ENUMERATION OF SINGULAR CURVES WITH
PRESCRIBED TANGENCIES
By
ANANTADULAL PAUL

Enrolment No: MATH11201604003

National Institute of Science Education and Research, Bhubaneswar

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements
for the Degree of
DOCTOR OF PHILOSOPHY
of
HOMI BHABHA NATIONAL INSTITUTE

December, 2021.



Homi Bhaba National Institute

Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the dissertation prepared by
Anantadulal Paul entitled “Enumeration of singular curves with prescribed tangencies” and recom-

mend that it may be accepted as fulfilling the thesis requirement for the award of Degree of Doctor of

Philosophy.

% p-25%"

Chairman- Prof. Anil Karn

Guide- Dr. Ritwik Mukherjee

Co a4k

Examiner- Prof. Chanchal Kumar

Meanag R“‘&a’" S'{’L"‘"

Member 1- Dr. Manas Ranjan Sahoo

K U

Member 2- Dr. K. Senthil Kumar

e

Member 3- Dr. Somnath Basu

Final approval and acceptance of this thesis is contingent upon the candidate’s submission of the

final copies of the thesis to HBNI.

[/We hereby certify that I/we have read this thesis prepared under my/our direction and recommend

that it may be accepted as fulfilling the thesis requirement.

Date : December 13, 2021

Place : Bhubaneswar

Date:

Date:

Date:

Date:

Date:

Date:

December 13, 2021

December 13, 2021

December 13, 2021

December 13, 2021

December 13, 2021

December 13, 2021

Dr. Ritwik Mukherjee



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree
at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made available to

borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided that accu-
rate acknowledgement of source is made. Requests for permission for extended quotation from or
reproduction of this manuscript in whole or in part may be granted by the Competent Authority of
HBNI when in his or her judgment the proposed use of the material is in the interests of scholarship.

In all other instances, however, permission must be obtained from the author.

AanJfJ'J fw‘k

Anantadulal Paul.

ii



DECLARATION

I hereby declare that I am the sole author of'this thesis in partial fulfillment of the requirements for
apostgraduate degree from National Institute of Science Education and Research (NISER). I authorize

NISER to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Avr\lt(lfsw M

Anantadulal Paul.

il



List of Publications arising from the thesis

Journal

1. Enumeration of rational curves in a moving family of P2, Bull. Sci. Math., 150 (2019), 1-11.
14N10

Pre-print Paper

» Counting singular curves with tangencies, available at https://arxiv.org/abs/1909.03201,
1-15.

* Enumeration of singular curves with higher order tangencies, In preparation.

Anartedialal M

Anantadulal Paul.

iv



ACKNOWLEDGEMENTS

First and foremost I want to thank my supervisor Ritwik Mukherjee for his invaluable guidance
throughout the time I spend at NISER, Bhubaneswar. I am deeply indebted to him for all the knowl-
edge and advice received over the years, without which writing this thesis would not have been pos-
sible. Next, | want to especially thank Somnath Basu and Vamsi Pritham Pingali, for several fruitful
discussions and motivation to Mathematics. [ want to thank Somnath Basu again for various advanced
topics that I learned from him, it also helps me to improve my teaching ability.

I would like to thank the doctoral committee Chairman Dr. Anil Karn and the members, Dr. K.
Senthil Kumar, Dr. Manas Ranjan Sahoo and Dr. Somnath Basu for mathematical view and inspira-
tional encouragement throughout my thesis work. I thank Rahul K. Singh and Chitrabhanu Chaudhuri
for several fruitful discussions.

Special thanks to my batch mates and colleagues Nilkantha, Atibur, Abhrojyoti, Santu, Diptesh,
Puspendu, Rajeeb, Mrityunjoy, Sachchidanand and Aditya for their generous help and friendship dur-
ing the Ph.D. work, which made my journey easier.

Finally, this thesis would not be completed without support from my parents, my elder brother, and
my sisters. [ want to especially thank three of my intimate friends Tuhin, Arka and Sarbany for their
enormous support all the time during all my endeavors. Also, I want to thank my friend Soumya Pal
for helping me to learn some computer programmings.

I would like to acknowledge the financial support provided by Council of Scientific and Industrial
Research (File No - 09/1002(0021)/2016-EMR-I), through a research fellowship during my Ph.D.
program at NISER.



ABSTRACT

This thesis aims to study the enumerative geometry of curves via a purely topological method.
My research can be divided into two parts, looking at the nature of the enumerative problems that
we have studied. The first topic of my doctoral thesis is mainly concerned with the stable map and
Gromov-Witten theory and the last three chapters are devoted to the study of singular curves inside a
linear system.

We have revisited some preliminaries in Gromov-Witten theory and quantum cohomology in the
first chapter of my thesis. In the second chapter of this thesis, we have described a possible general-
ization of the famous enumerative problem of counting plane rational degree d curves into P3. This
generalization is motivated due to the work of Kleiman and Piene [30] and very recently by the work
of T. Laarakker [41]. We considered counting problem for rational planar degree d curves in P3 i.e.,
a rational degree d curves in P3 whose image lies inside some P2, In this setting, we have proved a
recursive formula analogous to the famous Kontsevitch’s recursion formula for P? which counts ratio-
nal planar degree d curves in P3, intersecting r generic lines and passing through s points in general
position inside P? such that r 4 2s = 3d + 2. This study can be thought of as a family version of the
classical counting problem in P2

Both the third chapter and fourth chapter of this thesis are devoted to studying singular curves with
various tangency constraint to certain smooth divisor. In particular, we have studied the geometry of
singular curves (curves having A, singularities) in P> having higher order of contact (tangency) to a
fixed-line E € P?. The singularities that we have considered in this thesis are often degenerate than
nodes; mostly we deal with A; singularities. This study is mainly motivated by the classical study due
to Caporaso-Harris [11]. In the third chapter, we have studied the enumeration of degree d curves in
IP? having any number of A; singularities for any k, that is tangent to a fixed-line in P? with appro-
priate insertion condition. Although the fourth chapter is a sequel to the previous chapter, we have
introduced the concept of higher-order contact (tangency) to a fixed-line E inside P?. Here we have
studied the enumeration of degree d curves having nodes or a cusp as an underlying singularity that
is tangent to a fixed-line inside P? through correct number of generic points in P2. We also showed
that this has an immediate connection to the last chapter of this thesis.

In the last chapter of this thesis, we have studied the counting problem of degree d curves in P?
having any two degenerate singularities of type A such that the total codimension of the two singular-
ities can be at most 6. This problem is very classical in algebraic geometry and everything is known
up to the total codimension 7, due to the work of many algebraic geometers. We use a topological
method to study this question. We are expecting that we can extend this result up to total codimension
9 and we want to include the singularity of type Dy, E; as well. Also, our method can very easily be

generalized to other algebraic surfaces as well. One of the instances of it can be found in [3].
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Summary

Enumeration of curves is classically an important subject in enumerative algebraic geometry. The
last 30 years have been very crucial for the mathematical development of this subject immediately
after the appearance of the technique called Gromov-Witten theory.

In my doctoral thesis, we have studied mainly two kinds of enumerative problems. The first enu-
merative problem deals with the study of genus-zero Gromov-Witten theory of degree d planar curves
inside P3. The motivation for this work originated from the work due to Kleiman and Piene ([33]) and
T.Laarakker ([41]) in a linear system setting. A planar curve is defined to be a curve in P3, whose
image lies inside a P2, In this scenario we defined our moduli space 7//5},3“”(@34) as a fibre bundle
over P (i.e., the space of all planes inside P?). Therefore the dimension of this moduli space is 3d + 2.
Then we proved the genus zero Gromov-Witten theory in this case, i.e., we established an explicit for-
mula to enumerate rational planar curves of degree d intersecting r generic lines and passing through
s points in P2 in general position such that  +2s = 3d 4 2. In analogy to the historical development,
this can be viewed as a family version of the famous question of enumerating rational curves in P?,
that was studied by Kontsevich-Manin ([38]) and Ruan-Tian ([59]).

The second topic of my study involves the singular curves. Moreover, we impose additional tan-
gency constraints on some divisor. In this direction, we have devoted our attention to the counting
problems: (A) counting degree d curves with a certain number of A; singularities on it and it is tan-
gent to a fixed-line in P? satisfying certain point insertions, (B) enumeration of degree d curves in P>
having two singularities of certain kind satisfying the appropriate enumerative constraint.

Historically, both kinds of enumerative problems are classically important. An extensive amount
of work has been done from several algebraic geometers in this direction. The method we use to study
these types of questions is purely topological.

Along the direction of the first type of problems, we have proved an explicit formula that enumer-
ates the number of degree d curves in P> having any number of A, singularities on it and is tangent to
a fixed-line in P? passing through an appropriate number of generic points. This study was motivated
by the work due to Caporaso-Harris [11]. This work can be regarded as the first step towards the
generalization of Caporaso-Harris results to higher singularities.

Next, we extend our topological method and found the recursive formulas for N(T;0-0T,), i.e.,
counts of curves with multiple tangency points. Next, we made the curve singular, furthermore, we
imposed any order tangency at a point different from the point of singularities. We established a re-
cursive formula to compute the number N(A9 o T;) for § € {1,2} and N(A; 0 T;). Note that when
singularities are nodes, our numbers agree with the numbers from Caporaso-Harris. Similarly, when
the singularity is cusp with tangency of order one, we can verify some of our numbers with the num-

bers computed by Ernstroem, Kennedy [15].



CONTENTS

Next, we come to the second type of problem; in this direction, we have studied the enumeration of
degree d curves in P? having two singularities of type A, up to codimension 6. Thus we have proved
some recursive formula which enumerates the numbers N(ZAy, o ZAy,) such that k; +k, < 6. This
work is motivated by the work due to Kazaryan [27]. Hence we can verify our numbers with the

numbers that Kazaryan has obtained.
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Chapter 1

Introduction

1.1 Preliminaries

Enumerative geometry is a special branch of Algebraic Geometry. One of the broad focuses of this
subject deals with various counts of geometric objects; could be counting curves, hypersurfaces, or
certain types of sub-varieties satisfying certain kinds of constraints. The more modern language of
this subject deals with certain types of sheaf counts.

In modern times, various groups of mathematicians from different branches of mathematics and
physics have contributed to enumerative geometry with numerous different approaches. For example,
in 1990, a major development had been done with ideas from string theory by various peoples such
as Kontsevich-Manin, Witten, Vafa, and others. Gromov-Witten’s theory and the related structures
led the path of modern enumerative geometry. As a result, beautiful solutions to various classical,
long-lasting open enumerative problems, are completely understood. For example, the problem of
counting genus g curves in P? passing through 3d — 1 + g general points in P? are well understood.

Over the last 30 years, different branches of mathematics such as topology, symplectic or differ-
ential geometry, combinatorics have enlarged this fascinating subject. Our approach in this thesis
entirely comes from ideas of topology.

Usually, numerous enumerative problems can be stated very easily, some of them can be stated
without any prior background in enumerative algebraic geometry. On the contrary, the solutions to
these problems require deep and technical knowledge from various branches in mathematics such as
algebraic geometry, symplectic geometry, and differential topology.

Kontsevitch’s moduli space and the intersection theory play a prominent role in modern enumera-
tive geometry, especially for various theoretical development of genus g maps into some homogeneous
algebraic varieties. Plenty of solutions for enumerative problems was interpreted as intersection num-
bers inside the above moduli space. In this thesis, we have considered a similar moduli space and we

have expressed our counts of geometric objects as the intersection numbers on this moduli space. It
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is closely related to the classical enumerative problem in P2. Another type of problem, that we have
studied is inside a linear system. One of the problems in this setting concerns the study of singular
curves with certain type contact (tangency) conditions to some smooth divisors with some appropriate
insertions. Lastly, we have studied the enumeration of singular curves in P? up to certain codimension,
where the singularities are usually more degenerate than nodes. We can ask the simplest enumerative

question as follows:

Question 1.1.1. How many plane curves of degree d are there passing through 0, = @ generic

points inP??

Note that any degree d plane curve (in the complex projective plane) can be thought of as degree

d homogeneous equation

iJjk
Zcijkxyfz =0
i7j7k

with¢; j i € C, notall ¢; j x are zero. Since any two equation as above if they differs by a multiplication
of a non-zero scalar then they determines the same curve. Thus the space of all degree d curves in P?
is a 6, dimensional projective space. Now for a generically chosen point p € P2 the statement “degree
d curves passing through the point p” corresponds to a hyperplane in P%. Hence for a generic choice
of §, points there is a unique degree d curve satistying the above constraint in the question provided
the intersection of all the hyperplanes are transversal.

This type of question becomes very difficult when we ask the curve to have a certain type of singu-
larities in it. For example, suppose we want to count the plane cubics having a “cusp” passing through
7 generic points in P2. Although, it has been known from a very ancient time that there are 24 cus-
pidal plane cubics through 7 generic points but proving this requires non-trivial technique. We will
discuss a method in the last chapter to enumerate plane curves with various singularities. Numerous
techniques usually tackle an enumerative geometric problem as follows :

Suppose, we want to study the intersection theory of certain kinds of geometric elements. For
example, one may be interested in enumerating the number of elements of a set A, consisting of a
certain fixed type of geometric objects satisfying a finite number of constraints ;. In general, one
first constructs a space parametrizing all the families of such geometric objects, one might call this
as parameter space or a moduli space, denoted by .# depending on their choice and interest of the
geometric objects, whose every point, in a precise sense corresponds to the elements of A.

For example, mostly we are intended to study the intersection theory of singular curves on the lin-

7
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ear system.

Quite often, one might have constructed a bigger moduli space by including the “limiting objects”
to make the moduli space compact so that it becomes a suitable space to study the intersection the-
ory of certain kinds of geometric objects. Next, the constraints y; must be realized as the subspaces
(hyperplanes, closed sub-schemes, sub stacks). Let ¢; C .# and their associated cycles [¢;| € H* ()
in an appropriate cohomology theory which is known. Then, the knowledge of cohomology theory
(intersection theory), i.e., H*(M) helps us in the computation of the intersection product of the cycles
[ci]. Thus, at least, integrating the final class yields a number, most often it is not the enumerative
number that we want, we need to do more work to get the correct answer that we were looking for.

Sometimes the moduli space (compactified) is so suitable for certain kinds of geometric objects
that it does not need any constraint to give an enumerative answer, i.e., the virtual dimension of the

moduli space is zero. This was explored in the Gromov-Witten theory of Calabi-Yau-threefolds.

