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SYNOPSIS

Introduction

Nucleosides and amino acids as building blocks of nucleic acids (DNA/RNA) and
peptides constitute necessary components of the foundation of life. They have stimulated
interest in researchers due to their unique properties, such as structural diversity, multiplex
binding sites, self-assembly ability, stability, biocompatibility, etc. What aids to make these
molecular scaffolds so intriguing is the wealth of supramolecular bonds that molecules use to
interact with each other and their refined interplay.! Recently modified nucleosides, nucleic
acids, and peptides have been the subject of research due to their pivotal role in
understanding different biochemical pathways, pharmaceutical applications, designing
nanodevices, etc.? Indeed the results reflect on fulfilling demands of drugs like recombinant
insulin (synthetic peptide) or a pandemic saviour- remdesivir (modified nucleoside).
Additionally, fluorescent nucleosides have emerged as an extraordinarily useful category of
chemical and biological tools for the molecular-level understanding of nucleic acid structures,
activities, locations and interactions.® Modifications in these biomolecular structures generally
include incorporation of benzenoid or heterocyclic moieties. Tropolone is a seven-membered,
non-benzenoid aromatic compound present in many bioactive natural products.* This
chromophoric molecule has unique hydrogen bonding properties and excellent metal chelating
abilities. Tropolone and its derivatives possess anti-inflammatory, antibacterial, antitumor,
antiviral and anticancer properties. However, its potential has not yet been fully explored,
providing us the research opportunity, including synthetic design, characterization, and

biological evaluation in nucleic acids and peptides.

This thesis comprises six chapters including introductions. Chapter-1 describes the

general introduction of DNA, modified nucleosides, cleavable amide bonds and tropolonyl



derivatives. Chapter-2 (part A and B) encompasses syntheses, photophysical studies and
biochemical evaluations of two tropolonyl modified nucleosides. Chapter-3 (part A and B)
describes the syntheses of Alkylaminotroponyl Sulfone (ATS) derivatives as bacterial
quorum sensing inhibitors along with the syntheses of ATS mediated modified
nucleosides. Chapter-4 elaborates the synthesis and applications of tropolone derived
Azulene tethered nucleobases and C-nucleoside (part A and B). Chapter-5 focuses on
synthesis and phophysical properties of a troponylbodipy-cisplatin complex and
troponylbodipy-C-nucleoside analogue. The final chapter-6 describes the synthesis and

mechanistic insights of cleavable amide bond comprising B-troponylhydrazino acid.

Chapter 1. Introduction

This chapter describes the brief introduction of modified nucleobases, fluorescent
DNA/RNA analogues, cleavable amide bonds and tropolone derivatives. Generally most of
chromophores/fluorophores are derived from benzenoid aromatic scaffolds. However, non-
benzenoid chromophores are also available in nature as troponoid natural products which
contain Tropolone scaffolds. Tropolone is a seven-membered, non-benzenoid aromatic
molecule having therapeutic potential. Recently tropolone has been introduced into the
nucleoside and amino acids for studying structural and functional properties of DNA/RNA

and peptides.

Chapter 2A. Synthesis, Photophysical Studies and Biochemical Evaluations of

Tropolone Conjugated DNA

Tropolone-Conjugated DNA: A  Fluorescent Thymidine  Analogue Exhibits
Solvatochromism, Enzymatic Incorporation into DNA and HelLa Cell Internalization. (S.

Meher*, C. R. Gade*, N. K. Sharma*, ChemBioChem, 2023, €202200732)
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The non-benzenoid aromatic scaffold tropolone has unique photophysical and metal-
chelating qualities. It has recently been conjugated with DNA, and its photophysical
characteristics have been studied. In this chapter we have discussed about synthesis of

following tropolonyl modified nucleoside derivatives.
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Figure 1. Chemical structure of (a) tr-dU, (b) tr-"5dU and (c) tr-dUTP/tr-dTTP.

TBS-protected derivative of fluorescent nucleoside tr-dU i,e tr-"2°dU is synthesized
for studying its solvent-dependent fluorescence behavior. The tr-"dU derivative exhibit
maximum quantum yield in aprotic nonpolar solvents while maximum Stokes shift in
DMF/Toluene. Thus tr-™5dU has an environmentally sensitive fluorescence (ESF)

character.
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Figure 2. Quantum yield of tr-"5dU in different Solvents (A), Hela cell internalization of

tr-dU (Image in FITC channel), Enzymatic incorporation of tr-dUTP in to DNA (C).
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The triphosphate analogue (tr-dUTP/tr-dTTP) is also synthesized and enzymatically
incorporated into DNA primer in presence of DNA polymerase and DNA template. For
practical utility, cell permeability and viability of free tr-dU nucleoside are examined
which reveals that tr-dU is cell permeable and fluorescently localizes over the cell nucleus.
Importantly, this nucleoside has no significant cytotoxicity effect on both normal and
cancerous cells. Hence, tr-dU is a promising fluorescent nucleoside analogue for labelling

the DNA.

Chapter 2B. Synthesis, Photophysical Studies and Biochemical Evaluations of

Triazolyl-tropolonyled DNA

(S. Meher, C. R. Gade, N. K. Sharma*, Manuscript under preparation)

This chapter describes the synthesis of topolonyl modified nucleoside by click chemistry

and enzymatic incorpotarion of its triphosphate derivative in to DNA.
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Scheme 1. Synthesis of tr-dU and tr-dUTP.
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We studied the photophysical properties of tr-dU in different solvents and found that it
shows solvatochromism. tr-dU is cell permeable and fluorescently localizes over the cell
nucleus. Importantly, this nucleoside has no significant cytotoxicity effect on both normal
and cancerous cells. Hence, tr-dU is a promising fluorescent nucleoside analogue for

labelling the DNA.
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Figure 3. Quantum yield of tr-dU in different Solvents (A), Hela cell internalization of tr-

dU (Image in FITC channel), Enzymatic incorporation of tr-dUTP in to DNA (C).

Chapter 3A. Alkylaminotroponyl Sulfones as Pseudomonas aeruginosa Quorum

Sensing Inhibitors

Cu-Catalyzed Synthesis of Alkylaminotroponyl Sulfones as Pseudomonas aeruginosa
Quorum Sensing Inhibitors Targeting lasl/R QS Circuitry. S. Meher, S. Kumari, M. Dixit*,

N. K. Sharma*, Chem Asian J., 2022, 17, e202200866.

The scarcity of novel bioactive molecules against multidrug-resistant (MDR) bacterial
strains is alarming. The antibiotic crisis is associated with multidrug-resistant pathogens
such as Pseudomonas aeruginosa and others. This bacterial virulence is regulated via
Quorum sensing (QS), a cell-cell communication process. Disabling QS circuits (las, pgs,
rhl) with small molecules has been recomended as a potential strategy to prevent bacterial
pathogenicity. This strategy focuses on interruption of bacterial virulence, rather than

killing them to tackle the drug resistance problem. Herein, we describe the synthesis of
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rationally designed Alklyamionotroponyl Sulfone (ATS) derivatives by Cu-catalyzed
C(sp2)-H functionalization at tropone ring and the screening of their anti-QS activity
against P. aeruginosa. Importantly, only two sulfones (5c¢/7b, ~20 uM) remarkably
exhibit the down regulation of the lasl/R QS genes. These two molecules also inhibit
swarming motility, biofilm formation and pyocyanin production which reduce P.
aeruginosa virulence in cells. Hence ATS derivatives could be considered as potential

therapeutic candidates for the treatment of P. aeruginosa infections.
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Figure 4. New Inhibitors of Bacteria’s Quorum Sensing System: Synthesis of novel ATS

derivatives and their anti-QS activity against PA14.

Chapter 3B. Troponylsulfone Conjugated Nucleosides: Synthesis, Photophysics and

Confocal Microscopy Studies

(S. Meher and N. K. Sharma*, Manuscript under preparation)
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ATS derivatives exhibited fluorescence properties. Hence two ATS derivatives were
used for the synthesis of two new modified nucleosides. We performed their photophysical
studies and found that these two nucleosides are sensitive to polarity of solvents and
showed solvatochromism. These are non-toxic towards HEK293T and HeLa cell lines and
fluorescently localize over the nucleus. In the contrast only ATS derivative resides in

cytoplasm.

Figure 5. Chemical structure of ATS-mediated modified nucleosides (A), Hela cell

internalization of ATS derivative and tr-dU (Image in TRITC channel).

Chapter 4A. Azulene tethered N-aryl Nucleobases: Synthesis, Morphology and

Biochemical Evaluations

Azulene Tethered N-Aryl Nucleobases: Synthesis, Morphology and Biochemical

Evaluations, S. Meher, N. K. Sharma*, New J. Chem., 2023, DOI: 10.1039/D2NJ06272K.

Azulene is a non-benzenoid aromatic molecule comprising unique structural and
functional properties. Herein, we report four new azulene based N-aryl nucleobases via
nucleophilic aromatic substitution (SnAr) exhibiting distinct morphologies with no
cytotoxic effect toward HEK293T cell line. Silver complex of the cytosine derivative i.e.

Silver nanocomposite (Az-C-Ag complex) has also been synthesized, showing antibacterial
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property against Pseudomonas aeruginosa (PA14) with a minimum inhibitory

concentration of 20 puM.
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Figure 6. Structure of azulene tethered nucleobases (A), antibacterial activity of Az-C-Ag

complex (B), breaking the networking structure of Az-C by incorporating silver ions (C).

Chapter 4B. Azulene Tethered C-nucleoside: Synthesis and Template Independent

Enzymatic Incorporation into DNA

(S. Meher and N. K. Sharma*, Manuscript under preparation)

This chapter deals with a modified C-nucleoside containing azulene moiety. This
product was synthesized by performing heck coupling reaction between glycal and Bromo-
azulenyl derivative followed by TBS-deprotection and reduction steps. The crystal packing
diagram shows n-m stacking between azulene rings. SEM/ TEM images also depict unique
morphologies. For practical utility Cell viability assay was performed and no significant

cytotoxicity was observed towards HEK293T or HelLa cell line.
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Figure 7. Single crystal and chemical structure of azulenyl nucleoside (A), SEM/ TEM

images (B).

Chapter 5. Troponylbodipy-Cisplatin complex and C-nucleoside analogues: Synthesis

and Biochemical Evaluations

(S. Meher and N. K. Sharma*, Manuscript under preparation)

BODIPY analogues are generally known for their fluorescence properties and
applications in cellular imaging. Bodipy nucleosides are very useful in molecular biology.
In the other hand BODIPY labeled Pt complexes are of great interest for studying their
cellular uptake and distribution in cancer cells. In this chapter we have designed and
synthesized a troponylbodipy-cisplatin complex and troponylbodipy-C-nucleoside. The
photophysical property of troponylbodipy-cisplatin complex was conducted and we
noticed that it possesses 5 fold less quantum yield than its parent bodipy unit. It is non-
cytotoxic towards HelLa and KEK293T cell lines and localizes over cell nucleus. The
troponylbodipy-C-nucleoside could also show fluorescent behaviors. It will also be

interesting to evaluate its photophysical properties and biochemical applications.
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Scheme 2. Synthesis of troponylbodipy-cisplatin complex and troponylbodipy-C-

nucleoside.

Chapter 6. Synthesis and Mechanistic Insights of Cleavable Amide Bond Comprising

B-Troponylhydrazino Acid

Instability of Amide Bond with TFA (20%): Synthesis, Conformational Analysis and
Mechanistic Insights of Cleavable Amide Bond Comprising B-Troponylhydrazino Acid, N.
Dalabeherat, S. Meher#, B. B. Palai*, N. K. Sharma*, ACS Omega, 2020, 5, 26141-26152.

The instability of an amide bond with dilute trifluoroacetic acid (TFA) is a rare
chemical event. In the repertoire of unnatural peptidomics, a-/B-hydrazino acids and their
peptides are explored for the synthesis of N-amino peptide derivatives, and their amide
bonds are stable in TFA (~100%) as natural amide bonds. This chapter describes the
synthesis of a B-hydrazino acid analogue as B-troponylhydrazino acid, containing a
nonbenzenoid natural troponyl scaffold. The structural and conformational studies of their
hybrid di-/tripeptides with the natural amino acid show that the 2-aminotroponyl residue is

involved in hydrogen bonding. Surprisingly, the amide bond of B-troponylhydrazino

XiX



peptides is cleavable with TFA (~20%) through the formation of a new heterocyclic

molecule N-troponylpyrazolidinone or troponylpyrazolidinone.

(A)
(i) Previous reports ®

...............

H;N-Peptide

: N\,J,k )J\",,A CI /\)l\ /krrﬂ /\AJL "Hfﬁ Unlocked
Amide Bond
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(a) Trag-a-amide (b)Trag-$-amide (c) p-hydrazino Amide 4
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(ii) This Chapterf o m;F
N,\)L (
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(d)B-troponylhydrazino Amide o (Troponylpyrolidinone) Amide Bond
Cleavable with TFA (15-20%)

Figure 8. Previously reported troponyl-/hydrazine-containing amides (A-i) and rationally
designed B-troponylhydrazinyl peptides and their instability under acidic conditions (A-ii),
Schematic representation of amide bond cleavage in B-troponylhydrazinyl peptides.
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Chapter 1
1.1 Introduction

This thesis entitled "Syntheses and Biochemical Assessments of Modified
Nucleosides, Nucleic Acids, and Peptides Containing Tropolone Surrogates” is an
embodiment of research intended towards the synthesis and studies on various nucleosides,
DNA, and cleavable peptides comprising troponyl scaffolds. Before diving into the thesis, it
is necessary to get acquainted with the core biomolecules. Their brief overview is provided in

the following segments-

Nucleosides

a) DNA and Nucleosides i

b) Peptides- Cleavable amide bonds

Tr%polone

7

c) Tropolone and Troponoids
1.1a. DNA and Nucleosides
Structure of Nucleic Acids

Nucleic acids are the fundamental molecules of life, containing the genetic blueprints
for all living species on the planet. They have been refined over billions of years of evolution
to attain an optimal balance of complexity and elegance, an ideal combination of design and
function. In living cells, there are two kinds of nucleic acids, i.e., deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). Two types of sugar units are found in nucleic acids:
deoxyribose (only found in DNA) and ribose (only found in RNA). As a result, the two
nucleic acids have been named accordingly. The essential building elements of nucleic acids
are natural nucleosides, composed of a nucleobase and a sugar ring. A nucleoside and at least
one phosphate group constitute nucleotides. The nucleobases found in nucleic acids resemble
either a purine or a pyrimidine ring structure and are referred to as purines or pyrimidines.

Adenine (A), guanine (G), cytosine (C), and thymine (T) are the four natural bases found in
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DNA. The first two are purine derivatives, while the other two are pyrimidine derivatives.
The first three nucleobases of RNA are the same as in DNA, but instead of thymine, another
pyrimidine derivative, uracil (U), is present as a fourth nucleobase (Figure 1.1).%% Aside from
these major bases, many other nucleobases occur in nature. RNAs have a wide range of
changed nucleobases, whereas eukaryotic DNA has only modified nucleobases, including the
methylation of the C5-position of cytosine or the exocyclic amino group of adenine. In

eukaryotes, these changes support a system for regulating and expressing specific genes at the

o =—=) Purine Bases
H{0-P-0 o o
N HN
O
NN HNTON
v

DNA level 2

OH R
N

DNA: R=H n=1 monophosphate
D =2 diphosphate
RNA: R=OH "N=4 9
n=3 triphosphate adenine (A) guanine (G)
= Ring numbering system = Pyrimidine Bases

NH, 0

N“ HN HN
| I |
OJ\N OJ\N OJ\N
A v A

cytosine (C) thymine (T) uracil (U)

Figure 1.1. Components of nucleoside and nucleotide.

Franklin, Wilkins, Watson, and Crick discovered the structural foundation of DNA in
1953, highlighting the double helix structure of DNA. Hydrophobic and stacking forces and
well-defined hydrogen bonding patterns keep DNA in this classic double-stranded helical
structure. The DNA helical structure is constructed from complementary single strands
oriented in an anti-parallel fashion (one strand 5'-3', another 3'-5'). These nucleobase pairs of
nucleic acids interact via two or three hydrogen bonds (Figure 1.2, PC-

microbiologynotes.org). While the Watson-Crick base pairing is dominant in nucleic acids, it

3
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IS important to note that nucleobases do not have exclusive binding behavior. There are 28
base-pairing motifs, which can involve at least two hydrogen bonds produced between the
four common nucleobases. These include reverse Watson—Crick, Hoogsteen, and ‘wobble' (or
mismatched) base pairs."* These and other nucleobase binding modes can play important
roles in any nucleobase self-assembly process governed by hydrogen bonding, particularly

when the geometry of the double helix does not constrain the interaction.

A Hydrogen bond

3.4nm

Figure 1.2. DNA double helix and hydrogen bonding between nucleobases.
Synthesis of DNA

The biosynthesis of nucleic acids is achieved by polymerase enzymes using
nucleoside triphosphate as the building block. Nucleic acids can be synthesized using two
methods, each with advantages and downsides.® First is the chemical method that employs
solid support/phosphoramidite chemistry in a DNA synthesizer machine, with
phosphoramidite derivatives of nucleosides as the building blocks. Large-scale synthesis is
possible using this approach. However, the chain length is limited and necessitates a huge

volume of chemicals and reagents, making small-scale synthesis problematic. The second one

4
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is the enzymatic method, which follows the biosynthesis principle and requires nucleoside
triphosphate (NTP) derivatives as a building block. Except for the scalability issue, oligomers
with long chain lengths can be synthesized here. In this case, small amounts of starting
materials are required compared to the first method. NTP's primary purpose is to serve as a
substrate for polymerase. The addition of NTPs to primer is catalyzed by polymerase in the 3'
direction, which is complementary to the template. The crystal structure of polymerase with
duplex DNA and NTP explains the reaction mechanism of this process. The mechanism is
defined by the widely accepted two metal ions model (Figure 1.3, © 2018 PNAS).%" Three
carboxylates of asparates bind two magnesium metal ions (A and B). Metal ion A interacts
with the primer's 3'-OH group, lowering its pKa value and facilitating attack on incoming
NTP. Metal A also binds with the entering nucleotide's alpha phosphates, which helps to
stabilize its negative charge. Metal ion B interacts with the incoming NTP's beta and gamma
phosphates, stabilizing the negative charge and leaving the pyrophosphate group. The 3'-
OH of primer attacks alpha phosphate and produces a new phosphodiester bond. The same

concept also works for nucleic acid synthesis using modified triphosphates.®

H,C
H  Thymine
—
o}

Template

BEAE N

~ Ts.

OH

Cytosine
| c— Prlmer /Ci?uo dNTP
H // P/
" o
HN Oy Metal A / / 7 e
Kb O __ e SR A 0
4 Ny enine \\Mgz" \ : \P
< | ) // \\ | /l \
HooN gy ) Wi Oé‘o 0°
/{ Mg

Guanine
CCmm—

\
1
i O b S Metal B

Figure 1.3. Reaction mechanism of polymerase-catalyzed phosphodiester bond formation.
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Synthesis of Nucleoside Triphosphates

Numerous synthetic campaigns have focused on modified triphosphates. Still, a
broadly applicable and high-yielding approach for synthesizing NYPs/ dNTPs remains
unclear. Despite the laborious purification required for these reactive species, recent
improvements have improved access to modified nucleoside triphosphates. Some of the

standard methods for nucleoside triphosphate synthesis are explained in Scheme 1.1.

a) Yoshikawa Method

(o] 1]
HO B ne Ho—P-0_,0 s
) PoCly (Me0)p0 S H70T | B (nBuNH)HP0, 4 PEO B O9P30 B
—2 L — el o 4 )
HO=P~ —_—
OH R OH R o OH R OH R
1 2

b) Ludwig- Eckstein Method

[o] o ﬁ

(e] (o] HO—P-0O,

HO B @\)L' 1 I Np— 404P;0 B
o o’P‘C| p—0 B (nBusNH),H,P,0; O, IP 0 B o
o} (o] —_— HO—-P (o] o —_—

- o p

1]
o OH R
OAc R OH R
6

OAc R
5 7 8
c) Borch Method
P,0;*
| o N 207
N—P—0 B rlq =0 B | 2
- H,, Pd/C -3 i 4-
| 2; | = OgP;0 B
///// OBn ko? —:/‘/_//J o ko? - éﬁZHo o B 9P3 —l o
Cl OH R H | |
Cl (o] R OH R OH R
9 10 11 12

Scheme 1.1. Standard methods for synthesis of nucleoside triphosphates (B= modified or

natural nucleobase; R=H, OH, or modification.

The Yoshikawa method is one of the first and still most used methods for
synthesizing nucleoside  triphosphates ~ (Scheme  1.1-3).>® The highly reactive
phosphorodichlorate intermediate (2) is produced by selective 5'-monophosphorylation of an
unprotected nucleoside precursor (1) with the electrophilic phosphorous oxychloride (POCIs).
This intermediate (2) is then treated in situ with pyrophosphate to produce cyclic triphosphate

(3), which is then hydrolyzed to produce the desired compound (4). The advantages of this

6
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approach stem from its simplicity. There is no need for a protecting groups, and the use of
trialkylphosphate solvents primarily guides phosphorylation to the 5'-regioisomer.***
However, not all nucleosides are compatible with the use of a strong electrophilic
phosphorous reagent, and modern analytical techniques have revealed the formation of many

undesirable by-products.****

Ludwig and Eckstein's "one-pot, three-steps™ approach, established in the late 1980s,
is another most dependable and popular procedure for synthesizing modified triphosphates.™
In brief, the modified nucleoside precursor (5) is treated with salicyl phosphorochlorite,
which specifically reacts with the free 5'-hydroxyl group to generate the activated phosphite
intermediate (6) (Scheme 1.1-b). The bifunctional phosphite (6) then experiences two
nucleophilic  substitution reactions driven by tris(tetra-nbutylammonium) hydrogen
pyrophosphate, resulting in salicylic acid displacement and the production of the cyclic
intermediate (7). In the end, iodine-mediated oxidation of derivative (7) results in the
formation of modified (d)NTP (8) through a cyclic nucleoside triphosphate. This protocol has
the advantage of lowering the number of unwanted by-products (e.g., regioisomers, mono-,
di-, and oligo-phosphates) produced in the Yoshikawa methodology, simplifying the
subsequent HPLC purification. Furthermore, the formation of all the intermediates during the
reaction can be easily monitored by *'P-NMR. The sole disadvantage of this procedure is that
it takes a slightly longer synthetic route than the Yoshikawa method.*®'" Despite this minor

disadvantage, the Ludwig-Eckstein method yielded an impressive palette of modified dNTPs.

Other methods encounter problems such as the formation of side products, low
yields, and the incompatibility of functional groups with strong electrophilic phosphorous
reagents. Thus, a different approach employing a highly reactive zwitterionic intermediate
(Scheme 1.1-c) has been developed to avoid these drawbacks.® The O-benzyl-protected

phosphoramidate ester (9) is activated by removing the protecting group, forming the reactive

7
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pyrrolidinium phosphoramidate zwitterion (11). This intermediate is susceptible to react in
situ  with pyrophosphate resulting triphosphate derivative. This approach has been
successfully applied in synthesizing farnesyltransferase inhibitors and phosphoramidate

prodrugs.*®
Need and scope of modifications in nucleosides

Nucleic acids and nucleosides have found their utility in novel materials, catalysis,
and data storage in the technological field and potential targeted treatment and diagnostic
modalities in the medical field. Despite these advantages, the efficiency of nucleic acids in
natural settings and in various practical (in vivo) applications is frequently hampered by
inherent limitations. These include easy degradation by endo- and exo-nucleases, rapid renal
clearance and poor pharmacokinetic properties, restricted access to more complex functional
patterns, and a lack of functional groups capable of mediating binding or catalysis. Nature
corrects some of these flaws by inserting further chemical alterations into the scaffold of
nucleic acids, primarily at the nucleobase level.*?! This finding inspired chemists to tailor
nucleosides, in which chemical modifications can be introduced at any point in the sugar
moiety, phosphodiester backbone, nucleobase, or any combinations thereof (Figure 1.4). It
brought remarkable progress in DNA nanotechnology, and even the trojan horse concept was

applied to deliver modified nucleosides as drug candidates.?**®

Synthetic Approach Trojanhorse Concept

Base modification @
W by

Backbone modification — g

e

5__.,\&__._
o
i Q‘ a

,JN Lh

Figure 1.4. Scope of modifications in nucleosides.



Chapter 1

Different types of nucleic acids were produced as a result of sugar ring modifications,
including Locked nucleic acid (LNA), Peptide nucleic acid (PNA), Bridged nucleic acid
(BNA), Glycol nucleic acid (GNA), Ethylene-bridged nucleic acid (ENA), and
Phosphordiamidate morpholino oligomers (PMO).2*?® Backbone-modified nucleic acids with
Phosphorothioate, Boranophosphate, Phosphonoacetate, and Amide linkage have also been
thoroughly investigated.?? In the synthetic oligonucleotide research area, the synthesis of
modified nucleosides is probably the most common. Natural pyrimidine nucleobases can be
modified by substituting the C2, C4, N3, C5, and C6 positions. C5-substituted compounds
have received the most attention for their potential applications in medicine and
biochemistry.?” Similarly, substitutions at the C2, C6, and C8 positions are prevalent in

natural purine nucleobases.
Synthesis of base modified nucleosides

Transition metals have played an important role in drug development, as the
formation of carbon-carbon bond is essential for synthesizing novel structures. These
reactions are typically challenging to carry out using conventional synthesis techniques. Still,
with transition metal-catalyzed cross-coupling development, chemists seeking the next active
molecule in the drug discovery process now have access to new horizons. Pd-mediated cross-
coupling reactions are likely the most successful and widely used chemical for the synthesis
of new compounds among various transition metals.?>? This cross-coupling reaction was
recognised with a Nobel Prize shared by Richard Heck, Ei-ichi Negishi, and Akira Suzuki in
2010. Their seminal work has resulted in a number of Pd-mediated protocols for highly
efficient C-C, C-N, and C-O bond formation. Pd-catalyzed cross-coupling (Sonogashira
coupling, Stille coupling, Suzuki-Miyaura coupling, Heck coupling, etc.) is currently the
most efficient method of generating a library of diverse structures required for drug discovery

activities (Figure 1.5). Many C5 or C6 modified pyrimidine nucleosides and C2 or C8
9
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modified purine nucleosides have been synthesized using transition-metal assisted cross-
coupling processes. However, late-stage functional diversity in a molecule is frequently
required to determine the ideal structure-activity relationship. Transition metals have been
used to provide a wide range of functional groups via carbon-carbon and carbon-hetero atom
bond formation, providing rapid access to novel chemical entities that are critical for drug
discovery. Recently, transition metal-catalyzed cross-coupling reactions based on direct C-H
functionalization have been advanced.*® These methods don't require organometallic
substrates and compete with classic Pd-catalyzed cross-couplings in developing new carbon-
carbon bonding strategies. The reactions require only one activated substrate (C-H
activation); in some cases, even no activation is required for either substrate (double C-H
activation). They are atom efficient, avoiding the synthesis of often unstable activated
substrates. The primary difficulties associated with C-H functionalization reactions include:
(i) the need to develop regioselective activation of specific C-H bonds in the presence of
other C-H bonds; (ii) low chemoselectivity, which means sensitive functional groups must be
protected before coupling; and (iii) the need to work at high temperatures to activate C-H
bonds with intrinsic low activity, which frequently causes substrate decomposition. Syntheses
of the modified nucleosides by direct C-H bond activations have been substantially employed
because of improved coupling efficiency and the availability of milder reaction conditions
applicable to less stable nucleosides. However, it is still necessary to develop conditions that
are compatible with both the solvent requirements for water-soluble nucleotides and the

phosphate ester stability.

The above methods were employed for modifications on nucleosides which inclined
towards the design of functional DNA and drug molecules. Nucleosides possessing emissive
properties gained more attention as they are helpful in monitoring biochemical processes

using fluorescence techniques.
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Figure 1.5. Synthesis of base modified nucleoside analogs.
Fluorescent nucleobases

Studying various dynamic structures and activities of DNA and RNA in biology
demands technologies that can investigate these biomolecules selectively and deeply.
Modified fluorescent nucleobases that can be incorporated into nucleic acids along with their
natural counterparts have emerged as a potent class of molecular reporters, as natural
nucleobases in nucleic acids are virtually non-fluorescent under ambient conditions. In 1969,
Stryer reported the emissive compounds formycin and 2-aminopurine (2AP), which started
the journey of Fluorescent Nucleic Acid (FNA) analogs.®* FNAs are classified as isomorphic,
enlarged, extended, and chromophoric base analogs based on their chemical structure and
relationships to natural nucleobases (Figure 1.6).>* The presence of small substituents or the
quantity and position of heteroatoms in the heterocyclic core distinguishes isomorphic
nucleoside analogs from natural nucleosides. Additional aromatic rings are annealed to the
purine or pyrimidine core in expanded nucleosides. A fluorophore is attached to the

nucleobase through a linker in extended nucleoside analogs. Finally, in chromophoric

11



Chapter 1

nucleoside derivatives, the whole nucleobase is replaced by a structurally unique, often

bulky, aromatic chromophore.

Expanded Extended

‘@:C(?\ Natural /%@

Chromophoric Isomorphic
" \
e

Figure 1.6. Types of FNAs based on their structural relationship with the natural

nucleobases.

Several groups around the world are involved in tailoring modified nucleosides. Some
examples are given in Figure 1.7. Saito and coworkers demonstrated a novel approach in the
construction of base-discriminating fluorescent (BDF) nucleosides, which can identify the
type of base opposite the BDF base by a fluorescence change. The fluorescence intensity of
the probe DNA containing BDF nucleosides changes dramatically only when it hybridizes
with a specific target sequence. This evident change in fluorescence is used for gene SNP
typing. The homogeneous SNP typing approach based on BDF probes would effectively
replace traditional SNP typing methods.**** Various Microenvironment sensitive fluorescent
nucleosides were reported by Tor and coworkers, Srivatsan and coworkers.***" Wilhelmson
and coworkers made tricyclic cytidine analogs exhibiting fluorescence.*® Bag and coworkers
synthesized many fluorescent nucleosides containing triazole moiety and studied their

binding ability with BSA protein.*® Nucleosides modified by Kool and coworkers, Hocek and

12
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coworkers, and Purse and coworkers are well known.*®** The molecular rotor introduced by

Leudtke and coworkers is the brightest fluorescent nucleoside reported to date.*?
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Figure 1.7. Selected examples of fluorescent base modified nucleosides.

Fluorescent nucleosides having alkynyl linkage

The attachment of an alkynyl linker is one of the most studied C5 modifications in
pyrimidine nucleosides. The capacity of acetylenes and their highly conjugated homologs to
create significant electrical transmission between consecutive subunits is well recognized.
The linear sp-hybridized carbon chain can offer solid structures that should allow for the

precise position of the substituents attached with alkynyl functionalized oligonucleotide
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probes, allowing for a better knowledge of substituent-nucleotide interaction.
Oligonucleotides containing such extended fluorescent nucleosides have found essential uses
in the research of SNP detection, nucleic acid lesion, and the electron transfer process in
DNA. Fluorophores can be connected to nucleobases via a single C-C bond, extending the -
conjugation and introducing modified optical properties into the nucleoside. Fused benzene
rings, heterocycles (furan, thiophene, oxazole, and thiazole, etc.), pyrene, bodipy, and other
fluorescent dyes have been attached using alkynyl linkage (Figure 1.8) by many research
groups. When incorporated into oligonucleotides, several of these analogs generate stable

base pairs and exhibit microenvironment sensitivity.

H H
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Figure 1.8. Selected examples of fluorescent nucleosides having alkynyl linkage.

Hocek and coworkers have synthesized numerous environment-sensitive fluorophores
(ESF) showing microenvironment sensitivity. They incorporated them into DNA

enzymatically to study DNA-Protein interaction and cell imaging (Figure 1.9).**%
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Figure 1.9. Incorporation of fluorescent nucleosides into DNA having alkynyl linkage.
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Fluorescent nucleosides having triazolyl linkage

For a long time, nucleosides, nucleotides, and oligonucleotides have been investigated
as substrates for click chemistry (Figure 1.10).* The bioconjugation of nucleosides and
oligonucleotides containing alkyne-modified nucleobases with azide-modified fluorescent
dyes, sugars, and peptides are extensively described. These coupling processes frequently
required Cu(l), a ligand, and heating or overnight stirring. Click chemistry has also been
investigated for nucleosides and oligodeoxynucleotides (ODNs) with modified sugars
containing terminal alkyne groups.*® The fluorescent properties of nucleosides with triazolyl
modifications were influenced primarily by (i) the location of nucleobases to which a
triazolyl unit is attached, (ii) the site of triazolyl attachment to the nucleobase (N1 vs. C4),
and (iii) additional substitutions at nucleobase or triazolyl units. Post-synthetic alterations are
one of the most significant advantages of click chemistry.*” It has become a standard tool for
drug discovery, bioconjugation, proteomic profiling, and possible cellular target
identification. Bertozzi, Meldal, and Sharpless were bestowed with the Nobel Prize for the

introduction and development of click chemistry.
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Click Chemistry
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Figure 1.10. Post synthetic modification by click chemistry and selected examples of

fluorescent nucleosides having triazolyl linkage.
Fluorescent nucleosides containing Bodipy analogs

Dyes with a Bodipy core are a type of fluorescent molecule with appealing features
that can be utilized as fluorescent tags. The key benefits of these dyes are their remarkable
photostability, high brightness, and low susceptibility to environmental polarity and pH.*
Recently, fluorescent deoxyuridine analogs have been investigated based on the Bodipy
fluorophore and its incorporation into DNA.* They possess exceptional fluorescence
characteristics and have been effectively used to probe local viscosity in various systems. The
use of fluorescence techniques and the probe's ability to be incorporated into DNA can
provide novel information on interactions of DNA with proteins and lipids, which can lead to
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the characterization of the DNA microenvironment in a cellular context (Figure 1.11, Figure

1. 11-A, ©2023 American Chemical Society ).>% >
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Figure 1.11. Selected examples of Bodipy containing nucleosides.
C-nucleoside analogs

C-Nucleosides are a significant class of compounds distinguished by the substitution
of a stable, hardly degradable C-C bond by a labile glycosidic C-N bond. C-Nucleosides with
hydrophobic aryl groups as nucleobase surrogates have received a lot of attention due to their
utility in expanding the genetic alphabet. They selectively pair with the same or another
hydrophobic nucleobase in oligonucleotide duplexes due to enhanced packing and favorable
desolvation energy compared to canonical hydrophilic nucleobases. Various C-nucleoside
analogs have been described as anticancer and antiviral agents .>*** Some examples of C-
nucleosides are provided in Figure 1.12.
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C-Nucleosides
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Figure 1.12. Selected examples of C-nucleosides and metal mediated base pairs.

2-

C-nucleosides can be developed into metal-mediated base pairs with potential
applications. The Metallo-base pairs were created by selecting optimal combinations of
ligand-bearing nucleosides and metal ions based on their binding affinity and intrinsic
structure. The majority of them were synthetically inserted into DNA strands without
significant structural disruption, resulting in duplex stabilization. This property would be
used to truncate functional DNAs like aptamers and DNAzymes and design DNA-based
switchable devices and machines. Other properties of metallo-base pairs, such as redox

activity and kinetic behaviour, should be investigated for future biological applications.>
Applications of modified nucleobases/ nucleic acid chemistry

Nucleoside modifications have been used in various applications after decades of research.

They have been incorporated into noncanonical DNA structures for structural elucidation,
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modification, and stabilization and for different therapeutic and diagnostic uses (Figure 1.13,
1.14). Furthermore, without the introduction of nucleoside modifications, the field of
oligonucleotide therapeutics, particularly antisense, RNAI, and aptamer-based candidates,
would not have gained popularity. In addition, nucleic acid therapies have emerged as
intriguing alternatives to traditional vaccination techniques. mRNA vaccines against SARS-
CoV-2 are already accessible, and others are being explored for different infectious agents or
used in cancer clinical trials. °® With several oligonucleotide-based medicines on the market
and over a hundred candidates in early to late-stage clinical trials, recent progress has been
swift, broad, and exciting. Such advancements have been made possible partly because of the
capacity to rationally design and easily manufacture nucleic acid analogs, which allows for
targeted modifications to many of the inherent features that determine their biological activity
and potency. The field of oligonucleotide therapies is now concentrating on creating effective
delivery systems as well as the foundations for determining fruitful pharmacokinetic and
pharmacodynamic correlations for chemically modified nucleic acids. These include

strategies for delivering promising clinical candidates to the liver, muscle, and central

23,29,57
nervous system.
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Figure 1.13. Selected examples of biologically active modified nucleosides.
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Figure 1.14. Progress and applications of nucleic acid chemistry.
Mechanism for action of nucleoside analogs

Therapeutic nucleoside and nucleotide analogs currently in use utilize the same
metabolic pathways as endogenous nucleosides or nucleotides (Figure 1.15, ©2013
Macmillan Publishers Limited).>® Nucleoside and nucleotide analogs enter cells by particular
nucleoside transporters. There is increasing evidence that organic anion or cation transporters
and peptide transporters have a role in cellular uptake. Cellular uptake of nucleosides is an
active process (requires energy) that involves both equilibrative nucleoside transporters
(ENTSs) and concentrative nucleoside transporters (CNTSs). In humans, three CNTs and four
ENTSs have been identified. Once within the cell, the nucleoside analog encounters an initial
rate-limiting phosphorylation step by a nucleoside kinase, forminga monophosphate
metabolite. Nucleoside monophosphate kinase then performs a second phosphorylation step,
while nucleoside diphosphate kinase performs the third phosphorylation step. Triphosphates
can either be incorporated into nucleic acids and compete with their natural equivalents or

hinder nucleic acid production by inhibiting key enzymes such as polymerases.
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Ribonucleotide reductase M1 (RRM1), a crucial enzyme involved in nucleotide metabolism,
can be inhibited by both diphosphorylated and triphosphorylated analogs. Catabolic enzymes,
such as deaminases and 5' nucleotidases, can reduce the number of active metabolites. Once
the active phosphorylated metabolites of nucleoside analogs have been produced in cells,
they may induce the termination of chain elongation, accumulation of mutations, and
apoptosis depending upon their modification purposes. Antiviral and anticancer nucleoside

analogs widely follow this mechanism.*®*°

900000000000 0000000

OOO0OOO0OOO00

Figure 1.15. Mechanism of action of nucleoside analogs.
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1.1b. Peptides- Cleavable amide bonds

The transfer of genetic information from DNA to RNA and finally to a protein is
famous as the central dogma of life, which Francis Crick proposed. The enzyme RNA
polymerase uses DNA as a template to generate a pre-mRNA transcript during transcription.
The pre-mRNA is processed to produce a mature mMRNA molecule that is translated to
produce the protein molecule. Proteins are nothing but polypeptide chains that govern a
variety of biological activities. Amino acids are the peptides' building blocks linked together
by an amide bond. Natural amides are highly stable, with an estimated half-life of 350-600
years for spontaneous hydrolysis at neutral pH and ambient temperature.®®®* Although
amides are easily cleaved/ hydrolyzed by enzymes such as proteases, it is difficult to
selectively cleave an amide's C-N bond using synthetic chemistry. Generally, it requires
heating under strongly acidic or basic conditions to cleave an amide bond. Several groups
have attempted to cleave amide bonds chemically (Figure 1.6).°*% In case of ring-strained
cyclic amides, the constituent atoms of the amide bond deviate from planarity, resulting in
poor electron delocalization and a significant loss in the amide bond's partial double bond
character. Thus, several highly strained cyclic lactams are synthesized, and their amide bonds
are discovered to be cleavable under mild conditions.?®®® Because of resonance decoupling
via N-C=0 torsion, the C=0 bond of reactive lactams amide is emerging to the strong
electrophile as ketonic carbonyl. Brown and coworkers demonstrated mechanistically that
resonance decoupling causes a significant increase in hydrolysis rate by direct nucleophilic
attack at the carbonyl of strained amide.®”®® The most twisted amide is
trimethylazatricyclodecanone, a highly strained lactam with significant resonance decoupling
via the N-C bond and is readily hydrolyzable. This twisted lactam likewise exhibits amide's
dual reactivity, namely the nucleophilic character of amine and the electrophilic nature of

carbonyl. Kostic and colleagues prepared an artificial peptidase that cleaves sequence-
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specific amide bonds as Pro-Met/Pro-His peptide segments under mild conditions with a Pd
catalyst.®® Few natural amide bonds are precisely demonstrated in the literature through the
formation of thiazolinone derivatives (via Edman degradation), oxazolinium intermediates,
and chemical modification of the amide backbone.”® " Most notably, Edman degradation for
amide bond cleavage is the basis for protein sequencing technology. The presence of zinc
species in the active sites of metalloproteases has prompted synthetic chemists to use Zn?*

cleave amide bonds. Mashima and coworkers reported the cleavage of amides bearing a -
hydroxyethyl group under mild conditions with Lewis acid Zn(OTf),.”* Garg and coworkers
established the conversion of amide functional group into ester group by cleaving amide C-N
bond employing Ni catalyst in the repertoire of creating reactive amide group.’*"®
Transamidation is a vital chemical transformation reaction for ligating or removing amino-
functionalized chemical moieties at carboxylate-functionalized compounds. Gellman, Stahl,
and colleagues investigated the amide groups for transamidation reactions between secondary

and tertiary amines using a Zr/Hf-catalyst.”*° There are also ample reports on other metal-

catalyzed and metal-free transamidation reactions.

A) Peptide bonds are stable
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B) Hydrolyzable amide bonds
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Figure 1.16. Stability of peptide bond (A), Hydrolyzable amide bonds (B).
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1.1c. Tropolone and Troponoids

Tropolone, a chemical with a nonbenzenoid aromatic seven-membered ring, was
initially presented by Dewar in 1945, which was further confirmed by Alexander Todd and
coworkers.*® The carbonyl functional group on the tropolone ring is more polarised. The
partial positive charge at the carbonyl carbon is more stabilized compared to aliphatic ketones
and aldehydes, and also stabilized due to aromaticity in tropolone.®® The positively charged
carbon allows electrons to be delocalized over the seven-membered ring. Notably, the
hydroxyl proton in tropolone rigorously shifts between the carbonyl and hydroxyl functional
groups, resulting in tropolone existing in two highly mobile tautomeric forms (Figure 1.17).
However, in case of isomers 3-hydroxytropone and 4-hydroxytropone proton transfer isn’t

possible as they are separated by more than one bond.

____________________________________________________________________________

: 5 4 ! : I
! Tropone Tropolone o Tautomers .

Figure 1.17. Tropone and tropolone chemical structures (A) and tautomers (B).

Tropolones and natural compounds with a tropolonoid/ troponoid motif have various
bioactivities, including antimicrobial, antiviral, and anticancer properties.?*®” Some examples
of troponoid natural products exhibiting biological properties are provided in Figure 1.8.
These molecules possess unique hydrogen bonding patterns and metal-chelating abilities with
divalent ions, such as Ni**, Mg®*, Zn**, and Cu?®*.288 Such properties allow troponoids to
interact with the active site of metalloenzymes. Additionally, substituted tropolones are a

powerful unique chemotype for the synthesis of inhibitors of metalloenzyme drug targets.*
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Figure 1.18. Selected examples of troponoid natural products.
1.2 Objective of the present thesis

This era has witnessed the development of many drug molecules which clinically
served humankind. As a result, synthetic biology/ biochemistry is a developing
interdisciplinary field with the overarching goal of creating systems in which artificial
chemical processes replicate high-level behaviors of organic matter. In the above discussions,
we can comprehend the importance of nucleosides, nucleic acids, and peptides. Natural
nucleic acids and peptides possess various therapeutic values, but their modified analogs can
behold target-specific and enhanced sensitivity properties. The new-age synthetic strategies
have captivated scientists to synthesize these designer molecules and explore their
biochemical utility. Most of the modifications include benzenoid and heterocyclic moieties.
But in this thesis, we have employed a non-benzenoid aromatic scaffold, tropolone, and its
derivatives for making modified nucleosides, nucleic acid, and peptide analogs. We have also
evaluated some of its bioactivity and got exciting results. The synopsis part provides a brief
idea, and the following chapters (Chapters- 2 to 6) comprise all the details regarding the

syntheses and biochemical assessments.
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Chapter 2A
2A.1 Introduction

Deoxyribonucleic acid (DNA) is the biomolecule communicating genetic information
for an organism's development and functioning. It is synthesized through polymerase chain
reactions using the building block deoxyribonucleoside triphosphate (dNTP).> Recently,
structurally modified DNA has been synthesized to meet desired functional properties,
including fluorescence properties.*> Native DNA is a nonfluorescent molecule, but it can
become fluorescent by the extension of m- conjugation at nucleobases or by the chemical
ligation of selective chromophores/ fluorescent dyes at nucleobases.®’ There are two major
sites of DNA for attaching the chromophores/ dyes/ fluorophores: the sugar unit and
nucleobase rings. The fluorophore-conjugated nucleobases have emerged as powerful
synthetic tools to improve fluorescence efficiency.®® The attachment of chromophores/
fluorophores through the linker at the DNA with a functional group (amine/azide/alkyne) has
become an attractive and economical method for labeling DNA.***? Fluorescent nucleoside
analogs are commonly classified as isomorphic nucleosides, pteridines, size-expanded
nucleosides, and extended nucleosides based on their molecular structure and relationships to
natural nucleobases.*® The introduction of the appropriate electron-withdrawing group
(EWG) on a purine ring and electron-donating groups (EDG) on a pyrimidine ring induces
the fluorescence character of nucleobases with the W-C hydrogen bonding.**** Recently,
Hocek and co-workers have prepared functional DNA by appending an alkyne linker at
nucleobase for sensing and cross-linking, which are helpful for studying the protein-DNA
binding modulation and transcription.*>° Saito and co-workers have coupled an aryl residue
at deoxyguanosine through an ethynyl linker for exploring the base-discriminating
fluorescent (BDF) and environmentally sensitive fluorescent (ESF) probes.?®?* Bag and co-
workers have attached different aromatic scaffolds at the nucleobases, which shows

microenvironment-sensitive fluorescence.?” Tor and co-workers have reported the fluorescent
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Chapter 2A

ring fused cytosine analogs such as pyrrole fused cytosine (pC) and thiophenyl-pC.%
Wilhelmson and co-workers have appended a phenyl scaffold at the cytidine pyrimidine ring
through a sulfur-containing six-membered heterocyclic ring to make fluorescent analogs.***
Srivatsan and co-workers have developed microenvironment-sensitive hetero bicyclic
pyrimidine fluorescent RNA analogs.”®*® Kool and co-workers have synthesized various
fluorescent DNA analogs using different organic fluorophores directly at sugar rings for
labeling the DNA.® Most chromophores are derived from the benzenoid aromatic scaffolds.
In the repertoire of functional DNA synthesis, the non-benzenoid moiety-conjugated DNA
analogs are not well explored. Tropolone is a non-benzenoid aromatic scaffold and its related
derivatives are constituents of troponoid natural products. Tropolone and its naturally
occurring derivatives (troponoids) exhibit broad spectrum of biological activities.?®*
Tropolone has unique intramolecular hydrogen bonding, photophysical properties, and strong

metal chelating ability with Cu®"Ni**/zn®*" ions.323*

Recently, tropolone has been
considered a novel scaffold for tuning the structural and functional properties of peptides and
DNA. Troponyl deoxyuridine (tr-dU) nucleoside analog exhibits pH-dependent fluorescence.
The tr-dU containing DNA strand significantly enhances fluorescence after forming a duplex
with a complementary DNA strand.>>*® However, tr-dU nucleoside is insoluble in most
organic solvents. For practical use, exploring the solvent-dependent fluorescence properties
and enzymatic incorporation into DNA primer would be interesting. Additionally, various
nucleosides are used as therapeutic drugs for their bioactivity, like antibacterial, antifungal,
anticancer, and antitumor properties.*” Thus we opted to evaluate its cytotoxicity and cell
permeability. Herein, we have derivatized the tr-dU and demonstrated its solvent-dependent

fluorescence, enzymatic incorporation into DNA primer, HeLa cell-internalization, and cell

proliferation through various assays.
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2A.2 Objective

Tropolone conjugated DNA was previously reported from our group, which was
chemically synthesized using phosphoramidite derivatives and it exhibited pH-dependent
UV-Fluorescence properties. We realized that this intriguing scaffold had a lot of potentials
and required more investigation. In this chapter, we have derivatized different tr-dU analogs
and demonstrated the solvent-dependent fluorescence property, enzymatic incorporation into

DNA primer, HelLa cell-internalization, and cell proliferation assays.

