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SUMMARY

The radio frequency to the far-infrared regime of the electromagnetic spectrum plays

a crucial role in developing technologies for communication, the environment, health-

care, astronomy, and entertainment industries. Conventional electric field sensing

involves calibrated dipole probes and antennas for electric field measurements. There

are resonantly enhanced detectors which also need to be calibrated. Hence, the need

for calibration and the inability to detect fields smaller than mV/cm range with cal-

ibration free detectors limits the use of these electromagnetic probes in modern

technologies. On the other hand, the atom-based sensors are self-calibrated owing

to their universal properties and can detect a field of the order of µV/cm.

This thesis aims to explore microwave field sensing with Rydberg atoms in ther-

mal rubidium vapor. Transitions between Rydberg states span from less than a MHz

to THz, allowing a wide operating frequency range. Large dipole moments and large

polarizability makes the Rydberg atoms prone to even weak external electric fields.

The usual all optical detection of Rydberg states is achieved through electromag-

netically induced transparency (EIT). When the applied microwave field is strong

enough to dress the Rydberg state, splitting in the EIT peak is observed. The extent

of the splitting gives a measure of the strength of the electric field experienced by

the atoms. The modulation bandwidth in these systems is limited to a few MHz.

This limitation is because of the optical pumping rate to the EIT dark state. The

six-wave mixing of optical and microwave fields in thermal atomic vapor leads to

the parametric generation of a new optical field, which is expected to be an instan-

taneous process, limited by the available coupling Rabi frequency.. The generated

field is along the direction of the probe field, resulting in an interference beat signal.

The generation bandwidth has an FWHM ∼ 17 MHz. The temporal response of

the system is investigated by amplitude modulation of the generated field, and it



SUMMARY xvii

is observed that the bandwidth of the modulation spectrum matches perfectly with

the beat spectrum bandwidth, both limited by available coupling Rabi frequency.

The modulation spectrum bandwidth determines the temporal response of the sys-

tem. Hence, the effect of coupling Rabi frequency on the beat spectrum bandwidth

is explored theoretically. With increased coupling Rabi frequency, the bandwidth

of the beat spectrum increases for off-resonance conditions. The sensitivity of the

detected electric field is given Emin√
Hz

, where Emin is the minimum detectable electric

field dictated by the linewidth of the EIT signal, which is nearly 3-4 MHz for the

two-photon EIT process. A theoretical study is performed for four-photon excita-

tion to the Rydberg state. The motion-induced dephasing can be eliminated in such

a system. It is observed that an EIT transparency of nearly 100% is achieved with

zero residual wave-vector. It is not easy to achieve this condition using two-photon

excitation processes in alkali atoms. Whereas the Doppler-free condition can be

achieved under suitable conditions and beam geometry for the four-photon excita-

tion process. An experiment is proposed with rubidium to study the four-photon

excitation to the Rydberg state. The laser beams are arranged such that they make

small angles with respect to the horizontal axis of the rubidium vapor cell to reduce

the residual wave vector to zero. This leads to the elimination of the motion-induced

dephasing in the system. The microwave field sensing using two-photon Rydberg

EIT is compared with the field sensing through a four-photon excitation process by

evaluating the minimum detectable field for both cases with similar parameters. For

optimal parameters and laser geometry, a narrow EIT linewidth of 230 kHz can be

achieved, resulting in the total sensitivity of microwave field detection to be ∼ 55

nV cm−1 Hz1/2. Lastly, an experimental design is proposed to perform microwave

field sensing using the four-photon excitation process.
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Chapter 1

Introduction

1.1 Atom-based sensors

Atomic spectroscopy lays the foundation for many precise measurements of physical

quantities. Due to the invariance of the atomic properties over time, they act as

an accurate detection method for various applications. The spectroscopic signals of

atomic transitions are affected due to external perturbations such as the presence

of electromagnetic fields. Atom-based measurements are being used to set the time

and frequency standards [1–5], length standards [6], measure electric fields [7–12],

magnetic fields [13–18], and gravity [19], inertia and rotation. These sensors can

either be prepared by using room temperature atoms in a vapor cell [7], or laser

cooled atoms through optical and magnetic fields [17]. The room temperature vapor

cell experiments are comparatively easier to realize and implement for quantum

device purposes.

1.2 Conventional vs. atom-based E-field sensing

Many scientific queries in communication technology, healthcare, weather, astron-

omy, electronic devices, etc., need to be answered over a wide frequency range from

radio frequency (RF) to far-infrared (FI) regime. This requires precise measure-
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ment of the electric field strength. The conventional electric field sensing method

involves using dipole antennas or electromagnetic probes [20–22]. The probe can

be visualized as a diode placed across a dipole antenna. Calibrating these probes

is difficult as they need to be placed in a known field. In order to have a known

field, a calibrated probe is necessary. The uncertainties in the measurement of the

known field are nearly 5 % [23]. The probes are used below the resonant frequency

of the dipole to avoid the issues of perturbation and variations in the response at

resonance. The size of the probe is limited by the electronics and the size of the

dipole antenna. There are various limitations to using such probes, such as:

� The probes need to be calibrated over time.

� The metallic nature of the probe can perturb the measurement of the electric

field.

� The sensitivity of the measured electric field depends on the length of the

dipole used as long as no resonant enhancement is used.

� The minimum detectable field is of the order of 1 mV/cm, which limits the

sensitivity [24].

The research community targeted to make the measurements directly traceable to

SI units and fundamental physical constants to avoid discrepancy [23, 25]. From the

atomic transition frequencies, the frequency of the electromagnetic field interacting

with the atoms can be determined precisely and accurately. Frequency can be

related to other physical quantities through fundamental constants. Hence, the

atom-based methods can provide a precise measurement of the physical quantities.

The advantages of atom-based sensing methods over the conventional techniques are

listed below:

� The atomic systems are self-calibrating; do not need to be calibrated as the

atomic properties do not change over time.

� The perturbation is very little as the probe is very small compared to the

wavelength of the electromagnetic field.
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� The atom-based measurements link the different physical quantities to each

other through fundamental constants and can be traced to SI units.

� The sensitivity is very high with low field strengths of the order of 1 µV/cm

[26].

� The atomic systems provide the advantage of measuring fields over a wide

frequency range from MHz to THz.

1.3 Review of Rydberg atom-based E-field sens-

ing

Rydberg atom-based microwave field sensing was realized using highly excited Ry-

dberg atoms contained in a vapor cell [7]. These highly excited Rydberg atoms [27]

allow a wide range of transition frequencies which can be achieved using diode lasers.

Electromagnetically induced transparency (EIT) [28, 29] provides a non-destructive

approach to detect these Rydberg states [30]. EIT results in probe transmission

around resonance, rather than absorption, within a narrow frequency range. This

happens due to destructive interference of the excitation pathways: (a) direct probe

absorption and (b) probe absorption along with the coherent excitation and de-

excitation by the coupling beam. Several studies have been performed to develop

an atomic probe for sensing electric fields using Rydberg EIT. With their large

atomic dipole moment, the Rydberg atoms allow free space efficient coupling of mi-

crowave and THz fields to optical fields [7, 8, 31] without the need for any optical

cavity. In contrast, most systems need cavities to enhance the coupling of microwave

fields to optical fields [32–34]. The coupling of microwave and THz fields to optical

fields leads to various applications such as sub-wavelength imaging [35, 36], detec-

tion of millimeter waves [37], storing quantum information [38], transfer of quantum

states from microwave to optical domain [39], THz imaging [31], etc. Presence of

the microwave field leads to the splitting of the EIT peak or absorption within the
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transmission window, which is also a quantum interference process. As frequencies

can be measured precisely through atomic transitions, measuring the splitting of

the EIT peak provides an accurate measurement of the electric field strength of the

microwave field. The minimum detectable field amplitude with Rydberg EIT, using

a two-photon excitation process, is 8 µV/cm with a sensitivity of 30 µVcm−1Hz−1/2

[7]. This sensitivity was improved to 5 µVcm−1Hz−1/2 with the minimum detectable

field of 1 µV/cm using a homodyne detection method [26].

1.4 Motivation to study microwave field sensing

with Rydberg atoms in thermal vapor

The field of microwave sensing using Rydberg atoms has developed exponentially

over the decade and offers vast prospects for data communication technology. Several

companies have been founded to make use of these methods. Usual microwave field

sensing involves the usual two-photon excitation process to the Rydberg state with

a probe and coupling field to achieve EIT. The Rydberg state is then coupled to

another nearby Rydberg state with a microwave field. Two major limitations exist in

the RF electric field sensing using the two-photon Rydberg-EIT method. The first

one is that the signal bandwidth or the modulation bandwidth determined from

amplitude/frequency/phase modulation of the microwave field is limited to only a

few MHz [40–42]. This limitation is set by the optical pumping rate to the EIT dark

state, which depends on the coupling field Rabi frequency and natural line-width

of the intermediate state, which is 6 MHz for rubidium. The other limitation is

that the sensitivity of the detected electric field is limited by the linewidth of the

EIT signal, which is typically a few MHz [43], let’s say about 3-4 MHz, for the two-

photon Rydberg excitation process. The modulation bandwidth helps to determine

the temporal response a system. The limitation in the signal bandwidth served as a

motivation to develop a plan which can have a larger bandwidth and hence, a faster

data transfer rate. Also, the need to create a system with higher sensitivity to detect
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electric fields provided an investigation direction for the thesis. Also, the thermal

vapor systems are easier to execute for application purposes than the cold atomic

systems with bulky metallic setups which can perturb the microwave fields. Hence,

electric field sensing in thermal vapor system are beneficial for practical applications.

1.5 Contribution of the thesis to the field of mi-

crowave field sensing and data communication

technology

This thesis work is focused on sensing microwave fields using Rydberg atoms in

thermal atomic vapor.

(A) As an introduction to this research field, this thesis provides an overview of the

study of microwave field sensing with Rydberg atoms in thermal atomic vapor using

a two-photon Rydberg EIT system.

� Experiments have been performed to demonstrate the field sensing using two-

photon excitation processes, and a theoretical model has been provided.

� Analog communication has been demonstrated using the two-photon Rydberg

EIT system.

(B) The thesis also presents a six-wave mixing of optical and microwave fields in

thermal atomic vapor.

� The demonstrated six-wave mixing process leads to a parametric generation

of a new optical field with a generation bandwidth of 17 MHz.

� A theoretical model is provided to understand the experimental results. The

optical Bloch equations are solved using a perturbative expansion of the den-

sity matrix, and also, the wave propagation equations are solved for the gen-

erated field.
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� The temporal response of the system is explored through amplitude modula-

tion of the generated fields. The system shows a modulation bandwidth, same

as the signal generation bandwidth, limited by the available coupling Rabi

frequency rather than any fundamental limitation.

� A theoretical study is performed to understand that the bandwidth can be

increased significantly with the increase in coupling Rabi frequency without

compromising the efficiency of the sensor.

� This system offers a huge technological advantage of faster data transfer rate

for communication technology. Also, it is a thermal vapor system. Executing

such systems to quantum devices is much easier compared to complex ultra-

cold atomic systems.

(C) Further studies in the thesis involve the theoretical study of the four-photon

excitation process to the Rydberg state.

� A theoretical model of four-photon excitation to the Rydberg state is provided.

� The elimination of motion-induced dephasing is achieved through the use of

lasers of suitable wavelength and arranging the laser fields properly through

the atomic vapor cell.

� The four-photon process helps to achieve a narrow electromagnetically in-

duced transparency (EIT) signal with transparency of ∼ 0.9 by eliminating

the motion-induced dephasing in the system.

� An experimental proposal is provided for performing the four-photon excita-

tion to the Rydberg state in thermal rubidium vapor.

(D) A theoretical study on microwave field sensing is performed using the four-

photon excitation process to the Rydberg state.

� With suitable parameters, the four-photon process helps achieve a narrow

line-width electromagnetically induced transparency (EIT) signal with a band-

width of 230 kHz.
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� It provides a higher sensitivity of detected electric field, which is of the order

of ∼ 55 nVcm−1Hz−1/2.

� Designing of the experiment is discussed briefly.

1.6 Layout of the thesis

The thesis consists of six chapters, including the introduction chapter and excluding

the appendix section. The layout of the thesis is provided below.

• Chapter 2 gives an introduction to a special class of atoms known as Rydberg

atoms and its various properties. It includes the basics of atom-light interaction,

where the atomic model of two-level and three-level systems is discussed. The three-

level system is used to explain the phenomenon of EIT. Since the experiments in

the thesis involve the use of the rubidium atomic system, the energy levels of the

rubidium system are discussed. Finally, the techniques to stabilize the frequency of

the probe and coupling laser fields are presented.

• Chapter 3 provides an introduction to Rydberg electrometry, where mi-

crowave field sensing is investigated using EIT in a two-photon excitation process.

As an application, analog communication with Rydberg atoms is demonstrated us-

ing this system. Finally, the limitations of field sensing with a two-photon EIT

system are discussed, which provided the motivation for further investigations.

• Chapter 4 discusses the six-wave mixing phenomenon of optical and mi-

crowave fields in thermal atomic vapor using Rydberg atoms. The generation of a

new optical field due to the six-wave mixing process is studied, and the temporal

response of the system is investigated using amplitude modulation of the generated

field. A theoretical model is provided for a four-level system, and the wave prop-

agation equations are solved for the generated fields to explain the experimental
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observations. Finally, a theoretical study is performed to understand the effect of

coupling Rabi frequency on the signal bandwidth.

• Chapter 5 provides a theoretical study on EIT using four-photon excitation

to the Rydberg state in a thermal atomic medium. It describes an atomic model of

a five-level system to achieve EIT with a four-photon excitation process where the

motion-induced dephasing is eliminated. The effect of residual wave-vector on peak

EIT transmission is studied. The method of adiabatic elimination is discussed to

reduce the complex-five level system to an effective three-level system. Finally, an

experimental proposal is discussed to realize the system with rubidium atomic vapor.

• As an outlook to the thesis, Chapter 6 provides a theoretical study on mi-

crowave field sensing using a four-photon excitation process to the Rydberg state

in thermal atomic vapor. An atomic model is provided to observe EIT and study

the effect of a microwave field on EIT with four-photon excitation to the Rydberg

state. A comparison is provided between the field sensing using the two-photon and

four-photon excitation process, and the sensitivity of the detected electric field for

the four-photon excitation system is estimated. Finally, a brief experimental plan

is provided, which includes some designing using SOLIDWORKS.

The thesis focuses on microwave field sensing with thermal Rydberg atoms. How-

ever, a theoretical study of EIT in the strong blockade regime using the four-photon

excitation process has also been performed, which does not fit into the focus of the

thesis. Hence, it has been included in the appendix. The Appendix discusses the

study of EIT in the strong blockade regime using the four-photon excitation process

in thermal rubidium vapor.



Chapter 2

Basics of coherent Rydberg

excitation in rubidium vapor

Atom-light interaction lays the foundation for research in atomic and molecular

physics. This chapter introduces Rydberg atoms [27] and their properties followed

by a scaling law of these properties with the principal quantum number (n). The

chapter also describes atom-light interaction using a simple two-level and three-level

system [44]. The concept of the three-level system is further used to explain the phe-

nomenon of electromagnetically induced transparency (EIT) [28, 29, 45]. Since the

experiments in the thesis involve the use of the rubidium atom, the properties of the

rubidium atomic system are described. Finally, a discussion on the techniques to sta-

bilize the frequency of the laser fields to a particular atomic transition is presented,

which involves Doppler-free absorption spectroscopy and frequency stabilization us-

ing EIT locking technique [46].

2.1 Rydberg atoms

Atoms in which the valence electron is excited to a very high principal quantum

number (n) state are known as Rydberg atoms [27]. The interest in exploring

Rydberg atoms draws long back to the time of the discovery of the Balmer series of
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spectral lines for Hydrogen atoms in 1885. Later, in 1888, the entire spectral series

of the Hydrogen atom was explained by J. Rydberg, and he provided the Rydberg

formula for deriving the energy levels of the highly excited atoms, which helped in

explaining atomic spectroscopy. The unique properties of Rydberg atoms fueled the

interest to explore such atoms.

2.1.1 Properties of Rydberg atoms

Two crucial motivations led to the investigation of Rydberg atoms. First, all the

properties of Rydberg atoms show regular n dependence, allowing researchers to

verify the measurements accurately and consistently. Second, atoms in the Rydberg

state offered an opportunity to use their exaggerated properties, which was not

possible in the case of ground state atoms. As the highly excited valence electron

in a Rydberg atom is loosely bound to the ionic core, it exhibits high sensitivity to

even a small external electric field compared to any normal atom, which provides a

promising scope for DC electric field sensing [47]. Also, Rydberg atoms can be used

for quantum information processing because of the strong long-range interaction

between them [48, 49]. The controllable strong interaction results in a phenomenon

called the Rydberg blockade [50–52], which enables manipulation of qubits.

2.1.1.1 Scaling laws of Rydberg atom properties

The various properties of Rydberg atoms can be scaled with the principal quantum

number (n), which is presented in Table. 2.1. The size of the Rydberg atom, given

by the orbital radius, goes as n2. Compared to the ground state, let’s say n=5, the

atom in the Rydberg state with n=60 has a size larger by 144 times. The larger size

results in a strong dipole moment (µ), which also goes as n2. The lifetime of the

Rydberg states goes as n3, which means that high n Rydberg states are long-lived.

Hence, such states have narrow natural linewidth. The energy difference between the

Rydberg states ∆En ∝ n−3. This suggests that the energy difference between Ryd-

berg states decreases with increasing n. So the high n Rydberg states are continuum
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states above the ionization limit. The field needed to ionize the Rydberg atoms goes

as n−4. The ionization field is a million times smaller than the field needed to ionize

the Hydrogen atom in the ground state. Field ionization is also a technique that

has been used to detect the highly excited Rydberg states [53]. The polarizability of

the Rydberg atoms given by µ2

∆En
goes as n7, which has been exploited to measure

d.c. electric fields [30]. The polarizability and the dipole moment increase strongly

for states with high n, which exaggerates the sensitivity of the Rydberg states to

external electric fields [54]. The strong van der Waals Rydberg-Rydberg interaction

[55] depends on n11 which is the reason for the Rydberg blockade phenomenon and

many-body effects observed for interacting Rydberg atoms [56, 57].

Table 2.1: Scaling laws with n

No Properties n scaling

1 Orbital radius n2

2 Dipole moment n2

3 Binding energy n−2

4 Energy between adjacent n states n−3

5 Radiative Lifetime n3

6 Ionization field n−4

7 Polarizability n7

8 van der Waals interaction n11

2.1.2 Quantum defect

Using the quantum defect approach, for a single valence electron atom such as the

H atom as a special case, the energy levels of Rydberg atoms are calculated. The

Rydberg states of an alkali atom are similar to that of an H atom. Considering an

alkali atom such as Rubidium (Rb), Rb+ core has a +1 charge, with the core having

37protons and 36 electrons. The Rydberg electron spends most of its time far from

the core and at the highly excited n state. There is a very nominal difference between

the H atom and the Rb atom at such a state. So, the properties of Rydberg atoms

are expected to be similar to the H atom. But if the Rydberg electron approaches the

Rb+ core, it polarizes and penetrates the Rb+ core which changes the wave functions
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Figure 2.1: Energy levels of 85Rb up to n = 100. The figure is obtained using ARC
documentation [58].

and energies of the Rb Rydberg state from the H atom. If the atoms are in a higher

orbital angular momentum state (l), the Rydberg electron cannot penetrate the

Rb+ core or the penetration is almost zero. So, the differences between H and Rb

are insignificant. But for low-lying l states, the core polarization and penetration

reduce the energies of the low l states. The high l states of Rb and the H levels are

observed to be degenerate, but there is a difference in energy for low-lying l states.

The formula for the energy of the low l Rydberg states is given by

Enl = − Ry

2(n− δnl)2
(2.1)
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Figure 2.2: Quantum defect values for 85Rb for l = 0 − 3. The figure is obtained
using ARC documentation [58].

where δnl is the observed quantum defect for states with orbital angular momentum

l and Ry is the Rydberg constant given by Ry = 109721.6 cm−1. The energy levels

for such atoms can be categorized into different series, with each series corresponding

to a different value of l as shown in Fig. 2.1. δnl is a slowly varying function of n for

a given l, so it can be considered to be nearly independent of n. It has been found

experimentally that Eqn.(2.1) is suitable for alkali atoms with one electron outside

the closed shell configuration. Quantum defects for different alkali atoms for the

first few angular momentum states are listed in Table. 2.2 [59, 60]. It can be seen

Table 2.2: Quantum defect values for alkali atoms at different l states.

l Li Na K Rb Cs

s 0.40 1.35 2.19 3.13 4.06
p 0.04 0.85 1.71 2.66 3.59
d 0.00 0.01 0.25 1.34 2.46
f 0.00 0.00 0.00 0.01 0.02
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that the value of δnl decreases drastically for higher values of l. This indicates that

the energy of high l lying states are nearly degenerate with H atom. δnl is depicted

as a function of n for different l states in Fig. 2.2 for 85Rb.

2.2 Atom-light interaction and the refractive in-

dex

The interaction of monochromatic optical fields with the atomic system can be

understood by solving the optical Bloch equations for the system using a semi-

classical model [44]. Here, the laser field is considered a classical electromagnetic

field, whereas the atomic system is treated with a quantum mechanical approach.

This section discusses the basics of atom-light interaction using the two-level and

three-level systems coupled with monochromatic optical fields in the ladder config-

uration.

2.2.1 Non-interacting two-level atoms in gas density N

Figure 2.3: Schematic of energy levels of a two-level system where |g⟩ and |e⟩
represent the ground state and the excited state respectively.

The two-level system is the simplest configuration to study the atom-light in-

teraction. It consists of a ground state |g⟩ and an excited state |e⟩ coupled by a
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monochromatic probe field of frequency ωp as shown in Fig. 2.3. The energy differ-

ence between the states is given by Ee−Eg = ℏω1−0 = ℏω1 with ω1 being the atomic

resonance frequency. The detuning of the probe beam from the atomic resonance

is given by ∆p = ωp − ω1. The probe field is represented by E⃗ ′
p = E⃗pe

−iωpt + c.c.

The Rabi frequency of the probe is given by Ωp = 2µgeEp

ℏ where µge, Ep denote the

transition dipole moment and electric field amplitude corresponding to the probe

field respectively. The bare atomic Hamiltonian for the two-level system is written

as H0 = ℏω1|e⟩⟨e|. The interaction Hamiltonian between the optical field and the

atomic system is Hint = −µ⃗ · E⃗ = −(Epe
−iωpt + c.c)(µge|g⟩⟨e|+µeg|e⟩⟨g|). The total

Hamiltonian for the system is given as

H̃ = H0 +Hint =

 0 −(Epe
−iωpt + c.c)µge

−(Epe
−iωpt + c.c)µeg ℏω1

 .

This Hamiltonian is time-dependent. Using a unitary operation, the frame of refer-

ence can be transformed to a rotational frame of reference where the Hamiltonian

becomes time independent. In such a case, the rapidly oscillating terms are ne-

glected. This approximation holds for the case when the applied laser field is near

the resonance. The unitary operator used for the two-level system is

U =

 1 0

0 e−iωpt

 .

The Hamiltonian in the rotating frame is given by the operation H = U †H̃U −

iℏU † dU
dt

such that

H =

 0 −(Ep + E∗
pe

−2iωpt)µge

−(E∗
p + Epe

2iωpt)µeg ℏ(ω1 − ωp)

 .

After the use of rotating wave approximation, the rapidly oscillating terms with
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frequency 2ωp are neglected to find the total time-independent Hamiltonian as

H = −ℏ
2

 0 Ωp

Ω∗
p 2∆p

 .

The system is understood by studying the optical Bloch equation or the master

equation, which is written as

ρ̇ =
i

ℏ
[ρ,H] + LD(ρ). (2.2)

Here, ρ is the density matrix of the system defined by the 2× 2 matrix as

ρ =

 ρgg ρge

ρeg ρee


and LD(ρ), the Lindblad operator [61], constituting the decay and decoherence pro-

cesses occurring in the system, is given by

LD(ρ) =

 Γegρee −1
2
Γegρge

−1
2
Γegρeg −Γegρee

 .

Here, ρgg and ρee represent the population in the ground and excited states, re-

spectively. ρeg represents the coherence between the states |g⟩ and |e⟩ created by

the probe laser field. Γeg is the population decay from the excited state to the

ground state, which is the inverse of the lifetime of the state. For a closed system,

ρgg+ρee = 1, ρeg = ρ∗ge and for stationary states ρ̇ij = 0. The optical Bloch equations

for the steady state are written as

i

2
[2∆pρge − 2Ωpρee + Ωp]−

Γeg

2
ρge = 0 (2.3)

i

2
[Ω∗

pρge − Ωpρeg] + Γegρee = 0 (2.4)
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Figure 2.4: For a two level-system with atoms at rest: (a) Real (ℜ(χ)) and imaginary
(ℑ(χ)) part of the susceptibility are given by red closed circles and cyan closed circles
respectively and (b) probe transmission. ℜ(χ) provides an estimate of the dispersion
induced by the atomic light interaction in the medium and ℑ(χ) estimates the
absorption of the input light while propagating through the atomic medium. Laser
parameters are: Ωp = 0.1 MHz, Γeg = 6 MHz and density of the atoms (N) is 1010

cm−3.

The above Bloch equations are solved to find out ρee and ρeg as

ρee =
Ω2

p

2Ω2
p + 4∆2

p + Γ2
eg

(2.5)

ρeg =
Ωp(−iΓeg − 2∆p)

2Ω2
p + 4∆2

p + Γ2
eg

(2.6)

The susceptibility of the probe field coupling the |g⟩ → |e⟩ transition is

χ(ωp) =
2N | µge |2

ℏϵ0Ωp

ρeg (2.7)

where N is the density of the atoms inside the atomic medium. The refractive index

is given by

n =
√

1 + χ = (1 +
χ

2
) = (1 +

ℜ(χ)
2

) + i
ℑ(χ)
2

= ℜ(n) + iℑ(n). (2.8)

ℜ(χ) represents the dispersion of the laser field due to the atomic medium, whereas

ℑ(χ) is the measure of absorption of the laser field by the medium, represented in
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Fig. 2.4(a). The transmission of the probe through the atomic medium is

T = (
I

I0
) = e(−αl) (2.9)

where α = ℑ(χ)kpl is the absorption coefficient and l is the path length of the laser

field through the atomic medium. The transmission of the probe for the two-level

system with atoms at rest is represented by Fig. 2.4(b). The situation will be

different in the case of a three-level system where the presence of a second laser

field changes the response of the atomic medium as compared to that in a two-level

system.

2.2.2 Dressed state picture

The atomic wave function for the two-level system is represented as |ψ⟩ = Cg(t)|g⟩+

Ce(t)|e⟩ where Cg(t) and Ce(t) represent the probability amplitude at time t for the

atom to be in state |g⟩ and |e⟩ respectively. The two-level Hamiltonian eigenvalues

are found by solving the characteristic eigenvalue equation |H − ΛI| = 0. The

diagonalization of the matrix using the eigenvalue equation gives

−ℏ
2

 0 Ωp

Ω∗
p 2∆p

− Λ

1 0

0 1

 = 0 (2.10)

=⇒ Λ = −ℏ
2

(
∆p ±

√
∆2

p+ | Ωp |2
)
= −ℏ

2

(
∆p ± Ω′). (2.11)

Ω′ =
√
∆2

p+ | Ωp |2 is defined as the generalized Rabi frequency.