1.2 Enumerative Geometry and stable map

Over the last thirty years, there has been enormous progress in modern enumerative geometry inspired
by the work of many people from both the Mathematics and Physics discipline. In this squeal, the
mathematical breakthrough in modern enumerative geometry has begun with the famous work of
Kontsevich and Manin. The idea of introducing the notion of stable maps, due to Kontsevich, turns
out to be the suitable notation to solve the long-lasting open problem of counting rational curves in a
smooth projective variety. The theory of stable maps provides the analog of Deligne-Mumford stable
curves. The moduli space of stable maps denoted by.#, (X, ), where X is a smooth projective
variety and 8 € A|(X) a homology class. A typical element of this space is a tuple (C,xy,- - ,xp, f),
where C is a curve of arithmetic genus g with nodes as worst possible singularities, x; are distinct
smooth marked points on C, f: C — X is an arbitrary map that satisfies certain stability conditions.
The ideas and techniques developed by M. Kontsevich have revolutionized enumerative geometry:
stable maps and quantum cohomology. Kontsevich’s celebrated formula, which solves a longstanding

question of counting rational degree d curves inside P2. In [38], the authors proved the following:

Theorem 1.2.1. (Kontsevich)

Let us denote the number ny defined by the number of plane rational curves of degree d pass through
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3d — 1 given points in general position. Then ng is given by
3d—4 3d -4
= did didy — d3 1.1
nq dZ ng, N, di 2[<3d1—2> 1d> <3d1—3> 2] (1.1)
1+dy=d

provided d > 2.

The above formula was discovered in a rather different context and it came as a beautiful surprise
and lead the modern path for Gromov-Witten theory (a theory largely inspired by various ideas from

physics).

1.3 Moduli space of stable maps and genus zero Gromov-Witten
invariants

We will mainly consider enumerative problems concerning rational curves, we will only study stable
maps and their moduli spaces with the assumption that the curves are of arithmetic genus zero. Let X be
a homogeneous algebraic variety then the Gromov-Witten theory is well-understood in the literature.
For the preliminaries, we will mainly follow ([13], [36], and [38]) and the references therein.

We recall the notion of the moduli spaces of stable maps, which will be the basic objects of study.
We will only interested in the genus-zero Gromov-Witten theory of X, a complex smooth projective
variety of dimension n. One can always characterize an irreducible rational curve since it can be

parametrized by the projective line.

Definition 1.3.1. Let u: P! — P" be a holomorphic map then the degree of the map u is defined as

the degree of the direct image cycle u.[P']. For example, a constant map has degree zero.
Moduli space of curves and stable map

In this section, we will briefly introduce the notion of moduli space of rational curves then we will
concentrate on genus zero stable maps. We will always work over C as our base field. Note that every

smooth, irreducible complex projective curve C of genus 0 is isomorphic to P!.

Definition 1.3.2. 4 smooth n pointed genus O curve (C,py,---,pn) is a projective, smooth rational
curve C with a choice of n distinct smooth points p1,--- ,pn € C, called the marking of the curve.
An isomorphism between two such curves (C,py,---,p,) and (C',p}, -+, p},) is an isomor-

phism p : C —» C’ preserving the order of the markings, i.e., p(p;) = py.
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Definition 1.3.3. Let us consider the tuple (C,py,--- , p,) where C is a connected curve of arithmetic
genus g with nodes as the worst possible singularities and p1,-- - , p, are distinct smooth points of C.
The marked curve (C,py,--- ,py) is said to be stable if in the normalization of the curve any genus 0

component has at least three distinguish points, inverse images of nodes or marked point p;.
Note that the stability of the curve is guaranteed by the inequality 2g —2 +n > 0.

Proposition 1.3.4. Forn > 3, there is a fine moduli space, denoted ) 5, for the problem of classifying

stable n-pointed smooth rational curves up to isomorphism.

Example 1.3.5. For n =3, given any smooth rational curve with three markings (C, p1, p2, p3), there
is a unique isomorphism (P',0,1,00) — (C, p1, p2,p3). That is, there exists only one isomorphism

class, and consequently, .4, 3 is a single point.

The first non-trivial example of a moduli space of pointed rational curves is .# 4. Every four
marked rational curves (C, py, pa, p3, p4). is isomorphic to (P!,0,1,c0, p) for some unique p € P!\

{0,1,0}. One can show that .2 4 ~ P!

Theorem 1.3.6 (Knudsen [35]). For n > 3, there exist a smooth projective variety %07,1. It is a fine

moduli space for n marked stable rational curves containing ./ , as a dense open subset.

Throughout this thesis, we mainly work with coarse moduli spaces. Onward, we will denote the

coarse moduli space by M ,.

Boundary divisors Boundary divisors are of particular interesting cycles of codimension 1.

Let us denote the set of n marks by [n]. Then a general point of the boundary divisor D(A | B) for
each partition [n] = AU B with A, B disjoint and cardinality of A, B > 2, represents a curve with two
twigs having A markings on one twig, and B marks on the other. Sometimes we will make abuse of
notation, and we will denote by (i, j | k, [) a general curve of a boundary divisor of My 4 such that
i, j€Aandk, | € B. If we denote the markings on 1\_4074 by x1, X2, x3, x4, one of the three boundary

divisors of Mo 4 we will denote as (x1, xp | x3, xa).
Stable maps

We will now focus on our main object of study: marked rational curves in complex projective space.
An irreducible rational curve can be parametrized by the projective line; therefore the morphism of

the form u : P! — IP” will play a crucial role in our study.

10
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Lemma 1.3.7. 4 map with n markings on it is stable if and only if it has only a finite number of

automorphisms.
Remark 1.3.8. The proof of the above lemma can be found in [37], Lemma 2.3.1.

Theorem 1.3.9 (Cf. FP-Notes [18]). There exists a coarse moduli space My ,(P",d) which parametrizes

the isomorphism classes of stable degree d maps to P" with n markings on it.

Theorem 1.3.10 (Cf. FP-Notes [18]). Mo ,(P",d) is a projective normal irreducible variety and it

can be seen locally as isomorphic to a quotient of a smooth variety by the action of a finite group.

The compactified moduli space M ,,(P",d) has the dimension
md+m-+d+n—3.

We will not discuss anything related to the construction of M ,(P™,d), [37] can be considered as one

of the excellent references for the above.
Evaluation Map
For each marking p; on the curve there is a natural evaluation map,
evi: Mo, (P',d) — P’
evi(C,p1s-++  pnyut) = u(p;)

For example, let H C P" be a hyperplane, then for each i the inverse image ev;” '(H) is a divisor in
Mo ,(P",d). 1t consists of all maps whose i-th marking is mapped into H. For example, if H 2eP?is

a point class, then ev; ' (H?) is a codimension 2 divisor in My ,(P?,d).
Forgetful Map

Let us consider two sets of markings respectively A and B with A C B. Then there exist a natural
forgetful map f : Mo g(P",d) — Mo a(P",d) which forgets the markings in the complement B\ A in

any order and this map factors through
MOJH—I (Pr7 d) — MO,n (]P;r, d)

The forgetful maps are very crucial and they require special care in the study of stable map theory.
While forgetting the markings it might happen that the resultant becomes an unstable map then we

have to contract the unstable component so that the image of a forgetful map remains stable.

11
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Lemma 1.3.11. Let us assume that n > 4, then the forgetful map Mo ,(P",d) — Mo 4 is a flat mor-

phism.

Remark 1.3.12. The illustration of the above lemma can be found in [37]. It is also been discussed

that the above map is flat for n > 3.
Boundary of M ,(P",d)

The boundary of M ,(P",d) is made up from the curves whose domains are reducible curves. Let the
n markings given by {py,---, p,} and choose a partition such that AUB = {py,-- -, p, } together with
two non-negative integers d4 and dp such that d4 +dp = d. For the above choice of partition (where
|A| > 2 if dy =0 and |B| > 2 if dg = 0) there exists an irreducible divisor, denoted D(A, B;da,dp),
called a boundary divisor. A typical point on this divisor represents a map u whose domain is a tree
with two twigs, C = C4 UCp, with the points of A in C4 and those of B in Cg, such that the restriction
of u to C4 is a map of degree d4 and the restriction of u to Cp is of degree dp. This is given by a picture

as follows:

Cp

d
da B

Figure 1.1: Boundary divisor

For example, My 5(P?,2) has 42 boundary divisors.

Recursive structure of the boundary

Let us make the following Proposition without proof:

Proposition 1.3.13. The boundary of My, is a divisor with normal crossing.

A typical element in D(A,B;da,dp) corresponds to a reducible curve with two twigs and dis-

tributes the corresponding markings among each other. Let us denote the point of intersection of the

12
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two twigs by p. Then the component of the reducible curve on A twig side corresponds to an element
of My A, (p)» and similarly on B twig side gives an element in M(),BU (p}- Note that the stability of the
reducible curve implies the stability of the resultant two-component curve.

Conversely, a typical element in M 4, (p} X My g, {p} can reconstruct a reducible curve in D(A, B;d, dp)
by identifying the two markings p,attaching the two curves in a node at p. In this way, we will get a
canonical isomorphism

D(A,B;da,dp) — Mo a0y X Mo pugp)

since each of the two components with fewer markings are stable and smooth, we can conclude that
the boundary divisor D(A, B;d4,dp) is irreducible as well as smooth.
Let us mention an important fact that may be useful later when we proof Kontsevitch’s recursion

formula for P2,

Lemma 1.3.14. Let Y € P" be a sub variety. Then the inverse image ev; ! (Y) has proper intersection
with each of the boundary divisors D(A,B;da,dg). IfY has codimension k inside P" then ev: ' (Y)N

D(A,B;dy,dp) is of codimension k + 1 in My ,(P",d).
An immediate corollary of the above Lemma is the following

Corollary 1.3.15. For any irreducible sub variety Y € P', the inverse image under evaluation map is

irreducible in Mo ,(P",d).
Fundamental boundary relation

Assume that n > 4. Let us consider the composition of flat forgetful maps A_Jovn(IP”,d) — 1\_407,[ —
Mo 4. Let D(i, j ; k,1) be the divisor in M ,(P",d) defined as the inverse image of a divisor (i, j ; k,/)
in Mo 4. Then

D(i,j; k,1) =Y D(A,B;dy,dp)

where the sum is taken over all possible partitions discussed above. Since My 4 ~ P!, is path-connected,

all three boundary divisors are equivalent. This yield a fundamental relation

D(A,B;ds,dg)= Y, D(ABida,dg)= Y, D(ABida,dp)  (1.2)

|A|U|B|=n |A|U|B|=n IA|U|B|=n
i,jEA, j.keB i,keA, j,leB i,l€A, j.keB
dp+dp=d dp+dp=d dp+dp=d

We will discuss the consequences of the above relation below.

13
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Gromov-Witten invariants

Various numerical invariants have been defined for a smooth algebraic variety. For example, Chern
classes provide a rich structure to the theory. One such invariant, namely the Gromov-Witten invari-
ant is defined as integrals on the moduli space of stable maps. These invariants have their origins in
physics, by construction, it remains invariant under deformation of the complex structure of a given
projective algebraic variety X. Although the Gromov-Witten invariants are defined from both alge-
braic and symplectic geometric techniques, in this thesis, we mostly concentrate on the algebraic side.

Let X be a smooth projective variety then the Chow groups A, (X) are well understood. So one
can perform operations of intersection theory on it. There is a perfect pairing namely Poincaré dual-
ity which allows us to consider homology and cohomology classes simultaneously. Throughout, we
will consider the coefficient ring as Q. It turns out for X = IP” the intersection ring is isomorphic to
the cohomology ring of P". However, M ,(P",d) is a singular variety hence performing intersection
theory on it is not easy.

We have the following natural maps:

m 21\_407,!(Pr,d) — (Pr)n

. Mo7n(Pr,d) — Mo,n.
The map m; sends a moduli point u : (C,py,--+,p,) —> P" to the n tuple (u(p1),---,u(py)). Next,
observe that even if u : C — P" is a stable map, it need not be a stable curve in the sense of Deligne
and Mumford [53]. Now, if n > 3, then successively contracting the unstable components of C gives
a stable curve C. Then 7 maps u : (C, py,---, pn) —> P" to the isomorphism class of C [13].
The above maps give natural maps

n  H*(P",0)%" — H* (Mo ,(P",d),0)

Ty . H* (MO,n(]P)rvd)v Q) — H* (1\_/10,n7 Q)

where our assumption on # is the same i.e n > 3. Poincaré duality and m,. induces the Gysin map

m, : H* (Mo o(P",d), Q) — H*™ ™ (Mo, Q) (1.3)
where m = (r+1)d —r. Then the Gromov-Witten class for the cohomology classes o, ---, 0, €
H*(P",Q), defined as

107,,761(061,"' ,OCn):n'zy(TCT(OC]@'”@OCn)). (14)

14
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Hence we have Gromov-Witten invariant

(Topa) (0, 06) = /M Iopa(oi, -, 0). (1.5)
0,n

Using (1.4), the above reduces to

(Tona) (01, 0n) :/7 Qe O). (1.6)

Note that equation (1.6) make sense when n < 3. Thus although Gromov-Witten classes require n > 3,

Gromov-Witten invariants are defined for all n > 0. We will use the notation

Nog (i, ,0) = (Iona) (0, -, 0).
Axioms for Gromov-Witten classes

In [38], Kontsevich and Manin proposed certain number of axioms for Gromov-Witten classes.
From the algebraic point of view it has been shown that the Gromov-Witten classes satisfies these
axiom in ([6], [44], [5], [4]) and in symplectic case it has been proved in ([59], [60], [45]). We will
describe the axioms which are satisfied by the Gromov-Witten class without proving them. The proofs
can be found in the above references including [13].

Let us assume that X is a smooth projective variety and g =0, n > 3. Let B € Hy(X;Z) be a
homology class. If d is the number characterizing the homology class 3, then we will denote <107,,7 ﬁ>
instead of (o ,.4). We now state the axioms for (I, g ).

Linearity Axiom. The very first axiom asserts that (I, g) is linear in each variable. This is as
expected since the sum of cycles is simply given their union.

Effective Axiom. This axiom ensures that <107n7 [3> =0 if B is not an effective class.

