SSC of a triangular unit of kagome lattice is

plotted in Fig. 4.11 (b) as a function of canting angle ϕ. It is clear that the SSC

increases with canting of the spins and reaches a maximum at 35◦. Above this

value, the SSC again reaches zero at 90◦ (ferromagnetic order). Thus the sample

could show a finite Hall signal due to this SSC, which can exist along with the Hall

signal generated by the octupole order. To confirm these deductions, the transport

measurements are performed on three samples as discussed below.

4.5 Transport properties of canted ground state

A schematic of the magnetic state below and above the TSR is shown in Fig. 4.11

(a). The fictitious magnetic field due to the octupole order lies in the plane of the

kagome lattice. The octupole order domains can be aligned by applying a magnetic

field in the kagome plane. Thus, this octupole order induced Hall signal can be

detected in the ρxz component of Hall resistivity, where the field is applied along the

y direction. On the other hand, the ferromagnetic component domains are aligned

by the application of a magnetic field along the c-axis. Hence the Hall signal due to

this component can show up in the ρxy component. A schematic of the ρxy and ρxz

measurement is shown in Fig. 4.11 (d). The Hall bar are prepared from the single

crystals with x as [21̄1̄0] and y as [011̄0] direction. Figure (c) shows the chosen

direction in reference to a hexagonal structure. The z direction corresponds to the

c-axis of the unit cell.

The octupole order induced ρxz component of the Hall signal is plotted in Fig.

4.12 for the three samples. The Mn3.09Sn0p91 sample shows a large Hall signal at

room temperature, similar to that is observed earlier. The Hall signal shows a robust

nature upon reduction in temperature and is observed up to 5 K temperature, with

a maximum value at 200 K. The conductivity plots are also shown in Fig. 4.12 (b).
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Figure 4.11: (a) Schematic of the high-temperature, in-plane iT-AFM state (left)
and the canted low-temperature magnetic state (right). The green arrows represent
the direction of the fictitious magnetic field generated by octupole order (left) and
the non-coplanar canted state (right). (b) The SSC on a triangular unit as a function
of out-of-plane canting angle. (c) The hexagonal structure with marked directions
that are chosen as x and y for transport measurements. (d) 3D schematic of a
rectangular shaped Hall bar showing the ρxy and ρxz measurement connections.

The conductivity values of the samples also match well with the earlier reported

ones. Both the Fe doped samples exhibit a robust ρxz signal down to 5 K. The Hall

resistivity value decreases with larger Fe doping. Hall conductivity also follows a

similar trend, where it reduces to a very small value for the Mn2.5Fe0.5Sn sample.

The presence of the ρxz signal for the three samples in the whole temprature range

implies a stable octupole order in the electron doped samples.

Next, the ρxy measurements are carried out on the three samples, as shown in Fig.
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Figure 4.12: Field dependent ρxz component of Hall resistivity (left column) and
Hall conductivity (right column) for (a-b) Mn3.05Sn0.95, (c-d) Mn2.3Fe0.7Sn and (e-f)
Mn2.5Fe0.5Sn samples at different temperatures.
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Figure 4.13: Field dependent ρxy component of Hall resistivity (left column) and
Hall conductivity (right column) for (a-b) Mn3.05Sn0.95, (c-d) Mn2.3Fe0.7Sn and (e-f)
Mn2.5Fe0.5Sn samples at different temperatures.



4.5 Transport properties of canted ground state 107

4.13. The Mn3.09Sn0p91 sample does not show any ρxy signal at room temperature,

which is expected for the iT-AFM state above TSR. The Hall signal above the TSR

shows a linear trend, similar to M(H) measurements. Below TSR, a huge ρxy signal

starts to arise in the sample. It reaches a very large value of 13 µΩ-cm at 5 K. The

Hall conductivity plots shown in Fig. 4.13 (b) exhibits a very large. This ’new’ ρxy
signal is even larger than the earlier observed Hall signal due to octupole order. The

Fe doped samples also show a similar nature for the ρxy plots, where a finite Hall

signal is seen below TSR. The ρxy value increases for higher Fe doping and reaches

a maximum of 35 µΩ-cm for the Mn2.5Fe0.5Sn sample. These values correspond to

nearly the highest values for a metallic sample. However, the Hall conductivity v

shows a reduction in magnitude for higher Fe-doped samples. Although one would

expect larger values of conductivity for the Fe-doped samples with enhanced SSC,

the exact value of SSC induced Hall signal depends on a multitude of variables like

band filling.84

Nevertheless, the results presented in this section reveal the presence of a ’new’

SSC induced Hall signal below TSR in the Mn3Sn series of samples. The values

obtained here are specifically huge for the systems exhibiting an SSC phenomenon-

induced Hall signal. Moreover, the Hall signal reported here is a spontaneous prop-

erty of the magnetic ground state.

4.5.1 Confirmation of the scalar spin chirality mechanism

The large anomalous Hall signal (ρxy) reported in the last section originates from

the non-coplanar magnetic phase of Mn3−xFexSn samples. However, the SSC-based

mechanism is not the only candidate which can generate this Hall signal. Topological

features in the band structure of various materials have been extensively studied

regarding the presence of large AHE. The topological nature of band structure leads

to an intrinsic contribution to the Hall signal. Thus, let us first examine the extent

of intrinsic and extrinsic contributions to the ρxy signal.

The intrinsic and extrinsic contributions to the Hall signal can be extracted
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using the scaling relations, which are discussed in section 1.3.3. A plot of log(ρxy)

vs. log(ρxx) should yield a slope of 2 for the intrinsic nature of AHE, while a slope

of 1 is expected when the contribution is extrinsic. The log(ρxy) vs log(ρxx) plots for

Mn2.7Fe0.3Sn and Mn2.5Fe0.5Sn samples are shown in Fig. 4.14 (a-b). An anlysis for

the Mn3.09Sn0p91 sample could not be performed due to the Kondo effect seen for that

samples at low temperatures. A linear fit of data below TSR for Mn2.7Fe0.3Sn and

Mn2.5Fe0.5Sn samples reveals unusually large values of slope for both the samples.