The eigenstates for the given eigenvalues are found as

|ψ+⟩ = sin
θ

2
|g⟩+ cos

θ

2
|e⟩ (2.12)

|ψ−⟩ = cos
θ

2
|g⟩ − sin

θ

2
|e⟩ (2.13)

where we define | Ωp |= Ω′ sin θ, ∆p = Ω′ cos θ and tan θ = |Ωp|
∆p

. |ψ+⟩ and |ψ−⟩ are
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the energy eigenstates known as the dressed states.

When ∆p = 0:

When the applied field is on resonance to the atomic transition, i.e., ∆p = 0, then

Ω′ =| Ωp |. The energy eigenvalues are given by Λ± = ∓ℏ
2
| Ωp |. The dressed

states have equal energy and are equally separated from the unperturbed atomic

bare states but in opposite directions.

When ∆p ≫| Ωp |:

When the applied field is such that ∆p ≫| Ωp |, then the energy eigenvalues are

Λ+ = −ℏ∆p − ℏ|Ωp|2
4∆p

and Λ− = ℏ|Ωp|2
4∆p

. The dressed states are separated from the

bare atomic states by a factor of |Ωp|2
4∆p

and in the opposite direction. The difference

between the energy eigenvalues gives the separation between the dressed states to

be −ℏ∆p − ℏ|Ωp|2
2∆p

. The factor |Ωp|2
4∆p

is the light shift factor that is introduced into

the system because of the strong applied laser field. The formation of the dressed

states depends on the detuning and Rabi frequency of the laser field.

2.2.3 Three level system

Figure 2.5: Schematic of energy levels of a three-level system in ladder configuration.
|g⟩, |e⟩ and |r⟩ represent the ground, intermediate and the excited state respectively.
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Consider a three level system in ladder configuration consisting of states |g⟩,

|e⟩ and |r⟩, as shown in Fig. 2.5, where the atomic resonance frequency between

states |g⟩ and |e⟩, |e⟩ and |r⟩ is given by ω1 and ω2 respectively. Excitation from

|g⟩ → |e⟩ and |e⟩ → |r⟩ are dipole allowed whereas the excitation from |g⟩ → |r⟩

is dipole forbidden. The coherence between |g⟩ and |e⟩ (|e⟩ and |r⟩) is created

by probe (coupling) field of frequency ωp (ωc) given by E⃗ ′
p = E⃗pe

−iωpt + c.c (E⃗ ′
c =

E⃗ce
−iωct+c.c). The detuning of the probe (coupling) field from the atomic resonance

is given by ∆p = ωp − ω1 (∆c = ωc − ω2). The two photon detuning is defined by

δ = (∆p + ∆c). The Rabi frequency of the probe and coupling field is given by

Ωp =
2µgeEp

ℏ and Ωc =
2µerEc

ℏ respectively. µge (µer) and Ep (Ec) denote respectively

the transition dipole moment and electric field amplitude corresponding to the probe

(coupling) field.

The total Hamiltonian for the system is written as H̃ = H0 +Hint where H0 =

ℏω1|e⟩⟨e| + ℏ(ω1 + ω2)|r⟩⟨r| is the bare atomic Hamiltonian and Hint = −µ⃗ · E⃗ =

−Ep(µge|g⟩⟨e|+ µeg|e⟩⟨g|)−Ec(µer|e⟩⟨r|+ µre|r⟩⟨e|) is the interaction Hamiltonian

that represents the interaction between optical fields and atomic medium. After the

use of rotating wave approximation, the time-independent total H is found to be

H = −ℏ
2


0 Ωp 0

Ω∗
p 2∆p Ωc

0 Ω∗
c 2(∆p +∆c)

 .

The optical Bloch equation or the master equation is given by

ρ̇ =
i

ℏ
[ρ,H] + LD(ρ) (2.14)

where ρ is the 3× 3 density matrix of the three-level system. LD(ρ) is the Lindblad

operator, represented as

LD(ρ) =
∑
if

Γif

[
CifρC

†
if −

1

2
{C†

ifCif , ρ}
]
. (2.15)



2.2 Atom-light interaction and the refractive index 21

Cif is defined as Cif = |f⟩⟨i| where |f⟩ is the final state and |i⟩ is the initial state.

Lindblad operator matrix is written as

LD(ρ) =


Γegρee + Γrgρrr −1

2
Γegρge −1

2
(Γrg + Γre)ρgr

−1
2
Γegρeg Γreρrr − Γegρee −1

2
(Γrg + Γre + Γeg)ρer

−1
2
(Γrg + Γre)ρrg −1

2
(Γrg + Γre + Γeg)ρre −(Γrg + Γre)ρrr

 .

The population decay rates from state |e⟩ → |g⟩ and |r⟩ → |e⟩ are represented by

Γeg and Γre respectively. Decay from |r⟩ → |g⟩ is forbidden as the excitation is

not dipole allowed. But there is a transit time decay Γrg from |r⟩ → |g⟩ due to

the transverse motion of the atoms through the cross-section of the beam. As the

system is a closed system ρgg + ρee + ρrr = 1. Also, for stationary states ρ̇ij = 0.

The optical Bloch equations for the steady state are

i

2
[−2∆pρge + Ωp(2ρee + ρrr)− Ωp − Ω∗

cρgr]−
Γeg

2
ρge = 0 (2.16)

i

2
[−2δρgr + Ωpρer − Ωcρge]−

(Γrg + Γre)

2
ρgr = 0 (2.17)

i

2
[Ω∗

pρge − Ωpρeg + Ωcρre − Ω∗
cρer] + Γreρrr − Γegρee = 0 (2.18)

i

2
[Ω∗

pρgr − 2∆cρer + Ωc(ρrr − ρee)]−
(Γrg + Γre + Γeg)

2
ρer = 0 (2.19)

i

2
[Ω∗

cρer − Ωcρre]− (Γrg + Γre)ρrr = 0 (2.20)

The system is solved for the steady state to find ρeg. The susceptibility of the probe,

coupling the ground state |g⟩ to the excited state |e⟩, is given by

χ(ωp) =
2N | µge |2

ℏϵ0Ωp

ρeg (2.21)

where N is the density of the atoms inside the atomic medium. ℜ(χ) and ℑ(χ)

express the dispersion and absorption of the probe, respectively. The transmission
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of the probe beam is given as

T = (
I

I0
) = e(−αl) (2.22)

where α = ℑ(χ)kpl is the absorption coefficient. l is the optical path length through

the atomic medium.

2.2.4 Electromagnetically Induced Transparency (EIT)

Electromagnetically induced transparency (EIT) [29, 62] is an efficient and non-

destructive technique to probe the atoms in the Rydberg states [45]. EIT makes

the medium transparent to the probe light within a narrow frequency window. The

narrow frequency regime, called the transparency regime, shows enhanced nonlinear

response. EIT abruptly changes the absorption and dispersion of the probe beam

within the narrow transparency regime [63]. The phenomenon of EIT was termed by

Harris and his coworkers, who first demonstrated EIT in optically thick strontium

vapor in 1991 [28]. Later in 1991, they also demonstrated EIT for pressure broadened

lead vapor [64]. Since then, several studies have been performed to utilize EIT for

different applications. The significant applications are compression of light pulses

inside the atomic medium or the ’slow light’ [65], development of quantum memory

through control of the storage and retrieval of light pulses [66]. All these applications

are possible because the group index can be controlled efficiently within the narrow

EIT regime, and a large group index of the order of 106 can be achieved with EIT

[63].

2.2.4.1 EIT in a three-level system

EIT can be observed in a three-level ladder system with weak probe and strong

coupling fields. The strong probe field dresses the intermediate state and leads to the

formation of two dressed states. There can be excitation from both the dressed states

to the Rydberg state. Quantum destructive interference between the excitation
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Figure 2.6: Probe transmission as a function of probe detuning (∆p) in the absence
(olive open circles) and presence (red closed circles) of coupling field. Laser param-
eters used in the model are Ωp = 100 kHz, Ωc = 5 MHz, Γeg = 6 MHz, Γre = 10
kHz, Γrg = 100 kHz and ∆c = 0. Density of the atoms (N) is 1.7× 1010 cm−3.

pathways changes the absorption of the probe field to otherwise transmission within

a narrow frequency regime around the resonance. This leads to the modification

of the response of the optical system to the atomic medium and gives rise to large

optical nonlinearity.

The three-level system has been discussed in detail in the previous section. The

optical Bloch equation of a three-level system for the steady state, in the weak probe

limit, i.e., Ωp ≪ Ωc, are

i

2
[−2∆pρge − Ωp − Ω∗

cρgr]−
Γeg

2
ρge = 0 (2.23)

i

2
[−2δρgr − Ωcρge]−

(Γrg + Γre)

2
ρgr = 0 (2.24)

The above equations are solved numerically to find ρeg. The susceptibility of the
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probe and the transmission is calculated as discussed in Sec. 2.2.3. The probe

transmission in the EIT regime is shown in Fig. 2.6. In the absence of the coupling

beam, the probe is absorbed as expected. In the presence of the coupling beam,

we observe transparency around the resonance instead of absorption of the probe

beam.

2.2.5 Adiabatic elimination of the intermediate state: Ef-

fective two-level system

Figure 2.7: Schematic of energy levels of (a) three-level system and (b) effective
two-level system.

A three-level system can be treated like an effective two-level system by elimi-

nation of the intermediate state under certain conditions, i.e., ∆p ≫ Ωp,Γeg. This

process of reducing a system to an effective system with effective parameters by

eliminating the intermediate state is known as the adiabatic elimination process

[67]. Under the conditions of adiabatic elimination, if the initial population in the

intermediate state |e⟩ is zero, then it will not get populated further and hence, can

be neglected or eliminated. The schematic of the effective two-level system obtained

from a three-level system is represented in Fig. 2.7. It consists of two states |g⟩

and |r⟩ with effective Rabi frequency (detuning) given by Ωeff (∆eff ). Performing a
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translation operation H → H ′ = H + ℏ
2
δI gives

H ′ = −ℏ
2


−δ Ωp 0

Ω∗
p 2∆p − δ Ωc

0 −Ω∗
c δ

 .

The time-dependent Schrödinger equation is represented as iℏ ∂
∂t
|ψ(t)⟩ = H ′|ψ(t)⟩,

where |ψ(t)⟩ = Cg(t)|g⟩+Ce(t)|e⟩+Cr(t)|r⟩ is written in terms of the orthonormal

basis states. The equations for the complex coefficients are derived as

2i
∂

∂t
Cg(t) = δCg(t)− ΩpCe(t) (2.25)

2i
∂

∂t
Ce(t) = −Ω∗

pCg(t) + (δ − 2∆p)Ce(t) + ΩcCr(t) (2.26)

2i
∂

∂t
Cr(t) = −δCr(t)− Ω∗

cCe(t) (2.27)

Under conditions of adiabatic elimination, ∂
∂t
Ce(t) = 0. Hence, Ce(t) is found as

Ce(t) = − Ω∗
pCg(t)

(∆p−∆c)
− ΩcCr(t)

(∆p−∆c)
. Substituting the value of Ce(t) in the other two equa-

tions, the Hamiltonian for the effective two-level system is derived as

Heff =
ℏ
2

 δ + |Ωp|2
(∆p−∆c)

ΩpΩc

(∆p−∆c)

Ω∗
pΩ

∗
c

(∆p−∆c)
|Ωc|2

(∆p−∆c)
− δ

 .

The effective Hamiltonian is similar to the Hamiltonian of a two-level systemH2level =

ℏ
2
Ω|g⟩⟨r| + ℏ

2
Ω|r⟩⟨g| + ℏ∆|r⟩⟨r| with Rabi frequency Ω and detuning ∆. By com-

paring the effective two-level system with a simple two-level system, the effective

Rabi frequency is found out to be Ωeff = ΩpΩc

(∆p−∆c)
and the effective detuning is

∆eff = δ + |Ωp|2
2(∆p−∆c)

− |Ωc|2
2(∆p−∆c)

. The density matrix ρ for the effective system

is given by a 2 × 2 matrix. The decay from |e⟩ → |g⟩ is faster than |r⟩ → |e⟩,

i.e. Γeg ≫ Γre. Hence, the atoms in state |r⟩ can be considered to decay directly

into state |g⟩. The effective decay, including the transit time decay, is written as

γrg ≈ Γrg +Γre. ρrg and ρrr are found by solving the optical Bloch equations in the



26 Basics of coherent Rydberg excitation in rubidium vapor

Figure 2.8: Comparison of an effective two level system (open olive circles) with a
three level system (red solid line) at large probe detuning ∆p = 600 MHz. Other
parameters used in the model are Ωp = 50 MHz, Ωc = 5 MHz, Γeg = 6 MHz,
Γre = 10 kHz and Γrg = 100 kHz. Density of the atoms (N) is 1.7× 1010 cm−3.

steady state:
i

2
[Ω∗

effρgr − Ωeffρrg] + γrgρrr = 0 (2.28)

i

2
[Ωeff (1− 2ρrr)− 2∆effρgr]−

γrg
2
ρgr = 0 (2.29)

The above equations are solved numerically to find ρeg, in terms of ρrg and ρrr, from

the three-level system [68] as

ρeg =
Ωp(ρrr − 1)− Ωcρrg

2∆p + iΓeg

. (2.30)

A comparison of the effective two-level system with the three-level system at large

probe detuning, i.e., under conditions of adiabatic elimination, shows a good agree-

ment between the two, as shown in Fig.2.8. The figure shows ℜ(ρeg) for the two

systems at large probe detuning. The adiabatic elimination process is helpful in

studying a complex system with a larger number of atomic levels, such as a five-

level system where it can be reduced to simpler, effective system. This will be

discussed in the forthcoming chapters.



2.3 Energy levels of rubidium atom 27

2.3 Energy levels of rubidium atom

Alkali atoms are popular in atomic physics as their excitation frequency from the

ground to the first excited state falls in the visible and infrared region. Hence, light

can be easily generated for the optical transition. Also, due to their considerable

vapor pressure at low temperatures, alkali metal atoms can be readily made available

for manipulation by laser beams by heating. They have one valence electron in the

outermost shell and behave like Hydrogen-like atoms. The study in this thesis is

based on optical excitation with rubidium atomic medium. Rubidium has ground

state electronic configuration of 1s2 2s2 2p6 3s2 3d10 4s2 4p6 5s1 with atomic number

37. It has two naturally occurring isotopes 85Rb and 87Rb with a relative abundance

of 72.2% and 27.8%, respectively.

Figure 2.9: Energy levels of rubidium. D1 and D2 lines for (a) 87Rb and (b) 85Rb

The alkali metal atoms have a closed shell configuration with one valence elec-

tron; hence, the core does not contribute to the orbital angular momentum L. The

valence electron contributes to the orbital angular momentum. The orbital angular

momentum L and the spin angular momentum S provide the total angular momen-
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tum J . It is expressed as J⃗ = L⃗ + S⃗ with | L − S |≤ J ≤| L + S |. For rubidium,

ground state valence electron configuration is 5S1 with L = 0 and S = 1
2
and hence,

its ground state is written as 5S 1
2
with J = 1

2
. The excited state 5P can have J = 1

2

or J = 3
2
as L = 1 and are represented as 5P 1

2
and 5P 3

2
. These are called the fine

structure states. The interaction of the total angular momentum J with the nuclear

angular momentum I is given by F⃗ = J⃗ + I⃗ with | I − J |≤ F ≤| I + J |. This

leads to the formation of hyper-fine states. For 87Rb with I = 3
2
, the ground state

5S 1
2
splits into hyper-fine states given by F = 1, 2, the excited state 5P 1

2
splits into

hyper-fine states given by F = 1, 2, and the excited state 5P 3
2
splits into hyper-fine

states given by F = 0, 1, 2, 3. For 85Rb with I = 5
2
, the ground state 5S 1

2
splits

into hyper-fine states given by F = 2, 3, the excited state 5P 1
2
splits into hyper-fine

states given by F = 2, 3, and the excited state 5P 3
2
splits into hyper-fine states given

by F = 1, 2, 3, 4. The transition from 5S 1
2
→ 5P 1

2
is called the D1 line and from

5S 1
2
→ 5P 3

2
is called the D2 line. The states of rubidium are represented in Fig. 2.9

for 85Rb and 87Rb. The work in this thesis is related to the D2 line of rubidium.

2.4 Doppler broadening

Due to the thermal motion of the absorbing or emitting atoms, their absorbing or

emitting frequencies are Doppler-shifted. As different atoms have different velocities,

the Doppler shift broadens the spectral lines of the gases at low pressure. The

Lorentzian line profile of the spectral lines is concealed by various broadening effects

from which the significant contribution comes from the Doppler broadening. If the

atom moves with velocity v, the atom moving towards the light source experiences

a blue shift in the frequency, and the atom moving away from the light source

experiences a redshift. The Doppler shifted frequency given by ω = ω0+ k⃗ · v⃗, where

ω is the frequency of laser beam experienced by the atom due to its motion, ωo is

the frequency of the laser beam in the rest frame of the atom, k⃗ is the wave vector

of the laser beam, and v⃗ is the velocity of the atom in consideration.

In thermal atomic ensemble, the atoms follow a Maxwell Boltzmann velocity
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distribution, which in 1D, is given by the function f(v)dv = 1√
πvp
e
− v2

v2p dv. vp =
√

2kbT
m

is the most probable velocity of the atoms, kb is the Boltzmann constant, m is the

mass of the atom, and T is the average temperature of the ensemble of atoms. While

working with a thermal atomic ensemble, the different physical quantities need to be

averaged over the velocities of the atoms to take into account the effect of Doppler

broadening.

2.4.1 Doppler effect in a three-level rubidium atomic system

Figure 2.10: Two dimensional density plots for probe transmission as a function
of detuning of the laser field and atomic velocity for the ladder configuration where
kp = 1.28166×106 m−1 and kc = 2.08333×106. Other parameters used are Ωp = 500
kHz, Ωc = 5 MHz, Γeg = 6 MHz, Γre = 10 kHz, and Γrg = 100 kHz. The density of
the atoms is 1.7× 1010 cm−3.

The atom-light interaction in a three-level ladder system has been discussed in

Sec. 2.2.3, which can be used to excite the atoms to the Rydberg state. The two-

photon excitation to the Rydberg state in a rubidium atomic medium is realized with

a probe field (ωp) at 780 nm and a coupling field (ωc) at 480 nm having wave vectors

kp and kc respectively. The laser fields are taken to be in a counter-propagating

configuration to reduce the wave-vector mismatch. The analytical solution for the

ground state to excited state coherence under the conditions of EIT, i.e., in the weak

probe limit, is calculated to be
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ρeg =
i

2
Ωp

(∆p +∆c − iΓ31+Γ32

2
)

(−i∆p − Γ21

2
)(∆p +∆c − iΓ31+Γ32

2
) + iΩ

2
c

4

(2.31)

For the same velocity class of atoms in thermal vapor, the detuning of the fields are

modified as ∆p → ∆p − kpv and ∆c → ∆c + kcv. The susceptibility of the probe

field coupling the transition from |g⟩ → |e⟩ is calculated as

χ(∆i, v)f(v)dv =
2N | µge |2

ℏϵ0Ωp

1√
πvp

ρeg(∆i, v)e
− v2

v2p dv (2.32)

where i = p, c. The probe transmission is calculated using Eqn. (2.22). The trans-

mission components in the two-dimensional display are presented in Fig. 2.10, where

the left and the right figure represent the transmission with probe field scan and

coupling field scan, respectively. The different velocity groups contribute to the

transmission components across the Doppler profile. Drawing a horizontal line on

the plots represents the same velocity class of atoms, and the intersection of the hor-

izontal line with the colored curves represents the laser field detuning corresponding

to the transmission components for the particular velocity class of atoms. A ver-

tical line on the plots represents a particular laser detuning, and its intersection

with the curves corresponds to the different velocity groups of atoms contributing

to the transmission components. For the zero velocity group of atoms, the trans-

mission is maximum around the resonance, which corresponds to the maximum EIT

transparency.

2.5 Scaling of hyperfine and fine structure split-

ting due to wave vector mismatch between

the probe and coupling laser fields

In the case of two hyperfine states and fine structure states, the frequency axis is

calibrated differently for the hyperfine splitting and fine structure splitting. This is
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Figure 2.11: Energy level scheme where |g⟩ represents the ground state, and |r⟩
represents the Rydberg state: (a) for hyperfine states |e⟩ and |e′⟩ and (b) for fine
structure states |r⟩ and |r′⟩. ∆hf and ∆f represent the hyperfine and fine structure
splitting, respectively.

due to the Doppler mismatch between probe and coupling laser fields. The hyperfine

splitting is scaled by a factor of 1− kp
kc

and fine structure splitting by kp
kc
, when the

probe field is scanned. For coupling field scan, the hyperfine splitting is scaled as

kc
kp

− 1 and fine structure splitting by 1. The energy level scheme for the system is

represented by 2.11. This scaling is derived by solving the optical Bloch equations

for the above systems in the weak probe limit.

The analytical solution for the ground state to excited state coherence corre-

sponding to the hyperfine states, in the weak probe limit, is found to be ρeg + ρe′g.

ρe′g =
Num

den
(2.33)

where Num = −Ωp(2(∆p +∆c)− i(Γ31 + 2Γ32))(2∆p − iΓ21);

den = (2∆p − iΓ21)(2(∆p +∆c)− i(Γ31 + 2Γ32))(2(∆p −∆hf )− iΓ21)− Ω2
c(2(∆p −



32 Basics of coherent Rydberg excitation in rubidium vapor

Figure 2.12: Two-dimensional density plots for probe transmission as a function of
laser field detuning and atomic velocity representing two hyperfine resonances: (a)
∆p scan and (c) ∆c scan. Doppler averaged probe transmission for the same: (b)
∆p scan and (d) ∆c scan. Here, ∆hf is taken to be 100 MHz, just as an example.
This value of ∆hf is not specific to rubidium.

∆hf )− iΓ21)− Ω2
c(2∆p − iΓ21).

ρeg =
(2(∆p −∆hf )− iΓ21)

(2∆p − iΓ21)
ρe′g. (2.34)

For the thermal vapor system, the detunings are modified as ∆p → ∆p − kpv and

∆c → ∆c + kcv. When the probe field is scanned, the coupling field is considered to

be on atomic resonance, i.e., ∆c = 0. While scanning the coupling field, the probe

field is considered to be on atomic resonance, i.e., ∆p = 0. Fig. 2.12 shows the probe

transmission for the case of two hyperfine resonances, where the hyperfine splitting

is scaled by the factors discussed above.

For the case of fine structure states, in the weak probe limit, the analytical so-
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Figure 2.13: Two-dimensional density plots for probe transmission as a function of
laser field detuning and atomic velocity representing two fine structure resonances:
(a) ∆p scan and (c) ∆c scan. Doppler averaged probe transmission for: (b) ∆p scan
and (d) ∆c scan. Here, ∆f is taken to be 100 MHz, just as an example. This value
of ∆f is not specific to rubidium.

lution for the ground to excited state coherence is

ρeg =
Numf

denf

(2.35)

where Numf = −Ωp(2(∆p +∆c)− i(Γ31 + Γ32))(2(∆p +∆c −∆f )− i(Γ31 + Γ32));

denf = (2∆p − iΓ21)(2(∆p +∆c)− i(Γ31 +Γ32))(2(∆p +∆c −∆f )− i(Γ31 +Γ32))−

Ω2
c(2(∆p +∆c)− i(Γ31 + Γ32))− Ω2

c(2(∆p +∆c −∆f )− i(Γ31 + Γ32)).

Fig. 2.13 shows the probe transmission for the case of two fine structure states.

As can be observed from the plots, the frequency difference between the fine structure

states is scaled by the factors discussed above.
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2.6 Laser frequency stabilization

Figure 2.14: Optical set up for Doppler-free absorption spectroscopy. HWP: Half-
wave plate, PBS: Polarizing beam splitter, M: Mirror, QWP: Quarter wave plate,
ND: Neutral Density Filter, L: Lens, and DET: Detector.

Laser frequency stabilization requires precise determination of the excitation fre-

quency from the ground state to the excited state. The determination of the exact

frequency is limited by the lifetime of the state, whose inverse gives us the spectral

width of the excitation. However, the spectral width of room temperature atoms

is concealed due to Doppler broadening effect, and the precise transition frequen-

cies cannot be distinguished within the broad absorption spectrum of the rubidium

atom. Special techniques are needed to stabilize the laser frequency precisely. The

frequency of the laser beam can be stabilized using various methods such as provid-

ing a feedback loop to the laser, Doppler-free absorption spectroscopy, generating

an error signal through frequency modulation of the beam, etc. This section will

discuss the two frequency locking techniques for stabilizing the laser frequencies.

2.6.1 Doppler free absorption spectroscopy

Doppler-free absorption spectroscopy, also known as saturated absorption spec-

troscopy (SAS), is a technique to precisely determine the atomic transition frequency

without requiring the cooling of an atomic medium where the Doppler broadening
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Figure 2.15: (A) represents SAS data for rubidium D2 line where (a) represents the
87Rb 5S 1

2
F = 2 → 5P 3

2
F ′(1, 2, 3) transition , (b) represents the 85Rb 5S 1

2
F = 3 →

5P 3
2
F ′(2, 3, 4) transition, (c) represents the 85Rb 5S 1

2
F = 2 → 5P 3

2
F ′(1, 2, 3) tran-

sition and (d) represents the 87Rb 5S 1
2
F = 1 → 5P 3

2
F ′(0, 1, 2) transition. (B) and

(C) represent the zoomed view of the first two transitions (a) and (b), respectively.

no longer plays a significant role. It is used to frequency lock the probe laser to

an excited state with the help of hyper-fine transition of the atomic medium, which

is a room temperature rubidium atomic system for our case. This technique uses

a counter-propagating pump and probe scheme in a simple two-level system. The

optical setup for achieving SAS is shown in Fig. 2.14. An external cavity diode laser

(ECDL) at 780 nm is used to derive the optical beam. The beam is made to pass

through the rubidium atomic vapor cell. A half-wave plate (HWP) and a polarizing

beam splitter (PBS) are used to control the power of the light passing through the
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vapor cell. This acts as the pump beam, which is of a higher power. It is made

to pass through the quarter-wave plate (QWP) after passing through the vapor cell

and reflected from a mirror. A neutral density filter is used to reduce the power

of the reflected beam. The reflected beam is orthogonally polarized to the pump

beam and called the probe beam. The probe is weak compared to the pump beam;

after passing through the vapor cell, it is reflected from the PBS. The probe beam

is focused using a lens to a photo-detector to study the absorption signal. The pho-

todiode signal is fed into a TOPTICA digilock module of the ECDL for frequency

locking. The photodiode signal is also observed at the oscilloscope to identify the

different hyperfine transitions as shown in Fig. 2.15.