) Previous reports

(i) (ii) (iii)

(b) This Report: Solvatochromism Studies and enzymatic incorporation

Figure 2A.1. Previously reported troponyl/ aminotroponyl-thymidine analogs and this

report.
2A.3 Results and Discussion

As unprotected tr-dU nucleoside is insoluble in most organic solvents, we synthesized

TBS-protected tr-dU derivative tr-"°dU by following the synthetic route (Scheme 2A.1). 5-
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lododeoxyuridine (1) was converted into 5-ethynyl deoxyuridine derivative (2) following the
previous reports.®® Its hydroxyl groups (3’-OH and 5’-OH) were protected with TBDPS- ClI
under mild basic conditions that produced functionalized nucleoside (3). Next, commercially
available Tropolone (4) was converted into 5-lodotropolone by following the previous
report.*® For examining the role of chromophore tropolone in the photophysical properties of
troponyl nucleoside, we prepared tr-">>dU modified nucleoside (7). The characterization data

of new derivatives are provided in the Appendix.
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Scheme 2A.1. Synthesis of TBS-protected nucleoside tr-"5dU.

In the literature, fluorescent nucleosides are synthesized by conjugating non-emissive
nucleobases with aromatic fluorophores via a n-bond that induces an internal charge transfer

(ICT) state. Their fluorescent behavior strongly depends on microenvironments such as
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polarity, hydrogen bonding, viscosity, and pH.**** Tropolone is a weak fluorescent molecule
mainly owing to the 7-n*, n-7*, and intramolecular charge transfer.*? Tropolone-conjugated
deoxyuridinyl DNA exhibits pH-dependent fluorescence. However, its nucleoside was
insoluble in organic solvents. Thus we converted tr-dU into TBS derivative (tr-'°°dU, 7),

which was soluble in most of the organic solvents. We recorded the UV-Vis fluorescence

spectra of compound 7 in different organic solvents such as chloroform, benzene, toluene,
THF, DCM, dioxane, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO),
ethylacetate, acetonitrile (ACN), methanol, and ethanol. Their UV-vis and fluorescence
spectra are provided in (Figure 2A.2). We measured its relative quantum yield in the different
solvents by using quinine sulfate (0.5M H,SQO,) as a reference (Table 2A.1). For comparative
studies, we generated a bar diagram of quantum yield vs. solvents (Figure 2A.2-D). This bar
diagram clearly shows the solvent-dependent fluorescence properties of tr-"5dU (7), such as
high in nonpolar solvents (~ 2.4% in chloroform) and low in polar solvents (~ 0.5% ethanol).
We noticed that the quantum yield of tr-"°dU (7) was nearly the same in aromatic solvent
(benzene/toluene) but slightly lower than chloroform; The quantum yield of nucleoside (7)
was relatively higher in THF than DCM, while almost the same for solvents dioxane, DMF
and DMSO. But the quantum vyields are low in higher protic/polar solvents (MeOH and
EtOH). The normalized emission spectra of nucleoside (tr-"2°dU, 7) were generated, which
shows the characteristic red shift by increasing the polarity of solvents (Figure 2A.2-C). The
maximum difference in the emission wavelength (Alem) is ~25 nm, (Aem DMF- Agry CHCI3). It
is also reported that tropolone is weakly fluorescent in nonpolar solvent (hexane) and acidic
pH, while nonfluorescent in neutral and alkaline pH conditions. These results strongly
support the induction of ICT system in the tr-"2dU fluorescent nucleoside analog owing to
the tropolone donor and uridine acceptor that exerts a push-pull effect. Next, we propose the

possible tautomeric structures of tr-"°dU (7) as 7-i and 7-ii (Figure 2A.3-A) owing to the
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nature of intramolecular hydrogen bonding at the tropolone ring in the conjugated system.
We assume the tautomeric structure of tr-">°dU (7-i) is favorable in nonpolar solvents, while
tr-"2°dU (7-ii) in polar solvents. The intramolecular hydrogen bond's strength diminishes
with ACN, DMF, DMSO, EtOH, and MeOH polar solvents. It perturbs the intramolecular
hydrogen-bonded tautomer (7-i) and lowers the push-pull effect and hence decreasing
fluorescence efficiency. Thus, in a polar protic solvent, diminished emission was observed,
possibly due to the fluorescence quenching event mediated via dipolar/H-bonding interaction.
In the literature, the solvent polarity parameter E+(30) exhibits a linear correlation graph with
the quantum yield of solvatochromism possessing fluorophores.”*** We also plotted the
quantum vyield of tr-"2°dU (7) vs. quantum yield in different solvents (Figure 2A.3-B). This
plot exhibits a linear relationship with the solvents' polarity, revealing the solvatochromism
of tr-"2%dU (7). However, tr-"2°dU (7) does not show the linear graph of its quantum yield vs.
solvent viscosity. Thus fluorescent tr-"2dU (7) is an environmentally sensitive fluorescent

(ESF) nucleoside molecule.

Table 2A.1. Summary table of Fluorescence properties of tr-"2>dU (7)

Stokes shift

Entry Solvent Aaps(NM) Aem(nm) (nm) D OD (nm)
1 CHCl; 364 441.00 77.00 0.0244 354
2 Benzene 366 441.96 75.96 0.0228 361
3 Toluene 366 443.93 77.93 0.0207 354
4 THF 365 448.93 83.93 0.0188 356
5 DCM 364 441.00 77.00 0.0149 352
6 Dioxane 365 443.93 78.93 0.0104 354
7 DMF 391,415  464.92, 465.97 73.92,50.97 0.0101 363
8 DMSO 388 461.94 73.94 0.0097 367
9 EtOACc 365 448.93 83.93 0.0070 352
10 Acetonitrile 362 453.03 91.03 0.0063 342
11 MeOH 377 459.84 82.84 0.0061 358
12 EtOH 378 451.96 73.96 0.0051 360
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Figure 2A.2. Absorption (A), emission spectra (B, C), and quantum yield (D) of tr-"23dU (7)

in various solvents (20 uM).
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Figure 2A.3. Solvatochromism (A) and a plot of Stokes shift vs. E+(30) (B) for tr-"2%dU (7).
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Scheme 2A.2. Synthesis of troponyl-dUTP (tr-dUTP) and tr-dU.

For the enzymatic incorporation, we synthesized tr-dUTP or tr-dTTP from the
previously synthesized nucleoside (tr-dU, 8) by treating it with POCI3, followed by a reaction
with pyrophosphate. The synthesis of triphosphate is a laborious procedure and needs special
care.** During phosphorylation, the Bz group was deprotected with ammonium hydroxide
solution. After HPLC purification, we isolated tropolonyl deoxyuridinyl triphosphate (tr-
dUTP or trdTTP, 9) in moderate yield. This tr-dTTP (9) was characterized by NMR and ESI-

MASS.

For the enzymatic synthesis of tropolonylated DNA, we investigated the incorporation
of tr-dUTP (9) into FAM labeled DNA primer (P1) guided by template DNA (T1) in

presence of DNA polymerases (Figure 2A.4).
The sequence of P1 and T1 are following:
Pl: FAM-5’-TGTAAAACGACGGCCAGT-3’

T1:3’-ACATTTTGCTGCCGGTCAA*GTCGAGGCAT 5°
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Figure 2A.4. PAGE Analysis of primer extension reactions of tr-dTTP (9) with different

DNA polymerases.

We performed the primer extension reaction using PCR with the following
commercially available enzymes: Vent, DeepVent, Bst, Therminator, KOD, and Klenow. We
used known substrate dNTP (dTTP/dATP/dGTP/dCTP) for a control experiment in primer
extension reaction. The extension of primer (P1) was analyzed by gel-electrophoretic
technique. Their gel-shift images are illustrated in Figure 2A.4. The remarkable gel shifts of
FAM-primer (P1) are noticed after primer extension reaction with tr-dUTP/trdTTP (9) in
presence of DNA polymerases vent/ DeepVent/ Bst/ Therminator/ KOD/ Klenow using PCR
(Figure 2A.4-A, B). For control studies, similar results are noticed with natural substrate
dTTP with primer extension experiments (Figure 2A.4-C) with Therminator polymerase. For
the investigation of full-length extension of primer, a mixture of tr-dUTP and other dNTP
(dATP/dGTP/dCTP) were employed for primer extension reaction and compared with the
control experiment using all four dNTPs (dATP/dTTP/dGTP/ dCTP) in presence of

Therminator DNA polymerase. The gel-shift images of those experiments are depicted in
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Figure 2A.4-C, which strongly support the full-length extension of the primer. Similar results
were noticed with native dNTP. These results strongly support the enzymatic incorporation of
tr-dUTP/rdTTP (9) into DNA by releasing diphosphate ion during the primer extension

reaction. Hence, compound 9 was proved to be a substrate of DNA polymerases.

In the literature, native triphosphate nucleosides exhibit poor cell permeability.
Recently, Hocek et al. reported the transfection of modified dNTP using a unique synthetic
nucleoside triphosphate transporter (SNTT).*"*® However, nucleosides and related molecules
are prodrugs for various diseases, including antiviral, anticancer, and antibiotic drugs.*®
Lately, fluorescent nucleoside analogs exhibit improved cell permeability and are applied for
labeling of biomolecules in vitro/vivo conditions.’® Herein, we examined the cell
permeability of unprotected fluorescent tr-dU (10) analog into HeLa cell lines. tr-dU (10) was
incubated with HelLa cells by following the standard protocol and studied by confocal
microscope. HelLa cells were visualized under bright light and different channels such as
DAPI (blue channel, Aex= 358 nm), FITC (green channel, Ae=490 nm) and TRITC (red
channel, A&=570 nm). The cells treated with tr-dU and stained with DAPI were visualized
(Figure 2A.5) where tr-dU is majorly found to be located in nucleus. In Figure 2A.5-A, DAPI
stained, tr-dU treated cells clearly show the localization of DAPI at cellular nucleus. Under
FITC (green) channel, confocal images of tr-dU treated cells show cell-internalization
without any transfecting reagents. Similar observations were noticed under TRITC (red)
channel. The colocalization studies of trdU with DAPI were performed in both channels

(green/red). Pearson’ s coefficients (r) values were estimated by using JACoP plugin in Fiji:
ImageJ.>® For red and green channels Pearson’ s coefficient values (r) are 0.83 and 0.88,

respectively. We also examined the incorporation of tr-dU into the genomic DNA but we
could not find it by gel electrophoretic techniques probably due to lack of intracellular
phosphorylation. These results strongly support the localization of tr-dU nucleoside in
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nucleus of HeLa cells. In the literature, tropolone is a known natural scaffold for forming
metal complexes, strongly with Cu?*Thus tr-dU could bind with free Cu®* ions of
intracellular environments and affect other related biochemical process. Our works are in
progress to explore the metal binding studies with tr-dU-DNA analogues in vitro/vivo

conditions. Hence tr-dU is an emerging and promising fluorescent nucleoside.

(A)DAPI (B)TRITC (c)FITC

(D)DAPI +TRITC (E)DAPI +FITC (F)Expanded

(1) TRITC (H) FITC

() DAPI +TRITC (K) DAPI +FITC (L) Expanded

Figure 2A.5. Confocal microscopic images for tr-dU (7) treated HelLa Cells with DAPI

staining (12 h incubation (A-F), 24 h incubation (G-L)).
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For practical applicability, we examined the cytotoxicity of unprotected nucleoside tr-
dU (10) for both normal (HEK239T) and cancerous (HeLa) cell lines by MTS assay. Their
concentration dependent cell viability data are provided in Figure 2A.6. We found no
significant cell cytotoxicity with tr-dU in both cell lines. Thus this nucleoside can be used for

labeling DNA in situ.
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Figure 2A.6. Cell proliferation assays of compound tr-dU (10) in HEK293T and HeLa cells.
2A.4 Conclusion

A TBS-protected derivative of fluorescent nucleoside tr-dU, tr-"2°dU, has been
synthesized to examine its solvent-dependent fluorescence behavior. The tr-"%dU derivative
exhibited maximum quantum yield in aprotic nonpolar solvents and maximum Stokes shift in
DMF/toluene. Thus tr-"5dU has an environmentally sensitive fluorescence (ESF) character.
Its triphosphate analog (tr-dUTP/tr-dTTP) was also synthesized and enzymatically
incorporated into a DNA primer in the presence of DNA polymerase and DNA template.
Importantly, tr-dTTP exhibited pH-responsive fluorescence properties. For practical use, the
cell permeability and viability of free tr-dU nucleoside were examined; this revealed that tr-
dU is cell permeable and fluorescently localized over the nucleus. Importantly, this
nucleoside has no significant cytotoxic effect on either normal or cancerous cells. Tr-dU
could strongly bind with the free Cu®* of the intracellular environment owing to the troponyl

unit's metal chelating ability, which could be helpful for designing metal-ion-based probes for

49



Chapter 2A

binding target-specific biochemical activity. Hence, tr-dU is a promising fluorescent

nucleoside analog for labeling DNA.
2A.5 Experimental Section

General Information: Unless otherwise mentioned, materials obtained from commercial
suppliers were used without further purification. DMF and DCM were distilled over CaH,
and stored over 4A molecular sieves. Tributyl amine was distilled over potassium hydroxide
and stored over 4A molecular sieves. DNA oligos and FAM labeled primers were purchased
from IDT. All enzymes and buffers for primer extension reactions were purchased from New
England Bio labs.Mass spectra were obtained from BrukermicrOTOF-Q Il Spectrometer and
the samples were prepared in methanol and injected in methanol and water mixture. All NMR
spectra were recorded on Bruker AV- 400 at room temperature and processed using Mnova
software from Mestrelab Research. .Absorption spectra were obtained using Jasco V-730
spectrometer and Fluorescence spectra were obtained from Agilent specrtophotometer and
Perkin-Elmer LS-55 using Xenon lamp. Reactions were monitored by thin layer
chromatography, visualized by UV and Ninhydrin. Column chromatography was performed
in 230-400 mesh silica except Triphosphate product (purified by DEAE Sephadex-A25).
Polymerase Chain Reactions were performed in Bio-rad T100 Thermal Cycler. HPLC was

done in Waters 2998. Confocal Images were taken in Leica Microscope.

Primer extension experiments for PAGE analysis: For all enzymatic reactions 5° FAM
labelled primer (FAM-P1, 1.0 uM), Template T1 (2.0 uM), tr-dTTP (100 puM), and dNTPs
(100 uM) (for control experiments) were treated in a total reaction mixture of 10.0 ul with

respective DNA polymerase under optimized conditions.
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Ventexo- DNA polymerase: 5° FAM labeled primer (FAM-P1, 1.0 uM), Template T1 ( 2.0
UM), tr-dTTP (100 uM) 10 x Thermopol buffer ( 1.0 ul) and Vent exo DNA polymerase (1.0

unit) were treated in a total reaction mixture of 10.0 pl at 55°C for 60 minutes.

Deep Ventexo- DNA polymerase: 5° FAM labeled primer (FAM-P1, 1.0 uM), Template T1
(2.0 uM), Tr-TTP (100 pM) 10 x Thermopol buffer (1.0 pl) and DeepVentexo' DNA
polymerase (1.0 unit) were treated in a total reaction mixture of 10.0 pl at 55°C for 60

minutes.

Klenowexo- DNA polymerase: 5° FAM labelled primer (FAM-P1, 1.0 uM), Template T1 (2.0
UM), tr-dTTP (100 uM) 10 x NEB buffer 2 (1.0 ul) and Klenowexo- DNA polymerase (10.0

unit) were treated in a total reaction mixture of 10.0 pl at 37°C for 60 minutes.

Bst DNA polymerase: 5 FAM labeled primer (FAM-P1, 1.0 uM), Template T1 (2.0 uM), tr-
dTTP (100 puM) 10 x Thermopol buffer (1.0 pl), and Bst DNA polymerase (1.0 unit) were

treated in a total reaction mixture of 10.0 pl at 55°C for 60 minutes.

Therminator DNA polymerase: 5° FAM labeled primer (FAM-P1, 1.0 uM), Template T1 (2.0
UM), tr-dTTP (100 uM) 10 x Thermopol buffer (1.0 ul) and Therminator DNA polymerase

(1.0 unit) were treated in a total reaction mixture of 10.0 pl at 55°C for 60 minutes.

KOD Dash DNA polymerase: 5’ FAM labeled primer (FAM-P1, 1.0 uM), Template T1 (2.0
MM), tr-dTTP (100 pM) 10 x KOD reaction buffer (1.0 pl), and KOD Dash DNA polymerase

(1.0 unit) were treated in a total reaction mixture of 10.0 pl at 55°C for 60 minutes.

Primer extension experiments for full length synthesis of DNA using tr-dTTP: 5 FAM
labelled primer (FAM-P1, 1.0 puM), Template T1 (2.0 pM), tr-dTTP (100 uM) , dATP (100
puM), dCTP (100 pM), dGTP (100 uM),10x Thermopol reaction buffer (1.0 pl) and

Therminator DNA polymerase (1.0 unit) were treated in a total reaction mixture of 10.0 pl at
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55°C for 60 minutes. Control experiments were performed with dTTP (100 uM) and four
dNTPs (dATP,dTTP,dCTP and dGTP each 100 uM) under similar conditions. After primer
extension reaction the reactions were quenched with 10.0 pl of 2x loading dye (it contains
90% formamide; 0.5% EDTA; 0.1% xylene cyanol and 0.1% bromphenol blue) by heating
at 85° C for 5 minutes followed by cooling at 4°C. Primer extension reactions were analyzed
by 20% denaturating urea PAGE. Gels prepared and run in 1x TBE (TrisBoric acid EDTA,

pH 8.0) buffer followed by visualization using Bio-rad gel doc system.
Characterization data of products

3’,5-Bis-O-(tert-butyldiphenylsilyl)-5-ethynyl-2’-deoxyuridine (3): 5-ethynyl 2-deoxy uridine

OYH (2) (100 mg, 0.397 mmol) was dissolved in DMF (2.0 mL)
o

o . :

TBDPSOA<_TN — < and tert-butyldiphenylchlorosilane (0.31 ml, 1.19mmol) and
TBDPSO' N imidazole (134 mg, 1.98 mmol) were added. The mixture

was allowed to stirr at ambient temperature for 18 h and throughout the reaction, an inert
atmosphere was maintained. After the reaction mixture was evaporated under reduced
pressure after completion, diluted with water and extracted with ethyl acetate. The collected
organic layers were washed with brine and dried over Na,SO,. After evaporation in a rotavap,
the crude product was purified by column chromatography (Si-gel, 0.5% MeOH/CH.CI,) to
give 257mg (89%) of 3 as a white foamy solid. TLC - 1% MeOH/CH,CI,R; =0.6; *H NMR
(400 MHz, CDCl5): & 9.04 (s, 1H), 8.09 (s, 1H), 7.66 -7.27 (m, 20H), 6.46 (dd, J = 8.7, 5.3
Hz, 1H), 4.51 (d, J = 5.1 Hz, 1H), 4.01 (s, 1H), 3.76 — 3.68 (m, 1H), 3.30 (dd, J = 11.7, 2.2
Hz, 1H), 2.97 (s, 1H), 2.51 — 2.42 (m, 1H), 2.02 — 1.94 (m, 1H), 1.10 (s, 9H), 0.98 (s, 9H),
3¢ NMR (101 MHz, CDCl3) 6 162.60, 161.18, 148.95, 143.53, 135.67, 135.60, 135.57,
135.47, 133.08, 132.97, 132.35, 132.14, 130.08, 130.03, 130.00, 129.93, 127.91, 127.90,
127.87, 99.23, 88.39, 86.03, 82.20, 74.27, 74.19, 63.97, 42.05, 36.51, 31.47, 19.14, 18.95,

0.01., HRMS ESI-TofCalcd for (C43H4sN20OsSi>+Na) 751.2958, Found 751.2994.
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3°,5-Bis-O-(tert-butyldiphenylsilyl)-5-(2-benzoyloxy troponyl) ethynyl- 2’-deoxyuridine (6):

o H o 3',5'-Bis-O-tert-butyldimethylsilyl-5-ethynyl  2’-
N
o. _LN_~ deoxy uridine(3) (125 mg, 0.171 mmol) , 5-lodo-
2
TBDPSO 4 2-benzoyloxytropone(4) (72mg, 0.205 mmol) ,
TBDPSO o

5Bz Tetrakis(triphenylphosphine)palladium (20 mg,
0.017 mmol ), copper (I) iodide (1.3 mg, 0.034 mmol) and triethylamine ( 0.1 ml, 0.514
mmol ) were dissolved in dry DMF (2 ml) and stirred overnight under argon atmosphere. The
solvents were evaporated in a rotavap and the reaction mixture was purified on silica gel by
EtOAc/Hexane to obtain 90 mg of pale yellow solid in 55 % yield. TLC 2% MeOH/CH,CI,R¢
=0.32,"H NMR (400 MHz, CDCls) § 9.70 (s, 1H), 8.22 (s, 1H), 8.18 — 8.10 (m, 2H), 7.67 —
7.28 (m, 23H), 7.01 (d, J = 11.4 Hz, 2H), 6.74 (d, J = 11.8 Hz, 2H), 6.55 (dd, J = 8.9, 5.2 Hz,
1H), 4.56 (d, J = 5.2 Hz, 1H), 4.04 (s, 1H), 3.81 (d, J = 10.5 Hz, 1H), 3.27 (d, J = 9.8 Hz,
1H), 2.54 — 2.42 (m, J = 12.9, 5.1 Hz, 1H), 2.09 — 2.00 (m, 1H), 1.09 (s, 9H), 0.95 (s, 9H),
¥3c NMR (101 MHz, CDCl3) 6 163.86, 161.34, 149.19, 143.26, 135.72, 135.64, 135.51,
135.20, 133.85, 133.08), 132.97, 132.64, 131.94, 130.54, 130.24, 130.21, 130.17, 130.11,
128.75, 128.72, 128.59, 128.17, 128.10, 127.99, 12 7.97, 99.61, 94.98, 88.53, 86.05, 85.28,
74.38, 64.12, 4238, 27.04, 26.92, 19.26, 19.00, HRMS ESI-TofCalcd for(

Cs7Hs6N20gSi>+H) 953.3648, Found 953.3628.

3’,5-Bis-O-(tert-butyldiphenylsilyl)-5-( tropolonyl) ethynyl- 2’-deoxyuridine (7): Compound

H 6 (50 mg, 0.05 mmol) was dissolved in 3 ml
O\\,/N o
o__N_— MeOH and two drops of benzene were added to
~ T X
TBDPS

s get a clear solution. To the stirring solution,
TBDPSO

ammonia solution (1 ml) was added slowly at 0
OH
°C. After addition reaction was removed from the ice bath and allowed to stir at room

temperature for about 1.5 hours. Solvents were evaporated under reduced pressure after
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completion of the reaction. The compound was co-evaporated with DCM and Hexane.
Product was precipitated using methanol and dried to get yellow solid in 96% vyield (43 mg.
TLC 5% MeOH/DCM. Ri=0.47 , *H NMR (400 MHz, CDCls) & 8.65 (s, 1H), 8.17 (s, 1H),
7.66 —7.28 (M, 20H), 7.14 — 6.93 (m, 4H), 6.55 (dd, J = 9.0, 5.1 Hz, 1H), 4.56 (d, J = 5.1 Hz,
1H), 4.03 (s, 1H), 3.85 — 3.74 (m, 1H), 3.27 (dd, J = 11.7, 1.9 Hz, 1H), 2.53 — 2.41 (m, J =
13.0, 5.1 Hz, 1H), 2.09 — 2.00 (m, 1H), 1.10 (s, 9H), 0.95 (s, 9H), *C NMR (101 MHz,
CDCl3) 6 171.27, 160.83, 148.92, 142.52, 140.38, 135.68, 135.61, 135.49, 135.18, 133.06,
132.96, 132.61, 131.92, 130.17, 130.12, 130.07, 128.07, 128.05, 127.94, 127.92, 123.42,
123.15, 99.97, 95.21, 88.45, 85.92, 82.56, 74.33, 64.09, 42.22, 26.99, 26.87, 19.20, 18.98,

HRMS ESI-TofCalcd for ( CsoHs2N,07Si,+H) 849.3386, Found 849.3392.

3’,5-Bis-O-(tert-butyldiphenylsilyl)-5-( tropolonyl) ethynyl- 2’-deoxyuridinetriphosphate (9):

To a solution of 5-(2-benzyloxy tropolonyl) ethynyl-

H
O ° , » |

0. N 2’-deoxyuridine (8) (70 mg, 0.073 mmol, 1.0 equiv)

X

X
PPPOﬁgj in trimethyl phosphate, freshly distilled POCI3 (17

HO
(o]

L uL, 0.184 mmol, 2.5 equiv) was added in ice-cold
condition under argon atmosphere. The solution was stirred for 24 h at ~ 4 °C. After 24 h, it
was observed that the starting material wasn’t completely consumed. Bis(tributylammonium)
pyrophosphate(202 mg, 0.368 mmol, 5.0 equiv.) solution in DMF and tributylamine (0.2 ml,
mmol, 11.0 equiv.) were simultaneously added to the reaction mixture in ice-cold condition.
The reaction mixture was continued for 30 min at 4 °C and quenched with 1 M triethyl
ammonium bicarbonate buffer (TEAB, 15 ml), and washed with ethyl acetate. The aqueous
layer was evaporated to dryness and purified using a DEAE Sephadex-A25 anion exchange
column (0.1M-1M TEAB buffer, pH 7.5) followed by HPLC (TEAB buffer and acetonitrile

solvent system). Evaporation of the appropriate fraction resulted in the desired triphosphate

in 15% yield (13 mg) as a triethyl ammonium salt. *H NMR (400 MHz, D,0) & 8.68 (s, 1H),
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7.62 (d, J = 9.5 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 6.90 (s, 1H), 6.15 (s, 1H), 4.47 (s, 1H),
4.20 (s, 1H), 4.09 (d, J = 9.6 Hz, 1H), 4.01 (t, J = 9.4 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H), 2.26
(d, J = 12.5 Hz, 1H).*'P NMR (162 MHz, D,0) & 4.93(br,P), -10.57 (br, P), -22.87 (br,

P),HRMS ESI-Tof Calculated for (C1sH19N2016P3-H) 610.9864, Found 611.1028.

Photophysical studies of tr-">°dU (7): All the Absorption and Emission spectra of the
compound 7 (10 uM) were measured in different solvents using their respective
spectrophotometer with a cell of 1 cm path length.Relative Quantum yield of nucleoside 7 in
different solvents was determined relative to quinine sulfate as the standard. Following

equation was used to calculate the quantum yield.
Dr) = (AdA ) (FxlFs)( nulng)® D)

Where s is the standard, x is the modified nucleoside, A is the absorbance at excitation
wavelength, F is the area under the emission curve, n is the refractive index of the solvent,

and @k is the quantum yield. Quantum yield of quinine sulfate in 0.1 M H,SQO;, is 0.54.

Cell Internalization studies by confocal microscope: HelLa Cells were treated with tr-dU (100
UM) under incubation period 12/24 hr before fixing the cells for imaging. Also cells were
stained with DAPI for studying colocalization. All images are taken at same magnification

(63 X).

Cell viability/ Cytotoxicity studies: In order to analyse the effect of tr-dU on cell viabilty, cell
proliferation assay was conducted. Human embryonic kidney derived cell line HEK293T and
human cervical carcinoma derived cell line HeLa cells were used for the assay. 2*10* cells/
mL in 10% DMEM were seeded in 96 well microtitre plate and incubated for 10 h. After
incubation cells were observed for its shape and confluency and media as carefully aspirated.

Different concentrations of respective compounds (10) were prepared in DMEM medium and
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each concentration was added in triplicate along with only media and DMSO (exact

concentration used for making the compound solution) control. The 96 well plate was

incubated under standard conditions (humidified incubator with 5% CO; under 37°C) for 24

h. The CellTiter 96® AQue0us One Solution as used to analyse the cell proliferation ability in

presence of different compounds. 10 pl of CellTiter 96® AQueous One Solution Reagent was

mixed into each well of the 96-well assay plate containing the samples in 190 ul of culture

medium followed by incubation for 1 h at standard condition. After incubation absorbance

was recorded using Varioscan at 490 nm.
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Chapter 2B
2B.1 Introduction

Nucleic acids (DNA/RNA) are commonly involved in all biological operations of
cellular life, such as metabolic control, catalysis, and energy transmission.* The composition
of nucleic acids has been widely examined and analyzed, leading to the discovery of
modified nucleosides alongside the primary constituent units (A/T/G/C/U).? Recent years
have witnessed increasing development and exploitation of modified nucleosides, increasing
interest in nucleic acid chemistry. Moreover, fluorescent nucleic acid (FNA) analogs are of a
distinct category where simple chemical modifications can formulate novel products. The
synthesis of FNAs has provided powerful tools for monitoring biochemical phenomena in

real time.>?®

Its nucleosides are classified into isomorphic, enlarged, extended, and
chromophoric base analogs based on their chemical structure and relationships to natural
nucleobases.® Isomorphic nucleoside analogs differ from natural nucleosides by the presence
of small substituents or the number and position of heteroatoms in the heterocyclic core.
Expanded nucleosides have additional aromatic rings annealed to the purine or pyrimidine
core. A fluorophore is linked to the nucleobase in extended nucleoside analogs. Finally, in
chromophoric nucleoside analogs, the whole nucleobase is replaced by a structurally different
and frequently bulky aromatic chromophore.” Additionally, environment-sensitive
fluorophores (ESF) can sense changes in the microenvironment (polarity/ viscosity/ pH),
secondary structures, or intramolecular interactions. The response represents useful
photophysical features such as changes in absorption or emission wavelengths
(solvatochromism), ~fluorescence lifetime, quantum yield, color, and so on.®™*°
Microenvironment-sensitive fluorescent molecules are ubiquitous for sensing of biomolecules
and studying inter-biomolecular interactions inside a cell.***® These synthetic nucleoside

mimics are also important candidates for antiviral, antimicrobial, antitumor, and anticancer

drugs. In the search for new biologically active nucleoside analogs, structural variations
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involving changes to the nucleosides have been achieved using different synthetic
methodologies.'” % Metal-mediated cross-coupling reactions (Sonogashira coupling, Stille
coupling, Suzuki-Miyaura coupling, Heck coupling, etc.) are perhaps the most successful and
widely used chemistry today for the synthesis of novel nucleosides.”®** The copper(l)-
catalyzed azide-alkyne cycloaddition (CUAAC or click reaction) is also one of the most
important bioorthogonal reactions and has been widely utilized to modify oligonucleotides
(ONs) and DNA. The copper (I)-catalyzed Huisgen 1,3-dipolar cycloaddition of azides with
terminal alkynes has high specificity and efficiency in connecting two different molecular
entities. It was independently introduced by Sharpless and Meldal in 2001 to provide
regioselectively 1,2,3-triazole moieties.”> 2" Click chemistry bagged the Nobel Prize in 2022
and is undoubtedly a widely used concept in medicinal chemistry and drug discovery. Click
reactions are very appealing for biological applications since they are by definition fast,
stereospecific (although not necessarily enantioselective), and can be conducted in aqueous
solutions with high yield.?*? These properties help for biomolecular conjugation in vitro or
if the reaction is non-toxic, even in cells or in vivo, where the concentration of targeted
biomolecules is typically low.** Recently, many triazole-modified nucleosides have been
reported and reviewed by several groups, like Brown and co-workers, Rentmeister and co-
workers. These are used as photoswitchable DNA interstrand crosslinking agents for thermal
stability study and DNA fluorescence mismatch sensing by various groups.®** Nielsen and
co-workers have reported the effect of triazole-modified 2 - deoxyuridines on the stability of
DNA: DNA and DNA: RNA duplexes.®*®** Hocek and co-workers have introduced
Azidophenyl to label DNA using click chemistry for electrochemical detection of DNA-
protein interactions.® Fujimoto and co-workers have synthesized sensitive DNA Probes for
Photochemical Ligation.*® However, the majority of the alterations in nucleosides include

benzenoid and heterocyclic aromatic scaffolds. In the repertoire of functional DNA synthesis,
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the non-benzenoid moiety-conjugated DNA analogs are not well explored. Tropolone is a
non-benzenoid aromatic scaffold whose derivatives constitute troponoid natural products.*®*
Tropolone has unique intramolecular hydrogen bonding, metal chelating, and therapeutic
properties.””*® Recently, tropolone has been employed as a novel scaffold for tuning the
structural and functional properties of peptides and DNA. The conjugation of tropolone at
nucleobase was achieved by a Pd-catalyzed Sonogashira coupling reaction.*” Troponyl
deoxyuridine (tr-dU) nucleoside analog exhibits pH-dependent fluorescence.*®*° Herein, we

have conjugated azido tropolone unit at modified nucleoside, ethynyl-dU, in the presence of

Cu(l) ions through click chemistry and commenced its biochemical evaluations.
2B.2 Objective

In the previous chapter, we synthesized fluorescent tropolonyl thymidine/ uridine
analogs via a Pd-catalyzed Sonogashira coupling reaction. We studied their solvent-
dependent fluorescence characters, cell permeability, and enzymatic incorporation into DNA.
In this chapter, we described the conjugation of tropolone at uridine via triazole ring through
Click chemistry. We also explored its fluorescence properties, cytotoxicity, and cell
permeability. Its triphosphate derivative was synthesized for incorporation into DNA primer

by the primer extension reaction using DNA polymerase.
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Figure 2B.1. Troponyl nucleosides in previous and this chapter.
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2B.3 Results and Discussion

5-iodo-2°-deoxyuridine was modified into 5-ethynyl-2‘-deoxyuridine (2) by following
the reported procedure.*’ Tropolone was derivatized into azide functionalized tropolone i. e.
5-azido-tropolonyl benzoate (3) in 5 steps and the details are provided in the experimental
section. This azide derivative (3) was coupled with 5-ethynyl-2°-deoxyuridine (2) with Cu-
catalyzed [3+2] cycloaddition reactions (Click chemistry) that produced desired Bz- protected
thymidine nucleoside, tt-"?dU (4) (Scheme 2B.1). We synthesized the triphosphate analog, tt-
dUTP or tt-dTTP (6) from the previously synthesized nucleoside (4) by treating it with
POCI3, followed by a reaction with pyrophosphate. The synthesis of triphosphate is an
extensive procedure that requires great care. After phosphorylation, the Bz group was
deprotected with ammonium hydroxide solution. We obtained tropolonyl deoxyuridinyl
triphosphate (tt-dUTP, 6) in considerable yield after HPLC purification. Compound 5 was
synthesized from compound 4 by deprotecting the Bz group for fluorescence and biochemical

studies. All the compounds were characterized by NMR and ESI-HRMS analysis.
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Scheme 2B.1. Synthesis of troponyl-dU (tt-dU, 5) and its triphosphate analog (tt-dUTP, 6).
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We investigated the incorporation of tt-dUTP (6) into DNA primer (P1) guided by
template DNA (T1) in the presence of DNA polymerases enzyme (Therimator) for the
enzymatic synthesis of tropolonylated DNA (Figure 2B.2). The sequence of P1 and T1 are

following:

P1: 5’-TGTAAAACGACGGCCAGT-3’

T1:3’>-ACATTTTGCTGCCGGTCAA*GTCGAGGCAT 5°

DNA Polymerase/PCR/
N. .
/ N-
0 HO OH

DNA Primer (P1) &
DNA Tempalte (T1) OH
(o}

P1:5-TGTAAAACGACGGCCAGT-3'
T1:3-ACATTTTGCTGCCGGTCAA*GTCGAGGCAT 5' )

C'F)" ?5 0\)_NH -&
PPN 0, J " |
060 b-OI\L)—N\zc ) N)\NH

ZZ
2./

P1*:5'-TGTAAAACGACGGCCAGT-U*-OH-3' (one tr-dU incorporation)
Figure 2B.2. Primer extension reactions of tt-dTTP (6) with DNA polymerase (Therminator).

The incorporation of tt-dUTP (6) into oligonucleotide using Therminator by
polymerase extension (PEX) reaction was verified by LCMS analysis. Calculated mass for
extended primer (single extension)= 6009+ 54 (3 NHs) = 6063/ 4= 1515.75, observed =

1515.32. Hence tt-dUTP (6) is a substrate of DNA polymerase enzyme.

Our previous works showed that tropolonyl nucleoside exhibited solvent-dependent
fluorescence behavior. Tropolone exhibits the electronic transitions =n-7*, n-n*, and
intramolecular charge transfer.® It contributes to the photophysical properties of the
nucleoside. Here we performed the photophysical studies of tt-dU (5) to examine the effect of

triazole and tropolone ring in its absorption and emission properties. We recorded the
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absorption and emission spectra of modified nucleoside tt-dU (5) in different solvents-
MeOH, EtOH, DMSO, DMF, EtOAc, Dioxane, ACN, THF, DCM, CHCI3;, Benzene, and
Toluene. The spectral properties are provided in Table 2B.1 and Figure 2B.3. The absorption
peaks of tt-dU (5) appeared relatively at shorter wavelengths in the non-hydrogen bonding
solvents compared to hydrogen bonding solvents. We observed two absorption maxima (Aaps=
305, 445 nm) in case of nonpolar solvents (Table 2B.1, Entry 1-7), whereas it showed
approximately 2- 5 nm bathochromic shift in polar/ protic solvents (Figure 2B.3-A). In the
fluorescence spectra the emission maxima range from 432 nm- 464 nm (Figure 2B.3-B/C).
The nucleoside, tt-dU (5), exhibited solvatochromism, but the trend is not continuous from
the nonpolar to polar solvents. We extracted the quantum vyields of tt-dU (5) in different
solvent systems taking ag. quinine sulfate in H,SO, as a reference, which is summarized in
Figure 2B.3-D. Importantly, tt-dU (5) exhibits the highest fluorescence quantum vyield
(~1.3%) in aromatic solvents (toluene & benzene) and DMF and DMSO, while the lowest in
non-hydrogen bonding polar solvent ACN (0.3%) and the protic polar solvents. We assume
that n-n interaction of tt-dU (5) with aromatic solvent lowered the HOMO-LUMO energy
band in comparison to other given solvents. The hydrogen bond acceptor solvents
DMF/DMSO encapsulate the tt-dU (5), lower the HOMO-LUMO energy band and enhance
fluorescence significantly. The protic solvents disrupt the intramolecular hydrogen bonding
and decrease the quantum yield. The optimized structure from DFT studies also showed the
coplanar organization of the triazole uracil with the triazole-CH pointing toward O4 (of C4
carbonyl in pyrimidine ring) of the uracil probably through a CH-O hydrogen bonding
interaction and a N/O lone pair repulsion. This structural preference is well documented in
the literature.>* From the above studies, it is evident that tt-dU (5) is an environment-sensitive
fluorophore though it doesn't possess a large quantum vyield. It can be used as a probe for

further biochemical evaluations.
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Table 2B.1. Summary table of Fluorescence properties of tt-dU (5)

S.N. Solvent  haps (NM)  Absorbance Aem(nm)  stokes shift Ema(M cm™) @y (%)
1 Tol 305,345 0.61 455 110 61000 1.35
2 Benzene 305,345 1.01 455 110 101000 1.30
3 CHCl; 305,345 1.224 436 91 122400 1.17
4 DCM 305,345 1.184 464 119 118400 1.05
5 THF 305,345 1.17 432 87 117000 1.07
6 Diox 305,345 1.152 437 92 115200 0.85
7 EtOAc 305,345 1.088 458 113 108800 0.88
8 DMF 294,360 1.144 455 95 114400 1.29
9 DMSO 299,353 1.095 455 102 109500 1.35
10 ACN 305,345 1.161 449 104 116100 0.26
11 EtOH 300,350 1.232 451 101 123200 0.55
12 MeOH 295,352 1.478 453 101 147800 0.58
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Figure 2B.3. Absorption (A), emission spectra (B, C), and quantum yield (D) of tt-dU (5) in

various solvents (20 uM).
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We executed the MTS assay to evaluate the cytotoxicity of nucleoside tt-dU (5) for
both normal (HEK239T) and malignant (HeLa) cell lines (Figure 2B.4). The findings on their
concentration-dependent cell viability showed no substantial cytotoxicity with tr-dU in any

cell line. As a result, this nucleoside can be utilized for further studies.
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Figure 2B.4. Cell proliferation assays of compound tt-dU (5) in HEK293T and HeLa cells.

Nucleosides and similar compounds are prodrugs for a wide range of diseases,
including antiviral, anticancer, and antibiotic drugs. Fluorescent nucleoside analogs have
recently demonstrated better cell permeability and are being used for labeling biomolecules in
vitro/vivo.>*® Thus, The cell permeability of fluorescent tt-dU (5) into HeLa cell lines was
investigated. HeLa cells were incubated with tt-dU (5) for 12/ 24 h and stained with DAPI
following the standard protocol and observed under a confocal microscope. Images were
captured in bright light and various channels, i.e., DAPI (blue channel, A¢x 358 nm), FITC
(green channel, Aex 490 nm), and TRITC (red channel, A 570 nm). The tt-dU (5) was
primarily identified in the nucleus region of cell (Figure 2B.5). DAPI stained, tt-dU treated
cells in Figure 2B.5-A/G reveal DAPI localization at the cellular nucleus. For this study, no
transfecting reagents were used. Colocalization tests of tt-dU (5) with DAPI were carried out
in both channels (green/red). Pearson's coefficient values (r) for the red and green channels

are 0.76 and 0.75, respectively ( for 12 h incubation time). These values were computed in
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Fiji: ImageJ using the JACOP plugin.>* Results are the same for both 12 h and 24 h incubation

time.

(A)DAPI (B)TRITC (C)FITC

(D)DAPI + TRITC (E)DAPI + FITC (F)Expanded

(H)TRITC (1)FITC

(J)DAPI + TRITC (K)DAPI + TRITC (L)Expanded

Figure 2B.5. Confocal microscopic images for tt-dU (5) treated HelLa Cells with DAPI

staining (12 h incubation (A-F), 24 h incubation (G-L)).
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2B.4 Conclusion

We accomplished the synthesis of tropolonyl triazolyl deoxyuridine (tt-dU, 5) nucleoside, its
triphosphate (tt-dUTP, 6), and DNA. Our photophysical studies strongly support that tt-dU
nucleoside exhibit fluorescence (®s ~ 1.3% in toluene). Its fluorescence character also
depends upon the solvent polarity, i.e., higher in nonpolar solvents and lower in polar/protic
solvents. Importantly, its triphosphate analog (tt-dUTP, 6) was enzymatically incorporate into
DNA through primer extension reaction with DNA polymerases (Therminator). This
nucleoside (tt-dU, 5) was permeable in cell-line (HeLa cells) and exhibited fluorescence. It
was mainly localized at the cellular nucleus. It had no significant cytotoxicity against
HEK293T or HeLa cell lines. Hence, tt-dU (5) is a promising fluorescent nucleoside analog
and could be applicable for designing DNA-based fluorescence probes. It may bind with
metal ions (Cu®") and regulate the metal-dependent biochemical process owing to the metal-

chelating properties of tropolone residue.
2B.5 Experimental Section

General information: All the materials were obtained from commercial suppliers and
used without further purification. DMF and DCM were distilled over CaH; and stored
over 4A molecular sieves. Tributyl amine was distilled over potassium hydroxide and
stored over 4A molecular sieves. Reactions were monitored by thin layer chromatography,
visualized by UV and Ninhydrin. Column chromatography was performed in 230-400 mesh
silica except Triphosphate product (purified by DEAE Sephadex-A25). Polymerase Chain
Reactions were performed in Bio-rad T100 Thermal Cycler. HPLC was done in Waters 2998.
DNA oligos and FAM labelled primers were purchased from IDT. All enzymes and buffers
for primer extension reactions were bought from New England Bio labs. Mass spectra were

obtained from BrukermicrOTOF-Q Il Spectrometer and the samples were prepared in
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methanol and injected in methanol:water mixture. All NMR spectra were recorded on Bruker
AV-400 at room temperature and processed using Mnova software from Mestrelab Research.
HRMS data of compounds were obtained from Bruker and Waters mass spectrometer.
Absorption spectra were obtained using Jasco V-730 spectrometer and Fluorescence spectra
were obtained from Agilent specrtophotometer and Perkin-Elmer LS-55 using Xenon lamp.

Confocal Images were taken in Leica Microscope.
Characterization data of products

4-azido-7-oxocyclohepta-1,3,5-trien-1-yl benzoate (3): 5-amino tropolone was synthesized
OBz starting from tropolone by following reported literature procedure.” 5-

O amino tropolone (0.2 g, 1.45 mmol), was dissolved in 2.5 ml conc. HCI

N and 5 ml distilled water was added to the reaction mixture. The resulting
solution was stirred at -20 °C. Sodium nitrate (0.148 g, 1.72 mmol) dissolved in 5 ml
distilled water was added to it slowly in 30 min and stirred for 20 min. Then Sodium azide
(0.114 g, 1.72 mmol) dissolved in 5 ml distilled water was added slowly over 30 min. The
reaction mixture was heated for one hour at 55 °C. Then it was cooled down to rt and
extracted with dichloromethane .The aqueous layer was neutralized with sodium hydroxide
solution and extracted with dichloromethane. The organic layers were washed with brine
solution and dried with anhydrous sodium sulfate. The solution was concentrated and purified
by column chromatography to obtain 5-Azido tropolone as brown colour compound (0.156 g,
40% vyield). To 5-Azido tropolone (0.5 g 3.06 mmol) dissolved in dry dichloromethane (6
ml), triethyl amine (1.7 ml, 12.3 mmol) was added and stirred at room temperature under
nitrogen atmosphere for 2- 5 minutes. Benzoyl chloride (0.71 ml, 6.1 mmol) was added to it
and reaction mixture was stirred at rt for 2 to 4 hour. DCM (50 ml) was added to the reaction

and extracted with water after completion of the reaction. The organic layer was washed with

NaHCO3; and brine solutions followed by drying on anhydrous sodium sulfate and
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concentrated to obtain 0.78 g of 5-azido-2-benzoyloxy tropone as beige colour solid in 95%
yield. *H NMR (400 MHz, CDCl3) & 8.17 (d, J = 7.1 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.50
(t, J=7.8 Hz, 2H), 7.28 (d, J = 9.7 Hz, 2H), 6.80 (d, J = 167.0 Hz, 2H, *C NMR (101 MHz,
CDCI3) 6 ppm 164.12, 145.61, 133.96, 133.75, 130.62, 130.28, 128.84, 128.69, 128.58,

HRMS ESI-Tof Calcd for (C14HgN3O3+Na) 290.0536, Found 290.0531.

4-(4-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-
o H o tetrahydropyrimidin-5-yl)-1H-1,2,3-triazol-1-
ﬁoj’ T X/\N @OBZ yl)-7-oxocyclohepta-1,3,5-trien-1-yl  benzoate
HO 3 N=N © (4): 5-ethynyl 2-deoxy uridine (0.25 g, 1
mmol),HSO-azido 2-benzoyloxy tropolone (0.241 g, 1 mmol), coper iodide (0.194 g, 1 mmol),
di-iosopropylethylamine (0.355 ml, 2 mmol) disolved in anhydrous dimethylformamide (5
ml) and stirred at 70 °C for 24 h under nitrogen atmosphere. The reaction mixture was
evaporated in a rotavapor followed by column chromatography (MeOH:DCM) to get 0.334 g
of yellow colour solid in 65% yield."H NMR (400 MHz, DMSO) & 11.80 (s, 1H), 8.99 (s,
1H), 8.73 (s, 1H), 8.11 (t, J = 22.9 Hz, 4H), 7.77 (t, J = 6.9 Hz, 1H), 7.63 (t, J = 6.9 Hz, 4H),
6.25 (s, 1H), 5.32 (s, 1H), 5.09 (s, 1H), 4.30 (s, 1H), 3.88 (s, 1H), 3.63 (s, 2H), 2.22 (s, 2H),
B3¢ NMR (101 MHz, DMSO) 8 163.76, 161.53, 150.11, 141.05, 140.16, 137.68, 134.83,
130.47, 129.54, 128.68, 121.26, 104.77, 88.22, 85.47, 71.08, 61.82, HRMS ESI-Tof Calcd

for (C25H21N508+Na) 5421282, Found 542.1260.