These values are unacceptable for the AHE scaling relations. To improve the scaling,

the presence of finite SSC of the ground state is incorporated into the data. If the

source of the present AHE signal is the finite SSC of the magnetic ground state, then

a plot of log(ρxy/SSC) instead of log(ρxy) should help the fitting. The division by

SSC is performed because with reducing temperature, the magnetic moments slowly

start to cant along the c-axis before reaching a maximum value at low temperature.

The slow canting is evident from the M(T ) and M(H) measurements. The SSC,

which is the source of the Hall signal, and depends on the canting angle ϕ, also

changes with temeprature. A division of the Hall signal with SSC gives us Hall

resistivity per unit SSC value, which should not change with temperature. The SSC

at different temperatures is calculated from the magnetization measurements and a

new plot of log(ρxy/SSC vs log(ρxx) is shown in Fig. 4.14 (c-d). A line corresponding

to a slope of 2 is also plotted in the same figures. It can be seen that the new data

fits nicely with a line of slope 2, confirming that the AHE is of intrinsic nature.

Moreover, the fitting could only be achieved after normalizing ρxy by SSC, which

indicates that the Hall signal is driven by the finite SSC of the magnetic ground

state.

To further confirm the SSC-induced mechanism of the ρxy signal, a fitting of the

anomalous Hall signal with the magnetization of the sample is performed. The Hall

resistivity for intrinsic contribution can be written as

ρxy = R0H + bρ2xxM, (4.1)
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Figure 4.14: (a-b) AHE scaling plots for Mn2.7Fe0.3Sn and Mn2.5Fe0.5Sn samples.
The scattered data points represent the experimental log(ρxy) values and the line
correspond to a linear fit of the data. The vertical grid line mark the spin reorienta-
tion transition temperature. (c-d) The log(ρxy/SSC) plots for the two samples and
a line corresponding to slope of 2.

where R0 is the normal Hall coefficient, b is a scaling factor, H is the applied

external magnetic field, and M is the magnetization. If the observed Hall signal

originates due to the net magnetization of the sample, an exact fit of the observed

Hall signal with the above equation is expected. To evaluate constants R0 and b, let

us rewrite Eq. 4.2 as

ρxy
H

= R0 +
bρ2xxM

H
. (4.2)

Thus the slope and intercept of a linear fit of ρxy
H

vs. bρ2xxM
H

plot gives the

value of b and R0. This fitting is carried out at high fields in the range of 2-5 T.
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Figure 4.15: (a-b) The measured and calculated Hall resistivity for (a) Mn3.09Sn0.91

and (b) Mn2.7Fe0.3Sn sample at 5 K. The shaded region highlights the mismatch
between two curves.

The calculated and measured Hall resistivity data are plotted in Fig. 4.15 for (a)

Mn3.09Sn0.91 and (b) Mn2.7Fe0.3Sn sample at 5 K. It can be seen that the fitting is

good for the high field range from where the parameters are extracted. However, a

significant mismatch is found in the measured and calculated Hall data in the low

field range. Now, if the source of the Hall signal is the magnetization of the sample,

then the calculated Hall and measured signal should match each other. However, the

SSC only depends on the out-of-plane canting angle of the magnetic moment. Thus,

the observed mismatch could result from a dissimilar change in the magnetization

and the magnitude of SSC with application of magnetic field. These measurements

show that the observed Hall signal mostly originates from the SSC mechanism rather

than the magnetization of the sample.

4.6 Dual magnetic order

The presence of two different Hall signals in the non-coplanar phase of the Mn-Fe-Sn

system is shown in the previous section. Thus, the Hall resistivity of samples are

highly anisotropic in nature. Many samples reported in the literature show a large

anisotropy in the Hall signal. The room temperature phase of Mn3Sn and Mn3Ge is
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among them. However, the anisotropic Hall signal of the non-coplanar state differs

from those observed in earlier reports in a crucial way. For nearly all the samples

studied in the literature, there always exists a single source of Hall signal. This

statement implies that whenever an anisotropy is observed in the Hall signal, it

mostly originates from the change in symmetries when the magnetic field is applied

in a different direction of an anisotropic crystal. However, the net magnetization is

always the source of the Hall signal, generating dissimilar Hall signals in a different

directions. For the results presented here, the Hall signal arises from two different

sources: octupole order and SSC of the dipole moments. Thus, the non-coplanar

magnetic ground state of these samples exhibits a phenomenon of dual magnetic

ordering in the system.

Figure 4.16: Picture of the
Hall connection made to measure
ρxy and ρxz component simulta-
neously.

A fundamental question now arises regarding

the dual-ordered magnetic state of the current

samples. Are these two orders coupled or inde-

pendent? To explore this, the Hall setup is pre-

pared in such a way as to measure both the Hall

signals simultaneously. A picture of the sample

with contact connections is shown in Fig. 4.16,

as well as the schematic in Fig. 4.11 (d). The

setup is mounted on a rotator to facilitate the ap-

plication of magnetic fields in different directions

of the y−z plane. The two extreme orientations

are shown schematically in Fig. 4.17. In the

first case, the magnetic field is applied along the

c-axis, which aligns the SSC domains, leading to

a field reversible observation of the SSC-induced Hall signal. In the other orthogonal

orientation, the field aligns the octupole order domains, and the ρxz component can

be reversed with the application of a magnetic field. As the connections are made

for both the Hall signals, a simultaneous measurement of ρxy and ρxz is possible.

For the measurement, first, the SSC domains are aligned by applying a saturating
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A schematic at top is shows the measurement protocol. See text for more details.

field along the c-axis. The SSC-induced Hall signal is shown in the left plot of

Fig. 4.17. The applied field is then made to zero. As the SSC domains show

a sizable coercive field, the SSC domains remain aligned even after reducing the

magnetic field to zero. In this remnant state of the SSC domains, the sample setup

is rotated, and the field is now applied in the plane of the hexagonal structure. The

in-plane magnetic field can align the octupole domains, and the ρxz component of

Hall resistivity can be measured. The ρxz signal is shown in the middle part of

the Fig. 4.17. As the connection for both ρxy and ρxz are made, the setup allows

us to measure both components. It can be seen that with a sweep of the in-plane

magnetic field, the octupole order induced Hall changes sign with the reversal of

the magnetic field. In contrast, the saturated SSC-induced Hall signal stays at the

positive value. Afterward, the SSC signal is saturated by a negative magnetic field.