If the laser is in resonance to the atomic transition, the pump and the probe

beam interact with the atoms with velocity perpendicular to the direction of the

propagation of the laser beam. Using the two-level picture, the strong pump beam

excites the atoms from the ground state to the excited state such that the excited

state is saturated, i.e., the excited state and ground state has an almost equal number

of atoms. When the counter-propagating probe beam encounters the exited atoms,

they undergo stimulated emission, giving rise to a dip in the absorption spectrum (or

a peak in the transmission spectrum) at each hyperfine resonance. If there is more

than one hyperfine transition within a broad absorption spectrum having the same

ground state, then some cross-over peaks occur. These peaks occur at frequencies

exactly halfway between the two hyperfine transitions.

Fig. 2.15(A) shows the different transitions falling in the D2 line of rubidium.

The experiments in this thesis, involve the use of 87Rb 5S 1
2
F = 2 → 5P 3

2
F ′(1, 2, 3)

and 85Rb 5S 1
2
F = 3 → 5P 3

2
F ′(2, 3, 4) transitions and the lower figures (B) and

(C) show the zoomed view of those transitions. In Fig. 2.15(B), (i),(ii) and (iii)

represent respectively the hyper-fine transitions with F ′ = 1, 2, 3 and other peaks

represent the cross over resonances. Similarly, in Fig. 2.15(c), (i),(ii) and (iii)

represent respectively the hyper-fine transitions with F ′ = 2, 3, 4 and other peaks

are the cross over resonances. The strength of the cross-over resonances can be

larger than the hyper-fine resonances.
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2.6.2 Frequency stabilization using EIT locking technique

Figure 2.16: Optical set up for frequency stabilization using EIT locking technique.
HWP: Half-wave plate, PBS: Polarizing beam splitter, EOM: Electro-optic modu-
lator, M: Mirror, QWP: Quarter wave plate, L: Lens, D.M.: Dichroic mirror, and
DET: Detector.

EIT locking technique is used to stabilize the frequency of the coupling laser to

a highly excited state such as the Rydberg state [46]. This technique utilizes the

concept of EIT, where the probe and coupling laser fields are in counter-propagate

each other and satisfy the ladder configuration to excite the atoms to the Rydberg

state. The probe frequency is stabilized at the resonance of a hyper-fine transition

using SAS, as discussed in the previous section. The frequency of the coupling laser

is stabilized at the EIT resonance by generating an error signal from the EIT signal,

which is explained below.

The experimental setup is shown in Fig. 2.16. Here, an ECDL at 780 nm gener-

ates the probe beam, and a frequency doubling cavity laser generates the coupling

beam at 480 nm. The probe beam is used to couple the ground state of rubidium

5S 1
2
to the excited state 5P 3

2
, and the coupling beam excites the atoms from the

excited state to the Rydberg state. When the system satisfies the condition of EIT,

we observe the EIT signal in the photodiode as shown in Fig. 2.17(a).
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Generation of sidebands due to frequency modulation of the probe beam

Figure 2.17: EIT signal: (a) without modulation and (b) after frequency modulation
with side bands at the modulation frequency.

The phase of the probe beam is modulated using an electro-optic modulator

(EOM). The probe beam is represented by E(t) = E0e
iωpt. In order to drive the

EOM, an rf signal is used from a function generator which introduces the phase

change, which can be written as ϕ(t) = δϕ sin(ωet) where ωe is the frequency of the

modulation signal and δϕ is the very small phase change. The phase modulated

probe beam is written as E(t) = E0e
iωpt+iδϕ sin(ωet). Phase modulation results in fre-

quency modulation as given by δϕ = δω
ωe
. Using the Taylor’s expansion for eiδϕ sin(ωet),

the frequency modulated signal is written as E(t) = E0e
iωpt(1 + iδϕ sin(ωet)). This

expression can be simplified as

E(t) = E0(e
iωpt +

δϕ

2
ei(ωp+ωe)t − δϕ

2
ei(ωp−ωe)t). (2.36)

Here, the first term is the carrier wave which is the probe field, and the subsequent

two terms are the sidebands generated at frequencies (ωp + ωe) and (ωp − ωe). This

can be seen in Fig. 2.17(b), where we observe the sidebands being generated for the

EIT signal due to the frequency modulation of the probe.
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Generation of the error signal from the EIT signal

Figure 2.18: Generated error signal from the EIT signal.

The photodiode receives an intensity of light I ∝| E |2, which depends on the

instantaneous frequency. The instantaneous frequency is equal to the time derivative

of ωpt+ δϕ sin(ωet), i.e. ωi = ωp + ωeδϕ cos(ωet) = ωp + δω cos(ωet). Hence, I(ω) =

I(ωp + δω cos(ωet)). Using Taylor’s expansion I(ω) = I(ωp) + δω cos(ωet)
∂I
∂ω

+ ..

. The signal from the photodiode is multiplied with a local oscillator (L.O.) signal

A0 sin(ωet+ϕ) with the help of an R.F. mixer to understand the changes in the laser

frequency. This L.O. signal is generated from the same function generator, which

drives the EOM at the same frequency as the modulation signal but with an extra

phase factor ϕ. This results in intensity given by

I(ω) ∗ A0 sin(ωet+ ϕ) = [E2
0 sin

2(ωpt) + δω cos(ωet)
∂I
∂ω
]A0 sin(ωet+ ϕ)

= [
E2

0

2
(1− cos(2ωpt)) + δω cos(ωet)

∂I
∂ω
]A0 sin(ωet+ ϕ)

=
A0E2

0

2
sin(ωet+ ϕ)− A0E2

0

2
cos(2ωpt) sin(ωet+ ϕ) + A0δω cos(ωet)

∂I
∂ω

sin(ωet+ ϕ)

=
A0E2

0

2
sin(ωet+ ϕ)− A0E2

0

4
[sin(2ωpt+ ωet+ ϕ)− sin(2ωpt− ωet− ϕ)] +

A0δω
2

∂I
∂ω

sin(2ωet+ ϕ) + A0δω
2

∂I
∂ω

sinϕ

Using a low pass filter, the high-frequency terms are filtered out, and the re-
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maining term is the last term which gives the error signal. The error signal is the

derivative of the EIT signal, as shown in Fig. 2.18. The error signal is fed into the

TOPTICA digilock module to lock the frequency of the coupling beam at the slope

of the error signal.

This technique is used for experiments involving EIT, which require both the

probe and the coupling beam frequency to be stabilized on resonance to the atomic

transition.



Chapter 3

Rydberg Electrometry

Large atomic polarizability and strong transition dipole moments make Rydberg

atoms suitable candidates for sensing extremely small electric fields [47, 69, 70].

Due to the wide range of optical transitions from MHz to GHz, Rydberg atoms

make accessing the RF-FI regime possible [27]. DC field electrometry has also been

performed while observing the motional stark shifts with thermal Rydberg atoms

[71]. The cold atom experiments utilize the stark effect to compensate for the

electric fields inside the vacuum chambers. Atom-based E-field sensing [7, 8, 12]

utilizes EIT as a detection scheme for electric fields in the RF-FI regime where EIT

is achieved using a two-photon excitation process to the Rydberg state [23, 72, 73].

Sensing of microwave electric fields with EIT using Rydberg atoms is understood

with the help of a four-level system [74]. The Rydberg atomic excitation is carried

out using a three-level system coupled with the probe and coupling fields. A third

field, a microwave field, couples the Rydberg state to another neighboring Rydberg

state. Electric field sensing with Rydberg atoms leads to various applications such

as THz imaging [31, 75], sub-wavelength imaging [35, 36], millimeter wave detection

[37], etc. Also, the Rydberg atomic sensors have grown over time to become an

efficient technology for data communication [40, 41, 76]. This chapter discusses

the theoretical model of a four-level system for E-field sensing. Also, it provides

an overview of some experimental studies which have been performed in the lab
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to understand the basics of electric field sensing with the Rydberg EIT medium

[74]. As an application to microwave electrometry, analog data communication with

Rydberg atoms is demonstrated. The Rydberg EIT-based sensing methods with

a two-photon excitation process have various limitations, which are also discussed

towards the end of this chapter.

3.1 Theoretical model of four-level system

Figure 3.1: Schematic of energy levels of a four-level system in a ladder config-
uration. |g⟩, |e⟩, |r⟩ and |r′⟩ represent the ground state, intermediate state, first
Rydberg state and the second Rydberg state respectively.

Consider a four-level system in ladder configuration consisting of states |g⟩, |e⟩,

|r⟩ and |r′⟩, as shown in Fig. 3.1, where the corresponding atomic resonance fre-

quencies between states are ω1, ω2 and ω3 respectively. Excitation from |g⟩ → |e⟩,

|e⟩ → |r⟩ and |r⟩ → |r′⟩ are dipole allowed whereas the excitation from |g⟩ → |r⟩ and

|g⟩ → |r′⟩ are dipole forbidden. The transitions |g⟩ → |e⟩, |e⟩ → |r⟩ and |r⟩ → |r′⟩

are coupled by the probe, coupling and microwave fields of frequency ωp, ωc and
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ωµ respectively. The fields are given by E⃗ ′
p = E⃗pe

−iωpt + c.c, E⃗ ′
c = E⃗ce

−iωct + c.c

and E⃗ ′
µ = E⃗µe

−iωµt + c.c. The detuning of the probe, coupling, and microwave field

from the respective atomic resonances are given by ∆p = ωp − ω1, ∆c = ωc − ω2

and ∆µ = ωµ − ω3. The two-photon and three-photon detuning are defined by

δ1 = (∆p + ∆c) and δ2 = (∆p + ∆c + ∆µ) respectively and also δ3 = (∆c + ∆µ).

The Rabi frequencies of the probe, coupling and microwave fields are given by

Ωp = 2µgeEp

ℏ , Ωc = 2µerEc

ℏ and Ωµ =
2µrr′Eµ

ℏ respectively. µge, µer, µrr′ denote

the transition dipole moment and Ep, Ec, Eµ denote the electric field amplitude

corresponding to the probe, coupling and microwave fields respectively.

The Hamiltonian of the four-level system is written as H̃ = H0+Hint whereH0 =

ℏω1|e⟩⟨e|+ℏ(ω1+ω2)|r⟩⟨r|+ℏ(ω1+ω2+ω3)|r′⟩⟨r′| is the bare atomic Hamiltonian and

Hint = −µ⃗·E⃗ = −Ep(µge|g⟩⟨e|+µeg|e⟩⟨g|)−Ec(µer|e⟩⟨r|+µre|r⟩⟨e|)−Eµ(µrr′ |r⟩⟨r′|+

µr′r|r′⟩⟨r|) is the interaction Hamiltonian that represents the interaction between

optical fields and atomic medium. After the use of rotating wave approximation,

the time-independent total Hamiltonian H is written as

H = −ℏ
2



0 Ωp 0 0

Ω∗
p 2∆p Ωc 0

0 Ω∗
c 2(∆p +∆c) Ωµ

0 0 Ω∗
µ 2(∆p +∆c +∆µ)


.

As discussed in section. 2.2.3, the optical Bloch equation is given by

ρ̇ =
i

ℏ
[ρ,H] + LD(ρ). (3.1)

The density matrix for the four-level system is a 4×4 matrix ρij with i, j = g, e, r, r′.

Γeg, Γre, Γr′r denote the population decay between the states. Decay from |r⟩ → |g⟩

and |r′⟩ → |g⟩ are dipole forbidden. Still, there is decay between these states, known

as the transit time decay, due to the atoms’ transverse velocity through the beam’s

cross-section. The transit time decays, which occur between the the ground state



44 Rydberg Electrometry

and the Rydberg excited state, are denoted by Γrg and Γr′g. The Lindblad operator

for this system is given by

LD(ρ) =



Γegρee + Γrgρrr + Γr′gρr′r′ −Γeg

2
ρge −γ1

2
ρgr −γ2

2
ρgr′

−Γeg

2
ρeg Γreρrr − Γegρee −γ3

2
ρer − (Γeg+γ2)

2
ρer′

−γ1
2
ρrg −γ3

2
ρre Γr′rρr′r′ − γ1ρrr − (γ1+γ2)

2
ρrr′

−γ2
2
ρr′g − (Γeg+γ2)

2
ρr′e − (γ1+γ2)

2
ρr′r −γ2ρr′r′


where γ1 = Γrg + Γre, γ2 = Γr′g + Γr′r and γ3 = Γrg + Γre + Γeg.

For the closed system, ρgg + ρee + ρrr + ρr′r′ = 1 and ρ̇ij = 0 for the steady state

system. Hence, the optical Bloch equations for the steady state are written as

i

2
(Ωpρeg − Ω∗

pρge) + Γegρee + Γrgρrr + Γr′gρr′r′ = 0 (3.2)

i

2
[−2∆pρge + Ωp(2ρee + ρrr + ρr′r′)− Ωp − Ω∗

cρgr]−
Γeg

2
ρge = 0 (3.3)

i

2
[−2δ1ρgr − Ω∗

µρgr′ + Ωpρer − Ωcρge]−
γ1
2
ρgr = 0 (3.4)

i

2
[−2δ2ρgr′ − Ωµρgr + Ωpρer′ ]−

γ2
2
ρgr′ = 0 (3.5)

i

2
[2∆pρge − Ω∗

p(2ρee + ρrr + ρr′r′) + Ω∗
p + Ωcρrg]−

Γeg

2
ρeg = 0 (3.6)

i

2
[Ω∗

pρge − Ωpρeg + Ωcρre − Ω∗
cρer] + Γreρrr + Γr′eρr′r′ − Γegρee = 0 (3.7)

i

2
[Ω∗

pρgr − 2∆cρer − Ω∗
µρer′ + Ωc(ρrr − ρee)]−

γ3
2
ρer = 0 (3.8)

i

2
[−2δ3ρer′ − Ωµρer + Ω∗

pρgr′ + Ωcρrr′ ]−
(Γeg + γ2)

2
ρer′ = 0 (3.9)

i

2
[2δ1ρrg + Ωµρr′g − Ω∗

pρre + Ω∗
cρeg]−

γ1
2
ρrg = 0 (3.10)

i

2
[−Ωpρrg + 2∆cρre + Ωµρr′e + Ω∗

c(ρee − ρrr)]−
γ3
2
ρre = 0 (3.11)

i

2
[Ω∗

cρer − Ωcρre + Ωµρr′r − Ω∗
µρrr′ ]− γ1ρrr + Γr′rρr′r′ = 0 (3.12)
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Figure 3.2: Probe transmission as a function of ∆c. The solid red line represents
the EIT peak in the absence of the microwave field (Ωµ = 0), and the solid cyan line
represents the splitting in the EIT peak due to the presence of the microwave field
(Ωµ = 5 MHz). Other parameters are Ωp = 500 kHz, Ωc = 4 MHz, Γeg = 6 MHz,
Γre = 10 kHz, Γrg = 100 kHz, Γr′g = 100 kHz, Γr′r = 10 kHz, ∆p = 0 and ∆µ = 0.
The density of the atoms is 1.7× 1010 cm−3.

i

2
[Ω∗

cρer′ − 2∆µρrr′ − Ωµ(ρrr − ρr′r′)]−
(γ1 + γ2)

2
ρrr′ = 0 (3.13)

i

2
[2δ2ρr′g + Ω∗

µρrg − Ω∗
pρr′e]−

γ2
2
ρr′g = 0 (3.14)

i

2
[2δ3ρr′e + Ω∗

µρre − Ωpρr′g − Ω∗
cρr′r]−

(Γeg + γ2)

2
ρr′e = 0 (3.15)

i

2
[−Ωcρr′e + 2∆µρr′r + Ω∗

µ(ρrr − ρr′r′)]−
(γ1 + γ2)

2
ρr′r = 0 (3.16)

i

2
[Ω∗

µρrr′ − Ωµρr′r]− γ2ρr′r′ = 0 (3.17)

The above equations are solved numerically to find the ground state to the excited

state coherence ρeg. For the same velocity class of atoms in thermal atomic vapor,

the detuning of the fields are modified as ∆p → ∆p − kpv, ∆c → ∆c + kcv and
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∆µ → ∆µ − kµv. kp, kc, and kµ are the wave-vectors of the probe, coupling, and

microwave field, respectively, and v is the velocity of the atoms.

For the thermal atomic medium, the susceptibility of the probe is found out as

χ(ωp) =
2N | µge |2

ℏϵ0Ωp

1√
πvp

∫ ∞

−∞
ρege

− v2

v2p dv (3.18)

The probe transmission is calculated using Eqn. (2.22). The probe transmission

for the four-level system is represented by Fig. 3.2. The plot with a solid red line

represents the EIT peak as a function of coupling detuning ∆c in the absence of

the third field, i.e., microwave field (Ωµ). The plot with a solid cyan line represents

the splitting in the EIT peak or the absorption feature within the transparency

window due to the presence of the microwave field. This splitting is also known as

the Autler-Townes (AT) splitting.

3.2 Experimental set-up for investigation of mi-

crowave field sensing using EIT

The experimental set-up for microwave electric field sensing using EIT is shown in

Fig. 3.3. An external cavity diode laser (ECDL) TOPTICA DL PRO of wavelength

780 nm is used to derive the probe beam (ωp). The experimental set-up shows

that saturated absorption spectroscopy (SAS) is used to frequency stabilize the

probe laser. The probe beam carries out the atomic excitation from the ground

state |g⟩ to the excited state |e⟩ and the probe frequency is locked to the 87Rb

5S 1
2
F = 2 → 5P 3

2
F ′ = 3 transition. The coupling beam (ωc) is derived from a

frequency doubling cavity laser (TOPTICA TA-SHG PRO) at a wavelength of 480

nm. The coupling beam excites the atoms from the excited state |e⟩ to the Rydberg

state |r⟩. The probe and the coupling beams counter propagate each other through

the cylindrical rubidium vapor cell length of 5 cm and diameter of 2.5 cm. The probe

and the coupling beam are focused at the center of the vapor cell where 1
e
radii of
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Figure 3.3: Optical set up for microwave electric field sensing. The set up consists
of two parts: one for probe frequency stabilization (SAS) and the other part for ex-
periment. HWP: Half wave-plate, PBS: Polarizing beam splitter, M: Mirror, QWP:
Quarter wave-plate, L: Lens, DM: Dichroic mirror, DET: Detector.

the probe and coupling beams are 0.4 mm and 0.7 mm, respectively. The power of

the probe and coupling beams are approximately 1µW and 100 mW, respectively.

The probe and the coupling beams are circularly polarized but orthogonal. The

probe beam is detected using a photodetector. A lock-in detection is performed

to have an enhanced signal-to-noise ratio (SNR). The detector signal is fed into a

lock-in amplifier. The reference to the lock-in amplifier is provided from an optical

chopper used to modulate the coupling beam intensity. It is operated at a frequency

of 5 kHz. The output of the lock-in amplifier is observed using an oscilloscope. A

microwave signal generator is used as the source which radiates the microwave field

in the free space using a horn antenna. As shown in the experimental set-up, the

horn antenna is placed at a distance of approximately 38 cm from the center of the

vapor cell along the radial direction. The microwave field couples the Rydberg state

|r⟩ to another nearby Rydberg state |r′⟩. The effect of the presence of microwave

field is studied by observing the EIT signal using an oscilloscope.
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3.3 Observation of AT splitting due to the pres-

ence of the microwave field

Figure 3.4: Microwave electrometry with Rydberg atoms: (a) Energy level scheme
where |g⟩ = 5S 1

2
, |e⟩ = 5P 3

2
, |r⟩ = 62S 1

2
, and |r′⟩ = 61P 3

2
. (b) EIT signal when the

microwave is off and on with microwave power PµW = 1 dBm at the signal generator.

The schematic of the energy level is shown in Fig. 3.4(a). The different states

of the system are |g⟩ = 5S 1
2
, |e⟩ = 5P 3

2
, |r⟩ = 62S 1

2
, and |r′⟩ = 61P 3

2
. The probe

and coupling field wavelengths corresponding to the transitions are 780.241 nm and

479.786 nm, respectively. When the probe beam is on resonance (i.e., ∆p = 0) and

the coupling beam is scanned to satisfy the conditions of EIT, we observe the EIT

signal as a function of ∆c shown in Fig. 3.4(b). The resonance frequency of the

microwave field for the given transition from |r⟩ → |r′⟩ is fµ,0 = 15.17375 GHz.

The horn antenna is placed at a distance of 38 cm from the center of the vapor

cell. Application of the microwave field on resonance to the atomic transition (i.e.,

∆µ = 0) results in the splitting of the EIT peak. This splitting is called the Autler-

Townes (AT) splitting. The presence of the microwave field leads to the formation of

the dressed states. The Rydberg state is split into two dressed states leading to the
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splitting of the EIT signal into two AT peaks as shown in Fig. 3.4(b). Here, the total

microwave power used is PµW = 1 dBm. This power shown at the signal generator

is not the same power or field experienced by the Rydberg atoms. There are losses

from the cables, horn antenna, and also during propagation. The cross-sectional

interacting area of the optical beam and the vapor cell is 0.5 cm2, considering a

beam of around 1 mm diameter. The electric field reaching the interacting area is

nearly 0.08 V/m. There are also electric fields due to reflections from the metallic

optical table, vapor cell walls, etc.

The microwave power or electric field strength experienced by the atoms is pro-

vided from the measure of the splitting of the EIT signal. The frequency difference

between the two peaks determines the Rabi frequency of the microwave field (Ωµ).

The field strength of the microwave field is calculated from the relation

| E |= 2π
ℏ
dµ

Ωµ = 2π
ℏ
dµ

∆f0 = 2π
ℏ
dµ
D∆fm (3.19)

where ∆f0 = D∆fm, ∆fm is the measured splitting of the EIT peak, dµ is the

dipole moment of the microwave coupled transition, and D is a scaling factor which

takes into consideration the Doppler mismatch of the probe and coupling laser. If

the probe laser is scanned, then D = λp

λc
where λp and λc are the wavelengths of

the probe and coupling laser, respectively. If the coupling laser is scanned, then

D = 1. For the given parameters discussed in this section and for PµW = 1 dBm,

the microwave Rabi frequency is found to be Ωµ = ∆f0 = 10.2 MHz and the electric

field strength is calculated to be | E |= 0.37 V/m. The lock-in amplifier parameters

used in the measurement are time constant=300 µs and sensitivity=1mV. The lock-

in amplifier gain is 10000. The dipole moment for the microwave transition is given

by dµ = RAea0 where e is the elementary charge and a0 is the Bohr radius. R and

A are the radial and angular parts of the dipole moment, respectively. These values

are calculated from [58]. The dipole moment considered here is 2146.98 ea0.

In a typical experiment, the vapor cell is heated to 60◦C to increase the density

of atoms inside the vapor cell to 5 × 1011 cm−3. The geometry of the atomic vapor
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cell also affects the E-field measurement, which has been discussed in [77]. In these

results, the effect of vapor cell geometry has been ignored during the measurements

as the vapor cell is kept fixed, and the measurements are taken at a fixed point, i.e.,

at the center of the vapor cell. The effect of the reflections from the surface of the

optical table is also ignored in the measurements.

3.4 E-field strength with different microwave power

at the signal generator

Figure 3.5: Splitting of the EIT signal for different microwave source power at the
signal generator.

For the above-discussed transitions, the E-field observed by the Rydberg atoms

for different power levels of the microwave signal generator is also studied. Different

power levels of the signal generator lead to different splitting of the EIT signal, as
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shown in Fig. 3.5. As discussed in the earlier section, the strength of the E-field

experienced by the atoms is measured from AT splitting of the EIT peaks using

Eqn. 3.19. It is observed that the AT splitting increases linearly with the square

root of microwave source power, and hence, the measured E-field strength increases

linearly with the square root of microwave source power as shown in Fig. 3.6. The

behavior follows a linear fit with a slope of 0.41±0.01 v/m
√
mW . There can be

statistical and systematic uncertainties in the experimental measurement method.

From Eqn. 3.19, it is known that there is a linear relationship between measured

AT splitting and E-field. When the EIT line-width is comparable to or larger than

the measured splitting of the EIT peak, the linear relationship breaks down [25].

The EIT line-width is a function of the Rabi frequencies of the probe and coupling

beams [78], and various other factors [79].

Figure 3.6: Measured value of E-field strength for given microwave source power.
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3.5 Effect of microwave detuning on E-field mea-

surement

The above section measures the on-resonant microwave field strengths and their

dependence on the source power. When the microwave field is weak, it is difficult to

measure the splitting with on resonant microwave field. Such can be the case while

detecting weak microwave fields in the upper millimeter wave and sub-THz bands.

Determination of AT splitting becomes difficult in these high frequencies for two

reasons. One is the weak power of the electric field, and another one is the small

dipole moment due to the use of low n states for detecting such high frequencies.

The detection of the E-field can be improved for weak microwave fields by detuning

the microwave field away from the resonance, i.e., using off-resonant fields [80]. In

this section, an example is presented which shows how off-resonant fields help to

improve the sensitivity of E-field measurement.

Figure 3.7: (a) Energy level scheme where |g⟩ = 5S 1
2
, |e⟩ = 5P 3

2
, |r⟩ = 45D 5

2
, and

|r′⟩ = 46P 3
2
. (b) EIT signal when the microwave is off and on with microwave power

PµW = −9 dBm at the signal generator applied on-resonance to the transition.

The schematic of the energy level scheme is shown in Fig. 3.7(a). The different

states of the system are |g⟩ = 5S 1
2
, |e⟩ = 5P 3

2
, |r⟩ = 45D 5

2
, and |r′⟩ = 46P 3

2
. The
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probe and coupling field wavelengths corresponding to the transitions are 780.241

nm and 480.38 nm, respectively. The power of the probe and coupling beam is

nearly 2µW and 120 mW, respectively. The 1
e
probe and coupling radius are around

0.4 mm and 0.7 mm, respectively. The EIT signal as a function of ∆c is shown

in Fig. 3.7(b). For the given transition, the resonance frequency of the microwave

field is fµ,0 = 25.7747 GHz. The horn antenna is placed at a distance of 20 cm

from the center of the vapor cell. When the microwave field is applied at ∆µ = 0,

the splitting of the EIT peak is observed, as discussed earlier. For the parameters

discussed in this section and for PµW = −9 dBm, the microwave Rabi frequency is

found to be Ωµ = ∆f0 = 9.04 MHz and electric field strength to be | E |= 0.43 V/m.

The transition dipole moment is 1637.11 ea0. The lock-in amplifier parameters used

in the measurement are time constant=1 ms and sensitivity=500 mV. The lock-in

amplifier gain is 20. The vapor cell is heated to 60◦C to increase the density of

atoms inside the vapor cell to 5 × 1011 cm−3.

Figure 3.8: Comparison of AT splitting of the EIT signal for off-resonant microwave
fields (fµ,0±∆µ) with resonant microwave field splitting (fµ,0) for fixed power of the
microwave field (PµW = −9 dBm) and with ∆µ = 30 MHz.
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Fig. 3.8 shows the splitting of the EIT signal for the off-resonant microwave

fields (fµ,∆µ) as compared to the on-resonant case (fµ,0) where fµ,∆µ = fµ,0 ± ∆µ

and ∆µ represents the detuning of the microwave from the atomic resonance. As

it is seen from the figure, the off-resonant field leads to AT splitting, which can

be differentiated better than the on-resonant AT splitting for a fixed power level

of the microwave source. The off-resonant microwave field leads to non-symmetric

splitting of the EIT peak, which is observed in the above figure. For fµ,∆µ < fµ,0,

the left side peak is smaller than the right, and for fµ,∆µ > fµ,0, the right side peak

is smaller than the left peak. Also, the increase in microwave detuning leads to

an increased separation between the two peaks. The power level of the microwave

source is fixed at PµW = −9 dBm, and the dependence of the measured AT splitting

on ∆µ is studied as shown in Fig. 3.9.