1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1-(4-hydroxy-5-

H oxocyclohepta-1,3,6-trien-1-yl)-1H-1,2,3-
OYN o)
ﬁ()j’N\;gé\ @OH triazol-4-yl)pyrimidine-2,4(1H,3H)-dione  (5):
N
HO N=N O Compound 4 (50 mg, 0.05 mmol) was dissolved
HO

in 3 ml MeOH and two drops of benzene. To the stirring solution, ammonia solution (1 ml)

was added slowly at 0 °C. After addition reaction was removed from the ice bath and allowed
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to stir at room temperature for about 1.5 hours. After completion of the reaction, solvents
were evaporated under reduced pressure. The compound was co-evaporated with DCM and
Hexane. The product was precipitated using methanol/Diethyl ether and dried to get a yellow
solid (37 mg, 93% yield). *H NMR (400 MHz, DMSO) & 8.63 (s, 1H), 7.96 (s, 1H), 7.87 (d, J
= 7.6 Hz, 2H), 7.51 (d, J = 7.0 Hz, 1H), 7.45 (t, J = 7.3 Hz, 1H), 7.35 (s, 1H), 6.25 (t, J = 6.6
Hz, 1H), 5.31 (s, 1H), 5.06 (s, 1H), 4.30 (s, 1H), 3.87 (s, 1H), 3.62 (s, 2H), 2.21 (d, J = 5.3
Hz, 2H), 3C NMR (101 MHz, DMSO) & 161.58, 150.15, 140.21, 137.03, 121.32, 105.33,
88.14, 85.30, 71.10, 61.85, HRMS ESI-Tof Calcd for (C1sH17NsO7+Na) 439.1104, Found

439.2038.

((2R,3S,5R)-3-hydroxy-5-(5-(1-(4-hydroxy-5-oxocyclohepta-1,3,6-trien-1-yl)-1H-1,2,3-
triazol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl
tetrahydrogen triphosphate (6): To a solution
OYN ° OH of compound (4) (70 mg, 0.134 mmol, 1.0
ﬁ<0j’ NXK\N@O o -
PPPG ~ equiv) in trimethyl phosphate, freshly distilled
POCI; (31 pL, 0.337 mmol, 2.5 equiv) was
added in ice-cold condition under argon atmosphere. The solution was stirred for 24 hr at ~ 4
°C. After 24 h, it was observed that the starting material wasn’t completely consumed.
Bis(tributylammonium) pyrophosphate (370 mg, 0.674 mmol, 5.0 equiv.) in DMF and
tributylamine (0.351 ml, 1.48 mmol, 11.0 equiv.) were simultaneously added to the reaction
mixture in ice-cold condition. The reaction was continued for 30 min at 4 °C and quenched
with 1 M triethyl ammonium bicarbonate buffer (TEAB, 15 ml), and washed with ethyl
acetate. The aqueous layer was evaporated and purified using a DEAE Sephadex-A25 anion
exchange column (0.1M— 1M TEAB buffer, pH 7.5) followed by HPLC (TEAB buffer and
acetonitrile solvent system). Evaporation of the appropriate fraction resulted in the desired

triphosphate in 11% vyield (10 mg) as a triethyl ammonium salt. 'H NMR (400 MHz, D,0) &
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8.38 (s, 2H), 7.55 (s, 1H), 7.51 (d, J = 13.1 Hz, 1H), 6.68 (d, J = 31.2 Hz, 1H), 6.37 — 6.21
(m, 1H), 5.92 (d, J = 20.6 Hz, 1H), 4.05 (s, 1H), 2.90 (d, J = 8.5 Hz, 2H), 2.54 (s, 3H), *!P
NMR (162 MHz, D,0) & 6.36 (d, J = 10.0 Hz), -10.43 (d, J = 25.7 Hz), -22.9 (t), HRMS ESI-

Tof Calcd for (C1gH20Ns016P3-H) 652.9956, Found 652.9969.

Photophysical studies of tt-dU (5): All the Absorption and Emission spectra of the compound
5 (10 uM) were measured in different solvents using their respective spectrophotometer with
a cell of 1 cm path length. Spectroscopy samples were prepared from concentrated DMSO
stock solutions; hence, all samples contain 0.4 v% or 0.2 v% DMSO. Relative Quantum yield
of nucleoside 5 in different solvents was determined relative to quinine sulfate as the

standard. Following equation was used to calculate the quantum yield.
Dr) = (AdA ) (FxlFs)( nung)® D)

Where s is the standard, x is the modified nucleoside, A is the absorbance at excitation
wavelength, F is the area under the emission curve, n is the refractive index of the solvent,

and @k is the quantum yield. Quantum yield of quinine sulfate in 0.1 M H,SQO;, is 0.54.
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4. 'H, *P NMR (400 MHz , D,0) and HRMS of 6
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Chapter 3A
3A.1 Introduction

Bacterial infections have remained a primary cause of concern throughout history.!
Persistent use of antibiotics as monotherapy or in combination has definitely reduced
mortality but at the same time is the leading cause of redundant emergence of antibiotic-
resistant bacterial pathogenic strains.? Drug designing strategies must be changed in order to
find a sustainable solution to counteract the emerging multidrug resistance issue.®> One such
multidrug-resistant and highly adaptable bacterium responsible for nosocomial infections is
Pseudomonas aeruginosa (PA).* The bacterium is a well-known causative agent of cystic
fibrosis and airway infections. Various reports suggest that the emergence of multidrug-
resistant PA is higher than that of novel antibiotics produced for treating the same. It has been
reported as the prime reason for hospital-acquired infection in European countries.’ Biofilm
formation, Pyocyanin secretion, and protease production are a few important virulent factors
possessed by the bacterium.® Ability to form biofilm is an added advantage for this bacterium
that reduces the efficacy of any drug by limiting its penetration potential inside the cell.
These virulent factors, as well as their capacity to conquer antibiotics, are controlled by the
complex cell to cell chemical signaling system known as quorum sensing (QS).”® The lasI/R
QS circuit regulates the expression of virulent factors.® Elastase, a protease encoded by lasB
gene under QS regulon is the most virulent factor. It is responsible for disrupting the tight
junctions between host epithelial cells. Pyocyanin production increases oxidative stress and
alters the mitochondrial electron transport system of the host.® Therefore, drug-designing
strategies should be advanced to control bacterial infections, aiming to inhibit the virulence
factors against designing the complete bactericidal drugs. However, the development process
might be a reason for concern owing to its safety issues against human uses. In the literature,
sulfone derivatives are bioactive molecules that serve not only popular antibiotics but also

potential drug candidates for the treatment of AIDS/HIV infection and Alzheimer's disease
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(Figure 3A.1-a)."* Tropolone, a non-benzenoid aromatic molecule, is a constituent of many
troponoid natural products, which exhibit diverse biological activities such as antibacterial,
anti-inflammatory, antitumor, and antiviral activity.**** For example, the naturally occurring
Thujaplicin and synthetic analog tropolonyl-naphthalenyl urea are potent antibiotics (Figure
3A.1-b/c). Thus we rationally designed troponyl-sulfones by synergizing sulfones and
troponyl moieties in a single scaffold to explore their efficacy on PA (Figure 3A.1-d). Herein,
we planned to synthesize troponyl-sulfone derivatives by modern metal catalyzed C-H
activation methods because tropolone derivatives have metal-chelating properties.* Recently,
the synthesis of sulfones has attracted more and more attention and direct sulfonylation of
C—-H bonds projects a new vision for sulfone synthesis leading to low atom and step
economy.'>*® Several groups such as Dong et al., Wei et al., Tan et al., and a group of We,
Wu, Zeng, Manolikakes, and Zhang have reported the direct C-H sulfonylation of arenes
based on Cu, Pd, Rh and Ru metals by the assistance of a directing group.”*® Additionally,
sulfones could act as useful synthons for C—C bond formation via fragment coupling, Julia
olefination and the Ramberg—Backlund rearrangement in synthetic chemistry.**** This is the
very first report which describes the synthesis of alkylaminotroponyl sulfone (ATS)
derivatives through the Cu-catalyzed C(sp?)- H activation at tropone ring. This report also

describes their biological activities as antiquorum sensing agents against PA (PA14).
3A.2 Objective

The scarcity of novel bioactive molecules against multidrug-resistant (MDR) bacterial
strains like Pseudomonas aeruginosa is alarming. This bacterial virulence is regulated via
Quorum sensing (QS), a cell-cell communication process. Disabling QS circuits (las, pgs,
rhl) with small molecules has been proposed as a potential strategy to prevent bacterial
pathogenicity. This strategy focuses on the interruption of bacterial virulence, rather than

killing them to tackle the drug resistance problem. In this chapter, we have rationally
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designed troponyl sulfones and tested their bioactivity toward the PA14 strain. This is the
first report describing the synthesis of alkylaminotroponyl sulfone (ATS) derivatives through

the Cu-catalyzed C(sp®)-H activation at tropone ring.

Previous Report

5 S-Sier ot

‘4. ONa AIkyIamlnotroponyISulfoneE

Sulbactam Sodium Thujaplicin

n=0

Tropolonylnaphthalenyl Urea : (ATS)

QS System

aeruginosa

Figure 3A.1. Antibiotic and anti-quorum sensing compounds (reported and this report); (a-c)

previous reports, (d) this report, (e) Pseudomonas aeruginosa and QS system.
3A.3 Results and Discussion

We began the synthesis of alkylaminotroponyl sulfone (ATS) derivatives from the
commercially available Tropolone molecule. Tropolone was converted into N-
alkylaminotropone derivatives (1) by following the previously reported procedure.?? Herein
we synthesized three derivatives of aminotropones such as N-Benzylaminotropone (1a), N-
Isopropyl aminotropone (1b) and N-Octylaminotropone (1c). In Scheme 3A.1, the
aminotropone (1a) was treated with p-tolylsulfonyl hydrazide (2a) in presence of the Cu-
catalyst Cu(OAc), (10 mol %) and an oxidant Ag,COs at 100 °C in solvent dioxane. After

completion of the reaction, we isolated three types of ATS derivatives (3a/3b/3c) such as C-7
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sulfonylated (3a), C-5 sulfonylated (3b) and C-5,7 disulfonylated (3c) with overall yield ca.
89%. We noticed that the C-7 sulfonylated (3a) and C-5 sulfonylated (3b) were major
products with an approximate yield ratio (1:1) and a minor product C-5,7 disulfonylated (3c).
However, the yield of C-5 derivative is slightly higher than the C-7. Their characterization
data (*H-/**C-NMR/ESI-HRMS) are provided in the Appendix. Pleasantly, we obtained the
single crystal of C-5 ATS derivative (3b) and studied it by X-ray diffractometer. Its solved X-
ray data is submitted to the Cambridge crystallographic data centre (CCDC) with reference
number 2169438. The ORTEP diagram of ATS (3b) is depicted in Scheme 3A.1, while other

X-ray parameters are provided in the Appendix.

(o) NHBnN
Catalyst Cu(OAc),, o
\/@ Oxidant Ag,CO; S’/O NHBnN
Dioxane,100°C,4h o
» 0=S=0
o 0=S=0

Tropolone N-| benzylammotropone S NHNH,

(1a) 6 @N“B" °
A (2a)
( 53 3a, 36% 3¢,14 %

3b, 39%

L' &ﬁ Tolylsulfonyl-N-benzylaminotropone (3)

&' ‘ ORTEP diagram of 3b

Scheme 3A.1. Synthesis of ATS derivatives via C(sp)-H activation.

ﬂIZ

We optimized the reaction conditions for the synthesis of ATS derivatives by
altering the catalyst, oxidant, solvent and temperature conditions. The optimization table is
provided bellow (Table 3A.1). Our results show that the catalyst Cu(OAc), oxidant Ag,COs3,
solvent 1,4-dioxane and temperature 100 °C are the optimized conditions for the synthesis of

alkylaminotroponyl sulfone derivatives.
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Table 3A.1. Optimization studies of ATS 3a/3b/3c

Entry Cu Salt Oxidant Solvent Total yield
1 Cu(OAc), Ag,CO3 Dioxane 89%
2 Cu(OAc);, Ag,CO; DMF 17%
3 Cu(OAc); Ag,CO3 ACN 70%
4 Cu(OAc);, Ag,CO; DCE 46%
5 Cu(OAc), AgOAC Dioxane 30%
6 Cu(OAc), AgNO;3 Dioxane 23%
7 Cu(OTf), Ag,CO3 Dioxane trace
8 CuBr Ag,CO3 Dioxane 43%
9 Cul Ag,CO3 Dioxane 35%

10 Ag,CO3 Dioxane nd

We performed the similar experiment with other alkylaminotropones (1) and
arylsulfonyl hydrazides (2) that produced respective alkylaminotroponyl sulfones  4ap/c-
110 (Scheme 3A.2). These derivatives are also characterized by NMR and ESI-HRMS.
Their characterization data are provided in the Appendix. However, we could not notice the
formation of disulfonylated product from p-nitroaryl sulfonyl hydrazide and N-
benzylaminotropone possibly owing to the electron withdrawing NO,-group which may exert
electrostatic repulsion between two nitro groups. We also noticed that the bulky 2,4,6-
triisopropylsulfonyl hydrazide did not give sulfonylated products due to the steric congestion.
Herein, we did not apply aliphatic sulfonyl hydrazides for sulfonylation of alkylaminotropone
because of the relative instability of the sulfonyl radicals, generated in situ from aliphatic
sulfonyl hydrazides under the reaction conditions. We also executed a gram scale synthesis
for scheme 3A.1 demonstrating the good scalability of our method and it followed quite the

same trend in terms of yield distribution.
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Scheme 3A.2. The substrate scope of Arylsulfonation at alkylaminotropone.
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The plausible catalytic cycle is described in Figure 3A.2. Initially, aminotropone (1)
forms a complex (A-B) with Cu(OAc), through the ligand exchange. This complex reacts
with the sulfonyl radical to afford Cu(l) complex (C) via single electron transfer process
(SET) with three probable products. The sulfonyl radical has been generated from the
arylsulfonyl hydrazide by SET through the deprotonations and N,-elimination with copper
catalyst. In the literature, generation of such sulfonyl radical is also reported.?® In next, the
Cu(l)-complex (C-1/2) give Cu(ll)-complex (D-1/2) via Cu(OAc),-promoted oxidation.
Meanwhile, CuOAc is oxidized by Ag,COg3 to regenerate Cu(OAc),. Finally, this sulfonyl
Cu(ll) complex (D-1/2) produce Cu(ll) complex (E-1/2) through proton transfer process
which leads to the desired aminotroponyl sulfonylated products 3a/3b via the ligand

dissociation, accompanying the regeneration of the Cu(OAc), to complete the catalytic cycle.

3a,3b CU"(OAC)Z
Ar0,S %‘
ArOZS ] N‘R \ N | N—R

) /
O~-duloac), O--Cu"(0Ac), O~~cul(oAc),

E-1 E-2 A
PT ¥ACOH
AcO
H
- O .
Aro,s7 Y NR ’\N-R 1 N

O- ‘Cu"OAc 0‘-Cu"OAc O-~Cu'oAc
SET B
culo AFOZSH
ArOZSH N-R N-R S_Ar
‘Cu' ‘Cu' 0
c-1 c-2 -N,
Ag* Ag*
0 2Cu"  2cu'+2vt @ 260 20ul +2H* Q .
Ar—ﬁ—NHNH2 >~ 7, Ar—éS;—NZNHA—L» Ar—ﬁ—N:N (Ar: p-methylphenyl)

Figure 3A.2. Plausible reaction mechanism of ATS formation.
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To ensure the radical mechanism, we performed a similar sulfonylation reaction with
the radical inhibitor reagent, 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO). Herein, we
couldn't isolate any ATS derivatives that strongly support the proposed radical mechanism.
Hence we can conclude that a free sulfonyl radical process may be involved in our reaction

system.

The swarming motility pattern is an important asset in PA, contributing to its
antibiotic resistance potential.** This motility pattern is a group-mediated movement on hard/
semi-solid surfaces. The swarmer cells are often elongated in size and have a unique way of
moving together in bunches.”® Swarming motility is a surfactant-induced pattern whose
synthesis is regulated by quorum-sensing (QS) in PA14.2*" In the literature, nonbenzenoid
troponyl derivatives (tropolone-based metalloprotein inhibitors) have shown anti-QS
properties and inhibited bacterial cells swarming.?® Thus, we examined the role of twenty-six
ATS derivatives in bacterial cell swarming. Importantly, we noticed remarkable inhibition of
bacterial cell swarming without inhibiting the growth of the bacterium by six ATS derivatives
(3b, 4b, 7b, 11b, 5¢c and 9c). The swarming pattern was observed in control after 24h of
incubation in the control medium, whereas only the grown colony of the bacterium was
observed in the center, in the swarm media treated with 100 uM of sulfonyl compounds
(Figure 3A.3). The six ATS derivatives (3b, 4b, 7b, 11b, 5¢ and 9c¢) inhibiting swarming are
either C-5 or C-5,7 derivatives. None of the C-7 ATS derivatives showed antiswarming
properties. The dose-dependent studies indicated that di-(p-isopropyl)-phenyl ATS (5c¢) and p-
nitrophenyl ATS derivative (7b) most effectively inhibited swarming at a deficient
concentration of 20 uM while the other four compounds (3b, 4b, 11b and 9c) showed anti-

swarming activity at a concentration of 60 puM (Figure 3A.4).
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Figure 3A.3. Swarming assays of P. aeruginosa (PA14) in DMSO control and in presence of

ATS derivatives (3ab/c-11amc) at 100 uM concentration.
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20 uM 40 uM 60 uM 80 uM 100 uM
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0

KSR

@‘0 11b

Figure 3A.4. Concentration-dependent swarming assays of P. aeruginosa (PA14) in presence

of ATS derivatives (3b, 4b, 7b, 11b, 5c and 9c) at different concentrations (20-100 uM).

Biofilm formation is again an essential trait enhancing the pathogenicity and
virulence potential of PA14. Biofilm is a matrix of cells encased inside self-secreted hydrated
extracellular polymeric substances (EPS). This shows collective behavior and often protects
cells by acting as a barrier against different hostile conditions such as antibiotics along with
other harsh environmental conditions (salinity, pH, temperature fluctuations).? The quorum-
sensing (QS) system is the key regulator of biofilm formation in PA resulting in enhanced

virulence and antibiotic resistance.*® To evaluate the anti-biofilm activity of the ATS
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derivatives, we performed an initial screening of all 26 ATS derivatives at a high
concentration of 100uM (Figure 3A.5, Figure 3A.6-A). In quantitative analysis, we noticed
that only eight compounds (3b, 4b, 7b, 8b, 9b, 10b, 11b and 5c) showed remarkably high
reduction (> 50%) in biofilm formation, whereas six other compounds (3a, 5b, 6c, 9c, 10a
and 10b) also affected the biofilm formation significantly by more than 30%. To analyze the
effective anti-biofilm dose of the selected six compounds, we measured the anti-biofilm
activity at different concentrations i,e 20, 40, 60, 80, and 100 uM (Figure 3A.6-B). These
studies showed that all the selected compounds significantly inhibited the biofilm formation
of PA (PA14) in a dose-dependent manner. The di-(p-isopropyl phenyl) ATS derivative (5c)
significantly reduced biofilm formation by 54% even at 40uM concentration, followed by (p-
nitrophenyl) ATS derivative (7b), which effectively rendered biofilm formation by 46% at

the mentioned concentration (p<0.0001).

control

11c

Figure 3A.5. Effect of ATS derivatives on biofilm formation (qualitative analysis).
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Figure 3A.6. Effect of ATS derivatives on biofilm formation; (A) Quantitative analysis of P.
aeruginosa biofilm formation in the absence (control) or presence of ATS derivatives, (B)

Concentration dependent biofilm assay.

The clinical isolates of PA are known for the production of pyocyanin, a phenazine
known for its toxicity. Pyocyanin, a redox-active secondary metabolite, plays a crucial role in
the generation of reactive oxygen species.®* Pyocyanin production is under QS regulon and
helps bacterium in coping with oxidative stress. QS defective mutants are highly susceptible
to oxidative stress due to the decreased levels of cyclopropanation along with decreased
levels of fatty acid saturation.®? Owing to the role of pyocyanin in PA pathogenicity and in
maintaining its fitness during competitive surroundings, we analyzed the effect of synthesized
ATS derivatives on pyocyanin synthesis. Herein, only six sulfone derivatives (3b, 4b, 7b,

11b, 5c and 9c), out of 26, significantly inhibited the pyocyanin synthesis (p < 0.001) at
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concentration of 100uM (Figure 3A.7-A). Next, we evaluated pyocyanin synthesis with
increasing concentrations of ATS compounds by pyocyanin assay. Their concentration range
was the same for evaluating anti-swarming and anti-biofilm concentrations. We noticed the
inhibition of Pyocyanin production by all the selected compounds in a dose-dependent
manner (Figure 3A.7-B). Importantly, ATS derivative (5c) was the most potent pyocyanin
synthesis inhibitor that inhibited the pyocyanin synthesis by 34% at only 20 pM
concentration. The pyocyanin synthesis was further inhibited to 76 % on increasing the
concentration from 20 uM to 100 uM. We found that all six selected derivatives showed anti-

swarming activity and anti-pyocyanin activity in a dose-dependent manner.
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Figure 3A.7. Effect of ATS derivatives on pyocyanin production; (A) Quantitative analysis

of P. aeruginosa pyocyanin production in the absence (control) or presence of ATS

derivatives, (B) Concentration dependent pyocyanin assay.
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In PA (PA14), LuxI/R quorum-sensing systems regulates the synchronous synthesis of
various virulence factors like pyocyanin and elastase along with crucial involvement in
biofilm formation.®® The lasl gene synthesizes autoinducer 3-oxo-c12-homoserine lactone
(30C12-HSL) and lasR gene gets activated on binding with the autoinducer (Figure 3A.8).
The complex formed between LasR and 30C12—HSL further orchestrates the transcription of
various genes including lasB and rhl (a second quorum-sensing receptor).® * lasB encodes
for elastase B, a multifunctional enzyme which synchronously regulates various physio-
pathological phenomena occurring during bacteria-host interaction.*® Elastase production,
one of the most virulent traits of PA is the main reason behind PA mediated mortality in
hospitals. Elastase specifically hydrolyzes internal peptide bonds present on the amino
portion of hydrophobic amino acid residues and thus has the potential to cleave a wide range

of proteinaceous substrates.®’

/ las System \
cenes M) — T —

/ N

Proteins

3-oxo0-C-12-HSL

rhl System pgs System

\_

Figure 3A.8. Schematic diagram of the interconnected lasl/R and Lasl/R systems.

Thus we performed qRT-PCR experiment to determine the efficacy of synthesized

ATS derivatives at gene level (Table 3A.2, Figure 3A.9). Bacterium PA was treated with
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selected ATS derivatives (3b, 4b, 7b, 11b, 5¢ and 9c¢) at anti-swarming concentration for 18h.
We studied the expression of both lasl and lasR genes. The transcript levels of the 16S RNA
gene were similar in control (cells grown in LB medium) or in LB medium supplemented
with the mentioned compounds; hence it was used for normalization. The sulfonyl
compounds 5c and 7b downregulated lasl and lasR significantly by 99.9 % and 99.7 % at 20
MM concentration (Figure 3A.10-A/B). Surprisingly, sulfonyl derivative (11b) did not show
any down regulating effect on both selected genes (lasl and lasR) though it effectively
reduced biofilm formation, pyocyanin synthesis, and swarming motility. The same expression
pattern was observed in lasB in presence of sulfonyl compounds (Figure 3A.10-C). Our
results indicate that two isopropylbenzenesulfonyl groups of 5¢ and one nitrobenzenesulfonyl
group of 7b greatly contribute to the remarkable anti-QS activity. In the literature,
tropolone/tropone comprising isopropyl, nitro and sulfur substituents has also shown a higher
antibacterial activity than its parental moiety.*® However, in our case, the major difference
was nitro and isopropyl moieties were not directly attached to the tropone ring; instead, we

embedded them with the help of sulfonyl units.

Table 3A.2.Primers used for quantitative RT-PCR experiment

Gene PCR primer sequence (5' to 3")

lasl Fw: GGTTATGACGCACTCAGTCC

Rv: TTCAGCATGTAGGGGCCAGT

lasR Fw: GTGGAAAATTGGAGTGGAGC

Rv: ACGATGAAGGCGTTCTCGTA

lasB Fw: GACCTGATCGACGTGTCCAA

Rv: ATCGCTTTCAGTTCGTCGGC

16s Fw: TAAGCACCGGCTAACTTCGT

Rv: AACCACCTACGCGCGCTTTA
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Figure 3A.9. Schematic workflow for qRT-PCR experiment.
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Figure 3A.10. Effects of ATS treatment on expression of QS-related genes; Quantitative
real-time PCR analysis showing the transcript levels of (A) lasR genes and (B) lasl genes and

(C) lasB genes in presence of ATS derivatives (3b, 4b, 7b, 11b, 5¢ and 9c).

In order to ensure the safe use of synthesized compounds as anti-QS compounds and to

counteract PA infection in human body, cytotoxicity assay was performed. The cytotoxicity
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of the compounds was evaluated in HEK239T cell lines (Figure 3A.11). None of the tested

six compounds (3b, 4b, 7b, 11b, 5¢ and 9c) showed toxicity at the studied concentrations,

which were much higher than that of their anti-QS concentration.
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Figure 3A.11.Cell proliferation assays of ATS derivatives (3b, 4b, 7b, 11b, 5¢ and 9c).

Considering the use of our synthesized six ATS derivatives as a therapeutic agent
against PA14, cytotoxicity assay was performed. To this end, cell viability of HEK293T cell
lines was measured post 12 hours of infection with treated and untreated PA14. As
expected, PA strain PA14 was found to be cytotoxic against HEK293T cell line, decreasing
the viability significantly as compared to the DMSO control. Our results depicted that
compounds 5c¢ and 7b treatment significantly reduced PA virulence-mediated cytotoxicity
toward HEK293T cells and dramatically increased the viability (Figure 3A.12-A-D). Around
89% (p<0.0001) and 80% (p<0.0001) of PAl4-infected cells survived in the presence of
compounds 5c¢ and 7b, respectively, while only 37% (p<0.0001) of cells were viable in the
blank group. Thus, these results indicated that compounds 5¢ (20uM) and 7b (20uM) can be

potential biofilm, swarming, pyocyanin, and virulence inhibitors in acute PA infections.
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Figure 3A.12. ATS-mediated attenuation of P. aeruginosa cytotoxicity towards HEK293T
cells; Plot showing Cell survivality (A), Microscopic images of HEK293T cells treated with

PA14 (B), 7b treated PA14 (C), and 5c treated PA14 (D).

3A.4 Conclusion

In summary, we have successfully introduced aryl sulfonyl moiety at
alkylaminotropone derivatives through Cu-catalyzed C-H activation. So far, there is no such
report on arylsulfonation at non-benzenoid aromatic tropone ring. We have explored their
antagonism against the multidrug resistant bacteria PA (PA14) by performing the following
assays: biofilm inhibition, pyocyanin inhibition, and anti-swarming activities. Our result
strongly supports that six compounds (3b, 4b, 7b, 11b, 5¢ and 9c) showed remarkable
inhibitory potential. The ATS derivative 5c is the most effective, followed by 7b,
rendering biofilm formation and pyocyanin production. Both ATS (5c¢/7b) have effectively

limited the swarming motility at 20 uM concentration. These two ATS (5c¢/7b) inhibit the
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lasl/R systems of PA by significantly down regulating the expression of lasl/R genes (~ 99%,
(p <.0001)). We also notice that these two ATS (5¢/7b) are non-toxic towards HEK293T cell
lines. Thus we have tested for the virulent effect of PA infection. Our results show that the
survival of HEK293T cells is increased by ~89% and ~80% when treated with PA grown in
the presence of compound 5c and 7b, respectively, as compared to untreated PA control
(~37%). Overall, both ATS (5¢/7b) are potentially novel QS inhibitors and anti-biofilm, anti-
swarming agents, which could be considered as therapeutic drugs for the treatment of PA

infection.
3A.5 Experimental Section

General information: Unless otherwise noted, materials were purchased from commercial
suppliers and were used as received. Reactions were monitored by thin layer
chromatography, visualized by UV and Ninhydrin. Column chromatography was performed
in 230-400 mesh silica. Mass spectra (HRMS) were obtained from Bruker microTOF-Q 11
Spectrometer and the samples were prepared in methanol and injected in methanol and water
mixture. NMR spectra were recorded on Bruker 400 MHz and Bruker 700 MHz NMR
spectrometer at room temperature and processed using Mnova software from Mestrelab

Research. The crystal data were collected on a Rigaku Oxford diffractometer.

Typical procedure for the preparation of aminotropones: All the alkylaminotropones were
synthesized by following the reported procedure.?? 2-Tosyloxytropone and amines (1.2
equiv.) were dissolved in ethanol, and to this EtsN (3.0) was added. The reaction mixture was
allowed to reflux, monitored by TLC. The general reaction time observed for all the reactions
was 24-36 h. All the volatiles were evaporated under reduced pressure after reaction
completion. To the crude product, 1.0 N HCI was added and extracted with dichloromethane

(three times), and then the combined organic layers were dried over Na,SO,4 and evaporated
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under reduced pressure. The obtained crude product was purified by silica gel column

chromatography by using an ethyl acetate and hexane mixture as the mobile phase.

Typical procedure for the preparation of sulfonyl hydrazides: Sulfonyl hydrazides were
prepared according to the literature procedure.’® The hydrazine monohydrate (80%) (30
mmol) was added drop wise into the solution of sulfonyl chloride (10 mmol) in THF (50 mL)
under nitrogen at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 30 minutes.
After the completion of the reaction, the solvent was removed by evaporation, and the residue
was extracted with dichloromethane (3 x 20 mL), and the combined organic layer was
washed with water, brine, and dried over Na,SO,. Concentration in vacuum followed by
silica gel column purification with petroleum ether/ethyl acetate eluent gave the desired

product 2 in yields range from 70-95%.

General procedure for copper-catalyzed C-H sulfonylation: Aminotropone 1 (0.2 mmol),
sulfonyl hydrazide 2 (0.3 mmol), anhydrous Cu(OAc), ( 0.02 mmol), silver carbonate ( 0.6
mmol), and anhydrous 1,4-dioxane (3mL) were added to a round bottom flask under argon
and stirred at 100 °C for 4 h. After the completion of the reaction, the reaction mixture was
passed through celite and the filtrate was evaporated under reduced pressure. The residue was
purified by column chromatography using dichloromethane (also ethyl acetate/hexane in

some cases) as eluent to get the desired products.
Characterization data of products

2-(benzylamino)cyclohepta-2,4,6-trien-1-one (1a): *H NMR (700 MHz, CDCls) & 7.59 (s,

\/@ 1H), 7.38 — 7.26 (m, 6H), 7.20 — 7.13 (m, 2H), 6.68 (t, J = 9.4 Hz, 1H),
6.53 (d, J = 10.3 Hz, 1H), 4.55 (d, J = 5.8 Hz, 2H), °C NMR (176

O H
O

(1a) MHz, CDClz) & 177.00, 155.39, 137.37, 136.43, 136.25, 129.22,
a

123



Chapter 3A

128.93, 127.81, 127.30, 122.70, 109.18, 47.02, HRMS (ESI) calcd for C14H13NO: [M+Na]"

234.0889, found: 234.0885.

2-(isopropylamino)cyclohepta-2,4,6-trien-1-one (1b): *H NMR (400 MHz, CDCls) & 7.34 —
O H 7.13 (m, 3H), 6.69 (t, 1H), 6.60 (d, J = 10.6 Hz, 1H), 3.94 — 3.80 (m, 1H),

N
@ \( 1.36(d, J =6.4 Hz, 6H), *C NMR (101 MHz, CDCl3) & 176.57, 154.68,

(1b) 137.19, 136.29, 128.24, 121.83, 108.89, 43.80, 22.01, , HRMS (ESI) calcd for

C1oH1sNO: [M+Na]* 186.0889, found 186.0875.

2-(octylamino)cyclohepta-2,4,6-trien-1-one (1c): *H NMR (700 MHz, CDCls) § 7.26 — 7.14
o) H\/\/\/\/ (m, 3H), 7.12 (d, J = 11.5 Hz, 1H), 6.63 (t, J = 9.5 Hz,
@ 1H), 6.50 (d, J = 10.4 Hz, 1H), 3.27 (dd, J = 13.1, 6.5 Hz,
(1c) 2H), 1.71 (dt, J = 14.4, 7.2 Hz, 2H), 1.41 (dt, J = 14.7, 7.3

Hz, 2H), 1.33 — 1.21 (m, 8H), 0.86 (t, J = 6.8 Hz, 3H), **C NMR (176 MHz, CDCls) &
176.57, 155.68, 137.22, 136.31, 128.26, 121.93, 108.61, 42.89, 31.76, 29.25, 29.16, 28.45,

27.14, 22.62, 14.08, HRMS (ESI) calcd for CisHxsNO: [M+Na]* 256.1672, found 256.1671.

2-(benzylamino)-7-tosylcyclohepta-2,4,6-trien-1-one(3a): Following the general procedure
\© the title compound was isolated by column chromatography
ds%ﬂ\/@ (eluent: dichloromethane) as a yellow solid in 36% vyield (28
= mg).1H NMR (700 MHz, CDCls) & 8.61 (d, J = 10.0 Hz, 1H),

a
7.99 (s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 10.1 Hz, 1H), 7.35 — 7.30 (m, 3H), 7.27 (d,
J=8.0 Hz, 2H), 7.23 (d, J = 7.0 Hz, 2H), 6.84 (t, J = 9.9 Hz, 1H), 6.58 (d, J = 10.5 Hz, 1H),
4.49 (d, J = 5.6 Hz, 2H), 2.38 (s, 3H). *C NMR (176 MHz, CDCI3) & 170.48, 157.72,
143.59, 142.08, 138.30, 138.04, 136.36, 134.92, 129.09, 129.07, 128.61, 128.32, 127.63,
119.34, 109.10, 47.50, 21.64, HRMS (ESI) calcd for C;H1gNO3S: [M+Na]* 388.0978, found

388.1001.
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2-(benzylamino)-5-tosylcyclohepta-2,4,6-trien-1-one (3b): Following the general procedure

0 the title compound was isolated by column chromatography
Q/N (eluent: dichloromethane) as a pale yellow solid in 39% yield (30
°~’s,.o mg). *H NMR (700 MHz, CDCls) & 8.03 (d, J = 10.8 Hz, 2H), 7.80
Q (3b) (d, J = 12.3 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.40 — 7.32 (m, 3H),

7.30 — 7.26 (m, 4H), 7.08 (d, J = 12.2 Hz, 1H), 6.53 (d, J = 11.0 Hz, 1H), 4.59 (d, J = 5.9 Hz,
2H), 2.39 (s, 3H), *C NMR (176 MHz, CDCl3) & 176.43, 156.93, 144.00, 138.97, 136.91,
135.00, 134.35, 133.30, 130.01, 129.19, 128.36, 127.43, 127.43, 127.22, 105.99, 47.34,

21.56, , HRMS (ESI) calcd for C;H1gNOsS: [M+Na]* 388.0978, found 388.1007.

7-(benzylamino)-2,4-ditosylcyclohepta-2,4,6-trien-1-one  (3c): Following the general

procedure the title compound was isolated by column
Clog 3
S« N
¢

\© chromatography (eluent: dichloromethane) as a yellow solid in

o;s_o 15% yield (14 mg). '"H NMR (700 MHz, CDCls) & 9.22 (s, 1H),

Q o) 8.38 (s, 1H), 8.22 (d, J = 11.2 Hz, 1H), 7.90 (d, J = 7.9 Hz, 2H),
C

7.85 (d, J = 7.9 Hz, 2H), 7.38 — 7.32 (m, 5H), 7.28 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 6.3 Hz,
2H), 6.62 (d, J = 11.2 Hz, 1H), 4.55 (d, J = 5.7 Hz, 2H), 2.42 (s, 3H), 2.39 (s, 3H), *C NMR
(176 MHz, CDCls) & 170.18, 158.68, 144.52, 144.23, 141.07, 138.37, 137.34, 136.59,
135.16, 133.69, 131.45, 130.29, 129.34, 129.21, 129.00, 128.84, 127.73, 127.67, 106.80,
47.98, 21.66, 21.62, HRMS (ESI) calcd for CpsHasNOsS,: [M+Na]* 542.1066, found

542.1103.

2-(benzylamino)-7-(phenylsulfonyl)cyclohepta-2,4,6-trien-1-one (4a): Following the general
procedure the title compound was isolated by column chromatography (eluent:
dichloromethane) as a yellow solid in 36% yield (27 mg). *H NMR (700 MHz, CDCls) & 8.62
(d, J =10.1 Hz, 1H), 8.04 (d, J = 7.8 Hz, 2H), 7.98 (s, 1H), 7.55 (t, J = 7.3 Hz, 1H), 7.48 (t, J

= 7.6 Hz, 2H), 7.43 (t, J = 10.2 Hz, 1H), 7.38 — 7.27 (m, 3H), 7.23 (d, J = 7.2 Hz, 2H), 6.85
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(t, J = 10.0 Hz, 1H), 6.59 (d, J = 10.6 Hz, 1H), 4.50 (d, J = 5.8

©\,o o) H\/© Hz, 2H), °C NMR (176 MHz, CDCls) & 170.45, 157.74,

IS'
OI
@ 142.18, 141.30, 138.16, 136.09, 134.86, 132.75, 129.11,

(4a) 128.53, 128.39, 128.35, 127.61, 119.32 , 109.10, 47.52,

HRMS (ESI) calcd for CxH17NOsS: [M+Na]" 374.0821, found 374.0842.

2-(benzylamino)-5-(phenylsulfonyl)cyclohepta-2,4,6-trien-1-one (4b): Following the general

\/@ procedure the title compound was isolated by column

®)
ZT

chromatography (eluent: dichloromethane) as a yellow solid in
40% yield (30 mg). *H NMR (400 MHz, CDCls) & 8.04 (dd, J =
@ \0(4.0) 11.0, 2.0 Hz, 2H), 7.93 — 7.85 (m, 2H), 7.81 (dd, J = 12.2, 2.0 Hz,
1H), 7.59 — 7.44 (m, 3H), 7.43 — 7.30 (m, 3H), 7.30 — 7.26 (m,

2H), 7.08 (d, J = 12.2 Hz, 1H), 6.54 (d, J = 11.1 Hz, 1H), 4.59 (d, J = 5.9 Hz, 2H), *C NMR
(101 MHz, CDCl3) 8 176.42, 157.03, 142.06, 137.12, 134.98, 134.33, 132.95, 132.89,
129.33, 129.19, 128.37, 127.42, 127.36, 127.18, 105.83, 47.38, HRMS (ESI) calcd for

CaoH17NO5S: [M+Na]* 374.0821, found 374.0842.

7-(benzylamino)-2,4-bis(phenylsulfonyl)cyclohepta-2,4,6-trien-1-one (4c): Following the

general procedure the title compound was isolated by column
00 n\,@

d?@ chromatography (eluent: dichloromethane) as a yellow solid

0sd in 11% yield (8 mg). *H NMR (700 MHz, CDCl3) § 9.24 (d, J
St

@ (4c) = 1.6 Hz, 1H), 8.43 (s, 1H), 8.24 (d, J = 11.2 Hz, 1H), 8.01 (d,

J=7.6 Hz, 2H), 7.97 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.57 — 7.53 (m, 3H), 7.47
(t, J = 7.8 Hz, 2H), 7.36 — 7.31 (m, 3H), 7.22 — 7.18 (m, 2H), 6.65 (d, J = 11.3 Hz, 1H), 4.57
(d, J = 5.8 Hz, 2H, **C NMR (176 MHz, CDCl3) § 170.11 , 158.82, 141.43, 141.39, 140.31,

136.69, 134.70, 133.63, 133.47, 133.26, 130.91, 129.68 , 129.36, 128.92, 128.85, 128.55,
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127.74, 127.59, 106.95, 48.01, HRMS (ESI) calcd for CsHaiNOsS,: [M+Na]™ 514.0753,

found 514.0772.

2-(benzylamino)-7-((4-isopropylphenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (5a):

Following the general procedure the title compound was

/hgp o “\/© isolated by  column  chromatography  (eluent:
° U dichloromethane) as a yellow solid in 41% vyield (50 mg).
(53) 'H NMR (700 MHz, CDCl5) & 8.61 (d, J = 10.1 Hz, 1H),
7.99 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.41 (t, J = 10.1 Hz, 1H), 7.35 — 7.29 (m, 5H), 7.24 (d,
J=7.2 Hz, 2H), 6.84 (t, J = 9.9 Hz, 1H), 6.58 (d, J = 10.5 Hz, 1H), 4.50 (d, J = 5.8 Hz, 2H),
2.97 — 2.88 (m, 1H), 1.24 (s, 3H), 1.23 (s, 3H), °C NMR (176 MHz, CDCls) & 170.51,
157.73, 154.18, 142.01, 138.51, 138.12, 136.40, 134.93, 129.09, 128.78, 128.32, 127.63,
126.56, 119.33, 109.04, 47.51, 34.19, 23.62, HRMS (ESI) calcd for C3H23NOsS: [M+Na]*

416.1291, found 416.1291.

2-(benzylamino)-5-((4-isopropylphenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (5b):
o H\/@ Following the general procedure the title compound was isolated

Q/ N by column chromatography (eluent: dichloromethane) as a

0:3:0 yellow solid in 45% yield (55 mg). *H NMR (700 MHz, CDCls)

(5b) § 8.06 (s, 1H), 8.04 (d, J = 11.2 Hz, 1H), 7.82 (d, J = 12.3 Hz,
1H), 7.79 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 7.3 Hz, 2H), 7.34 (d, J

= 7.7 Hz, 3H), 7.29 — 7.26 (m, 2H), 7.08 (d, J = 12.2 Hz, 1H), 6.54 (d, J = 11.0 Hz, 1H), 4.59
(d, J = 5.8 Hz, 2H), 2.98 — 2.90 (m, 1H), 1.23 (d, J = 6.9 Hz, 6H), **C NMR (176 MHz,
CDCI3) 6 176.44, 156.96, 154.65, 139.21, 136.99, 135.04, 134.43, 133.29, 129.18 , 128.35,
127.54, 128.52, 128.44, 127.19, 106.06, 47.33, 34.20, 23.60, HRMS (ESI) calcd for

Co3H23NO3S: [M+Na]+ 416.1291, found 416.1299.
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7-(benzylamino)-2,4-bis((4-isopropylphenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (5¢):

Following the general procedure the title compound was

/k@ o H\/@ isolated by column chromatography (eluent:
$ N

.S<
0 U dichloromethane) as a yellow solid in 10% yield (12 mg). 'H
o NMR (700 MHz, CDCl3) 8 9.25 (s, 1H), 8.41 (s, 1H), 8.26 (d,
(5c) J=11.2 Hz, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.90 (d, J = 8.2

Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.38 — 7.33 (m, 5H), 7.23
(d, J = 6.0 Hz, 2H), 6.64 (d, J = 11.3 Hz, 1H), 4.58 (d, J = 5.8 Hz, 2H), 3.01 — 2.94 (m, 2H),
1.28 (d, J = 6.9 Hz, 6H), 1.26 (d, J = 6.9 Hz, 6H), *C NMR (176 MHz, CDCls) & 170.21,
158.70, 155.13, 154.83, 141.10, 138.66, 137.53, 136.73, 135.22, 133.71, 131.49, 129.35,
129.20, 128.84, 127.80.127.78, 127.73, 126.70, 106.73, 47.98, 34.27.34.23, 23.60, HRMS

calcd 1or C3oH33 597. +Na . , Toun . .
(ESI) calcd for CapHgsNOsS,: [M+Na]* 598.1692, found 598.1729

2-(benzylamino)-7-((4-(tert-butyl)phenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (6a):
Following the general procedure the title compound was

><©\ 00 u isolated by column chromatography (eluent:
C)"SUN dichloromethane) as a yellow solid in 33% yield (32 mg). *H

(6a) NMR (700 MHz, CDCls) & 8.64 (d, J = 10.0 Hz, 1H), 8.03 (s,

1H), 7.99 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.4 (t, J = 10.0 Hz, 1H), 7.35 (m,
3H), 7.26 (d, J = 6.7 Hz, 2H), 6.86 (t, J = 9.8 Hz, 1H), 6.60 (d, J = 10.4 Hz, 1H), 4.52 (d, J =
5.0 Hz, 2H), 1.33 (s, 9H). 13C NMR (176 MHz, CDCls) § 170.52, 157.74, 156.45, 142.02,
138.16, 138.14, 136.37, 134.94, 129.10, 128.50, 128.33, 127.63, 125.48, 119.35, 109.06,

47.51, 35.15, 31.09, HRMS (ESI) calcd for Cp4H25NO3S: [M+H]" 408.1628, found 408.1660.

2-(benzylamino)-5-((4-(tert-butyl)phenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (6b):
Following the general procedure the title compound was isolated by column chromatography

(eluent: dichloromethane) as a yellow solid in 37% yield (28 mg). ‘H NMR (400 MHz,
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CDCl3) & 8.04 (dd, J = 10.9, 1.9 Hz, 2H), 7.83 (dd, J = 12.3, 2.0 Hz, 1H), 7.79 (d, J = 8.6 Hz,
o H\/@ 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.40 — 7.32 (m, 3H), 7.30 — 7.26

Q’N (m, 2H), 7.09 (d, J = 12.2 Hz, 1H), 6.54 (d, J = 11.1 Hz, 1H),

°~‘S.~O 459 (d, J = 5.9 Hz, 2H), 1.31 (s, 9H), *C NMR (101 MHz,

(6b) CDCl3) & 176.45, 156.94, 138.84, 136.99, 135.00, 134.46,

133.31, 129.19, 128.37 , 127.44, 127.24, 126.41, 106.03, 47.35,

35.19, 31.03, HRMS (ESI) calcd for Cp4HpsNO3S: [M+Na]* 430.1447, found 430.1462.

7-(benzylamino)-2,4-bis((4-(tert-butyl)phenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (6¢):
Following the general procedure the title compound was

>b\ 0o \/@ isolated by column chromatography (eluent: dichloromethane)
o"" H as a yellow solid in 20% vyield (26 mg). *H NMR (400 MHz,

CDCl3) & 9.24 (d, J = 1.9 Hz, 1H), 8.40 (t, J = 5.3 Hz, 1H),
) 8.24 (dd, J = 11.2, 1.9 Hz, 1H), 7.95 (d, J = 8.6 Hz, 2H), 7.88
(d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6
Hz, 2H), 7.36 (d, J = 1.7 Hz, 1H), 7.34 (d, J = 1.9 Hz, 2H), 7.21 (dd, J = 6.8, 2.5 Hz, 2H),
6.62 (d, J = 11.3 Hz, 1H), 4.55 (d, J = 5.8 Hz, 2H), 1.33 (s, 9H), 1.31 (s, 9H), *C NMR (101
MHz, CDCl3) & 170.23, 158.72 , 157.39, 157.10, 141.11, 138.32, 137.19, 136.77, 135.19,
133.73 , 131.47, 129.35, 128.90, 128.83, 127.73 , 127.47 , 126.70 , 125.60, 106.74, 47.98,

35.26,35.21, 31.06, 31.04, HRMS (ESI) calcd for C34H3/NOsS,: [M+Na]™ 626.2005, found

626.2035.