Degree Axiom. Recall that the moduli space M ,(X,) has the expected dimension 2 dimX — 6 —
fB ox +n. Let o, -+, 0, € H*(X,0)®", all @; are homogeneous classes. Then the degree axiom

simplifies that I , g(e1,- -+, @) is a top degree class if and only if
Zdegoci =2 dimX—6—/ﬁcoX +n.
i=1

Note that this axiom is valid for n > 0.
Equivariance Axiom. The symmetric group of n letters denoted by S, has natural action on the
cohomology groups H*(X,0)“", H*(Mg », Q). Then this axiom guarantees that the map

L, p:H (X,0)" — H* (Mo, 0)

15
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is a S, equivariant map. Thus for Gromov-Witten invariants, equivariance means

<107n,ﬁ> (alv' Oy Oy 7an) = (_1)dega,' deglis1 <107n,[3> (ala' 01, Oy 7an)'

Fundamental Class Axiom. Let n > 4. We have a natural map 7, : Mo, — Mo, by forgetting

the last marked point. Let [X] € H%(X, Q) be the fundamental class of X, then the axiom asserts that

(Tonp) (01, 01, [X]) = 7, (I ) (01, 5 O 1)

in other wards, this axiom implies that the above Gromov-Witten invariant can be non-zero if and only
if (Ip,.p) (01, , 04,1, [X]) is a top degree class. This holds true whenever 7, is defined. This axiom
is true if eithern >4 or f #0and n > 1.

Divisor Axiom. Let n > 4 and 7, is defined as above. For &, € H?(X,Q) the degree axiom asserts

that
T« <10,n,B> (OC],--- :an—laan) - (/X an) <10,n,[3> (061,~-- ;an—l)
Point mapping Axiom. This axiom deals with the case = 0. For the genus zero case only, if o; are

homogeneous cohomology classes, then

o, U--U,0) [Mo,] if Y, =2dimX
<10,n,0>(051,"' Q) = {IX( 1 n) | ; ] ):71. i (1.7)
0 otherwise
Splitting Axiom. Let us consider a splitting n = ny +n>. Giventwo stable curves (C1, p1,- -, Py, Pny+1)

and (C2,p1,"*+ , Pny, Pur+1) We can obtain C from C; UC; by identifying p,, 41 with p,,+1, a stable

genus zero curve (C,pi,---, P, P1,- - , Pn,). Hence we get the map
8 Mop+1 X Mon,11 —> Mo,
thus the splitting axiom yield the formula for 6* <10,n,0> (ai, - ,0) as

Yo Y g (lomr10) (a0 Ti) 0 (T0,00) (Tj Oy 41, 5 06)
B=PBi+p> i.J

This means that our cohomology class for the diagonal in H*(X x X, Q) is given by ¥; ; g; ;i ® T;.
Note that the above sum is finite due to Effective axiom.
Deformation Axiom. This axiom asserts that the Gromov-Witten classes should be invariant under the
deformation of complex structures. This treatment is much more natural and suitable in the symplectic
setting.

This set of axioms are extremely useful for doing computation of Gromov-Witten invariants

although not always necessary.
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Quantum Cohomology

Various techniques have been developed over thirty years to present Gromov-Witten theory in a sys-
tematic way and techniques should be helpful to predict the related structures. One of such is Quantum
cohomology. Throughout we will only focus on genus-zero Gromov-Witten theory so we will be con-
centrating on small quantum cohomology, for a complete reference we will refer the reader to ([38],
[37]). One can generalize the notion of cup product in the usual cohomology ring to the quantum prod-
uct which forms the quantum cohomology ring. Quite often the structure constants of this ring encode
the Gromov-Witten invariant. The quantum product is associative and the quantum cohomology ring
has a unit. We will see surprisingly quantum associativity implies Kontsevich’s recursion formula for
IP?, which is considered to be a breakthrough in this area.

Let us consider X be a homogeneous variety and choose a basis for the cohomology ring of it as

{Thy =1d,T;,--- ,T,}. There is a natural intersection matrix defined by usual cup product namely

gij:/XTiUTj-

Let g'/ be the inverse of g; J» then the product 7; U T; can be expressed as follows

TiUT]:Z(/XT,-UT,-UTk)g“Tz
]

=Y (Io3p—0) (UT;UT)E'T,
k.l

Given a class o = Y x;T;, we define the following generating series

ZZ—<0nﬁ>

m>3 B
Note that the series F becomes a formal power series in Q[[xo, - - - ,x,]]. The expanded form of F can
be written as
L () A
F(.X'O,--- 7xr) = IO,nﬁ T Tmr)—r
mo4---+m,>3 mo'mr'

Note that we always consider the variables corresponding to the codimension two or more classes as

zero class. One can see that taking third order partial derivative of F* with respect to x;,x; and xi

Fije= 8x8xj8xk 2;40%4 <10"713>O‘ 1313, Th)

Now we will define the quantum product as the multiplication on A*(X,Z) ®z Ql[xo, - - - ,X,]] by defin-
ing

Ti+T; =Y Fug'T
k,l
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and extend the multiplication to Q[[xo, - - ,x,]] linearly.

Lemma 1.3.16. The quantum multiplication is commutative, associative and the quantum cohomology

ring has unit Ty.

For a detailed review of quantum cohomology and its application we refer [18]. The central aspect
of the quantum product is associative property. As a consequence of quantum associativity, we will

get Kontsevich’s recursion formula.
Theorem 1.3.17. The quantum product * is associative. That is,
(TP« T9) % T* = TP 5 (T7 % T*)

Proof. The theorem follows from the linear equivalence among the boundary divisors that we have
seen in (1.2) and the splitting Lemma. Although quantum associativity is a formal consequence of the
above but it has much more geometric significance in enumerative geometry, for example see ([71],
[14]).

Let us now expand both sides of the associativity relation. Using the definition above left hand

side is given by

(T 1)« = (Y Fpel)«T' = Y Y FjeFpuT™
e+f=r e+ f=ri+m=r

Next, expanding the right hand side in a similar way we get the following

T'«(T/«T = Y Y FueFuT™"
e+f=rl+m=r
hence the associativity gives us
Y, Y FiFpu= ), Y FieFpu
e+ f=ri+m=r et+f=ril+m=r

since T" are linearly independent, so we can conclude that

Z FijeFu = Z FijeFru-

e+f=r et+f=r
O
Following the notes [19], let us assume that Ty,--- ,T,, be a basis of the cohomology group
A'(X) and let Ty, 1,--- ,T, be a basis for other cohomology groups. Then the fundamental numbers

associated to the Gromov-Witten invariant can be described as
Nﬁ (M1, ) = <IO,r—m,ﬁ> (Tr:zl:1-+ll < T), V=0
we can formally define these numbers to be zero if Y. n;(codim(T;) — 1) # dimX — 3+ [g c1(Tx).
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Enumerative Application

Let us now define a potential function as

F<f) Fclasszcal( ) + Fquantum (x)

When 8 = 0, the classical term of the above potential takes the form

= X
Felassical ()C) = Z / T, T”’ J L

no+-4np=

next, we describe Fyqnsum(X) by using the properties (1.3),(2) and (3)
m C T r X
G<X) = Z Z Nﬁ (nerlv' H 1(Tx) H #
g1 ++1,20 B£0 i=1 i=m+1""1"
Note that the classical term only contains the numbers of the form [y, 7;UT; U T}, where as the quantum
expression has more interesting enumerative numbers. For projective plane take 7y = 1, the class of
a line is denoted by 77 and T, be the class of a point. One can verify g;; = 1 for i+ j = 2 else 0 and

the same is true for g'/. Thus

TI;i+xT; = FijoTo + Fij T + Fij2 To.

Let us look at

(T ) *xTh = oo Ty + Fooo To + Fii (Fioan T + Fiio To) + Fiin s

T % (Ty x To) = Fio Ty + Fio1 (Finn Ty + Fi12To)
Next, equating the coefficients of 7 from both the equation we conclude
Py = Fis — FiitFi (1.8)

Since the number for rational curves n, is non-zero only if the curve passes through 3d — 1 general

points in projective plane, so
s x3d 1

=X g (3d —

d>1
Note that it can very easily be shown by computing the partlal derivatives of G and using the equation

(1.8) we will get the identity in theorem (1.2.1).
Proof of Kontsevich’s formula for rational plane curves

With the above notation, we are ready to prove the famous recursive formula due to Kontsevich for

rational curves in P2
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Proof. Let us consider our moduli space M073d (P",d) with 3d marking on the curves namely,

Pl D2, q1, -+, q3a—2. Let Ly and L, be two lines and let Qy,---,Q34_2 points in P? in general
position. Let 2° C My 34(P?,d) be a sub-variety corresponds to the passing through points and inter-
secting lines, i.e., Z defined by intersection of the inverse images of the above points and lines under

the evaluation morphism. In particular as cycles
Z = evi[Li] ev3[La] ev3[Q1] evi[Qa] 7

where [H] is the hyper-plane class inside P? and .7, denotes the class representing the homology class
corresponding the curve passing through point and ev; denotes the evaluation map at the ith marking.

Now recall the fundamental equivalence (1.2), the result will follow from the following observation:

Z N D(p1,p2; q1,92) = Z 0 D(p1,q15 p2,92) (1.9)

Note that the points and lines can be chosen in such a way that & is a curve and it intersects the
boundary transversely and it lies completely inside the open dense locus of 1\_407361(192, d).

Let us consider the left-hand side of the equation (1.9). Here (p1,p2 | ¢1,92) denotes the domain
which is a wedge of two spheres with the marked points p; and p, on the first sphere and ¢; and
¢> on the second sphere. The domain (py,q; | p2,q2) is defined similarly. Since Mo 4 ~ P! is path
connected, any two points determine the same divisor.

Let us now consider the projection map
T M()A(Pz,d) — ]\_4074.

Let us now intersect the cycle Z by pulling back the left hand side of (1.9), via 7. We get the
following:

3d -4

" =
(p1:p2 | q1,92) ng + 3d; — 1

< >nd1nd2dfd2 (1.10)
d=d\+d,, dy,d»>0

where in the above expression, d :=d| +d», dy,d> >0
Next, we will justify the right hand side. We will intersect 2 by pulling back the right hand side

of (1.9), via the map x. This yields the number

. 3d—4
7 (p1,q1 | p2.q2) - 2 =2n4+ <3d 1>nd1”d2d%d% (1.11)
d=d\+d>, dy,d»>0 1=
Note that the equations (1.9), (1.10) and (1.11) give the formula (1.2.1).
O
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1.4 Counting curves using Atiyah-Bott Localization

Another extremely powerful method to study the theory of counting rational curves (Gromov—Witten
invariants) is the Atiyah—Bott localization technique. We will discuss here how to compute the ra-
tional curves in P? using the Localization technique.

Let M be a smooth projective variety equipped with an action of a torus T = (C*)” on it, then one
can consider the equivariant cohomology denoted by Hy.(M) as H*(ET x1M).

For example, if M = {pt} the equivariant cohomology ring is the polynomial ring Hy(pt) =

H*(BT) ~Clay, o, -+, 0]. where
o =ci(Vp=y,), 1<i<r

(o;’s are known as T weights). All of the usual operations on cohomology (pullback, integration,

Chern classes, etc ) have equivariant analogs.

Theorem 1.4.1. Suppose n-torus acts smoothly on a compact oriented even dimensional manifold M,
and suppose that each connected component of the T fixed locus MT C M is a compact orientable
sub-manifold of M . Let F,--- ,Fy be the connected components of M. The inclusion i FiFp—M
induces a homomorphism

(iF; )« - Hp(Fj) — Hp(M)
Furthermore, the equivariant Euler class of the normal bundle N Fim in M is well-defined and invert-

ible.
If o € Hi(M), then

&
o= _—
/M ;;‘ Fj EulerT(NFj/M)
Remark 1.4.2. According to the Atiyah—Bott localization formula, all of the information about the

equivariant cohomology of M is contained in the equivariant cohomology of its T-fixed locus.

In our case, consider P? with its usual action by (C*)3.
T:(C*)3 xP? — P2, T (x,y,z) = (t1x, try, 132) (1.12)

It induces an action on My ,(P?,d) (by post composing with the action), then one has to control the
fixed object to apply similar extensions of the above theorem.

We see that {po=[1:0:0], p; =[0:1:0], po =[0:0: 1]} are the only T-fixed points of P2. Now
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a T-fixed point [f : P! — P?] € My ,(P?,d) can be described as a graph I ( a tree with half legs) as

follows:

* The vertices of " correspond to the connected components of f~!(po, p1,p2). The vertex v

labeled with the g(v), genus of the corresponding component.

» Each edge corresponds to a non-contracted component of the domain curve. The edge e labeled

with the degree d(e) of the restriction of f to this component.
* An edge is connected to a vertex whenever sub-components of the domain are incident.

+ Half'edge or leg occurs when the vertex corresponds to one or more to T-contacted components.
satisfying ¥,y r) &(v) + [E(T)| — V(T) + 1= 0 and Lcprd(e) = d.
Remark 1.4.3. Due to Kontsevich, My has a induced course moduli space structure from Mo ,(P?,d).

For example, let us compute the fix points of the standard T action on M 1 (P?,2). Let us define

X1

@ il
[ = L]
Di Dj Dk

Di Dj Pk
i # ] J7k
o
Di Pj

Figure 1.2: Stable torus fix points

Gromov-Witten invariants of P"
GWE = /ﬁ Vi (M) U---Uev’ (4. (1.13)
’ [MO,n(and)]

Where A; € H*(P";Z) and ev; : My ,(P",d) — P" be the evaluation map.

Since ev; are equivariant with respect to the action of T on Mo,n(}P’z,d) and P2, so we have
evi : Hi(P?) — Hi (Mo (P?,d)).
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Let H € H(PP?) denotes the equivariant hyper-plane class. Then,

Equivariant GWY. := /7 evi(HY) U---Uev’ (H?). (1.14)
’ [MOJI(IP)Z7d)}ﬂ'

Let i : M — My ,(P?,d) be the inclusion map. We now want to compute

]P>2
H2...H2 :/ evt H2 U---Uevt H2 ' 15
< 3d—1 >0d (Mo (P2,d)]r 1(H7) 3d-1(Higy) (1.15)

Then after applying Atiyah-Bott localization the above reduces to

i* (evi(H*)U---Uevy, |(H?))

1 _
:ZF:A_F /Mr Euler™ (Nr) ' (1.16)

Since for a topological space M with T action, M x1 ET is a bundle over BT with fibre M, where ET

is the classifying space over BT. Then we have the natural inclusion iy; : X — M x1 ET (it induces

iy Hp(X) — H*(X)).
M — point
bi bi
My — BT

ok _
lpointo / - / ©
Mr M

Example: [, P(c(E)) = %y (fur, P(ct))> Where P is a polynomial consisting of Chern numbers.