Figure 3.9: Separation between the AT split peaks at finite detuning (∆f∆µ) as a
function of ∆µ for PµW = −9 dBm.
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The separation between the AT split peaks is given by

∆f∆µ =
√

(∆µ)2 + (∆f0)2 (3.20)

The AT splitting is increased by more than three times for a fixed weak microwave

field when the microwave is detuned away from the atomic resonance. The calcu-

lated values from Eqn. (3.20) show a good agreement with experimentally found

values. There is a limit up to which the microwave can be detuned to observe the

improvement in E-field detection [80]. Fitting the Eqn. (3.20) to the data obtained

in the experiment, it helps to determine the resonance frequency of the microwave

transition for cases when the resonance frequency is not known.

3.6 Communication with Rydberg atoms

Communication technology with the Rydberg EIT system involves modulation/demodulation

of a baseband signal onto an electromagnetic carrier signal [42]. This modulation

is carried out using amplitude modulation or frequency modulation for analog com-

munication purposes and phase or frequency shift keying for digital communication.

All the studies involve the use of EIT in a two-photon excitation process to the

Rydberg state where the microwave field (carrier wave) is modulated.

3.6.1 Analog communication with Rydberg EIT

The microwave electric field sensing technique can be utilized for analog data com-

munication with Rydberg atoms [76, 81]. This sensing technique can make Rydberg

atoms act as an antenna/receiver for message signals encoded into microwave ra-

diation (carrier wave). This has led physicists to term the system as atom-radio.

The system can be used to record and play a message signal (an audio signal in

our case) in real time. This system uses the concept of amplitude modulation of

the carrier signal to deliver the message signal (modulating signal) to the Rydberg
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Figure 3.10: (a) Energy level scheme and (b) experimental set-up.

atoms. This message signal can be retrieved from the probe beam and detected at

the photo-diode without the need for any demodulation circuit.

The energy level scheme and the experimental set-up are shown in Fig. 3.10.

The set-up utilizes a counter-propagating probe and coupling scheme to achieve the

conditions of EIT with the Rydberg atoms, as discussed in the previous sections. The

probe frequency is stabilized at 87Rb 5S 1
2
F = 2 → 5P 3

2
F ′ = 3 resonance using SAS

technique, and the coupling frequency is stabilized at the resonance of the EIT using

the technique discussed in Sec. 2.5.2. Microwave field is radiated through the horn

antenna to interact with the 52D 5
2
→ 53P 3

2
transition. Here, the modulation input of

the microwave signal generator is fed with a message signal. The microwave field acts

as a carrier of the message signal, and the process is like an amplitude modulation

of the microwave field. The modulated microwave field interacts with the Rydberg

atoms and transfers the message signal to the probe beam. The probe beam is

detected using a photodetector, and the detector output is fed to the oscilloscope.

The output voltage observed is proportional to the modulating signal. A direct

read-out of the audio signal can be observed without the need for any demodulation

circuit. The output is anti-correlated to the input message signal with reduced

amplitude, as shown in Fig. 3.11. It is also observed that when the detector output

is fed directly to an audio amplifier, we hear the same output audio signal as the
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Figure 3.11: Input audio signal (top) to the microwave signal generator and re-
trieved audio signal (bottom) at the photodetector.

input to the modulation port of the microwave signal generator but with reduced

strength.

3.6.2 Digital communication with Rydberg EIT

Rydberg EIT field sensing techniques have also been exploited for digital commu-

nication purposes [40, 41]. This involved using frequency or phase shift keying to

investigate the data transfer rate in the two-photon Rydberg EIT system. The

major aim behind this investigation is to develop a system that has a faster data
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transfer rate, and the bandwidth of the modulation spectrum determines the data

transfer rate. It has been demonstrated that the two-photon Rydberg EIT system

can have a data transfer rate of 8.2 Mbit/s with a signal bandwidth of nearly 1 MHz

[40].

3.7 Limitations of microwave field sensing with

Rydberg atoms using EIT through two-photon

excitation process to the Rydberg state

• The data transfer rate in the two-photon Rydberg EIT system is limited to a few

Mbit/s as the modulation bandwidth is limited to only a few MHz. This limita-

tion is because of the optical pumping rate to the EIT dark state, which is given

by ΩEIT = Ω2
c

2Γ
where Ωc is the Rabi frequency of the coupling beam and Γ is the

natural line-width of the intermediate state which is 6 MHz for rubidium. To have

a faster data transfer rate, a system with larger modulation bandwidth is necessary.

• The sensitivity of measured electric field is given by Emin√
Hz

= h
µ
√
T2N

, where Emin

is the minimum detectable electric field, T2 is the dephasing time of the EIT process

and N is the number of atoms participating in the detection process [12]. The

electric field that causes an AT splitting similar to the line-width of the EIT signal

is the minimum detectable field and is given by the relation Emin = 2π ℏ
dµ
γEIT [43].

The minimum electric field detected using Rydberg EIT systems is limited by the

line-width of the EIT spectrum γEIT . In the two-photon Rydberg system discussed

in this chapter, the line-width of the EIT signal is γEIT ∼ 4 MHz. For such an EIT

line-width, the minimum detectable field using AT splitting is around 2 mV/cm for

dµ =1637.11 ea0. As the minimum detectable field depends on the EIT line width,

narrowing the EIT line width can result in better sensitivity of the detected electric

field.
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3.8 Conclusion

The Rydberg atoms act as accurate and precise sensors for microwave electric fields

due to their significant dipole moment and large polarizability. The system utilizes

the splitting of the two-photon EIT signal to determine the electric field strength

of the microwave field. As discussed in this chapter, Rydberg atoms can also be

used for communication technology. But the data transfer rate with a two-photon

Rydberg EIT system is limited by the optical pumping rate to the dark state, and

also, the sensitivity of the measured electric field is limited by the EIT linewidth.





Chapter 4

Six-wave mixing of optical and

microwave fields using Rydberg

atoms in thermal atomic vapor

The six-wave mixing process of optical and microwave fields has been studied for

coherent microwave-to-optical conversion in a cold atomic system using Rydberg

atoms [82, 83]. The system utilizes EIT for better conversion efficiency but has a

limited conversion bandwidth of a few MHz. Rydberg atoms facilitate the efficient

free space microwave-to-optical conversion due to their large dipole moment in a wide

operating frequency range varying from MHz to THz [27]. The limited bandwidth

of the Rydberg EIT system restricts the data transfer rate to only a few MHz. This

chapter demonstrates the six-wave mixing of optical and microwave fields in thermal

atomic vapor using Rydberg atoms [84]. The six-wave mixing process leads to the

parametric generation of a new optical field. Due to the parametric nature of the

process, the system is expected to respond faster, and the available coupling Rabi

frequency limits the response. This chapter describes a theoretical model of a four-

level system, and the wave propagation equations are solved for the generated field to

model the experimental results. The temporal response of the system is investigated

through amplitude modulation of the generated field. Finally, a theoretical study
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is performed to understand the effect of coupling rabi frequency on the modulation

bandwidth.

4.1 Generation of the new optical field due to six-

wave mixing process inside the atomic medium

Figure 4.1: Schematic of energy levels in the ladder configuration where |g⟩ rep-
resents the ground state, |e⟩ represents the intermediate state, |r⟩ represents the
Rydberg state, and |r′⟩ represents the second nearby Rydberg state. A probe field
(ωp) couples the transition |g⟩ → |e⟩, and a coupling field (ωc) couples the transition
|e⟩ → |r⟩. Two microwave fields, ωµ and (ωµ + δ), are applied between the two
Rydberg states |r⟩ and |r′⟩.

The energy level scheme for the six-wave mixing process is shown in Fig. 4.1. The

six-wave mixing of optical and microwave fields inside the atomic medium results

in the generation of the new optical field. It is a parametric generation process and

hence, is an instantaneous process. The limitation is set by the available coupling
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Rabi frequency. The phenomenon of parametric six-wave mixing is understood as

follows: absorption of a probe photon of frequency ωp, absorption of a coupling

photon of frequency ωc, absorption of a microwave photon of frequency ωµ (ωµ+ δ),

emission of a microwave photon of frequency ωµ + δ (ωµ), emission of a coupling

photon of frequency ωc, leading to the generation of new optical field at frequency

ωp − δ (ωp + δ).

The frequency of the generated optical field is given by ωp ± δ = ωp + ωc + ωµ +

δ(ωµ) − ωµ(ωµ + δ) − ωc. The generated optical field has a direction derived from

the phase matching condition as: k⃗p′ = k⃗p + k⃗c − k⃗µ1 + k⃗µ2 − k⃗c. k⃗p and k⃗c are the

wave vectors of the probe and coupling field. k⃗µ1 and k⃗µ2 are the wave vectors of

the two microwave fields. k⃗p′ is the wave vector of the generated optical field. The

magnitude of the wave-vectors of the microwave field is negligible compared to the

magnitude of the wave-vectors of the optical fields. The microwave wave-vectors

cancel out each other as one of the microwave photon is emitted, and the other one

is absorbed. From the phase matching condition, it is found that the direction of

the generated optical field is along the direction of the applied probe field.

4.2 Theoretical model for six wave-mixing pro-

cess using four-level system

The theoretical model needed to explain the six-wave mixing phenomenon is a four-

level system, as shown in 4.1. As mentioned in the caption, the system consists

of states |g⟩, |e⟩, |r⟩ and |r′⟩ in ladder configuration and laser fields coupling the

transitions are ωp, ωc, ωµ, and ωµ + δ. δ is the frequency difference between the two

microwave fields. The second microwave field (ωµ+ δ) is considered to be very weak

as compared to the first microwave field ωµ. The detuning of the probe, coupling,

and first microwave field from the corresponding atomic transitions are ∆p, ∆c,

and ∆µ, respectively. The two-photon and three-photon detuning are defined as

δ1 = (∆p+∆c), and δ2 = (∆p+∆c+∆µ) respectively and δ3 = (∆c+∆µ). The bare
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atomic Hamiltonian of the system is H0 = ℏωge|e⟩⟨e|+ ℏ(ωge + ωer)|r⟩⟨r|+ ℏ(ωge +

ωer + ωrr′)|r′⟩⟨r′|. The laser fields are expressed as

E⃗ ′
p = E⃗pe

−iωpt + c.c (4.1)

E⃗ ′
c = E⃗ce

−iωct + c.c (4.2)

E⃗ ′
µ1 = E⃗µ1e

−iωµt + c.c (4.3)

E⃗ ′
µ2 = E⃗µ2e

−i(ωµ+δ)t + c.c (4.4)

where Ep, Ec, Eµ1 and Eµ2 are the amplitudes of the electric fields. The total

microwave electric field is written as

E⃗ ′
µ = E⃗ ′

µ1 + E⃗ ′
µ2 = E⃗µ1e

−iωµt + E⃗µ2e
−i(ωµ+δ)t = E⃗µe

−iωµt (4.5)

where E⃗µ = E⃗µ1 + E⃗µ2e
−iδt. The Hamiltonian due to the interaction of the optical

field with the atomic medium is Hint = −µ⃗ · E⃗ = −Ep(µge|g⟩⟨e| + µeg|e⟩⟨g|) −

Ec(µer|e⟩⟨r| + µre|r⟩⟨e|) − Eµ(µrr′|r⟩⟨r′| + µr′r|r′⟩⟨r|). The Rabi frequency of the

probe, coupling and the two microwave fields is given by Ωp = 2µgeEp

ℏ , Ωc =
2µerEc

ℏ ,

Ωµ1 =
2µerEµ1

ℏ and Ωµ2 =
2µerEµ2

ℏ respectively. Without the loss of generality, all the

Rabi frequencies are considered to be real.

The total Hamiltonian of the system is given by H̃ = H0 + Hint. After the use of

rotating wave approximation and in a suitable rotating frame, the Hamiltonian is

expressed as

H = −ℏ
2



0 Ωp 0 0

Ω∗
p 2∆p Ωc 0

0 Ω∗
c 2(∆p +∆c) Ωµ1 + e−iδtΩµ2

0 0 Ω∗
µ1

+ eiδtΩ∗
µ2

2(∆p +∆c +∆µ)


.

The Hamiltonian acquired for the system is a time-dependent Hamiltonian even

after suitable unitary operations.
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4.2.1 Construction of the master equation

The master equation is written as:

ρ̇ =
i

ℏ
[ρ,H] + LD(ρ). (4.6)

The density matrix ρ is a 4× 4 matrix and is written as ρi,j with i, j = g, e, r, r′ and

the Lindblad operator is

LD(ρ) =



Γegρee + Γrgρrr + Γr′gρr′r′ −Γeg

2
ρge −γ1

2
ρgr −γ2

2
ρgr′

−Γeg

2
ρeg Γreρrr − Γegρee −γ3

2
ρer − (Γeg+γ2)

2
ρer′

−γ1
2
ρrg −γ3

2
ρre Γr′rρr′r′ − γ1ρrr − (γ1+γ2)

2
ρrr′

−γ2
2
ρr′g − (Γeg+γ2)

2
ρr′e − (γ1+γ2)

2
ρr′r −γ2ρr′r′


where γ1 = Γrg + Γre, γ2 = Γr′g + Γr′r and γ3 = Γrg + Γre + Γeg.

Decay from |r⟩ → |g⟩ and |r′⟩ → |g⟩ is not allowed as the transitions are dipole

forbidden. Γeg, Γre, Γr′r denote the population decay between the dipole allowed

transitions. If an atom in the excited state goes out of the beam, then a new atom

enters the ground state. A decay process occurs due to the motion of the atoms

through the finite size of the beam, known as transit time decay. The transit time

decays are denoted by Γrg and Γr′g, which is taken to be 4.2 MHz. The decay values

are Γeg = 6 MHz, Γre = Γr′r = 0.01 MHz.

In a thermal atomic medium, the atoms move with velocity governed by Maxwell-

Boltzmann velocity distribution depending on the temperature of the system. For

the same velocity class of atoms and for counter-propagating configuration of the

probe and coupling fields, the detuning of the fields are modified as ∆p → ∆p−kpv,

∆c → ∆c+kcv and ∆µ → ∆µ−kµv. kp, kc, and kµ are the wave-vectors of the probe,

coupling, and microwave field, respectively, and v is the velocity of the atoms. For

the closed system, the sum of the population of the states ρgg + ρee + ρrr + ρr′r′ = 1

and for the steady state system ρ̇ij = 0.
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4.2.2 Perturbative expansion of the density matrix

The Hamiltonian for the system is a time-dependent Hamiltonian that cannot be

solved exactly. Hence, a method of perturbative expansion of the density matrix is

used to get to the solutions similar to the four-wave mixing process in a two-level

system, as discussed in [85]. The density matrix is expanded as

ρij = ρ
(0)
ij + ρ

(1)
ij e

−iδt + ρ
(−1)
ij eiδt + ... (4.7)

∀ i, j. Here, ρ(0)ij are the 0th order density matrix elements similar to that of a simple

four-level system with a probe field, a coupling field, and only the strong microwave

field. ρ
(1)
ij and ρ

(−1)
ij are the 1st order density matrix elements that come into the

picture because of the presence of the second weak microwave field. The higher

order terms are neglected. Polarization of the probe field is P (ωp) ∝ ρ
(0)
ij whereas

the polarization of generated fields P (ωp ± δ) ∝ ρ
(±1)
ij .

As the density matrix is hermitian, ρ∗ij = ρji. =⇒ (ρ∗ij − ρji) = 0

=⇒ (ρ
(0)∗
ij − ρ

(0)
ji ) + (ρ

(−1)∗
ij − ρ

(1)
ji )e

−iδt + (ρ
(1)∗
ij − ρ

(−1)
ji )eiδt = 0,

neglecting the higher order terms. A complete set of orthonormal basis is formed

given by [1,e±iδt]. As the basis states are linearly independent, ρ
(0)∗
ij = ρ

(0)
ji , ρ

(1)∗
ij =

ρ
(−1)
ji and ρ

(−1)∗
ij = ρ

(1)
ji . The diagonal elements of the unperturbed density matrix

represent the population of the respective states and hence are real. This implies

ρ∗ii = ρii =⇒ ρ
(0)∗
ii = ρ

(0)
ii , ρ

(1)∗
ii = ρ

(−1)
ii and ρ

(−1)∗
ii = ρ

(1)
ii . The diagonal elements for

0th order density matrix are all real, but 1st order diagonal density matrix elements

need not be strictly real.

4.2.3 0th order density matrix equations

The optical Bloch equations are written in terms of the expanded density matrix

given by Eqn. 4.7. The 0th order optical Bloch equations are derived by equating

the coefficients of e−iδt with δ = 0 as:
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i

2
(Ωpρ

(0)
eg − Ω∗

pρ
(0)
ge ) + Γegρ

(0)
ee + Γrgρ

(0)
rr + Γr′gρ

(0)
r′r′ = 0 (4.8)

i

2
[−2∆pρ

(0)
ge + Ωp(2ρ

(0)
ee + ρ(0)rr + ρ

(0)
r′r′)− Ωp − Ω∗

cρ
(0)
gr ]−

Γeg

2
ρ(0)ge = 0 (4.9)

i

2
[−2δ1ρ

(0)
gr − Ω∗

µ1
ρ
(0)
gr′ − Ω∗

µ2
ρ
(1)
gr′ + Ωpρ

(0)
er − Ωcρ

(0)
ge ]−

γ1
2
ρ(0)gr = 0 (4.10)

i

2
[−2δ2ρ

(0)
gr′ − Ωµ1ρ

(0)
gr − Ωµ2ρ

(−1)
gr + Ωpρ

(0)
er′ ]−

γ2
2
ρ
(0)
gr′ = 0 (4.11)

i

2
[Ω∗

pρ
(0)
ge − Ωpρ

(0)
eg + Ωcρ

(0)
re − Ω∗

cρ
(0)
er ] + Γreρ

(0)
rr + Γr′eρ

(0)
r′r′ − Γegρ

(0)
ee = 0 (4.12)

i

2
[Ω∗

pρ
(0)
gr − 2∆cρ

(0)
er − Ω∗

µ1
ρ
(0)
er′ − Ω∗

µ2
ρ
(1)
er′ + Ωc(ρ

(0)
rr − ρ(0)ee )]−

γ3
2
ρ(0)er = 0 (4.13)

i

2
[−2δ3ρ

(0)
er′ − Ωµ1ρ

(0)
er − Ωµ2ρ

(−1)
er + Ω∗

pρ
(0)
gr′ + Ωcρ

(0)
rr′ ]−

(Γeg + γ2)

2
ρ
(0)
er′ = 0 (4.14)

i

2
[Ω∗

cρ
(0)
er −Ωcρ

(0)
re +Ωµ1ρ

(0)
r′r−Ω∗

µ1
ρ
(0)
rr′+Ωµ2ρ

(−1)
r′r −Ω∗

µ2
ρ
(1)
rr′ ]−γ1ρ

(0)
rr +Γr′rρ

(0)
r′r′ = 0 (4.15)

i

2
[Ω∗

cρ
(0)
er′ −2∆µρ

(0)
rr′ −Ωµ1(ρ

(0)
rr −ρ(0)r′r′)−Ωµ2(ρ

(−1)
rr −ρ(−1)

r′r′ )]−
(γ1 + γ2)

2
ρ
(0)
rr′ = 0 (4.16)

i

2
[Ω∗

µ1
ρ
(0)
rr′ − Ωµ1ρ

(0)
r′r + Ω∗

µ2
ρ
(1)
rr′ − Ωµ2ρ

(−1)
r′r ]− γ2ρ

(0)
r′r′ = 0 (4.17)

There are some higher order terms such as Ω∗
µ2
ρ
(1)
gr′ , Ωµ2ρ

(−1)
gr , Ω∗

µ2
ρ
(1)
er′ , Ωµ2ρ

(−1)
er ,

Ωµ2ρ
(−1)
r′r , Ω∗

µ2
ρ
(1)
rr′ , Ωµ2ρ

(−1)
rr , Ωµ2ρ

(−1)
r′r′ , Ω∗

µ2
ρ
(1)
rr′ , Ωµ2ρ

(−1)
r′r which are very small and

hence, are neglected. Numerical methods are used to solve the 0th order equations

for the strong microwave field to get the ground to excited state coherence. The

ground to excited state coherence ρ
(0)
eg for the thermal atomic medium is computed

using Maxwell-Boltzmann velocity distribution as

(ρ(0)eg )D =
1√
πvp

∫ +∞

−∞
ρ(0)eg e

−v2/v2pdv (4.18)

where vp represents the most probable speed of the atoms. The 0th order optical

Bloch equations are the same as the Bloch equations of a simple four-level system

with a probe field, a coupling field, and a microwave field. Fig. 4.2 shows the

comparison of (ρ
(0)
eg )D derived from 0th order equations with that from a four-level
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Figure 4.2: Comparison of (a) Real and (b) Imaginary part of (ρ
(0)
eg )D calculated

from 0th order equations with (ρ
(0)
eg )D calculated from a four-level system. Other

parameters are Ωp = 500 KHz, Ωc = 4 MHz, Ωµ = 5 MHz, Γeg = 6 MHz, Γre = 10
KHz, Γrg = 100 KHz, Γr′g = 10 KHz, Γr′r = 100 KHz, ∆p = 0 and ∆µ = 0. The
density of the atoms is 1.7× 1010 cm−3.

system where it is observed that the real and imaginary parts of (ρ
(0)
eg )D match

perfectly for both the systems.

4.2.4 1st order density matrix equations

The 1st order optical Bloch equations are derived from the coefficients of e−iδt and

eiδt. Here, the first set of equations is derived from the coefficients of e−iδt and are

represented as:

i

2
(Ωpρ

(+1)
eg − Ω∗

pρ
(+1)
ge ) + Γegρ

(+1)
ee + Γrgρ

(+1)
rr + Γr′gρ

(+1)
r′r′ =

iδ(ρ(+1)
ee + ρ(+1)

rr + ρ
(+1)
r′r′ )

(4.19)

i

2
[−2∆pρ

(+1)
ge + Ωp(2ρ

(+1)
ee + ρ(+1)

rr + ρ
(+1)
r′r′ )− Ω∗

cρ
(+1)
gr ]− Γeg

2
ρ(+1)
ge = −iδρ(+1)

ge (4.20)

i

2
[−2δ1ρ

(+1)
gr − Ω∗

µ1
ρ
(+1)
gr′ + Ωpρ

(+1)
er − Ωcρ

(+1)
ge ]− γ1

2
ρ(+1)
gr = −iδρ(+1)

gr (4.21)

i

2
[−2δ2ρ

(+1)
gr′ − Ωµ1ρ

(+1)
gr − Ωµ2ρ

(0)
gr + Ωpρ

(+1)
er′ ]− γ2

2
ρ
(+1)
gr′ = −iδρ(+1)

gr′ (4.22)

i

2
[2∆pρ

(+1)
ge − Ω∗

p(2ρ
(+1)
ee + ρ(+1)

rr + ρ
(+1)
r′r′ ) + Ωcρ

(+1)
rg ]− Γeg

2
ρ(+1)
eg = −iδρ(+1)

eg (4.23)
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i

2
[Ω∗

pρ
(+1)
ge − Ωpρ

(+1)
eg + Ωcρ

(+1)
re − Ω∗

cρ
(+1)
er ] + Γreρ

(+1)
rr + Γr′eρ

(+1)
r′r′ −

Γegρ
(+1)
ee = −iδρ(+1)

ee

(4.24)

i

2
[Ω∗

pρ
(+1)
gr − 2∆cρ

(+1)
er − Ω∗

µ1
ρ
(+1)
er′ + Ωc(ρ

(+1)
rr − ρ(+1)

ee )]− γ3
2
ρ(+1)
er = −iδρ(+1)

er (4.25)

i

2
[−2δ3ρ

(+1)
er′ − Ωµ1ρ

(+1)
er − Ωµ2ρ

(0)
er + Ω∗

pρ
(+1)
gr′ + Ωcρ

(+1)
rr′ ]− (Γeg + γ2)

2
ρ
(+1)
er′ =

−iδρ(+1)
er′

(4.26)

i

2
[2δ1ρ

(+1)
rg + Ωµ1ρ

(+1)
r′g + Ωµ2ρ

(0)
r′g − Ω∗

pρ
(+1)
re + Ω∗

cρ
(+1)
eg ]− γ1

2
ρ(+1)
rg = −iδρ(+1)

rg (4.27)

i

2
[−Ωpρ

(+1)
rg + 2∆cρ

(+1)
re + Ωµ1ρ

(+1)
r′e + Ωµ2ρ

(0)
r′e + Ω∗

c(ρ
(+1)
ee − ρ(+1)

rr )]

−γ3
2
ρ(+1)
re = −iδρ(+1)

re

(4.28)

i

2
[Ω∗

cρ
(+1)
er − Ωcρ

(+1)
re + Ωµ1ρ

(+1)
r′r − Ω∗

µ1
ρ
(+1)
rr′ + Ωµ2ρ

(0)
r′r]− γ1ρ

(+1)
rr +

Γr′rρ
(+1)
r′r′ = −iδρ(+1)

rr

(4.29)

i

2
[Ω∗

cρ
(+1)
er′ − 2∆µρ

(+1)
rr′ − Ωµ1(ρ

(+1)
rr − ρ

(+1)
r′r′ )− Ωµ2(ρ

(0)
rr − ρ

(0)
r′r′)]−

(γ1 + γ2)

2
ρ
(+1)
rr′ = −iδρ(+1)

rr′

(4.30)

i

2
[2δ2ρ

(+1)
r′g + Ω∗

µ1
ρ(+1)
rg − Ω∗

pρ
(+1)
r′e ]− γ2

2
ρ
(+1)
r′g = −iδρ(+1)

r′g (4.31)

i

2
[2δ3ρ

(+1)
r′e + Ω∗

µ1
ρ(+1)
re − Ωpρ

(+1)
r′g − Ω∗

cρ
(+1)
r′r ]− (Γeg + γ2)

2
ρ
(+1)
r′e = −iδρ(+1)

r′e (4.32)

i

2
[−Ωcρ

(+1)
r′e + 2∆µρ

(+1)
r′r + Ω∗

µ1
(ρ(+1)

rr − ρ
(+1)
r′r′ )]−

(γ1 + γ2)

2
ρ
(+1)
r′r = −iδρ(+1)

r′r (4.33)

i

2
[Ω∗

µ1
ρ
(+1)
rr′ − Ωµ1ρ

(+1)
r′r − Ωµ2ρ

(0)
r′r]− γ2ρ

(+1)
r′r′ = −iδρ(+1)

r′r′ (4.34)

In a similar manner, the coefficients of eiδt provide the other set of equations. First,

the zeroth order equations are solved for atoms at rest. The solutions of the zeroth

order equations are substituted into the first order equations, which are then solved

numerically for atoms at rest. The first order ground to excited state coherence ρ
(+1)
eg

and ρ
(−1)
eg correspond to the fields generated at (ωp + δ) and (ωp − δ) respectively.
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ρ
(±1)
eg is used to find the Doppler averaged susceptibility of the probe for the thermal

atoms as

χ
(5)
eff (ωp ± δ) =

N | µge |
ϵ0EpE2

cEµ1Eµ2

√
2πvp

∫ +∞

−∞
ρ(±1)
eg e−v2/2v2pdv (4.35)

where N is the vapor density.