2-(benzylamino)-7-((4-nitrophenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (7a):
Following the general procedure the title compound was

\©\ 00 \/@ isolated by column chromatography (eluent: dichloromethane)

as a yellow solid in 44% vyield (37 mg). *H NMR (700 MHz,

(7a)
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CDCls) 5 8.57 (d, J = 10.1 Hz, 1H), 8.31 (d, J = 8.6 Hz, 2H), 8.21 (d, J = 8.6 Hz, 2H), 7.98
(s, 1H), 7.50 (t, J = 10.2 Hz, 1H), 7.41 — 7.29 (m, 3H), 7.23 (d, J = 7.0 Hz, 2H), 6.90 (t, J =
10.0 Hz, 1H), 6.66 (d, J = 10.6 Hz, 1H), 4.53 (d, J = 5.7 Hz, 2H), **C NMR (176 MHz,
CDCl3) & 170.20, 157.89, 150.09, 147.22, 142.99, 138.21, 134.77, 134.53, 129.85, 129.21,
128.53, 127.60, 123.60, 119.49, 109.57, 47.62. HRMS (ESI) calcd for CyoHisN20sS:

[M+Na]* 419.0672, found 419.0666.

2-(benzylamino)-5-((4-nitrophenyl)sulfonyl)cyclohepta-2,4,6-

\/@ trien-1-one (7b): Following the general procedure the title
compound was isolated by column chromatography (eluent:

0¢S~o dichloromethane) as a yellow solid in 49% vyield (41 mg). *H

@ (7b) NMR (400 MHz, CDCls) 6 8.33 (d, J = 8.8 Hz, 2H), 8.16 (s,

1H), 8.10 — 7.99 (m, 3H), 7.80 (dd, J = 12.3, 2.1 Hz, 1H),

7.45 — 7.31 (m, 3H), 7.30 — 7.26 (m, 2H), 7.09 (d, J = 12.3 Hz, 1H), 6.56 (d, J = 11.1 Hz,
1H), 4.61 (d, J = 5.9 Hz, 2H), °C NMR (101 MHz, CDCl3) § 176.29, 157.33, 150.18, 147.76,
137.81, 134.61, 134.11, 130.73, 129.28, 128.63, 128.54, 127.44, 127.13, 124.63, 105.77,

47.48, HRMS (ESI) calcd for CooH16N205S: [M+Na]* 419.0672, found 419.0694.

2-(benzylamino)-7-((4-bromophenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (8a):

Following the general procedure the title compound was

\@\ 0o isolated by column chromatography (eluent:

o H

ls N - - - -

o’ @ dichloromethane) as a yellow solid in 38% yield (52 mg). *H
(8a) NMR (700 MHz, CDCls3) 6 8.60 (d, J = 10.0 Hz, 1H), 8.02

(s, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 10.0 Hz, 1H), 7.41 —
7.33 (M, 3H), 7.28 (d, J = 7.7 Hz, 2H), 6.88 (t, J = 9.8 Hz, 1H), 6.64 (d, J = 10.4 Hz, 1H),

454 (d, J = 4.8 Hz, 2H), *C NMR (176 MHz, CDCl3) & 170.31, 157.80, 142.44, 140.28,
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138.09, 135.70, 134.76, 131.65, 130.31, 129.15, 128.42, 127.93, 127.61, 119.38, 109.28,

47.56, HRMS (ESI) calcd for C»oH16NO3SBr: [M+Na]™ 451.9926, found 451.9912.

2-(benzylamino)-5-((4-bromophenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (8b):
Following the general procedure the title compound was isolated

N\/© by column chromatography (eluent: dichloromethane) as a

yellow solid in 42% yield (58 mg). *H NMR (700 MHz, CDCls) &

O~
\S:
@ ° 8.09 (s, 1H), 8.00 (dd, J = 11.0, 1.5 Hz, 1H), 7.78 (dd, J = 12.3,
8b
(8] 1.7 Hz, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H),

7.42 -7.30 (m, 3H), 7.28 (d, J = 7.3 Hz, 2H), 7.08 (d, J = 12.3 Hz, 1H), 6.53 (d, J = 11.1 Hz,
1H), 4.60 (d, J = 5.9 Hz, 2H), *C NMR (176 MHz, CDCls) & 176.36, 157.10, 141.03, 137.22,
134.84, 134.17, 132.69, 132.18, 129.23, 128.89, 128.44, 128.23, 127.44, 127.17, 105.88,

47.40, HRMS (ESI) calcd for CooH1sNOsSBr: [M+Na]™ 451.9926, found 451.9912.

7-(benzylamino)-2,4-bis((4-bromophenyl)sulfonyl)cyclohepta-2,4,6-trien-1-one (8c):

Following the general procedure the title compound was

\@\ 00 isolated by column chromatography (eluent:
o"SUN dichloromethane) as a yellow solid in 12% vyield (16 mg). *H
%% NMR (700 MHz, CDCl3) § 9.16 (d, J = 13.2 Hz, 1H), 8.44 (s,

Q (8c) 1H), 8.20 (t, J = 11.9 Hz, 1H), 7.88 (t, J = 11.1 Hz, 2H), 7.82

Br
(d, J = 8.4 Hz, 2H), 7.69 (t, J = 11.3 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.37 (s, 2H), 7.26 —

7.19 (m, 3H), 6.64 (d, J = 11.3 Hz, 1H), 458 (d, J = 5.7 Hz, 2H), *C NMR (176 MHz,
CDCl3) & 169.99, 158.84, 141.51, 140.34, 139.15, 136.59, 134.49, 133.37, 133.00, 131.86,
130.67, 130.52, 129.45, 129.11,129.01, 128.87, 128.66, 127.70, 106.98, 48.12, HRMS (ESI)

calcd for CosH1gNO5S,Br,: [M+Na]™ 671.8944, found 671.8963.
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2-(isopropylamino)-7-tosylcyclohepta-2,4,6-trien-1-one  (9a):  Following the general
procedure the title compound was isolated by column chromatography (eluent:
ethylacetate/hexane) as a yellow semi-solid in 33% yield (23 mg).

\©\ 00 4 'H NMR (700 MHz, CDCls) & 8.57 (d, J = 10.2 Hz, 1H), 7.93 (d,
o’ N‘( J = 8.3 Hz, 2H), 7.70 (d, J = 6.7 Hz, 1H), 7.45 (t, J = 10.2 Hz,
(0a) 1H), 7.29 (d, J = 8.1 Hz, 2H), 6.79 (t, J = 9.9 Hz, 1H), 6.58 (d, J
=10.7 Hz, 1H), 3.89 — 3.80 (m, 1H), 2.40 (s, 3H), 1.28 (d, J = 6.4 Hz, 6H), **C NMR (176
MHz, CDCl3) & 170.14, 156.99, 143.44, 142.01, 138.59, 137.70, 135.26, 129.08, 128.47,
118.45, 108.89, 44.66, 21.75, 21.65, HRMS (ESI) calcd for C17H1gNO3S: [M+Na]™ 340.0978,

found 340.1003.

2-(isopropylamino)-5-tosylcyclohepta-2,4,6-trien-1-one  (9b):  Following the general

procedure the title compound was isolated by column

(0]
',:} chromatography (eluent: ethylacetate/hexane) as a yellow semi-solid
in 38% vyield (26 mg). *H NMR (700 MHz, CDCls) & 8.06 (dd, J =
O.
S
0 11.2, 2.0 Hz, 1H), 7.80 (dd, J = 12.2, 2.1 Hz, 1H), 7.77 (d, J = 8.3
(9b)

Hz, 2H), 7.68 (d, J = 6.8 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.03 (d, J
= 12.2 Hz, 1H), 6.54 (d, J = 11.3 Hz, 1H), 3.95 — 3.87 (m, 1H), 2.39 (s, 3H), 1.34 (d, J= 6.5
Hz, 6H), *C NMR (176 MHz, CDCls) § 176.12, 156.08, 143.88, 139.19, 136.84, 134.39,
132.24, 129.99, 127.33, 126.07, 105.81, 44.60, 21.81, 2155, , HRMS (ESI) calcd for

C17H19NO3S: [M+Na]+ 340.0978, found 340.1001.

7-(isopropylamino)-2,4-ditosylcyclohepta-2,4,6-trien-1-one  (9¢): Following the general
procedure the title compound was isolated by column chromatography (eluent:
ethylacetate/hexane) as a yellow solid in 20% yield (20 mg). *H NMR (700 MHz, CDCls) &
9.20 (d, J = 1.9 Hz, 1H), 8.23 — 8.18 (m, 1H), 8.11 (s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.86 (d, J

= 8.3 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 6.58 (d, J = 11.5 Hz, 1H),
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N\ 3.96 - 3.87 (m, J = 12.7, 6.3 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 3H), 1.30
52 ] '»L( (d, J = 6.4 Hz, 6H), **C NMR (101 MHz, CDCls) § 169.94, 157.83,
o
0@ 144.40, 144.11, 140.84, 138.57, 137.59, 136.55, 134.02, 130.52,

~0
Q (9¢) 130.25, 129.21, 128.90, 127.60, 106.69, 45.60, 29.70, 21.67, 21.64,
HRMS (ESI) calcd for CasHasNOsS,: [M+Na]* 472.1247, found

472.1254.

2-((4-(tert-butyl)phenyl)sulfonyl)-7-(isopropylamino)cyclohepta-2,4,6-trien-1-one (10a):

Following the general procedure the title compound was isolated by column chromatography

(eluent: dichloromethane) as a yellow solid in 34% vyield (26 mg).

>b\ 'H NMR (400 MHz, CDClg) & 8.57 (dd, J = 10.1, 0.9 Hz, 1H),
U \( 7.97 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 7.1 Hz, 1H), 7.50 (d, J = 8.6

(10a) Hz, 2H), 7.44 (t, J = 10.2 Hz, 1H), 6.79 (t, J = 9.9 Hz, 1H), 6.57

(d, J = 10.7 Hz, 1H), 3.91 — 3.78 (m, J = 13.1, 6.5 Hz, 1H), 1.31 (s, 9H), 1.29 (d, J = 6.4 Hz,
6H). °C NMR (101 MHz, CDCl3) § 170.19, 157.03, 156.27, 141.92, 138.47, 137.82, 135.31,
128.35, 125.47, 118.45, 108.79, 44.67, 35.14, 31.10, 21.78, HRMS (ESI) calcd for

CaoHasNOsS: [M+Na]* 382.1447, found 382.1463.

5-((4-(tert-butyl)phenyl)sulfonyl)-2-(isopropylamino)cyclohepta-2,4,6-trien-1-one (10b):
Following the general procedure the title compound was isolated by

@ \( column chromatography (eluent: dichloromethane) as a yellow solid in

42% vyield (32 mg). *H NMR (400 MHz, CDCls) & 8.06 (dd, J = 11.2,
(10b) 2.0 Hz, 1H), 7.85 - 7.75 (m, 3H), 7.66 (d, J = 7.4 Hz, 1H), 7.48 (d, J
= 8.5 Hz, 2H), 7.01 (d, J = 12.2 Hz, 1H), 6.53 (d, J = 11.3 Hz, 1H),

3.95 — 3.82 (m, 1H), 1.32 (d, J = 6.4 Hz, 6H), 1.28 (s, 9H), **C NMR (101 MHz, CDCls) &

176.13, 156.79, 156.11, 139.09, 136.92, 134.49, 132.25, 127.15, 126.37, 126.06, 105.85,
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44.60, 35.15, 31.03, 21.81, HRMS (ESI) calcd for CxHpsNO3S: [M+Na]* 382.1447, found

382.1459.

2,4-bis((4-(tert-butyl)phenyl)sulfonyl)-7-(isopropylamino)cyclohepta-2,4,6-trien-1-one (10c):
Following the general procedure the title compound was isolated

>b\ oo by column chromatography (eluent: dichloromethane) as a yellow
OS@H\( solid in 21% yield (25 mg). *H NMR (700 MHz, CDCl3) & 9.21 (s,
0 1H), 8.24 (d, J = 11.3 Hz, 1H), 8.14 (d, J = 7.9 Hz, 1H), 7.96 (d, J
oe = 8.4 Hz, 2H), 7.89 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H),

7.50 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 11.5 Hz, 1H), 3.97 — 3.88 (m,
1H), 1.32 (s, 9H), 1.31 (s, 12H), 1.29 (s, 3H), °C NMR (176 MHz, CDCl3) & 169.96, 157.84,
157.28, 157.00, 140.93, 138.44, 137.31, 136.72, 133.88, 130.45, 128.79, 127.39, 126.73,
125.65, 106.76, 45.63, 35.28, 35.24, 31.09, 31.06, 21.69. HRMS (ESI) calcd for

C30H37NOsS5: [M+Na]+ 578.2005, found 578.2039.

2-(octylamino)-7-tosylcyclohepta-2,4,6-trien-1-one (11a): Following the general procedure
the title compound was isolated by column
chromatography  (eluent:  dichloromethane) as a
brownish-yellow dense liquid in 38% yield (30 mg). 'H

(11a) NMR (700 MHz, CDCls) & 8.57 (d, J = 10.1 Hz, 1H),
7.93 (d, J = 8.3 Hz, 2H), 7.75 (s, 1H), 7.45 (t, J = 10.1 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 6.80
(t, J = 9.9 Hz, 1H), 6.54 (d, J = 10.7 Hz, 1H), 3.28 (dd, J = 13.2, 6.9 Hz, 2H), 2.39 (s, 3H),
1.69 — 1.66 (m, 2H), 1.39 — 1.36 (m, 2H), 1.31 — 1.27 (m, J = 8.3, 5.2 Hz, 8H), 0.88 (t, J = 6.9
Hz, 3H). 3¢ NMR (176 MHz, CDCl3) 6 170.15, 158.04, 143.45, 142.00, 138.48, 137.76,
135.41, 129.04, 128.54, 118.60, 108.66, 43.35, 31.72, 29.14, 29.07, 28.22, 27.03, 22.60,

21.63, 14.06, HRMS (ESI) calcd for C,,H2gNO3S: [M+Na]* 410.1760, found 410.1760.
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2-(octylamino)-5-tosylcyclohepta-2,4,6-trien-1-one (11b): Following the general procedure

0 n \/\/\/\/ the title compound was isolated by column chromatography
@N (eluent: dichloromethane) as a yellow solid in 41% yield (32
%3820 mg). *H NMR (400 MHz, CDCls) § 8.07 (dd, J = 11.0, 1.3 Hz,
@ e 1H), 7.86 — 7.69 (m, 4H), 7.29 (d, J = 8.1 Hz, 2H), 7.03 (d, J

= 12.2 Hz, 1H), 6.51 (d, J = 11.2 Hz, 1H), 3.37 (dd, J = 13.0, 6.7 Hz, 2H), 2.39 (s, 3H), 1.74
(dt, J = 14.7, 7.2 Hz, 2H), 1.46 — 1.38 (m, 2H), 1.36 — 1.26 (m, 8H), 0.88 (t, J = 6.4 Hz, 3H),
3C NMR (101 MHz, CDCls) & 176.15, 157.14, 143.91, 139.14, 136.86, 134.46, 132.39,
130.00, 127.34, 126.18, 105.64, 43.25, 31.73, 29.15, 29.11, 28.20, 27.02, 22.62, 21.57,

14.09, HRMS (ESI) calcd for Cp,HxsNOsS: [M+Na]™ 410.1760, found 410.1779.

7-(octylamino)-2,4-ditosylcyclohepta-2,4,6-trien-1-one  (11c): Following the general

\@\ procedure the title compound was isolated by column

4 i H\/\/\/\/

o\@” chromatography (eluent: dichloromethane) as a yellow
osd. solid in 13% yield (14 mg). *H NMR (700 MHz,

<o
@ (1e) CDCls3) 6 9.20 (s, 1H), 8.23 (d, J = 10.6 Hz, 2H), 7.88
(dd, J = 38.5, 7.9 Hz, 4H), 7.33 (d, J = 7.8 Hz, 2H),
7.28 (d, J = 7.6 Hz, 2H), 6.58 (d, J = 11.3 Hz, 1H), 3.37 (d, J = 6.2 Hz, 2H), 2.42 (s, 3H),
2.39 (s, 3H), 1.69 — 1.65 (m, 2H), 1.38 — 1.33 (m, J = 7.0 Hz, 2H), 1.28 — 1.25 (m, 8H), 0.87
(t, J = 6.9 Hz, 3H), *C NMR (176 MHz, CDCl3) & 169.90, 158.97, 144.40, 144.12, 140.92,
138.59, 137.49, 136.43, 130.53, 130.25, 129.18 , 128.93, 127.57, 106.70, 43.88, 31.67, 29.04,
29.00, 28.0, 26.89, 22.57, 21.65, 21.60, 14.05, . HRMS (ESI) calcd for CzoHzsNOsSy:

[M+Na]* 564.1849, found 564.1866.

Swarming Assay: Swarming motility assays were performed in M9 medium (Himedia)
amended with 0.5% Bacto™ casamino acids (BD) and solidified with 0.6% Bacto™ agar

(BD). 10 ml of swarm media supplemented with 100 uM of different Alkylaminotroponyl
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sulphone (ATS) derivatives were poured on petridishes (60 mm diameter) and were allowed
to dry for 30 min. The plates were spot inoculated at the centre with one isolated colony
grown on LB with the help of a straight wire loop. The plates were incubated in upright
position at 37°C for 24 hours “°. The plates were carefully taken out and observed for tendril
formation. Images were taken in Gel Doc™ XR+ and processed by using Image lab™

software.

Biofilm Assay: Biofilm formation ability in presence of various synthesized
Alkylaminotroponyl sulfone (ATS) derivatives was studied qualitatively and quantitatively
by glass tube and microtitre plate assay. Briefly for qualitative analysis, 20 uL of overnight
grown culture (ODsgs adjusted to 0.5) of PA14 was inoculated into 2 ml LB broth
supplemented with 100 uM of different ATS derivatives and incubated at 37°C for 48 h.
After incubation the culture was carefully decanted and the tube was rinsed twice by milli-Q
water followed by staining with 0.1% aqueous solution of crystal violet for 30 min at room
temperature. The crystal violet stain was carefully decanted and the tubes were washed with

milli-Q water thrice followed by air drying and crystal violet ring observation.**

For quantitative analysis, 10 pL of overnight grown culture (ODsgs adjusted to 0.5)
of PA14 was inoculated into 100 pL LB broth supplemented with 100 pg/ ml of different
tropolone compounds taken in a micro-titre plate and incubated at 37°C for 48 h under moist
condition. After incubation the supernatant were carefully taken off and unattached cells in
the supernatant were carefully removed followed by washing with milliQ water twice. 125
ML of 0.1% crystal violet solution was added and micro-titre plate was incubated for 30 min
followed by washing with milli-Q water thrice. The plates were air-dried and de-stained with
200 pL of 30% acetic acid and biofilm formation was indirectly quantified in terms of optical
density of dissolved crystal violet at 595nm.*> Compounds showing significant biofilm

reduction were further tested for their anti-biofilm activity in dose dependent manner taking
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concentration range from 20 uM to 100 uM and their 1Cso values for biofilm formation were

obtained.

Pyocyanin Assay: In order to assess the effect of synthesized Alkylaminotroponylsulfone
(ATS) derivatives on pyocyanin production, Pseudomonas aeruginosa (PA14) were grown
overnight in 5 mL minimal media (Himedia) in presence of 100 uM of all the 26 ATS
derivatives (3a-11c) under shaking condition . After incubation, supernatant was collected
from the 5 mL culture by centrifugation of the entire culture at 5000 rpm for 15 min at room
temperature. The pyocyanin fraction was further extracted by adding 3 mL chloroform in the
supernatant. Pyocyanin was then re-extracted into 1 mL of acidified water (0.2 mol/L HCI)
which gave a pink-red solution. For the quantitation of the pyocyanin within the solution, the
absorbance was measured at 520 nm. Pyocyanin inhibition was also performed at variable

concentration to analyze their 1Csq values for pyocyanin production.

QRT-PCR (quantitative real-time polymerase chain reaction) analysis: RNA was extracted
from overnight grown 2 mL culture of PA14 treated with Alkylaminotroponyl sulfonone
(ATS) derivatives (3b, 4b, 7b, 11b, 5¢ and 9c ) using the RiboPure™ kit (Ambion) according
to the manufacturer's instruction. RNA purity was assessed by spectrophotometer (NanoDrop
ND-1000). Samples showing ratios of Azso/Azgo Close to 2.0 were selected. First strand cDNA
was synthesized from 1 pg of treated RNA using the Verso cDNA synthesis kit (Thermo
Scientific) as per manufacture’s guidelines. Primers were designed for lasl, lasB, lasR genes

using the sequences obtained from pseudomonas database (https://www.pseudomonas.com/)

(Table S2). cDNA was diluted 10-fold and combined with primer pairs and PowerUp™
SYBR® Green Master Mix (Thermo Scientific) on an Applied Biosystems real-time PCR
system (QuantStudio 6 and 7 Flex Real-Time PCR System) according to the following
protocol: 95 °C for 2 min; 40 cycles of 95 °C for 3 sec, 60 °C for 30 sec; followed by a melt

curve cycle. The housekeeping gene 16S ribosomal RNA (rRNA) was used as an internal
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standard for quantification of the total RNA “. For each gene, a common threshold setting
applied to each of the three biological replicates determined the threshold cycle (Ct). Relative

abundance of each gene was determined by the 22" method.*

HEK293T cell viability assay: 20000 HEK293T cells were plated in triplicate in a 96-well
plate. The plates were incubated for 18 h under normal culture conditions (37°C and 5%
CO,).Cells were washed thrice with PBS followed by addition of 200uL of DMEM
supplemented with 10 puL of ODgge=2 of PA14 grown in presence and absence of anti-swarm
concentrations of compounds. The plates were incubated for 12 hour followed by viability

analysis through MTS assay*®*’.

Cell proliferation assay: The cytotoxicity analysis of selected six compounds (3b, 4b, 7b,
11b, 5c¢ and 9c) on HEK?293T cells derived from human embryonic kidney was performed
using MTS CellTiter 96® AQueous One Solution Reagent (Promega, WI, USA) as per the
manufacturer’s protocol. 20000 cells/ well were seeded in a 96 well plate for 16h followed
by treatment with defined range of concentrations (0 to 100 uM) of selected compounds for
18 h. After incubation cell cytotoxicity was measured in terms of cell viability by addition of
MTS reagent. The final absorbance was taken at 490nm using Varioskan Flash multimode

reader (Thermo Scientific).
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Chapter 3A
1. 'H, *C Spectra and HRMS

'H, C NMR (700MHz, CDCl3) and HRMS of 1a
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Figure Al. *H/**C NMR (700MHz, CDClI3) spectra of compound 1a in CDCls
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'H, C NMR (400MHz, CDCI3) and HRMS of 1b
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'H, C NMR (700MHz, CDCl3) and HRMS of 1c
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'H, 3C NMR (700MHz, CDCl3) and HRMS of 3a
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'H, C NMR (700MHz, CDCl3) and HRMS of 3b
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'H, C NMR (700MHz, CDCl3) and HRMS of 3c
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'H, C NMR (700MHz, CDCl3) and HRMS of 4a
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'H, C NMR (700MHz, CDCl3) and HRMS of 4c
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Figure A22. ESI-MS/HRMS spectra of compound 5b
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Figure A35.'H/**C NMR (700MHz, CDCls) spectra of compound 8a in CDCls
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Figure A44. ESI-MS/HRMS spectra of compound 9b

189



Chapter 3A

'H, C NMR (700MHz, CDCl3) and HRMS of 9¢

00

6T

DET

wT-,

(44

06°E
T6°E
I6E
EGE
FEE
SE°E

Fiy )
659

LTa

DE"L
L

5kt
L
TELT

T6°L
[
e

ETR-

0TG-

0’6

anfm-d00:k

5.0
1 (ppm)

a5

1.0

40 %5 50 &5 hD

4.5

5% 90 &5 80 5 FO0 65 60 55

10,0

FIIE
£9TE
DL6T

0eSE

EL9L
i fhyiale

BELL-

63201
D6'RIT
12621
SEOET
TSOET
S5'9LT
B5'LET

]

w

£5°8ET -

FEOPT

TTPeT -

o'+
EB'LST

F6'69T

anmedfiib=r 132

=z
O©
O. 4
tn., o
el

130 120 110 100 %0 i8] L] 6 50 A 30 0 in (1] -10
f1 {ppm}

150 140

1%0 180 170 16D

Ml 2on

Figure A45.'H/**C NMR (700MHz, CDCls) spectra of compound 9c in CDCls

190



Chapter 3A

Display Report
Analysis Info Acquisition Date  8/18/2021 8:31:40 PM
Analysis Name  D\Data\AUG-2021\NKS\18082021_SNM-450-S2-DISUB.d
Method Pos_tune_low.m Operator PRAKASH BEHERA
Sample Name  Tmix-131118 Instrument micrOTOF-Q Il 10337
Comment
Acquisition Parameter
Source Type ESI lon Polarity Paositive Set Nebulizer 0.4 Bar
Focus Not active Set Capillary 4500V Set Dry Heater 180 °C
Scan Begin 50 miz Set End Plate Offset 500V Set Dry Gas 4.0 ¥min
Scan End 3000 miz Set Colision Cell RF 1300 Vpp Set Divert Valve Waste
Infens,
X105/
1.44 oy
1,21 N v A b T
101 N i
U'B‘_t__ ’.“_./'
06 e MO e om0 , , .
0ms 0.050 0.075 0.100 0125 0150 0.175 0.200 0225 Time {min]
[ TIC +AlN MS |
i R
ens, +MS. 0.2-0.3min 8(12-15)
X105 4721254 K?LS',O 3 ﬂ
P + *
3 [M+H] S ‘(
24 Os .
S*O
1 -
Exact Mass: 471.1174
0 T y — . . :
500 1000 1500 2000 2500 miz
Intens, +MS. 0.2-0.3min #{12-15)
x109 4721254
3
2-
11 4731279
4741239
| ) arsi2e
0 C24H2505NS2, MenH &72.13|
2000 4721247
1500
10001
4731280
00 4741208
2 \ N 4751239
488 470 472 474 ' 476 478 mz
Bruker Compass DataAnalysis 4.0 printed:  B/18/2021 8:33:48 PM Page 1of 1

Figure A46. ESI-MS/HRMS spectra of compound 9c
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Figure A48. ESI-MS/HRMS spectra of compound 10a
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Figure A50. ESI-MS/HRMS spectra of compound 10b
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'H, C NMR (400MHz, CDCl3) and HRMS of 11b
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'H, 3C NMR (700MHz, CDCl3) and HRMS of 11c
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2. Crystal data of compound 3b

Table Al: Crystal data and structure refinement for 3b

[dentification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

Volume/A*

Z

Pealeg/cm’
wmm!

F(000)

Crystal size/mm?’

Radiation

20 range for data collection/®

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F*
Final R indexes [[>=2a (I)]
Final R indexes [all data]

Largest diff. peak/hole / ¢ A*

3b(CCDC No. 2169438)

C21HixNOsS
364.42
302(1)
triclinic

P-1
5.9955(3)
7.9879(4)
19.5137(10)
90.226(4)
92.804(4)
98.340(4)
923.49(8)

2

1.311

0.195

382.0

0.01 » 0.01 = 0.001

MoKa (L= 0.71073)

6.602 to 61.584

-7<h<8,-11<k<10,-24<1<27

17232

4678 [Rint = 0.0393, Rujgma = 0.0359]

4678/0/236
1.029

R; = 0.0544, wR:> = 0.1426
R = 0.0828, wR2=0.1574

0.35/-0.36
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Chapter 3B
3B.1 Introduction

Nucleic acids (DNA/RNA) are the primary genetic component of cells that regulate
various intricate biological processes."? The nucleic acid composition was extensively
studied and analyzed, resulting in the discovery of modified nucleosides in addition to the
primary constituent units (A/T/G/C/U).2 This discovery brought up fresh perspectives on the
interaction between genetic information and cellular biological processes, and the
introduction of fluorescent nucleosides brought revolutionary changes in nucleic acid
chemistry.* Emissive nucleosides have emerged as an instrumental category of chemical and
biological tools for the molecular-level understanding of nucleic acid structures, activities,
locations, and interactions.®” Their luminescence permits the exploration of nucleic acid
pathways, dynamics, or drug interactions and facilitates the fabrication of biophysical and
diagnostic assays.® Non-emissive Natural nucleobases can be helpful as emissive tools by
significant structural modifications. Fluorescent nucleosides bearing chemically modified
nucleobases have been particularly widely studied because of their environment-sensitive
fluorescence properties.” Environment-sensitive fluorophores (ESF) can sense changes in the
microenvironment (polarity, viscosity), secondary structures, or intramolecular interactions.
The response reflects useful photophysical properties such as the shift in absorption or
emission wavelengths (solvatochromism) along with the change in fluorescence lifetime,
quantum yield, color, etc.’®*> Moreover, chemically modified nucleosides have received
increasing attention because of their importance as antiviral, antifungal, antitumor,
antimicrobial, and anticancer drugs.*® Based on their molecular structure and relations to the
natural nucleobases, fluorescent nucleoside analogs are popularly categorized as isomorphic
nucleosides, pteridines, size-expanded nucleosides, and extended nucleosides.*** It involves
the replacement of the purine or pyrimidine heterocycle or through covalent modification of

the natural heterocyclic base or their analogs. Functionalization of the canonical nucleoside
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scaffolds and their close derivative delivers a general approach to synthesizing base-modified
nucleosides.® Different methods like click chemistry, Sonogashira coupling, Stille coupling,
Suzuki-Miyaura coupling, and Heck coupling have been widely used to synthesize modified
nucleosides.’” However, most modifications include the benzenoid and heterocyclic aromatic
scaffolds. In the repertoire of functional DNA synthesis, the non-benzenoid moiety-based
nucleoside analogs are not well explored. Tropolone is a seven-membered non-benzenoid
aromatic scaffold whose derivatives constitute troponoid natural products.’® Tropolone has
unique hydrogen bonding, photophysical properties, and metal chelating abilities, and
therapeutical-utility.**? In the literature, sulfone derivatives are bioactive molecules that
serve as popular antibiotics and potential drug candidates for treating AIDS/HIV infection
and Alzheimer’s disease.”* % Various research groups have explored modified nucleosides
containing sulfone/ sulfonamide.?*?® Previously, we have also reported Alkylaminotroponyl
sulfone (ATS) derivatives which exhibited remarkable anti-Quorum Sensing activity against
Pseudomonas aeruginosa (Figure 3B.1-A).?” Recently, we have reported different Troponyl
deoxyuridine nucleoside analogs exhibiting polarity sensitive and pH dependent fluorescence,
synthesized mainly by using Sonogashira cross coupling reactions (Figure 3B.1-B).26™%
These results encouraged us to tailor modified nucleosides using troponyl sulfones. Herein,
we have described the synthesis of two novel troponyl sulfone conjugated nucleosides. This

chapter also covers photophysical and biochemical evaluations of ATS derivatives and the

two modified nucleosides.
3B.2 Objective

Fluorescent nucleoside analogs (FNAs) have emerged as powerful biochemical tools
in investigating the structure and dynamics of nucleic acids and their interactions with
various biomolecules. Recently, Tropolone comprising nucleosides and their DNA

oligonucleotides, have been introduced by our group, which exhibit fluorescence

207



Chapter 3B

characteristics. Lately, we have reported various aminotroponyl sulfones (ATS), which show
remarkable bioactivity as inhibitiors of quorum sensing in pathogenic bacteria PA14 strain. In
range of non benzenoid conjugated DNA analogs, the incorporation of aminotroponyl
sulfonyl moiety into DNA was intended, to explore their photophysical properties and
biological relevance.

Previous Reports

a) Alkylaminotroponyl sulfone (ATS) derivatives as Pseudomonas aeruginosa QS inhibitor

QS Inh|b|t|on ~
<: :; I 1 {, \
' ! Downregulation /

of lasl/R genes

iViruIence

P
b) Troponyl deoxy uridine analogs c) This Report:

o (0] (o]
—_— (0] — S NHBnN
O=( ://§—_—_—C;/[ =(N /) a
N OH
go\j KOJ
: HO (:-)H

HO OH

Figure 3B.1. (A) Alkylaminotroponyl sulfone (ATS) derivatives as Pseudomonas aeruginosa
Quorum Sensing (QS) inhibitors, (B) Previously reported troponyl thymidine analogues, (C)

This report- synthesis and biochemical evaluations of ™>dT analogs.
3B.3 Results and Discussion

The synthesis of alkylaminotroponyl sulfone (ATS) derivatives from the commercially
available Tropolone molecule was previously reported by our group.?” This was achieved by
metal catalyzed C-H activation method using different aminotropones and sulfonyl
hydrazides. Following the reported procedure, Tropolone was converted into N-
alkylaminotropone derivatives (1).** In Scheme 3B.1, the aminotropone (1a) was treated with
p-tolylsulfonyl hydrazide (2a) in presence of the Cu-catalyst Cu(OAc), (10 mol%) and an
oxidant Ag,COj3 at 100 °C in solvent dioxane. After completion of the reaction, we isolated
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three types of ATS derivatives (3a/3b/3c) such as C-7 sulfonylated (3a), C-5 sulfonylated
(3b) and C-5,7 disulfonylated (3c) with overall yield ca. 89%. We also synthesized other 23
ATS derivatives by performing a similar experiment with other alkylaminotropones (1) and
arylsulfonyl hydrazides (2) that produced respective alkylaminotroponyl sulfones. All the

experimental details are provided in Chapter 3A.%

Catalyst Cu(OAc),, (o) NHR o0
taly (OAc), Ar Ar\S/, NHR
(o} Oxidant Ag,CO; 0=S=0 7
NHR Dioxane,100°C,4h 0 o
0 o NHR 0=$=0 oxd_
() Ar=S-NHNH, i Al ©
O (2a) a(C-7) b (C-5) ¢ (C-5,7)
Substrate Scopes
R:Benzyl (3-8) R = Isopropyl (9-10)
Ar = Tolyl; 3a (36%); 3b (39%); 3¢ (14)%) Ar = Tolyl; 9a (33%); 9b (38%); 9¢ (20%)
Ar = Phenyl; 4a (36%); 4b (40%); 4c (11%) Ar = p-Butylphenyl; 10a (34%); 10b (42%); 10c

Ar = p-Cumenyl; 5a (41%); 5b (45%); 4c (10%) (21%)
Ar = p-Butylphenyl; 6a (33%); 6b (37%); 6¢ (20%) R = Octyl (11)

Ar = p-Nitrophenyl; 7a (44%); 7b (49%); 7¢ (nd) Ar = Tolyl; 11a (38%); 11b (41%); 11¢c (13%)
Ar = p-Bromophenyl; 8a (38); 8b (42%); 8¢ (12%)

Scheme 3B.1. Cu-catalyzed arylsulfonation of N-benzylaminotropone via C(sp®)-H

activation.

Among the 26 ATS derivatives, two derivatives (8a/8b) contain a bromo group, allowing
them to be used for further synthetic utility. Thus we envisioned the synthesis of modified
nucleosides bearing troponyl sulfone unit by employing the Sonogashira cross-coupling
reactions (Scheme 3B.2). We began the synthesis of the rationally designed ATS mediated
nucleosides from commercially available 2’-deoxy-5-iodouridine (12). 2’-deoxy-5-
iodouridine (12) was converted into 2’-deoxy-5-ethynyluridine (13) in two steps. The alkyne
group of nucleoside 13 was individually coupled with Br-ATS (8a and 8b) by the
Sonogashira coupling using Pd(PPhs), catalyst, and Cul as co-catalyst to get two different
nucleosides A™dT-1 (14) and “™dT-2 (15) respectively. The products were obtained in good

yield, 61% for compound 14 and 66% for compound 15. The yield of 15 was slightly more
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than that of 14. All the compounds were characterized by *H/ **C NMR, ESI-HRMS analyses

(see Appendix).

(o)

Br.
@ u ;

/S NHBn
S

//

Pd(PPh;),, Cul, Ho/‘g

TEA, DMF, 0Q  \HBn
0°C, 61% S@

ZI

ATS
1)TMS-Acetylene, 14 (F2dT-1)
o  H Pd(PPh;),,Cul
o \\,‘\’i\io TEA,DMF,rt
N AL?’
HOA(_?‘ =\, 2)K,CO;, MeOH
HO' rt, 75% HO' 13

12
/
Pd(PPhs),,Cul, /_<j
60 °C, 66% HO s"

0@ 15 (ATSdT-2) \QZO
NHBn NHBn

Scheme 3B.2. Synthesis of troponyl sulfone conjugated nucleoside A™dT-1 (14) and A™dT-2

© O=t—
U_O-(I).

(15)

We conducted photophysical studies for the newly synthesized compounds “™>dT-
1(14) and ™°dT-2(15) and obtained their quantum yields. Before investigating the properties
of nucleosides, we studied the photophysical properties of ATS derivatives. We took
compound 3a as the model compound and studied its photophysical properties in various
organic solvents, i.e., toluene, dichloromethane, dimethoxysulfoxide, acetonitrile, and
methanol (Table 3B.1, Figure 3B.2). We observed that the solvent polarity had only a minor
influence on the absorption properties. The analysis of absorption spectra of 3a revealed
absorptions at 348 nm and 433 nm in DMSO with very little solvatochromism (by 4-5 nm
blue shift). Upon excitation we observed broad and solvent polarity dependent emissions.
Emission intensity decreased when the polarity of the solvent increased to ACN/MeOH and

experienced a 36 nm red shift in DMSO (503 nm) solvent from DCM (467 nm). It exhibited
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lower quantum vyields in relatively polar solvents (ACN, MeOH) than non-polar ones. In

DMSO the quantum yield was highest (.013).

Table 3B.1. Summary table of photophysical properties of compound 3a in different

solvents.
) .
solvent Aabs(NM) Abs Aem(NM) Smlzre]r;)s}“ft @ (%)
Toluene 345, 429 0.18583 473 128 1.06
DCM 345, 428 0.18581 467 122 0.93
DMSO 348, 433 0.16255 503 155 1.34
ACN 344, 427 0.15707 478 134 0.54
MeOH 345, 428 0.17085 485 140 0.59
. - Tol 2
0.5 o @ —DCM g
' —DMSO <
—— ACN 9
. 0.4+ — MeOH §
5 z
f: 0.2 §
s
0.1 §
2
300 350 400 450 500 Wa\/e|ength(nm)
o0 Wavelength(nm)
~ Ho —— Mo ™
;_-/ 124
‘E g 1.0 o
;C) g 0.8
g E o5
§ g 0.4
- s’
[ 0.2

T T T T T T T
400 450 500 550 600 650 Toluene DCM DMSO MeOH

Wavelength(nm) Solvents

Figure 3B.2. (A) Absorption, (B) Emission, (C) Normalized emission spectra, (D) Quantum
yield of compound 3a in different solvents at 10 M concentration.
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We performed all photophysical studies in the DMSO solvent for all the rest of the
ATS compounds. The details are provided in Table 3B.2. All C-5 sulfonylated, C-7
sulfonylated and C-5,7 disulfonylated derivatives possessed their own distinct absorption and
emission spectra pattern. In Figure 3B.3-A, normalized UV-Vis and fluorescence spectra of
compounds 3a, 3b, and 3c are provided, which shows the differences. Compound 3a has two
absorption maxima, as discussed earlier, whereas compound 3b has three (Ayps= 360 nm, 384
nm, 407nm) and 3c has two (Aas= 361 nm, 433 nm) with a shoulder peak near 433 nm. This
spectral nature owes to multiple transitions, such as m—n*, n—n*, and intramolecular charge
transfer like their parent moiety topolone/aminotropone.®* ATS derivatives were quite
independent of various substituents present in p-position of benzene ring (except 7a-b, due to
the presence of the nitro group). UV—vis spectra of all C-7 derivatives (except 7a) showed
two absorption maxima ranging from 343 nm- 351 nm and 432 nm- 436 nm. Upon excitation
at a lower wavelength absorption band, we observed broad emissions in the range of 485 nm-
510 nm. But in the case of C-5 derivatives (excluding 7b), three peaks were present in
absorption spectra around 360 nm, 385 nm and 407 nm. These compounds showed emission
bands near around 460 nm upon excitation. All di-substituted sulfonyl compounds exhibited
two absorption maxima around 361 nm and 433 nm along with a shoulder peak near 411 nm.
For the nitro derivatives (7a-b) we couldn't get any emission band and quantum yield as nitro
group is a common fluorescence quencher.®® C-7 and C-5, 7 disulfonylated compounds had
significantly higher quantum yield than that of C-5 derivatives, where the quantum yield
values were either identical for C-7 and C-5, 7 sulfone derivatives or slightly higher for C-5,7
sulfones (Figure 3B.3-B). Among all compounds, 5¢ was the most fluorescent one having

1.45 % quantum yield.
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Table 3B.2. Summary table of photophysical properties of the compound 3ap/c-11am/c IN

Chapter 3B

DMSO.
Cpd | Aabs(nm) Absorbance Aem(nm) | Stoke’s | Xpax (M D (%)
S.N. shift 'em™)
(nm)
3a | 348,433 0.16255, 0.45123 | 503 155 45123 1.34
360, 384, 0.46756, 0.44355,
3b 407 0.39452 461 101 46756 0.61
3C 361, 433 0.2382, 0.38605 501 140 38605 1.39
4a | 349,433 0.17982, 0.54823 | 506 157 54823 0.86
360, 386, 0.3987, 0.38466,
4b 407 0.37004 461 101 39870 0.49
4c 361, 432 0.13169, 0.21733 | 502 141 21733 1.25
5a | 348,433 0.13585, 0.37647 | 492 144 37647 1.2
360, 386, 0.48777, 0.4646,
5b 407 0.41302 460 100 48777 0.52
5¢c 361, 433 0.16389, 0.24183 | 491 130 24183 1.45
6a | 349,433 0.08457, 0.27525 | 504 155 27525 0.99
360, 384, 0.37198, 0.3434,
6b | 407 0.32057 464 104 37198 0.79
0.24486, 0.21428,
6¢C 361, 411,433 | 0.21389 483 122 24486 1.06
7a 343, 436 0.13404, 0.40918 | xxx XXX 40918 XXX
7b 398, 408 0.60987, 0.59064 | xxx XXX 59064 XXX
8a | 349,434 0.1665, 0.51099 510 148 51099 1.19
362, 387, 0.44835, 0.45631,
8b | 407 0.41229 458 96 45631 0.74
8¢ 361, 433 0.15007, 0.24759 | 478 117 24759 1.29
9a | 350,432 0.15544,0.43389 | 512 162 43389 0.62
361, 383, 0.4689, 0.45494,
9b | 407 0.35519 468 107 46890 0.53
9c 363, 431 0.24805, 0.37976 | 508 145 37976 1.03
10a | 351, 432 0.10777,0.23539 | 485 134 23539 1.15
361, 383, 0.44984, 0.44287,
10b | 407 0.34504 467 106 44984 0.82
10c | 363,431 0.3234, 0.4909 508 145 49090 1.11
11a | 351, 434 0.12573,0.31185 | 504 153 31185 1.09
362, 385, 0.55052, 0.54891,
11b | 408 0.43413 472 110 55052 0.79
11c | 363,432 0.24854, 0.37323 | 498 135 37323 1.06
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Figure 3B.3. (A) Normalized absorptions and emissions of compound 3a, 3b and 3c in

DMSO solvent, (B) Quantum yield of all ATS derivatives (3ap/c- 11amic) in DMSO solvent

The spectroscopic and photophysical properties of both the modified nucleosides
ATSAT-1 (14) and A™dT-2 (15) were measured in different solvents of varying polarity. Both
nucleosides exhibited different spectral properties (Table 3B.3, Figure 3B.4). A™dT-1 (14)
showed two absorption maxima around 330 nm and 430 nm in all solvents along with a 5 nm
red shift in DMSO solvent and emitted in the range of 473-506 nm depending on solvent
polarity. The normalized emission spectra of nucleoside (14) were generated, which shows
the characteristic red shift by increasing the polarity of solvents (Figure 3B.4-C). The

maximum difference in the emission wavelength (Alem) IS ~33 nm (AenMeOH- AeDCM).
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For comparative studies, we plotted bar diagram of quantum yields vs solvents (Figure 3B.4-
D). This indicates that the quantum yield of ~™dT-1 (14) is relatively high in non-polar
solvents (1.56 % in DCM, 1.67% in DMSQO) than in polar solvents (0.63% in methanol). In
case of ~T°dT-2 (15), we observed multiple absorption peaks, unlike “™>dT-1 (14) (Figure
3B.4-E). For instance, in DMSO solvent absorption maxima occur at 332 nm, 365 nm along
with two shoulder peaks around 390 nm and 406 nm. The normalized emission spectra of
nucleoside 15 depicted red-shift with increasing polarity of solvents (Figure 3B.4-G). The
maximum difference in the emission wavelength (Akem) iS ~20 nm (AeyMeOH- A DCM).
The bar diagram of quantum yields vs. solvents (Figure 3B.4-H) for #™°dT-2 (15) indicates
that quantum yield of 15 is relatively high in non-polar solvents (0.71% in toluene, 0.65 % in
DMSQO) than polar solvents (0.36% in methanol). Therefore both the nucleosides are
environmentally sensitive fluorescent (ESF) nucleosides where the Quantum vyield of

nucleoside A™dT-1 (14) is nearly two fold higher than that of A™dT-2 (15).