This implies

Next, we note that one can explicitly calculate the Euler class of the equivariant normal bundle at

a fixed point as follows

1
WT(]VF) = €(E)e(F)€<V)
where
_1)d(e) 2d(e)
e(E) = H ( }2) 4 2d(e) 1
edges ed<e)' ((Xi - OC]') atb=d(e), k#i,j d(e )al + d( ) —
1 l

e(F)= 11 II (e —o) —
flag F jA4i(F > s (F)>0 or val(v(F))23 F  VF gu(F))=0 and val(v(F))=2 ©Fi T OF
= 1 T1 -y (@um — )™ [I o

Vertices v j#u(F) g(v)=0 and val(v)=1

(1.17)

Note: Above formula has been explicitly worked out in the paper “Localization of Virtual class” by

Graber and Pandharipande [23].
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Remark 1.4.4. Suppose we want to compute the number of rational lines in P? passing through 2

points in general position via localization, then the equation (1.16) reduces to the sum of the following

o’y
atp—0 )2 (ctg— 00 ) (0 — 1)

rational function: Y, ( . One can observe that there is some non-trivial magical

cancellation is going on and finally it produces the number 1.

1.5 Counting planar curves in P>

Let us denote the dual of P3 by P3; this is the space of P2’s inside IP?. An element of P3 can be thought
of as a non-zero linear functional n) : C* — C upto scaling (i.e., it is the projectivization of the dual
of C*). Given such an 7, we define the projectivization of its zero set as IP’%. Hence IP’% C IP3. Now

we will define a planar degree d curve in P? as follows:

Definition 1.5.1. 4 planar curve in P3 is defined to be a curve in P3, whose image lies inside a

P%, for some 7.

Enumeration of planar curve has appeared in the literature. For example, any planar conic always
lies inside a unique plane. Thus the number of planar conics intersecting 8 generic lines in P? is 92,
which is known from past decades. The more important number is 12960, which has been known for
at least 150 years ago [62]. This number is equal to the number of planar cubics having a node and
intersecting 11 general lines in P3.

Motivated by the study of natural generalizations of the enumerative problems studied in the papers
of Kleiman and Piene ([33]) and T.Laarakker ([41]) in the linear system setting, we have studied the
parallel question of counting stable rational maps into a family of moving target spaces. This can
be viewed as a family version of the famous question of enumerating rational curves in P2, that was

studied by Kontsevich-Manin ([38]) and Ruan-Tian ([59]). In [51], we study the following:

Theorem 1.5.2. There is an explicit formula for counting rational degree d planar curves in P? pass-

ing through s points and intersecting r lines in general position such that r +2s = 3d + 2.

The above theorem is joint work with R. K. Singh and R. Mukherjee. We presented this work in

chapter 2.
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1.6 Counting curves in a Linear system

Enumerative Geometry deals with the enumeration of solutions when the polynomials come from var-
ious geometric situations and the intersection theory gives techniques to accomplish the enumeration.
The classical study of various enumerative problems dates back to the eighteenth century. Hilbert’s
fifteenth problem lead the path from classical Schubert calculus to modern enumerative geometry.
Numerous problem in this subject has been extensively studied by algebraic geometers. However,
the modern development of enumerative geometry is strongly influenced by ideas and amusing pre-
dictions from physics. This subject has brought several branches of mathematics together and its
interaction with other areas has been overwhelming over the past decades. In my doctoral thesis, my
main focus is on various counting problems in complex projective surface P2

In the last three chapters of my doctoral thesis, our main object of study is the geometry of singular

curves. The nature of the constraint that we have studied in this direction are as follows :

* First, we deal with counting singular curves with certain contact (tangency) constraints to a

fixed-line E in P2,

« Secondly, we study the enumeration of degree d curves in P? with a certain type of singularities

passing through an appropriate number of general points.

We note that our method is a topological method and this can be applied to a very general setup, which
is a part of our future research.
A plane curve can be described by a homogeneous degree d polynomial in three variables x,y and

z. It is of the form
F;:= Z Cijk )Ciijk
i+j+k=d

where ¢;jx € C. The set of all such polynomials forms a complex vector space of dimension (d;rz).

Two such non-zero polynomials determine the same curve if and only if the polynomials are non-zero

multiples of each other. Hence, therefore, the set of all such curves in P2 having degree d can be

d(d+3)
>

identified with the projective space of dimension 8, := (‘3%) — 1 =

Definition 1.6.1. A4 n dimensional linear system is defined to be a family of sub-varieties { H;};cpr,

where each H, is a degree d hypersurface in P’ i.e.,

{H, =Z(1t0So+ -+ 1S ) }repr
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for So,---,S, € H(P", 0(d)).

For example, a linear system of dimension 1 is the simplest family of varieties called the pencil.
We will consider the linear system P(H°(P", ©'(d))) through out the last three chapters of my thesis.
We will denote

d(d+3)

2 :=PH"(P", 0(d))) ~P%, where §; = ———

Let us introduce a couple of definitions:

Definition 1.6.2. Let f : P2 — 0(d) be a holomorphic section. A pointt € f~1(0) is defined to be
the singularity type Ay , Dy, if there exists a local coordinate system (x,y) : (U,t) — (C2,0) such that

F~H0)NU is given by

A+ =0. k>0, Dy x+x1=0 k>4

Dy
A4 )i A
Tacnode
Node

Triplepoint

Figure 1.3: Local pictures of some singularities.

Usually in literature, ¢ is a smooth point of £~1(0) if it is a singularity of type Ag, a simple node (or
just node) if it is A type singularity, a cusp if it is of the type A, and a facnode if it is of the type As.
In more common terminology, “a singularity of codimension k™ refers to the number of independent
conditions having that singularity imposes on the space of curves. More precisely, it is the expected
codimension of the equisingular strata. Hence, an A; singularity is a singularity of codimension k.

As we mentioned earlier, the question (1.1.1) becomes much more difficult when we ask the curve
to have some non-degenerate singularity or it has some contact order to some divisor in the ambient
algebraic variety. There has been a great deal of study related to curves with tangency, for example,
there are 3264 plane conics that are tangent to all the given five conics in the plane. Steiner’s original
answer to this problem, 7776, was incorrect. The intersection consists of double lines, conics whose
equation is the square of a linear equation. The first correct answer is due to de Jonquieres [cf. [31],
p.469] in 1859.

At the outset of past decades, studying nodal curves is considered a classically important topic.

Counting nodal curves is well understood by now. On the contrary, enumeration problems with singu-
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larities that are more degenerate than nodes are less explored and are an active area of recent research.

Now we are ready to state a general type of question in this setting:

Question 1.6.3. Let E C IP? be a fixed smooth divisor. Let (8p,,--- ,8f) be al-tuple, (8g,, - , 8g,,) be
am-tuple and (ky,--- ,k,) be an-tuple of non-negative integers. Let there be a total of | +m+ n points
inP? in general position out of which | number of points are outside E and m+ n number of points are
in E. Then we will define the number Nd(Xfpl . .%?Fl XfEl e %S,E’" Tk, ---Ti,), the number of degree d
curves inP?, that passes through appropriate number of generic points, having 8. number of singular-
ities of type X; at | number of points outside E, which are denoted by .’%I?E', O, humber of singularities
of type X; at m number points on the divisor E, which are denoted by .’%Z?E" and the curve is tangent to

15 OF; .0
E of order k; at n number of smooth points in E. What is Nd(%lFl . .%IF’%IE‘ i -%?,f’" Tey - Ti,)?

When all the singularities are nodes and the divisor E is a line, the above question can be summa-

rized by the picture below.

Teo () T

oo
X<(V/\/&/\/v \

Figure 1.4: General question involving nodes and tangencies.

The above question in such generality is open till the date. However, in the literature, this
question in some special situation classically understood which brought several branches of mathe-
matics together. We will start by mentioning the recent motivating result by ([25],[65],[46]) which
explains that there exists a universal polynomial in terms of Chern classes that count the numbers for
the above problem. Very recently in [41], the author proved a generalization of the famous Gottsche
Conjecture [65] for a relative effective divisor C on a smooth projective family of surfaces. Finally,
they apply their method to calculate node polynomials for plane curves intersecting general lines in
three-dimensional projective space.

Let us consider that m,n = 0 for the question (6.2.6), i.e, the number of a singular point lying on
the divisor E and the number of points of tangency are zero then (6.2.6) reduces to the question of

counting curves with various singularities which is an open problem. When all the singularities are
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nodes, this question has been extensively studied by algebraic geometers from various perspectives.
In this direction, some beautiful results can be found in ([40],[8], [30]), etc. Next, when the singulari-
ties are more degenerate than nodes, there are only a few results available in the literature such results
include amongst all ([15], [27], [29], [74])-

Main results of the papers ([2], [1], [3]) has some partial solution to the question (6.2.6) namely, for
two singular points where the first singularity is a node and the second singularity is any singularity
of codimension « i.e., the authors have proved recursive formulas for the numbers N, (Ais o X) such
that k+ 0 < 8. Next, jointly with my advisor Ritwik Mukherjee and R. Singh, we are studying the
problem of enumerating two singular points when both singularities can be any singularity such that
the total codimension is 9. This work is in progress.

Next, when m = 0, and the singularities are all nodes then the question (6.2.6) is completely solved
by Caporaso-Harris ([11]). As recently as 2020, in [16], the authors found a recursive formula for
the number of rational curves maximally tangent to a given divisor using the WDVV equation. In
their recent paper in 2019 ([48]), D. McDuff and K. Siegel use methods from Symplectic Geometry
to count rational curves with maximal tangencies to a divisor in a Symplectic Manifold.

Unfortunately, there is almost no progress when the singularities are more degenerate than nodes.
There are a few results available in the literature when the singularity is a cusp, we will refer the reader
to ([15], [77]). When [,m, and n all are non-zero and the singularities are nodes then there are some
partial results scattered in the literature, and there is almost no result available for singularities more
degenerate than cusp. Finally, we will describe our work which enables us to understand the question

(6.2.6) for higher singularities.
Enumeration of singular curves with tangencies

We are now ready to state our main results from the last three chapters of this thesis.

Theorem 1.6.4. Let k be a non-negative integer and 8,5, ..., 8; a collection of positive integers.
Define
d(d+3)

SdZ:T and Wd:6d—(1+61+252++k6k)

Let N} (A(lsl . .Ag") denote the number of degree d-curves in P2, passing through wy generic points,
having 0; (ordered) singularities of type A; (for all i from 1 to k) that is tangent to a given line. Then

we have an explicit recursive formula to compute N} (Af1 . .A,‘j").
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We presented this result in chapter 3 of this thesis. As a sequel of this result, in chapter 4 we have

studied the following:

Theorem 1.6.5. Let E € P? be a fixed line. Let us consider K = (ki,--- ,k,)and m = (my,--- ,my,)
be two n tuples consisting of non-negative integers and Nf (Tg, 0---0Tyg,, m) denotes the number of
degree d curves in P? tangent to E at n distinct points in E of order k; for alli=1,--- .n and these
tangency points are at the intersection of m generic lines, passing through 6;— | K | — | m | generic

points. Then we have established a recursive formula for N5 (Ty, o---0 Ty, m) provided d > |K] .

The above theorem does not include any singularity on the curve, deals with only tangency con-

straints. Next, we will enumerate curves imposing certain types of singularities on them.

Theorem 1.6.6. Let k, m, § be three non-negative integers. For 0 < § <2, N (AjS o Ty, m) denotes
the number of degree d curves having & nodes that are tangent to E of order k passing through 6; —
0 — k —m generic points and the point of tangency is at the intersection of m generic lines. We obtain

an explicit recursive formulas for N& (Ai$ o Ty, m), providedd > 6 +k+ 1.

Remark 1.6.7. Note that while extending the above result for & > 3, we have the natural obstacle
due to the occurrence of the triple point along with some branched condition to the line. We can only
compute Nf (A? oTp). In this case, there will be no branched condition for the triple point due to

dimensional constraint.

Theorem 1.6.8. For two non-negative integers k and m, let N5 (A, o Ty, m) be the number of degree
d curves having a cusp that is tangent to E of order k passing through 8; — k — 2 — m generic points
and the point of tangency is at the intersection of m generic lines. Then we established an explicit

recursive formula to compute N (A o Ty, m), provided d > k+ 3.

Remark 1.6.9. An important consequence of the above study involving tangencies enables us to com-
pute degree d tacnodal curves in P*. Enumeration of tacnodal curves using tangency may be consid-

ered as the most natural way amongst the techniques available in the literature.

Finally, we want to count curves with two degenerate singularities, more degenerate than nodes.
In the last chapter of my thesis, we have presented some of the proofs of an ongoing project that deals

with the following question:
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Question 1.6.10. Let 0(d) — P? be a holomorphic line bundle. Let us denote by 2 :=PH(P?, 0(d))
the space of all non-zero holomorphic sections up to scaling. What is N(X, 0 X,), the number of plane
degree d curves, that belong to the linear system 9, passing through &; — (cdx, + cdx,) points in
general position and having two singularities of the type X1, X, whose codimensions are cdx,, cdx,

respectively?

We will be considering the total codimension of the singularities upto 6, i.e., cdx,, + cdx, < 6.

However, we will only discuss the enumeration of N(Ay, 0Ay,) such that k; + k, <6.
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Chapter 2

Enumeration of rational curves in a moving
family of P>

2.1 Introduction

One of the most fundamental and studied problems in enumerative geometry is the following: what
is Ng, the number of degree d curves in P? that have & distinct nodes and pass through @ -4
generic points? The question was studied more than a hundred years ago by Zeuthen ([72]) and has
been studied extensively in the last thirty years by Ran ([56], [57]), Vainsencher ([67]), Caporaso-
Harris ([11]), Kazarian ([27]), Kleiman and Piene ([30]), Florian Block ([8]), Tzeng and Li ([65],
[46]), Kool, Shende and Thomas ([40]) and Berczi ([7]) and amongst others, Fomin and Mikhalin
([17]). This question has been investigated from several perspectives and is very well understood.

The problem motivates a natural generalization considered by Kleiman and Piene in [33], where
they study the enumerative geometry of singular curves in a moving family of surfaces. More recently,
this question has been studied further by T.Laarakker in [41], where he obtains a formula for the
following number: how many degree d curves are there in P> whose image lies in a P2, that pass
through w + 3 — 0 generic lines and have d-nodes (provided d > §). This can be viewed as a
family version of the classical problem of computing Ndé.