4.3 Experimental details

Figure 4.3: (a) Schematic of energy levels of rubidium. (b) Experimental set-up.
HWP: Half-wave plate, PBS: Polarizing beam splitter, QWP: Quarter-wave plate,
M: Mirror, L: Lens, DM: Dichroic mirror, AOM: Acousto-optic modulator, L.O.:
Local oscillator, and DET: Photo-detector.

Fig. 4.3(a) shows the schematic of energy levels of rubidium used for the experi-

ment and (b) shows the optical set-up for the experiment. An ECDL (TOPTICA DL

PRO) at 780 nm is used to derive the probe beam (ωp). The probe laser frequency

is stabilized using the SAS frequency locking technique discussed in Sec. 2.6.1. The

probe frequency is detuned by 1.2 GHz from the 85Rb 5S 1
2
F = 3 → 5P 3

2
transition

(∆p = 1.2 GHz). As the probe is largely detuned away from resonance, the probe

absorption is considered to be negligible. The probe beam has 1
e
radius of wp=32.3

µm, and the rabi frequency of the probe is calculated to be Ωp = Γeg

√
Ip

2Isat
= 283
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MHz. Ip is the intensity of the probe field, and Isat = 1.67 mW/cm2 is the saturation

intensity for circularly polarized light. A frequency doubling cavity laser (TOPTICA

TA-SHG PRO) is used to generate the coupling beam (ωc) at 480 nm. The coupling

laser frequency is stabilized using the EIT locking technique discussed in Sec. 2.6.2.

The coupling beam has 1
e
radius of wc=63.2 µm, and the rabi frequency is calculated

to be Ωc = Γre

√
Ic

2Isat
= 2 MHz where Ic is the intensity of the coupling field. A

dichroic mirror is used to reflect the coupling beam and transmit the probe to make

the coupling beam counter propagate the probe beam. The probe and coupling

beam is focused at the center of the rubidium vapor cell, of length l, through lenses

of a focal length of 10 cm. The probe and coupling field satisfy the two-photon

resonance condition to the Rydberg state |r⟩ while scanning the coupling frequency.

The probe beam is made right circularly polarized, and the coupling beam is made

left circularly polarized using quarter-wave plates for efficient coupling to the Ryd-

berg state. The probe beam is detected using a photodetector. Two synchronized

microwave signal generators are used for the two microwave fields. The microwave

fields are applied through two horn antennas placed at a distance of 32 cm from

the center of the vapor cell. The microwave fields travel along the horizontal plane

through the center of the vapor cell, and these fields are linearly polarized. The

first microwave field (ωµ) is applied at a resonance frequency of 15.0895 GHz, which

couples the Rydberg state |r⟩ to another nearby Rydberg state |r′⟩. The second

microwave field (ωµ + δ) is applied between the same Rydberg states where δ is

the frequency difference between the two microwave fields, also called the beat fre-

quency. The first microwave field is a strong field and the second microwave field

is weak as compared to the first microwave field, i.e., Ωµ2 ≪ Ωµ1 . The vapor cell is

heated to 100 ◦C to maintain the atomic density at 6 × 1012 cm−3.

4.3.1 Optical heterodyne detection

The generation of a new optical field due to the six-wave mixing process is observed

through the optical heterodyne detection technique (OHDT). For OHDT, an addi-



72
Six-wave mixing of optical and microwave fields using Rydberg atoms in thermal atomic

vapor

Figure 4.4: Spectrum analyzer signal showing 40 MHz beat signal along with two
side bands for δ = 2 MHz.

tional field is used, which is derived from the probe beam. The derived beam is

shifted by 40 MHz using acousto-optic modulators (AOM), as shown in Fig. 4.3(b),

and is called the local oscillator (L.O.) field. The L.O. field has a frequency ωp +40

MHz. A PBS is used to interfere the L.O. field with the probe field. A polarizer is

used to optimize the interference of the fields. The two fields interfere to generate

a beat signal at 40 MHz. Since the fields generated due to the six-wave mixing

phenomenon at (ωp± δ) travel along the same direction as the probe field (ωp), they

also interfere with the L.O. field. This interference results in beat signal at (40 MHz

+ δ) and (40 MHz - δ). Fig. 4.4 shows the spectrum analyzer signal with 40 MHz

beat signal and beat signals at 38 MHz and 42 MHz for δ = 2 MHz. Thus, we

have two frequency components generated at (ωp+δ) and (ωp−δ) which correspond

to coherence terms ρ
(+1)
eg and ρ

(−1)
eg respectively. The experimental parameters are:

Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and Ωµ2 = 40 MHz, ∆p = 1.2 GHz,

∆c = −1.2 GHz, and ∆µ = 0.
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4.3.2 Beat signal at δ

Figure 4.5: Beat signal at the spectrum analyzer for δ = 2 MHz.

It is understood that the generated optical field (ωp ± δ) interferes with the

probe field (ωp). The interference of (ωp + δ) with ωp and (ωp − δ) with ωp, both

contribute to the interference signal or beat signal at frequency δ. For the rest of

the experiment, the L.O. field is switched off, and the beat signal at δ is observed,

which is shown in Fig. 4.5.

4.4 Microwave-to-optical conversion efficiency

The microwave-to-optical conversion efficiency is calculated from the formula [82]

given below:

η =
P(ωp±δ)/ℏ(ωp ± δ)

I(ωµ+δ)S/ℏ(ωµ + δ)
. (4.36)

P(ωp±δ) is the measured power of the generated optical field due to the six-wave mix-

ing process. I(ωµ+δ) is the intensity of the microwave field which is being experienced

by the atoms. S is the interacting area of the microwave field and atomic medium
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given by S = l × 2wp. P(ωp±δ) is calculated from the heterodyne signal observed

in Fig. 4.4 and is found to be 74.75 × 10−5 µW for δ = 2 MHz. The microwave

field strength experienced by the atoms, measured by observing the splitting of the

EIT signal, is measured experimentally to be 0.94 V/m. It is then used to calcu-

late I(ωµ+δ) = 11.8× 10−4 W/m2. The microwave-to-optical conversion efficiency is

found to be η ∼ 7.5× 10−6 for δ = 2 MHz. Fig. 4.6 shows the microwave-to-optical

conversion efficiency for three different δ.

Figure 4.6: Microwave-to-optical conversion efficiency for different δ.

4.5 Strength of the δ beat signal

Both the frequency components at (ωp + δ) and (ωp − δ) constructively contribute

to the δ beat signal, whose strength is found by looking at the electric fields of the

probe and the generated fields. As discussed earlier, the probe field is expressed as

E ′
p = Epe

−iωpt (4.37)
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and the generated fields are similarly expressed as

E+
p′ = E+1e

−i((ωp+δ)t+ϕ1) (4.38)

E−
p′ = E−1e

−i((ωp−δ)t+ϕ2) (4.39)

where E±1 are the complex amplitudes of the generated fields. ϕ1 and ϕ2 are the

phase acquired by the generated fields due to the six-wave mixing process, which

are very small. The light intensity resulting from the interference of the probe field

with the generated fields is given by

(Epe
−iωpt + E+1e

−i((ωp+δ)t+ϕ1) + E−1e
−i((ωp−δ)t+ϕ2))(Epe

−iωpt+

E+1e
−i((ωp+δ)t+ϕ1) + E−1e

−i((ωp−δ)t+ϕ2))∗

= |Ep|2 + |E+1|2 + |E−1|2 + 2EpE+1 cos(δt+ ϕ1)

+2EpE−1 cos(δt− ϕ2) + 2E+1E−1 cos(2δt+ ϕ1 − ϕ2)

(4.40)

The first three terms are d.c. intensity terms where the first term is due to the probe

field, and the second and third terms are due to the generated field. The fourth

and fifth terms represent the intensity due to interference of the probe field with the

generated field. The last term is the higher harmonics term, which occurs due to the

interference of the generated fields. The beat signal is represented as A0 cos(δt+ϕ).

If A0 cos(δt+ϕ) is compared with the terms containing the interference of the probe

and the generated field, i.e., 2EpE+1 cos(δt+ ϕ1) + 2EpE−1 cos(δt− ϕ2), it is found

that

A0 =
2EpE+1 sin(ϕ1 + ϕ2)

sin(ϕ+ ϕ2)
=

2EpE−1 sin(ϕ1 + ϕ2)

sin(ϕ1 − ϕ)
; (4.41)

ϕ =
E+1ϕ1 − E−1ϕ2

E+1 + E−1

. (4.42)

The strength of the beat signal is directly proportional to the electric field amplitude

of the probe and the generated fields. They also depend on the phases acquired by

the generated fields due to the χ(5) process.
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4.6 Wave propagation equations

To model the experimental results, the wave propagation equations [85] are solved

for the generated fields. The system is studied under conditions of perfect phase

matching, i.e., ∆k = 0. The slowly varying amplitudes E±1 follow the equations as

given below:
dE±1

dz
= −α±1E±1 + κ±1. (4.43)

Here, the non-linear absorption in the medium is given by

α±1 = −k±1

2
Im(χ(1)) (4.44)

and the non-linear coupling coefficients are

κ±1 = −i3
2

k±1

n2
±1

χ
(5)
eff (ωp ± δ)EpE

2
cEµ1Eµ2 . (4.45)

The non-linear coupling coefficients corresponding to the generated frequencies con-

tain the susceptibility due to the six-wave mixing process. Ep, Ec, Eµ1 and Eµ2

denote the complex electric field amplitudes of the probe field, coupling field, strong

microwave field, and weak microwave field respectively which are kept constant dur-

ing the experiment. k±1 denotes the propagation constant of the generated fields,

and n±1 denotes the real part of the refractive index experienced by these fields.

As the probe is largely detuned from resonance, i.e., ∆p = 1.2 GHz, the probe

absorption and hence, the absorption of the generated field is negligible. χ(1) repre-

sents the effective linear susceptibility, and χ
(5)
eff represents the effective fifth-order

susceptibility due to the six-wave mixing process.

The wave propagation equations for the generated fields are solved to find out

the solution as

E±1 =
κ±1

α±1

(1− e−α±1l). (4.46)

Since the probe is far detuned (1.2 GHz) away from resonance, the absorption of the
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probe and generated field can be neglected, i.e., α±1 = 0. Using Taylor’s expansion

of e−α±1l and keeping the first order terms, the solution is given as

E±1 = κ±1l (4.47)

where l is the length of the vapor cell. From the above equation, it is obvious that the

amplitude of the generated field is directly proportional to κ±1. The total amplitude

of the beat signal is given by Eqn. 4.41, which is used to model the experimental

results.

4.7 Observations

4.7.1 Beat signal strength as a function of δ

The beat spectrum due to interference of the generated optical field with the probe

field is studied as a function of δ. With the strong microwave field (ωµ) on reso-

nance, i.e., ∆µ = 0, the beat frequency is varied by scanning the weak microwave

field (ωµ + δ). It is observed that the strength of the generated beat signal is

maximum when the weak microwave field is near the resonance (δ ∼ 0). The beat

strength decreases as the weak microwave field is scanned away from resonance. The

generation spectrum is shown in Fig. 4.7 with FWHM of ∼ 17 MHz. A qualitative

agreement is observed between the experimental results and the theoretical model.

The theoretically generated spectrum is symmetric around the resonance. But the

experimental plot is broader along the left side of the spectrum. This is attributed

to the fact that there is the contribution from another nearby Rydberg state or

the fine structure state |52D 3
2
⟩ which is lying at around 80 MHz away from |52D 5

2
⟩

state. This is not taken into account in the theoretical model. Also, there are small

features at δ = ±80 MHz around the main peak. This is due to the formation of

dressed states by the strong microwave field with Rabi frequency Ωµ2 = 80 MHz,

which is discussed in detail in the next section. The bandwidth of the generation
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Figure 4.7: Beat signal amplitude with varying δ. Experimental parameters used
are: Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and Ωµ2 = 40 MHz, ∆p = 1.2
GHz, ∆c = −1.2 GHz and ∆µ = 0.

spectrum and the strength of the generated optical field are not fundamentally lim-

ited. Instead, it is limited by the available coupling power. With a larger available

coupling Rabi frequency, larger bandwidth can be achieved, which will be discussed

in the later sections.

4.7.2 Dressed state formation due to strong microwave field

The formation of two small features at δ = ± 80 MHz can be explained with a

dressed state picture as discussed in Sec. 2.2.2. When the strong dressing microwave

field is on resonance, the frequency difference between the dressed states is equal to

the Rabi frequency of the dressing field, and the dressed states are equally spaced

away from the resonance. The formation of the dressed states depends on the Rabi

frequency of the strong microwave field, which is Ωµ1 = 80 MHz. As shown in Fig.
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Figure 4.8: Schematic of dressed state picture due to the strong microwave field
(ωµ) with Rabi frequency Ωµ1 .

4.8, the strong microwave field splits the states such that we have four probabilities.

When the weak microwave field is scanned, we observe three peaks. Two possible

transitions correspond to strong microwave field frequency ωµ1 . They give rise to the

main peak at around δ = 0. The transition corresponding to frequency (ωµ + Ωµ1)

gives rise to the small feature at δ = 80 MHz and the transition corresponding to

frequency (ωµ − Ωµ1) gives rise to the feature at δ = −80 MHz.

4.7.3 Beat strength as a function of Ωp

The generated optical field increases with an increase in the Rabi frequency of the

probe field, as shown in Fig. 4.9. It shows the beat signal amplitude’s dependence on

the probe field’s power.The x-axis in the plot is the peak Rabi frequency at the center

of the cell. The observed beat amplitude corresponding to each peak Rabi frequency

is an average effect due to the different Rabi frequencies over the length of the cell.

Hence, instead of using the model to fit the data a polynomial function is used. It

follows the polynomial function y = a1x + a2x
3 + a3x

5 + ... which is represented
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Figure 4.9: Beat signal amplitude with varying Ωp for fixed δ = 10 MHz. Blue
open circles are the experimental data and red line is a fit to the polynomial y =
a1x + a2x

3 + a3x
5 with a1 = 0.18 ± 0.11, a2 = 5.07E − 5 ± 4.85E − 6, and a3 =

−4.56E − 10 ± 4.69E − 11. Other experimental parameters used are: Ωp = 283
MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and Ωµ2 = 40 MHz, ∆p = 1.2 GHz, ∆c = −1.2
GHz, and ∆µ = 0.

by red line. a1 corresponds to the contribution due to the χ(5) process, whereas a3

and a5 are contribution due to the higher order χ(7) and χ(9) processes respectively.

After certain values of Ωp, the beat amplitude does not increase with the increase in

probe power; it saturates due to the higher order nonlinear processes. For the rest

of the experiment, the probe power is fixed at the value where the maximum beat

strength is observed.

4.7.4 Beat strength as a function of ∆µ

We also study the newly generated optical field as a function of the detuning of

the microwave fields from the atomic resonance. We detune the microwave fields

away from the atomic resonance by varying ∆µ and keep the frequency difference
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Figure 4.10: Beat signal amplitude with varying ∆µ for fixed δ = 5 MHz. Other
experimental parameters used are: Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz
and Ωµ2 = 40 MHz, ∆p = 1.2 GHz, and ∆c = −1.2 GHz.

between the microwave fields fixed at δ = 5 MHz. We observe the generation of

the new optical field in a wide frequency band with an FWHM of nearly 400 MHz,

as shown in Fig. 4.10. The experimental plot and the theoretically generated data

qualitatively agree with each other. The extra features in the experimental plot

are due to the nearby fine structure Rydberg state |52D 3
2
⟩ lying nearby, which have

not been accounted for in the theoretical model. In all these experiments, we have

ignored the reflections of the microwave from the surface of the optical table and

from the surface of the vapor cell.

4.7.5 E-field strength of weak microwave field in free space

When the microwave field is radiated from the horn antenna, it travels in free space

to interact with the atomic medium. To understand the dependence of beat strength
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on the power of the weak microwave field, its electric field strength in free space is

needed to be known. This calculation is valid for a far-field region where the wave

is assumed to be a spherical wave. Let Po be the power output from the microwave

source. A horn antenna radiates this power with a gain of G in dB. As the waves

travel in free space, they spread out like spheres of increasing radius. At distances far

away from the antenna, i.e., in the far-field region, the wavefronts are approximated

to be spheres, and the source is considered a point source. The radius of the sphere

increases with the square of the distance d2. The total power carried by the wave

doesn’t change but keeps on spreading on larger surfaces. Hence, the power density

has 1
d2

dependence. The power density at a given distance d is

S = g
Po

4πd2
(4.48)

where g is the gain that gives the measure of the antenna’s ability to give direction

to the radiated power. g is found from the relation G = 10 log10(g). S is also called

the Poynting vector. The relation between the Poynting vector and the strength of

the electric field is given by

S =
E2

Z0

(4.49)

where Z0=377 Ω is the characteristic impedance of the vacuum. The above relation

is used to find out the electric field strength of the weak microwave field.

4.7.6 Dependence of the beat strength on weak microwave

power

The dependence of the beat strength on the power of the weak microwave field

is studied by increasing the power of the weak microwave field and recording the

amplitude of the beat signal. From the microwave source’s output power, the weak

microwave field’s electric field strength is calculated as discussed in the previous

section. Here, the antennas are placed at a distance of 32 cm from the atomic

vapor cell; hence, the calculation is done considering the far-field regime. A linear
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Figure 4.11: Beat signal amplitude with increasing weak microwave field strength
at δ = 10 MHz. Other experimental parameters used are: Ωp = 283 MHz, Ωc = 2
MHz, Ωµ1 = 80 MHz, ∆p = 1.2 GHz, ∆c = −1.2 GHz and ∆µ = 0.

increase is observed in the beat strength with increasing microwave field strength,

as shown in Fig. 4.11. This linear increase is expected from the wave propagation

equations where E±1 ∝ κ±1 ∝ Eµ2 . The experimental data is fitted with a straight

line equation y = a ∗ Eµ2 where a = 16.64± 0.22 acts as a gain in the system. The

antenna gain (G) is around 15 dB. Here, the antenna gain G includes any losses

from the antenna.

4.8 Temporal response of the system

Rydberg EIT-based microwave field sensing techniques have been exploited to find

the data transfer rate in atomic systems. The requirement is larger modulation

bandwidth. As discussed in the previous chapter, the system can have a data transfer



84
Six-wave mixing of optical and microwave fields using Rydberg atoms in thermal atomic

vapor

rate of a few Mbit/s, as the modulation bandwidth is limited only to a few MHz by

the optical pumping rate to the EIT dark state. Since the six-wave mixing process

in the thermal vapor system is a parametric generation process, it is expected to be

faster than the on resonant EIT-based sensing techniques.

The temporal response is investigated through amplitude modulation of the gen-

erated optical fields. A message signal encoded into a carrier wave is similar to

the amplitude modulation of the carrier wave. Consider the modulation wave to

be m(t) = A0cos(νt), where A0 is the amplitude of the modulation wave, and ν

is the modulation frequency. The carrier wave is represented as c(t) with com-

plex amplitude A. After amplitude modulation, the modulated wave is expressed

as (1 + m(t)
A

)c(t) = (1 +mcos(νt))c(t) where m = A0

A
is the modulation index with

m ≤ 1.

Figure 4.12: Amplitude modulated signal with side bands for δ = 2 MHz and ν = 70
kHz. Other experimental parameters are: Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80
MHz and Ωµ2 = 40 MHz, ∆p = 1.2 GHz, ∆c = −1.2 GHz, and ∆µ = 0.

Amplitude modulation of the weak microwave field results in amplitude mod-

ulation of the generated optical field due to the six-wave mixing process inside

the atomic medium. The generated field acts as a carrier wave for the mod-

ulation wave. After amplitude modulation, the generated fields are written as
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(1+mcos(νt))E±1e
i(ωp±δ)t. Amplitude modulation results in the generation of side-

bands around the carrier wave at frequencies (ωp±δ)±ν. As we know, the generated

field interferes with the probe field to give the beat signal at δ and hence, the gen-

erated sidebands are observed at (δ ± ν) as shown in Fig. 4.12 where δ = 2 MHz

and ν = 70 kHz. The total intensity after the amplitude modulation is given by the

interference of the probe field, and the amplitude modulated generated fields. This

total intensity is found to be:

|E⃗pe
iωpt + (1 +mcos(νt))E⃗+1e

i(ωp+δ)t|2 + |E⃗pe
iωpt + (1 +mcos(νt))E⃗−1e

−i(ωp−δ)t|2

= 2|Ep|2 + |E+1|2 + |E−1|2 +m2(|E+1|2 + |E−1|2) +
m2

2
(|E+1|2 + |E−1|2) cos(2νt)+

2m(|E+1|2 + |E−1|2)cos(νt) + 2|Ep|(|E+1|+ |E−1|) cos(δt)+

m|Ep|(|E+1|+ |E−1|)(cos(δ + ν)t+ cos(δ − ν)t).

(4.50)

The first term is a d.c. term corresponding to the intensity due to the probe field.

The second, third, and fourth terms are also d.c. terms that correspond to the

intensities due to the generated fields. The sixth term represents the modulation

wave at frequency ν, and the fifth term denotes the higher orders generated due to

the modulation wave. The seventh term corresponds to the carrier wave at frequency

δ, and the last two terms represent the sidebands due to the amplitude modulation

of the carrier signal generated at frequencies (δ + ν) and (δ − ν).

Taking the ratio of the amplitudes of generated sidebands to the amplitude of

the carrier signal gives

R =
m | Ep | (| E+1 | + | E−1 |)
2 | Ep | (| E+1 | + | E−1 |)

=
m

2
(4.51)

Experimentally, the ratio of the amplitude of the generated sidebands to the ampli-

tude of the un-modulated carrier signal is found out for a given δ. For example, in

Fig. 4.12, the amplitude of the generated side bands along with the modulated car-
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Figure 4.13: m with varying modulation frequency ν at δ = 2 MHz for the upper
sideband at (δ + ν) and lower sideband at (δ − ν). The experimental parameters
are: Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and Ωµ2 = 40 MHz, ∆p = 1.2
GHz, ∆c = −1.2 GHz and ∆µ = 0.

rier wave for δ = 2 MHz and ν = 70 KHz is observed. With the modulation signal

not switched on, the amplitude of the un-modulated carrier wave is measured. The

base offset is subtracted from the peak value, and the amplitude of the peak-to-peak

is calculated. By taking the ratio as discussed, the value of the modulation index

is calculated. By comparing the experimentally found value with eqn. 4.51, the

modulation index m is determined as a function of modulation frequency ν. The

value of m is calculated for both the upper and lower sidebands as a function of the

modulation frequency represented by Fig. 4.13.

4.8.1 Modulation bandwidth

The generation of sidebands is observed up to a certain modulation frequency for the

given experimental parameters. For given δ = 2 MHz, the bandwidth of the mod-
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Figure 4.14: Comparison of the modulation spectrum with the normalized beat
spectrum due to the six-wave mixing process. Cyan open circles represent the beat
spectrum given by Fig. 4.7. Blue and red open circles represent m for the upper
and lower sideband of the modulated signal, respectively, at δ = 2 MHz. The other
experimental parameters are: Ωp = 283 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and
Ωµ2 = 40 MHz, ∆p = 1.2 GHz, ∆c = −1.2 GHz, and ∆µ = 0.

ulation spectrum is observed to be ∼ 17 MHz. The bandwidth of the modulation

spectrum determines the system’s data transfer rate. This bandwidth is limited by

the available coupling power. To verify that, the bandwidth of the modulation spec-

trum is compared with the normalized beat generation spectrum as shown in Fig.

4.14. Since the beat frequency is fixed at δ = 2 MHz, the m value for the sidebands

is plotted by adding 2 MHz to the modulation frequency (x-axis of modulation spec-

trum) for comparison with the x-axis of the beat spectrum. The bandwidth of both

spectrums is in good match with each other. In this system, a parametric six-wave

mixing process is observed, which is faster than the EIT systems. As discussed ear-

lier, it has been demonstrated that the two-photon Rydberg EIT system can have

a data transfer rate of 8.2 Mbit/s with a signal bandwidth of nearly 1 MHz [40].
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The bandwidth in EIT systems can be increased with an increase in coupling Rabi

frequency leading to a decrease in the sensitivity of the detected microwave field,

which is limited by the EIT bandwidth. The limitation to the bandwidth in the

parametric system discussed in this chapter and hence, the limit to the data trans-

fer rate is because of less coupling Rabi frequency. An increase in the coupling Rabi

frequency does not compromise the sensitivity of the detected field in such para-

metric processes. Hence, a faster data transfer rate can be achieved with a higher

available coupling Rabi frequency, which has been theoretically demonstrated in the

next section.

4.9 Effect of large coupling Rabi frequency on

beat spectrum

Figure 4.15: Theoretically generated spectrum for A′ as a function of δ for (a)
Ωc = 2 MHz and (b) Ωc = 50, 100 MHz. Other parameters used are: Ωp = 300
MHz, Ωµ1 = 80 MHz and Ωµ2 = 1 MHz, ∆p = 1.2 GHz, ∆c = −1.2 GHz and
∆µ = 0.

In order to determine the signal bandwidth that can be achieved with this system,

a theoretical study is performed to understand the effect of coupling Rabi frequency

on the beat generation spectrum A′ = sin(ϕ++ϕ−)
sin(ϕ+ϕ−)

∫ +∞
−∞ ρ

(+1)
eg e−v2/2v2pdv. For the res-

onance condition discussed in the above sections with ∆p = 1.2 GHz, ∆c = −1.2
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GHz, and ∆µ = 0, an increase in coupling Rabi frequency results in extra peaks

due to formation of dressed states and also the bandwidth of the spectrum does

not increase as shown in Fig. 4.15. So the system is investigated at off-resonance

condition i.e., ∆p = 1.2 GHz, ∆c = −0.6 GHz and ∆µ = 0.2 GHz as shown in Fig.

4.16(a). To be able to understand the observations in the thermal vapor system,

first, the system is studied considering the atoms to be at rest.

Figure 4.16: Schematic of energy levels: (a) for off-resonant condition with two-
photon detuning δ1 = 0.6 GHz and three-photon detuning δ2 = 0.8 GHz and (b)
weak microwave transitions (yellow lines) corresponding to the two peaks at δ = 0.6
GHz and δ = 0.8 GHz.

4.9.1 Investigation in a system with atoms at rest

First, the A′ spectrum is studied for low Rabi frequencies, i.e., Ωp = 10 MHz,

Ωc = 2 MHz, Ωµ1 = 10 MHz and Ωµ2 = 1 MHz, which is shown as an inset in Fig.