For the negative saturation, it can be seen that the octupole signal is reversed while
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the SSC signal stays at a negative saturation value (right part of the figure). This

implies that the octupole and SSC domains can be easily switched independent of

each other. Thus, the present system possesses a four-fold degenerate domain state

rather than the normal two-fold degenerate state found in magnetic systems.

4.7 Theoretical study of magnetic ground state

4.7.1 Ground state from ab− initio studies

The non-collinear version of the VASP code is used in conjunction with the con-

strained magnetic calculations to probe the minimum energy ground state for dif-

ferent samples. The calculation details can be found in chapter 2. The total energy

of the Mn3Sn system is calculated for different canting angles ϕ using the constrained

moment calculations. The magnetic structure of the Mn3Sn unit cell is initially fixed

as the iT-AFM state, and the DFT calculated energy of this spin configuration is

obtained. Afterward, all the magnetic moments in the unit are canted along the

c-axis by different magnitudes of out-of-plane canting angles ϕ. The total energy

of the system for different canting angles is then recorded for different canting an-

gles. Following the same procedure, a series of calculations are performed for the

Mn3−xFexSn series of samples with x ranging from 0 to 3. The Fe doping is in-

corporated using the virtual crystal approximation (VCA) scheme available in the

VASP code. For simplicity, the ideal kagome lattice structure without trimerization

is used for the calculations.

Figure 4.18 (a-c) shows the ϕ vs. change in energy curves for the Mn3−xFexSn

samples. The iT-AFM state with ϕ = 0 is taken as the reference state, whose energy

is subtracted from the energies of the system at different canting angles. It can be

seen from plot (a) that the minima in energy lie at 0◦ for Mn3Sn. The energy cost to

stabilize the canted state is visibly high; thus, the pristine Mn3Sn should be stabilize

in an in-plane iT-AFM structure.

Figure 4.18 (b) shows the calculated energy curve for the Fe-doped samples. For
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Figure 4.18: (a-c) The change in energy as a function of out-of-plane canting angle
ϕ computed using the ab-initio calculation for Mn3−xFexSn series of samples. The
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different values of x.

Fe 0.3, the minimum energy ground state is still at ϕ = 0◦, with a ferromagnetic

state with ϕ = 90◦ being the most energy costly. However, the energy cost for the

stabilization of the canted state is reduced compared to the pristine Mn3Sn. On

further increasing the Fe content, the shape of the curve changes for x = 0.5 sample.

The energy minima now lie at a finite value of ϕ, approximately 10 meV below

the in-plane iT-AFM state. The ferromagnetic state with ϕ = 90◦ remains the most

energy costly state, with a further decrease in the overall energy cost. For the energy

curve for x = 0.75 sample, a complete reshuffling of the magnetic ground state takes

place. The minimum in energy is at a finite value of angle ϕ, approximately 65 meV
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below the iT-AFM structure. More interestingly, the ferromagnetic ordering now

becomes more stable than the iT-AFM state and lies 55 meV below it.

Increasing the Fe doping beyond 0.75 leads to the stabilization of a ferromagnetic

ground state. For x = 1.0, 2.0, and 3.0 samples [Fig. 4.18 (c)], the minima is at

a value of ϕ = 90◦. The differnece between the ϕ = 0◦ and 90◦ magnetic state

continues to increase with Fe doping. The results are summarized in Fig. 4.18 (d),

where the value of ϕ corresponding to minimum energy state is plotted as a function

of x.

Thus, with the electron doping by means of Fe substitution, the magnetic ground

state of the sample changes from the iT-AFM state to a finite canted ground state,

which further transforms to a ferromagnetic ground state with Fe doping of 1.0.

Thus the theoretical results also support the presence of a canted ground state. The

qualitative difference between the composition range supporting the canted state

and the stability of the canted state for Mn3.09Sn0.91 sample most likely arises from

the off-stoichiometry of the sample, which is not incorporated into the calculations.
A mystery that remains to be understood is the driving mechanism responsible

for stabilization of the canted magnetic ground state. As we learn in the chapter
1 and 3, the exchange interactions in the Mn3Sn sample are such that the iT-
AFM state is the ground state. Analysis of exchange parameters up to six nearest
neighbors do not reveal any possible way to stabilize a canted magnetic ground
state. The only closest example found in the literature that shows somewhat sim-
ilar properties is that of a topological material Co3Sn2S2. Co3Sn2S2 undergoes a
temperature-dependent transition from the in-plane AFM state to a c-axis oriented
ferromagnetic exchange.85 The presence of anisotropic exchange interactions was
found to drive this transition.86 However, it has been reported that the anisotropic
exchange interactions drive a sudden transition between the AFM and FM state
without stabilizing a canted ground state. Thus, to find the reason for the stabiliza-
tion of the canted ground state, we must look beyond the usual Heisenberg exchange
interactions. In this context, the possibility of the presence of higher-order exchange
interactions, introduced in chapter 1, will be discussed next.

Before proceeding with the analysis, let us first label the different higher-order ex-
change interactions for the kagome lattice of Mn3Sn. Figure 4.19 shows a schematic
of a single layer of the kagome lattice. The Heisenberg exchange interaction can be
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Figure 4.19: The Heisenberg exchange and the different 4-spin higher order exchange
interaction on kagome lattice.

present between any two pairs of atoms and is marked by a red arrow for the nearest
neighbor pair. The Heisenberg exchange interaction can also be called a 2-spin-two-
site (Jij) interaction. The next order of exchange interactions that can be present
are the 4-spin interactions. As discussed in chapter 1, the four spin interactions can
exist in three different forms, namely the 4-spin-two-site (Bijij), 4-spin-three-site
(Yijjk) and 4-spin-four-site (Kijkl) interactions. These exchanges are marked on the
kagome lattice in Fig. 4.19 with different colors. Only the ’nearest neighbor’ of the
4-spn exchange interactions will be considered. While the two-site Bijij and three-
site Yijjk are connected by a path made up of nearest neighbor bonds, the four-site
Kijkl is mediated through a pair of two different bond lengths (thick and thin green
arrows in Fig. 4.19 ).