Table 3B.3. Summary table of photophysical properties of the compound “™>dT-1(14) and

ATSAT-2 (15) in different solvents

Cpd | Solvent | Aaps(Nm) Absorbance Aem(nm) | Stokes shift | @ (%)
(nm)

14 Toluene 330, 360 0.28888, 0.31963 442 82 0.71
DCM 327, 358 0.31046, 0.35144 432 74 0.61
DMSO 332, 365 0.30222,0.33656 | 452 87 0.65
ACN 325, 359 0.31763, 0.34633 440 81 0.57
MeOH 325, 359 0.32881, 0.35044 | 452 93 0.36

15 Toluene 330, 430 0.02459, 0.17843 474 44 1.17
DCM 325, 430 0.26807, 0.21381 473 43 1.56
DMSO 330, 435 0.43842,0.38264 | 506 71 1.67
ACN 330, 430 0.41213,0.33866 | 488 58 0.72
MeOH 325, 430 0.34591, 0.26368 | 506 76 0.63

215



Chapter 3B

0.6

(A) — Tol 1000 4 (B) — Tol
054 -_— DC"gO = DCM
— DM —
— ACN > DMSO
0 800 = s ACN
044 MeOH c e \V@OH
o 2
2 =
g 034 8 600 o
:
'2 0.2+ 8 4004
S
=
014 Y 2004
0.0 T T T T
300 350 400 450 500 0 T T
400 500 600 700
Wavelength(nm)
Wavelength(nm)
1.2 1.8
© Ahgrn(DMSO/MeOH-DCM) = 33 nm 16] O
° 1.04 — TO|
3} s DCM 1.44
5] —owmso| | =
o 081 —acN | | S 121
<] — H
5 MeoH[ 12 10
S 064 S
[
e 0.84
3 E
N 0.4+ S 06+
© S
E O 0.4
o 0.24
z 0.2 4
0.0 T T T T 0.04
450 500 550 600 Toluene DCM DMSO ACN MeOH
Solvent
Wavelength(nm)
044 (B) —Tol ) —Tol
m— DCM
—DMsO|| .,
o —— ACN =
o e MeOH S
g 2
[
e 0.2 g
2 :
2 3
< 5
0.1 3
o
0.0 T T T T T T
300 350 400 450 500 400 500 600 700
Wavelength(nm) Wavelength(nm)
1.2 0.8
Ak ,(DMsO/MeOH-DCM) = 20 nm (H)
10 —_— — T0| 0.7 4
8 ! e DCM
c — DMSO 0.6 4
3 0.8 —— ACN g —
8 e MeOH g 0.54
5 o
E 0.6 4 _u_; 0.4
- £
o] 2 0.3
N 0.4+ <
©
£ 8. 0.2 4
© 0.2
2 0.1+
0.0 T T T T 1 0.0 T
400 450 500 550 600 Toluene DCM DMSO ACN MeOH
wavelength(nm) Solvent

Figure 3B.4. Absorption (A), Emission spectra (B, C) and Quantum vyield (D) of ~™dT-1
(14); Absorption (E), Emission spectra (F, G) and Quantum vyield (H) of ~™dT-2 (15) in

different solvents.
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To examine fluorophoric behavior of #™dT-1 (14) and ~™dT-2 (15), we performed
their DFT calculation in gas phase and extracted their HOMO and LUMO diagrams (Figure
3B.5). (opt freq b3lyp/6-31g geom = connectivity). Geometrically optimized structure of
ATSdT-1 (14) shows that sufonyl-phenyl-thymine residues are almost in the same plane while
benzyl-troponyl ring is nearly perpendicular to sulfonyl-phenyl-thymine ring system. The
HOMO-LUMO of #™dT-1 (14) shows that Troponyl residue has a major contribution in the
HOMO while thymine-phenyl-sufonyl-troponyl residues are involved in LUMO. The enegry
difference of their HOMO-LUMO is 3.3eV. The optimized structure of “7dT-2 (15) shows
that benzyl-troponyl is non-planar with sulfonyl-phenyl-thymine ring over troponyl ring
which perpendicular almost to “7°dT-2 (15). However, the benzyl unit is nearly perpendicular
to the troponyl ring in compound 15. Thymine-phenyl-sufonyl-tropnyl residues are
contributed in HOMO and LUMO in “T3dT-2 (15) with almost the same energy differences,
contrastingly to “7dT-1 (14). In both cases, troponyl molecular orbitals are involved HOMO-

LUMO and made significant contributions to be fluorescent.
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Figure 3B.5. Geometrically optimized structure HOMO-LUMO diagrams and their energy

differences using DFT calculation: (A) A™dT-1 (14) and (B) ~™dT-1 (15).
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The cytotoxicity activities of nucleosides “™°dT-1 (14) and ~™dT-2 (15) were studied
against HEK293T (Human embryonic kidney) and HelLa (human cervical carcinoma) cell
lines using MTS assay. The cytotoxicity activity assay was required to assess the utility of the
modified nucleosides (14/ 15) as probes in confocal microscopy imaging studies. The MTS
assay results are provided in Figure 3B.6. We couldn't find any significant cytotoxicity with
ATSdT-1 (14) and “™dT-2 (15) in both cell lines. The cytotoxicity activity of troponyl
sulfones was studied previously, where compound 5c¢ also didn't show any noticeable effect.

Thus, it was concluded that 5¢ and both nucleosides (14/ 15) are suitable for imaging studies.

140 -
120
X 100
>
£ 3o 4 —o—C7-Nu-HEK293T -14
T o —8—C5-Nu-HEK293T -15
3 C7-Nu-Hela -14
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0 ' ' ' ' .
0 50 100 150 200 250
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Figure 3B.6. Cell proliferation assays of A™>dT-1 (14) and A™dT-1 (15).

Compound 5c was examined as a luminescent probe for confocal microscopy imaging
in HeLa cells. The cells were incubated in media containing 100 uM of a given compound for
12 and 24 h following the standard protocol and studied by confocal microscopy. HeLa cells
were visualized under bright light and different channels such as FITC (green channel, Aex
490 nm) and TRITC (red channel, Aex 570 nm). The staining pattern demonstrates diffusion of
the compound over all the cytoplasm and membrane. The membranous localization was

verified by a co-staining experiment with a lipid staining dye (BODIPY 493/503) (Figure
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3B.7-A-F). The colocalization of the given compound was quantified in HeLa cells using
Pearson's coefficients (r). Pearson's coefficient (r) values were estimated by using JACoP
plugin in Fiji: Image.** The calculated ‘r’ value for compound 5¢ was found to be 0.98, which
suggests the significant co-existence of BODIPY dye and the compound in the
cytoplasm/membrane area. The cellular staining pattern was the same when the incubation

time was 24 h.

A) TRITC B) FITC C) FITC +TRITC
r=0.983

D) TRITC E) FITC F) FITC +TRITC
r=0.961

Figure 3B.7. Confocal microscopic images of HelLa cells incubated with compound 5c¢ (A-C,

12 h incubation time; D-F, 24 h incubation time) along with BODIPY dye staining.

As probes and sensors, fluorescent nucleoside analogs have been employed to monitor
intracellular processes, including RNA and DNA replication and transcription.®’
Additionally, nucleoside probes have been created that can assess specific enzyme reactions

and endogenous genetic circuits in live cells. Recently, a nucleoside-based, environment-

sensitive fluorescence-lifetime sensor for DNA interactions was introduced.*®*° Fluorescent
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nucleoside analogs exhibit improved cell permeability and are applied for labeling
biomolecules in vitro/Vivo conditions. Herein we examined the cell permeability of
fluorescent nucleoside analogs “™dT-1 (14) and “™dT-2 (15) into HeLa cell lines. These
were incubated with HeLa cells following the standard protocol as compound 5c¢ and studied
by confocal microscopy. HeLa cells were visualized under bright light and different channels
such as DAPI (blue channel, Aex 358 nm), FITC and TRITC. The cells, treated with
nucleosides and stained with DAPI, were visualized, where “™dT-1 (14) (Figure 3B.8-A-F)
and A7°dT-2 (15) (Figure 3B.8-G-L) are majorly found to be located in the nucleus. In Figure
3B.8-A/G, DAPI-stained and nucleoside-treated cells clearly show the localization of DAPI
at the cellular nucleus. Under FITC (green) channel, confocal images of 14/ 15 treated cells
show cell-internalization without transfecting reagents. Similar observations were noticed
under TRITC (red) channel. The colocalization studies of both the nucleosides with DAPI
were performed in both channels (green/red). For red and green channel, Pearson's coefficient
values (r) are 0.96 and 0.97, respectively, for ~™°dT-1 (14). In the case of “™>dT-2 (15),
Pearson's coefficient values (r) are 0.95 and 0.91 for red and green channels, respectively.
These results strongly support the localization of nucleosides (14/ 15) nucleoside in nucleus
of HeLa cells. The results were same for both 12h (Figure 3B.8) and 24 h (Figure 3B.9)

incubation time. To sum up, confocal microscopy imaging studies revealed that:
(a) Staining patterns of ATS derivative (5¢) and sulfone nucleosides (14 and 15) are different.

(b) ATS derivative 5c preferably localize in cytoplasm/ membrane, whereas nucleosides

localize over cellular nucleus.

(c) Compounds (5c¢, 14 and 15) are not cytotoxic against HelLa cells.
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A) DAPI B) FITC C) TRITC

D) DAPI +TRITC E) DAPI +FITC F) Expanded image

H) FITC 1) TRITC

J) DAPI +TRITC K) DAPI +FITC L) Expanded Image

Figure 3B.8. Confocal microscopic images of HeLa cells incubated with ~™dT-1 (14) (A-F)

and ~™°dT-2 (15) (G-L) along with DAPI staining for colocalization (12 h incubation time).
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A)DAPI B) FITC C) TRITC

D) DAPI +TRITC E) DAPI +FITC F) Expanded

H) FITC I)TRITC

J) DAPI +TRITC K) DAPI +FITC L) Expanded

Figure 3B.9. Confocal microscopic images of HeLa cells incubated with ~™dT-1 (14) (A-F)

and ~™°dT-2 (15) (G-L) along with DAPI staining for colocalization (24 h incubation time).
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3B.4 Conclusion

In summary, we have incorporated troponyl sulfone moiety in nucleosides and
synthesized two modified thymidine analogs “™dT-1 (14) and “™dT-2 (15), where sulfone
units were attached to C-7 and C-5 positions of tropone ring, respectively. Their
photophysical studies were performed along with the previously reported ATS derivatives.
Compound 5c had the highest quantum vyield of 1.45% among the twenty-six ATS
derivatives. Both the nucleosides showed solvatochromism and the quantum vyield of
compound 14 was two-fold higher than compound 15. Fluorescence behaviours of the
nucleosides almost resemble with their parent moiety, i.e., sulfone units. These nucleosides
showed no significant cytotoxicity toward HEK293T or HeLa cell lines. Therefore, we used
them as fluorescent probes in the imaging of HelLa cells with confocal microscopy.
Compound 5c¢ and troponyl sulfone conjugated nucleosides (14/ 15) exhibited different
cellular staining patterns. The former was localized in the cytoplasm and membrane region,
whereas the nucleosides were localized inside the cellular nucleus. These molecules possess
Aminotropone unit, which is an excellent metal chelating unit. So, it could be beneficial for
designing metal-ion-based probes for finding target-specific biochemical activity and
therapeutic applications. Hence, both nucleosides are promising fluorescent nucleoside

analogs and can be explored further for their biochemical applications.
3B.5 Experimental section

General information: All the materials were purchased from commercial suppliers and were
used as received. DMF and DCM were distilled over CaH, and stored over 4A
molecular sieves. Reactions were monitored by thin layer chromatography, visualized by UV
and Ninhydrin. Column chromatography was performed in 230-400 mesh silica. Mass spectra

(HRMS) were obtained from Bruker microTOF-Q Il Spectrometer and the samples were
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prepared in methanol and injected in methanol and water mixture. NMR spectra were
recorded on Bruker 400 MHz and Bruker 700 MHz NMR spectrometer at room temperature
and processed using Mnova software from Mestrelab Research. Absorption spectra were
obtained using Jasco V-730 spectrometer and Fluorescence spectra were obtained from
Agilent specrtophotometer and Perkin-Elmer LS-55 using Xenon lamp. Confocal Images

were taken in Leica Microscope.

Characterization data of products

5-((4-((6-(benzylamino)-7-oxocyclohepta-1,3,5-trien-1-yl)sulfonyl)phenyl)ethynyl)-1-
((2R,4S,5R)-4-hydroxy-5-(hydroxymethyltetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-
dione (14): To 5-ethynyl-2’-deoxy Uridine (13) (0.05 g, 0.198 mmol) dissolved in dry DMF

(5 ml), compound 8a (0.102 g, 0.238

o H o
o. N2 « mmol), Tetrakis (triphenylphosphine)
Hoﬁg N o palladium (0.023 g, 0.019 mmol), copper
HO 59 NHBn
6’@ (I) iodide (0.007 g, 0.04 mmol) and
triethylamine (0.110 ml, 0.793 mmol)

were added and stirred under argon atmosphere over night at temp 60 °C. After reaction
completion, the solvents were evaporated under reduced pressure and the reaction mixture
passed through silica column using methanol and dichloromethane as eluent obtain x mg of
yellow solid in 61 % yield.1H NMR (700 MHz, DMSO) ¢ 11.77 (s, 1H), 9.31 (t, ] = 6.2 Hz,
1H), 8.47 (s, 1H), 8.36 (d, J = 10.1 Hz, 1H), 7.93 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H),
7.53 (t, J = 10.1 Hz, 1H), 7.35 — 7.23 (m, 5H), 6.85 (t, J = 9.8 Hz, 1H), 6.78 (d, J = 10.8 Hz,
1H), 6.13 (t, J = 6.2 Hz, 1H), 5.29 (s, 1H), 5.20 (s, 1H), 4.64 (d, J = 6.3 Hz, 2H), 4.26 (s, 1H),
3.82 (d, J = 2.5 Hz, 1H), 3.69 — 3.64 (m, 1H), 3.62 — 3.58 (m, 1H), 2.20 — 2.15 (m, 2H). 13C
NMR (176 MHz, DMSO) 6 170.00, 161.78, 158.66, 149.85, 145.30, 143.25, 141.39, 137.01,

134.32, 131.49, 129.12, 128.88, 127.84, 127.59, 127.18, 118.78, 110.28, 97.94, 91.18, 88.07,
224



Chapter 3B

86.39, 85.45, 70.24, 61.17, 46.20, 46.13, HRMS ESI-Tof Calcd for C13H2708N3S: [M+Na]+

624.1411, Found 624.1391.

5-((4-((4-(benzylamino)-5-oxocyclohepta-1,3,6-trien-1-yl)sulfonyl)phenyl)ethynyl)-1-
((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetranydrofuran-2-yl)pyrimidine-2,4(1H,3H)-

dione (15): To 5-ethynyl-2’-deoxy Uridine (13) (0.05 g, 0.198 mmol) dissolved in dry DMF

OYH o (5 ml), compound 8b (0.102 g, 0.238

/~<OJ’N Z N mmol),  Tetrakis  (triphenylphosphine)

HO nd 9 palladium (0.023 g, 0.019 mmol), copper (I)
7

0 o iodide (0.007 g, 0.04 mmol) and

NHBNn  triethylamine (0.110 ml, 0.793 mmol) were
added and stirred under argon atmosphere over night at temp 60 °C. After reaction
completion, the solvents were evaporated under reduced pressure and the reaction mixture
passed through silica column using methanol and dichloromethane as eluent obtain x mg of
pale yellow solid in 66 % yield. "H NMR (700 MHz, DMSO) & 11.76 (s, 1H), 9.36 (t, J = 6.6
Hz, 1H), 8.47 (s, 1H), 7.92 (dd, J = 11.2, 1.6 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.77 (dd, J =
12.2, 1.9 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.36 — 7.31 (m, 4H), 7.27 (t, J = 6.9 Hz, 1H), 6.95
(d, J = 12.3 Hz, 1H), 6.73 (d, J = 11.4 Hz, 1H), 6.11 (t, J = 6.4 Hz, 1H), 5.28 (s, 1H), 5.19 (s,
1H), 4.69 (d, J = 6.6 Hz, 2H), 4.26 (d, J = 3.2 Hz, 1H), 3.83 — 3.79 (m, 1H), 3.66 (d, J = 10.2
Hz, 1H), 3.59 (d, J = 9.7 Hz, 1H), 2.19 — 2.15 (m, 2H). *C NMR (176 MHz, DMSO) &
176.29, 161.73, 157.99, 149.83, 145.47, 141.59, 137.42, 136.99, 133.93, 132.53, 130.43,
129.15, 127.89, 127.81, 127.71, 127.64, 126.20, 106.60, 97.80, 90.92, 88.07, 86.96, 85.47,
70.21, 61.15, 46.20, 46.15. HRMS ESI-Tof Calcd for Cy3H2;08N3S: [M+Na]* 624.1411,

Found 624.1453.

Cell proliferation assay and imaging studies: For the detailed procedure, follow Chapter 2
(A/B).
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Photophysical studies: For the detailed procedure, follow Chapter 2B.
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1. 'H, **C NMR (700MHz, DMSO) and HRMS of 14

2. 'H, C NMR (700MHz, DMSO) and HRMS of 15
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1. H, **C NMR (700MHz, DMSO) and HRMS of 14
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Figure Al. *H/C NMR (700MHz, DMSO) spectra of compound 14 in DMSO-d6
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2. 'H, °C NMR (700MHz, DMSO) and HRMS of 15
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4A.1 Introduction

N-substituted nucleoside derivatives have emerged as potential bioactive molecules in the
quest for antimicrobial, antitumor, antineoplastic, antiviral and anticancer agents. These
derivatives also serve as agonists or antagonists for various receptors and enzymes.? The
synthesis and characteristics of nucleic acid analogs with N-aryl-modified nucleobases has
recently been the subject of research. These analogs possess a z electron-rich backbone with
a bisaryl-like linkage to the nucleobase instead of ribose phosphate of native nucleic acid
(DNA and RNA).? These aryl-nucleobases have ability to form supramolecular self-assembly
structures through non-covalent interactions. Different non-covalent interactions like
hydrogen bonding, 7 -  stacking, and metal chelating properties could be utilized in the self-
organization and supramolecular assembly of nucleobases, which opens up the possibility for
the synthesis of functional nanomaterials. Nucleobases have also the ability to chelate with
metal ions and form metal-mediated supramolecular structure and it provides an opportunity

for the synthesis of nanodevices and bioactive molecules .*

There are also ample reports on the synthetic routes toward N-aryl nucleobases that
include nucleophilic aromatic substitution (SyAr), crosscoupling reactions, and multi-step
reactions, where different phenyl derivatives and heterocycles were anchored to
nucleobases.?®> Regioselective N-arylation of pyrimidine and purine nucleobases, i.e., N'-
arylation of pyrimidines and N°- arylation of purines via (SnAr) was first reported by Khalifi
et al. by using SiO, and Cs,COj3 at 150 °C temperature.' Similar reactions have also been
executed in ionic liquids in the presence of ZnO or KF/Al,03.%° The Cu-mediated N-arylation
of nucleobases is accomplished by employing various aryl boronic acids.® Ulven and co-
workers have demonstrated the direct N°-arylation of purines with aryl halides using ligands
like DPPhen/ BHPhen.® Still, the reported methods are associated with one or more

drawbacks like low selectivity, usage of expensive reagents, long reaction time, high
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temperature, unsatisfactory yield, tedious experimental procedures, narrow substrate scope/
no generalization, and difficulties in the isolation of products.> The aryl components of N-
aryl-nucleobases are mainly derived from the benzenoid aromatic scaffolds. However, non-
benzenoid aromatic systems (tropolone and azulene) also occur in nature, which should be
explored for the synthesis of N-aryl nucleobases. In the literature, azulene and its related
derivatives are gaining interest due to its reversible stimuli-responsive nature, antibacterial
properties, and potential medicinal and bioimaging applications. Azulene displays a
characteristic deep blue color and a significant dipole moment due to an asymmetric n-
polarization between the 5- and the 7-membered rings that contribute to the design of
advanced functional materials.” Amination reaction has been established in the chemistry of
azulene derivatives by several groups, such as Nozoe et al., Shoji et al., Makosza, Ostrowski,
and their co-workers.® Azulene and its amino functionalized derivatives are viewed as crucial
components and precursors of organic electronic materials and pharmaceuticals.® Thus, we
planned to execute the synthesis and biochemical evaluation of new N-aryl nucleobases

comprising non-benzenoid aryl scaffold, azulene derivatives.
4A.2 Objective

In this chapter, we have described the synthesis and structural organization of new N-aryl
nucleobases comprising non-benzenoid aryl scaffold, azulene derivative, by crystal X-ray
diffractometer and transmission electron microscopy (TEM) and scanning electron
microscopy (SEM) techniques. For practical utility, we have also performed the synthesis of
azulenyl cytosine-silver complex and its bioactivity against Pseudomonas aeruginosa

(PAL4).
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Figure 4A.1. Previously reported N-aryl nucleobases, amino-azulene derivatives and this

report.
4A.3 Results and Discussion

We synthetically derivatized Tropolone (1) into 2-amino-6-bromoazulene-1,3-
dicarboxylate, Az-Br (2) by following the reported procedure.® This bromo azulene derivative
was subjected to regioselctive N-arylation of native nucleobases under anhydrous basic
conditions (18-Crown-6/K,COs) with prolonged heating (72 hr at ~80 °C) in DMF as a
solvent. As resultant, thymine (T) produced N'-azulenyl thymine derivative (Az-T, 3) in a
good yield. Similarly, we synthesized other N-azulenyl derivative Az-C (4) and N°-Az-A (5)
from respective nucleobases cytosine and adenine (Scheme 4B.1). However, its N°-Az-G (6)
was synthesized from the N%-isobutyryl guanine derivative followed by deprotection under
methanolic ammonia. All these derivatives were well characterized by NMR and HRMS
spectral analyses (see Appendix). Pleasantly, we obtained the single crystal of Az-T (3) and
Az-C (4) in solvent DMSO at 4 °C with slow evaporation method. Their crystals were studied
by X-ray techniques, which confirmed their respective structure of Az-T (3) and Az-C (4).
Their ORTEP diagrams are depicted in Scheme 4B.1, while other crystal structure parameters
are provided in the Appendix. We also deposited their X-ray data to the cambridge
crystallographic Data Centre (CCDC) with number 2224909 for Az-T (3) and 2224908 for

Az-C (4).
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Scheme 4A.1. Synthesis of N-azulenyl Nucleobases.

We analyzed the molecular packing of the solved crystals Az-C (4) and Az-T (3)
using software (Diamond). The packing diagram of Az-C (4) shows the formation of a self-
assembly supramolecular structure through H-bonding (Figure 4A.2-A). The crystal structure
of Az-C shows the non-planar structural orientation of Azulene and cytosine aromatic ring
residues with a twist angle of ~75° (Figure 4A.2-B). Cytosine residue of Az-C (4) forms
hydrogen bonding with neighbouring cytosine residues at bond length ~2.0A (Figure 4A.2-
C). An antiparallel Cytosine-Cytosine planar structure is formed with two hydrogen bonds

(N-H---N), while these pair are connected through another cytosine-cytosine pair through one
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N-H----O hydrogen bond. Azulene residue also exhibits hydrogen bonding with opposite
anti-parallel azulene residue at a distance ~2.0A (Figure 4A.2-D). Notably, both residues of
Az-C (4) have hydrogen bond donor (N-H)/acceptor (O/N) atoms and form hydrogen bonds
with acceptable bond length and bond angle between donor and acceptor atoms. Their
packing diagram shows hydrogen bonds between cytosine-cytosine and azulene-azulene

residues.

Figure 4A.2. Crystal structure and packing diagram of Az-C (4).

The packing diagram of Az-T (3) crystal shows the formation of a new
supramolecular self-assembly structure owing to the -7 interactions. Its azulenyl ring exhibit
- stacking with another antiparallel azulene ring at a distance 3.7 A, while its thymine ring
shows 7-7 stacking with another thymine ring of Az-T (3) in the same fashion with distance
3.7 A (Figure 4A.3-A/B). Thymine and azulene residues of Az-T (3) are non-planar with a

twist angle ~72°. This assembly forms unique step-type structures such as T-Az-T-Az.
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Figure 4A.3. Crystal structure and packing diagram of Az-T (3).

The UV-Vis spectra of four N-azulenyl nucleobases (3-6) in MeOH are shown in
Appendix, Figure A15. The absorption maxima (Amax) and their molar extinction coefficients
(€) are summarized in Appendix (Table A3). The spectra for all the four compounds indicate
the presence of several electronic transitions with apparent maxima at 270 and 331nm with a
shoulder positioned at around 320 nm. The strong absorption band at Amax = 331 nm is a result
of Sg-Ss transition, which is a known pattern for azulene derivatives.’® There are two
additional broader bands located at lower energy with apparent maxima at 412 and 465 nm,
which can be assigned to weak So—S; and S¢—S; transitions, respectively, which is commonly
seen in azulene derivatives.'! However, these compounds don't show any fluorescence

properties.

We also performed DFT calculation (B3lyp/631-G) of all four derivatives (3-6) and
obtained the optimized structure in gas phase (See Appendix). We extracted their HOMO-
LUMO diagrams and energy gap (Appendix, Figure A17). Their optimized structures (Figure
4A.4) reveal that both rings are non-planar to each other and contribute to the respective
HOMO and LUMO through nucleobase (A/T/G/C) rings. The HOMO-LUMO energy gap is
almost constant (~-3.5 eV). Thus photophysical properties of azulenyl nucleobase (3-6) are

nearly the same with all four derivatives.
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Figure 4A.4. Optimized structures of Az-A/T/G/C (3-6) nucleobases.

Further, we studied the surface morphology of the N-azulenyl nucleobases (3-6) by
Transmission electron microscope (TEM) and scanning electron microscope (SEM) imaging
techniques. Their TEM/SEM images at different scales are provided in Figure 4A.5 and the
Appendix. In case of Az-C (4), the existence of well-dispersed nanofibers was noticed. The
HRTEM images show a well-developed network structure composed of a three-dimensional
entangled fibrous network (Figure 4A.5-A/B). According to the literature, the existence of
nanofibers results in the trapping of more solvent with greater void volumes.*? This kind of
networking structure was further supported by SEM images (Figure 4A.5-C/D). Crystal
packing diagram of Az-C (4) also shows the formation of supramolecular self-assembly
owing to intermolecular hydrogen bonding between azulene and cytosine residues. We
noticed similar types of networking patterns in SEM/TEM images of Az-A (5) and Az-G (6)
(Appendix, Figure A18/19). In contrast, Az-T (3) doesn’t show any networking and gives a
clear view of unique supramolecular structure as plant-like morphology. Interestingly, it
resembles boat lily plants closely, and the image creates an illusion of boat lily plants grown
on soil in the SEM images (Figure 4A.5-F/G). The morphological information obtained from
the Az-T (3) SEM images was further supported by TEM analysis (Figure 4A.5-E). The TEM
study at different magnifications confirms that nanospheres aggregate to give a plant-like

morphology. Its crystal packing diagram shows the formation of three-dimensional

243



Chapter 4A

supramolecular structures owing to the antiparallel m-n interactions between azulene or
thymine residues. The elemental mapping and the energy dispersive X-ray analysis (EDAX)

of the four compounds are provided in Appendix. Thus N-azulenyl nucleobases are promising

molecules for developing novel nanomaterials.

Figure 4A.5. (A, B) HRTEM and (C, D) FESEM images of Az-C (4); (E) HRTEM and (F,

G) FESEM images of Az-T (3), (H) an image of boat lily plant.

In literature, silver complexes/nanoparticles (AgNPs) have shown direct antimicrobial
and anti-inflammatory effects and are frequently used in the medical industry to prevent
infection in burns and open wounds.®®** Recently, antibacterial resistance has turned into a
global issue, and there is always urgency in the development of new antibacterial drugs to
treat lung, skin, eye, wound, blood-borne, and urinary tract infections occurring in both
hospitals and the community caused by different pathogenic bacteria such as Pseudomonas
aeruginosa (PA). Hence, we synthesized the silver complex of Az-C and evaluated its
morphology and antibacterial activity. In the Az-C-Ag complex (8) ligand: metal ratio is 2:1
(Confirmed by HRMS (Appendix, Figure A13)). In Figure 4A.6-A, The absorption spectrum
of Az-C-Ag complex (8) has a wavelength maximum at 310 nm with a shoulder peak at 330

nm and has a red tail extending to longer wavelengths compared to Az-C (4). Herein we
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assumed the formation of Az-C-Ag complex by N%-atom of two Az-C with Ag ion in

antiparallel fashion (Figure 4A.6-B).
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Figure 4A.6. (A) UV-Vis spectra of Az-C (4) and Az-C-Ag complex (8), (B) Graphical

representation of the synthesis of compound 8.

The SEM/TEM (Figure 4A.7-A-C) results of compound 8 give a clear indication
regarding the shape and size of the nanoparticles. These silver nanoparticles were spherical
and measured ~ 5-30 nm. The well-resolved lattice fringes obtained by HRTEM (Figure
4A.7-B) further confirm the formation of AgNP.'* The elemental mapping and EDAX

spectrum are provided in the Appendix.

Figure 4A.7. (A, B) HRTEM and (C) FESEM images of Az-C-Ag complex (8).
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For practical utility, we examined the antimicrobial activities of Az-C silver complex
(8). The antimicrobial activity of Az-C-Ag nanoparticles was measured against the
pathogenic microorganism Pseudomonas aeruginsa (PA14) on Luria-Bertani agar (LB)
plates using the disc diffusion method. We measured the zones of clearance at different
concentrations of Az-C-Ag complex (8), from 5-100 uM (Figure 4A.8). The Minimum
Inhibitory Concentration (MIC) was 20 pM for exhibiting a zone of clearance with a
diameter of ~15 mm. Below this concentration, i.e., 5 uM and 10 puM, we couldn't notice any
antibiotic activity(Figure 4A.8-C). The zone of inhibition diameter was 24 mm when the

concentration was 100 uM (Figure 4A.8-B).
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Figure 4A.8. (A) Plot for concentration-dependent antimicrobial activity of silver
nanoparticles (Az-C-silver complex) (8) against PA14 by disc diffusion assay, (B) Image of

LB plate showing zone of clearance for compound 8 at 100 UM concentration.
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Finally, when we evaluated the cytotoxicity of the Azulenyl nucleobases (3-6)/Az-C-
Ag complex (8), with HEK293T cell line (Figure 4A.9-A/B), all four derivatives (3-6)
showed no cytotoxic effects with HEK293T cell lines even with high concentrations (100
uM) except for Az-C-Ag complex (ICso ~ 71 pM). In literature, The cytotoxicity of silver

nanoparticles is well documented.™
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Figure 4A.9. (A) Plots for Cell viability assay of compounds Az-T (3), Az-C (4), Az-A (5),

Az-G (6) and (B) Az-C-Ag complex (8) for HEK293T cell line.
4A.4 Conclusion

In summary, we have synthesized four new N-azulenyl nucleobases showing unique
morphology in SEM/TEM, such as the resemblance of Az-T SEM images with Boat lily plant
structure. The introduction of Ag" ions breaks the networking structure of Az-C and forms
nanocomposites that exhibit antibacterial properties towards PA (MIC ~ 20 uM). Thus Az-C-
Ag complex is a promising antibiotic drug candidate. It will be interesting to study the
properties of N-azulenyl nucleobases by modifying the functional groups present in azulene

moiety in the future.
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4A.5 Experimental Section

General information: Unless otherwise noted, materials were purchased from commercial
suppliers and were used as received. DMF was distilled over CaH, and stored over 4A
molecular sieves. Reactions were monitored by thin layer chromatography, visualized by UV
and Ninhydrin. Column chromatography was performed in 100-200 mesh silica. Mass spectra
(HRMS) were obtained from Bruker microTOF-Q Il and Waters Spectrometer and the
samples were prepared in methanol and injected in methanol and water mixture. NMR
spectra were recorded on Bruker 400 MHz and Bruker 700 MHz NMR spectrometer at room
temperature and processed using Mnova software from Mestrelab Research. The crystal data
were collected on a Rigaku Oxford diffractometer. Absorption spectra were obtained using
Jasco V-730 spectrometer. The surface morphologies of compounds were studied with field
emission scanning electron microscopy (FESEM, Merlin Compact with a GEMINI-I/
GEMINI-II electron column, Zeiss Pvt. Ltd., Germany) and high-resolution transmission
electron microscopy (HRTEM, JEOL 2100F). FTIR analysis of the samples was carried out
by the PerkinElmer FTIR spectrometer equipped with an attenuated total reflectance

accessory.

General procedure for the preparation of N-Azulenyl Nucleobases: In a round bottom flask a
mixture of Nucleobase (1 equiv.) (Thymine/ Cytosine/ Adenine/ N-isobutyryl-Guanine),
Diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (1.2 equiv.), K,COj3 (4 equiv.) and 18-C-
6 (0.02 equiv.) in anh. DMF was stirred and heated in an oil bath at 80 °C for 72 h. After
cooling it to room temperature the mixture was filtered through a pad of celite and the
solution was evaporated in reduced pressure. The residue was subjected to column
chromatography using 100-200 mesh silica gel and MeOH: DCM as solvent system to get the

desired products. In case of guanine, we didn't get regioselectivity unlike in other cases. All
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the compounds were completely soluble in DMSO but Az-A wasn’t, when concentration was

high.
Characterization data of products

Diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate(2): Following the reported procedure, the

title compound was synthesized and obtained as a deep purple

COOEt  50]id.**® 'H NMR (400 MHz, CDCl3)  8.82 (d, J = 11.5 Hz, 2H),
oas

Br 7.81 (s, 2H), 7.78 (d, 2H), 4.46 (9, J = 7.1 Hz, 2H), 147 (t, J = 7.1
COOEt

Hz, 3H). °C NMR (101 MHz, CDCls) & 166.23, 162.34, 144.33,

135.31, 129.45, 128.37, 101.00, 60.07, 14.61. HRMS (ESI) calcd for C1H16BrNO,: [M+Na]*

388.0155, found 388.0135.

Diethyl 2-amino-6-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)azulene-1,3-
o dicarboxylate(3): Following the general procedure the title compound
HN}j/ was isolated by column chromatography (eluent: dichloromethane) as

o) N

a yellow solid in 35% yield (46 mg)."H NMR (400 MHz, DMSO) &
O o 1153 (s 1H), 9.05 (d, J = 115 Hz, 2H), 7.94 (5, 2H), 7.76 (5, 1H),
\io 2 b—/ 7.71(d, J =115 Hz, 2H), 4.41 (q, J = 7.1 Hz, 4H), 1.83 (s, 3H), 1.40
(t, J = 7.1 Hz, 6H). *C NMR (101 MHz, DMSO) & 165.75, 164.83, 161.98, 151.07, 145.07,
141.81, 141.48, 132.91, 128.96, 110.00, 100.39, 60.28, 14.87, 12.33, HRMS (ESI) calcd for
Co1H21N3Os: [M+Na]* 434.1323, found 434.1309, FT-IR (cm™) 3497, 3374, 3168, 3061,
2972, 2954, 2922, 2849, 2818, 2377, 2332, 2322, 1701, 1678, 1647, 1597, 1560, 1532, 1507,
1492, 1456, 1427, 1376, 1302, 1283, 1233, 1188, 1151, 1115, 1073, 1039, 986, 931, 854,

819, 790, 753, 686, 640, 613, 592, 560.
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Diethyl  2-amino-6-(4-amino-2-oxopyrimidin-1(2H)-yl)azulene-1,3-dicarboxylate  (4)

HoN Following the general procedure the title compound was isolated by
O)N\)Nj column chromatography (eluent: dichloromethane) as a yellow solid
O in 34% yield (49 mg)."H NMR (700 MHz, DMSO) & 9.05 (d, J =

o Q O 10.6 Hz, 2H), 7.90 (s, 2H), 7.80 (d, J = 7.2 Hz, 1H), 7.64 (d, J =
O NH, o~/ 10.6 Hz, 2H), 7.51 (s, 1H), 7.40 (s, 1H), 5.86 (d, J = 7.1 Hz, 1H),

441 (g, J = 13.2, 6.1 Hz, 4H), 1.40 (t, J = 7.0 Hz, 6H).”*C NMR (176 MHz, DMSO) &
166.38, 166.11, 165.79, 161.80, 155.10, 146.18, 144.88, 144.35, 132.83, 129.13, 100.14,
94.84, 60.19, 14.88. HRMS (ESI) calcd for CoH20N4Os: [M+H]* 397.15086, found 397.1501,
FT-IR (cm™), 3512, 3394, 3332, 3278, 3162, 3085, 3054, 2954, 2921, 2859, 2366, 2343,
1692, 1673, 1628, 1596, 1544, 1510, 1495, 1442, 1429, 1382, 1371, 1315, 1278, 1237, 1222,

1183, 1139, 1121, 1104, 1027, 988, 928, 865, 805, 780, 765, 650, 604.

Diethyl 2-amino-6-(2-isobutyramido-6-oxo-1,6-dihydro-9H-purin-9-yl)azulene-1,3-

5 dicarboxylate (7): Following the general procedure the title

v/fz EEJE:N\ compound was isolated by column chromatography (eluent:
N

i N> dichloromethane) as a yellow solid in 7% yield (7 mg). 'H

. NMR (700 MHz, CDClg) & 12.25 (s, 1H), 9.60 (s, 1H), 8.87 (d,

\io b \_/ J=110 Hz, 2H), 8.03 (s, 1H), 7.76 (s, 2H), 7.46 (d, J = 11.0

Hz, 2H), 4.44 (q, J = 7.1 Hz, 4H), 2.93 — 2.82 (m, 6.9 Hz, 1H), 1.46 (t, J = 7.1 Hz, 6H), 1.27

(d, J = 6.8 Hz, 6H), °C NMR (176 MHz, CDCls) 5 179.19, 165.89, 162.47, 155.56, 148.37,

148.25, 144.27, 138.91, 135.81, 128.90, 127.85, 121.58, 101.37, 60.25, 36.41, 19.03, 14.63,

HRMS (ESI) calcd for Cy1H,1N3Og: [M+H]" 507.1951, found 507.1992.

Diethyl 2-amino-6-(2-amino-6-0xo0-1,6-dihydro-9H-purin-9-yl)azulene-1,3-dicarboxylate (6):
Following the procedure for deprotection of isobutyryl group, the title compound was

isolated as a yellow solid in 87% yield (15 mg). *H NMR (700 MHz, DMSO) § 9.12 (d, J =
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11.5 Hz, 2H), 8.40 (s, 1H), 8.12 (s, 1H), 7.98 (s, 1H), 7.94 (s, 1H), 7.93 (d, J = 3.7 Hz, 2H),

0 6.65 (s, 2H), 4.44 — 4.40 (m, J = 11.4, 5.7 Hz, 4H), 1.41 (t, J = 7.1
HN
Ny “\‘> Hz, 6H), *C NMR (176 MHz, DMSO) § 165.79, 161.84, 157.33,
2 N N
O 154.58, 151.70, 144.52, 137.87, 137.46, 130.73, 130.32, 129.43,

Q o) 11750, 10052, 6029, 1493, HRMS (ES|) calcd for C21H20N505:
(0]

0t O~ [M+H]" 437.1573, found 437.1571, FT-IR (cm™), 3487, 3451,
3338, 3169, 3117, 2979, 2904, 2839, 2726, 2198, 2108, 1940, 1720, 1667, 1630, 1584, 1534,
1510, 1483, 1431, 1378, 1353, 1278, 1169, 1115, 1070, 1028, 963, 835, 776, 684, 624, 590,

553.

Diethyl 2-amino-6-(6-amino-9H-purin-9-yl)azulene-1,3-dicarboxylate (5) Following the

general procedure the title compound was isolated by column
NH,

Z// N chromatography (eluent: dichloromethane) as a yellow solid in
AL

NT N 36% vield (46 mg). ‘H NMR (400 MHz, DMSO) & 9.16 (d, J =

O 11.3 Hz, 2H), 8.61 (s, 1H), 8.24 (s, 1H), 8.08 (d, J = 11.3 Hz, 2H),

D~
O, 7.92 (s, 2H), 7.38 (s, 2H), 4.43 (9, J = 6.9 Hz, 4H), 1.42 (t, J= 7.0
<o o )

2 Hz, 6H). HRMS (ESI) calcd for Cy;HoNgO4: [M+H]™ 421.1619,

found 421.1605, FT-IR (cm™) 3430, 3313, 3176, 3123, 2954, 2917, 2850, 2352, 2336, 2327,

2320, 2308, 1682, 1671, 1660, 1644, 1634, 1591, 1567, 1554, 1531, 1505, 1470, 1454, 1443,

1426, 1415, 1382, 1368, 1336, 1308, 1260, 1194, 1169, 1112, 1064, 1015, 967, 842, 796,

733, 691, 669, 646, 606.

Disk diffusion test for concentration-dependent antibiotic activity: The antimicrobial activity
of silver nanoparticles (8) against pathogenic microorganism Pseudomonas aeruginsa (PA14)
was measured on Luria-Bertani agar (LB) plates using the disk diffusion method. In this
assay, the LB agar solution was poured into the disk while hot and is allowed to cool for

gelation. Then PA14 was spread over the agar using a cotton swab. Small wells were made in
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the agar gel plate with the head of 1 ml tip. 100 pl of the sample (DMSO control, Az-C-Ag

complex (8) in different concentrations) was poured onto the agar plates. The plates were

incubated at 37°C for 12 h. After the incubation period, the zones of inhibition around silver

were measured and compared with the zone of inhibition of each antibiotic disc.

Cell proliferation assay: For the detailed instructions, see Chapter 2.
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1. Synthesis of Diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (2)
Diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (2) was synthesized from

commercially available Tropolone by following the reported procedure.®

o ) o J

o
o 1) Ts-Cl, TE:\, DCM Brz, CH,Cl,,
OH . 38 hr, 99% _ OO NH, OO NH,
2) Ethyl cyanoacetate, 0 oc rt, 18 hr
'BuNH,,EtOH, 0 °C - rt, o)

) 24 hr, 73% 0 ) )

2. Procedure for the preparation of Silver complex Az-C-Ag (8)

Az-C (4) (.025 mmol, 2.0 equiv.) was dissolved in MeOH (2 ml). To this solution,
another solution (0.5 ml) of AgNO;3 (0.12 mmol, 1.0 equiv.) was added slowly. The mixture
was heated under reflux (77 °C) for 2 h in the dark. The solution was filtered while still
warm. After cooling it to room temperature diethyl ether solution was added to precipitate the
compound. The compound was dried under reduced pressure, washed with n-pentane and

dried again, giving the product (8) in 62% yield.

NH, ( o) ®
o) —
SN NH2
C (A
o s 0 )
MeOH Ag
+ AgNO; ———————> 0, e
Reflux, 2 hr § N O NHz | o
o T3 CaT e PRl
O  NH, oV B o) )_

(4) @)
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3. 'H, *C NMR (400MHz, CDCI3) and HRMS of compound 2

I - 3333 $333 5
. | e e
COOEt
MNH
COOEt

LR L :
E L — T S — R —
T
RA R & 9R g - - "
$ 8 i o5 A% g . !
I 1 | v |
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NH
O™
QO0Et

Figure Al. 'H/**C NMR (400MHz, CDClIs) spectra of compound 2.
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4. 'H, *C NMR (400MHz, DMSO) and HRMS of compound 3
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Figure A3. *H/**C NMR (400MHz, DMSO) spectra of compound 3 in DMSO- d.
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5. 'H, *C NMR (700MHz, DMSO) and HRMS of compound 4
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Figure A5. *H/**C NMR (700MHz, DMSO) spectra of compound 4 in DMSO-ds.
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6. 'H, *C NMR (700MHz, CDCl3) and HRMS of compound 7
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Figure A7. *H/**C NMR (700MHz, CDClI3) spectra of compound 7 in CDClg
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8. 'H, *C NMR (700MHz, CDCl3) and HRMS of compound 6
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Figure A11. *H/**C NMR (700MHz, DMSO) spectra of compound 6 in DMSO-d.
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Figure Al12. ESI-MS/HRMS spectra of compound 6.
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9. FT-IR Spectra
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Figure S14. FT-IR spectra of compounds 3 (A), 4 (B), 5 (C), 6 (D) and 8 (E).

10. Crystal structures and data
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Good quality crystals of compounds were obtained in solvent DMSO at 4 °C by slow

evaporation method. The crystals data of compound 3 and 4 were collected on a Rigaku

Oxford diffractometer at 293 K. Selected data collection parameters and other

crystallographic results are summarized below. The program package SHELXTL1 and Olex2

was used for structure solution and packing diagram carried out by DIAMOND3.2 software.
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CCDC 2224909 and 2224908 contains the supplementary crystallographic data
for Az-T (3) and Az-C (4) respectively. These data can be obtained free of charge via

https://www.ccdc.cam.ac.uk/data

Table Al. Crystal data and structure refinement for Az-C (4)

Identification code NKS_SNM_AZ C (1)
Empirical formula C20H20N40s
Formula weight 396.41
Temperature/K 303(2)

Crystal system triclinic

Space group P-1

alA 6.8930(1)

b/A 12.3968(2)

c/A 15.7410(2)

a/° 99.503(1)

/e 93.061(1)

v/° 100.462(1)
Volume/A® 1299.74(3)

z 2

peaicglcm’ 1.0128

w/mm™ 0.619

F(000) 4175

Crystal size/mm?® 0.01 x 0.001 x 0.001
Radiation CuKo (A=1.54184)
20 range for data collection/° 10.1 to 151.06

Index ranges -8<h<6,-15<k<15,-19<1<19
Reflections collected 19861

Independent reflections 5195 [Rint = 0.2111, Rgigma = 0.2123]
Data/restraints/parameters ~ 5195/0/264

Goodness-of-fit on F? 1.046

Final R indexes [[>=20c (I)] R;=0.0694, wR, =0.2080

Final R indexes [all data] R; =0.1022, wR;, = 0.2215

Largest diff. peak/hole / e A 1.40/-1.20

Table A2. Crystal data and structure refinement for Az-T (3)

Identification code SNM-T AZ
Empirical formula Cx3H»7N30,S
Formula weight 489.55
Temperature/K 256(40)
Crystal system triclinic
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Space group P-1

alA 8.7670(1)

b/A 10.6359(2)

c/A 14.1150(2)

a/° 108.665(1)

/e 99.074(1)

v/° 101.146(1)
Volume/A® 1188.79(3)

Z 2

peaicglcm’ 1.3675

wmm'™ 1.632

F(000) 518.4

Crystal size/mm?® 0.01 x 0.001 x 0.001
Radiation CuKo (A=1.54184)
20 range for data collection/°6.8 to 150.92

Index ranges -10<h<8§,-13<k<12,-17<1<17
Reflections collected 18490

Independent reflections 4820 [Rint = 0.0394, Rsigma = 0.0277]
Data/restraints/parameters ~ 4820/0/312
Goodness-of-fit on F 1.027
Final R indexes [[>=2c (I)] Rj;=0.0442, wR; = 0.1372
Final R indexes [all data] R1=0.0463, wR, = 0.1404
Largest diff. peak/hole / e A 0.50/-0.37
11. Photophysical studies
All the UV —Visible spectra of the compounds 3, 4, 5, 6 and 8 (10 uM) were measured in
MeOH solvent using a UV-Visible spectrophotometer with a cell of 1 cm path length. All

spectroscopy samples were prepared from concentrated DMSO stock solutions; hence, all

samples contain 0.4 v% or 0.2 v% DMSO.

Table A3. Photophysical parameters of compounds 3, 4, 5, 7 and 8

S.N. Compound  Aas(nm) Absorbance €3:(M*cm™)
1 Az-T (3) 331 0.301 30100
> AZC(4) 331 0.532 53200
3 Az-A (B) 331 0.348 34800
4 Az-G (6) 331 0.301 30100
5  AzC-Ag(8) 310 0.527 52700
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Figure A15. UV-Vis spectra of Az-T (3), Az-C (4), Az-A (5) and Az-G (6).

12. Optimized structure and HOMO- LUMO energy gap

The HOMO-LUMO energy gap for compounds Az-T (3), Az-C (4), Az-A (5) and

Az-G (6) has been calculated using Gaussian 09 software and B3LYP/6-31+G* level of

theory in vacuum.

Table A4. Calculated HOMO and LUMO gap at B3LYP/6-31+G* level of theory in vacuum

SN. [Cpd [HOMO (eV) LUMO (eV)  |A(eV)
1 Az-C  [5.5488 [2.067 13.482
D Az-A  [5.6032 12122 13.482
3 Az-T [5.7664 [2.258 13.509
n Az-G  [6.0112 12,502 13.509
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Figure A16. Optimized structure and HOMO- LUMO energy gap (atomic unit in eV) of
compounds Az-T (3), Az-C (4), Az-A (5) and Az-G (6) at B3LYP/6-31+G™* level of theory in

vacuum.

13. Field Emission Scanning Electronic Microscopy (FESEM) and High-Resolution

Transmission Electron Microscopy (HRTEM)

Thin layer of samples of Az-T (3), Az-C (4), Az-A (5), Az-G (6) and Az-C-Ag
complex (8) were prepared individually by drop casting EtOH solution of the samples on
silicon wafer. These wafers were dried and kept under vaccum before recording their SEM-
images. SEM images at nano-scales, at selectively resolutaion (~200 nm to ~2-10 pum) are
illustrated along with Elemental mapping and EDAX spectrum in following Figures. For
TEM images a dilute solution of the sample was prepared in ethanol solvent and drop casted

onto a copper grid (200 mesh) and dried properly prior to the HRTEM analysis.
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Figure A18. HRTEM images (A, B) and FESEM images (C, D) for compound 5 (Az-A) at

different magnification.