4.17(a). Application of a strong microwave field at the off-resonant conditions leads

to the formation of dressed states, leading to many possible peaks while scanning
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Figure 4.17: Theoretically generated spectrum for A′ with atoms at rest as a func-
tion of δ for: (a) Ωp = 300 MHz, Ωc = 2 MHz, Ωµ1 = 80 MHz and Ωµ2 = 1 MHz.
Inset shows the spectrum for Ωp = 10 MHz, Ωc = 2 MHz, Ωµ1 = 10 MHz and
Ωµ2 = 1 MHz. (b) Ωp = 300 MHz, Ωc = 100 MHz, Ωµ1 = 80 MHz and Ωµ2 = 1
MHz. Other parameters used are: ∆p = 1.2 GHz, ∆c = −0.6 GHz and ∆µ = 0.2
GHz.

the weak microwave field. But the stronger contribution comes from two possible

weak microwave field transitions. These transitions are represented by yellow lines,

as shown in Fig. 4.16(b). Two peaks are observed at δ = 600 MHz and δ = 800

MHz. With the increase in the laser Rabi frequencies to Ωp = 300 MHz, Ωc = 2

MHz, Ωµ1 = 80 MHz, and Ωµ2 = 1 MHz, the peaks are shifted due to light shifts

introduced into the system by the laser fields as shown in Fig. 4.17. Also, the

two peaks split because of the formation of dressed states due to high probe Rabi

frequency. An increase of coupling Rabi frequency to Ωc = 100 MHz leads to an

increase in the strength of A′ whereas the spectrum bandwidth remains the same,

which can be observed in Fig. 4.17(b).

4.9.2 Effect of large coupling Rabi frequency in thermal sys-

tem

In the thermal vapor system, along with the light shift factors of the laser fields,

there is a wave-vector mismatch between the probe and the coupling field. At low
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Figure 4.18: Theoretically generated spectrum for A′ as a function of δ for (a) Ωc = 2
MHz and (b) Ωc = 10, 50, 100 MHz. Other parameters used are: Ωp = 300 MHz,
Ωµ1 = 80 MHz and Ωµ2 = 1 MHz, ∆p = 1.2 GHz, ∆c = −0.6 GHz and ∆µ = 0.2
GHz.

coupling Rabi frequency of Ωc = 2 MHz, the two peaks are observed as shown

in Fig. 4.18(a). The peaks are shifted from δ = 600 MHz and δ = 800 MHz

due to wave-vector mismatch as well as the light shift factors and the frequency

difference between the peaks is ∼ ∆µ
kp
kc
. An increase in coupling Rabi frequency

leads to the broadening of the A′ spectrum, as shown in Fig. 4.18. For the left side

peak, it is observed that the width of the spectrum is equal to the coupling Rabi

frequency. Hence, the bandwidth of the modulation spectrum will also increase

with the increase in coupling Rabi frequency. If the coupling Rabi frequency can

be increased to 100 MHz, a beat spectrum with a bandwidth of 100 MHz can be

achieved. The power requirement for achieving such coupling Rabi frequency is

nearly 27 Watt with 1/e beam radius of 50 µm. In the current scenario, achieving

such large power is difficult. 27 Watt is a quantitative estimate of the power required

to achieve such larger bandwidth. The observation clearly indicates that this system

is advantageous for a faster data transfer rate.
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4.10 Conclusion

The six-wave mixing of optical and microwave fields in thermal rubidium vapor

results in the parametric generation of a new optical field. The frequency of the

generated field depends on the frequency difference between the two microwave

fields, and the direction is along the probe field. The system has a generation

bandwidth of 17 MHz limited by the available coupling Rabi frequency. A theoretical

investigation demonstrates that a larger coupling Rabi frequency of 100 MHz can

lead to a generation bandwidth of 100 MHz. This study in thermal vapor systems

provides a robust platform for larger bandwidth of microwave-to-optical conversion

and hence, a faster data transfer rate.



Chapter 5

Study of electromagnetically

induced transparency (EIT) using

four-photon excitation to the

Rydberg state in thermal atomic

vapor

Microwave field sensing with Rydberg atoms is performed with a two-photon ex-

citation [68] process to the Rydberg state [12] under the conditions of EIT. The

two-photon excitation processes to the Rydberg state in thermal atomic vapor have

a large wave-vector mismatch. This leads to significant motion-induced dephasing

in the system. There are studies that propose achieving Doppler-free conditions

for EIT with three-photon excitation processes using suitable beam geometry [86].

Also, there are proposals for eliminating the motion-induced dephasing using four-

photon excitation to the Rydberg state [87, 88]. Still, the four-photon excitation

process has not been discussed in detail. This chapter provides an atomic model of

a five-level system to study EIT using the four-photon excitation to the Rydberg
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state in thermal atomic vapor [89]. The system achieves EIT using an effective

probe and coupling transition where the variation of EIT peak transmission with

wave-vector mismatch is studied. The method of adiabatic elimination is discussed,

which reduces the five-level system to an effective three-level system. Finally, an ex-

perimental proposal is provided where motion-induced dephasing can be eliminated

using suitable beam geometry.

5.1 Five-level atomic model for four-photon exci-

tation to the Rydberg state

Figure 5.1: Energy level scheme of a five-level system in the ladder configuration.

Consider an atomic system of five energy levels represented by Fig. 5.1. The

ground state is represented by |g⟩, first excited state or intermediate state by |e⟩,

second excited state or second intermediate state by |e′⟩, third excited state or third

intermediate state by |e′′⟩ and final excited state or Rydberg state by |r⟩. Excitation
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from |g⟩ → |e⟩, |e⟩ → |e′⟩, |e′⟩ → |e′′⟩ and |e′′⟩ → |r⟩ are dipole allowed with ω01, ω02,

ω03 and ω04 being the corresponding atomic transition frequencies. The excitation

from |g⟩ → |e′⟩ and |e′⟩ → |r⟩ are dipole forbidden. A probe field at frequency

ω1 drives the transition |g⟩ → |e⟩. Fields at frequencies ω2, ω3 and ω4 drive the

transition between the states |e⟩ → |e′⟩, |e′⟩ → |e′′⟩ and |e′′⟩ → |r⟩, respectively.

The laser electric fields are represented as E⃗ ′
1 = E⃗1e

−iω1t+ c.c, E⃗ ′
2 = E⃗2e

−iω2t+ c.c,

E⃗ ′
3 = E⃗3e

−iω3t + c.c and E⃗ ′
4 = E⃗4e

−iω4t + c.c. The detunings of the various fields

from the corresponding atomic resonances are given by ∆1 = ω1−ω01, ∆2 = ω2−ω02,

∆3 = ω3 − ω03 and ∆4 = ω4 − ω04. The two-photon, three-photon and four-photon

detuning are defined respectively as δ2 = (∆1 + ∆2), δ3 = (∆1 + ∆2 + ∆3), and

δ4 = (∆1 + ∆2 + ∆3 + ∆4). Two other detunings are defined as δ5 = (∆2 + ∆3),

δ6 = (∆2 + ∆3 + ∆4), and δ7 = (∆3 + ∆4). The Rabi frequency of the four laser

fields are given by Ω1 = 2µgeE1

ℏ , Ω2 =
2µee′E2

ℏ , Ω3 =
2µe′e′′E3

ℏ and Ω4 =
2µe′′rE4

ℏ . µge,

µee′ , µe′e′′ and µe′′r denote the transition dipole moments. E1, E2, E2 and E4 denote

the electric field amplitude of the four laser fields with frequency ω1, ω2, ω3 and ω4

respectively.

The total Hamiltonian for the five-level system is represented as H̃ = H0 +Hint

where H0 = ℏω1|e⟩⟨e| + ℏ(ω1 + ω2)|e′⟩⟨e′| + ℏ(ω1 + ω2 + ω3)|e′′⟩⟨e′′| + ℏ(ω1 + ω2 +

ω3 +ω4)|r⟩⟨r| is the bare atomic Hamiltonian and Hint = −µ⃗ · E⃗ = −E1(µge|g⟩⟨e|+

µeg|e⟩⟨g|)−E2(µee′|e⟩⟨e′|+µe′e|e′⟩⟨e|)−E3(µe′e′′ |e′⟩⟨e′′|+µe′′e′ |e′′⟩⟨e′|)−E4(µe′′r|e′′⟩⟨r|+

µre′′ |r⟩⟨e′′|) is the interaction Hamiltonian which represents the atom-light interac-

tion taking place. The use of rotating wave approximation in a suitable rotating

frame makes the total Hamiltonian time-independent and is represented as

H = −ℏ
2



0 Ω1 0 0 0

Ω∗
1 2∆1 Ω2 0 0

0 Ω∗
2 2δ2 Ω3 0

0 0 Ω∗
3 2δ3 Ω4

0 0 0 Ω∗
4 2δ4


.
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5.2 Construction of the master equation

The master equation which leads us to the equations of motions is

ρ̇ =
i

ℏ
[ρ,H] + LD(ρ). (5.1)

The density matrix ρ is a 5 × 5 matrix and is represented as ρi,j with i, j =

g, e, e′, e′′, r. The Lindblad operator representing the decay and decoherence terms

is given by

LD(ρ) =



LDgg LDge LDge′
LDge′′

LDgr

LDeg LDee LDee′
LDee′′

LDer

LDe′g
LDe′e

LDe′e′
LDe′e′′

LDe′r

LDe′′g
LDe′′e

LDe′′e′
LDe′′e′′

LDe′′r

LDrg LDre LDre′
LDre′′

LDrr


where the different matrix elements are given as below:

LDgg = Γegρee + Γe′gρe′e′ + Γe′′gρe′′e′′ + Γrgρrr

LDge = −1
2
Γegρge

LDge′
= −1

2
(Γe′g + Γe′e)ρge′

LDge′′
= −1

2
(Γe′′g + Γe′′e′)ρge′′

LDgr = −1
2
(Γrg + Γre′′)ρgr

LDeg = −1
2
Γegρeg

LDee = Γe′eρe′e′ − Γegρee

LDee′
= −1

2
(Γe′g + Γe′e + Γeg)ρee′

LDee′′
= −1

2
(Γe′′g + Γe′′e′ + Γeg)ρee′′

LDer = −1
2
(Γrg + Γre′′ + Γeg)ρer

LDe′g
= −1

2
(Γe′g + Γe′e)ρe′g

LDe′e
= −1

2
(Γe′g + Γe′e + Γeg)ρe′e

LDe′e′
= Γe′′e′ρe′′e′′ − (Γe′g + Γe′e)ρe′e′

LDe′e′′
= −1

2
(Γe′e + Γe′g + Γe′′e′ + Γe′′g)ρe′e′′
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LDe′r
= −1

2
(Γe′e + Γe′g + Γre′′ + Γrg)ρe′r

LDe′′g
= −1

2
(Γe′′g + Γe′′e′)ρe′′g

LDe′′e′
= −1

2
(Γe′′g + Γe′′e′ + Γeg)ρe′′e′

LDe′′e′
= −1

2
(Γe′e + Γe′g + Γe′′e′ + Γe′′g)ρe′′e′

LDe′′e′′
= Γre′′ρrr − (Γe′′g + Γe′′e′)ρe′′e′′

LDe′′r
= −1

2
(Γe′′e′ + Γe′′g + Γre′′ + Γrg)ρe′′r

LDrg = −1
2
(Γrg + Γre′′)ρrg

LDre = −1
2
(Γrg + Γre′′ + Γeg)ρre

LDre′
= −1

2
(Γe′e + Γe′g + Γre′′ + Γrg)ρre′

LDre′′
= −1

2
(Γe′′e′ + Γe′′g + Γre′′ + Γrg)ρre′′

LDrr = −(Γrg + Γre′′)ρrr

Γeg, Γe′e, Γe′′e′ and Γre′′ are the population decay rates through the dipole allowed

decay channels. The transit time decays of the excited states through the transverse

direction of the beam are Γrg, Γe′′g, and Γe′g. The decay values used in the model

for calculation are Γeg = 6 MHz, Γe′e = 0.65 MHz, Γe′′e′ = 0.3 MHz and Γre′′ = 0.01

MHz. The transit time decay rates are 0.2 MHz.

5.3 Optical Bloch equations

The optical Bloch equations are solved for the steady state, i.e., ρ̇ = 0 to get the

density matrix equations as

i

2
(Ω1ρeg − Ω∗

1ρge) + Γegρee + Γe′gρe′e′ + Γe′′gρe′′e′′ + Γrgρrr = 0 (5.2)

i

2
[−2∆1ρge + Ω1(2ρee + ρe′e′ + ρe′′e′′ + ρrr)− Ω1 − Ω∗

2ρge′ ]−
Γeg

2
ρge = 0 (5.3)

i

2
[−2δ2ρge′ − Ω∗

3ρge′′ + Ω1ρee′ − Ω2ρge]−
(Γe′g + Γe′e)

2
ρge′ = 0 (5.4)

i

2
[−2δ3ρge′′ − Ω3ρge′ + Ω1ρer′ − Ω4ρgr]−

(Γe′′g + Γe′′e′)

2
ρge′′ = 0 (5.5)

i

2
[−2δ4ρgr − Ω4ρge′′ + Ω1ρer]−

(Γrg + Γre′′)

2
ρgr = 0 (5.6)
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i

2
[Ω∗

1ρge − Ω1ρeg + Ω2ρe′e − Ω∗
2ρee′ ] + Γe′eρe′e′ + Γreρrr − Γegρee = 0 (5.7)

i

2
[Ω∗

1ρge′ − 2∆2ρee′ − Ω∗
3ρee′′ + Ω2(ρe′e′ − ρee)]−

(Γeg + Γe′e + Γe′g)

2
ρee′ = 0 (5.8)

i

2
[−Ω3ρee′ −2δ5ρee′′ −Ω4ρer+Ω∗

1ρge′′ +Ω2ρe′e′′ ]−
(Γeg + Γe′′g + Γe′′e′)

2
ρee′′ = 0 (5.9)

i

2
[−2δ6ρer − Ω4ρee′′ + Ω∗

1ρgr + Ω2ρe′r]−
(Γeg + Γrg + Γre′′)

2
ρer = 0 (5.10)

i

2
[Ω∗

2ρee′ − Ω2ρe′e + Ω3ρe′′e′ − Ω∗
3ρe′e′′ ]− (Γe′e + Γe′g)ρe′e′ + Γe′′e′ρe′′e′′ = 0 (5.11)

i

2
[Ω∗

2ρee′′ −2∆3ρe′e′′ −Ω3(ρe′e′ −ρe′′e′′)]−
(Γe′e + Γe′g + Γe′′e′ + Γe′′g)

2
ρe′e′′ = 0 (5.12)

i

2
[Ω2ρer − 2δ7ρe′r + Ω3ρe′′r − Ω4ρe′e′′ ]−

(Γe′e + Γe′g + Γre′′ + Γrg)

2
ρe′r = 0 (5.13)

i

2
[Ω∗

3ρe′e′′ − Ω3ρe′′e′ + Ω∗
4ρre′′ − Ω4ρe′′r]− (Γe′′e′ + Γe′′g)ρe′′e′′ + Γre′′ρrr = 0 (5.14)

i

2
[Ω3ρe′r − 2∆4ρe′′r +Ω4ρrr −Ω4ρe′′e′′ ]−

(Γe′′e′ + Γe′′g + Γre′′ + Γrg)

2
ρe′′r = 0 (5.15)

i

2
[Ω∗

4ρe′′r − Ω4ρre′′ ]− (Γrg + Γre′′)ρrr = 0 (5.16)

Numerical methods are used to solve the density matrix equations and find out the

ground to excited state coherence ρeg.

5.4 EIT in a four-photon excitation process

To observe the EIT using the four-photon excitation process to the Rydberg state,

as described in the above section, a few concepts that are needed to be understood

are described below.

5.4.1 Geometry of the laser beams

The laser beam geometry is shown in Fig. 5.2, where all the beams propagate

co-linearly through the atomic vapor medium. Laser field with frequency ω2 counter-

propagates the field with frequency ω1 and field with frequency ω4 counter-propagates
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Figure 5.2: Schematic of the laser geometry through a Rb vapor cell consisting of
four laser fields of frequencies ω1, ω2, ω3, and ω4.

the field with frequency ω3. Fields with frequency ω1 (ω2) and ω3 (ω4) co-propagate

with each other. The magnitude of the wave vectors of the four fields are given by

k1, k2, k3 and k4.

5.4.2 Energy level scheme for EIT

The five-level system is coupled by four laser fields, and the details have been dis-

cussed in Sec. 5.1. Here, none of the lasers satisfy the single photon resonance. But

the excitation from the ground state (|g⟩) to the second excited state (|e′⟩) satisfies

the two-photon resonance. Similarly, the excitation from the second excited state

(|e′⟩) to the Rydberg state (|r⟩) satisfies the two-photon resonance. The laser beam

with frequency ω1 is kept largely detuned from resonance by detuning ∆1. Laser

beam with frequency ω2 and detuning ∆2 is scanned around ∆1 such that the two-

photon resonance condition is satisfied by the |g⟩ → |e′⟩ transition. Transition from

|g⟩ → |e′⟩ is called as the effective probe transition. Similarly, the laser beam with

frequency ω3 is kept largely detuned from resonance with detuning ∆3. The detun-

ing ∆4 of beam with frequency ω4 is adjusted around ∆3 such that the two-photon

resonance is satisfied by |e′⟩ → |r⟩ transition. Transition from |e′⟩ → |r⟩ is called as

the effective coupling transition. The effective probe and coupling transition satisfy
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Figure 5.3: Energy level scheme of the five-level system representing the conditions
to satisfy EIT.

the conditions of EIT even though single photon resonances are not satisfied by the

individual laser fields.

5.4.3 Doppler averaging

Since the study is based on a thermal vapor system, we need to consider the thermal

motion of the atoms and the beam geometry presented in Fig. 5.2. For the thermal

atomic medium, the detunings are modified as ∆1 → ∆1 − k1v, ∆2 → ∆2 + k2v,

∆3 → ∆3 − k3v and ∆4 → ∆4 + k4v, where v is the velocity of the atoms in the

vapor. k2 is considered to be greater than k1, i.e. k2 > k1 and k3 is considered to be

greater than k4, i.e. k3 > k4. Hence, the effective wave vector of the effective probe

transition is defined as kp = k2 − k1 and the effective wave vector of the effective

coupling transition is defined as kc = k3−k4. The residual wave vector of the system

is found as ∆k = kc − kp.

The susceptibility of the probe field coupling the transition from |g⟩ → |e⟩ is
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calculated as

χ(∆2, v)f(v)dv =
2N | µge |2

ℏϵ0Ω1

1√
πvp

ρeg(∆2, v)e
− v2

v2p dv (5.17)

where µge is the dipole moment of |g⟩ → |e⟩ transition, N is the density of the atoms

inside the atomic vapor medium, and vp is the most probable speed of the atoms.

The transmission of the probe beam is given by T = ( I
I0
) = e(−αl) where α is the

absorption coefficient and is given by α = ℑ(χ)k1l. l is the length of the vapor cell

medium.

Figure 5.4: Up: Two-dimensional density plots for probe transmission as a function
of ∆2 and velocity for ∆k = 0. Down: Doppler averaged probe transmission for the
same.
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Figure 5.5: Up: Two-dimensional density plots for probe transmission as a function
of ∆2 and velocity for ∆k = 0.043 × 106 m−1. Down: Doppler averaged probe
transmission for the same.

Fig. 5.4 represents the two-dimensional density plots for probe transmission as

a function of ∆2 and velocity for ∆k = 0 (Up) and its comparison with the probe

transmission by Doppler averaging over all the velocity range (Down). It can be

observed that for a fixed detuning towards the center at nearly ∆2 = −1.197 GHz,

averaging over all the velocity range gives the maximum EIT transparency of ∼

0.9. Fig. 5.5 represents the two-dimensional density plots for probe transmission

as a function of ∆2 and velocity for ∆k = 0.043 × 106 m−1 (Up) and its compar-

ison with the probe transmission by Doppler averaging over all the velocity range
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Figure 5.6: Probe transmission in the absence of the coupling fields while scanning
∆2 (cyan open circles) and in the presence of the coupling fields (solid red line) for
(a) ∆k = 0 and for (b) ∆k = 0.023 × 106 m−1. The laser parameters used in the
model are Ω1 = 10 MHz, Ω2 = 110 MHz, Ω3 = 25 MHz, Ω4 = 160 MHz, ∆1 = 1200
MHz, ∆3 = 1000 MHz and ∆4 is adjusted around ∆3 to make the transmission
symmetric. Here, the value of the effective probe transition wave vector is taken to
be kp = 0.007× 106 m−1.

(Down). Averaging over all the velocities at ∆2 = −1.197 GHz gives a reduced EIT

transparency of ∼ 0.5 due to the presence of large absorption components along

with transmission components. Similarly at other detunings within the absorption

window, the transparency reduces as the light gets absorbed.

Averaging over all the velocity components of the atoms, the susceptibility of

the probe is given by

χ(ω1) =
2N | µge |2

ℏϵ0Ω1

1√
2πvp

∫ +∞

−∞
ρege

− v2

2v2p dv (5.18)

The vapor density is taken to be 4.5 × 1010 cm−3, and the length of the vapor

cell is 5 cm. The transmission of the probe calculated from the model in the EIT

regime is shown in Fig.5.6. For ∆k = 0, the peak transmission of the EIT signal is

observed to be ∼ 0.9, as shown in the Fig. 5.6(a). If ∆k = 0.023 × 106 m−1, the

peak EIT transmission is found to be ∼ 0.6, as shown in the Fig. 5.6(b). Hence,

EIT transmission of nearly 100% is achieved if the residual wave vector is reduced to

zero, i.e., achieve a Doppler-free condition. This thermal vapor system behaves like
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a cold atomic system when the wave-vector mismatch is eliminated. The usual two-

photon excitation processes in a thermal vapor system does not allow a Doppler-free

condition [68]. There are certain conditions under which Doppler-free conditions for

the three-photon excitation process can be achieved with suitable beam geometry,

which has been discussed in [86]. This study aims to achieve a Doppler-free condition

with the four-photon excitation process to the Rydberg state leading to a narrow

EIT width.

5.5 Variation of EIT peak transmission with kc

Figure 5.7: EIT transmission peak height as a function of kc. The laser parameters
used in the model are Ω1 = 10 MHz, Ω2 = 110 MHz, Ω3 = 25 MHz, Ω4 = 160
MHz, ∆1 = 1200 MHz, ∆3 = 1000 MHz and ∆4 is adjusted around ∆3 to make the
transmission symmetric.

To have a proper understanding of the EIT in the four-photon process, the

variation of peak EIT transmission with the residual wave vector is studied. The
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effective probe transition wave vector is kept fixed at kp = 0.007× 106 m−1 and the

effective coupling wave vector kc is changed to vary the residual wave vector ∆k.

The variation of peak EIT transmission with kc is shown in Fig. 5.7. Maximum

EIT transmission is observed at ∆k ≈ 0. The EIT transmission decreases as kc is

varied away from ∆k ≈ 0. This is because when ∆k = 0, all the atoms can be

resonant to the probe and coupling lasers. Irrespective of the velocity of the atoms

in the thermal vapor, all the atoms contribute to the dark state formation and hence,

contribute to maximum EIT transmission. When ∆k ̸= 0, only a certain velocity

class of atoms contribute to the dark state formation. The effective number of atoms

participating in the dark state formation reduces compared to ∆k ≈ 0. This results

in a decrease in the peak EIT transmission as we go away from ∆k ≈ 0.

5.6 Reduction of five-level system to an effective

three-level system: Adiabatic elimination method

The five-level system involves a 5×5 Hamiltonian, which makes the system complex

for various studies. Hence, the method of adiabatic elimination is used to reduce the

five-level system to a simpler, effective three-level system. This method involves the

elimination of the intermediate states assuming that the change in the population of

such states is zero under certain conditions, which has been discussed in Sec. 2.2.5.

5.6.1 Formation of the effective three-level system

The five-level system is reduced to an effective three-level system by eliminating the

intermediate states |e⟩ and |e′′⟩ as shown in Fig. 5.8. The conditions required for

such an elimination are ∆1 ≫ Ω1,Γeg and ∆3 ≫ Ω3,Γe′′e′ . Under these conditions

the change in population of the states |e⟩ and |e′′⟩ is zero. If the initial population

in these states is zero, then there will not be any population transfer to these states,

and hence, these states can be neglected or eliminated. The effective-three level

system is represented by states |g⟩, |e′⟩ and |r⟩ with effective Rabi frequencies,
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Figure 5.8: Schematic of reduction of a five-level system (left) to an effective three-
level system (right).

effective detunings and effective decay rates. The effective probe and coupling Rabi

frequencies are represented by Ωp and Ωc, respectively. The effective probe and

coupling detunings are represented by ∆p and ∆c, respectively.

Using the translation to the Hamiltonian H of the five-level system → H + δ4
2
I,

the new Hamiltonian is written as

H
′
=

ℏ
2



δ4 −Ω1 0 0 0

−Ω∗
1 δ4 − 2δ1 −Ω2 0 0

0 −Ω∗
2 δ4 − 2δ2 −Ω3 0

0 0 −Ω∗
3 δ4 − 2δ3 −Ω4

0 0 0 −Ω∗
4 −δ4


The time-dependent schrödinger equation is represented as:

iℏ
∂

∂t
|ψ(t)⟩ = H

′ |ψ(t)⟩ (5.19)
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where

|ψ(t)⟩ =



C1(t)

C2(t)

C3(t)

C4(t)

C5(t)


.

C1(t), C2(t), C3(t), C4(t) and C5(t) are the probability amplitudes of the respective

components of |ψ(t)⟩. Since ∆1 >> Ω1,Γeg and ∆3 >> Ω3,Γe′′e′ , considering the

initial population of the states |e⟩ and |e′′⟩ to be zero, these states barely get popu-

lated. So the change in the population of these states is approximated to zero, i.e.

∂
∂t
C2(t) = 0 and ∂

∂t
C4(t) = 0. These two equations are solved to get C2(t) and C4(t)

as a linear combination of C1(t), C3(t) and C5(t). These values are then substituted

in the equations of motions for C1(t), C3(t) and C5(t) to eliminate C2(t) and C4(t).

The effective Hamiltonian of the effective three-level system is written as :

Heff =
ℏ
2


δ4− |Ω1|2

δ4−2δ1
− Ω1Ω2

δ4−2δ1
0

− Ω1Ω2

δ4−2δ1
δ4−2δ2− |Ω2|2

δ4−2δ1
− |Ω3|2

δ4−2δ3
− Ω3Ω4

δ4−2δ3

0 − Ω3Ω4

δ4−2δ3
−δ4− |Ω4|2

δ4−2δ3


The effective three-level system is used to study EIT, and hence, the system satisfies

four-photon resonance under EIT, i.e., δ4 = 0 and δ2 = 0. The Hamiltonian is

simplified and written as:

Heff = −ℏ
2


0 Ωp 0

Ω∗
p 2∆p Ωc

0 Ω∗
c 2(∆p +∆c)

 .