Motivated by the papers of Kleiman and Piene ([33]) and T.Laarakker ([41]), we have studied
the parallel question of counting stable rational maps into a family of moving target spaces. This
can be viewed as a family version of the famous question of enumerating rational curves in P2, that

was studied by Kontsevich-Manin ([38]) and Ruan-Tian ([59]). The main result of this chapter is as

follows:

3
Main Result 2.1.1. Let Nf ’Pla“ar(r, s) be the number of genus zero, degree d curves in 3, whose
image lies in a P2, intersecting r generic lines and s generic points (where r +2s = 3d +2). We have

3
a recursive formula to compute Nf; ’Planar(r, s) foralld > 2.

31



2 Enumeration of rational curves in a moving family of P>

Remark 2.1.2. Note that for d = 1, the corresponding question is classical Schubert calculus and

there r+2s = 4 as opposed to 5.

3
Remark 2.1.3. We note that when s =3 and d > 2, the number Nf ’Planar(?ad —4,3) is the number of
rational curves in P? through 3d — 1 points; this is because 3 generic points in P> determine a unique

P3 ,Planar
N, (

IP2. We also note that when s > 3, 1,8) is zero, since 4 or more generic points do not lie in a

plane.

We have written a program to implement our formula; the program is available on our web page
https://sites.google.com/view/paulanantadulal/home.

In section2.4, we verify that the numbers we compute are logically consistent with those obtained by
T. Laarakker in [41] till 4 = 6. This gives strong evidence to support the conjecture that his formulas
for §-nodal planar degree d curves in P? are expected to be enumerative whend > 1 + [g] (as opposed
to d > & which is proved in [41]). Starting from d = 7, we can not use the result [41] to make any
consistency check, since the corresponding nodal polynomial is not expected to be enumerative (due

to the presence of double lines); this is explained in section2.4.

2.2 Notation

Let us define a planar curve in P to be a curve, whose image lies inside a P?. We will now develop
some notation to describe the space of planar curves of a given degree d.

Let us denote the dual of P? by P3; this is the space of P2’s inside P3. An element of 3 can be
thought of as a non zero linear functional 1 : C* — C upto scaling (i.e., it is the projectivization of

the dual of C*). Given such an 1, we define the projectivization of its zero set as IP’%. In other words,

PL:=P(n~'(0)).

Note that this IP’,27 is a subset of P3. Note that the space My o(P",d) has been constructed explicitly and
it is shown to be a projective normal algebraic variety [18]. Since IP’%7 C P3 as a closed sub scheme
hence, 1\_/1070(IP’% ,d) has the induced course moduli structure from Mo o(P3,d). Next, when d > 2, we
define the moduli space of planar degree d curves into P3 as a fibre bundle over P3. More precisely,
we define

7 Mog (P, d) — B3
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2 Enumeration of rational curves in a moving family of P>

to be the fiber bundle, such that
7t ([n]) := Mo (5, d).

Here we are using the standard notation to denote M (X, ) to be the moduli space of genus zero
stable maps, representing the class € H>(X,Z) and M+ (X, B) to be its stable map compactification.
Since the dimension of a fiber bundle is the dimension of the base, plus the dimension of the fiber, we
conclude that the dimension of Mg},inar(IPﬁ,d) is3d+2+k.

Next, we note that the space of planes in IP* can also be thought of as the Grassmannian G (3,4).
Let 73 4 denote the tautological three plane bundle over the Grassmannian. Since G(3,4) can be iden-

tified with 3, we can think of 3.4 as a bundle over P3.

When d = 1, we define A_JE}SHM(IPﬁ, 1) to be

N

Moog™ (P, 1) := P(y;4) — B,

—Planar

We note that an element of M, (P3,1) is of the form (L, H ), where L is a line in P*> and H is a plane
containing L. Since a line is not contained in a unique plane, Mgfg“ar(w, 1) is not the same as the space
of lines; infact we note that the space of lines is 4 dimensional, while the dimension of A_/Ig}gnar(IPﬁ, 1)
is 5.

We will now define a few numbers by intersecting cycles on Mgfg“”(w,d ), the moduli space
with zero marked points (this includes the case d = 1; unless otherwise stated we always include the
case d = 1 in any of our statements). Let .77 and .7Z;, denote the classes of the cycles in ME%“‘“(W ,d)

that corresponds to the subspace of curves passing through a generic line and a point respectively. We

also denote a to be the standard generator of H*(P3;7Z). Let us now define
NP 5 9) = (a®, Mo (B3,d) N A N AL, @.1)

We formally define the the left hand side of (2.1) to be zero if r+ 25+ 0 # 3d + 2 (since the right hand
side of (2.1) doesn’t make sense unless r 4 2s + 0 = 3d + 2). Note that when 6 =0, r +2s =3d +2
and d > 2, Nf’manar(r, 5,0) is precisely equal to the number of rational planar degree d-curves in P>
intersecting r generic lines and s generic points.

For the notational convenience of the reader we will explain the behaviour of the natural parameter
0. Let [x,x2,x3,x4] denotes an arbitrary point in IP? then the linear equation a x| 4 a>xs + azxz +

asx4 = 0 describes a plane inside P?, and [a1,a2,a3,a4] denotes the corresponding point in P3 (known

33



2 Enumeration of rational curves in a moving family of P>

as the dual of projective space P%), i.e., each plane in P? corresponds to a point in P3. In other words,

the points of P3 parametrize the space of planes inside P?. Thus

 For 6 = 0 our point [ay,az,as,a4] is free to move inside IP3, i.e., when our parameter space is

the whole 3.

* For 6 = 1, suppose [y1,y2,y3,y4] is a fixed point in 3. Then the linear equation a;y; + a2y, +
a3y3 + asys = 0 determines a fixed plane inside P3 (of course this also corresponds to a point in
IP? and that is nothing but the point [y, y2,y3,v4] itself.) This tells us that our parameter space

is reduced to some fixed plane (say 2) contained inside 3.

* For 6 =2, we consider two generic planes (which are defined simultaneously by the two linear
equations ay; + axyz + asys +asys = 0 and ajx| + axxs + azxs + agxg = 0) inside ™3 which

intersects along a fixed line (say ). Hence the parameter space is now reduced to a line inside

A

3.

« Now we can guess what 8 = 3 ought to be, we consider three generic planes inside P> which
intersects at a fixed point and this corresponds to a fixed plane (say P?) inside P?. This cor-
responds to the old question, what is the number of degree d rational curves inside P? passing

through 3d — 1 points.
* For 6 > 3, the parameter space becomes empty.

Next, we will define a number By, 4, (r1,51,72,52,0) by intersecting it on the product of two

moduli spaces as follows:

Bayan(r1,51,72,92,0) 1= (1 (A A1) 5 (A7 57 (w50 - (3D,

oo™ (B%.d) x Mo (B, )] ). 22)

Here A denotes the class of the diagonal in 3 x P3 and 7, and 7, are the obvious projection maps.
Again, we formally define the left hand side of (2.2) to be zero, unless r| + 25y +r2+2sp + 60 =

3d; +3d, +4 (since in that case, the right hand side doesn’t make sense).

2.3 Recursive Formula and its Proof

We are now ready to state our recursion formula
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2 Enumeration of rational curves in a moving family of P>

Lemma 2.3.1. Ifd = 1, then the number Nf’manar(r,s, 0) is given by

(0 if (r,5,0) =(1,2,0),
0 if (ns,0)=(3,1,0),
0 if (ns,0)=(5,0,0),
1 if (r,s,0)=1(0,2,1),
1 if (r,s,0)=(2,1,1),

NP 0y =42 if (rs,8) = (4,0,1), (2.3)
1 if (rs,0)=(1,1,2),
2 if (ns,0)=(3,0,2),
0 if (rs,0)=(0,1,3),
1 if (r,s,0)=(2,0,3),
(0 otherwise.

Lemma 2.3.2. Ifd =2, then the number N° " (1.5, 8) is given by

(92 if (r,5,0) = (8,0,0),
18 if (r,5,0)=(6,1,0),
4 if (rs,0)=(4,2,0),
1 if (rs,0)=1(2,3,0),
34 if (r,s,0)=(7,0,1),
6 if (rs,0)=(51,1),
1 if (rs,0)=(3,2,1),

PP3,Planar 0 f (V,S 9) (1 3 1)7

N, (r,s,0) = 8 if (r5.0) = (6.0.2). (2.4)

1 if (ns,0)=(4,1,2),
0 if (rns0)=(2,2,2),
0 if (rns06)=(0,3,2),
1 if (rs,0)=(503),
0 if (rs06)=(313),
0 if (ns,0)=(1,2,3),
0  otherwise.

Ve

Different approaches to some low degree computation

Note that any planar conic in P? always lies inside a fixed plane. We will now describe the classical
Schubert calculus method and use it to calculate planar conic and genus zero planar cubic in P3. We
will mention a few other related questions which will help us to verify our answers. This low degree
computation plays a motivational role in the early stage of this project. Suppose we want to count
rational planar cubic in P3 intersecting 8 generic lines in P3. We note that the space of generic planar
cubic has genus one. Thus we have to enumerate nodal cubic in P? intersecting 8 generic lines in P3.

Let us begin by the computation of the following question:
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2 Enumeration of rational curves in a moving family of P>

Question 2.3.3. How many conics are there in P3 intersecting m generic lines and passing through n

generic points in P3 such that m+2n = 8?

Let us now describe a few facts before approaching the solution of the above problem. Let us

define

S:={([n), 9) € P> xP*: n(q) = 0}.

We observe that S is a fiber bundle over P? with the fiber P2. Set theoretically, it is a plane in P3 and
a point p that lies on that plane. Let us now consider the following section of the line bundle induced

by the evaluation map, i.e.,

eviP x P — 509, givenby  {ev([n], [a)}(n®4q) = n(q),

where %3 and 7 are dual of the tautological line bundles over P3 and P3 respectively (or equivalently

Op3(1) and Ops(1) respectively). Thus we gather
S=ev 1(0). (2.5)

Next, we consider the fibre bundle £; — P3 over P3, such that the fibre over each n] € B3 is the
space of degree d curves in ]P’%. Next, we note that P? is naturally isomorphic to G(3,4) via the
annihilator map. Let us denote Yopa — G(3,4) to be the tautological three-plane bundle over the

Grassmannian. Hence, via the above isomorphism, we gather

N

E;~ IP’(Symdfow)) — B3,

~ d(d+3
Hence, E, is a fibre bundle over IP?, whose fibers are isomorphic to P o . A typical element of E;

will be denoted by ([f], [n]); this implies that f is a homogeneous polynomial of degree d defined on

2
the plane P,.
The cohomology ring structure of projective bundles

We now recall some basic facts about the cohomology ring of the above projective fiber bundle. Recall
that via the annihilator map, P3 is isomorphic to G(3,4). With the help of this isomorphism, we can

realize a (which is actually an element of H* (1@3)) as an element of H*(G(3,4)). We observe that
(V) =1 Hata +d.
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2 Enumeration of rational curves in a moving family of P>

Next, using the splitting principle, we conclude that

c(Symd}g(w) =1+cia+cd® +cd, where (2.6)
dd+1)(d+2 d(d+1)(d+2)(d+3)(d*>+2
o dONENY AR
d(d+1)(d+2)(d+3)(d*+2)(d® +3d*> + 12d + 12)
3= . Q2.7)
1296
Observe that E; = P(Sym?y ) isa P"~! bundle, where
n::1—|—@. 2.8)

Hence, we conclude (by the Leray Hirsch Theorem) that the ring structure of E; is given by

Zla,A]

H*(E;) ~
(Ed) (a*, A"+ cr1adn =1+ cya2A=2 + c3a3An3)’

2.9)

where 7, —> P(Symdfé(37 4)) denotes the tautological line bundle and 4 := ¢; (VE;).

Next, we will define a function ¢ (n,m) as

o(n,m) = (0107, G(2,4)), ?fn+2m:4
0 ifn+2m#4orn<0orm<0.

where 01,0, and o7 | are the Schubert cycles and G(2,4) denotes the set of lines in P3.

We can tabulate the cohomology intersections of the above Schubert cycles as follows

: 1 o1 Oy |01 | 021 | 02p
1 1 o] Gy |01 | 021|020
o} O |0p+011|021| 0621|0020
(03] O 021 022 0 0 0
11 | 011 | 021 0 022 | 0 0
02,1 021 | 022 0 0 0 0
022 022 0 0 0 0 0

Table 2.1: Intersection table of the cohomology ring G(2,4).

Proof. Let us consider the space of lines in P* as the grassmanian G(2,4) C C*. We realize that
counting planar conics is same as counting a pair (1, C) where 1 is a 3 dimensional linear subspace
of C* i.e., n : C* — C is a linear map. Let us consider the tautological 3 plane bundle over G(3,4)
as earlier

Youw = {(M,v) €G(3,4) xC*:ven}.
Then a conic C can be thought of as an element of P(symz(j{é ) )). Thus the dimension of the space

of planar conics is dim G(3,4) +dim Sym*C> —1 = 8.
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Let us denote 07,0, and o7 are cohomology generator of G(2,4) (we refer the reader to [26]).
It is proved in [73], every planar conic passing through a point in P? in general position denoted by
M, and the homology class representing this class given by A a similarly a planar conic intersecting
a generic line in P3 is represented by .#; = A + 2a, where ¢; (}g) = A, as defined earlier.

One can identify G(3,4) with P3 via annihilator of the map 7. Thus we can identify the space of

conics through a generic point as the zero set of the following bundle:

¢p . ]P<Sym2(’}/((;£34))) — ’}/E:

defined as
{op([C}HC) =C(p)

Hence the homology class represented by the subspace M), space of conics passing through the point
p is given by the Poincaré dual of A a.
Next, we will describe the space of planar conic intersecting a generic line in P3, as the zero set of

the line bundle
r % * 2 2 (¥
0, O (M) ™ — B(Sym™(15,,))

such that the homology class represented by the subspace of planar curves intersecting a line is given
by the Poincare dual to
A+2a

) 2
where 7 : P(Sym (7@(3,4))) — G(3,4).
Now, for conics intersecting m general lines and passing through n generic points can be interpreted

as follows:
(B )

provided this intersection is transverse intersection. Hence collecting all coefficients of a®A°, we will

get the numbers presented in the table (2.3.2). O
In a similar fashion, we can solve the following question as well

Question 2.3.4. How many pairs involving line and conic are there in P3, where both the conic and
the line lies inside a fix plane (i.e., in IP% ) such that the conic intersects ky lines and the line intersects

ki lines with ki + k, = 10?
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2 Enumeration of rational curves in a moving family of P>

Proof. Let us recall the notations introduced above. We can describe a pair consisting line and conic

lies in a fixed plane as
{([4], [C], [n]) € G(2,4) X E; | (¢, C) lies inside a fixed plane}

From the earlier discussion, a conic intersecting a line represented by the cycle .#, = A 4+ 2 a. Next,
the space of lines represented by the class o, € H*(G(2,4)). Hence the number of the pair line and

conic satisfying the above condition is
(Vs ® Woo) A2 01, G(2,4) X Ey) = ((@®+ao, +0,,) 0" (A+2a)2, G(2,4) x Ep)
Therefore, using the ring structure and the above table we will get our required numbers. O
Next, we want to compute the number Nf ! In particular we want to study the following question:

Question 2.3.5. How many nodal planar cubic are there through s number of points in P? in general

position and intersecting r generic lines in P> such that r +2s = 11 ?