4.7.2 Effects of higher order exchange interactions on the
iT-AFM ground state

A method to evaluate exchange interaction in a material is to map the DFT calcu-
lated energies of different magnetic configurations onto an exchange Hamiltonian.
Such an analysis is also performed in chapter 3 to evaluate the exchange interac-
tions. Before starting with the analysis of the DFT calculations, let us first evaluate
what sort of effects on the magnetic state can be expected upon the inclusion of
higher-order exchange in the system. The Hamiltonian for the 2-spin and 4-spin
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Figure 4.20: (a) Schematic of the in-plane magnetic configuration considered. (b)
Energy change as a function of canting angle Θ for a set of three coplanar spins for
Heisenberg exchange and (c) for 4-spin exchange interactions. (d) Energy change
plots for different values for 4-spin exchange added to the Heisenberg exchange.

exchange interactions can be written as

H =
∑
ij

Jij(Si.Sj) +
∑
ij

Bij(Si.Sj)
2

+
∑
ijk

Yijk[(Si.Sj)(Sj.Sk) + (Sj.Si)(Si.Sk) + (Si.Sk)(Sk.Sj)]

+
∑
ijkl

Kijkl[(Si.Sj)(Sk.Sl) + (Si.Sl)(Sj.Sk)− (Si.Sk)(Sj.Sl)]

+
∑
ijk

Xijk(Si.Sj)(Sk.Sl)(Sl.Si). (4.3)

The room temperature magnetic ground state of the kagome lattice in Mn3Sn is
the iT-AFM structure. Let us assess the possible modification of this ground state
in two steps. First, any modification to the in-plane ground state will be studied,
followed by an analysis of possible out-of-plane modifications. The analysis for the
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Figure 4.21: The change in energy as a function of out-of-plane canting angle ϕ for
2-spin and 4-spin exchange interactions.

in-plane magnetic state is performed as follows. The total exchange energy of three
spins on a triangle is calculated by rotating the magnetic spin in the plane of the
triangle. The starting position is chosen as a ferromagnetic alignment of spins, from
which the two spins are rotated by an angle θ in an opposite fashion. A schematic
depicting the process is shown in Fig. 4.20 (a). Figure 4.20 (b) shows the energy
change from the reference state of θ = 0 for only the Heisenberg exchange. It can be
seen that the minimum in energy is at θ = 120◦ for the AFM exchange interaction
(positive J for Hamiltonian 4.3). This result is expected as the ground state of three
spins on a triangle with antiferromagnetic exchange is a triangular spin state.

Moving to the 4-spin exchange interactions, the same plot for different 4-spin
exchange interactions is shown in Fig. 4.20 (c). It can be seen that different forms
of 4-spin exchanges lead to unique energy curves for each form of the high-order
interaction. It is tough to assess what kind of modification may be present by an-
alyzing these plots. Thus, a perturbative way is explored to analyze the addition
of higher-order exchange interactions. The energy is determined by perturbatively
adding an equal contribution from the 4-spin components to the Heisenberg Hamil-
tonian. Mathematically speaking, Θ vs. energy change is plotted for B = K = Y =
x*J , for different values of x. The results are plotted in Fig. 4.20 (d). The plot for
x = 0 leads to the previously discussed result with a minimum at 120◦. It can be
seen that the position of the minima slightly moves from the 120◦ with the addition
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of contributions from 4-spin terms. However, the ground state is not altered dras-
tically for smaller values of the 4-spin exchange terms. Moreover, the net in-plane
magnetization is also plotted in the same figure. It can be observed that any change
in magnetic state form 120◦ leads to a finite magnetization value. The Mn3.09Sn0p91

sample show a negligible in-plane magnetic moment. Thus it can be concluded that
the effect of these interactions on the in-pane structure of samples studied here is
minimal.

Next, the effect of out-of-plane canting is evaluated on the triangular spin struc-
ture. Figure 4.21 shows the out-of-plane canting angle ϕ vs. energy change plots
for different exchange interactions. The ϕ = 0 in-plane triangular spin structure is
taken as the starting point, from where all the spins are canted out-of-plane by an
angle ϕ. The Heisenberg exchange interaction shows a minimum at ϕ = 0. However,
all the forms of the higher-order exchange interactions show a minimum at a finite
angle ϕ. Thus, the presence of higher-order exchange interaction in the kagome
lattice of Mn3Sn can modify the in-plane iT-AFM state to a canted state along the
c-axis.

Now that the possibility of stabilizing a canted state by inclusion of higher order
exchange interactions is demonstrated, let us analyze the DFT data obtained for
different samples.

4.7.3 Analysis of the data from DFT calculations

Let us now analyze the DFT calculation performed for Mn3−xFexSn series of samples
using an ideal kagome lattice. The results are earlier presented in Fig. 4.18 where
it is observed that a canted ground state can be stabilized for the intermediate
values of Fe doping. The aim is to try and fit the data presented in Fig. 4.18 using
the Hamiltonian 4.3. However, with the presence of multiple Heisenberg exchange
interactions and possible inter-layer and intra-layer higher-order interactions, it is
incredibly challenging to calculate all the exchange parameters individually. To solve
this problem, a minimal model is calculated to facilitate the fitting of the DFT data.
The different in-plane and out-of-plane 2-spin and 4-spin exchange interactions are
marked in Fig. 4.22 (b-d).

When we look closely at all the labeled exchange interactions, it can be seen that
the magnetic moment at sites connected by all of the 2-spin exchange interactions
lie either parallel to each other or are at an angle of 120◦. The same is true for the
4-spin exchange terms, where the spins for the Bijij follow the same trend as for
the Heisenberg exchange. The moment for all the paths connected by 4-spin-three-
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Figure 4.22: (a) Representation of the moment Si on a coordinate system. (b-d)
Different in-plane and our-of-plane 2-spin and 4-spin exchange interaction on the
kagome lattice of Mn3Sn.

site and 4-spin-four-site are all at an angle of 120◦. Now, when we start from this
iT-AFM ground state and cant all the moments along the c-axis, there will be no
change in the energy for the moments that are initially parallel, as all the moments
are canted by the same angle. Thus, the parallel moment remains parallel. The other
moments at 120◦ to each other can be coupled together to calculate the effective
contribution due to different order of exchange interactions, as shown below.