Comparing the effective three-level system with an exact three-level system, we

observe that the Hamiltonian of the effective system is similar to that of the three-
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level system with the Rabi frequencies and detunings modified as

Ωp =
Ω1Ω2

2∆1

(5.20)

Ωc =
Ω3Ω4

2∆3

(5.21)

∆p = (∆1 +∆2) +
| Ω1 |2

4∆1

− | Ω2 |2

4∆1

− | Ω3 |2

4∆3

(5.22)

∆c = (∆3 +∆4) +
| Ω2 |2

4∆1

+
| Ω3 |2

4∆3

− | Ω4 |2

4∆3

(5.23)

The laser fields will shift the atomic levels by factors known as light shifts. These

factors have to be added carefully to the detunings of the effective system such that

it includes all the light shifts of the atomic levels induced by the individual laser

fields, i.e. |Ω1|2
4∆1

, |Ω2|2
4∆1

, |Ω3|2
4∆3

and |Ω4|2
4∆3

. The density matrix of the effective three-level

system is a 3×3 matrix ρij with i, j = g, e′, r. The decay and decoherence processes

for the effective system are also modified. As discussed earlier, the transition from

state |g⟩ → |e′⟩, |e⟩ → |e′′⟩ and |e′⟩ → |r⟩ are dipole forbidden. The decay process

from state |e⟩ to state |g⟩ has a faster rate as compared to the decay process from

state |e′⟩ to state |e⟩, i.e. Γeg ≫ Γe′e. So the atoms in state |e′⟩ are considered to

decay directly to state |g⟩ at a rate Γe′e as there will not be any population inversion

in |e⟩. Similarly, the decay process from state |e′′⟩ to state |e′⟩ has a faster rate as

compared to the decay process from state |r⟩ to state |e′′⟩, i.e. Γe′′e′ ≫ Γre′′ . The

atoms in state |r⟩ directly decay to state |e′⟩ at a rate Γre′′ . There are also decay

terms that take care of the transit time decay rates. So the effective decay rate of

the channel |e′⟩ → |g⟩ is given by γe′g ≈ Γe′e + Γe′g. Similarly, the effective decay

rate for the channel |r⟩ → |g⟩ is γrg ≈ Γrg and for |r⟩ → |e′⟩ is γre′ ≈ Γre′ . These

decay rates form the Lindblad operator for the effective system.
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5.6.2 Optical Bloch equations

The master equation is solved in the steady state to obtain the optical Bloch equa-

tions as:

i

2
[−2∆pρge′ + Ωp(2ρe′e′ + ρrr)− Ωp − Ω∗

cρgr]−
γe′g
2
ρge′ = 0 (5.24)

i

2
[−2δρgr + Ωpρe′r − Ωcρge′ ]−

(γrg + γre′)

2
ρgr = 0 (5.25)

i

2
[Ω∗

pρge′ − Ωpρe′g + Ωcρre′ − Ω∗
cρe′r] + γre′ρrr − γe′gρe′e′ = 0 (5.26)

i

2
[Ω∗

pρgr − 2∆cρe′r + Ωc(ρrr − ρe′e′)]−
(γrg + γre′ + γe′g)

2
ρe′r = 0 (5.27)

i

2
[Ω∗

cρe′r − Ωcρre′ ]− (γrg + γre′)ρrr = 0 (5.28)

Figure 5.9: Comparison of probe transmission of effective three-level system with
a five-level system.
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The above equations are solved to evaluate ρe′e′ and ρe′g. The ground to excited

state coherence ρeg is evaluated [68] by substituting ρe′e′ and ρe′g in the equation

given below:

ρeg =
Ω1(ρe′e′ − 1)− Ω2ρe′g

2∆1 + iΓeg

. (5.29)

The transmission of the probe for the effective three-level system is evaluated for a

thermal atomic medium, and it is compared with the transmission of the probe in a

five-level system as shown in Fig. 5.9. It is observed that the probe transmission of

an effective three-level system matches perfectly with that of the five-level system.

Using the method of adiabatic elimination, a complex system can be reduced to a

simpler effective system, and the effective system can be used for the purpose of

various studies.

5.7 Experimental proposal

The four-photon excitation to the Rydberg state can be performed experimentally

with a real thermal vapor system, i.e., rubidium atomic vapor, as shown in Fig. 5.10.

The different available transitions of the rubidium atomic system can be accessed

using lasers of available wavelength. The transitions that can be accessed to form

the five-level system are |5S 1
2
⟩ → |5P 3

2
⟩, |5P 3

2
⟩ → |5D 3

2
⟩, |5D 3

2
⟩ → |8P 1

2
⟩ and |8P 1

2
⟩

→ |nS 1
2
⟩. The |5S 1

2
⟩ → |5P 3

2
⟩ excitation can be carried out by a laser of wavelength

780.24 nm, |5P 3
2
⟩ → |5D 3

2
⟩ excitation can be carried out by a laser of wavelength

776.2 nm, |5D 3
2
⟩ → |8P 1

2
⟩ excitation can be carried out by a laser of wavelength 2.41

µm, |8P 1
2
⟩ → |nS 1

2
⟩ excitation can be carried out by a laser of wavelength 2.67 µm.

The wave vectors of the laser beams are k1 = 1.281655×106 m−1, k2 = 1.288328×106

m−1, k3 = 0.414938 × 106 m−1 and k4 = 0.374532 × 106 m−1 respectively. For the

rubidium system, the decay rates are Γeg = 6 MHz, Γe′e = 0.65 MHz, Γe′′e′ = 0.3

MHz and Γre′′ = 0.01 MHz. The transit time decay rates for the system are Γrg, Γe′′g,

Γe′g. The transit time decay rates are taken to be 0.2 MHz. The transition from

|5S 1
2
⟩ → |5D 3

2
⟩, |5P 3

2
⟩ → |8P 1

2
⟩ and |5D 3

2
⟩ → |nS 1

2
⟩ are dipole forbidden transitions.
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Figure 5.10: Rubidium energy levels in ladder configuration for four-photon exci-
tation to the Rydberg state.

5.8 Elimination of the residual wave vector using

suitable beam geometry

The motion-induced dephasing can be eliminated with the proper choice of wave-

length and suitable beam geometry. The transitions are chosen such that the

first two excitations have nearly equal wave vectors with the laser beams counter-

propagating each other. Also, the third and fourth excitation have nearly equal

wave vectors with the respective laser fields counter-propagating each other. This

will result in the cancellation of the wave vectors and, in turn, reduced residual wave

vector. With the laser configuration as shown in Fig. 5.2, k2 > k1 and k3 > k4,

therefore ∆k = 0.033×106 m−1. This residual wave vector is very large, which leads

to a reduction in EIT transparency. Hence, the achieved EIT transparency is very

low for such laser configuration, which can be observed from Fig. 5.7. The effective
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Figure 5.11: Laser beam geometry through rubidium vapor cell.

wave-vector mismatch can be reduced to zero with a suitable choice of beam geom-

etry, i.e., by applying the laser fields at some angles with respect to the horizontal

axis of the atomic vapor cell as shown in Fig. 5.11. Let’s say the laser field with

frequency ω1 is applied at an angle θ1, field with frequency ω2 at an angle θ2, field

with frequency ω3 at an angle θ3 and field with frequency ω4 at an angle θ4 with

respect to the horizontal axis of the vapor cell. In order to completely cancel out

the wave vector mismatch, both the vertical and horizontal components of the wave

vectors need to be canceled out. This leads to the following two equations:

k1 cos θ1 + k3 cos θ3 − k2 cos θ2 − k4 cos θ4 = 0 (5.30)

k1 sin θ1 + k2 sin θ2 − k3 sin θ3 − k4 sin θ4 = 0. (5.31)

By solving the two equations, the angles are found out to be θ1 = 6◦, θ2 = 6◦,

θ3 = 3◦ and θ4 = 3◦. The angle through which the beams will propagate is very

small. This will result in overlapping of the beams in a large optical path length.

5.9 Conclusion

The four-photon excitation to the Rydberg state is performed to study EIT in

thermal atomic vapor. The system uses four laser fields where the two pairs of laser

fields have a nearly equal wavelength. Proper choice of laser wavelength and suitable



5.9 Conclusion 113

beam geometry results in the elimination of motion-induced dephasing in the system.

The reduced wave-vector mismatch provides an opportunity to achieve 100 % EIT

transparency. Even though it is a thermal vapor system, the system behaves similar

to a cold atomic system with the elimination of the residual wave-vector to zero.

Instead of a complex cold atomic system, the thermal vapor system provides a better

platform for building quantum devices due to its simplicity as compared to the cold

atomic system. Such a four-photon system has huge technological applications as

the Rydberg atomic systems have been paving the way for quantum technology [90].





Chapter 6

Outlook: Microwave field sensing

using four-photon excitation to

the Rydberg state in thermal

rubidium vapor

The four-photon excitation process can achieve a narrow EIT transition, resulting

in better sensitivity of the electric field. The electric field sensitivity of a two-

photon Rydberg EIT-based sensor in a thermal atomic medium is reported to be

30 µVcm−1Hz−1/2 [7]. This sensitivity was improved to 5 µVcm−1Hz−1/2 using a

homodyne detection method [26]. As discussed in chapter 3, measured electric field

sensitivity is given by Emin√
Hz

= h
µ
√
T2N

[12] where Emin is the minimum detectable

electric field limited by the line-width of the EIT spectrum γEIT [43], T2 is the de-

phasing time of the EIT process and N is the number of atoms participating in the

detection process. The minimum detectable field can be improved with the help of

the four-photon excitation method, where the motion-induced dephasing in the sys-

tem is eliminated through the proper choice of laser wavelengths and suitable beam

geometry. The details of the four-photon excitation method have been discussed in
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the chapter 5. As an outlook to the thesis, this chapter provides a theoretical study

on microwave field sensing using the four-photon Rydberg EIT in a thermal vapor

system. A comparison of the field sensing using two-photon excitation and four-

photon excitation process is provided. Using suitable laser parameters, a narrow

linewidth EIT is achieved, which results in higher sensitivity of the detected electric

field. Finally, the chapter discusses the experimental plan to perform microwave

field sensing with a four-photon excitation process to the Rydberg state.

6.1 Theoretical model for microwave field sensing

with four-photon excitation process

Figure 6.1: Schematic of energy levels in ladder configuration.

The four-photon excitation process can be used to achieve Rydberg EIT using

a five-level system. Application of a microwave field, results in coupling of two

neighboring Rydberg states. The microwave field sensing with a four-photon ex-
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citation process involves another Rydberg state along with the five-level system,

which makes the system complex. Hence, the method of adiabatic elimination is

used to reduce the five-level system to a simpler, effective three-level system which

has been discussed in Sec. 5.6. So, the atomic model consists of a four-level sys-

tem with states |g⟩, |e′⟩, |r⟩ and |r′⟩ where the lower three levels |g⟩, |e′⟩ and |r⟩

correspond to the effective three-level system with |r⟩ being the Rydberg state and

the fourth level |r′⟩ is another nearby Rydberg state. As discussed in the previous

chapter, the effective probe and coupling Rabi frequency are given by Ωp = Ω1Ω2

2∆1

and Ωc =
Ω3Ω4

2∆3
respectively. The effective probe and coupling detunings are given

by ∆p = ∆1 +∆2 +
|Ω1|2
4∆1

− |Ω2|2
4∆1

− |Ω3|2
4∆3

and ∆c = ∆3 +∆4 +
|Ω2|2
4∆1

+ |Ω3|2
4∆3

− |Ω4|2
4∆3

. The

effective probe transition has effective wave-vector magnitude to be kp = k2−k1 and

the effective coupling transition has effective wave-vector magnitude as kc = k3−k4.

The residual wave-vector for the system is defined as ∆k = kc − kp. The Rabi fre-

quency (detuning) of the microwave field is Ωµ (∆µ), and the magnitude of the wave

vector of the microwave field is kµ which is very small as compared to the optical

fields. The energy level of the system is represented by Fig. 6.1.

The total Hamiltonian for the given system, in a suitable rotating frame, is

written as

H = −ℏ
2



0 Ωp 0 0

Ω∗
p 2∆p − kpv Ωc 0

0 Ω∗
c 2(∆p +∆c) Ωµ

0 0 Ω∗
µ 2(∆p +∆c +∆µ)


.

For the thermal vapor system, the detunings are modified as ∆1 → ∆1 − k1v,

∆2 → ∆2 + k2v, ∆3 → ∆3 − k3v and ∆4 → ∆4 + k4v. The Master equation for

the system is written as ρ̇ = i
ℏ [ρ,H] + LD(ρ) where ρ is the 4 × 4 density matrix

of the system and LD(ρ) is the Lindblad operator which includes the decay and

decoherence processes occurring in the system. The decay rates in the system are

γre′ ≈ Γre′′ , γrg ≈ Γrg, γe′g ≈ Γe′e + Γe′g, Γr′r and Γr′g where the population decay
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rates are given by Γe′e = 0.65 MHz, Γre′′ = 1 kHz and Γr′r = 0.5 kHz and the transit

time decay rates are Γe′g = Γrg = Γr′g = 0.2 MHz. The optical Bloch equations

are similar to the four-level system discussed in the chapter. 3, which are solved to

evaluate ρe′e′ and ρe′g.

The ground to excited state coherence ρeg is evaluated as [68]:

ρeg =
Ω1(ρe′e′ − 1)− Ω2ρe′g

2∆1 + iΓeg

. (6.1)

The Doppler averaged probe susceptibility coupling the |g⟩ → |e⟩ transition is given

by

χ(ω1) =
2N | µge |2

ℏϵ0Ω1

1√
πvp

∫ ∞

−∞
ρege

− v2

v2p dv (6.2)

where µge is the transition dipole moment, N is the density of the atomic vapor, and

vp is the most probable speed of the atoms. The transmission of the probe beam

is T = e−ℑ(χ)k1l where l is the length of the atomic medium. The vapor density is

taken to be 4.5× 1010 cm−3, and the length of the vapor cell is 5 cm.

6.2 Effect of a microwave field on four-photon

EIT

The probe transmission in the case of the four-photon excitation process is rep-

resented by Fig. 6.2, where the solid red line and solid blue line represent the

transmission of the probe field in the absence and presence of a microwave field, re-

spectively. We observe an EIT linewidth of 1.8 MHz. The application of microwave

field results in splitting of the EIT peak where the frequency difference between the

AT splitted peak depends on the microwave field Rabi frequency. Before providing

an estimate of how the sensitivity of electric field measurement can be improved

using this system, first, the microwave field sensitivity in the case of the two-photon

Rydberg EIT system is needed to be understood.
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Figure 6.2: Probe transmission: (a) in absence of microwave field (Ωµ = 0) and
(b) in presence of microwave field (Ωµ = 1 MHz). kp = kc = 0.007 × 106 m−1 and
kµ = 0.00005× 106 m−1. The laser parameters used in the model are Ω1 = 10 MHz,
Ω2 = 110 MHz, Ω3 = 25 MHz, Ω4 = 160 MHz, ∆1 = 1200 MHz, ∆3 = 1000 MHz,
∆µ = 0 and ∆4 is adjusted around ∆3 to make the transmission symmetric.

6.3 Microwave field sensing with two-photon Ry-

dberg EIT system

There has been a study on microwave field sensing with the two-photon Rydberg

EIT process where the atoms are excited to the Rydberg state 53D5/2 using a 780 nm

probe and a 480 nm coupling field. A microwave field couples 53D5/2 state to 54P3/2

state with transition dipole moment of 3611 ea0. The study reports the minimum

detectable microwave electric field to be 8 µV/cm which produces a change of 0.02%

in probe transmission [7]. This section describes the effect of microwave field in a

two-photon Rydberg EIT system which is used to find the minimum detectable

field. The schematic of microwave field sensing with the two-photon Rydberg EIT
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Figure 6.3: (a) Schematic of a four-level system for microwave field sensing with
a two-photon excitation process. (b) Probe transmission as a function of ∆c and
∆µ in the absence (Ωµ = 0) and presence of microwave field (Ωµ = 3 MHz). The
laser parameters are: Ωp = 0.5 MHz, Ωc = 2 MHz, ∆p = 0, Γeg = 6 MHz, Γre = 1
kHz, Γr′r = 0.5 kHz, Γrg = 0.2 MHz, Γr′g = 0.2 MHz, kp = 1.28166 × 106 m−1,
kc = 2.08333× 106 m−1 and kµ = 0.00005× 106 m−1.

process is shown in Fig. 6.3(a). In the absence of a microwave field, an EIT peak

is observed (black line) as a function of coupling field detuning as shown in 6.3(b).

If the microwave field detuning is scanned, a constant peak EIT transmission (blue

line) is observed. Application of microwave field results in splitting of the EIT peak

(red line), which can be observed as a function of coupling detuning. With the

microwave field scan, the decrease in probe transmission around the resonance is

observed as a function of microwave detuning (green line). If the microwave field is

very weak, such that the splitting of the EIT peak is less than the EIT linewidth,

then it becomes difficult to differentiate the splitting and estimate the strength of

the microwave field. In such cases, observing the change in probe transmission as a

function of microwave detuning gives an estimate of the strength of the microwave

field. Fig. 6.4 shows the percentage of reduction in probe transmission as a function

of microwave field strength calculated using Eq. 3.19. It is observed that a microwave

field strength of 8 µV/cm produces a change of 0.02%, similar to that reported in
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Figure 6.4: Percentage of reduction in probe transmission as a function of microwave
E-field strength. The laser parameters are: Ωp = 0.5 MHz, Ωc = 2 MHz, ∆p = 0,
∆c = 0, Γeg = 6 MHz, Γre = 1 kHz, Γr′r = 0.5 kHz, Γrg = 0.2 MHz, Γr′g = 0.2 MHz,
kp = 1.28166× 106 m−1, kc = 2.08333× 106 m−1 and kµ = 0.00005× 106 m−1.

Ref. [7].

6.4 Microwave field sensing with four-photon Ry-

dberg EIT system

To compare microwave sensing using in a four-photon Rydberg EIT system with a

two-photon system, the percentage of reduction in probe transmission as a function

of microwave Rabi frequency and microwave field strength for the four-photon sys-

tem is also studied. This is represented in Fig. 6.5. In order to produce a change of

0.02%, similar to that of a two-photon excitation process, a microwave field strength

of 4 µV/cm is needed, which is two times smaller than the minimum field detected

using a two-photon Rydberg EIT method. The four-photon excitation process is
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Figure 6.5: Percentage of reduction in probe transmission with varying microwave
E-field strength. kp = kc = 0.007× 106 m−1 and kµ = 0.00005× 106 m−1. The laser
parameters used in the model are Ω1 = 10 MHz, Ω2 = 110 MHz, Ω3 = 25 MHz,
Ω4 = 160 MHz, ∆1 = 1200 MHz, ∆3 = 1000 MHz, ∆µ = 0 and ∆4 is adjusted
around ∆3 to make the transmission symmetric.

used to achieve higher sensitivity, as discussed in the following sections.

6.5 Achieving a narrow EIT line-width

It is known that the minimum detectable field depends on the EIT linewidth γEIT .

To achieve a narrow linewidth EIT, suitable laser parameters are needed to be used,

and the wave-vector mismatch has to be reduced to zero. The laser parameters

considered for this study are Ω1 = 1 MHz, Ω2 = 30 MHz, Ω3 = 20 MHz, Ω4 = 50

MHz, ∆1 = 1200 MHz and ∆3 = 1000 MHz. The population decay rates considered

in the calculation remain the same as discussed in Sec. 6.1. The transit time decay

rate is considered to be 10 kHz. Such a small transit time decay rate can be achieved

by expanding the beam diameter to 2 cm with the help of lenses. The magnitude

of effective wave-vectors is considered to be kp = kc = 0.00005× 106 m−1 which are
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Figure 6.6: Probe transmission: (a) in the absence of microwave field (Ωµ = 0) and
(b) in presence of microwave field (Ωµ = 0.2 MHz). kp = kc = kµ = 0.00005 × 106

m−1. The laser parameters used in the model are Ω1 = 1 MHz, Ω2 = 30 MHz,
Ω3 = 20 MHz, Ω4 = 50 MHz, ∆1 = 1200 MHz, ∆3 = 1000 MHz, ∆µ = 0 and ∆4 is
adjusted around ∆3 to make the transmission symmetric.

same as the magnitude of the microwave field wave-vector. The probe transmission

is represented by Fig. 6.6 where the red line represents the EIT linewidth of 230

kHz, and the blue line represents the splitting in the EIT signal in the presence of

the microwave field.

The change in probe transmission is studied while scanning the microwave de-

tuning. Fig. 6.7 represents the percentage of reduction in probe transmission with

varying microwave field strength. It is observed that a 0.02 % reduction in probe

transmission can be seen for a microwave field of 1.36 µV/cm with the help of a nar-

row four-photon Rydberg EIT. This is the same achievable experimental condition

as has been reported in [7]. This minimum field observed is 5.88 times smaller as

compared to the microwave field detected using a two-photon Rydberg EIT system,

which will result in better sensitivity of the measured electric field.
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Figure 6.7: Percentage of reduction in probe transmission with varying microwave
E-field strength. kp = kc = kµ = 0.00005 × 106 m−1. The laser parameters used
in the model are Ω1 = 1 MHz, Ω2 = 30 MHz, Ω3 = 20 MHz, Ω4 = 50 MHz,
∆1 = 1200 MHz, ∆3 = 1000 MHz, ∆µ = 0 and ∆4 is adjusted around ∆3 to make
the transmission symmetric.

6.6 Sensitivity of electric field

The sensitivity of detected electric field is given by Emin√
Hz

= h
µ
√
T2N

[12] and is reported

to be 30 µVcm−1Hz−1/2 for a two-photon Rydberg EIT system [7] with T2 ∼ 5 µs.

If the residual wave vector is non-zero, which is the case in a two-photon Rydberg

EIT system, then all the atoms do not participate in the EIT process. Only a

certain class of atoms become resonant to the probe and coupling field. Elimination

of residual wave-vector makes all the atoms resonant to the probe and coupling

field, hence allowing participation of all the atoms in the EIT process. The effective

number of atoms participating in the detection of the electric field in the two-photon

EIT process is ∼ 1
400

times the density of atoms inside the atomic vapor cell. As

discussed earlier, the minimum detectable electric field improves nearly six times
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using the four-photon Rydberg EIT process. Considering the increase in the effective

number of atoms participating in the EIT process, minimum detectable field, and

transit time decay of 10 kHz, the improvement in total sensitivity is ∼ 1
6
√
400∗20 =

1
540

times where T2 = 100 µs. Using this method, an electric field sensitivity of

30
540

µVcm−1Hz−1/2 ∼ 55 nVcm−1Hz−1/2 can be achieved. This estimate is made

considering the experiment is performed in free space to measure the electric field

strength. The actual plan for the experiment is to work with a microwave waveguide

inside a vacuum chamber.

6.7 Experimental plan

6.7.1 Beam geometry

As discussed earlier, the residual wave-vector is eliminated with the help of a proper

choice of the wavelength of laser fields and selecting beam geometry at suitable

angles, aligned with respect to the horizontal axis of the vapor cell [89]. Small

effective wave-vectors of kp = kc = 0.00005 × 106 m−1 can be achieved with non-

collinear beam geometry. The laser fields ω1, ω2, ω3 and ω4 need to be oriented with

an angle of θ1 = 6◦, θ2 = 6◦, θ3 = 2.8◦ and θ4 = 2.8◦ respectively.

6.7.2 Using a microwave waveguide

A co-planar microwave waveguide has been designed to apply the microwave field

shown in Fig. 6.8. The waveguide has dimensions of 72 mm × 35 mm. It is made up

of a dielectric substrate where the conductor is situated on one side of the substrate.

It consists of a conducting region represented by the thick red-colored line at the

center. The conductor is separated from the two sides by two slots represented by

blue lines. The back side of the dielectric is grounded. SMA connectors are fitted

to the waveguide for electrical connections. These will also be used for mounting

the waveguide to the vacuum chamber designed for the experiment. In a co-planar
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Figure 6.8: Microwave wave-guide.

waveguide, the central conductor has a positive potential with respect to the two

adjacent ground planes. The co-planar waveguide propagates quasi-TEM modes

where electromagnetic wave exists partly in the air and partly above it. The evanes-

cent waves are concentrated in a few square millimeters region. The laser fields will

interact with the evanescent waves of the microwave waveguide as they will be made

to pass nearly 1mm above the surface of the waveguide. A beam diameter of 2

cm cannot be achieved inside the chamber to have a smaller transit time decay rate

which enhances the sensitivity. However, coupling the optical field to the evanescent

waves of the microwave waveguide greatly improves the sensor sensitivity [91].

6.7.3 Design of the vacuum chamber for four-photon exci-

tation experiment

A schematic of the vacuum chamber has been designed using SOLIDWORKS to

carry out the four-photon excitation experiment, as shown in Fig. 6.9. One face

of the chamber of 63 CF will be used to mount the chamber on the optical table,

which is the back face of the shown figure. As shown in the figure, the front face of

the chamber, with a 63 CF flange, will be used for mounting the waveguide through

the SMA connectors. The 63 CF flange is shown in Fig. 6.10, which is also designed



6.7 Experimental plan 127

Figure 6.9: Design of vacuum chamber for four-photon experiment.

using SOLIDWORKS. The two 40 CF flange designs at the two side faces will be

used to mount two MgF2 glass windows. These are special windows that will allow

the light of all four wavelengths, 780.24 nm, 776.2 nm, 2.41 µm, and 2.67 µm (NIR

and MIR) to pass through the chamber. One of the faces with a 40 CF flange design,

which is the top face, will be used to mount the turbo pump. Another face with a

40 CF flange design, the down face, will be used to mount the ion pump, rubidium

source, and a vacuum gauge using a four-way cross connector. Inside the vacuum

chamber, the pressure maintained will be of the order of 10−7-10−8 torr using the

turbo pump and ion pump.
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Figure 6.10: 63 CF flange design for mounting the wave-guide.

6.8 Conclusion

The microwave field sensing using a two-photon excitation process has limited sensi-

tivity. This limitation is primarily because of the significant wave-vector mismatch.

This leads to a broad EIT linewidth, and also, the effective number of atoms par-

ticipating in the detection process is less. Using the four-photon excitation to the

Rydberg state, a narrow linewidth EIT of 230 kHz can be achieved. The effective

number of atoms participating in the detection can be increased due to the elimina-

tion of motion-induced dephasing in the system with suitable beam geometry. Also,

the transit time decay rate can be reduced with the use of larger diameter beams.

All these factors can result in achieving a higher sensitivity of ∼ 55 nVcm−1Hz−1/2

for free space experiments.



Appendix A

Electromagnetically induced

transparency (EIT) in the strong

blockade regime using four-photon

excitation to the Rydberg state in

thermal atomic vapor

Electromagnetically induced transparency (EIT) using the four-photon excitation

to the Rydberg state has been discussed in detail in chapter 5 [89]. The four-photon

excitation process to the Rydberg state has also been explored to investigate the

phenomenon of Rydberg blockade using two interacting Rydberg atoms. The study

of EIT will be discussed in the strong blockade regime in thermal atomic vapor in this

appendix. The atomic model of a five-level system has been discussed in chapter 5,

and it has been shown that the five-level system can be reduced to an effective three-

level system using an adiabatic elimination method. Using the five-level system to

study the Rydberg blockade phenomenon leads us to a Hamiltonian of order 25×25.

The effective three-level system is very useful for developing the two-atom model
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as it leads to a simpler Hamiltonian for the system of order 9×9. Hence, further

studies are based on the model developed using an effective three-level system.

A.1 Development of two-atom model

Figure A.1: Energy level scheme for the two-atom system. Each atom is in an
effective three-level system in a ladder configuration.