Proof. We will continue with the setup and notation described in the previous question. As before
counting planar nodal cubic is the same as counting a pair (1,C) where 7 is the same as before
and any planar cubic having a node in it. Now we can thought of planar cubic as an element of
E3 ~ P(sym®(; ,))- Recall that E3 is a P? bundle over P3, hence the cohomology ring of E3 can be

computed from the equation (2.9). Let us consider

7" :=={([f], nl, p) € E4xP* | n(p) =0}

~

This can be thought of as fibre product of the fibre bundles S and E; over P?, i.e., the following

commutative diagram

@pl — E;
I r* I
s - P3

Following analogous arguments as before, we note that the homology class corresponding to the
condition that a planar cubic passing through a generic point in P3 can be represented by the class
[7¢)] = Aa . Similarly, a planar cubic intersecting a generic line in IP3 is represented by the class
[ 4] = A +3a, where 7, #; are the classes corresponding to intersecting lines in P? and passing
through a generic point in IP3. Let the cohomology class H is the hyperplane class of P3. Note that we

have the following short exact sequence:
0— W:=KerVn — TP — 1307 — 0 (2.10)

39



2 Enumeration of rational curves in a moving family of P>

Hence the first and second Chern class of W can be obtained from the property ¢(W) c(y5; ® 7)) =
c(TP3). Thus via splitting principle, we get ¢; (W) = 3a — H, and the c;(W) = (3a — H)? — 3a(3a —
H)+3a’.

Therefore, the number of nodal planar curves in P3 passing through s points and intersecting r lines

is the cardinality of the following set

{(If], ), p) € 2" | f(p) =0, Vf, =0,n €S}Nu

where the class [u] = jf/%’;‘le. Next, we note that the nodal condition can be seen as the section of

following bundle:

. [ l._ 3
gt — L= 9%

defined by {¥%! ([f], n]. p)}(f) = f(p)
-1 o * *

‘Pf:ll :‘P/’:é —>D§ffll =1 QT W®yp33

defined by{¥?'([/], [n]. p)}(f) = V]

p

Note that we can prove the transversality of the above two sections in a similar manner as we have
obtained transversality of some sections in the last three chapters in this thesis. Hence, the number of

a planar nodal curve can be interpreted as
(e(Lfl) (L) A 3 27, [9™)) @.11)

Thus, collecting the coefficient of a>H3A"~! we will get the following numbers: We observed that the

d,r,s) | (3,11,0)[(3,9,1) ] (3,7,2)
N3(A”' rs) | 12960 | 1392 34

Table 2.2: Number of planar cubics

3
numbers N3(A”'| 1, 5) are equal to the numbers Nf;  Planar . ) for d = 3, calculated from the recursive

formula (2.3.6). O
We are now ready to state our main theorem.

Theorem 2.3.6. Ifd > 3, then

0 if r+2s+6#3d+2,
3
Ny P (rs,0) =20 if 5> 3, (2.12)
0 if 6>3.
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2 Enumeration of rational curves in a moving family of P>

In the remaining case whenr+2s+0 =3d+2, s <3 and 6 < 3, we have

N537Planar(rjs,6) _ 2dN337Planar<r_ 2,S—|— 1,9)
r=3 s d—1
r—3 s
'Yy z( )( )dlzdzx
rn=0s1=0d,—=1 \ T1 51
<dZBd1,d2<rl+17517”2_275279)_dlel,dz(rlaslarZ_175279))7 (2.13)

where in the above expression, dy == d —dy, ry :=r—ry and sy := s — s1. Furthermore, ¥dy,dr > 1,

we have

3 3 3
Buyay (riss1,72,52,0) = Y NG P95 (1 sy i) x NE P00 1y 50,0 43 —0). (2.14)
i=0
Remark 2.3.7. We note that equations (2.3), (2.4), (2.12), (2.13) and (2.14) allow us to compute

Ny

3’Planar(r,s, 0) foralld > 1 and all r,s,0 > 0.
Proof of Theorem 2.3.6: We will start by proving equation (2.12). The first equation is true simply
because we are pairing a cohomology class with a homology class of different dimensions (see the
remark after equation (2.1)). Next, when s > 3, we note that there can not be any planar curves,
because 4 generic points do not lie on a plane. Finally, we note that a® = 0 € H*(P3;Z) if 6 > 3,
which proves the last equality.

We now justify the main thing, which is equation (2.13). The idea is very similar to the idea
used to compute the number of rational degree d curves in P? (and also P?) that is given in [38], [47]

and [18]. As in the case of counting curves in P2, let us first consider M 4. This space is isomorphic

to P'; hence we have the equivalence of the following divisors

(x1x2[x304) = (x103]32x4). (2.15)

Here (x1x|x3x4) denotes the domain which is a wedge of two spheres with the marked points x; and
x on the first sphere and x3 and x4 on the second sphere. The domain (x;x3|xx4) is defined similarly.
Since My 4 ~ P! is path connected, any two points determine the same divisor.
Let us now consider the projection map
T ME}ZHM(P3,CZ) — A_l()74.
We define a cycle 2 in Mﬁfj‘“ “(P3,d), given by
2 = evi([H])-ev3([H]) - ev3([L]) - evi([L]) - o7 - ) - P,
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2 Enumeration of rational curves in a moving family of P>

where [H] and [L] denote the class of a hyperplane and a line in P, ev; denotes the evaluation map at
the i marked point and a denotes the generator of H*(?;7Z).

Let us now intersect the cycle 2 by pulling back the left-hand side of (2.15), via 7.

(I1ZB2\ZL’3$4)

Figure 2.1: Left hand side of the recursion

We now note that

3
r=3 s d-1 r—3 s 5
+Y Y ) < )( >d1d2XBdl,dz(VI,SI,"Z—175270)7 (2.16)
r1=0s1=0d;=1 4 S1
where in the above expression, d) :=d —dy, rp :=r—r| and s, := s —s].

Next, we will compute the right hand side analogously.

(z1x3]|T224)

Figure 2.2: Right hand side of the recursion
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2 Enumeration of rational curves in a moving family of P>

Note that, using similar arguments gives

T (x1x3)x0x4) - 2 = 2dN5)3’Planar(r —2,5+1,0)

r=3 s d-1

~3

+Y Y ) (r )<S>d%d§del,dz(rl+1,s1,r2—2,sz,9), (2.17)
n=0s;=0d,=1 \ Tl 51

where as before dy :=d —dj, r» :=r—ry and 55 := s —s7.
We now note that equations (2.15), (2.16) and (2.17), imply our desired recursive formula (2.13).
Next, we will justify the formula for By, 4,(r1,51,72,52,0) (equation (2.14)). This follows im-

mediately from the fact that the class of the diagonal is given by

Aps g3 = W@ + 7ja* Wa+wfa- ma* + mha,

where a denotes the generator of H*(P%;7Z) and 7, m, denote the respective projection maps. The

formula now follows immediately from the definition of

By, a,(r1,81,72,52,0)

(namely, equation (2.2)).
It remains to prove the two base cases of the recursion, namely Lemma 2.3 and Lemma 2.4.
s~ Planar

Proofof Lemma 2.3.1: WerecallthatM,  (P3, 1) is defined to be the projective bundle P(7}, 3 4)) —

3. Now, we note that the Chern classes of the rank three vector bundle %(3 5 — P3 are given by
Ci('}{é(374)) =de H2i(I@’3;Z).

The reason is explained in [73, Page 18]. Here a is the standard generator of H* (@’3;2).

Next, we note that ¢’ = 0 if i > 3. Hence, the cohomology ring of H* (P(}{é(3_ 4))) is given by

i § Zla,A]
H P~ i T2t Acd+ o)

(2.18)

where ¥ — P(){é(l 4)) is the tautological line bundle over the projectivized bundle P(}{é(& 4)) and
A:=c (7)€ H*(P(j{é@‘t))). This follows from [9, Page 270].

We now note the following two important facts: intersecting a generic line, corresponds to the
cycle

I =A+a.
Furthermore, passing through a generic point, corresponds to the cycle
6, = Aa.
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2 Enumeration of rational curves in a moving family of P>

The reason for this can again be found in [73, Pages 18 and 19]. Hence, to compute N]lPﬁ’Planar(r,s, 0)
we have to compute the expression
(A +a)" (Aa)*d®,
use the relationship
2P =—-(A%a+rd*+a)
and extract the coefficient of 224>. This gives us all the numbers for various values of r,s and 6.

Proof of Lemma 2.3.2: First we note that every conic in P? lies inside a unique plane (except a double

line). Hence, let us consider the projective bundle
P(Sym? (Y5 (3.4))) — B°.

This space P(Symz(j{é(& 4))) is the space of conics in P3 and a plane that contains the conic. The
space of all smooth conics form an open dense subspace of P(Symz()@(l 4))). Hence, to compute
the numbers N} 3’Planar(r, 5,0) (which is defined as an intersection number on 1\_/1571("3“"“(}}’>3 ,2)), we can
instead compute the relevant intersection number on P(Symz(){é G, 4)))‘

Next, we note that P(Symz(){é(& 4))) is a P5 bundle over P3. The cohomology ring structure of

the total space is given by

Zla,A]
(A0 +4A%a+ 10A%a% +20A3a3)

H* (P(Sym* (¥ 3.4))) = (2.19)

This follows from the splitting principle (see page 275 in [9]). We now note the following two impor-

tant facts: intersecting a generic line, corresponds to the cycle
2 =A+2a.
Furthermore, passing through a generic point, corresponds to the cycle
%, =Aa.
The reason for this can again be found in [73, Pages 18 and 19]. Hence, to compute N]ZP> 3’Pmnar(r,s, 0)
we have to compute the expression
(A +42a)"(Aa)*d®,
use the relationship given by the cohomology ring structure in (2.19), i.e.
A% = —(41%a+10A%* +20A%4%)

and extract the coefficient of A°a>. This gives us all the numbers for various values of r,s and 6.
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2 Enumeration of rational curves in a moving family of P>

2.4 Low degree checks

We now describe concrete low degree checks that we have performed. Using our recursive formula,

we have obtained the following number: Next, let N?Ode’é (r,s) denote the number of planar degree d

d,r,s) (3,11,0) | (4,14,0) [ (5,17,0) (6,20,0)
NEPna ) [ 12060 | 3727920 | 1979329280 | 1763519463360

Table 2.3: Planar curves having nodal singularity.

curves in P? with § (unordered) nodes intersecting r generic lines and s generic points. These numbers

are computed in [41]. Using that, we get the following table. Finally, let us denote by Redy()de"s (r,9)

(d,r,s,8) | (3,11,0,1) | (4,14,0,3) | (5,17,0,6) | (6,20,0,10)
N2 (r6) | 12960 4057340 | 2487128120 | 2681467886460

Table 2.4: Genus 0 Planar curves.

to be the number of reducible planar degree d curves in P> with § (unordered) nodes intersecting r
generic lines and s generic points. This number can be computed using [41, Proposition 8.4]. Using

that, we now note that in all the cases we have tabulated,

d,r,5,8) | (3,11,0,1) | (4,14,0,3) | (5,17,0,6) | (6,20,0,10)
Red) % (1,5) 0 329420 | 507798840 | 917948423100

Table 2.5: Number of reducible planar degree d curves in P,

(d-1)(d-2)
IP3 Planar Node, 2
N, (r,s) =N,

Node,d (

This is positive evidence for the fact that T. Laarakker’s formula for N, r,s) is actually enumera-

tivewhend > 1+ [g] (as opposed to d > &, which is proved in [41]). We also note that when d =7 and

5 - [@-1@-2) Node, =1d-2)

5 = 15, the formula for N, (r,s) is not expected to be enumerative because
of an obvious geometric reason. To see why, suppose s = 0 and » = 23. Through the required r = 23
lines, we can place a double line through 4 lines and through the remaining 19 lines we can place a
quintic that intersects the line so that the double line and the quintic lie in a plane. This is a degenerate
configuration, and hence N.l,\] ode,15 (23,0) is not expected to be enumerative.