Figure A19. HRTEM images (A, B) and FESEM images (C, D) for compound 6 (Az-G) at

different magnification.
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Figure A20. (A) Elemental mapping and (B) EDAX spectrum of compound 4 (Az-C)

showing the presence of C, N and O.
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Figure A21. (A) Elemental mapping and (B) EDAX spectrum of compound 3 (Az-T)

showing the presence of C, N and O.
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Figure A22. (A) Elemental mapping and (B) EDAX spectrum of compound 6 (Az-G)
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Figure A23. (A) Elemental mapping and (B) EDAX spectrum of compound 5 (Az-A)
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complex) showing the presence of C, N, O and Ag.
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4B.1 Introduction

Nucleic acids (DNA/RNA) are undeniably one of the most fundamental biomolecules
involved in the origins of chemical evolution, which stores, transfers, and replicates genetic
information.> These molecules contain the natural N-glycosidic bond connecting the
anomeric carbon of a sugar moiety to the nitrogen atom of a heterocyclic base.? One effective
method for examining nucleic acid structure and function is to alter the base moiety linked to
ribose unit, which resulted in the synthesis of many non-natural analogs of DNA nucleosides
in recent years.>® C-Nucleosides is an important class of modified nucleosides characterized
by replacing a labile glycosidic C-N bond with a stable C-C bond. While natural and
synthetic N-nucleosides are susceptible to enzymatic and acid-catalyzed hydrolysis of the
nucleosidic bond, their C-analogues are much more stable.”° Naturally occurring C-
nucleosides possess exciting activities, including antibacterial, anticancer, antifungal,
antiviral, and antitumor properties. The development of novel synthetic methodologies
allowed the preparation of a large variety of synthetic analogs, which found numerous
applications in medicinal chemistry and chemical biology.' In the literature, there are two
critical approaches for synthesizing C-nucleosides.**** One method involves coupling a
premade aglycone to a sugar derivative. On the other, a functional group is introduced at the
anomeric position of the sugar derivative and is followed by the construction of a
heterocyclic base. There are several synthetic methods to prepare C-nucleosides: (a) additions
of organometallics to ribono- or 2-deoxyribono lactones, (b) electrophilic substitutions of
electron-rich aromatics with sugars under Lewis acid catalysis, (c) coupling of halogens with
organometallics, (d) Heck-type coupling of aryl iodides with glycals or opening of glycal
epoxides with aryl aluminum reagents.***’ Various synthetic aryl-C-nucleosides capable of
n-stacking are studied as building blocks in chemical biology. Several Artificial Expanded

Genetic Information Systems (AEGIS) have been successfully developed as prime examples
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of synthetic biology in recent years. It is an emerging interdisciplinary field with the decisive
goal of designing systems in which artificial chemical systems mimic high-level behaviors of
living matter.?®# Several artificial base pairs have been developed based on hydrogen
bonding, hydrophobic interactions and metal binding properties.*>*! The aromatic glycones in
C-nucleosides generally contain benzenoid and heterocyclic aromatic scaffolds (Figure 4B.1-
a/b). Conversely, this field doesn't fully cover non-benzenoid aromatic systems
(tropolone/azulene). Azulene is a bright-blue, bicyclic, 10 n-electron isomer of naphthalene.
It is stabilized by resonance contributions from cyclopentadienyl anion and tropylium cation
that provides a dipole moment distinguishing azulene from common fused benzenoids.
Azulene and its derivatives are getting attention due to their reversible stimuli-responsive
nature, composite and self-assembled architectures, antibacterial properties, and potential
medicinal and bioimaging applications.**> However, there is only a single Japanese patent
(JPHO7027768A) available, reporting an azulenyl C-nucleoside where sugar ring is attached
to the 5-membered ring of azulene (Figure 4B.1-c). In this repertoire, we have synthesized a
C-nucleoside containing azulene derivative, where the sugar ring is attached to the seven-
membered ring (C-6 position) of azulene moiety. We have also examined its structural
organization by crystal X-ray diffractometer, transmission electron microscopy (TEM) and
scanning electron microscopy (SEM) techniques along with cytotoxicity effect on HEK293T

cell line.
4B.2 Objective

Azulenyl C-nucleosides are not well explored. Hence, in this chapter, we have
rationally designed azulene tethered c-nucleoside, where the sugar ring is attached to the C-6
position of azulene moiety. This was achieved by performing multiple-step reactions from the
starting materials (a) glycal derivative and (b) Bromo azulene derivative. Here we have also

explored its morphology and cytotoxicity.
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Figure. 4B.1. (A) Previously reported C-nucleosides and (B) this report.
4B.3 Results and Discussion

We derivatized Tropolone (1) into 2-amino-6-bromoazulene-1,3-dicarboxylate, Az-Br
(3) by following the reported procedure (Scheme 4B.1).* First, tosylation of compound 1
with TsCl in TEA/DCM was carried out at rt to produce tosyloxytropone (99% yield). The
tosylate was transformed into the azulene derivative (2, 73% yield) using ethyl cyanoacetate
and t-butylamine. Bromination of 2 using Br, in DCM gave diethyl 2-amino-6-

bromoazulene-1, 3-dicarboxylate (3) in quantitative yield (89%).

Q 1) Ts-Cl, TEA, DCM POt el COOEt
OH 1t 38 hr, 99% 2 CHoCl,
> O NH, — = Br O NH,
2) Ethyl cyanoacetate, 0 ) -rt, 18 hr
'BuNH,,EtOH, 0 °C - rt, COOEt 89% COOEt
1 24 hr, 73% 2 3

Scheme 4B.1. Synthesis of diethyl 2-amino-6-bromoazulene-1, 3-dicarboxylate (3).

Next we planned to synthesize C-Nucleosides (10) containing azulene moiety in four
steps using a Heck-type coupling reaction as the central step (Scheme 4B.2). First of all,
glycal (6) was synthesized in a yield of 57% by tert-butyldimethylsilyl (TBDMS) protection
of Thymidine (4) at the 3’- and 5’- positions and subsequent elimination of thymine.**3’ For
the Heck-type coupling between the bromo-azulene derivative (3) and the glycal (6),
Pd(dppf)Cl, [dppf = 1,1’-bis(diphenylphosphino)ferrocene] was used as the catalyst of

choice. Here we obtained the desired glycoside (7) in 46% yield as a major product along
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with some minor product, i.e., mono-TBDMS protected glycoside (8) in 15% yield. Both
were processed separately to get the final product (10). After deprotection of the glycoside 7
at their 3° and 5’ positions and reduction of the intermediate 3’-keto derivatives (9) by
treatment with NaBH(OAc);, C-nucleoside (10) was obtained in 70% yield. Similarly,
compound 8 was subjected to subsequent deprotection and reduction to get the desired
azulenyl C-nucleoside (10). All these derivatives were well characterized by NMR and

HRMS spectral analyses (see Appendix).

[o) H
Oyﬂ , TBDMSCI o Y '\co Hmps, o
HOAC))—N\/\C _Imidazole, TBDMSO/\(J‘N\é\( (NH,),S0,, TBDMSO/\Q
- >
DMF, rt, 999 o g
R .99% o EDMSO 5 reflux, 58% TBDMSO 6
HO 4
Pd(dppf)Cly,
Br-Az | TEA, MeCN, 75 °C
COOEt COOEt
NH, NH,
o AR TR EDMSO cooEt *+ TBDMSO COOEt
0°C 8 (minor, 15%) TBDMSO 7 (major, 46%)
5 Et;N.3HF, THF,
. NaBH(OAc);, o:c
! MeCNJ/ACOH,
L 0°C.rt, COOEt COOEt
! 68%-two steps NH, NaBH(OAc)s, NH,
! < MeCNIACOH,

COOEt 0 °C rt,
70%-two steps

COOEt

Scheme 4B.2. Synthesis of azulenyl C-nucleoside (10).

Here, it should be noted that (a) the palladium-catalyzed coupling reaction and (b) the
final reduction are highly stereoselective. The stereoselectivity results are a consequence of
substrate control because (a) the lower face of glycal (6) is effectively shielded by the
sterically bulky TBDMS group in the 3’-position to give only the desired B-anomers and (b)

the free 5’-hydroxy group binds to the boron atom of NaBH(OAC); thereby leading to a
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hydride attack of the C=0O bond from the top to recover the 2’-deoxyribofuranoside
configuration.*® Another important instruction is to use EtsN.3HF instead of commonly used
TBAF in THF for deprotection of di-TBDMS protected glycoside (desilylation step).*
Otherwise, it can lead to an inseparable mixture of compounds causing less product yield. In

case of mono-TBDMS deprotection the use of TBAF is fine.

We performed the D,0 exchange NMR experiment to confirm the NH; group (Figure
4B.2). After recording 'H NMR spectra, we added 30 pl of D,O to the same NMR tube and
mixed it well. After that, we recorded *H NMR spectra after 2 min and observed a decrease in
intensity of a singlet peak at 7.75 & ppm value. After some time, it vanished completely
where other peaks were intact. This depicts that the said peak corresponds to hydrogen atoms

of NH; group present in the azulene ring of C-nucleoside.

60min NT{Z
HZ'O .
l 1 J I_A_J/\._, _A,l . AN /L . B
30min ‘
l _J,_J_ o A ll Y IV N .S
30ul D,0-2 min I |
| I A _ ‘l LA .
No D,0
JJ A I ;‘ll_. ¢ A_/\.VL e

Figure 4B.2. D,0 exchange NMR experiment of C-nucleoside (10).
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Pleasantly, we obtained the single crystal of azulenyl C-nucleoside (10) in solvent
CDCl; at 4 °C with slow evaporation method. Their crystals were studied by X-ray
techniques. Their ORTEP diagrams are depicted in Figure 4B.3-A, while other crystal
structure parameters are provided in the Appendix. We analyzed the molecular packing of the
solved crystals 10 using software (Diamond). The packing diagram of compound (10) crystal
shows the formation of a new supramolecular self-assembly structure owing to the n-n
interactions (Figure 4B.3-B/C). Its azulenyl ring exhibit n-r stacking with another azulene
ring. It only exhibited intra-molecular hydrogen bonding between the hydrogen atom of NH,

and oxygen atom of two ester groups.
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Figure 4B.3. Crystal structure and packing diagram of azulenyl C-nucleoside (10).

The UV-Vis spectrum of azulenyl C-nucleoside (10) in Acetonitrile is shown in
Figure 4B.4. The spectrum indicates the presence of several electronic transitions with
apparent maxima at 328 nm with a shoulder positioned at around 316 nm. The strong
absorption band at Amax = 328 nm is a result of Sy-S; transition, which is a known pattern for
azulene derivatives.”® There are two additional broader bands located at lower energy with
apparent maxima at 400 and 455 nm, which can be assigned to weak S¢-S, and S¢—S;
transitions, respectively, which is commonly seen in azulene derivatives.** However, we

didn't notice any fluorescence properties.
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Figure 4B.4.UV-Vis spectrum of C-nucleoside (10) in acetonitrile at 10 uM concentration.

The morphology of the C-nucleoside (10) was characterized by Transmission electron
microscope (TEM) and scanning electron microscope (SEM) imaging techniques. Their
TEM/SEM images at different scales and EDAX data are provided in Figure 4B.5. From the
HRTEM analysis, we observed nanoparticles of spherical shape. The images showed that the
nanoparticles possessed weak connectivity with restrained dispersity. The spherical shapes
were not the same in size and exhibited moderate agglomeration. This kind of structure was
further supported by SEM images, where we observed a fragile networking pattern among the
micro-aggregates. Its crystal packing diagram explains this, where we noticed n- & stacking

and no intermolecular H-bonding.
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Figure 4B.5. (A, B) HRTEM, (C, D) FESEM images at different magnifications and (E)

EDAX analysis of azulenyl C-nucleoside (10)

For practical utility, we evaluated the cytotoxicity of the Azulenyl nucleoside (10),
with HEK293T and HeLa cell lines. It showed no cytotoxic effects in both the cases, even
with high concentrations (100 uM). So it can be used for further biological evaluations. The

concentration-dependent cell viability is provided in Figure 4B.6.
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Figure 4B.6. Cell proliferation assay of compound 10 in HEK293 and HeLa cells.

4B.4 Conclusion

In summary, we have synthesized azulene tethered C-nucleoside, where the sugar ring
is attached to the C-6 position of azulene moiety. The synthesis involves multiple steps and
Heck-type coupling reaction was the central step where we could attach the azulenyl unit to
the sugar ring. The crystal packing diagrams explain the existence of n-r stacking between
azulene rings. This reflects in the morphology studies. In TEM analysis, we noticed non-
uniform spherical-shaped nanoparticles, which are weakly linked with each other. We
couldn't detect any significant cytotoxicity towards HEK293 and HeLa cell lines when
treated with Azulenyl C-nucleoside. Hence this can be useful for different biochemical

applications.
4B.5 Experimental section

General information: All materials were purchased from commercial suppliers and used
without any purifications. Acetonitrile and DMF were distilled over CaH, and stored over 4A
molecular sieves. THF was distilled over sodium metal and stored over sodium metal.
Reactions were monitored by thin layer chromatography, visualized by UV, Ninhydrin and

phosphomolybdic acid. Column chromatography was performed in 100-200 mesh silica.

289



Chapter 4B

Mass spectra (HRMS) were obtained from Bruker microTOF-Q Il and Waters Spectrometer
and the samples were prepared in methanol and injected in methanol and water mixture.
NMR spectra were recorded on Bruker 400 MHz NMR spectrometer at room temperature
and processed using Mnova software from Mestrelab Research. The crystal data were
collected on a Rigaku Oxford diffractometer. Absorption spectra were obtained using Jasco
V-730 spectrometer. The surface morphologies of compounds were studied with field
emission scanning electron microscopy (FESEM, Merlin Compact with a GEMINI-I/
GEMINI-II electron column, Zeiss Pvt. Ltd., Germany) and high-resolution transmission

electron microscopy (HRTEM, JEOL 2100F).
Characterization data of products

Diethyl 2-amino-6-bromoazulene-1,3-dicarboxylate (3): Following the reported procedure,

COOEt the title compound was synthesized and obtained as a deep purple

OQ NH, solid.*> 'H NMR (400 MHz, CDCls) & 8.82 (d, J = 11.5 Hz, 2H),

cooet 7-81 (s, 2H), 7.78 (d, 2H), 4.46 (g, J = 7.1 Hz, 2H), 1.47 (t, J = 7.1

Br

Hz, 3H).*C NMR (101 MHz, CDCls) & 166.23, 162.34, 144.33, 135.31, 129.45, 128.37,
101.00, 60.07, 14.61. HRMS (ESI) calcd for CisH16BrNO,: [M+Na]® 388.0155, found

388.0135.

1-((2R,4S,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert-
butyldimethylsilyl)oxy)methyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione
(5): A mixture of Thymidine (10.0 g, 41.3 mmol) and
TBDMSO/\(_), \/\C imidazole (11.8 g, 173 mmol) in anhydrous DMF was stirred
TBDMSO' at room temperature for 10 min. Then tert-butyldimethylsilyl
chloride (13.1 g, 86.7 mmol) was added slowly, and the mixture was continued stirring for

another 18 h. After adding water (100 mL), the reaction mixture was extracted with hexane,
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dried with Na,SO, purified by column chromatography (EtOAc:Hexane), and fractions
obtained were concentrated under vacuum to give 4 (19.3 g, 99%) as a white solid; *H NMR
(400 MHz, CDCls) § 8.55 (s, 1H), 7.49 (s, 1H), 6.41 — 6.31 (m, J = 7.7, 6.0 Hz, 1H), 4.46 —
4.35 (m, 1H), 3.95 (d, J = 2.3 Hz, 1H), 3.89 (dd, J = 11.4, 2.4 Hz, 1H), 3.78 (dd, J = 11.3, 2.2
Hz, 1H), 2.32 — 2.20 (m, J = 13.0, 5.7, 2.4 Hz, 1H), 2.07 — 1.98 (m, 1H), 1.93 (s, 3H), 0.93 (d,
J = 14.0 Hz, 18H), 0.13 (s, 6H), 0.10 (d, J = 2.7 Hz, 6H), **C NMR (101 MHz, CDCls) &
163.63, 150.18, 135.50, 110.82, 87.85, 84.84, 72.28, 63.00, 41.39, 25.94, 25.75, 18.41, 12.53,

-4.64, -4.83, -5.36, -5.45, C2H1,N,05Si,: [M+Na]™ 493.2524, found 493.2498.

tert-butyl(((2R,3S)-3-((tert-butyldimethylsilyl)oxy)-2,3-dihydrofuran-2-
yl)methoxy)dimethylsilane (6): A mixture of compound 5 (3.00 g, 6.40 mmol) and

o. ammonium sulfate (337 mg, 2.55 mmol) was dissolved in

TBDMSO/\Q

TBDMSO'
resulting mixture was heated at reflux condition for 4 h. After the solvents were removed

hexamethyldisilazane (11.7 g, 72.5 mmol) in a dry flask, and the

under vacuum, the residue was dissolved in CH,Cl,. The solution was washed with saturated
NaHCOj; solution, water, and brine, dried with Na,SO,, and concentrated under vacuum. The
crude was subjected to silica gel column chromatography (EtOAc:Hexane) to give 4 (1.27 g,
58%) as a yellowish oil, H NMR (400 MHz, CDCl3) & 6.47 (d, J = 2.4 Hz, 1H), 5.01 (t, J =
2.6 Hz, 1H), 4.86 (t, J = 2.1 Hz, 1H), 4.32 — 4.25 (m, J = 6.1, 2.7 Hz, 1H), 3.69 (dd, J = 10.7,
5.7 Hz, 1H), 3.51 (dd, J = 10.7, 6.3 Hz, 1H), 0.89 (d, J = 2.6 Hz, 18H), 0.09 (s, 6H), 0.07 (d,
J = 3.7 Hz, 6H), **C NMR (101 MHz, CDCls)  148.98, 103.41, 88.97, 75.99, 62.83, 25.91,
25.89, 18.40, 18.10, -4.25, -4.40, -5.33, -5.36, HRMS ESI-Tof Calcd for CyH42N2OsSi,:

[M+Na]* 367.2095, Found 367.2087.

diethyl-2-amino-6-((2R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert-

butyldimethylsilyl)oxy)methyl)-2,5-dihydrofuran-2-yl)azulene-1,3-dicarboxylate ~ (7): A

mixture of 6 (0.272 g, 0.790 mmol), 3 (0.320 g, 0.870 mmol), and triethylamine (0.5 ml, 1.97
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mmol) was dissolved in acetonitrile (10 mL) in a dry round bottom flask, and the resulting
mixture was degassed by using a long needle and a balloon containing inert gas. [1,1°-
Bis(diphenylphosphino)ferrocene] dichloropalladium(ll) (0.161 g, 0.197 mmol) was added,
and the mixture was heated at 75 °C for 9 h. After this,
COOEt
O NH, the reaction mixture was concentrated under vacuum,
o
TBDMSO COOEt and the crude product was purified by silica gel
TBDMSO' .

column chromatography (EtOAc:Hexane) to give 7

(0.228 g, 46%) as major product. ‘H NMR (400 MHz, CDCl3)  9.11 (d, J = 11.1 Hz, 2H),
7.80 (s, 2H), 7.76 (d, J = 11.2 Hz, 2H), 5.77 (d, J = 3.2 Hz, 1H), 4.81 (s, 1H), 4.64 (s, 1H),
4.46 (9, J = 7.1 Hz, 4H), 4.00 — 3.84 (m, J = 14.8, 11.4, 2.7 Hz, 2H), 1.47 (t, J = 7.1 Hz, 6H),
0.94 (d, J = 6.2 Hz, 18H), 0.21 (d, J = 9.6 Hz, 6H), 0.11 (d, J = 8.2 Hz, 6H),"*C NMR (101
MHz, CDCl3) & 166.73, 162.65, 151.62, 147.62, 145.42, 132.21, 131.05, 102.56, 99.69,
87.54, 84.38, 63.66, 59.74, 26.13, 25.59, 18.68, 18.10, 14.74, -4.87, -4.97, -5.13, -5.25,

HRMS ESI-Tof Calcd for C33Hs:NO;Siy: [M+Na]* 652.3096, Found 652.3103

diethyl 2-amino-6-((2R,5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-4-oxotetrahydrofuran-2-
yl)azulene-1,3-dicarboxylate (8): This was obtained as a minor (0.061 g, 15%) product in the
COOEt coupling step. *H NMR (400 MHz, CDCl3) § 9.13 (d, J =
NH,

o OO 11.2 Hz, 2H), 7.84 (s, 2H), 7.78 (d, J = 11.3 Hz, 2H), 5.27

TBDMSO COOEt
S (dd, J =11.0, 5.9 Hz, 1H), 4.46 (g, J = 7.1 Hz, 4H), 4.11
(t, J = 2.0 Hz, 1H), 4.03 (t, J = 2.4 Hz, 2H), 2.89 (dd, J = 17.7, 5.9 Hz, 1H), 2.45 (dd, J =
17.7, 11.1 Hz, 1H), 1.47 (t, J = 7.1 Hz, 6H), 0.93 (s, 9H), 0.16 (s, 3H), 0.10 (s, 3H), *C NMR
(101 MHz, CDCl3) 6 213.28, 166.62, 162.79, 145.39, 145.15, 130.93, 130.62, 100.16, 82.80,
80.05, 62.73, 59.92, 47.24, 25.87, 14.64, -5.34, -5.68, HRMS ESI-Tof Calcd for

C27H37NO-Si : [M+Na]" 538. 2232, Found 538.2223.
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diethyl 2-amino-6-((2R,5R)-5-(hydroxymethyl)-4-oxotetrahydrofuran-2-yl)azulene-1,3-

COOE dicarboxylate (9): EtsN:3HF (233 uL, 1.30 mmol) was

o OQ NH; added to a solution of compound 7 (0.100 g, 0.162 mmol)
HO

g COOEt in THF (5 mL), and the mixture was kept for stirring at
room temperature for 14 h. After the reaction was completed, solvents were removed under
reduced pressure. Then the crude product was dissolved in MeOH (2 mL), and a 1 M aqueous
solution of sodium hydroxide (8 mL) was added to neutralize the mixture. Then the solvents
were evaporated under reduced pressure. The crude product was purified by column eluted
with gradient CH,Cl,:MeOH to get compound 9 for analysis purpose only. *H NMR (400
MHz, CDCl3) § 9.11 (d, J = 11.1 Hz, 2H), 7.80 (s, 2H), 7.64 (d, J = 11.1 Hz, 2H), 5.29 (dd, J
=10.9, 5.9 Hz, 1H), 4.46 (q, J = 7.1 Hz, 4H), 4.12 (t, J = 3.3 Hz, 1H), 4.03 (d, J = 3.2 Hz,
2H), 2.95 (dd, J = 18.1, 5.9 Hz, 1H), 2.53 (dd, J = 18.1, 10.9 Hz, 1H), 1.47 (t, J = 7.1 Hz,
6H), *C NMR (101 MHz, CDCl3) § 212.85, 166.46, 162.72, 145.38, 143.69, 130.78, 130.27,
100.35, 82.69, 80.05, 61.61, 59.96, 46.30, 14.66, HRMS ESI-Tof Calcd for Cy;Ha3NO7 :

[M+Na]* 424.1367, Found 424.1357.

diethyl 2-amino-6-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)azulene-

1,3-dicarboxylate (10): Compound 9 without any
COOEt

OQ NH, Purification was dissolved in AcCOH/MeCN (1:1, 6 mL),
o]

HO cooet and the solution was cooled to 0 °C. NaBH(OAc); (0.05

e g, 0.240 mmol) was added, and the reaction mixture was
kept for stirring at room temperature for two hours and then neutralized with EtOH/water
(2:1, 5 mL). The resulting mixture was concentrated under vacuum, and the crude was
subjected to silica gel chromatography (CH,Cl,:MeOH) to give 10 (45.6 mg, 70%-two step)
as a yellow solid; *H NMR (400 MHz, CDCls) § 9.10 (d, J = 11.1 Hz, 2H), 7.75 (s, 2H), 7.58

(d, J = 11.2 Hz, 2H), 5.31 — 5.22 (m, 1H), 4.46 (g, J = 7.1 Hz, 4H), 4.10 (dd, J = 7.5, 4.4 Hz,
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1H), 3.93 - 3.81 (m, J = 11.6, 4.6 Hz, 2H), 2.38 — 2.31 (m, J = 13.3, 5.6, 1.4 Hz, 1H), 2.06 —

1.98 (m, J = 13.3, 10.3, 6.4 Hz, 2H), 1.47 (t, J = 7.1 Hz, 6H), **C NMR (101 MHz, CDCl5) §

166.57, 162.46, 145.89, 145.25, 130.95, 130.27, 100.00, 87.75, 82.46, 73.67, 63.43, 59.86,

45.20, 14.67, HRMS ESI-Tof Calcd for C,;HpsNO7 : [M+Na]* 426.1523, Found 426.1513.
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1. & wa %5 20 B.5 B T.5 TR b5 B2 55

a3 -1 g
£s = 2181 E
COOEt
NH
Br OQ 2
COOEt
130 l.SJ.'! . .'-"" - J;il.'l I-SJJ . L.-"". .Jl.'l IIIJ . l.l" . :I;J:l

4.4n
|- 447
T- 4.8
443
]
1.47
-1.48

1.60

Fr.33

7701
Fa.ro
14,61

&so0.07

Chapter 4B

Q.00

0.5 oo 0.5

Figure Al. *H/**C NMR (400MHz, CDClIs) spectra of compound 3 in CDCls

300



Analysis Info
Analysis Name
Method
Sample Name
Comment

pos ne_wide_030118m
Tmix-131118

Acquisition Parameter
Seurce Type ESI
Focus Not active
Scan Begn 50 miz
Scan Eno 3000 mvz

lon Polarity

Set Capdiary

Set End Plate Offset
Set Colision Cell RF

Chapter 4B

Display Report

Acquisition Date  7/26/2020 8:30:50 PM

D:\Data\JULY-2020'NKS\26072020_NKS_SNM-braz.d

PRAKASH BEHERA
micrOTOF-Q Il 10337

Operator
Instrument

Pasitive
a500 v
-500V
650.0 Vpp

04 Bar
180°C
4.0 lhmin
Waste

Set Nebulizer
Set Dry Heater
Set Dry Gas
Set Divert Valve

Intens
x106

-]
7 e

8+

.....

005 010

015 025 Tame [min]

[===TIC +arMS

]

Intens.

e

a3 [M+Na]*

20
15
10

507 2700
05

0.0+

755.0367

+MS, 0.2-0 Imin #(12-17)

Chemical Formula: C1gH1gBrNO,4
Exact Mass: 365.0263

s i 1500,9278

1400 1600

1000 1200 1800 mz

Intens.
383.0135

388.0148

+MS, 0.2-03min #(12-17)
3800114

3910126
3920155 333.2088

)

3880155

389.0188

C16H1BBI04N, Meniia 388 02

390.0135

301.0168

A

i

362 0201

386

Bruker Compass DataAnalysis 4.0

Figure A2.

390 392 394

printed.  7/26/2020 8:34:31 PM

ESI-MS/HRMS spectra of compound 3

301



Chapter 4B

2. 'H, *C NMR (400MHz, CDCl3) and HRMS of compound 5
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3. 'H, *C NMR (400MHz, CDCl3) and HRMS of compound 6
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Chapter 4B

4. 'H, ¥C NMR (400MHz, CDCl3) and HRMS of compound 7
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5. 'H, *C NMR (400MHz, CDCl3) and HRMS of compound 8
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6. 'H, *C NMR (400MHz, CDCl3) and HRMS of compound 9
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Figure A12. ESI-MS/HRMS spectra of compound 9
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7. 'H, C NMR (400MHz, CDCl3) and HRMS of compound 10
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Figure Al4. ESI-MS/HRMS spectra of compound 10
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5.1 Introduction

Boron-dipyrromethene (BODIPY) dyes have been extensively used as trackers in
cellular imaging studies. Their photophysical and photochemical properties make them
suitable for bioimaging and therapeutic agents.** These dyes exhibit excellent photophysical
properties, including a high molar absorption coefficient, strong fluorescence quantum yields,
and photochemical and chemical stabilities.®** As a result, they have been used in a wide
range of applications, including biological imaging, sensors, photodynamic treatment, dye-
sensitized solar cells, and light-emitting materials for electroluminescent devices.> ** Recent
studies have revealed that BODIPY-appended transition metal complexes like Cisplatin-
BODIPY can be used to detect drugs inside cells in real-time.***> Since Rosenberg's
accidental discovery of cisplatin's anticancer activity, a significant number of cisplatin
variants have been synthesized and tested for their potential to kill cancer cells and limit
tumor growth.®. Cisplatin (Figure 5.1-a) and its analogs, carboplatin, and oxaliplatin, are
well-known chemotherapy drugs. At the same time, nedaplatin, lobaplatin, and heptaplatin
are being probed as prospective chemotherapeutic agents.}”® These drugs operate as
transcription inhibitors by producing adducts with nuclear DNA, such as inter and/ or
intrastrand crosslinks via platinum(ll) and the N’ atoms of guanine residues, resulting in
apoptotic cell death.?° Platinum(11) drugs, cisplatin, and carboplatin treat 40-80% of cancer
patients alone or in combination with other medications.”> % The method by which such
substances do so consists of multiple steps, the first of which is cellular absorption. A
platinum anticancer agent's efficacy is determined by its capacity to enter the cell and
penetrate the nucleus, where the crucial target, DNA, is located.?* Even with the clinical
success of these bifunctional drugs, they suffer from dose-limiting and other side effects.
These include poor tumor selectivity, intrinsic and acquired resistance, and reduced activity

owing to the nuclear excision repair (NER) mechanism.”® To compensate for the
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shortcomings of such pharmacological molecules, monofunctional platinum(ll) complexes
were introduced.?®*" When compared to traditional bifunctional platinum-based drugs, such
complexes have significantly different anticancer efficacy due to altered cellular responses.
For example, monofunctional Pt-BODIPY conjugates (Figure 5.1-c) sensitise anticancer
action by increasing cellular accumulation after short photoirradiation duration when
compared to cisplatin. More over tethering fluorophores to the complexes' Pt(ll) centres
could result in fluorescent molecules, allowing the complexes' cellular location to be studied

using fluorescence imaging.*

The interactions between BODIPY compounds with biomolecules (DNA, RNA, and
protein) have fascinated researchers in developing potential drug candidates.®*® The
compounds bind to DNA in either covalent or noncovalent ways. Covalent binders have
harmful side effects because the covalent binding mode is irreversible and has a high binding
affinity. Noncovalent (electrostatic, major/minor groove, intercalation) binding modes are
reversible and preferred over covalent ones.>*>® So another approach was to link bodipy
scaffold to the nucleosides by a linker to make fluorescent nucleic acids (FNA) because
fluorescence has emerged as a helpful tool to study the structure and dynamics of nucleic
acids. These modified nucleosides can act as Environment-sensitive fluorophores (ESF) and
be used as probes for studying secondary structures, biomolecular interactions, imaging,
microscopy, and metabolic studies.®° It would be exciting to attach a bodipy analog to the
sugar ring without using any linker, which is considered a C-nucleoside analog. C-
nucleosides are a type of modified nucleoside that is distinguished by the replacement of a
labile glycosidic C-N bond with a stable C-C bond. While natural and synthesized N-
nucleosides are sensitive to enzymatic and acid-catalyzed nucleosidic bond hydrolysis, their
C-analogues are far more stable.*>*? There is a detailed description of tropolone and C-

nucleosides in the previous chapters (Chapters 2 and 4A).
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5.2 Objective

Tropolone is a seven-membered, nonbenzenoid aromatic compound possessing interesting
properties. In this chapter, we have designed and synthesized a troponylbodipy appended

cicplatin and a C-nucleoside derivative.

Previous reports

NH;
J ¢ P 3
Troponylbodipy cisplatin /! \ Troponylbodipy C-nucleoside

| { [ :
NN P AQNEF
NH, | o O P~F

z N-@— P HO N

Figure 5.1. Previous and this reports on bodipy cisplatin and tropinylbodipy nucleoside

analogs.
5.3 Results and Discussion

We started the synthesis from commercially available tropolone (1). Following the
reported procedure, Tropolone was derivatized into a difluoro boron complex of
picolylaminotropone (3).*® Here, picolylaminotropone (2) was treated with BF3.OEt,/TEA in
DCM to get the corresponding difluoro boron complex, i.e., picolylaminotropone boron
complex (PTB) (3). Cisplatin was first treated with silver nitrate, followed by the addition of
the ligand PTB (3) in DMF to get the platinum complex denoted as [Pt(NH3),(PTB)CI](NO3)
(4) (Scheme 5.1).2** The ligand and their platinum (1) complexes were characterized from

the NMR and ESI-HRMS data (see Appendix). The ESI-HRMS mass spectra of complex 4
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revealed the [M-(NOs)]" peak in accordance with the calculated m/z values. The isotopic
distribution pattern showed the presence of platinum and unipositive charge of the complexes
(Figure A8, Appendix). Pt(11) complex (4) was diamagnetic, and its *H NMR spectra also
supported the formation of the product (Figure 5.2). It had characteristic two singlet peaks
protons of two NHs; groups. The methylene protons (-CH,) appeared as two doublets, which
were a singlet in the case of the PTB ligand (3). There were also significant differences in *H

NMR spectra for the aromatic protons.

@
F
0 @é«F @éF . NG,
OH 1) TsCI,TEA, “ BF3.0Et,, [cis Ptc'(Nos)(NH3)z]
pcm TEA, DCM
DMF, rt, 65%
2) Plcolylamlne ~ N 0 °C rt, 71%
EtOH, reflux, = N = N
1 70%
Scheme 5.1. Synthesis of the platinum complex [Pt(NH3)2(PTB)CI](NO3) (4).
F +
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Figure 5.2. *H NMR spectra comparison of compounds 3 and 4.
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The UV-Vis and fluorescence spectra of compounds 3 and 4 were recorded in PBS
buffer (10 X) (Table 5.1, Figure 5.3). The spectral patterns were almost the same for both
compounds. Compounds 3 and 4 displayed strong absorption bands near 333 and 375 nm,
which are assignable to the electronic transition involving the picolylaminotroponyl-boron
complex moiety. Both compounds showed an intense emission band at 433 nm (Aex = 333
nm). The free ligand PTB (3) gave an emission spectrum with almost fivefold more quantum

yield (®f= 10.3%) than the complex 4 (®s= 1.7%).

Table 5.1. Summary table of photophysical properties of compounds 3 and 4 in PBS buffer.

Cpd | &, (nm) Abs A (nm) Stokes shift | OD (nm) | ®(%)
(nm)
4 333,375 0.12173, 433 100 326 1.7
0.12978
3 333,375 0.21588, 433 100 340 10.3
0.20661
1.2 1.2
—m—4-CPt-BPy- uv
—m— 4-CPt-Bpy -FI
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Figure 5.3. Normalized absorption and emission spectra of compounds 3 and 4 in PBS buffer

at 10° M concentration.
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The biocompatibility of synthetic compounds is essential for their biomedical
applications. Herein, the biocompatibility of compound 4 was evaluated by MTS assays
towards HeLa and HEK293T cells. No significant cytotoxicity was observed, at a 100 uM
concentration for compound 4 after 24 h (Figure 5.4). Thus the biochemical applications of

compound 4 can be further explored.
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Figure 5.4.Cell proliferation assay of compound 4.

The emissive complex 4 was used for cellular imaging in the HeLa cell line. Cells
were treated with compound 4 (100 uM), co-stained with DAPI dye, and incubated for 24 h
in the dark. Images were taken under bright light and different channels such as DAPI (blue
channel, Aex 358 nm), FITC (green channel, Aex 490 nm) and TRITC (red channel, Aex 570
nm). From the imaging studies, compound 4 was majorly found to be located in the cellular
nucleus. In Figure 5.5, cells clearly show the localization of DAPI at the nucleus of cell.
Under FITC (green) and TRITC (red) channels, the localization of compound 4 in the nucleus
was observed. The merged images and colocalization studies further evidenced it. The extent
of colocalization was estimated by Pearson's correlation coefficient (PCC) method using
JACOP plugin in Fiji: ImageJ. Pearson's coefficient (r) values for red and green channels were

0.96 and 0.95, respectively. However, the shapes of HelLa cells appeared slightly different
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than their standard spindle shape, which needed more exploration. Compound 4 treated cells

show cell internalization without transfecting reagents and can be used as a probe.

(A) DAPI (B)TRITC (C)FITC

(D)DAPI +TRITC (E)DAPI +FITC (F)Expanded

Figure 5.5. Confocal microscopic images of HeLa cells incubated with compound 4 (stained

with DAPI) for 24 h at a concentration of 100 uM.

We also designed troponyl bodipy containing C-nucleoside without any linker. In
Scheme 5.2, tropolone was converted into 2-tosyloxytropone and then treated with benzyl
amine, which produced N-benzyl aminotropone (5) in good yield. N-benzyl aminotropone (5)
was further converted into troponimine derivative (6) by treating sequentially with
triethyloxonium tetrafluoroborate and benzyl amine. Up on treatment with Br, in DCM,
bromination occurred selectively in the 5-position giving the bromo-troponimine derivative
(7) in high yield. Synthetic steps up to comound 7 is well documented in literature.***® From
compound 7, the corresponding difluoro boron complex, i.e., bromotroponylbodipy analog

(8) was synthesized by using BF3;.OEt,/TEA in DCM, which was isolated in 35% yield.
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Scheme 5.2. Synthesis and crystal structure of bromotroponimine difluoro boron complex

).

The synthesis of the target troponylbodipy C-nucleoside (12) was envisaged from the
bromotroponimine difluoro boron complex (8) and glycal (10) steps by using a Heck-type
coupling reaction as the major step (Scheme 5.3). Glycal (10) was synthesized as described in
Chapter 4B. For the Heck-type coupling between the bromotroponylbodipy derivative (8) and
the glycal (10), Pd(dppf)Cl, was used as the catalyst. Here we observed the coupling product
with TBDMS deprotection giving two glycosides (11, 27% and 12, 9%). Compound 11 was
further deprotected using TBAF/THF to get the intermediate 3’-keto derivatives (12). The
cause of TBDMS group deprotection may be the presence of boron moiety and temperature
(75 °C). So to get only compound 12, we followed a different route. Instead of glycal (10),
we used mono-TBS protected glycal (13), and it can be synthesized by a single desilylation
step from compound 10.%” Following this route, we got intermediate 3’-keto derivatives (12)
in 40%. Further, we tried to reduce the 3’-keto group using NaBH(OAc); but couldn't
succeed, probably due to the steric hindrance. This work is still underway; we are trying to

remove the 3°-keto group completely using tosylhydrazide derivatives.
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Scheme 5.3. Synthesis of troponylbodipy 3’-keto C- nucleoside derivative (12).
5.4 Conclusion

In summary, we have synthesized a cisplatin derivative and a C-nucleoside having
troponylbodipy moiety. The C-nucleoside can be incorporated into DNA in terminal position
as a small fluorescent tag. The work on troponylbodipy C-nucleoside is in progress. The
troponybodipy cisplatin exhibited fivefold less fluorescence than the parent troponyl bodipy
derivative. It was used for imaging to see the effect on HelLa cell lines. The compound was
localized inside the cellular nucleus showing some structural perturbation. It showed no
significant cytotoxicity toward HEK293T and HeLa cell lines. Currently, we exploring its

bioactivities and works are still in progress.
5.5 Experimental Section

General informations: Unless otherwise specified, all essential chemicals and solvents were
acquired from commercial providers and used without additional purification. By distilling
over Calcium hydride, anhydrous DCM, DMF, ACN solvents were freshly made and stored
in 4 A molecular sieves. Thin layer chromatography was used for monitoring the reactions,

which were then visualised using UV and Ninhydrin. Column chromatography was carried
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out on 100-200 mesh silica. The Bruker microTOF-Q Il Spectrometer was used to obtain
mass spectra, and the samples were prepared in methanol and injected in a methanol and
water combination. At room temperature, NMR spectra were obtained on a Bruker AV- 400/
700 (*H: 400/ 700 MHz, *3C: 100.6 MHz, 'B: 128 MHz, *F: 377 MHz). The crystal data
were collected on a Rigaku Oxford diffractometer at 293 K. Absorption spectra were
obtained using Jasco V- 730 spectrometer. Fluorescence spectra were obtained from Perkin-

Elmer LS- 55 using Xenon lamp. Confocal images were taken in Leica Microscope.
Characterization data of products

2-((pyridin-2-ylmethyl)amino)cyclohepta-2,4,6-trien-1-one (2): Tropolone was converted in
o to 2- tosyloxytropone.*® To a solution of 2- tosyloxytropone (3.6 mmol, 1
O/Ne\/ g) and picolylamines (7.2 mmol, 0.745 ml) dissolved in ethanol, EtsN (10.8
i 'N mmol, 1.5 ml) was added. It was refluxed for 24 h and monitored by TLC.

After completion of the reaction all volatiles were evaporated under pressure. To the crude,
1.0 N HCI was added and extracted with dichloromethane (thrice). Then the organic layers
were dried over Na,SO, and evaporated under reduced pressure. The resultant crude was
subjected to column chromatography using EtOAc:Hexane mixture as mobile phase to get
compound 2 (0.552 g, 70% vyield), *H NMR (400 MHz, CDCls) § 8.62 (d, J = 4.7 Hz, 1H),
8.05 (s, 1H), 7.65 (td, J = 7.7, 1.6 Hz, 1H), 7.32 — 7.12 (m, 5H), 6.68 (t, J = 9.4 Hz, 1H), 6.53
(d, J =10.3 Hz, 1H), 4.68 (d, J = 5.9 Hz, 2H), **C NMR (101 MHz, CDCls) § 177.12, 156.08,
155.26, 149.57, 137.36, 136.99, 136.22, 129.41, 122.80, 122.63, 121.18, 109.34, 48.23,

HRMS ESI-Tof Calcd for C13H1oN,O: [M+H]" 213.1022, Found 213.1021.

2,2-difluoro-3-(pyridin-2-ylmethyl)-2,3-dihydrocyclohepta[d][1,3,2] oxazaborol-8a-ylium-2-
uide (3): In anhydrous dichloromethane, compound 2 (0.3 g, 1.4 mmol) was dissolved, and

EtsN (3.8 ml, 27.5 mmol) was added. For the next step, BF3;.OEt; (3.4 ml, 27.5 mmol) was
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added to the reaction mixture and stirred at room temperature for about 24 h. The reaction

F was monitor using TLC, and water was used to quench unreacted
-F
O0—B

_,“l BF;.OEt, before being extracted three times with dichloromethane. The
@ é‘ collected organic layers were dried over Na,SO,4 and concentrated under
reduced pressure. Using EtOAc:Hexane as the mobile phase, the crude

was subjected to column chromatography to get compound 3 (0.243 g, 71%). *H NMR (700
MHz, CDCl3) & 8.53 (d, J = 4.6 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.57 (t, 1H), 7.52 (t, J =
10.2 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 10.7 Hz, 2H), 7.20 (t, 1H), 7.11 (t, J = 9.8
Hz, 1H), 4.88 (s, 2H), **C NMR (176 MHz, CDCls) & 167.82, 160.63, 155.87, 149.13,
141.91, 140.00, 137.39, 128.36, 122.93, 122.59, 120.06, 119.12, 49.38, *°F NMR (377 MHz,

CDCl3) 6 -137.33 — -137.94 (m) , "B NMR (128 MHz, CDCl3) & 6.07 (t, J = 18.3 Hz),

HRMS ESI-Tof Calcd for Cy3H;1BF,N,0O: [M+K]" 299.0566, Found 299.0520.

[Pt(NH3)(PTB)CI](NO3) (4): To a solution of Cisplatin (0.15 g, 0.5 mmol) in 5 ml DMF,

Ag>NO3 (0.076 g, 0.45 mmol) was added in the dark and

F
1]
o—?’F ~ stirred at rt for 24 h. The precipitate of AgCIl was removed
N 3
@ by filtration. Compound 3 (0.117 g, 0.45 mmol) was
= N Pt NH,

NH3 added to the solution and stirred for 24 h at rt. The
solvents were evaporated under in a rotavapor, and the residue was redissolved in 40 ml of
MeOH. Unreacted Cisplatin was removed by filtration. Diethyl ether (60 ml) was added to
the filtrate under vigorous stirring condition to obtain a solid precipitate. The precipitate was
treated twice with diethyl ether before vacuum drying to get compound 4 (0.19 g, 65% yield)
as an off-white solid. The compound was protected from light. *H NMR (700 MHz, DMSO)
$8.99 (d, J =5.3 Hz, 1H), 7.94 (t, J = 7.6 Hz, 1H), 7.89 (t, J = 10.2 Hz, 1H), 7.84 (t, J = 10.1
Hz, 1H), 7.67 (d, J = 10.1 Hz, 1H), 7.53 (t, J = 6.4 Hz, 1H), 7.44 (t, J = 9.7 Hz, 1H), 7.38 (d,

J =111 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 6.12 (d, J = 17.5 Hz, 1H), 5.52 (d, J = 17.5 Hz,
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1H), 4.66 (s, 3H), 4.42 (s, 3H), **C NMR (176 MHz, DMSO) & 167.42 (s), 160.49 (s), 158.16
(s), 154.74 (s), 143.90 (s), 142.15 (s), 140.32 (s), 130.89 (s), 125.22 (s), 123.38 (s), 121.87
(s), 120.01 (s), 48.41 (s), *°F NMR (377 MHz, DMSO) & -133.98 — -134.85 (m), 11B NMR
(128 MHz, DMSO) & 6.01 (s), HRMS ESI-Tof Calcd for Ci3Hi;BCIF,N4OPt": [M]*

524.0801, Found 524.0781.

1,3-dibenzyl-6-bromo-2,2-difluoro-1,2-dihydro-214,314-cyclohepta[d][1,3,2]diazaborole  (8):
Bromotroponimine derivative (7) (1 g, 2.6 mmol) was dissolved in

N/\/’SO dry DCM and to this Et3N (7.3 ml, 52.9 mmol) and BF;.OEt; (6.5 ml,
Br,\?’B\F 52.9 mmol) was added slowly with vigorous stirring at rt. The
\\© reaction mixture was evaporated in a rotavaopr after completion.

Water was added to quench unreacted BF3;.OEt, before being extracted three times with
dichloromethane. The collected organic layers were dried over Na,SO, and concentrated.
Using EtOAc:Hexane as the mobile phase, the crude was subjected to column
chromatography to get compound 8 (0.39 g, 35%) as a yellow solid. *H NMR (400 MHz,
CDCl3) & 7.38 — 7.31 (m, 8H), 7.31 — 7.24 (m, 2H), 7.02 (d, J = 11.4 Hz, 2H), 6.16 (d, J =
11.3 Hz, 2H), 4.59 (s, 4H). *°F NMR (377 MHz, CDCl3) & -122.58 — -127.06 (m, 34.3 Hz).
B NMR (128 MHz, CDCl3) & 5.82 (t, J = 34.4 Hz), HRMS ESI-Tof Calcd for

C21H1gBBrF,N,: [M+Na]* 449.0610, Found 449.0528.

1,3-dibenzyl-6-((2R,5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-4-oxotetrahydrofuran-2-
yl)-2,2-difluoro-1,2,3,3a-tetrahydrocyclohepta[d][1,3,2]diazaborol-2-uide (11): A mixture of
10 (0.1 g, 0.29 mmol), 8 (0.14 g, 0.32 mmol), and

r : triethylamine (0.12 ml, 0.87 mmol) was dissolved in

N%D,I
“”)MSON' “F acetonitrile (5 mL) in a dry round bottom flask, and

0 L@ the resulting mixture was degassed by using a long

needle and a balloon containing inert gas. [1,1’-Bis(diphenylphosphino)ferrocene]
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dichloropalladium(ll) (0.06 g, 0.072 mmol) was added, and the mixture was heated at 75 °C
for 9 h. After this, the reaction mixture was concentrated under vacuum, and the crude
product was purified by silica gel column chromatography (EtOAc:Hexane) to give 11 (0.045
g, 27%) as major product, 'H NMR (400 MHz, CDCl3) 6 7.50 (d, J = 11.4 Hz, 2H), 7.40 (d,
J=7.3Hz, 4H), 7.36 — 7.29 (m, 4.8 Hz, 4H), 7.29 — 7.22 (m, 3H), 6.74 (d, J = 11.2 Hz, 2H),
4.96 (dd, J = 10.8, 6.0 Hz, 1H), 4.85 (s, 4H), 3.97 (t, J = 2.1 Hz, 1H), 3.90 (d, J = 2.1 Hz,
2H), 2.74 — 2.66 (m, 6.0 Hz, 1H), 2.27 — 2.16 (m, 1H), 0.82 (s, 9H), 0.01 (d, J = 9.6 Hz, 6H),
YF NMR (377 MHz, CDCl3) & -134.23 — -139.84 (m, 29.9 Hz), *'B NMR (128 MHz, CDCls)
5 5.44 (t, J = 29.6 Hz), HRMS ESI-Tof Calcd for CsH3zoBF2N,03Si: [M+Na]* 599.2689,

Found 599.2612.