The energy level diagram for the composite two-atom system is represented in

Fig. A.1. Each atom lies in an effective three-level system consisting of states|g⟩,

|e′⟩ and |r⟩. When both the atoms are in the ground state |g⟩, the energy level of

the two-atom system is represented as |1⟩. Similarly, energy levels |4⟩ and |9⟩ of the

composite system represent the case when both the atoms are in states |e′⟩ and |r⟩,
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respectively. Energy levels |2⟩ and |3⟩ represent the case when one atom is in state

|g⟩, and the other atom is in state |e′⟩ and vice-versa. Similarly, energy levels |5⟩

and |6⟩ (|7⟩ and |8⟩) represent the case when one atom is in state |g⟩ (|e′⟩) and the

other atom is in state |r⟩ and vice-versa. For the composite two-atom system, the

states are expressed as |1⟩ ≡ |g⟩⊗⟨g|, |2⟩ ≡ |g⟩⊗⟨e′|, |3⟩ ≡ |e′⟩⊗⟨g|, |4⟩ ≡ |e′⟩⊗⟨e′|,

|5⟩ ≡ |g⟩ ⊗ ⟨r|, |6⟩ ≡ |r⟩ ⊗ ⟨g|, |7⟩ ≡ |e′⟩ ⊗ ⟨r|, |8⟩ ≡ |r⟩ ⊗ ⟨e′|, and |9⟩ ≡ |r⟩ ⊗ ⟨r|.

Both the atoms are considered to be moving with different velocities v1 and v2 in the

thermal vapor system. Let the probe (coupling) Rabi frequency for both the atoms

be represented as Ωp1 (Ωc1) and Ωp2 (Ωc2). The probe (coupling) detuning for both

the atoms are ∆p1 (∆c1) and ∆p2 (∆c2). When the inter-atomic distance is less than

the blockade radius, the atoms undergo strong repulsive van der Waals interaction.

Due to this strong interaction, the energy level |9⟩ state is shifted out of resonance

leading to the phenomena of Rydberg blockade. The interaction strength is given

by ∆int. For the composite system, the interacting Hamiltonian is written as

H = H(1) ⊗ I + I ⊗H(2) +∆int|9⟩⟨9| (A.1)

where H(1), H(2) are the Hamiltonian of the individual atoms in the effective three-

level system, and I is an identity matrix. The total Hamiltonian H is given as

H = −ℏ
2



0 Ωp2 0 Ωp1 0 0 0 0 0

Ω∗
p2

2∆p2 Ωc2 0 Ωp1 0 0 0 0

0 Ω∗
c2

2δ1 0 0 Ωp1 0 0 0

Ω∗
p1

0 0 2∆p1 Ωp2 0 Ωc1 0 0

0 Ω∗
p1

0 Ω∗
p2

2δ2 Ωc2 0 Ωc1 0

0 0 Ω∗
p1

0 Ω∗
c2

2δ3 0 0 Ωc1

0 0 0 Ω∗
c1

0 0 2δ4 Ωp2 0

0 0 0 0 Ω∗
c1

0 Ω∗
p2

2δ5 Ωc2

0 0 0 0 0 Ω∗
c1

0 Ω∗
c2

2δ6 +∆int





132
Electromagnetically induced transparency (EIT) in the strong blockade regime using

four-photon excitation to the Rydberg state in thermal atomic vapor

where δ1 = (∆p2 +∆c2), δ2 = (∆p1 +∆p2), δ3 = (∆p1 +∆p2 +∆c2), δ4 = (∆p1 +∆c1),

δ5 = (∆p1 +∆p2 +∆c1) and δ6 = (∆p1 +∆p2 +∆c1 +∆c2). The Lindblad operator for

the system is written as LD(ρ) = LD1(ρ
(1))⊗ ρ(2) + ρ(1) ⊗LD2(ρ

(2)) where LD1(ρ
(1)),

LD2(ρ
(2)) are the Lindblad operators and ρ(1), ρ(2) are the density matrices for the

two individual atoms. The total density matrix for a non-interacting system is

given by ρ = ρ(1)⊗ρ(2) which is chosen as a basis to write the density matrix for the

interacting two-atom system. The density matrix is given by a 9× 9 matrix where

each element is given by ρij with i, j = 1, 9.

A.1.1 Optical Bloch equations

The Master equation is given by ρ̇ = i
ℏ [ρ,H]+LD(ρ), which is solved in steady state

to get the following 45 independent optical Bloch equations.

i

2
(Ωp2ρ21 + Ωp1ρ41 − Ωp2ρ12 − Ωp1ρ14) + Γ21(ρ22 + ρ44) + Γ31(ρ33 + ρ77) = 0 (A.2)

− i

2
(2∆p2ρ12 + Ωc2ρ13 + Ωp2ρ11 + Ωp1ρ15 − Ωp2ρ22 − Ωp1ρ42)

−Γ21(
1

2
ρ12 − ρ45) + Γ31ρ78 = 0

(A.3)

− i

2
(Ωc2ρ12 + 2(∆p2 +∆c2)ρ13 + Ωp1ρ16 − Ωp2ρ23 − Ωp1ρ43) + Γ21ρ46

+Γ31ρ79 −
1

2
(Γ31 + Γ32)ρ13 = 0

(A.4)

− i

2
(Ωc1ρ17 + 2∆p1ρ14 + Ωp1ρ11 + Ωp2ρ15 − Ωp2ρ24 − Ωp1ρ44)−

1

2
Γ21ρ14

+Γ21ρ25 + Γ31ρ36 = 0

(A.5)

− i

2
(2(∆p1 +∆p2)ρ15 + Ωc2ρ16 + Ωc1ρ18 + Ωp1ρ12 + Ωp2ρ14 − Ωp2ρ25

−Ωp1ρ45)− Γ21ρ15 = 0

(A.6)

− i

2
(Ωc2ρ15 + Ωc1ρ19 + 2(∆p1 +∆p2 +∆c2)ρ16 + Ωp1ρ13 − Ωp2ρ26 − Ωp1ρ46)

−1

2
(Γ21 + Γ31 + Γ32)ρ16 = 0

(A.7)
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− i

2
(Ωc1ρ14 + 2(∆c1 +∆p1)ρ17 + Ωp2ρ18 − Ωp2ρ27 − Ωp1ρ47) + Γ21ρ28

−1

2
(Γ31 + Γ32)ρ17 + Γ31ρ39 = 0

(A.8)

− i

2
(Ωc1ρ15 + Ωc2ρ1,9 + 2(∆p1 +∆p2 +∆c1)ρ18 + Ωp2ρ17 − Ωp2ρ28 − Ωp1ρ48)

−1

2
(Γ21 + Γ31 + Γ32)ρ18 = 0

(A.9)

− i

2
(Ωc1ρ16 + Ωc2ρ18 + 2(∆p1 +∆p2 +∆c1 +∆c2 + 2V )ρ19 − Ωp2ρ29

−Ωp1ρ49)− (Γ31 + Γ32)ρ19 = 0

(A.10)

i

2
(Ωc2ρ32 − Ωc2ρ23 + Ωp2ρ12 − Ωp2ρ21 + Ωp1ρ52 − Ωp1ρ25)− Γ21ρ22 + Γ21ρ55

+Γ31ρ88 + Γ32ρ33 = 0

(A.11)

i

2
(−2∆c2ρ23 + Ωc2ρ33 − Ωc2ρ22 + Ωp2ρ13 − Ωp1ρ26 + Ωp1ρ53) + Γ21ρ56

+Γ31ρ89 −
1

2
(Γ21 + Γ31 + Γ32)ρ23 = 0

(A.12)

i

2
(2(−∆p1 +∆p2)ρ24 + Ωc2ρ34 − Ωc1ρ27 + Ωp2ρ14 − Ωp1ρ21 − Ωp2ρ25

+Ωp1ρ54)− Γ21ρ24 = 0

(A.13)

− i

2
(2∆p1ρ25 + Ωc2ρ26 + Ωc1ρ28 − Ωc2ρ35 + Ωp1ρ22 − Ωp2ρ15 + Ωp2ρ24

−Ωp1ρ55)−
3

2
Γ21ρ25 + Γ32ρ36 = 0

(A.14)

i

2
(−2(∆p1 +∆c2)ρ26 − Ωc2ρ25 − Ωc1ρ29 + Ωc2ρ36 + Ωp2ρ16 − Ωp1ρ23

+Ωp1ρ56)−
1

2
(2Γ21 + Γ31 + Γ32)ρ26 = 0

(A.15)

i

2
(−2(∆c1 +∆p1 −∆p2)ρ27 − Ωc1ρ24 + Ωc2ρ37 + Ωp2ρ17 − Ωp2ρ28 + Ωp1ρ57)

−1

2
(Γ21 + Γ31 + Γ32)ρ27 = 0

(A.16)

i

2
(−2(∆c1 +∆p1)ρ28 − Ωc1ρ25 − Ωc2ρ29 + Ωc2ρ38 + Ωp2ρ18 − Ωp2ρ27

+Ωp1ρ58)−
1

2
(2Γ21 + Γ31 + Γ32)ρ28 + Γ32ρ39 = 0

(A.17)
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i

2
(−2(∆c1 +∆c2 +∆p1 + 2V )ρ29 − Ωc1ρ2,6 − Ωc2ρ28 + Ωc2ρ39 + Ωp2ρ19

+Ωp1ρ59)−
1

2
(Γ21 + 2Γ31 + 2Γ32)ρ29 = 0

(A.18)

i

2
(Ωc2ρ23 −Ωc2ρ32 +Ωp1ρ63 −Ωp1ρ36) +Γ21ρ66 +Γ31ρ99 − (Γ31 +Γ32)ρ33 = 0 (A.19)

i

2
(2(∆c2 −∆p1 +∆p2)ρ34 + Ωc2ρ24 − Ωc1ρ37 − Ωp1ρ31 − Ωp2ρ35 + Ωp1ρ64)

−1

2
(Γ21 + Γ31 + Γ32)ρ34 = 0

(A.20)

i

2
(2(∆c2 −∆p1)ρ35 + Ωc2ρ25 − Ωc1ρ38 − Ωc2ρ36 − Ωp1ρ32 − Ωp2ρ34

+Ωp1ρ6,5)−
1

2
(2Γ21 + Γ31 + Γ32)ρ35 = 0

(A.21)

− i

2
(2∆p1ρ36 − Ωc2ρ26 + Ωc1ρ39 + Ωc2ρ35 + Ωp1ρ33 − Ωp1ρ66)

−1

2
(Γ21 + 2Γ31 + 2Γ32)ρ36 = 0

(A.22)

i

2
(Ωc2ρ27 − Ωc1ρ34 + 2(−∆c1 +∆c2 −∆p1 +∆p2)ρ37 + Ωp1ρ67 − Ωp2ρ38)

−(Γ31 + Γ32)ρ37 = 0

(A.23)

− i

2
(2(∆c1 −∆c2 +∆p1)ρ38 − Ωc2ρ28 + Ωc2ρ39 + Ωc1ρ35 + Ωp2ρ37 − Ωp1ρ68)

−1

2
(Γ21 + 2Γ31 + 2Γ32)ρ38 = 0

(A.24)

i

2
(Ωp1ρ69 − 2(∆p1 +∆c1 + 2V )ρ39 + Ωc2ρ29 − Ωc1ρ36 − Ωc2ρ38)

−3

2
(Γ31 + Γ32)ρ39 = 0

(A.25)

i

2
(Ωc1ρ74 − Ωc1ρ47 + Ωp1ρ14 − Ωp1ρ41 − Ωp2ρ45 + Ωp2ρ54)− Γ21ρ44

+Γ32ρ77 + Γ21ρ55 + Γ31ρ66 = 0

(A.26)

− i

2
(2∆p2ρ45 + Ωc2ρ46 + Ωc1ρ48 − Ωc1ρ75 + Ωp1ρ42 + Ωp2ρ44 − Ωp1ρ15

−Ωp2ρ55)− Γ21ρ45 + Γ32ρ78 −
1

2
Γ21ρ45 = 0

(A.27)
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i

2
(−2(∆p2 +∆c2)ρ46 − Ωc2ρ45 − Ωc1ρ49 + Ωc1ρ76 + Ωp1ρ16 − Ωp1ρ43

+Ωp2ρ56)− Γ21ρ46 + Γ32ρ79 −
1

2
(Γ31 + Γ32)ρ46 = 0

(A.28)

i

2
(−2∆c1ρ47 − Ωc1ρ44 + Ωc1ρ77 + Ωp1ρ17 − Ωp2ρ48 + Ωp2ρ57) + Γ21ρ58

−1

2
(Γ21 + Γ31 + Γ32)ρ47 + Γ31ρ69 = 0

(A.29)

i

2
(−2(∆p2 +∆c1)ρ48 − Ωc1ρ45 − Ωc2ρ49 + Ωc1ρ78 + Ωp1ρ18 − Ωp2ρ47

+Ωp2ρ58)−
1

2
(Γ21 + Γ31 + Γ32)ρ48 −

1

2
Γ21ρ48 = 0

(A.30)

i

2
(−2(∆p2 +∆c1 +∆c2 + 4V )ρ49 − Ωc1ρ46 − Ωc2ρ48 + Ωc1ρ79 + Ωp1ρ19

+Ωp2ρ59)−
1

2
(Γ21 + 2Γ31 + 2Γ32)ρ49 = 0

(A.31)

i

2
(Ωc2ρ65 + Ωc1ρ85 − Ωc2ρ56 − Ωc1ρ58 + Ωp1ρ25 + Ωp2ρ45 − Ωp1ρ52 − Ωp2ρ54)

−2Γ21ρ55 + Γ32(ρ88 + ρ66) = 0

(A.32)

i

2
(Ωp1ρ26 + Ωp2ρ46 − Ωp1ρ53 − 2∆c2ρ56 + Ωc2ρ66 + Ωc1ρ86 − Ωc2ρ55

−Ωc1ρ59)− Γ21ρ56 + Γ32ρ89 −
1

2
(Γ21 + Γ31 + Γ32)ρ56 = 0

(A.33)

i

2
(2(∆p2 −∆c1)ρ57 − Ωc1ρ54 + Ωc2ρ67 + Ωc1ρ87 + Ωp1ρ27 + Ωp2ρ47 − Ωp2ρ58)

−1

2
(2Γ21 + Γ31 + Γ32)ρ57 = 0

(A.34)

i

2
(Ωp1ρ28 + Ωp2ρ48 − Ωp2ρ57 − 2∆c1ρ58 + Ωc2ρ68 + Ωc1ρ88 − Ωc1ρ55

−Ωc2ρ59)−
1

2
(Γ21 + Γ31 + Γ32)ρ58 − Γ21ρ58 + Γ32ρ69 = 0

(A.35)

i

2
(Ωp1ρ29 + Ωp2ρ49 − 2(∆c1 +∆c2 + 2V )ρ59 + Ωc2ρ69 + Ωc1ρ89 − Ωc1ρ56

−Ωc2ρ58)− (Γ21 + Γ31 + Γ32)ρ59 = 0

(A.36)

i

2
(Ωp1ρ36 − Ωp1ρ63 + Ωc2ρ56 + Ωc1ρ96 − Ωc2ρ65 − Ωc1ρ69)

−(Γ21 + Γ31 + Γ32)ρ66 + Γ32ρ99 = 0

(A.37)
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i

2
(2(−∆c1 +∆c2 +∆p2)ρ67 + Ωc2ρ57 − Ωc1ρ64 + Ωc1ρ97 + Ωp1ρ37 − Ωp2ρ68)

−1

2
(Γ21 + 2Γ31 + 2Γ32)ρ67 = 0

(A.38)

i

2
(Ωp1ρ38 − Ωp2ρ67 + 2(−∆c1 +∆c2)ρ68 + Ωc2ρ58 + Ωc1ρ98 − Ωc1ρ65

−Ωc2ρ69)− (Γ21 + Γ31 + Γ32)ρ68 = 0

(A.39)

i

2
(Ωp1ρ39 − 2(∆c1 + 2V )ρ69 + Ωc2ρ59 − Ωc1ρ66 − Ωc2ρ68 + Ωc1ρ99)

−1

2
Γ21ρ69 −

3

2
(Γ31 + Γ32)ρ69 = 0

(A.40)

i

2
(Ωp2ρ87 − Ωp2ρ78 + Ωc1ρ47 − Ωc1ρ74)− (Γ31 + Γ32)ρ77 + Γ21ρ8,8

+Γ31ρ99 = 0

(A.41)

i

2
(2∆p2ρ78 + Ωc1ρ75 − Ωc1ρ48 + Ωc2ρ79 + Ωp2ρ77 − Ωp2ρ88)

−1

2
(Γ21 + 2Γ31 + 2Γ32)ρ78 = 0

(A.42)

i

2
(Ωp2ρ89 − 2(∆p2 +∆c2 + 2V )ρ79 + Ωc1ρ49 − Ωc1ρ76 − Ωc2ρ78)

−3

2
(Γ31 + Γ32)ρ79 = 0

(A.43)

i

2
(Ωp2ρ78 − Ωp2ρ87 + Ωc1ρ58 + Ωc2ρ98 − Ωc1ρ85 − Ωc2ρ89) + Γ32ρ99

−(Γ21 + Γ31 + Γ32)ρ88 = 0

(A.44)

i

2
(Ωp2ρ79 − 2(∆c2 + 2V )ρ89 + Ωc1ρ59 − Ωc1ρ86 − Ωc2ρ88 + Ωc2ρ99)

−1

2
(Γ21 + 3Γ31 + 3Γ32)ρ89 = 0

(A.45)

i

2
(Ωc2ρ89 − Ωc1ρ96 + Ωc1ρ69 − Ωc2ρ98)− 2(Γ31 + Γ32)ρ99 = 0 (A.46)

In this system, there are two atoms with different velocities v1 and v2. The contribu-

tion of each atom is added up to find ρe′e′ and ρe′g from the optical Bloch equations

as

ρe′e′ = ρ44 +
1

2
(ρ22 + ρ33 + ρ77 + ρ88) (A.47)
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ρe′g =
1

2
(ρ21 + ρ31 + ρ42 + ρ43 + ρ75 + ρ86). (A.48)

ρe′e′ is the effective population in the excited state. The Rabi frequencies are consid-

ered to be real without the loss of generality. The ground to excited state coherence

is calculated by substituting ρe′e′ and ρe′g in the equation provided below [68]:

ρeg =
Ω1(ρe′e′ − 1)− Ω2ρe′g

2∆1 + iΓeg

. (A.49)

The Doppler averaged susceptibility of the probe is found as

χ =
2N | µge |2

ℏϵ0Ω1

1

πv2p

∫ +∞

−∞

∫ +∞

−∞
ρege

− (v21+v22)

v2p dv1dv2 (A.50)

where µge is the transition dipole moment of |g⟩ → |e⟩ transition, N is the density

of the atomic vapor and vp is the most probable speed of the atoms. The integral is

solved using the Monte Carlo simulation technique. The transmission of the probe

beam is T = e−ℑ(χ)k1l where l is the length of the atomic medium and k1 is the

magnitude of the wave-vector of the probe beam. The vapor density is taken to be

4.5× 1010 cm−3, and the length of the vapor cell is 5 cm.

A.1.2 Monte Carlo simulation technique

The above integral for calculating the probe susceptibility follows a Gaussian distri-

bution. It is solved using the Monte Carlo simulation technique. The Monte-Carlo

technique utilizes the Box-Muller algorithm, where two sets of random numbers are

generated between the closed interval [-1,1]. Let the two random numbers be x and

y. They are independent and uniformly distributed between the closed interval such

that the square root of the sum of their individual squares lies between (0,1). If not,

then the random number pairs are discarded, and another pair of random numbers

are tried. The generated random numbers follow a Gaussian distribution as shown

in Fig. A.2. For each data point, the code is run over for N (10,000-50,000) random

numbers. The larger the value of N, the better the generated result. After the ran-
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Figure A.2: Gaussian distribution of random numbers.

dom numbers are generated, they are fed into the velocity of each atom multiplied

with a factor of the most probable velocity (vp) of an atom and a normalization

factor. The velocities are represented as v1 = x ∗ vp ∗ f and v2 = y ∗ vp ∗ f where

f =
√

−2 ln(s)
s

and s = x2 + y2. Then the integration is performed by summing over

all the generated values of the observable quantity, and it is averaged over N to get

the result.

A.2 Comparison of non-interacting two-atom sys-

tem with a single-atom system

The probe EIT transmission is calculated for a single-atom system using the effective

three-level calculation as described in Sec. 5.6 and is represented in Fig. A.3 by

the solid black line. The EIT transmission for a non-interacting two-atom system is

calculated from the two-atom model and is represented using open red circles. The
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Figure A.3: Comparison of probe transmission calculated using single-atom system
(solid black line) and non-interacting two-atom system (open red circles) for ∆k = 0.
Here, kp = 0.007 × 106 m−1. The laser parameters used in the model are Ω1 = 25
MHz, Ω2 = 110 MHz, Ω3 = 25 MHz and Ω4 = 160 MHz, ∆1 = 1200 MHz, ∆3 = 1000
MHz and ∆4 is adjusted around ∆3 such that the transmission is symmetric.

EIT transmission for a non-interacting two-atom system matches perfectly with that

for a single-atom system. As discussed in chapter 5, the motion-induced dephasing

can be eliminated in this system. The absence of residual wave-vector (∆k = 0)

leads to transparency of the EIT signal to be nearly 90%, which has been discussed

in detail in chapter 5.

A.3 Observation of Rydberg blockade phenomenon

Fig. A.4(a) shows the comparison of EIT transmission for non-interacting two-atom

system with two-atom interacting system for ∆k = 0. The strong interaction be-

tween Rydberg atoms leads to the phenomenon known as Rydberg blockade [50].

Due to the blockade phenomenon, the EIT transmission is suppressed. In the ab-
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Figure A.4: Comparison of probe transmission calculated for non-interacting two-
atom system (open red circles) and interacting two-atom system with ∆int = 100
MHz (open black circles) for (a) ∆k = 0 and (b) ∆k = 0.013 × 106 m−1. Here,
kp = 0.007 × 106 m−1. The laser parameters used in the model are Ω1 = 25 MHz,
Ω2 = 110 MHz, Ω3 = 25 MHz and Ω4 = 160 MHz, ∆1 = 1200 MHz, ∆3 = 1000
MHz and ∆4 is adjusted around ∆3 such that the transmission is symmetric.

sence of a blockade, the light gets completely transmitted under EIT. But in the

presence of Rydberg blockade, only one of the atoms is excited to the Rydberg state

and the second atom is not, leading to the absorption of the light by the second

atom and hence reduction in EIT transparency. The observed suppression in EIT

transmission because of the strong interaction between Rydberg atoms is similar to

that observed in ultra-cold atoms [57]. The reason for similar suppression is the

elimination of motion-induced dephasing in the system. If ∆k = 0.013 × 106 m−1,

as shown in Fig. A.4(b), the EIT transmission reduces for two-atom non-interacting

system. Also, the suppression in EIT transmission is reduced for the two-atom

interacting system with non-zero ∆k.

A.3.1 Dependence of Rydberg blockade on kc

Fig. A.5 shows the normalized blockaded transmission as a function of kc. Normal-

ized blockaded transmission is defined as the ratio of blockaded probe transmission

to probe transmission for a non-interacting system. An increase in kc leads to a

reduction in the blockade effect. This effect is understood as a reduction in the
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Figure A.5: Normalized blockaded transmission as a function of kc with kp =
0.007 × 106 m−1 for ∆int = 100 MHz. The laser parameters used in the model are
Ω1 = 25 MHz, Ω2 = 110 MHz, Ω3 = 25 MHz and Ω4 = 160 MHz, ∆1 = 1200
MHz, ∆3 = 1000 MHz and ∆4 is adjusted around ∆3 such that the transmission is
symmetric.

effective number of atoms participating in the blockade process. With a non-zero

residual wave vector, only a certain velocity class of atoms are resonant to the probe

and coupling field. This means that only a certain velocity class of atoms is resonant

to the EIT process. An increase in the residual wave vector has a significant effect

on the suppression of the Rydberg blockade phenomenon.

A.3.2 Variation of Rydberg blockade with super-atom de-

phasing

There is another dephasing mechanism, called the super-atom dephasing (Γs), which

occurs due to the transverse velocity of the atoms in the thermal vapor system [92].
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This happens when an atom moves out of the blockade sphere and another atom

enters the blockade sphere, leading to the dephasing of the multi-atom coherence due

to the Rydberg blockade. Super-atom dephasing can be understood as the dephasing

of the coherence between the singly excited Rydberg states. It is introduced into

the LD matrix by hand for the singly excited Rydberg states, i.e., ρ56 and ρ78. If

2rb∆k > 1, then Γs is given by the transit time of the atoms through the blockade

sphere, where rb is the blockade radius. If 2rb∆k < 1, then the super-atom dephasing

is given by ∆kvavg, where vavg is the average velocity of the atoms [92]. If the residual

wave-vector is eliminated in the system, i.e., ∆k = 0, then the decoherence in the

system is dominated by the transit time decay rate of the atoms. The transit time

decay rate can be 100 kHz for a beam diameter of 1 mm.

A.3.3 Effect of ∆int on Rydberg blockade

If ∆int ≫ γEIT , then the blockade effect does not depend on the interaction shift

of the Rydberg state [57] where γEIT is the linewidth of the EIT signal. This has

been verified with the codes for this system. In the analysis, ∆int = 100 MHz, much

larger than the typical EIT width of 2 MHz.

The study presented here is a proof of principle for observation of blockade

phenomenon in thermal vapor systems. This cannot be directly applied to model the

experimental results. In a typical experimental situation, the number of atoms inside

the blockade sphere is Nb = N 4
3
πr3b . The blockade radius is defined as rb = 6

√
C6

γEIT

where C6 is the coefficient of van der Waals interaction. For the vapor density used

for the simulation, if the lasers are tuned to 35S 1
2
state, then on average, there are

two atoms inside the blockade sphere. If the lasers are tuned to a different Rydberg

state or the vapor density is changed, then the number of atoms inside the blockade

sphere can be varied. For n atoms inside the blockade sphere, a model with n

interacting atoms is needed to understand the effect of the blockade phenomenon.

All the atoms inside the blockade sphere will be collectively excited and behave like

a single super-atom. The absorption of the probe laser beam will be given by an
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ensemble average of all the super-atoms present within the interaction volume of

the laser field interacting with the atomic vapor. The analysis presented here is a

theoretical demonstration of the Rydberg blockade for two interacting atoms.



144
Electromagnetically induced transparency (EIT) in the strong blockade regime using

four-photon excitation to the Rydberg state in thermal atomic vapor



References

[1] Hans G. Dehmelt, IEEE Transactions on Instrumentation and Measurement,

IM-31, 83–87 (1982).

[2] D. J. Wineland et al., Phys. Rev. A, 36, 2220–2232 (1987).

[3] T. Rosenband et al., Science, 319, 1808–1812 (2008).

[4] N. Hinkley et al., Science, 341, 1215–1218 (2013).

[5] E. A. Burt et al., Nature, 595, 43–47 (2021).

[6] L.R. Pendrill and L Robertsson. “Atomic Physics and the Laser Metrology of

Time and Length”. In: ed. by Per-Olov Löwdin. Vol. 30. Advances in Quantum
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