Consider a coordinate system as shown in Fig. 4.22 (a). Two magnetic moments
at neighboring sites Si and Sj can be written as

Si = cos(θ1)cos(ϕ)x̂+ sin(θ1)cos(ϕ)ŷ + sin(ϕ)ẑ

Sj = cos(θ2)cos(ϕ)x̂+ sin(θ2)cos(ϕ)ŷ + sin(ϕ)ẑ.
(4.4)
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The dot product of these two spins can be evaluated as

(Si.Sj) = cos(θ1)cos(θ2)cos2(ϕ) + sin(θ1)sin(θ2)cos
2(ϕ) + sin2(ϕ). (4.5)

Now, using the fact that all pairs of spins lie at 120◦ to each other, we can use
θ2 = θ1 + 120◦. The Eq. 4.5 becomes

(Si.Sj) = [cos(θ1)cos(θ1 + 120) + sin(θ1)sin(θ1 + 120)]cos2(ϕ) + sin2(ϕ)

= [cos(120)]cos2(ϕ) + sin2(ϕ)

= 1− 3

2
cos2(ϕ)

(4.6)

The Hamiltonian for the Heisenberg exchanges shown in Fig. 4.22 (b) can be
written as

H2−spin−two−site = 4J in
1 (Si.Sj) + 4J in

2 (Si.Sj) + 4Jout
1 (Si.Sj) + 6Jout

2 (Si.Sj) (4.7)

Using Eq. 4.6 and the fact that Jout2 spins are parallel to each other, Eq. 4.7
becomes

H2−spin−two−site = 4[J in
1 + J in

2 + Jout
1 ][1− 1.5cos2(ϕ)] + 6Jout

2

= 4Jeff [1− 1.5cos2(ϕ)] + 6Jout
2

(4.8)

Thus, the contributions from all the Heisenberg exchange interactions can be
clubbed into a single functional form. To check the validity of the current approach,
the DFT data for the Mn3Sn sample is fitted using Eq. 4.8. The data and the fitted
curve are shown in Fig. 4.23. It is clear that the DFT data can be fitted with the
effective minimal energy model. The fitting functional for higher-order exchange
interactions are also calculated following the same method. The calculated effective
model Hamiltonian is written below.

H4−spin−two−site = 4[Bin
1 +Bin

2 +Bout
1 ][1− 1.5cos2(ϕ)]2 + 6Bout

2 (4.9)
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H4−spin−three−site =
∑
ijk

Yijk[(Si.Sj)(Sj.Sk) + (Sj.Si)(Si.Sk) + (Si.Sk)(Sk.Sj)]

=
∑
ijk

3Yijk[1− 1.5cos2(ϕ)]2

= 3[Y in
1 + Y in

2 + Y out
1 ][1− 1.5cos2(ϕ)]2 + Y out

2

(4.10)

H4−spin−four−site =
∑
ijkl

Kijkl[(Si.Sj)(Sk.Sl) + (Si.Sl)(Sj.Sk)− (Si.Sk)(Sj.Sl)]

=
∑
ijkl

Kijkl[[1− 1.5cos2(ϕ)]2 + [1− 1.5cos2(ϕ)]2 − 1]

=
∑
ijkl

Kijkl[2[1− 1.5cos2(ϕ)]2 − 1]

(4.11)

The same procedure can be applied to even higher order of exchange interactions,
like the 6-spin exchange. Finally, ignoring the constant terms, a fitting equation for
different order of exchange interactions is written as

δE = E2−spin(1− 1.5cos2(ϕ)) + E4−spin(1− 1.5cos2(ϕ))2

+ E6−spin(1− 1.5cos2(ϕ))3 + .....
(4.12)

Figure 4.23 shows the calculated data and a fitting with Eq. 4.12. All the plots
are well fitted. It is found that the data for x = 0.3 sample can be fitted with
contributions from the 2-spin and 4-spin terms. However, a good fit is achieved for
higher doping by including the 6-spin terms. The extracted total energy contribution
from each exchange interaction order is summarized in Fig. 4.24. It can be seen that
the effective 2-spin energy contribution changes sign around x = 0.75. It must be
said here that the change in effective/total energy contribution does not imply that
the Heisenberg exchanges have all changed from AFM to FM. Instead, the change in
sign signifies a weakening of AFM exchange in comparison to the FM. The change in
sign of nearest coupling does happen at the end, signified by a large negative value
of E2−spin.

A finite contribution of higher-order energy contribution confirms that the canted
ground state is stabilized by the competition of different orders of exchange terms.
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Figure 4.23: Out-of-plane canting angle dependent change in energy and fitting
with Eq. 4.12 for Mn3−xFexSn series of samples.

The higher-order exchange contribution peaks at the x=1.0 mark, which incidentally
is the point where precisely one Mn atom on a triangle is replaced with a Fe atom.
The exact nature and mechanism of the increase in strength of higher-order inter-
action with Fe doping in the current system needs further examination and is not
clear as of now. The DFT results presented till now are for an ideal kagome lattice
structure. As we learned in chapter 3, the trimerization can also modify the ground
state of the Mn3Sn sample. To verify the robustness of the present results, the DFT
energy calculations are repeated for a relaxed kagome lattice. In this case, the ionic
positions are first relaxed to obtain a minimum energy ground state. The relaxation
imparts finite trimerization to the kagome lattice. The out-of-plane canting calcu-
lations are performed on the trimerized lattice, and the results are presented in Fig.
4.25. It can be seen that the energy curves for the trimerized kagome lattice show
a similar nature to that of the ideal case, although with small qualitative changes.
Thus the present analysis also holds true for a trimerized kagome lattice.
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Figure 4.24: Energy contribution for different order of exchange interactions by
fitting the DFT data presented in Fig. 4.23.

4.8 Conclusion
The low-temperature ground state of Mn3Sn samples was unknown for a long time.
In this chapter, the search for the ’true’ ground state of highly electron-doped
Mn3.09Sn0.91 and Mn3−xFexSn samples reveal that a canted spin structure is the
ground state at low temperatures. The canting of the ground state is revealed using
a combination of bulk magnetization, neutron diffraction, and theoretical calcu-
lations. All the spins on the kagome lattice cant along the c-axis in this canted
state. The canted magnetic state preserves the famous in-plane non-collinear order
of Mn3Sn. The Hall signal originating due to the octupole order of the in-plane
spin structure remains robust in the canted state. In addition to the Hall signal
of octupole magnetic order, a new Hall signal is found due to the finite scalar spin
chirality of the canted state. Both these signals co-exist, leading to dual magnetic
order in the sample. Individual manipulation of dual order reveals that these two
orders are not coupled to each other and can be freely switched without perturbing
the other. Theoretical calculations show that the presence of higher-order exchange
interaction stabilizes the out-of-plane canting.
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Figure 4.25: (a-c) The change in energy as a function of out-of-plane canting angle
ϕ computed using the ab-initio calculation for Mn3−xFexSn series of samples. The
dotted lines are a guide to the eye. The calculations are for an relaxed kagome
lattice that exhibit finite trimerization.