(2R,5R)-5-(1,3-dibenzyl-2,2-difluoro-1,2-dihydro-214,314-cyclohepta[d][1,3,2]diazaborol-6-
yl)-2-(hydroxymethyl)dihydrofuran-3(2H)-one  (12): A
r\fC? mixture of 13 (0.05 g, 0.217 mmol), 8 (0.10 g, 0.24 mmol),
HoN'B\F and triethylamine (0.09 ml, 0.65 mmol) was dissolved in
° L© acetonitrile (5 mL) in a dry round bottom flask, and the
resulting mixture was degassed by using a long needle and a balloon containing inert gas.
[1,1°-Bis(diphenylphosphino)ferrocene] dichloropalladium(ll) (0.044 g, 0.054 mmol) was
added, and the mixture was heated at 75 °C for 9 h. After this, the reaction mixture was
concentrated under vacuum, and the crude product was purified by silica gel column
chromatography (EtOAc:Hexane) to give 12 (0.040 g, 40% vyield). Compound 12 was also
obtained as a minor product (0.015g, 9% yield) when coupling Heck reaction was performed
using compound 10. Compound 11 can be treated with TBAF/THF solution (desilylation) to
get 12. by *H NMR (400 MHz, CDCls) § 7.42 — 7.37 (m, 6H), 7.34 (t, J = 7.5 Hz, 4H), 7.29
—7.22 (m, 1H), 6.77 (d, J = 11.3 Hz, 2H), 4.96 (dd, J = 10.9, 5.8 Hz, 1H), 4.86 (s, 4H), 3.97

(t, J = 3.2 Hz, 1H), 3.91 (s, 2H), 2.75 (dd, J = 18.1, 5.8 Hz, 1H), 2.32 (dd, J = 18.1, 10.9 Hz,
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1H), **F NMR (377 MHz, CDCls) & -135.16 — -140.48 (m, Hz), *'B NMR (128 MHz, CDCl5)

5 5.46 (t, J = 30.4 Hz). ESI-Tof mass for CsH25BF,N,03: [M+Na]" 485.2088.

5°-TBS glycal (13): Following the reported procedure compound 10 was converted into
compound 13.* *H NMR (400 MHz, CDCls)  6.52 (d, J = 2.2 Hz, 1H),

Ho/\(_o} 5.08 (t, J = 2.5 Hz, 1H), 4.83 (t, J = 2.1 Hz, 1H), 4.39 — 4.34 (m, 1H), 3.73
TBDMSO" (dd, J = 11.9, 3.6 Hz, 1H), 3.62 (dd, J = 11.8, 6.7 Hz, 1H), 0.91 (s, 9H),
0.11 (s, 6H), *C NMR (101 MHz, CDCls) & 148.69, 104.33, 89.29, 75.77, 63.16, 29.70,
25.84, -4.29, -4.45, HRMS ESI-Tof Calcd for CyiH205Si: [M+Na]® 253.1230, Found

253.1240.
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1. H, *C NMR (400MHz, CDCls) and HRMS of compound 2
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2. 'H, B¥c, *°F, B NMR (700/400MHz, CDCls) and HRMS of compound 3
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3. 'H, ¥C, °F, "B NMR (700/400MHz, DMSO-d6) and HRMS of compound 4

wmptbpee@ 8 SR BEZEERRIRRAMI AR 23 :E b 2
A B VY. - e et e e # e S ‘ ] pl 2
ot o ey ————
3
D_é.—F
@l H03
- N—Pt—NH;
NH,
= AT Tl s & &
2 b e R e e b ] | 2
- L] - — Mo
ing &5 a.n &5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 o5 oo
f {ppm}
s"m-cpt-hw-rq Eﬁf: 245 Eﬁﬁ'ﬁ?; L L
B S E Qr\ls gumdg bl B ]
e @ - L sggEsasse
- LR ] = I ] - mmmnm
i

Wb ——

LLUN ] 160 150 140 130 120 1@ 100 a0 L o & S0 a0 L 20 i o
1 (ppm)

Figure A6. *H/**C NMR (700 MHz, DMSO) of Compound 4 in DMSO-d6

340



anfmcpl IEEE
F
L3CFD E::"

133.98
-134.23
- -134.641
~A34.85

[ -
'1|| |||,I D_'éIFF NO,
||||[|| N

nm-»-—-l—l-ﬂ-‘“""ﬂ] v L

ci
R —-fN—lf-t—HHa
=1%{ =133 =133 =134 ':Ir;:.sl:ppm:;:IJE =137 =138 =139 =140 x NHa

-80 -85 -90 -5 -100 -105 -110 -115 120 -125 -130 -135 -140 -145 -150 -155 -160 -165 170
1 (ppm)

snm-cpt 118

6,01

!: +
o—a-F .
'Iq NO,
ci
= N—Pt—NH;
m. NH,

Jl 'L_,w

-15  -20 -25 -30 -35 40 -45 50 -55  -6O0

35 L] 25 20 15 10 5 i} =5 =10
f1 {ppm}

Figure A7. **F/*'B NMR (400 MHz, DMSO) of Compound 4 in DMSO-d6

341



Display Report

Analysis Info Acquisition Date  11/30/2021 6:44:26 PM
Analysis Name  D:\DataNOV-2021\NKS\30112021_NKS_SNM-CISPLATIN d
Methed pos tune_wide_030118.m Operator PRAKASH BEHERA
Sample Name  Tmix-131118 Instrument micrOTOF-Q Il 10337
Comment
Acquisition Parameter
Source Type ESI lon Polanty Posdive Set Nebulizer 0.4 Bar
Focus Not active Set Capillary 4500 V Set Dry Heater 180 “C
Scan Begin 50 miz Set End Plate Offset  -500 V Set Dry Gas 4.0 Vmin
Scan End 3000 miz Set Collision Cell RF~ 650.0 Vpp Set Divent Valve Waste
Intens,
x1
1.404
1.35 B
1.30 s
1.254 T
1201, : : T SR s : e o oo
002 004 005 008 o0 012 0.14 016 018 Time (min]
[-==TIc *aN NS |
Intens. +MS, 0.1-0.2min #(4-9)
x104 507.0522 F
+ o—s-F
[M] -\
61 N
2N ';le
i 5921014 'N".’t_NHs
5240781 X~ ¢
21 Chemical Formula: C43H47BCIF,N,OPt*
575.0768 Exact Mass: 524.0794
04 Y T e v ~ ' i . T - T v T - T
500 520 540 560 560 600 620 640 880 miz
IntenosA.. +14S, 0.10.2min #(4-9)
x1 524 0781
251 523.0770 525.0777
2.04
15
101 5250769 a7 o782
051 522,0785
" 210746 || 528.0620 529.0797 531 opg7
' PIC13H1TOBCIF2N4, M 524 08|
2500
20001 soaomre oL 525.0704
1500
1000 5260768 527.0760
5004 5220809
528.0800 5290796
U T T 04 T T v I'I\ 'A T T T
520 52 524 526 528 530 miz
Bruker Compass DataAnalysis 4.0 printed:  11/30/2021 6:49:33 PM Page 10of 1

Figure A8. ESI-MS/HRMS spectra of compound 4
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4. 'H, *F, B NMR (400MHz, CDCl3) and HRMS of compound 8
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5. 'H, F, B NMR (400MHz, CDCls) and HRMS of compound 11
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6. 'H, *°F, 1B NMR (400MHz, CDCls) and HRMS of compound 12
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Figure A15. *H/*'F NMR (400 MHz, CDCls) of Compound 12 in CDCl;
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Figure Al7. ESI-MS/HRMS spectra of compound 12
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7. 'H, *C NMR (400MHz, CDCl5) and HRMS of compound 13
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Figure A18. *H/**C NMR (400MHz, CDCls) of Compound 13 in CDCl;
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8. Crystaldata

Table S1. Crystal data and structure refinement for Compound 8

Identification code

NKS_SNM_BPY_1

Empirical formula Ca2H36B2BroFsNy
Formula weight 854.23
Temperature/K 100.00(10)

Crystal system monoclinic

Space group P2;/c

alA 18.5126(3)

b/A 13.5365(2)

c/A 15.0157(2)

a/° 90

/e 92.693(2)

v/° 90

Volume/A® 3758.72(10)

Z 4

peaicg/cm’ 1.5094

w/mm’* 3.210

F(000) 1727.4

Crystal size/mm?® 0.002 x 0.001 x 0.001
Radiation CuKo (A=1.54184)

20 range for data collection/° 8.1 to 149

Index ranges -18<h<23,-17<k<17,-19<1<17
Reflections collected 31047

Independent reflections 7661 [Rint = 0.0479, Rsigma = 0.0320]
Data/restraints/parameters ~ 7661/0/487

Goodness-of-fit on F? 1.022

Final R indexes [[>=2c (I)] Rj;=0.0366, wR; = 0.1022

Final R indexes [all data] R1 =0.0388, wR, = 0.1041

Largest diff. peak/hole / e A 0.53/-0.69
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Chapter 6
6.1 Introduction

Natural amide bonds are pretty stable, with an estimated half-life of around ~350- 600
years for spontaneous hydrolysis at neutral pH and room temperature.™ The natural amide
bonds are resonance stabilized. The carbonyl group of the natural amide is inert toward the
nucleophilic addition reaction.®* The cleavage/hydrolysis of amide bonds could be achieved
under extreme conditions, such as heating under strongly acidic or basic conditions. Though,
the cyclic amides (Lactams) are more cleavable as compared to the linear amides because of
ring-strained amides.”” A large number of ring-strained lactams are synthesized and their
poor stability is reported even under mild conditions because of the resonance decoupling
through N-C=0 torsion, which induces the strong electrophilicity at C=0O group as ketonic
carbonyl.® The cleavage of an amide bond without metal ions becomes a center point of
discussions. Brown and co-workers have shown that the resonance decoupling enhances the
hydrolysis rate in the strained amide bond because of the direct nucleophilic attack.® ® For
instance, the twisted amide of 1-aza-2-admantanone derivatives is highly strained lactam ring
and readily cleavable under mild conditions.®® This twisted amide also shows the dual
reactivities such as (i) nucleophilic character of amine, and (ii) electrophilic of the carbonyl.
The hydrolysis of linear amide bonds is also possible by decoupling the N-C=0 resonance
stability within the structurally modified amide bonds. However, the sequence-specific amide
is cleaved/hydrolyzed with enzymes such as proteases. The zinc metal-dependent peptidase
cleaves the specific amide bond through Zinc ions mediation. These results encourage
synthetic chemists for the development of artificial peptidases."* Mashima and co-workers
have explored the role of Zinc ion in the cleavage of amides bearing f-hydroxyethyl using
Lewis acid Zn(OTf),.'? Recently, the activation of specific amide bonds are explored using a
metal catalyst. For example, Garg, Houk and co-workers have shown the conversion of amide

functional group into ester group by cleaving C-N bond of amide with Ni-catalyst.** The

353



Chapter 6

cleavage of amide bond near-physiological conditions is still challenging. Booker-Milburn
and Co-workers have reported the solvolysis of acyclic synthetic amide bonds at room
temperature under neutral conditions via the formation of ketene intermediates.* They have
shown that an electron-withdrawing group, at a-position, of amide carbonyl enhances the
protonation of sterically hindered amide amine and facilitates the formation of ketene by
cleaving the C-N bond of amide. In a recent report, the cleavage of the terminal amide bond
occurs with ammonium salt/aqueous hydrazine under heating conditions via hydrazinolysis.™
The cleavage of modified N-terminal amide bonds, such as aminopyrazolonyloxy containing
acetamides, is cleavable under mildly acidic conditions.'® Another reactivity of amide bond
as transamidation is also reported, such as the transamidation reaction of the amide bond
using Zr/Hf-catalyst.)” For the development of peptide-based materials, the various aromatic
amino acids/peptides are synthesized and explored for novel peptidomimetics.'® In addition to
benzenoid aromatic peptides, recently, non-benzenoid aromatic amino acids/peptides are also
synthesized from tropolone molecule and unnatural amino acid backbone for evaluating the
role of tropolonyl carbonyl the structural and functional changes of peptides (Figure 6.1-a).™"
2! The a-troponylalkyl amino acid and their peptides exhibit rare characteristic chemical
properties as the cleavage of amide bond under mild acidic conditions (5% TFA) alongwith
the reversible amidation and transamidation activities under basic condions. However, their
S-analogues as S-troponylalkyl amino acid derivatives are stable as like other natural amide
bonds, even with neat TFA (~100%) (Figure 6.1-b). In repretoire of unnatural peptidomimics,
a-hydrazino acids and their peptides as N-amino peptide (NAP) derivatives are explored, and
found that those peptides exhibit improved biostability and bioactivity as compare to control
(Figure 6.1-c).*® 2 Thus, we designed a -troponylhydrazino acid analogue to explore the
role of troponyl group for novel peptidomimetics (Figure 6.1-d). This chapter describes the

synthesis of S-troponylhydrazino acid and its hybrid peptides with amino group of natural a-
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amino acid/peptide ester derivative (Figure 6.1-b). For conformational studies, the DMSO-dg
titration experiment and X-ray studies are performed with representative peptides. For
practical utilities, the stability of such peptides are also investigated near physiological pH
conditions (mild acidic/alkaline contions) by NMR and ESI-Mass techniques. which reveal

the clevage of their amide bonds with dilute TFA (20%).

6.2 Objective

To examine the impact of troponyl-modified amino acids and peptides, we
synthesized p-hydrazino acids analog as p-troponylhydrazino acids. We also studied the
structural and conformational studies of their hybrid di-/tri-peptides with the natural amino

acid and amide bond cleavage.

(A) Previous reports

et O : ©  NHBoci, " o
(a) Trag-a-amide (b)Trag-p-amide (c) p-hydrazino Amide
Cleavable in TFA (5%) Not Cleavable in TFA Not Cleavable Stable in TFA
(B) This Chapter
] :
NHBoc ___ Tropidone
(d)p—-troponylhydrazino Amide o (Troponylpyrolidinone)

Cleavable with TFA (15-20%)

Figure 6.1. (A) Previously reported troponyl/hydrazine containing amides; (B) Rationally

designed p-troponylhydrazinyl peptides & their instability under acidic conditions.

6.3 Results and Discussion

We used commercially available N-Boc-hydrazine (1) for N-alkylation with 3-
bromopropionate ester under basic conditions that produced alkylated hydrazine derivative

(2). This derivative was treated with O-tosylate tropolone (3) under reflux conditions for four
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days for N-troponylation of amine that is converted into a new unnatural amino acid as 2-
aminotroponyl hydrazine derivative (4). However, the O-tosylate tropolone (3) was derived
from commercially available tropolone molecule. For the synthesis of amide bond, the ester
group of derivative (4) was hydrolyzed into carboxylate derivative under alkaline conditions
followed by coupling with various natural a-L-amino acid esters (Gly, Ala, Leu, Val, lle,
Phe, Pro) /peptide ester (Leu-Phe) derivative using peptide coupling reagents. Subsequently,
the hybrid di-/tri-peptide derivatives (5a-5g/5h) were isolated (Scheme 6.1). These peptides
were characterized by NMR and ESI-HRMS (See Appendix). Pleasantly, we obtained the
single crystal of one dipeptide (5a) from solvent mixture (EtOAc: Hexane) and analyzed by
X-diffractometer, which confirmed the structures of peptide 5a as Boc-f-troponylhydrazino-
glycine ester (Appendix, Table A4, Figure A69). Its crystal data was deposited to Cambridge

Crystallographic Data Centre (CCDC) with the number CCDC 2003629 (5a).

Br(CH,),COOEY,

DIPEA, Toluene, H Et3N EtOH
80°C, 4-days, 43% ¢4 days 35%
BocHN—NH, ’BocHN /\)L
! 2 0 NHBoc
TsCl, TEA ° (|) LiOH (2.0 N)
(Tropolone) — THF, 3h
DCM OTs (ii) H,N-AA-OMe.

EDC. HCI HOAT, NMM,
DMF, 14h, 42-63%

NHBoc NHBoc NHBoc
5b (58%) ! Hybrid peptide (5)
NHBoc NHBoc I‘/ NHBoc
5¢ (48%) 5d (58%) 5e (48%
H
NHBoc NHBoc NHBoc
5f (50%) 59 (43%) 5h (42%)

Scheme 6.1. Synthesis of N-troponylated-A-hydrazino acid/peptides.
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For comparative studies, we synthesized three types of control p-hydrazino acid
derivatives without containing troponyl scaffold from the same S-hydrazino acid ester (2) and
their hybrid peptides with natural a-amino acids (Scheme 6.2). The s-hydrazino acid ester (2)
was treated with benzyl bromide under the basic condition, which produced N-benzyl-$-
hydrazino ester (2-Bn). Similarly, N-hexyl-5-hydrazino ester (2-hexyl) was prepared ester (2)
and hexyl bromide under basic condition. However, N-amide derivative of S-hydrazino acid
ester (2) was developed with picolic acid under peptide coupling reaction conditions, which
produced g-picolinylhydrazino ester (2-picolamide). These non-troponyl g-hydrazino ester
derivatives (2-Bn/2-hexyl/2-picolamide) were hydrolyzed into respective carboxylate with
LiOH, and then directly coupled with amine group of a-amino acid ester under peptide
coupling conditions. As resultants, the control di-/tri-peptide f-benzylhydrazino peptides
(6a/6b), p-picolinylhydrazino peptide (7), and p-hexlhydrazino peptide (8) were synthesized
for further studies. All the NMR and Mass spectra are provided in the Appendix. We

attempted synthesis of N-phenyl-B-hydrazino ester for control studies but couldn't achieve it.

Picolic Acid, EDC . HCI Benzyl bromide,
= | NHBoc HOAT, NMM K,CO3, CH5CN,

N\/\n,OEt‘ DMF, 14h, 55% 2 24h 50% @\/NHBOC
(2-Pico|amide)o Hexyl bromide (2 Bn) (0}

e o s vy

EDC . HCI, HOAT, ggg%éﬁﬁg:n

NMM, DMF, 14h, 40% NHBoc NMM, DMF, 14h, 40%

Ph ~s oo N OEt

/\)L (2-Hem NHBoc
R NH-AA-OMe

| (i) LIOH, THF, 3h
2 NHBoc o] (i) NH,-AA-OMe

EDC . HCI, HOAT,
(8) NMM, DMF, 14h,45% OMe
l;lHBoc H o NHBoc
N N 6a (50%)
NN \/\n/ OMe

(o]
o
(7) Ph ©/\l;l/\)LNH H fo)
NHBoc ““k[rN\ﬁLOM
)\ o ©
Ph
6b (55%)

Scheme 6.2. Synthesis of control N-alkylated-A-hydrazino acid/peptides.
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Herein, we also attempted the involvement of amine protons (BocNH/Amide NH) in
intramolecular hydrogen bonding with carbonyl oxygen (troponyl/Boc/Amide) in solution
state by DMSO-dg-titration *H-NMR experiments. In this experiment, the chemical shift of
intramolecular hydrogen bonded proton remains constant or exhibits small downfield shift
(N-H), while the chemical shift of intermolular hydrogen bonded proton shows significant
downfield shift with increasing the concentration of DMSO-dg (strong hydrogen bond
acceptor solvent).* The intramolecular hydrogen bond strength is inversely proportional to
the downfield shift of N-H by DMSO addition. We assigned proton resonance signals of
BocNH (NH1) and amide N-H (NH2) in troponylated dipeptides (5a-5e) and a control
peptide (7). We performed DMSO titration experiment by recording the consecutive ‘H-
NMR spectra of respective peptides (5a-5e/7) in CDCl3; with successive addition of DMSO-
ds in a small amount. Their *H-NMR titration spectra are provided in the Appendix (Figure
A35-40). We extracted the chemical shift value of BocNH and amide N-H with respect to the
volume of DMSO-dg addition and then generated a plot as chemical shift (ppm) vs. DMSO-ds
volume (uL). These plots are depicted in Figure 6.2 (A & B), which exhibit a marginal
downfield shift in the chemical shift of BocN-H/amide N-H in troponylated peptides (5a-5e)
as compared to the BocN-H of control peptide (7). Importantly, we noticed that the extent of
the downfield shift in BocNH and amide N-H are almost equal in of troponyl peptide (5a/5c).
However, the extent of downfield shift in BocNH of troponyl peptide (5b/5d/5e) is lower
than their respective amide N-H, which is almost equal to the control peptide (7). Hence
intramolecular hydrogen bond in troponyl peptides (5a-5e) due to BocNH is equal to or
stronger than the respective amide N-H. Our *H-NMR titration results reveal the presence of
two intramolecular hydrogen bonding in g-troponylhydrazino peptides, while one in control
peptides. Herein, we propose the preferable intramolecular hydrogen bonding in f-

troponylhydrazino peptides (5a-5e)/control peptide, as Figure 6.2-C. In troponyl peptides
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(5a-5e), the intramolecular hydrogen bond between BocN-H----O=C (troponyl carbonyl), six-
membered ring, could be slightly stronger than another intramolecular hydrogen bond
between amide N-H----O=C (Boc carbonyl), nine membered ring in solution state. In

literature, 9-membered ring a-N-O turn is reported in peptides containing a-aminoxy acid.?®

9.0 9.0

A) BocNH (NH1) B) Amide NH (NH2)

8.5 8.5
~ 8.0 8.0
£ T
% 7.5 % 7.54 —= 53
= g —e5b
= 7.0 = 7.0 —a5¢
Tﬁ % —v—5d
L 654 |—v—5d © 6.5+ —¢5e
£ —o5e £ 7
< 6.0 —<4—7 < 6.0
o O

5.5 H/‘/‘/‘/‘/‘/‘/‘/‘/‘ 5.5

50 T T T T T 50 T T T T T

0 5 10 15 20 0 5 10 15 20
Volume of DMSO-d6 (uL) Volume of DMSO-d (uL)
(C) Proposed Conformation
NH-1 OJ< J<
H NH-2 o
R S NH-1 -
o) ‘N)\o----H Ho A2
N o H
/ '[l r!l | I
>R \/\/\/N\/\H/N‘R
o o}
p-Troponylhydrazino peptide (5a-5¢) Control peptide (7)

Figure 6.2. 'H-NMR DMSO-d, titration plot for BocNH (A) and Amide NH (B), Proposed

conformation of S-troponylhydrazino peptides/control peptide (C).

To investigate the role of troponyl carbonyl group in p-troponylhydrazino acid
containing hybrid peptides, we attempted to crystalize the hybrid peptides under various
solvent systems. Pleasantly, we obtained the single crystal of one dipeptide (5a) and one
tripeptide (5h). Their crystal data are submitted to CCDC with number CCDC 2003629 for
peptide 5a and CCDC 2003628 for peptide 5h. We extracted their packing diagram in unit

cell and supramolecular self-assembly structure using software Diamod 3.2. The structural
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analyses of dipeptide (5a) in solid state are depicted in Figure 6.3, which includes ORTEP
diagram (Figure 6.3-A), unit cell (Figure 6.3-B), packing arrangement (Figure 6.3-C), and
supramolecular helical structure (Figure 6.3-D). Other crystal data are provided in the
Appendix. Importantly, peptide 5a forms an intermolecular hydrogen bonding between
troponyl carbonyl with amide N-H (C=0----H-N) and hydrazine NH with amide carbonyl (N-
H-----C=0), which leads to a novel supramolecular helical structure with pitch 6.02 (A)
(Figure 6.3-D). Thus, troponyl carbonyl has a significant role in conformational changes of

peptides for interesting supramolecular self-assembly structure in the solid state.

@y

16.02(A)

Figure 6.3. Conformational analyses of crystal peptide 5a* in solid state: analysis of crystal
5a*: (A) ORTEP diagram; (B) Unit Cell packing; (C) Packing arrangement; (D) Helical

supramolecular self-assembly structure. (*Tertiary Butyl ester of 5a).

Similarly, The structural analyses data of tripeptide (5h) are depicted in Figure 6.4,
which describes the ORTEP diagram (Figure 6.4-A), unit cell (Figure 6.4-B) and packing
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diagram (Figure 6.4-C), and unique supramolecular helical structure (Figure 6.4-D). Other
crystal data are provided in the Appendix. This peptide forms inter and intramolecular
hydrogen bonding and generates a new supramolecular self-assembly helical structure. Most
importantly, we noticed two intramolecular hydrogen bonding-(a) troponyl carbonyl with
adjacent amide NH (Leu) (C=0----H-N, 2.04A) as i+9 helical structure, and (b) Hydrazine
Boc carbonyl with N-H of third residue (Phe) (C=0----H-N, 2.1A). Other carbonyl and NH
of amide form intermolecular hydrogen bonding and assemble into the supramolecular helical

structure.

Figure 6.4. Conformational analyses of crystal 5h in solid state: (A) ORTEP diagram; (B)

Unit Cell; (C) Hydrogen bonding pattern; (D) Helical supramolecular assembly.
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We also obtained the single crystal of control non-troponyl hybrid peptide (6a), j-
benzylhydrazino acid containing peptide, and analyzed its structural conformation by X-ray
studies (Figure 6.5). Other crystal data are provided in the Appendix. Their crystal data are
submitted to CCDC with number CCDC 2003626 for peptide 6a. The ORTEP /unit cell
packing diagrams of 6a are given in Figure 6.5-A/B. It has circular packing rearrangement by
self-assembly through hydrogen bonding, as shown in Figure 6.5-C. There are two types of
intermolecular hydrogen bonding existing as BocN-H---O=CBoc (2.1A) and Amide N-H-----
-0O=C amide (2.0A) (Figure 6.5-D). These intermolecular hydrogen bonds of peptide 6a form
a unique ladder type of supramolecular helical structure (Figure 6.5-E). Thus non-troponyl /-

hydrazino acid-containing peptide is also a building block of new peptidomimetics.

.
.

. :
AT A).)::: 1 200)
\.G\“’

Figure 6.5. Conformational analyses of control peptide crystal (6a) in solid state: (A)
ORTEP diagram; (B) Unit cell; (C) Packing arrangement; (D) Intermolecular

hydrogenbondinng; (E) Supramolecular self-assembly helical structure.

For peptide coupling at N-terminal of hybrid peptides, we attempted to remove the
Boc group of di-/tri-peptides (5a-5h) with versatile reagent 20-30% TFA in DCM (Scheme
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6.3). Unexpectedly, we isolated a new pyrozolidinone derivative as troponyl pyrazolidinone
or Troponylpyrazolidinone (9) from all respective hybrid peptides (5a-5h) under similar
conditions by unusual cleavage of the amide bond. The structure of Troponylpyrazolidinone
(9) is confirmed by NMR and HRMS. Their spectra are provided in the Appendix. We also
obtained the single crystal of Troponylpyrazolidinone (9) and analyzed it by X-ray
diffractometer. Crystal details and unit cells are provided in the Appendix (Figure A72). The
X-ray analysis result confirms the structure of Troponylpyrazolidinone (9). The X-ray data is
also submitted to CCDC with number 2003627. The ORTEP diagram of one dipeptide (5a)
and its cleaved product Troponylpyrazolidinone (9) are depicted in Figure 6.6. We noticed
two types of intramolecular hydrogen bonds: (i) N-H of pyrrolidinone with tropolone
carbonyl (1.8A) and (ii) N-H of pyrazolidinone with its carbonyl (2.5A). We also examined
the instability of such amide bonds under different acids as HCI (4.0 N), HCIO, (4.0 N),
PTSA (10 equiv.), and AcOH (4.0 N) by ESI-Mass technique (See Appendix, Figure A68).
For peptide 5a, our mass analysis results reveal cleavage of the amide bond of 5a with acids
(HCI, HCIO4, and PTSA) and the formation of the same cyclic derivative
Troponylpyrazolidinone (9). We could not notice the cleavage of Boc group and amide bond
cleavage with AcOH, which is a relatively weak organic acid. To examine the role of
tropolone residue for the cleavage of such amide bonds, we performed control studies with
similar types of non-troponyl-g-alkylhydrazino acid containing hybrid peptides (6a, 6b, 7 and
8) and TFA (~20%) and analyzed by ESI-Mass and NMR techniques (Figure A49-52).
Except for Boc group deprotection, we could not find the amide bond cleavage in control
peptides. However, control peptide 8 also forms a trifluoroacylated salt derivative by
acylation at the pyridine ring of picolamide residue. Hence troponyl residue has a critical role

in cleavage of amide bonds containing g-troponylhydrazino acid (peptides 5a-5h).
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(A) Reaction of b-troponylhydrazino acid peptides with TFA

o  so-m-- ‘. 20% TFA ( H,N-AA-OME
g Lo in DCM +
,;,/\;)LFH:.AA-OMe ( ° y
NHBoc -~~~ . N
P
9

Peptides (5a-5h)

(B) Reaction of control peptides with TFA

o)
o
20% TFA /\)j\
: R.
R‘N/\)LNH-Phe-OMe in DCM N NH-Phe-OMe
! - NH,
NHBoc
Peptides (6a/6b/7)
F,C__0O
o o TFA:DCM 3 o) o)
(3:7) N
N /\)L —_—> +N N/\)LNH-Phe-OMe
S N NH-Phe-OMe | !
| ! 2 NH,
Z NHBoc
Peptide (8)

Scheme 6.3. Reaction of g-troponylhydrazino peptides/non-tropoyl-S-hydrazino peptides

with TFA.

Figure 6.6. Conformational analyses of Troponylpyrazolidinone crystal (9): (A) ORTEP

diagram; (B) unit cell packing; and (C) Intramolecular hydrogen bonding.

The cleavage of the amide bond in peptides (5a-5h), under acidic pH, was dependent
only upon the concentration of peptides, and so considered as a first-order Kkinetic reaction.
Thus we performed Kinetic studies of dipeptides (5a/5b) cleavage with the time-
dependent *H-NMR experiment under acidic conditions (20% TFA in CDCls). Their NMR
spectra are provided in the Appendix (Figure A41-48). After the addition of TFA, *H-NMR

spectra arrays of dipeptide 5a exhibit the significant downfield shift of «-/B-hydrogen
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resonance signals such as the resonance signal 62.7 (a-H) shifted to 63.0, and 83.8 (B-H)
shifted to 64.2. Simultaneously, the new signals appeared at 63.2 and 64.4, which presumably
belong to new cyclic derivative Troponylpyrazolidinone (9). The NMR spectral arrays also
show an exponential decrease in the intensity a-H signal (63.0), while an exponential increase
in the intensity of new signals (63.2) happened with respect to time. After completing NMR
experiments, we recorded their mass spectra, which are provided in the Appendix (Figure
A49-52). Their mass spectra confirm the removal of the Boc group followed by the formation
of cyclic compound 9. Thus, the amide bond of a dipeptide (5a) was cleaved with TFA
(20%). We repeated similar NMR Kkinetic experiments with another representative peptide
(5b) and obtained almost similar results. To determine kinetic parameters (equilibrium
constant and half-life of amide bond cleavage), we extracted mole fractions of reactant (5a)
and its product (9) at different intervals of time from their respective NMR (See Appendix,
Table Al and A2). Then we generated a kinetic plot (Mole fraction vs. Time) for the cleavage
amide bond (5a) and formation of a new cyclic product (9) (Figure 6.7A). We also obtained
similar results with peptide (5b), and its kinetic plot is provided in the Appendix (Figure
A56-A). Our kinetic results indicate that the cleavage of the amide bond (5a/5b) and the
formation of the cyclic derivative are first-order kinetic reactions. Following our previous
report,'® we extracted equilibrium constant (k) as 0.016 min™ and 0.009 min™ for peptides 5a
and 5b, respectively (Figure 6.7B and Figure A56-B). We also compared our experimntal
kinetic results with the simulated kinetic model (COPASI) using reported software (See
Appendix, Figure A57-5S58).% ?* Then we calculated half-life of amide bond cleavage
(5a/5b) from their respective logarithmic plots (mole fraction vs. time plot by following the
previous reports (See Appendix). We obtained the half-life of 41.0 minutes and 71.0 minutes
for cleavage of respective amide bonds in 5a and 5b. We performed a similar experiment

with control peptide (6a), but we noticed only N-Boc group was deported. Thus only p-
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troponylhydrazino acid-containing peptides are cleavable under acidic conditions, and the

rate of cleavage in 5a/5b also depends upon the substituent of a-amino acid.
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Figure 6.7. Time-dependent 'H-NMR kinetic plot-Mole Fraction vs. Time (min) with hybrid
peptide Sa (A) and its exponential plot for half-life calculation (B).

Troponyl derivative is a natural chromophore with characteristic absorption peaks.?

Thus, we planned to monitor the amide bond cleavage reaction of troponylated peptides
(5a/5b) by UV-Vis studies. We recorded the time-dependent UV-Vis spectra of hybrid
peptide 5a in acetonitrile (ACN) after the addition of 20% TFA (Figure 6.8). We noticed
significant changes in the UV spectra of peptide 5a after the addition of TFA (Figure 6.8),
such as hypochromic (~Aszo nm)/hyperchromic shifts (~Aks00 NM) with isosbestic point (~Azss
nm). Notably, the electronic transition peak at ~A33p hm collapsed into one peak at ~Asg0 NM
after 100 minutes under acidic conditions that matched the spectra of pure isolated
Troponylpyrazolidinone (9) and their isosbestic point at Azso nm (Appendix, Figure A64). We
noticed similar results with dipeptide 5b from the time-dependent UV-Vis studies and mass
analyses under the same acidic conditions (Appendix, Figure A65/66). Hence
troponylhydrazino  hybrid  peptides produced the same cyclic intermediate
Troponylpyrazolidinone (9) after removal N-Boc followed by the cleavage of amide bond

under acidic conditions.
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UV-Vis Spectra of 5ain TFA (20%in CH,CN)
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Figure 6.8. Time dependent UV-Spectra of dipeptide 6a under acidic conditions (20% TFA in

ACN).

Finally, we propose the plausible mechanism for the cleavage of g-troponylhydrazino
containing amide bond (Figure 6.9). In first, TFA (20%) removed the N-Boc group of the
peptide (5) and produced the protonated hydrazinyl derivative (5-Boc)* under the acidic
condition that facilitated the cleavage of an adjacent amide bond by the formation of new
cyclic molecule troponylpyrazolidinone (9). We assumed that, the protonated hydrazinyl
derivative (5-Boc)* activated its amide bond when troponyl residue was present at N-atom.
Herein, the delocalization of cationic hydrazinyl proton possibly occurs through troponyl ring
as tautomeric intermediate (T1 & T2), possessing hydrazine amine (-NH,) nucleophile. This
nucleophile attacked at protonated amide carbonyl group via nucleophilic addition reaction
and then generated a reactive cyclic-1,1-aminol intermediate (T3). Next, the protonation of
aminol amine group followed by elimination led to the stable molecule N-
troponylpyrazolidinone (9) and amine residue. In the case of control peptides, the
delocalization of cationic hydrazinyl proton is not possible, and we could not notice the

cleavage of amide bond or formation of troponylpyrazolidinone (9) under similar acidic
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conditions. Thus tropolone played a crucial role in the cleavage of the amide bond in
troponylated-f-hydrazinopeptide (5) under acidic conditions, possibly through the proposed

mechanism.

H
O NH,

(" He
o NHBoc o NH, o NHR
H+ @
5 T1 +
(5-Boc)* H
o,
TFA (20%N_ s, . I
(»
H N~ (0)
N - -
“H

|\)=0‘7A
9

RNH,

Figure 6.9. The proposed mechanism of p-troponylhydrazinyl peptides propenamide

cleavage under mild acidic conditions.

6.4 Conclusion

S-Troponylhydrazino acid analogs and their hybrid peptides are synthesized from natural
amino acid derivatives. Conformational analyses of f-hydrazino acid-containing peptides are
demonstrated by extracting hydrogen bonding in representative peptides in solid and state.
The intramolecular hydrogen bonding of amide N-H has been shown in g-troponylhydrazino
peptide by DMSO-titration methods in the solution state. X-ray studies reveal the role of
troponyl group in the self-assembly of supramolecular structures in solid-state. Most
importantly, the troponyl-f-hydrazino acid-containing hybrid peptides show a unique feature
as the cleavage of the amide bond through the formation of a new cyclic molecule
Troponylpyrazolidinone under mild acidic conditions. Time-dependent NMR studies
determine the equilibrium constant and half-life of amide cleavage. The cleavage of that

amide bond and formation of Troponylpyrazolidinone are explained with the plausible
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mechanism. Hence, p-troponylhydrazino acid could be a promising chromophoric acid-
sensitive protecting group of free amines. It could also be helpful to estimate the free amine

group by UV-Vis spectrophotometer.
6.5 Experimental Section

General information: All required materials were obtained from commercial suppliers and
used without further purification. Dimethylformamide (DMF) was distilled over calcium
hydride. Reactions were monitored by thin-layer chromatography (TLC), visualized by UV
and Ninhydrin. Column chromatography was performed in 230-400 mesh silica. Mass spectra
and HRMS were obtained from Bruker micrOTOF-Q Il Spectrometer. *H NMR, *C NMR,
were recorded on Bruker AV-400 or 700 MHz at 298 K. 'H and **C NMR chemical shifts
were recorded in ppm downfield from Tetramethylsilane or residual solvent peak. Splitting
patterns are abbreviated as: s, Singlet; d, doublet; dd, doublet of doublet; t, triplet; g, quartet;

dqg, doublet of quartet; m, multiplet.

General procedure for Hydrolysis of Ester into Acid: Compounds having ester group (4), (2-
Bn), (2-Hexyl) and (2-Picolamide) were dissolved in THF containing 2 equivalents of LiOH
at 0 °C and then bring to room temperature with stirring. TLC monitored the completion of
those ester hydrolysis reactions. The hydrolyses of N-alylated-s-hydrazino esters were
completed within 3 h. The solvents are evaporated under vacuum to half of its volume and
adjusted the pH to 6-7 with 1M HCI, and then extracted thrice with EtOAc. The organic
layers were combined, dried over Na,SO,, and concentrated under low pressure to afford the
acid derivative products. Without any further characterization, we proceed for the next step
(for amide coupling). These N-alkylated-f-hydrazino acids were coupled with natural o-

amino acids in the presence of amide coupling reagents as HOAT (1.3 equivalent), N-methyl
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morpholine (3 equivalent) was EDC.HCI (1.3 equivalent), and was dissolved in Dry DMF

(1.5 M). After stirring for 10 min, cooled it to 0 °C and added

General procedure for peptide synthesis: After hydrolysis ester group into acid group it is
directly used for peptide coupling reaction without any further purifications where the
corresponding amines (1.2 equivalent), HOAT (1.3equivalent) were dissolved in Dry DMF
(1.5 M). After stirring for 10 min, N-methyl morpholine (3 equivalent) was added drop wise
and cooled it to 0 °C and added EDC.HCI (1.3 equivalent). After 20 min, it was allowed to
warm to rt followed by heating at 55 °C for 14 h. The crude reaction mixture was evaporated
under reduced pressure. The resultant crude was purified by column chromatography with
MeOH in CH,Cl, (1-3%). The obtained product was characterized using *H/**C by NMR and
HRMS by ESI-MS techniques. The characterization data of all synthesized hybrid peptides

are provided below.

General procedure for Boc deprotection: 30% TFA in CH,Cl, (5 mL) was added to
compound (6a) at room temperature and stirred for 3 h. The solvents were removed under
vacuum and resulting in the red color residue (only in case of troponyl derivative). The
residual viscous oil was purified via chromatography with 3% MeOH in CH,Cl,. The

obtained product was characterized using *H/*3*C by NMR and HRMS by ESI-MS techniques.
Characterization data of products

tert-butyl-2-(3-ethoxy-3-oxopropyl)hydrazine-1-carboxylate (2): Experimental procedure and
their characterization data for compounds (2) are previously reported.?® A solution of 3-
bromo-propionic acid ethyl ester (2 mL, 15.7mmol), DIPEA (2.6mL, 15.7mmol) and Boc-
hydrazine (1) (3.1g, 23.55mmol) in toluene was heated at 80 °C for 4 days. After removal of

the solvent under reduced pressure, the crude product was purified by column

370



Chapter 6

chromatography (Hexane:EtOAc) to give compound (2) which is a slightly yellow oil (1.58g,

43%).

tert-butyl-2-(3-ethoxy-3-oxopropyl)-2-(7-oxocyclohepta-1,3,5-trien-1-yl)hydrazine-1-

o o carboxylate (4): The Boc protected B-hydrazino acid derivative 2
Ql’\)j\ (4.0g, 17.24mmol) was dissolved in ethanol containing TEA
(7.20mL,N;f;c2mmol) and stirred at room temperature followed by addition of 2-tosyloxy
tropolone derivative 3 (9.5g, 34.48mmol). This reaction mixture was allowed to reflux for 4
days till the disappearance of starting material (2). The reaction was monitored by TLC with
40% ethyl acetate in hexane. After completion of the reaction, the reaction mixture was
concentrated under low pressure. The concentrated crude product was purified by silica gel
column chromatography (230-400 mesh) in 20% Ethyl Acetate in Hexane as mobile phase.
The purified product was obtained as solid yellow color 2.0g (35% vyield) and then
characterized by NMR (*H/**C) and ESI-Mass techniques ."H NMR (400 MHz, deuterated
solvent CDCl3) & 7.58 (s, 1H), 7.20 — 6.95 (m, 4H), 6.84 — 6.74 (m, 1H), 4.15 (g, J = 7.1 Hz,
2H), 3.89 (t, J = 6.7 Hz, 2H), 2.76 (t, J = 6.8 Hz, 2H), 1.41 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H),
B3C NMR (176 MHz, CDCl3) 6 181.63, 172.14, 157.26, 155.27, 136.36, 135.78, 133.60,

127.81, 81.35, 60.66, 49.62, 32.76, 29.65, 28.15, 14.13. HRMS (ESI-TOF) m/z: [M+Na]"

Calcd. for C17H24N>05 359.1572, found 359.1577.

tert-butyl-2-(3-((2-methoxy-2-oxoethyl)amino)-3-oxopropyl)-2-(7-oxocyclohepta-1,3,5-trien-
1-yhhydrazine-1-carboxylate (5a): The dipeptide was

C;fn;s\)L /\n’ ~ synthesized by following general procedure. 155mg (63%

oc
yield) of pure product was obtained as yellow color solid. *H NMR (400 MHz, deuterated
solvent CDCl3) 6 7.97 (s, 1H), 7.81 (s, 1H), 7.28 (s, 1H), 7.23 — 7.03 (m, 3H), 6.86 (t, 1H),
4.04 (d, J = 5.0 Hz, 2H), 3.83 (t, J = 5.1 Hz, 2H), 3.73 (s, 3H), 2.65 (t, J = 5.9 Hz, 2H), 2.09
(s, 1H), 1.44 (s, 9H), *C NMR (101 MHz, CDCls) 5 182.44, 172.17, 170.74, 157.26, 155.58,
371



Chapter 6

137.24, 136.27, 134.00, 129.44, 81.47, 52.23, 50.78, 41.22, 34.62, 28.23. HRMS (ESI-TOF)

m/z: [M+H]" calcd. for C1gH25N306 380.1816, found 380.1817.

tert-butyl-(S)-2-(3-((1-methoxy-1-oxopropan-2-yl)amino)-3-oxopropyl)-2-(7-oxocyclohepta-

@f 1,3,5-trien-1-yl)hydrazine-1-carboxylate (5b): The dipeptide
N:;C)L was synthesized by following general procedure. 110mg (58%
yield) of pure product was obtained as yellow color solid. *H NMR (700 MHz, deuterated
solvent CDCls) 6 7.77 (s, 2H), 7.26 (s, 1H), 7.21 — 7.16 (m, 1H), 7.13 — 7.05 (m, 2H), 6.86 (t,
J = 9.3 Hz, 1H), 458 — 4.50 (m, 1H), 3.97 — 3.89 (m, 1H), 3.76 (s, 1H), 3.73 (s, 3H), 2.71 —
2.53 (M, 2H), 1.44 (s, 9H), 1.40 (d, J = 7.3 Hz, 3H), *C NMR (176 MHz, CDCl3) & 182.34,
173.82, 171.42, 157.26, 155.56, 137.09, 136.21, 133.95, 129.26, 81.49, 58.38, 52.35, 48.24,
34.63, 28.22, 17.53. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for C19H,7N306 416.1792, found

416.1828.

tert-butyl-(S)-2-(3-((1-methoxy-4-methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)-2-(7-

oxocyclohepta-1,3,5-trien-1-yl)hydrazine-1-carboxylate  (5c):

@f /\)L /¢ The dipeptide was synthesized by following general procedure.

NHBoo 135mg (48% yield) of pure product was obtained as yellow

viscous liquid. *H NMR (400 MHz, deuterated solvent CDCls) & 7.80 (s, 2H), 7.34 (s, 1H),
7.24 —7.00 (m, 3H), 6.86 (t, 1H), 4.54 (g, J = 7.7 Hz, 1H), 3.97 — 3.83 (m, 1H), 3.71 (s, 4H),
2.75—2.48 (m, 2H), 1.76 — 1.64 (m, 1H), 1.63 — 1.57 (m, 2H), 1.44 (s, 9H), 0.91 (dd, J = 6.4,
4.2 Hz, 6H), 3C NMR (101 MHz, CDCl3) 6 182.52, 173.92, 171.82, 157.24, 155.68, 137.38,
136.22, 134.04, 129.59, 81.38, 52.17, 51.14, 40.61, 36.66, 34.70, 28.21, 24.83, 22.88, 21.63.

HRMS (ESI-TOF) m/z: [M+H]" calcd. for C,,H33N3Og 436.2442, found 436.2451.

tert-butyl-(S)-2-(3-((1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-oxopropyl)-2-(7-

oxocyclohepta-1,3,5-trien-1-yl)hydrazine-1-carboxylate (5d): The dipeptide was synthesized
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by following general procedure. 112mg (54% yield) of pure product was obtained as yellow

viscous liquid. *H NMR (400 MHz, deuterated solvent CDCl5)

@f /\)L \/g(o\ 8 7.82 (s, 1H), 7.56 (s, 1H), 7.26 (s, 1H), 7.21 — 7.02 (m, 3H),

NHBoc
6.83 (t, 1H), 4.44 (t, 1H), 4.01 — 3.87 (m, 1H), 3.71 (s, 4H),

2.75 — 2.51 (m, 2H), 2.23 — 2.08 (m, 1H), 1.43 (s, 9H), 0.92 (dd, J = 6.6, 3.2 Hz, 6H), *C
NMR (101 MHz, CDCls) & 182.27, 172.79, 171.94, 157.31, 155.67, 137.06, 136.10, 133.95,
129.10, 81.39, 57.91, 52.01, 51.50, 34.91, 30.56, 28.21, 18.98, 18.00. HRMS (ESI-TOF) m/z:

[M+Na]" calcd. for Cp1H3;N3Og 444.2105, found 444.2147.

tert-butyl-2-(3-(((2S,3R)-1-methoxy-3-methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)-2-(7-
oxocyclohepta-1,3,5-trien-1-yl)hydrazine-1-carboxylate  (5e):
@:/ /\)L \/d( The dipeptide was synthesized by following general procedure.
NHBoc o 112mg (48% vyield) of pure product was obtained as yellow
viscous liquid. *H NMR (400 MHz, deuterated solvent CDCls) & 7.83 (s, 1H), 7.57 (s, 1H),
7.24 (s, 1H), 7.20 — 6.99 (m, 3H), 6.83 (t, J = 9.1 Hz, 1H), 4.47 (t, J = 6.4 Hz, 1H), 4.00 —
3.86 (M, 1H), 3.70 (s, 4H), 2.77 — 2.47 (m, 2H), 1.86 (s, 1H), 1.43 (s, 9H), 1.30 — 1.13 (m,
2H), 0.87 (t, J = 7.8 Hz, 6H), 3C NMR (101 MHz, CDCls) & 182.21, 172.80, 171.81, 157.29,
155.67, 137.00, 136.08, 133.95, 129.02, 81.39, 57.11, 51.95, 51.47, 37.22, 34.90, 28.20,
25.29, 15.48, 11.54. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for C2,H33N306 458.2262, found

458.2295.

tert-butyl-(S)-2-(3-((1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3-oxopropyl)-2-(7-
oxocyclohepta-1,3,5-trien-1-yl)hydrazine-1-carboxylate  (5f):

CI /\)L °\ The dipeptide was synthesized by following general procedure.