This is analogous to the case of counting 8-nodal degree d curves in P?; let N:? denote that
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2 Enumeration of rational curves in a moving family of P>

number. A formula for this number can be explicitly found in [8] for instance. On the other hand, let

Nf;z denote the number of rational degree d curves in P? through 3d — 1 generic points. Till d = 6,
(d-1)(d-2)
we can verify that Ngz is logically consistent with the corresponding value of N, *  (after sub-

tracting the number of irreducible curves). From d = 7, we can not make any such consistency check,
because N715 is not enumerative; there are double lines that can pass through two of the 20 points and
a quintic through the remaining 18 points. We also note that this fact is consistent with the Gottsche
threshold of when the number N[‘? is supposed to be enumerative; this is proved in [34]. Our compu-

tations give evidence to show that a similar bound is likely to be true for the case of planar curves in P>,

2.5 Application via WDVV

Let us recall that the Gromov-Witten potential for P is given by F(%). Let us denote the quantum
component of F () is given by G(xo,x1,x2) = ¥, N5 €0 )—;.L )-f%, such that r+2s = 4d, provided d > 1.
This immediately produce the recursion formula for N,s, where number N,; denotes the number of
rational curves in P? passing through s generic points and intersecting r general lines in P3 such that

r+ 2s = 4d. Analogously we can show that the quantum associativity of the quantum product gives
2F123 — Foxo = Fi11F222 — FiioFio (2.20)

The function G(¥) satisfies (2.20). Hence it gives the recursion formula for enumeration of rational
curves in P>, Thus we have seen earlier for P> and IP? if the potential function satisfies certain dif-
ferential equation namely WDV'V equation then the computation of recursive formula is a mater of
computing partial derivatives. Broadly speaking the WDV'V equation is equivalent to the recursion
formula for computation of rational curves in P? as well as in P>,

Let us continue with the definition of S as earlier. Then by Leray-Hirsch theorem we have H*(S;7Z) =

Zla,\]

0 TR a0 Note that we have a projection map 7, : S — P that will induce a map

ns* : H*(P3) — H*(S), can be specified as
H— A, H>—A% H>—al%
Let us denote the cohomology classes of the ring H*(S) are T; ; := aAl,vV0<i<3,0<j<2

( T;j for all i, j are basically the restriction of the cohomology classes from P3). Let Y1, ¥m €
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2 Enumeration of rational curves in a moving family of P>

{a' | 0 <i<3}. Then we can define the numbers defined in (2.1) as
onid = [y eri(Ty) T evitw) @21
" Mo (P3,d)] k—H#O N k:I;!A
provided Y/, codim(T;;) + Y., | codim(y;) =3d+2+n.
Let us now consider the potential function for genus zero planar curves in P* as follows:
(=] lJ" IS
D)= Y X Nilrs0) B (expn) (¢Bon). (222)
=17+25+6=3d+2 res
Then we observed that the generating function ®”'(1;;) above satisfies the following differential equa-

tion

o' o 4 o — o o 4ol

fo1to1fo1 ~ 131702102 To2102102 To1fo2f01 ~ 131701702 fo1f02112

(2.23)

where CID{Z denotes the partial derivative of ®P! with respect to the variable #;;. Note that the above

equation implies the recursion that we have obtained in (2.3.6) by looking at the coefficient of

(rt_‘%)! tsf—,z (exp ‘o) (e?Losis3i) from the equation (2.23).

However, we have not come across the analogous generating series in terms of Gromov-Witten
class for planar curves yet. This observation is extremely encouraging for further development of
any enumerative question which is a fiber bundle analog of some classical problem. We have not
yet systematically defined “planar quantum product” hence, we are not able to say at this point the
recursive formula (3.1) which we have obtained, is a consequence of some “planar associativity” or

not. We want to analyze all these analogous questions to the classical questions in near future. We

also want to study the fiber bundle analog of Dubrovin formalism [14] in the future.
Atiyah-Bott localization for planar curves :

Atiyah-Bott localization technique has been played a prominent role in the developments of the Gromov-
Witten theory during past decades. We now want to study the result obtained [51], using the localiza-
tion technique. We will mainly follow the technique introduced by Kontsevich [39] and Graber and
Pandharipande [23]. We have been able to compute only some numbers from the list of planar lines

(2.3). We will pursue this study in near future.
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Chapter 3

Enumeration of curves with singularity and tan-
gency

3.1 Introduction

A fundamental problem in enumerative geometry is to count curves with prescribed singularities. This
question has been studied for a very long time starting with Zeuthen ([72]) more than a hundred years
ago. It has been studied extensively in the last thirty years from various perspectives by numerous
mathematicians including amongst others, Z. Ran ([56], [58]), I. Vainsencher ([67]), L. Caporaso
and J. Harris ([11]), M. Kazarian ([27]), S. Kleiman and R. Piene ([30]), D. Kerner ([28] and [29]),
F. Block ([8]), Y. J. Tzeng and J. Li ([65], [46]), M. Kool, V. Shende and R. Thomas ([40]), S. Fomin
and G. Mikhalkin ([17]), G. Berczi ([7]) and S. Basu and R. Mukherjee ([2], [1] and [3]).

A closely related question is to enumerate curves with prescribed singularities that are tangent to a
given line. This question also has a long history that can be traced back to Zeuthen. As early as 1848,
Zeuthen computed the characteristic number of rational quartics in P? tangent to a given line.

In the last thirty years an extensive amount of work has been done in enumerating curves that are
tangent to a given line when the prescribed singularities are nodes. These include among others the
results of Ran ([58]), I.Vainsencher([67]), Caporasso-Harris ([11]), R.Vakil([69], [70]), A. Gathmann
([20] and [21]) and C. Cadman and L. Chen ([10]).

Very recently, using methods of algebraic cobordism, Y. J. Tzeng has shown ([25]) that a universal
formula exists for the characteristic number of curves in a linear system, that are tangent to a given
line and that have prescribed singularities (more degenerate than nodes).

We now mention a result that we are aware of concerned with the tangency question in other spaces.
In [12], Y. Cooper and R. Pandharipande study the Severi problem involving single tangency condi-
tion via the matrix elements in Fock space.

There is also an extensive body of work in the context of counting stable maps that are tangent to a

given divisor (i.e. counting curves of a fixed genus tangent to a given divisor). This is done by carrying
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3 Enumeration of curves with singularity and tangency

out the computation in the moduli space of stable maps. Some of the work in this field include among
others the results of Z. Ran ([58]), 1. Vainsencher([67]), R. Vakil([69], [70]), A. Gathmann ([20] and
[21]) and C. Cadman and L. Chen ([10]), where the authors count rational or elliptic curves tangent to
a given divisor. This question was also studied using the WDV'V equation by N. Takahashi ([63]) in
2002 and it is still an active area of research interest; as recently as 2019, H. Fan and L. Wu found a
recursive formula for the number of rational curves maximally tangent to a given divisor ([16]) using
the WDVV equation. This problem is also of great interest in Symplectic Geometry. In their recent
paper in 2019 ([48]), D. McDuff and K. Siegel use methods from Symplectic Geometry to count ra-
tional curves with maximal tangencies to a divisor in a Symplectic Manifold.

With so such work already done in the area of counting curves with tangencies, one might wonder
what is there left to ask? Well, the question of counting curves with more degenerate singularities is a
much more difficult question. For instance, no attempt has been made to extend the Caporaso-Harris
formula to curves having cusps. The only result we are aware of for higher singularities is the result of
L. Ernstrom and G. Kennedy ([15]), which is in the setting of stable maps. In that paper, the authors
solve the question of enumerating genus-zero cuspidal curves in P2, that is tangent to a given line
(in fact multiple lines). We are not aware of any further progress in extending those results to higher
singularities.

With this background and motivation, we now state the main result of our paper. We will be study-
ing curves in a linear system (in fact degree d curves in P?). Our main result is a recursive formula
for the characteristic number of curves that are tangent to a given line and that have any number of
prescribed singularities (of type Ay).

In this chapter, we will present our work on the enumerative problem of counting curves with tan-
gency constraints. In this work, I have obtained a recursive formula for the characteristic number of
curves that are tangent to a given line and that have prescribed singularities (of type A;). Furthermore,
till codimension eight we can obtain explicit formulas. The method we use is the method of dynamical

intersection theory, similar to what is used in [74], [2], [1] and [3].

Remark 3.1.1. Note that in the above study, we have considered any degenerate singularities; namely

Ay, type singularities ( in particular it is more degenerate than nodes).

Before stating the main result of the paper, let us make a couple of definitions:
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Definition 3.1.2. Let f : P2 — 0(d) be a holomorphic section. A point g € f~'(0) is of singularity

type Ay, if there exists a coordinate system (x,y) : (U,q) — (C2,0) such that f~'(0)NU is given by
V4 .

In more common terminology, ¢ is a smooth point of f~1(0) if it is a singularity of type Ay, a
simple node (or just node) if its singularity type is A, a cusp if its type is A, and a tacnode if its type
is A3. We will frequently use the phrase “a singularity of codimension k”. This refers to the number
of independent conditions having that singularity imposes on the space of curves. More precisely, it
is the expected codimension of the equisingular strata. Hence, an A; singularity is a singularity of
codimension k.

Next, given a non negative integer k and positive integers Jy, . .., &, let us define N, (A«151 . .A,‘j" )

to be the number of degree d-curves in P2, passing through M (6

1 +28 + ...+ k&) generic
points having §; ordered singularities of type A;.
Similarly, we define N, (A‘f1 ...A,‘?";LAI.) to be the number of degree d-curves in P2, passing

through (d+3)

— (14061 +28 + ...+ k&) generic points, having §; ordered singularities of type A ;
(when i # j), 6; — 1 singularities of type A; and another singularity of type A; lying on a given line.

The main result of this paper is as follows:

Main Theorem 3.1.3. Let k be a non negative integer and 8,,0,, . .., 0 a collection of positive inte-

gers. Define

o= M ang =8 (148428 k).

Let Ng (A‘lSl . .A,‘j") denote the number of degree d-curves in P2, passing through wy generic points,

having 0; (ordered) singularities of type A; (for all i from 1 to k) that is tangent to a given line. Then,
NF(AS . A%) =2(d — 1)Ny (A% .. Z (i+ DNy (A% A% L), 3.1)

for all d > dyin, where

dmin ' =k+ (201 + 0+ ...+ ).

Remark 3.1.4. We note that the numbers Ny (A?Ak) are directly given in the papers of S. Basu and
R. Mukherjee ([2], [1] and [3]) when & + k < 8. The results of those papers can be used to compute

Ny (A‘lsAk;LAl.) when & +k < 8 with no further effort (since they obtain an equality on the level of
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cycles). Hence, using these numbers and using equation (3.1) we can obtain a complete formula for
N}(A?Ak) when 8 +k < 8. The formulas for N;{(Ak)lgkgg, N}(AlAk)lng—/ and N}(A?)ISSSS are

listed explicitly in section 3.5.

Remark 3.1.5. Next, we note that in [27], M. Kazarian computes all the characteristic number of
curves with upto seven singularities. We believe he obtains an equality on the level of cycles; hence
we believe in principle his method can be used to compute the characteristic number of curves with
singularities, where one of the singularity is required to lie on a line (till codimension seven). Hence,
using equation (3.1), we can in principle obtain a formula for N; (A?lA‘z32 . .A,‘} ) provided the total

codimension is seven.

Remark 3.1.6. When k=0, we will abbreviate Ny (A‘lsl . .A,‘j") as Ny andwe will abbreviate N} (A‘lSl . .A,f")
as N}. We note that Ny is the number of degree d curves in P* passing through 8, generic points;
hence Ny = 1. Similarly, N;IF is the number of degree d curves in P? passing through 8; — 1 generic

points that is tangent to a given line. Hence, the k = 0 case of equation (3.1) implies
N} =2(d—1).

Remark 3.1.7. The bound d > dy,;, is imposed to ensure we get transversality of certain sections.
However, this bound is not necessarily sharp; the bound is sufficient to get transversality, but it is not

always necessary.

Remark 3.1.8. We are not completely certain about the fact whether Kazaryan's method can be used
to compute the characteristic number of curves with singularities, where one of the singularity is

required to lie on a line.

3.2 Overview of the method

We use a topological method to compute the degenerate contribution to the Euler class, which is the
main attraction of this work. Through out, we will heavily use one concrete fact from differential
topology.

We now give an overview of the method we use. Our starting point will be the following classical fact

from Differential Topology:

Theorem 3.2.1. Let V —> M be an oriented vector bundle over a compact, oriented manifold M and

s : M — V a section that is transverse to zero. If the rank of V is equal to the dimension of M, then
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3 Enumeration of curves with singularity and tangency

the signed cardinality of s~1(0) is the Euler class of V, evaluated on the fundamental class of M, i.e.,

| £571(0) = (e(V), [M])

Remark 3.2.2. Through out we will be working over the field of complex numbers. Thus in complex

setting the signed cardinality of s~'(0) is nothing but the actual cardinality of the set.

Remark 3.2.3. We will express the tangency condition as the vanishing of a section of an appropriate
vector bundle. However, the corresponding Euler class involves a degenerate contribution. The cen-
tral aspect of this paper is how we compute the degenerate contribution to the Euler class. We use the
method of “dynamic intersections” (cf. Chapter 11 in [19]) to compute the degenerate contribution

to the Euler class.

Let us now give a brief overview of how we will obtain the formula of the Main Theorem. As
is typically the case in enumerative geometry, we will try to express our enumerative numbers as
the zeros of a geometrically meaningful section of an appropriate vector bundle. We will consider
the space of curves having the prescribed singularities; to keep the discussion simple let us for the
moment assume there is exactly one prescribed singularity ). Along with this we will also consider a

fixed line L and a point p that lies on the line; this setup can be summarized by the following picture:

Figure 3.1: Point lies on the line.

We now impose the condition that the point p has to lie on the curve; furthermore the curve has to be
tangent to L at p. This can be summarized by the following picture:

We will interpret these conditions we impose on p (namely the fact that it has to lie on the curve and be
tangent to the line) as a section of an appropriate bundle. We will show that this section is transverse to
zero. Hence, we expect that the Euler class of this bundle will give us the desired number of singular

curves, tangent to a given line. This expectation is not true. This is because the section also vanishes

52



3 Enumeration of curves with singularity and tangency

Figure 3.2: Point lies on the curve and is tangent to the line.

on a degenerate locus; namely when the singularity lies on the line and in fact becomes equal to p.

This degenerate locus is summarized by the following picture:

Figure 3.3: Degenerate Locus.

The central aspect of this chapter is how we compute the degenerate contribution to the Euler class.
We use the method of “dynamic intersections” (cf. Chapter 11 in [19]) to compute the degenerate

contribution to the Euler class. The details of this are carried out in this chapter.

3.3 Proof of Main Theorem

Let us denote ¥ to be the space of non-zero homogeneous degree d-polynomials in three variables
upto scaling, i.e.,

2 :=PH"(P?,0(d))) ~ P%.

Hence, 2 can be identified with the space of degree d curves in P? (not necessarily irreducible). Let
Yo — 2  and Y — P?

be the tautological line bundles over & and P? respectively.

We will now prove our main theorem (i.e., we will prove (3.1)). Given non negative integer k
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3 Enumeration of curves with singularity and tangency

and positive integers J,. .. 0, let us define

M:=Z x (P)% x ... x (P?)% and

= {<[f]7CIia~--q¢l$1§---3qlf7--'q]§k) €M : f hasan A; singularity at q%, q% are all distinct}.
(3.2)

We will show shortly that if d > djyi,, then . is a complex sub manifold of M, of dimension w, + 1.

Let us now make the following abbreviation:

7:=(q1,-..q5:-34}-..q5) € (P)% x ... x (P2)%.

We now define the following two sections of line bundles over .# x Lt

Vev: S xL—Ley:=y5@%%  givenby  {we([f.3,p)}(f):=f(p) and

Yriye!(0) — Ly =y, T Loy, gvenby  {yr([fl.g,p)}(f®v):=Vflp().