Chapter 5

Magnetic properties of Sb doped
Mn3Sn samples

The previous chapter examines the low-temperature ground state of highly electron-
doped Mn3Sn samples. A combination of experimental and theoretical studies found
the stabilization of a canted magnetic state. The canted state is stabilized by the
presence of 4-spin and 6-spin higher-order exchange interactions. Theoretical results
reveals that the higher-order exchange interactions plays a important role in the elec-
tron doped samples. The doping by Fe atoms leads to the addition of an electron to
the system. However, the exact role of Fe doping, hence the additional electron(s),
in strengthening the higher-order terms is still unknown. One central question that
arises from the perspective of electron doping: Is it always the case that additional
electrons would increase the strength of higher-order exchange interaction? To find
an answer to this question, this chapter takes an alternate route toward electron
doping. Instead of replacing the d element with another electron-rich atom, the
addition of electrons is carried out by doping the p element, i.e., the Sn atom. A
natural candidate for such doping is antimony, which has an extra electron than the

Figure 5.1: Picture of the 3d row and some 5p elements of the periodic table.
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Figure 5.2: Variation of lattice constants a and c with Sb doping for Mn3Sn1−xSbx

samples.

Sn atom (Fig. 5.1). Thus, polycrystalline samples of form Mn3Sn1−xSbx are synthe-
sized using the arc melt furnace. The Sb doping is carried out for the Mn3.03Sn0.97

samples. Throughout this chapter, the Mn3.03Sn0.97 samples will be mentioned and
written as Mn3Sn samples unless specified otherwise.

5.1 Structural characterization of Sb doped sam-
ples

The Sb doped samples are synthesized for three different compositions with Sb =
0.1, 0.2, and 0.25. Samples above 0.25 could not be obtained with a single phase.
Figure 5.4 shows the XRD patterns of these three samples. The Rietveld refinement
is also shown for the samples. It can be seen that the samples crystallize in the
hexagonal kagome structure of Mn3Sn. No extra peaks can be observed in the
patterns, confirming a single phase of the samples. The extracted a and c values of
the lattice parameters are plotted in Fig. 5.2 (a) and (b), respectively. It is observed
that both the lattice parameters decrease slightly with increased doping. However,
a noticeable feature for the change in c values is seen.

5.2 Compositional analysis
To check the compositional homogeneity, the FESEM measurements are performed
on the Mn3Sn1−xSbx sample as shown in Figure 5.3. The homogeneous contrast



5.3 Magnetic properties of samples 129

(a) Mn3Sn0.9Sb0.1

(a) Mn3Sn0.8Sb0.2

Element Weight % Atomic % Error %
SnL 34.7 20.4 2.2
SbL 5.0 2.8 8.5

MnK 60.3 76.7 2.5

Element Weight % Atomic % Error %
SnL 32.1 18.9 2.2
SbL 7.7 4.4 4.9

MnK 60.2 76.6 2.5

Figure 5.3: The FESEM images and corresponding EDS results for Mn3Sn1−xSbx

samples.

of these images confirms the formation of single phase for all the samples. The
exact stoichiometry of the samples is studied with help of the EDS measurement
and nearly matched with the expected value.

5.3 Magnetic properties of samples
After confirming the crystalline nature of the samples, the magnetic characteri-
zation of the samples is carried out. The M(T ) measurements are performed on
the three samples in the ZFC and FC modes, as shown in Fig. 5.5 (a-c). The
Mn3Sn0.9Sb0.1 sample shows a similar M(T ) plot to that of the parent Mn3.03Sn0.97

sample. With the reduction of temperature, the magnetization suddenly falls at the
helical phase transition. The temperature corresponding to the helical transition
increases in comparison to that of Mn3.03Sn0.97 sample. With increased Sb doping,
the Mn3Sn0.8Sb0.2 sample also shows a further increase in the helical phase transi-
tion temperature. The ordering temperature TN , corresponding to the transition of
iT-AFM structure to paramagnetic phase, is also observed for this sample. In addi-
tion to the helical transition and ordering temperature, some slight features in the
M(T ) plots are also observed below the helical phase transition. These features en-
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Figure 5.4: XRD pattern and Rietveld refinement data for the three samples of
Mn3Sn1−xSbx series.

hance sharply for the Mn3Sn0.75Sb0.25 sample. The helical phase transition increases
further, and the ordering temperature recedes for this sample. The transition tem-
peratures corresponding to the helical phase and Neel temperature are plotted in
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Figure 5.5: ZFC and FC M(T ) measurements at an applied field of 1000 Oe for (a)
Mn3Sn0.9Sb0.1 , (b) Mn3Sn0.8Sb0.2 and (c) Mn3Sn0.75Sb0.25. (d) Dependence of TN

and temperature of helical transition with Sb doping.

Fig. 5.5 (d).
Thus, the Sb doping moves the helical phase transition to higher temperatures,

whereas a reduction in the ordering temperature is also observed. Moreover, the
Mn3Sn0.8Sb0.2 and Mn3Sn0.75Sb0.25 samples show additional transition(s) below the
helical phase transition temperature.

5.4 Electronic transport properties

The longitudinal and transverse resistivity measurements are performed next on
the Sb doped samples. Figure 5.6 shows the room temperature normalized resis-
tivity data for the three samples. The samples show a metallic nature in the ρxx

measurements. The normalized resistivity of samples at low temperatures increases
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Figure 5.6: Room temperature normalized resistivity data for different samples of
series Mn3Sn1−xSbx.

with increasing the Sb doping. This increase can be accounted by the fact that the
doped Sb atoms in the samples can act as impurity centers in the crystal lattice.
The scattering of electrons from these impurities can lead to the observed increase
in the normalized resistivity data at low temperatures.