NHBoc
160mg (50% yield) of pure product was obtained as yellow

viscous liquid. *H NMR(400 MHz, deuterated solvent CDCl3) § 7.73 (s, 1H), 7.60 (s, 1H),

7.27 —7.13 (m, 7H), 7.11 — 7.03 (m, 2H), 6.86 (t, 1H), 4.84 (g, J = 7.8 Hz, 1H), 3.78 (s, 2H),
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3.71 (s, 3H), 3.16 (dd, J = 14.0, 5.5 Hz, 1H), 3.04 (dd, J = 14.0, 8.1 Hz, 1H), 2.66 — 2.47 (m,
2H), 1.44 (s, 9H), °C NMR (101 MHz, CDCl3) & 182.24, 172.48, 171.55, 157.15, 155.41,
137.14, 136.52, 136.18, 133.95, 129.16, 128.44, 126.87, 81.41, 53.69, 52.27, 50.42, 37.48,
34.53, 28.23. HRMS (ESI-TOF) m/z: [M+H]" calcd. for CusH3iN3Og 470.2286, found

470.2291.

methyl-(3-(2-(tert-butoxycarbonyl)-1-(7-oxocyclohepta-1,3,5-trien-1-
yl)hydrazineyl)propanoyl)-L-prolinate (5g): The dipeptide was
synthesized by following general procedure. 96mg (43% Yyield)
NHBoc 5 of pure product was obtained as yellow viscous liquid. 'H NMR
(400 MHz, deuterated solvent CDCl3) 6 7.92 (s, 1H), 7.18 — 6.99 (m, 4H), 6.75 (t, J = 9.0 Hz,
1H), 4.53 — 4.45 (m, 1H), 4.03 (s, 2H), 3.75 (s, 3H), 3.69 — 3.63 (m, 1H), 3.59 — 3.51 (m, 1H),
2.98 — 2.84 (m, 1H), 2.77 — 2.65 (m, 1H), 2.25 — 2.13 (m, 1H), 2.07 — 1.95 (m, 3H), 1.45 (s,
9H), 3C NMR (101 MHz, CDCls) & 181.09, 173.02, 170.67, 157.40, 155.09, 135.70, 133.96,
126.86, 117.90, 81.24, 58.64, 52.32, 50.68, 47.30, 33.27, 29.24, 28.23, 24.72. HRMS (ESI-

TOF) m/z: [M+Na]" calcd. for Cp1HoN3Og 442.1949, found 442.1984.

tert-butyl-2-(3-(((S)-1-(((R)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4-methyl-1-

@f oxopentan-2-yl)amino)-3-oxopropyl)-2-(7-oxocyclohepta-

/\)L o 1,3,5-trien-1-yl)hydrazine-1-carboxylate (5h). The
NHBoc W o/

o tripeptide was synthesized by following general procedure.

Ph

320mg (42% vyield) of pure product was obtained as yellow colour solid. *H NMR (400 MHz,
deuterated solvent CDCl3) 6 8.41 (s, 1H), 7.93 (s, 1H), 7.26 — 7.05 (m, 8H), 7.02 (d, J = 6.7
Hz, 2H), 6.94 — 6.82 (m, 1H), 4.78 (q, J = 7.4 Hz, 1H), 4.49 — 4.38 (m, 1H), 3.98 (s, 1H), 3.67
(s, 3H), 3.58 (d, J = 12.3 Hz, 1H), 3.09 (dd, J = 13.8, 5.6 Hz, 1H), 2.91 (dd, J = 13.8, 7.4 Hz,
1H), 2.69 — 2.54 (m, 2H), 1.78 — 1.65 (m, 1H), 1.64 — 1.52 (m, 2H), 1.46 (s, 9H), 0.89 (dd, J

= 16.4, 6.4 Hz, 6H), *C NMR (101 MHz, CDCls) & 181.86, 172.49, 172.17, 171.37, 157.55,
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155.16, 137.20, 136.31, 136.23, 133.96, 129.18, 128.21, 126.74, 81.42, 53.17, 52.22, 48.73,
40.30, 37.57, 34.29, 28.22, 24.77, 23.02, 21.63. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for

Cs1H42N40O7 605.2918, found 605.2946.

1-(7-oxocyclohepta-1,3,5-trien-1-yl)pyrazolidin-3-one (9): The Troponylpyrazolidinone was
synthesized by following general procedure. The product was purified

o
@ H o by column chromatography with MeOH in CH,CI, (2%). 18mg (94%)

N
T

NMR (*H/**C) and mass spectroscopy. *H NMR (400 MHz, deuterated solvent CDCl3) &

of pure product was obtained as red color solid and characterized by

12.74 (s, 1H), 7.21 — 7.06 (m, 2H), 6.94 (d, J = 11.6 Hz, 1H), 6.64 (t, J = 9.3 Hz, 1H), 6.36 (d,
J = 10.8 Hz, 1H), 3.99 (t, J = 8.6 Hz, 2H), 2.80 (t, J = 8.6 Hz, 2H), *C NMR (101 MHz,
CDCls) & 178.12, 169.05, 150.01, 137.76, 135.62, 132.02, 124.59, 113.50, 47.68, 29.16.

HRMS (ESI-TOF) m/z: [M+H]" calcd. for C10H1oN,0O; 191.0815, found 191.0815.

tert-butyl-2-benzyl-2-(3-ethoxy-3-oxopropyl)hydrazine-1-carboxylate  (2-Bn): The Boc
NHBoc protected p-hydrazino acid derivative 2 (4.0g, 17.24mmol) was
©\/ﬁ\/\n/°Et dissolved in acetonitrile and K,COs (4.75g, 34.48mmol) was added

to it and stirred atoRT followed by addition of benzyl bromide (3.07mL, 25.86 mmol). This
reaction mixture was allowed to stirring at RT for 24 hrs. till the disappearance of starting
material (2). The reaction was monitored by TLC with 40% ethyl acetate in hexane. After
completion of the reaction, reaction mixture was filtrated and concentrated under reduced
pressure to obtain crude product. The concentrated crude product was purified by silica gel
column chromatography (230-400 mesh) in 10-20% Ethyl Acetate in Hexane as mobile
phase. The desired product 2.89 (50%) was obtained as white colour solid and characterized
by NMR (*H/*3C) and mass spectrometric methods. *H NMR (400 MHz, deuterated solvent
CDCl3) § 7.31 (d, J = 4.3 Hz, 4H), 7.27 (d, J = 3.8 Hz, 1H), 5.57 (s, 1H), 4.13 (q, J = 7.1 Hz,

2H), 4.01 (s, 2H), 3.13 (s, 2H), 2.54 (t, J = 6.9 Hz, 2H), 1.39 (s, OH), 1.24 (t, J = 7.1 Hz, 3H),
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13C NMR (101 MHz, CDCl3) § 172.40, 154.97, 136.81, 129.35, 128.23, 127.41, 79.95, 60.36,
51.56, 33.14, 28.27, 14.17. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for Ci7H2sN20,

345.1785, found 345.1779.

tert-butyl-(S)-2-benzyl-2-(3-((1-methoxy-1-o0x0-3-phenylpropan-2-yl)amino)-3-

Ph oxopropyl)hydrazine-1-carboxylate (6a): The dipeptide was

N/\)LN O\ synthesized by following general procedure. 150mg (50%
©/\r'«-|soc H o

yield) of pure product was obtained as white color solid. *H
NMR (400 MHz, deuterated solvent CDCI3) 6 8.33 (s, 1H), 7.35 — 7.18 (m, 10H), 5.43 (s,
1H), 4.86 (q, J = 7.4 Hz, 1H), 3.98 (d, J = 12.5 Hz, 1H), 3.85 (d, J = 12.8 Hz, 1H), 3.72 (s,
3H), 3.24 (dd, J = 13.8, 5.6 Hz, 1H), 3.13 (dd, J = 13.9, 7.9 Hz, 1H), 3.09 — 2.99 (m, 1H),
2.99 — 2.90 (m, 1H), 2.45 — 2.28 (m, 2H), 1.38 (s, 9H), *C NMR (101 MHz, CDCl) 5
172.43, 172.17, 155.60, 136.98, 135.53, 129.67, 129.34, 128.36, 127.71, 126.85, 80.37,
61.73, 53.73, 53.23, 52.16, 37.66, 33.77, 28.22. HRMS (ESI-TOF) m/z: [M+H]" calcd. for

C25H33N3O5 456.2493, found 456.2501.

tert-butyl-2-benzyl-2-(3-(((S)-1-(((R)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4-
/\j\ methyl-1-oxopentan-2-yl)amino)-3-oxopropyl)hydrazine-
©/\EHBOC hﬁ{rﬂ i o 1-carboxylate (6b). The tripeptide was synthesized by
)\ ° Ph following general procedure. 400 mg (55% vyield) of pure
product was obtained as white color solid crystalline. *H NMR (400 MHz, deuterated solvent
CDCls) & 8.45 (s, 1H), 7.33 (q, J = 9.2, 7.9 Hz, 3H), 7.28 — 7.18 (m, 5H), 7.15 (d, J = 6.7 Hz,
3H), 5.40 (d, J = 10.0 Hz, 1H), 4.84 (q, J = 7.5 Hz, 1H), 4.48 — 4.38 (m, 1H), 3.91 — 3.75 (m,
2H), 3.66 (s, 3H), 3.15 (dd, J = 13.8, 5.6 Hz, 1H), 3.01 (dd, J = 13.8, 7.5 Hz, 1H), 2.96 — 2.82
(m, 2H), 2.36 (t, J = 5.5 Hz, 2H), 2.00 — 1.81 (m, 1H), 1.71 — 1.59 (m, 2H), 1.36 (s, 9H), 0.91
(dd, J = 9.9, 6.1 Hz, 6H), **C NMR (101 MHz, CDCl3) & 172.48, 172.30, 172.03, 156.22,

136.50, 134.54, 129.61, 129.44, 128.54, 128.37, 127.96, 126.80, 80.81, 62.66, 54.08, 53.19,
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52.35, 52.17, 40.53, 38.02, 33.88, 28.15, 24.84, 23.10, 21.57. HRMS (ESI-TOF) m/z:

[M+H]" calcd. for C3;H44N4Og 569.3322, found 569.3334.

tert-butyl 2-(3-ethoxypropyl)-2-hexylhydrazine-1-carboxylate (2-Hexyl): The Boc protected

S-hydrazino acid derivative 2 (4.0g, 17.24mmol) was dissolved in

//\V/~\/’\N’~\’JLOEt
NHBoc

acetonitrile and K,CO3 (4.75g, 34.48mmol) was added to it and
stirred at RT followed by addition of 1-Bromohexane (3.6mL, 25.86mmol). This reaction
mixture was allowed to stir at 55°C for 48 hrs. till the disappearance of starting material (2).
The reaction was monitored by TLC with 40% ethyl acetate in hexane. After completion of
the reaction, reaction mixture was filtrated and concentrated under reduced pressure to obtain
crude product. The concentrated crude product was purified by silica gel column
chromatography (230-400 mesh) in 10-20% Ethyl Acetate in Hexane as mobile phase. The
desired product 2.1g (40%) was obtained as slightly yellow colour liquid and characterized
by NMR (*H/*3C) and mass spectrometric methods. *H NMR (400 MHz, deuterated solvent
CDCl3) 6 5.41 (s, 1H), 4.10 (g, J = 7.1 Hz, 2H), 2.98 (s, 2H), 2.67 (s, 2H), 2.50 (t, J = 6.5 Hz,
2H), 1.41 (s, 11H), 1.32 — 1.18 (m, 9H), 0.85 (t, J = 6.5 Hz, 3H), *C NMR (101 MHz,
CDCl3) & 172.56, 155.06, 79.68, 60.37, 58.20, 32.74, 31.69, 28.28, 26.73, 22.54, 14.15,

14.00. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for C16H32N,04 339.2254, found 339.2245.

tert-butyl-(R)-2-hexyl-2-(3-((1-methoxy-1-0x0-3-phenylpropan-2-yl)amino)-3-
oxopropyl)hydrazine-1-carboxylate (7): The dipeptide was

L))LN/\)L /[r( synthesized by following general procedure. 150mg (45%
|
N

HBoc
yield) of pure product was obtained as white viscous liquid. *H

NMR (400 MHz, deuterated solvent CDCl3) & 8.45 —8.30 (m, 1H), 7.34 — 7.16 (m, 5H), 5.35
(s, 1H), 4.81 (g, J = 7.8 Hz, 1H), 3.70 (s, 3H), 3.15 (dd, 2H), 2.98 — 2.76 (m, 2H), 2.74 — 2.53
(m, 2H), 2.40 — 2.24 (m, 2H), 1.47 (s, 9H), 1.34 — 1.23 (m, 8H), 0.90 (t, J = 6.7 Hz, 3H), °C

NMR (101 MHz, CDCls) 6 172.35, 172.26, 155.83, 137.14, 129.30, 128.58, 128.29, 126.70,
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80.28, 58.33, 54.41, 53.74, 52.04, 37.56, 33.73, 31.79, 29.69, 28.30, 26.82, 26.67, 22.58,

14.06. HRMS (ESI-TOF) m/z: [M+Na]" calcd. for C4H3oN305472.2782, found 472.2783.

tert-butyl  2-(3-ethoxy-3-oxopropyl)-2-picolinoylhydrazine-1-carboxylate (2-Picolamide):

% I NHBoc The Picolinoyl derivative peptide ester was synthesized by

N 3 N\/\!)rOEt following general procedure. 1.6g (55% yield) of pure product was
obtained as yellow viscous liquid. *H NMR (400 MHz, deuterated solvent CDCls) & 8.54 (s,
1H), 7.90 — 7.69 (m, 3H), 7.41 — 7.28 (m, 1H), 4.16 (q, J = 7.0 Hz, 2H), 4.02 (t, J = 6.4 Hz,
2H), 2.77 (t, J = 6.7 Hz, 2H), 1.31 — 1.17 (m, 12H), 3C NMR (101 MHz, CDCls) & 171.87,
169.76, 153.00, 147.74, 136.91, 124.81, 124.02, 81.43, 60.65, 45.30, 32.14, 27.84, 14.14.

HRMS (ESI-TOF) m/z: [M+H]" calcd. for C16H23N305 338.1706, found 338.1710.

tert-butyl-(S)-2-(3-((1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3-oxopropyl)-2-

NHBoc . O picolinoylhydrazine-1-carboxylate (8): The tripeptide was

\/\/\/N\/\rrN o~ ) )
o synthesized by following general procedure. 120mg (40%

Ph
yield) of pure product was obtained as white viscous liquid. *H NMR (400 MHz, deuterated
solvent CDCls) & 8.54 (d, ] = 3.7 Hz, 1H), 7.82 — 7.75 (m, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.42
—7.33(m, 1H), 7.30 (d, J = 7.0 Hz, 1H), 7.28 — 7.21 (m, 2H), 7.17 (d, J = 7.0 Hz, 2H), 6.66
(s, 1H), 4.88 (g, J = 6.6 Hz, 1H), 4.07 (s, 1H), 3.91 (d, J = 12.9 Hz, 1H), 3.72 (s, 3H), 3.18 —
3.08 (m, 2H), 2.69 — 2.58 (m, 2H), 1.25 (s, 9H), *C NMR (101 MHz, CDCls) § 172.24,
170.83, 169.97, 147.93, 136.88, 136.04, 129.21, 128.61, 127.09, 124.76, 123.65, 81.54,
53.44, 52.31, 46.50, 37.80, 34.23, 27.90. HRMS (ESI-TOF) m/z: [M+H]" calcd. for

C24H30N4Og 471.2220, found 471.2238.

General procedure for synthesis of N-Troponylpyrazolidinone (9): The Boc-protected
troponyl peptides (~100mmol), containing S-troponyl hydrazino acid, was added to 20-30%

TFA in DCM (~5.0mL) and stirred for 2-3 h at room temperature. The reaction was
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monitored by TLC before characterization by ESI-Mass. The reaction mixture was purified
through silica column chromatography technique. The yield of isolated cyclic product was

~94%.
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Figure Al. *H and *C NMR spectra of troponyl-8-hydrazino ester (4) in CDCl;
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3. Mass study of amide bond hydrolysis in compounds (5a-5h) in (20-30%) TFA
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4. Mass study of Boc deprotection in compounds (6a/6b/7/8) in (20-30%) TFA
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5. Time dependent *H-NMR spectra of amide bond hydrolysis in compounds (5a/5b)
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Figure A53. Time dependent *H-NMR spectra of amide bond hydrolysis in compound (5a)
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Figure A54. Time dependent 1H-NMR spectra of amide bond hydrolysis in compound (5b)
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6. Determination of rate constants (ki) and half-life (t1,) of peptide derivatives (5a/5b)
Procedure for rate constant determination for compounds troponyl-g-hydrazino methyl
glycinate (5a) and troponyl-B-hydrazino methyl alaninate (5b): ~10 mg of troponyl-4-
hydrazino peptides was taken in 560 pL of CDClj solution and it’s "HNMR has been studied
(Figure A52 and A53) before the addition of TFA then 140 puL of TFA added to the CDCl3
solution, then every 5-15 min interval the spectra of troponyl-s-hydrazino peptides were
acquired. All the spectra baselines were corrected and solvent residual peak (TMS) were
adjusted to zero. All the spectra were overlapped for precise integration and integrated using
MestReNova NMR software. The mole fractions (x) were calculated from their desired peaks
from area under the anticipated peak. From integrated NMR spectra, the Mole fraction (x) of
a-CH; of troponyl-g-hydrazino (Starting Material) peptide and Tropidone (Product) vs. time
is plotted. The integral plots of Mole fraction (x) vs. Time were used to calculate the rate
constants. After plotting the graph, we find out that the compounds compounds troponyl-4-
hydrazino methyl glycinate (5a) and troponyl-B-hydrazino methyl alaninate (5b) are

following consecutive first order kinetic pathway. Their rate laws are shown as

+ X
N/\)LX (20-30)% TFA+CH,Cl, @N'Nfo
>

|
NHBoc
6a/H,N-Gly-COMe
X= 5a. H,N-Gly-COMe 9 6b/ HyN-Ala-COMe
5b. H,N-Ala-COMe
Product

Starting Material

B = [AT0 € Kt e, 1)

Ao = Initial of concentration of starting material (A) at time zero, (initial integral value)
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T = Time; k; = rate constants of the reaction;
Half-life of reaction (t12) = In (2)/k

Rate constant and half-life of hybrid peptide (5a) and (5b): Herein we calculated the rate
constant for hydrolysis of troponyl-p-hydrazino peptides (5a) and (5b) with 20% TFA in
CDCl; by time dependent *H-NMR studies. We have extracted integration of f-CH, of
troponyl-B-hydrazino peptide and Tropidone at different interval of time by considering the

CH; residue troponyl-p-hydrazino peptides (5a) and (5b) as reference with integration of 2.0.

Table Al. Integration of the a-CH, of troponyl-B-hydrazino methyl glycinate (5a) and a-CH,

of Tropidone at different time interval from their *H-NMR spectra

S.No | Time | SM Pdt Total X of SM X of Pdt In of X of In of X of
Integration SM Pdt

1 0 2 0 2 1 0 0

2 5 19 0.15 2.05 0.9268293 | 0.073170732 | -0.075985907 | -2.614959778
3 10 1.87 | 0.23 2.1 0.8904762 0.10952381 | -0.115998914 | -2.211613315
4 15 1.72 | 0.31 2.03 0.8472906 0.15270936 | -0.165711502 | -1.879218775
5 20 1.67 | 0.43 2.1 0.7952381 | 0.204761905 | -0.229113718 | -1.585907415
6 25 154 | 0.55 2.09 0.7368421 | 0.263157895 | -0.30538165 | -1.335001067
7 30 143 | 0.66 2.09 0.6842105 | 0.315789474 | -0.379489622 | -1.15267951
8 35 1.33 | 0.79 2.12 0.6273585 | 0.372641509 | -0.466237146 | -0.987138422
9 40 1.17 | 0.87 2.04 0.5735294 | 0.426470588 | -0.555946059 | -0.852211875
10 45 1.06 | 0.95 2.01 0.5273632 | 0.472636816 | -0.639865814 | -0.749428016
11 50 0.97 | 1.06 2.03 0.4778325 | 0.522167488 | -0.738495001 | -0.649766885
12 55 0.86 | 1.11 1.97 0.4365482 | 0.563451777 | -0.828856432 | -0.573673527
13 60 0.79 1.2 1.99 0.3969849 | 0.603015075 | -0.923856972 | -0.505813082
14 65 0.73 1.3 2.03 0.3596059 | 0.640394089 | -1.022746538 | -0.445671529
15 70 0.65 | 1.33 1.98 0.3282828 | 0.671717172 | -1.113879761 | -0.397917902
16 75 0.58 | 1.36 1.94 0.2989691 | 0.701030928 | -1.207415149 | -0.355203273
17 80 0.54 | 1.45 1.99 0.2713568 | 0.728643216 | -1.304320778 | -0.316571082
18 85 0.49 15 1.99 0.2462312 | 0.753768844 | -1.401484527 | -0.282669531
19 90 045 | 1.54 1.99 0.2261307 | 0.773869347 | -1.486642335 | -0.256352222
20 95 0.43 | 1.69 2.12 0.2028302 | 0.797169811 | -1.595386159 | -0.22668756
21 110 | 0.32 | 1.65 1.97 0.1624365 | 0.837563452 | -1.817467826 | -0.177258255
22 125 | 025 | 1.71 1.96 0.127551 0.87244898 | -2.059238834 | -0.136451103
23 140 | 0.21 | 1.78 1.99 0.1055276 | 0.894472362 | -2.248782387 | -0.111521274
24 155 | 0.18 | 1.85 2.03 0.08867 0.911330049 | -2.422834221 | -0.092850154
25 170 | 0.18 | 1.86 2.04 0.0882353 | 0.911764706 | -2.427748236 | -0.09237332
26 185 | 0.14 | 1.86 2 0.07 0.93 -2.659260037 | -0.072570693

SM = Starting Material, Pdt = Product, X = Mole Fraction
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Figure A55. Time-dependent ‘H-NMR kinetic plot-Mole Fraction vs. Time (min) with

hybrid peptide 5a (A) and its exponential plot for half-life calculation (B).
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Table A2. Integration of the a-CH, of troponyl-4-hydrazino methyl alaninate (5b) and a-CH,

of Tropidone at different time interval from their *H-NMR spectra

S.No | Time | SM Pdt Total X of SM X of Pdt In of X of In of X of
Integration SM Pdt

1 0 2 0 2 1 0 0
2 5 1.97 0 1.97 1 0 0
3 10 1.98 0.06 2.04 0.970588235 0.02941176 -0.02985296 -3.52636052
4 15 1.86 0.14 2.00 0.93 0.07 -0.07257069 -2.65926004
5 20 1.7 0.23 1.93 0.880829016 0.11917098 -0.12689175 -2.12719597
6 25 1.81 0.34 215 0.841860465 0.15813953 -0.172141 -1.8442775
7 30 1.75 0.44 2.19 0.799086758 0.20091324 -0.22428576 -1.6048821
8 35 1.58 0.53 2.11 0.748815166 0.25118483 -0.2892631 -1.38156622
9 40 1.6 0.62 2.22 0.720720721 0.27927928 -0.32750357 -1.275543
10 45 1.52 0.71 2.23 0.68161435 0.31838565 -0.38329125 -1.14449189
11 50 1.46 0.81 2.27 0.643171806 0.35682819 -0.4413434 -1.03050086
12 55 1.37 0.9 2.27 0.603524229 0.39647577 -0.50496909 -0.92514035
13 60 1.34 0.96 2.3 0.582608696 0.4173913 -0.54023951 -0.87373112
14 65 1.24 0.99 2.23 0.556053812 0.44394619 -0.58689021 -0.81205192
15 75 1.09 1.19 2.28 0.478070175 0.52192982 -0.73799775 -0.65022214
16 85 0.97 1.37 2.34 0.414529915 0.58547009 -0.88061014 -0.53534019
17 95 0.9 1.44 2.34 0.384615385 0.61538462 -0.95551145 -0.48550782
18 105 0.83 1.54 2.37 0.35021097 0.64978903 -1.04921953 -0.43110754
19 115 0.7 1.58 2.28 0.307017544 0.69298246 -1.18085039 -0.3667506
20 125 0.66 1.73 2.39 0.276150628 0.72384937 -1.28680881 -0.32317196
21 135 0.58 1.79 2.37 0.244725738 0.75527426 -1.40761713 -0.28067434
22 145 0.54 1.81 2.35 0.229787234 0.77021277 -1.47060147 -0.26108848
23 155 0.49 1.91 24 0.204166667 0.79583333 -1.58881863 -0.2283655
24 165 0.43 1.91 2.34 0.183760684 0.81623932 -1.694121 -0.20304769
25 175 0.4 1.92 2.32 0.172413793 0.82758621 -1.75785792 -0.189242
26 185 0.39 1.95 2.34 0.166666667 0.83333333 -1.79175947 -0.18232156
27 200 0.35 1.99 2.34 0.14957265 0.85042735 -1.89997305 -0.16201629
28 215 03 2.04 2.34 0.128205128 0.87179487 -2.05412373 -0.13720112
29 230 0.26 2.14 24 0.108333333 0.89166667 -2.22254239 -0.11466291
30 245 0.26 2.07 2.33 0.111587983 0.88841202 -2.19294192 -0.11831966
31 260 0.2 2.16 2.36 0.084745763 0.91525424 -2.46809953 -0.0885534
32 275 0.16 2.14 2.3 0.069565217 0.93043478 -2.66549059 -0.07210329
33 300 0.13 2.21 2.34 0.055555556 0.94444444 -2.89037176 -0.05715841
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SM = Starting Material, Pdt = Product, X = Mole Fraction
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Figure A56. Time-dependent ‘H-NMR kinetic plot-Mole Fraction vs. Time (min) with

hybrid peptide 5b (A); and its exponential plot for half-life calculation (B).
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7. COPASI Modelling Procedure and Results
COPASI is software application for simulation and analyses of biochemical networks and
their dynamics. Herein we use COPASI software for kinetic modelling and compared our
experimental result with stimulated outputs. The observed rate constants were used to
generate the concentration versus time fitting curves in the model, with initial volume of 0.5
ml and initial time, in minutes, as zero (t = 0) and used with following reaction model: a — b

Plots were generated using Deterministic (LSODA) method in Time Course.

104 n = X of SM_Experimental data £ K
e X of Pdt_Experimental data k,= 0.01672 min ;
b X of SM_Simulated data o 2
® e X Of Pdt_Simulated data
B

0.8 = o
. : — Ny
> "
c . .
- R
S
Q
(U a B
- o \&
% 0.4 - : u .

- 0
= / . . Q 0
- ’ ¢ r’ N,\)LN/\IrO\
0.2 - e NHBoc T O
) . - - -
0.0 +
T = 1 bt L] L L] A L] - T e L) = 1 by L
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Time (min)

Figure A57. Experimental data and kinetic modelled data fitting (in COPASI) for hybrid

dipeptide (5a).
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Figure A58. Experimental data and kinetic modelled data fitting (in COPASI) for hybrid

dipeptide (5b).

8. ESI-MS spectra of compound (5a/5b) after time dependent NMR
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Figure A59. ESI-MS spectrum of amide bond hydrolysis (formation of Tropidone 9) in

hybrid dipeptide (5a) after time-dependent NMR
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Figure A60. ESI-MS spectrum of amide bond hydrolysis (formation of Tropidone 9) in

hybrid dipeptide (5b) after time-dependent NMR
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9. Time dependent *H-NMR spectra of Boc deprotection in compounds (6a/8)
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Figure A61. Time dependent *H-NMR spectra of Boc Deprotection in compound (6a)
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Figure A62. Time dependent *H-NMR spectra of Boc Deprotection in compound (8)

446



Chapter 6

10. UV-Vis Spectroscopic studies for Tropidone (9) formation in hybrid dipeptide (5a/5b)
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Figure A64. Comparison of hybrid dipeptide (5a) before and after TFA addition with

Tropidone (9) by UV-Vis spectroscopy
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Figure A65. Time dependent UV-Vis spectra of peptide 5b in 20% TFA (CH3CN)

——peptide (5b) n ACN
1 0 ——(peptide (8b) n 20% ACN«TFA after 210 min
— T opddone (9)
0.8
0
Q
C 06+
e
2 o
a 4 4
<
0.2 -
0.0

300 350 400 450 500 550
Wavelength (nm)

Figure A66. Comparison of hybrid dipeptide (5b) before and after TFA addition with

Tropidone (9) by UV-Vis spectroscopy.
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11. UV-spectra of Tropidone (9)
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Figure A67. UV-spectra of Tropidone (9) in Acetonitrile

12. Mass study of amide bond hydrolysis in compounds (5a) in different acid conditions

Table S3. Amide bond hydrolysis in different acid condition

Reaction Compound

Condition PR
(Starting Material)

Major Product formed after 2hrs

30% TFA
in CH:Cl:
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Figure A68. ESI-MS of hybrid dipeptide (5a) after 2 h in different acid (4N HCI, 4N HCIO,,

and 4N AcOH).
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13. X-Ray crystallographic Studies of new compounds 5a/ 9/ 5h/6a

A suitable single crystal of each complex was carefully selected under a polarizing
microscope. Single crystal structure determination by X-ray diffraction was performed on a
Siemens SMART-CCD diffractometer equipped with a normal focus, 2.4 kW sealed-tube X-
ray source (Mo—Ka radiation, A = 0.71073A) operating at 50 kV and 30 mA. Structures were
solved by the direct method using SHELXT 2014 and refined on F2 by a full-matrix least-
squares technique using the SHELXL 2014 programs package. An empirical absorption
correction based on symmetry equivalent reflections was applied using SADABS. The
graphic programs DIAMOND 3.2 was used to draw the structures. Non-hydrogen atoms were
refined anisotropically. In the refinement, hydrogens were treated as riding atoms using the
SHELXL default parameters. The crystal structure of (9), (5a) and (5h) are deposited to the
Cambridge crystallographic Data centre (CCDC) with CCDC with numbers CCDC 2003627,
CCDC 2003629 and CCDC 2003628 respectively. The CCDC number of control peptide is

2003627.
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Table A4. Crystal data and structure refinement for Compound 5a

CCDC Number
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o/°

pre

v/°

Volume/A3

Z

pcalcg/cm3
wmm-1

F(000)

Crystal size/mm3
Radiation

20 range for data collection/®

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3

2003627

data_nks_nrd 144(5a)
C18H24N306

378.40

293(2)

monoclinic

C2/c

26.555(10)
6.0271(13)
28.976(13)

90

115.99(5)

90

4168(3)

8

1.206

0.091

1608.0

0.215 x 0.125 x 0.012
MoKa (A =10.71073)
6.828 t0 52.744
-29<h<32,-6<k<7,-36<1<36
20924

4250 [Rint = 0.0802, Rsigma = 0.0638]
4250/0/252

1.001

R1=0.0617, wR2=0.1543
R1=0.1017, wR2=0.1731
0.21/-0.19

Figure A69. ORTEP diagram and packing diagram in unit shell of hybrid dipeptide (5a)
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Chapter 6

Table A5. Crystal data and structure refinement for Compound 5h

CCDC
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o/°

pr°

v/°

Volume/A3

z

pcalcg/cm3
wmm-1

F(000)

Crystal size/mm3
Radiation

20 range for data collection/°

Index ranges
Reflections collected

CCDC 2003628
data_nks_nrd-tr-tptd (5h)
C1.97H2.67N0.2500.44
37.00

296.54(18)
orthorhombic
pP212121

11.5951(2)
15.3645(3)
18.9752(5)

90

90

90

3380.49(13)

63

1.145

0.667

1248.0

0.01 x 0.002 x 0.001
CuKa (A =1.54184)
7.404 to 148.948
-14<h<10,-19<k<18,-23<1<23
25955

Independent reflections 6767 [Rint=0.0852, Rsigma = 0.0553]
Data/restraints/parameters 6767/0/389

Goodness-of-fit on F2 1.057

Final R indexes [[>=2c (I)] R1=0.0683, wR2=0.2023

Final R indexes [all data] R1=0.0811, wR2=10.2176

Largest diff. peak/hole / e A-3 0.17/-0.28

Flack parameter 0.04(16)

Figure A70. ORTEP diagram and packing diagram in unit shell of hybrid tripeptide (5h)
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Table A6. Crystal data and structure refinement for Compound 6a

CCDC
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o/°

pr°

v/°

Volume/A3

z

pcalcg/cm3
wmm-1

F(000)

Crystal size/mm3
Radiation

20 range for data collection/°

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2
Final R indexes [[>=2c (I)]
Final R indexes [all data]

Largest diff. peak/hole / e A-3

Flack parameter

;

CCDC 2003626
data_nks _nrd 117(6a)
C25H33N305
455.54

112.1(4)

hexagonal

P61

13.8479(6)
13.8479(6)
22.9802(10)

90.00

90.00

120.00

3816.4(3)

6

1.189

0.677

1464.0

0.0012 x 0.0012 x 0.001
CuKoa (A =1.54184)
7.38 to 148.7

-14<h<16,-17<k<16,-27<1<28

20076

4951 [Rint =0.1942, Rsigma = 0.1480]

4951/1/303

1.128

R1=0.1121, wR2 = 0.2865
R1=0.1417, wR2 = 0.3197
0.43/-0.57

0.3(5)

Chapter 6

Figure A71. ORTEP diagram and packing diagram in unit shell of hybrid tripeptide (6a)
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Chapter 6

Table A7: Crystal data and structure refinement for Tropidone (9)

CCDC
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o/°

pr°

v/°

Volume/A3

z

pcalcg/cm3
wmm-1

F(000)

Crystal size/mm3
Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections

Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3

2003627

data_ NKS_NRD 50 (9)
C10H10N202

190.20

298.0

monoclinic

P21/c

9.7164(4)

12.3920(4)

7.6809(3)

90

105.389(4)

90

891.67(6)

4

1.4167

0.834

401.4

0.001 x 0.0001 x 0.0001
Cu Ka (A =1.54184)
9.44 to 153.88
-11<h<12,-15<k<12,-9<
1<9

6532

1838 [Rint =0.1030, Rsigma =
0.0431]

1838/0/127

1.034

R1=0.0805, wR2=0.2538
R1=0.0853, wR2=0.2620
0.37/-0.34

Figure A72. ORTEP diagram and packing diagram in unit shell of Tropidone (9)
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Cu-Catalyzed Synthesis of Alkylaminotroponyl Sulfones as
Pseudomonas Aeruginosa Quorum Sensing Inhibitors Targeting

lasl/R QS Circuitry

Sagarika Meher,” < Supriya Kumari,™® Manjusha Dixit,*® < and Nagendra K. Sharma*® ¢

Abstract: The scarcity of novel bioactive molecules against
multidrug-resistant (MDR) bacterial strains like Pseudomonas
aeruginosa is alarming, This bacterial virulence is regulated
via Quorum sensing (QS), a cell-cell communication process.
Disabling QS circuits (las, pgs, rhl) with small molecules has
been proposed as a potential strategy to prevent bacterial
pathogenicity. This strategy focuses on interruption of
bacterial virulence, rather than killing them to tackle the drug
resistance problem. Herein, we describe the synthesis of
rationally designed Alklyamionotroponyl Sulfone (ATS) deriva-

tives by Cu-catalyzed C(sp”)—H functionalization at tropone
ring and the screening of their anti-QS activity against
P. aeruginosa. Importantly, two sulfones (~20 pM) remarkably
exhibit the down regulation of the lasl/R QS genes. These
molecules also inhibit swarming motility, biofilm formation
and pyocyanin production, which reduce P. geruginosa viru-
lence in cells. Hence, ATS derivatives could be considered as
potential therapeutic candidates for the treatment of P. aeru-
ginosa infections.

J

Introduction

Bacterial infections have remained a primary cause of concern
throughout history.!" Persistent use of antibiotics as mono-
therapy or in combination has definitely reduced mortality but
at the same time is the leading cause of redundant emergence
of antibiotic-resistant bacteria pathogenic strains.” Drug de-
signing strategies must be changed in order to find a
sustainable solution to counteract the emerging multidrug
resistance issue.” One such multidrug-resistant and highly
adaptable bacterium responsible for nosocomial infections is
Pseudomonas aeruginosa (PA)." The bacterium is a well-known
causative agent of cystic fibrosis and airway infections. Various
reports suggest that the emergence of multidrug-resistant PA is
higher than that of novel antibiotics produced for treating the
same. It has been reported as the prime reason for hospital-
acquired infection in European countries.” Biofilm formation,
Pyocyanin secretion, and protease production are a few
important virulent factors possessed by the bacterium.” Ability
to form biofilm is an added advantage for this bacterium that
reduces the efficacy of any drug by limiting its penetration
potential inside the cell. These virulent factors, as well as their
capacity to conquer antibiotics, are controlled by the complex
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School of Chemical Sciences; National Institute of Science Education and
Research (NISER), Jatani, 752050 Bhubaneswar, Odisha (India)
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cell to cell chemical signaling system known as quorum sensing
(QS)."® The lasl/R QS circuit regulates the expression of virulent
factors.” Elastase a protease encoded by lasB gene under QS
regulon is the most virulent factor. It is responsible for
disrupting the tight junctions between host epithelial cells.
Pyocyanin production increases oxidative stress and alters the
mitochondrial electron transport system of the host."” There-
fore, to control bacterial infections, drug-designing strategies
should be advanced, aiming the inhibition of the virulence
factors against designing the complete bactericidal drugs.
However, the development process might be a reason of
concern owing to its safety issues against human uses.

In the literature, sulfone derivatives are bioactive molecules
that serve as not only popular antibiotics but also potential
drug candidates for the treatment of AIDS/HIV infection and
Alzheimer's disease (Figure 1a)."" Tropolone, a non-benzenoid
aromatic molecule, is constituent of many troponoid natural
products, which exhibit diverse biological activities such as
antibacterial, anti-inflammatory, antitumor, and antiviral
activity.™"” For example, the naturally occurring Thujaplicin
and synthetic analogue tropolonyl-naphthalenyl urea are
potent antibiotics (Figure 1b/c). Thus we rationally designed
troponyl-sulfones by synergizing sulfones and troponyl moieties
in a single scaffold for exploring their efficacy on PA (Figure 1d).
Herein, we planned to synthesize troponyl-sulfone derivatives

Previous Report

@ [C] (n)TmsReport
)} 7 OH@ @ i \ /fsg-w—m
//‘*ONa 5 Alkylaminotropanyl Sulfone | :

Sulbactam Sodium  Thujaplicin ~ Tropolonylnaphthalenyl Urea _(aTS) ;

Figure 1. Antibiotic and anti-quorum sensing compounds (reported and this
report) — (a-c) previous reports; (d) This report.

© 2022 Wiley-VCH GmbH
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Tropolone-Conjugated DNA: A Fluorescent Thymidine
Analogue Exhibits Solvatochromism, Enzymatic
Incorporation into DNA and HelLa Cell Internalization

Sagarika Meher*,*" Chandrasekhar Reddy Gade*,®" and Nagendra K. Sharma*®"

Tropolone is a non-benzenoid aromatic scaffold with unique
photophysical and metal-chelating properties. Recently, it has
been conjugated with DNA, and the photophysical properties
of this conjugate have been explored. Tropolonyl-deoxyuridine
(tr-dU) is a synthetic fluorescent DNA nucleoside analogue that
exhibits pH-dependent emissions. However, its solvent-depend-
ent fluorescence properties are unexplored owing to its poor
solubility in most organic solvents. It would be interesting to

Introduction

2"-Deoxyribose nucleic acid (DNA) is the genetic material of
the living organism. It is synthesized through polymerase
chain reactions using the building block deoxyribonucleoside
triphosphate (dNTP)."! Recently, structurally modified DNA
has been synthesized to meet desired functional properties,
including fluorescence properties.” The native DNA is a
nonfluorescent molecule but it can become fluorescent by
the extension of m-conjugation at nucleobases or by the
chemical ligation of selective chromophores/fluorescent dyes
at nucleobases.”’ There are two major sites of DNA for
attaching the chromophores/dyes/fluorophores which are
the sugar unit and nucleobase rings. The fluorophore-
conjugated nucleobases have emerged as powerful synthetic
tools to improve fluorescence efficiency.’ The attachment
of chromophores/ fluorophores through the linker at the
functional group (amine/azide/alkyne) of DNA has become
attractive and economical method for labeling DNA.®! The
addition of chromophore directly at nucleobases, by main-
taining coplanarity, is a major concern to retain the canonical
base pairing ability by hydrogen bonding.” Synthetic fluo-
rescent nucleobases preserve or do not preserve the W—C
hydrogen base pairing. The C-nucleosides containing
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ChemBioChem 2023, 202200732 (1 of 7)

incorporate it into DNA primer enzymatically. This report
describes the solvent-dependent fluorescence properties of the
silyl-derivative, and enzymatic incorporation of its triphosphate
analogue. For practical use, its cell-internalization and cytotox-
icity are also explored. tr-dU nucleoside was found to be a
potential analogue to design DNA probes and can be explored
for various therapeutic applications in the future.

naphthalene, phenanthrene, pyrene, stilbene, and coumarin
fluorogenic aromatic scaffold are known no to preserve W—C
hydrogen bonding.” The introduction of the appropriate
electron-withdrawing group (EWG) on a purine ring and
electron-donating groups (EDG) on a pyrimidine ring induce
the fluorescence character of nucleobases with preserving
the W—C hydrogen bonding®“® Recently, Hocek and co-
workers have prepared functional DNA by appending alkyne
linker at nucleobase for sensing and cross-linking which are
helpful for studying the protein-DNA binding modulation
and transcription.®™? Saito and co-workers have coupled an
aryl residue at deoxyguanosine though ethynyl linker for
exploring the base-discriminating fluorescent (BDF) and
environmentally sensitive fluorescent (ESF) probes.'” Bag
and co-workers have attached the aromatic scaffold at the
nucleobases through propenyl(methyl) amino group and
aromatic scaffold, which are microenvironment-sensitive
fluorescent nucleobase analogs."" Tor and co-workers have
reported the fluorescent ring fused-cytosine analogs such as
pyrrole fused cytosine (pC) and thiophenyl-pC."? Wilhelmson
and co-workers have appended a phenyl scaffold at the
cytidine pyrimidine ring through a sulfur-containing six-
membered heterocyclic ring to make fluorescent analogs."*
Srivatsan and co-workers have developed microenvironment-
sensitive hetero bicyclic pyrimidine fluorescent RNA
analogs."¥ Kool and co-workers have synthesized various
fluorescent DNA analogs using different organic fluorophores
directly at sugar rings for labeling the DNA.” Most of the
chromophores are derived from the benzenoid aromatic
scaffolds. In the repertoire of functional DNA synthesis, the
non-benzenoid moiety conjugated DNA analogs are not well
explored. Tropolone is non-benzenoid aromatic scaffold and
its related derivatives are constituents of troponoid natural
products (Figure 1)."* Tropolone has unique intramolecular
hydrogen bonding, photophysical properties, and metal
chelating ability, strongly with Cu?"/Ni**/Zn?" ions."® Re-

© 2022 Wiley-VCH GmbH
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Instability of Amide Bond with Trifluoroacetic Acid (20%): Synthesis,
Conformational Analysis, and Mechanistic Insights into Cleavable
Amide Bond Comprising f-Troponylhydrazino Acid

Nihar Ranjan Dalabehera,’ Sagarika Meher,® Bibhuti Bhusana Palai,§ and Nagendra K. Sharma*
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ABSTRACT: The instability of an amide bond with dilute trifluoroacetic acid (TFA) is a
rare chemical event. The native amide bonds are stable even in the neat TFA, which is one of
the reagents that releases the peptides from the solid support in the solid-supported peptide
synthesis method. In the repertoire of unnatural peptidomics, a-/f-hydrazino acids and their
peptides are explored for the synthesis of N-amino peptide derivatives, and their amide bonds
are stable in TFA (~100%) as natural amide bonds. This report describes the synthesis of a
P-hydrazino acid analogue as f-troponylhydrazino acid, containing a nonbenzenoid natural
troponyl scaffold. The structural and conformational studies of their hybrid di-/tripeptides
with the natural amino acid show that the 2-aminotroponyl residue is involved in hydrogen
bonding. Surprisingly, the amide bond of -troponylhydrazino peptides is cleavable with TEA
(~20%) through the formation of a new heterocyclic molecule N-troponylpyrazolidinone or
troponylpyrazolidinone. Tropolone and related compounds are excellent biocompatible
chromophores. Hence, ff-troponylhydrazino acid could be employed for tuning the peptide
structure and considered a promising chromophoric acid-sensitive protecting group of a free amine of amino acids/peptides. It could
be applied for the estimation of the free amine group functionality by a UV—vis spectrophotometer.

|l Metrics & More | @ Supporting Information

B INTRODUCTION

Natural amide bonds are pretty stable, with an estimated half-

is cleaved/hydrolyzed with enzymes such as proteases. The
zinc metal-dependent peptidase cleaves the specific amide

life of around ~350—600 years for spontaneous hydrolysis at
neutral pH and room temperature (RT)."” The natural amide
bonds are resonance-stabilized. The carbonyl group of the
natural amide is inert toward the nucleophilic addition
reaction.”” The cleavage/hydrolysis of amide bonds could be
achieved under extreme conditions as the heating under
strongly acidic or basic conditions. However, the cyclic amides
(lactams) are more cleavable as compared to the linear amides
because of ring-strained amides.””” A large number of ring-
strained lactams are synthesized and their poor stability is
reported even under mild conditions because of the resonance
decoupling through N—C=O torsion, which induces the
strong electrophilicity at the C=0 group as ketonic carbonyl.*
The cleavage of an amide bond without metal ions becomes a
center point of discussion. Brown and co-workers have shown
that the resonance decoupling enhances the hydrolysis rate in
the strained amide bond because of the direct nucleophilic
attack.™ For instance, the twisted amide of 1l-aza-2-
admantanone derivatives is a highly strained lactam ring and
readily cleavable under mild conditions.'” This twisted amide
also shows the dual reactivities such as (i) nucleophilic
character of amine and (ii) electrophilicity of the carbonyl. The
hydrolysis of linear amide bonds is also possible by decoupling
the N—C=O resonance stability within the structurally
modified amide bonds. However, the sequence-specific amide

© 2020 American Chemical Society

7 ACS Publications

bond through zinc ion mediation. These results encourage the
synthetic chemists for the development of artificial pepti-
dases."’ Mashima and co-workers have explored the role of
zinc ions in the cleavage of amides bearing f-hydroxyethyl
using Lewis acid Zn(OTf),."> Recently, the activation of
specific amide bonds has been explored using a metal catalyst.
For example, Garg, Houk, and co-workers have shown the
conversion of an amide functional group into an ester group by
cleaving the C—N bond of amide with the Ni-catalyst."” The
cleavage of the amide bond under near-physiological
conditions is still challenging. Booker-Milburn and co-workers
have reported the solvolysis of acyclic synthetic amide bonds at
RT under neutral conditions via the formation of ketene
intermediates.'* They have shown that an electron-with-
drawing group, at the a-position, of amide carbonyl enhances
the protonation of sterically hindered amide amine and
facilitates the formation of ketene by cleaving the C—-N
bond of amide. In a recent report, the cleavage of the terminal
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