The Hall resistivity (ρxy) data for the Mn3Sn0.8Sb0.2 and Mn3Sn0.75Sb0.25 sample
measured at different temperatures are plotted in Fig. 5.7 . The Mn3Sn0.8Sb0.2

sample shows an anomalous Hall signal at room temperature and 330 K. Below the
room temperature, no anomalous Hall signal is observed in the helical phase tran-
sition. The Hall signal for Mn3Sn0.8Sb0.2 sample shows a similar trend as that of
Mn3.03Sn0.97 sample. A finite Hall signal is observed above the helical phase transi-
tion, whereas the AHE signal is absent in the helical phase of the iT-AFM structure.
The Mn3Sn0.75Sb0.25 sample also shows similar Hall signal trends. However, no sig-
nature of the additional transition is found in the transport properties of these two
samples. Hence, it can be concluded that the new transition in the helical phase of
these samples does not alter the null Berry phase of the helical phase of the iT-AFM
structure. Most importantly, unlike the finding of canted magnetic state in the Fe
doped samples in the last chapter, the Sb doping does not help in the stabilization
of noncoplanar magnetic state at low temperatures.
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Figure 5.7: Field dependent Hall measurements at different temperatures for (a)
Mn3Sn0.8Sb0.2 and (b) Mn3Sn0.75Sb0.25 sample.

5.5 Summary and Discussion of experimental re-
sults

The electron doping for the Mn3Sn sample by substituting Fe in place of Mn leads
to a predominance of the higher-order exchange interactions, evident from the non-
coplanar magnetic ground state. However, the electron doping through substitution
of Sn atoms by Sb atoms does not produce the same results. The ground state for
the Sb doped samples shows a transition of the iT-AFM ground state to the helical
phase. An increase in Sb doping leads to a more extensive temperature range for
which the helical phase is stable. These observations display the importance that
the doping of the Mn element by a similar d element carries.

Thus, in conclusion, although we have employed the electron doping as a means
of modifying the ground state magnetic state of Mn3Sn samples, the exact effect of
the doping depends on the kind of dopant and at which site the doping has been
performed. The substitution of Sn sites by the d element Mn in chapter 3 leads
to the stabilization of canted state, whereas, the Sb doping leads to enhancement
of the helical phase in large temperature region. These contrasting effect could be
arising due to the different category of the Mn and Fe atoms, and also due to the
fact that the Mn doping at Sn sites act as a magnetic defect, whereas Sb and Sn
are similar in nature. The exact role of the magnetic mn defects in modifying the
exchange constants and thus the magnetic ground state is still a mystery. Further
studies of the electron doping by Fe atoms are required to understand how the
higher-order exchange interactions can be tuned in a magnetic system. Moreover,
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the Sb doped samples show a previously unnoticed magnetic transition in the helical
phase of samples. The transport properties of the system do not change during this
transition. This implies that the magnetic transition does not alter the Berry physics
of the system. More studies of the Sb doped samples are required to find the exact
nature of the new transition.



Chapter 6

Summary and conclusion

After rigorous presentation and examination of the experimentally recorded data
and in-depth theoretical analysis, it is time to summarize the works that constitute
this thesis. The main aim of the present thesis is to understand the temperature-
dependent magnetic ground state of the kagome lattice compound Mn3Sn. The
inverse triangular spin structure of Mn3Sn leads to a zero magnetic moment non-
collinear magnetic ground state at room temperature. The iT-AFM state has been
studied for various non-trivial properties of the antiferromagnetic (AFM) sample,
the most notable and first of those being the presence of a large Anomalous Hall
effect (AHE). The AHE is usually absent in the AFM samples with protected time-
reversal symmetry. However, Mn3Sn breaks this TRS due to the presence of cluster
octupole order.

Although the room temperature magnetic state of Mn3Sn is very well known, a
complete understanding of the temperature dependent modification of the magnetic
ground state has been lacking. The work in this thesis is focused on the understand-
ing of the magnetic states. The literature analysis in chapter 1 reveals that the
samples show two distinct types of magnetization trends with temperature. One is
a dramatic decrease in magnetization at about 200 K, while the other is a sudden
rise at 50 K. The understanding of these two magnetic transition is the main goal
of the this thesis. Before presenting the work, the second chapter of thesis presents
a detailed analysis of the experimental instruments used and the theoretical tools
employed to carry out the present work.

The first task of the work is to synthesize the samples with two distinct tem-
perature profiles. It is shown that a small electron doping can do it in the off
stoichiometric Mn3+xSn1−x samples. The Mn3.03Sn0.97 sample shows a drop in the
magnetization, and Mn3.05Sn0.95 sample exhibit the increase in magnetization with
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decreasing temperatures. The magnetic transition corresponding to the drop in the
magnetization has been studied earlier. It was revealed that a helical modulation of
the iT-AFM along the c-axis of the hexagonal unit cell takes place below this tran-
sition. However, the exact interplay of exchange interactions for the stabilization of
the helical phase was not known. Moreover, the low-temperature transition was a
complete mystery except for the information that it shows a ’glassy ferromagnetism.
A spin glass signature sits on top of the ferromagnetic long-range order in the glassy
ferromagnetic phase.

Chapter 3 focuses on the exact mechanism and external control of the helical
phase transition. The temperature-dependent XRD measurements revealed a sud-
den change in lattice parameters at the helical phase, which prompted a study of the
properties of these samples under external pressure. The magnetic and transport
measurements reveal that the application of pressure on the Mn3.05Sn0.95 sample
without showing a helical phase can give rise to the stabilization of helical phase.
This control leads to switching the AHE signal, which is highly sought after in the
field of spintronics. The switching of AHE by pressure-induced magnetic phase tran-
sition reveals a unique way to manipulate the non-collinear AFM state. An analysis
of the exchange Hamiltonian suggests that a helical phase can be stabilized due to
the exchange frustration between different out-of-plane exchange interactions. The
ab− initio Density Functional Theory (DFT) studies show that the change in mag-
netic state with pressure is brought about by the pressure-induced trimerization
of the kagome lattice. The kagome lattice comprises two corner-sharing triangles,
usually equal in size. However, for Mn3Sn, one triangle is smaller, and the other
is larger than the ideal kagome lattice. This process is termed as the trimerization
of the kagome lattice. Increased trimerization with pressure changes the strength
of the frustrated out-of-plane exchanges to the helical phase structure. Thus, the
exact process of stabilizing the helical phase and its controlled transformation is
demonstrated.

Chapter 4 focuses on decoding the low temperature (< 50 K) phase of the
electron-rich Mn3.09Sn0.91 samples. As it appears, the electron doping stabilizes the
low-temperature phase, additional electron doping is achieved by doping Fe atoms
instead of Mn atoms, i.e., the Mn3−xFexSn. The results from the magnetization stud-
ies on the single-crystal samples showed a behavior as expected. It is shown that
the temperature TSR of the spin reorientation transition and the magnetic moment
of the samples increases with increasing Fe doping for samples up to Mn2.3Fe0.7Sn.
The magnetic measurements on the single crystals further reveals that the rise in
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magnetization at low temperature transition arises when the field is applied along
the c-axis of the samples. In contrast, the in-plane magnetization remains more or
less the same. The Fe-doped samples also showed similar behavior. Thus a simple
model is proposed based on these measurements. In this model, the magnetic mo-
ments of the iT-AFM state exhibit a canting along the −c axis of the hexagonal unit
cell. This model is confirmed by neutron diffraction measurements in Mn2.5Fe0.5Sn
sample. The neutron diffraction measurements show intensity redistribution at the
spin reorientation transition. The value of the canting angle for the Mn2.5Fe0.5Sn
sample is found to be 15◦.

The canting in the iT-AFM state leads to a non-coplanar state instead of the
earlier non-collinear. However, the in-plane component of the canted state remains
the same as that of the iT-AFM state. Thus the canted state preserves the cluster
octupole order of the sample. In addition to the octupole order of the in-plane
domains, the non-coplanar canted ground state exhibits a finite scalar spin chirality
at the ground state. This ordered finite scalar spin chirality at the ground state
can generate finite Berry curvature. The Hall measurements on the three single
crystalline samples reveal an extremely anisotropic Hall signal. The octupole order-
induced Hall signal is observed in the ρxz component, where a field along the y-axis
aligns the octupole domains. Furthermore, for the applications of the magnetic field
along the c-axis, the ρxy component shows a Hall signal which appears below the
TSR temperature and vanishes above it. Thus the canted ground state host two
magnetic orders, the octupole, and the SSC dipole. The possibility of individually
manipulating these two orders is shown by utilizing a rotator setup, where the sample
is rotated with respect to the magnetic field direction. Thus, the sample exhibits a
dual order magnetic state, which is the first report of its kind.

The DFT calculations data also supports the stabilization of the canted magnetic
ground state. The DFT calculations are performed to analyze the ground state of
Mn3−xFexSn samples. It is found that the Mn3Sn shows an iT-AFM state, while the
Fe3Sn shows a ferromagnetic ground state. However, a canted ground state with
a finite value of the canting angle is found for the samples with Fe between 0.3 to
0.7. The 2-spin Heisenberg exchange cannot stabilize this intermediate state, as a
change in sign of J leads to a sudden AFM to FM transition. An analysis of the
DFT data with an appropriate Hamiltonian reveals that the higher-order exchange
interaction stabilizes the canted state. On the kagome lattice, these interactions
take various forms. The main contribution to the exchange energy arises from the
4-spin exchange terms, whereas the 6-spin exchange interaction also contributes at
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higher Fe doping. Thus, the higher-order exchange interaction modifies the iT-AFM
state, leading to the dual order phenomenon. The new order displays a large AHE
signal due to the SSC mechanism.

Chapter 5 focuses on an alternate route toward electron doping of the Mn3Sn
sample. The Sn atoms are replaced by electron-rich Sb atoms to observe if there is
any enhancement of the higher-order exchange and thus the non-coplanar ground
state. However, it is observed that the Sb doping leads to stabilization and expansion
of the helical phase of the iT-AFM structure. Thus, only the electron doping can
not be held responsible for enhancing higher-order interactions in the Mn3−xFexSn
system. Even more detailed studies are required to understand the evolution of the
higher-order exchanges. Moreover, the Sb ≥ 0.2 samples show an additional tran-
sition inside the helical phase of the iT-AFM structure. This phase does not show
any signatures in the Hall signal. The exact magnetic structure of this transition
needs further examination.

In conclusion, the high-temperature helical phase transition and the low temper-
ature magnetic phase are studied in details. The exact ground state and mechanism
of these magnetic phases have been comprehensively understood.

6.1 Future Outlook

The present findings exploring the mechanism of magnetic phase transitions in the
triangular antiferromagnetic Mn3Sn is important from the application perspective,
as well as deeper understanding of the underlying physics. The pressure-induced
trimerization in Mn3Sn demonstrates a unique method of switching the anoma-
lous Hall signal. Moreover, the change in Hall signal by modification of magnetic
structure, rather than inverting the polarity of magnetic moments, represents a
broader opportunity for the manipulation of non-trivial, non-collinear antiferromag-
netic phases in terms of device applicability. The effect of pressure can be reproduced
in thin films of material using the strain from an appropriate substrate. Even more
importantly, a piezoelectric substrate can modify the applied stain; thus, the mag-
netic state and Hall signal can also be manipulated. Moreover, the thin-film systems
also present an opportunity to apply uniaxial strain/stress, which can further enrich
the understanding of the different magnetic phases.

The higher-order exchange stabilized canted magnetic state found at the low
temperatures and the subsequent observation of dual order can lead to drastic con-
sequences. First, the presence of higher-order interactions changes the energy land-
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scape of magnetic interaction. This modification calls for a reevaluation of the
calculations that are based on the exchange Hamiltonian. Other than that, the fer-
romagnetic moments stabilized due to the canting of the iT-AFM state interact with
the in-plane iT-AFM state through strong exchange interactions. This exchange cou-
pling can modify various properties, starting from the damping mechanism to the
Heisenberg nature of the ferromagnetic moments. Moreover, the first experimental
observation of dual order phenomenon in the present system invites more theoreti-
cal and experimental studies on this behavior. In addition to the effects related to
experimental results, the demonstration of higher-order interactions in Mn3Sn also
calls for careful examination of exchange interaction in other materials. A simple
comparison of different collinear and non-collinear magnetic states may not reveal
the complete set of exchange interactions. Instead, the distinct functional form of
these interactions must be utilized to map the energies of a set of calculations to
confirm the presence/absence of higher-order terms.
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