Here 7y, denotes the tautological line bundle over L (which is the same as the restriction of the tauto-
logical line bundle ¥ to L).

Let us now define
%’;7 = {([f],?],p)e?xL:q;]:p} and ,%’::U%%.

We claim that restricted to . x L — %, the sections Y,y and Y are transverse to zero. We will prove
that claim shortly.

Next, let u be the subspace of curves in & that pass through w, generic points and let
Ty MXL— 9

be the projection map. Since the points are generic, the sub manifold 7@1 (u) will intersect .7 x L

transversally (inside M x L).

Remark 3.3.1. Note that throughout this thesis, we will be using the following abuse of notation. If E
is a bundle over My, we will consider that E is a bundle over M\ X My. The reason behind this is that
we will be referring by E the pullback bundle m{ — My x My, where 7, is the first projection map.
Thus on a similar note, a cohomology class B in My, we will also say that B is a cohomology class in

M x M, our intended meaning for the class being 7t} B.
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3 Enumeration of curves with singularity and tangency

Next, we note that if f is tangent to L at p, then
fp)=0 and Vfl,(v)=0 VveT,L. (3.3)

In other words,

Ver([f,4,p) =0  and i ([f],q,p) =0. (34

However, equation (3.4) is also satisfied on & (i.e., when one of the singular points q’h, happens to
lie on the line L, i.e., one of the points qi, becomes equal to the tangency point p). Hence, our desired

number NT(A% . .A,‘?") is the number of solutions to
vallflap) =0, willflap) =0, (flap e (s xL-2)n(m'n). G
We note that since the points are generic,
(Y X L—%’) N (nélu) = (? X L—%’) N (n;,u)
Hence, we conclude that
(e(Lev)e(Lr), [ x L] N[x;, u]) = Nj (AT ... AY) + €z, (3.6)

where €, is the contribution of the section from the boundary N (7@1 1). We note that N denotes
intersection inside the space M x L.

Next, we note that the left hand side of equation (3.6) is given by
(e(Leve(Lr), [ x L) [z, ) = 2(d — DN(A ... AT, (3.7)

We will now compute the quantity €', . Let us first analyze the set 2N (7175,}1 /,L) . This is the union of

the sets
Py N (' ).

We now note that %’;7 N (ﬂg_l,u) is the set of all degree d curves passing through the w; generic points,
having 9; (ordered) singularities of type A; (for all j from 1 to k) and where the (q%)th singular point
)th

lies on a line. Note that the (ql,'7 singular point corresponds to a singularity of type A;. Hence,

i — )
|10 (7, 1) = Na(AD . A Ly,).
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3 Enumeration of curves with singularity and tangency

We claim that each point of %% N (7' 1) vanishes with a multiplicity of (i +1). Hence, the total
contribution from the set N (7@1 /.L) to the Euler class is given by
= S 49
Cp, = Y, Gi(i+ 1)Ng(AY .. A% Ly,). (3.8)
i=1
Equations (3.6), (3.7) and (3.8) give us equation (3.1).

We will now prove the claims that we have made regarding transversality and multiplicity.

3.4 Transversality and Multiplicity

We will start by recalling a few facts about A singularities that are proved in [2], section 3. Let % be a
neighbourhood of the origin in CZ and f : %4 — C? a holomorphic function. Let i, j be non-negative

integers. We define
oiti f
1= Graly -
YOV 1 (xy)=(0,0)

Let us now define the following directional derivatives, which are functions of f;;:

> >
. . 35 . 10/21 /31 | 15f12/3
A= o, A= =R AL n
f30 4= Jao oo s =50 oo 7
CI5fafa 10f3 n 60fiafarfar 45/ 15fnf  90fHfh
foo foo 5 1% 13 fo
Al = fo— 2151 35f31fa . 105f12forfu 1053 2 70f12f3 210/ fofai
7 foz fo2 2 13 1% foz
105f03 /3 f31 420f% foufsr 630fiaf3ifrn 105f13f5) | 315foafinf3, N 6301, /31
TR n R TR T o
02 02 02 02 02 02

Y

W

A£ = feo

9

and

Al g 28ha1fer  56f31fs1 210£3 far | 420fa1fofar 210f03f51 fan L 00f1f51f52
3 7= Js0 + SR 2 3 2

f02 f02 foz foz f()2 foz
B40fisf31 a1 _ 420031 fa3  1260f0sf5 /2 35/ 280/mf3y  280fusfoufsy  1260/31 /3

fin fin fon Jo2 fin fin o
105f04f3,  315f515 | 168fafs1fia | 280faifarfiz 16803 f32f12 3360f21f0f31.f12
foo fon f&2 f&2 for for

2520fosf31 51012 | 2520f13 /3, f12 840 aufurfty | T560f3 fafis  560f51f1  5040f03 /3 fis

+

foo for for for for for
3360f21f31/1 504013 fis
N 1fs1fip 30407 (3.9)
f 02 f 02

The procedure to obtain A{ is given in the proof of the following Proposition. We will now state a

necessary and sufficient criteria for a curve to have a specific singularity of type Az>1.
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3 Enumeration of curves with singularity and tangency

Lemma 3.4.1. Let f = f(x,y) be a holomorphic function defined on a neighbourhood of the origin in

C? such that foo =0 and V f |(0,0) 7 O. Then the origin is a smooth point of the curve.

Lemma 3.4.2. Let f = f(x,y) be a holomorphic function defined on a neighbourhood of the origin in
C? such that foo =0, Vf |(070) =0and V?f |(0,0) is non-degenerate. Then the curve has a singularity

of type A1 at the origin.

Remark 3.4.3. Lemma 3.4.1 is also known as the Implicit Function Theorem and Lemma 3.4.2 is also

known as the Morse Lemma.

We now state a necessary and sufficient condition for a curve to have an Ay, singularity. This can be

thought of as a continuation of Lemma 3.4.2.

Lemma 3.4.4. Let f = f(r,s) be a holomorphic function defined on a neighbourhood of the origin
in C? such that foo =0, Vf ](070) = 0 and there exists a non-zero vector N = (v,va) such that at the
originV2f(n,-) =0, i.e., the Hessian is degenerate. Let x := v{r+vas,y := —vor + Vs and fij be the
partial derivatives with respect to the new variables x andy. Then, the curve f~(0) has a singularity
of type Ay, at the origin if for # 0 and the directional derivatives Alf defined in (3.13) are zero for all
i<kandAl, #O0.
Proof: The result follows from the following observation.

Observation 3.4.5. Let f = f(r,s) be a holomorphic function defined on a neighbourhood of the
origin in C? such that £(0,0), Vf |(0,0) = 0 and there exists a non-zero vector 1 = (v1,v2) such that at
the origin sz(v, -) =0, i.e., the Hessian is degenerate. Let x 1= vir+vys8,y 1= —Vor+7vs and fij be
the partial derivatives with respect to the new variables x and y. If fo, # 0, there exists a coordinate

chart (u,v) centered around the origin in C? such that

f= { V2, or (3.10)

v+ ukt for some k > 2.

In terms of the new coordinates we have foo = fio = for = f20 = f11 = 0 and fyy # 0. Here

dx + 00, = (1,0) is the distinguished direction along which the Hessian is degenerate.

Proof of observation: Let the Taylor expansion of f in the new coordinates be given by

Fx,y) = Ao(x) + Ap (x)y 4+ Ax(x)y* + ...
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3 Enumeration of curves with singularity and tangency

By our assumption on f, A;(0) # 0. We claim that there exists a holomorphic function B(x) such that

after we make a change of coordinates y = y; + B(x), the function f is given by
f=Ro(x) +As(x)y] + As(x)yi + ...
for some Ag(x) (i.e., A (x) = 0). To see this, we note that this is possible if B(x) satisfies the identity

A1 (x) +2A5(x)B +3A3(x)B* + ...

Il
e

(.11)
Since A;(0) # 0, B(x) exists by the Implicit Function Theorem.
Remark 3.4.6. Moreover, it is unique if we require B(0) = 0.

Therefore, we can compute B(x) as a power series using (3.11) and then compute Aq(x). Hence,

f f

A A P
f=v2+3—?x3+4—j‘x4+..., where v:\/(Az—l—A3y1—l—...)y1, (3.12)

satisfies (3.10).

Following the above procedure we find A{ for any i. For example,

317 10 15f12f7
AL = fr, A£=f4o—%, Al = fs0— szlzf3‘+ J;jéf”,... (3.13)

and so on. We are now ready to prove the claim that the space of curves with prescribed singularities

is a smooth manifold of the expected dimension, provided d is sufficiently large.

Lemma 3.4.7. Let M and .&¥ be as defined in equation (3.2). If d > dnin, then . is a complex sub
manifold of M, of dimension wg + 1.

Proof: We will prove this statement by considering an affine chart. Hence, let us consider the vector

d(d+3)
T+

space %, ~C of polynomials in two variables of degree at most d. Let us denote p; := (x;,y;) €

C? and define
Fattine := {(f,P1,P2,-..,Ps) € Fy X ((C2)5 —A) : f has an Ay -singularity at p;, p; all distinct}.

Here A denotes the fat diagonal of ((Cz)3 (i.e., if any two points are equal, they belong to the fat
diagonal). We will show that .%,ine is @ smooth complex sub manifold of .%; x ((C2)5 — A) of codi-
mension cy. In order to do that, we will describe .,ine locally as the zero set of certain holomorphic
functions.

Let us suppose that
(f)ﬁ) = <f7p17p27"'7p5) € yafﬁne
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3 Enumeration of curves with singularity and tangency

Suppose f has an Ay singularity at p; := (x;,y;), then we can use Lemma 3.4.4 to see that there exist a
sufficiently small open sets U,,, C .%, around fandV,, C C? around p; such thaton U ' X Vp, (possibly
after making a linear change of coordinates) fy,(x1,y1), the second partial derivative of f with respect

to y, evaluated at (x;,y;) is non zero. Let us now define

)?::x—my and yi=y.

fyy(XI»YI)

We note that £ is well defined, since f,(x1,y1) # 0. We will now define A{ (191 6 be the expressions
obtained in (3.13), where we replace f;; with the (i, 7)™ partial derivative of f with respect to £ and 3,

evaluated at (x1,y;). As an example,

x xy (X1, 3
Ag( 1:)1) _ <ax_fy( 1 yl)ay) f

Sy(x1,31)
- <fxxx_3%fﬂy+3<%) 2fxyy+ <%>3fyyy) (1)

Since f has an Ay, singularity at p; := (x;,y;), all are distinct points so we can assume (possibly after
a linear change of co-ordinates) that fy,(x;,y;), the second partial derivative of f with respect to y,
evaluated at (x;,y;) is non zero. Then repeated use of Lemma 3.4.4 will give us sufficiently small
open neighbourhoods U := N;U,, C Z,and V :=[;V,, C (((Cz)5 — A) so that we can define A{i(x"’y 2
to be the expressions as obtained in (3.4.4) for each i.

Next, let % := U x V be a sufficiently small open neighbourhood of (f,p) in %, x <(C2)3 — A) . Let

us define the function ® : 7 — C“, given by

q)(fvﬁ) = <f('xl7y1)7fx(XI7yl)7fy<x17yl)7A£(thl)7' --;Ail(XDyl);
f<x27y2)7fx(x27y2)7fy(x27y2)7A£(XZ7y2)7' .. aAiz(XLyZ);- ceys

f<x67y5)7fx(x57y5)7fy()C5,y5),A£(x5’y5)7. . 7A£6(x67y6))

We claim that 0 is a regular value of ®. If we can show that, then our claim is proved.
To prove the claim, we will construct curves. Since the points p; are all distinct, we will show

that for different possibilities of points we can produce curves 7n; € .%, be such that
Mi(xj,y)) = 8i,j-

Remark 3.4.8. There are plenty of ways one can construct such curves 1;. In practice it is enough to

construct curves 1; such that n;(x;,y;) # 0.
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3 Enumeration of curves with singularity and tangency

We can easily construct such an n; by taking product of all the (x —x;), except (x —x;) combined
with (y —y;). i.e., for n distinct points

n = (Zr1 —Zl) e (Zr,-,l _Zi—l)<Zri —Zi)(Zr,-H _ZH‘I) e <Zrn _Z")

where
. (xvxs) if Xi 7& Xs
(@) { ys) if yiF s

Let us consider the point p; := (x;,y;). The curve f has an Ay, singularity at p;. As an example, if f
has at least A| singularity at p; then there are sufficiently small neighbourhoods around each p; where

f(pi), f«(pi), fy(pi) vanishes. So in this situation if we simply construct curves as follows:

%O(’) ::f+lnz'27 %O(I) ::f+t(x_xi)nz'27 %)1(1‘) 5:f+f()’—)’i)77i2-

So the above construction enables us

{d®| (1)} (%,0(0) = (0,--+, (+,0,0) ,---,0)

i th position

{d®|(; 5} (71 0(0)) = (0,-+, (0,%,0) ,---,0)
N——

i th position

{d®|(; 5} (16, (0)) = (0, (0,0,%) ,---,0)

i th position
then the above computation implies that 0 is a regular value as claimed.

Next, note that if f has singularity at least as degenerate as cusp at some point assuming that
there is already A; singularity present at that point, then we can consider that f has a genuine cusp
which is equivalent to f>0 fo2 — f121 = 0 (determinant of Hessian vanishes). Since the cusp is a genuine
cusp so without loss of generality we can assume that fy, % 0. So one can simply construct a curve
Yoo(t) := f +1(% — x;)*n; and considering ¥, (¢) :=0, ¥,(r):=0 Vi, where £ is defined below,
for each point p;.

Note that

{d®| (s 5} (1a0(0)) = (0,---, _*_ ,0,0,---,0)

ino th position

one can observe that this computation proves the claim for cusp.

Finally, ifk; > 2, 1i.e., f has higher A, singularities then we have made a linear change of coordinates
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3 Enumeration of curves with singularity and tangency

so that the kernel of the Hessian is x|, +mdy|,,, where m := _ff‘()(cx'yy)’) - Let us now define the curves
Yolt) == f+1E—x)’mi, ..., Yolt) = f+t(E—x)"m;

and considering 7&[3 (1) := 0 for o # k;, B # 0 for all i from 1 to §. Here £ := x4+ my. We now note

that

-/

{dD[ (5} (¥e5(0))
span the tangent space of 7yC. This proves the claim.
Lemma 3.4.9. Restricted to . x L — X, the sections Yy and Yy are transverse to zero.
Proof: First, suppose
Veu([fl.,0) =0 <= f(p)=0.
We will produce the following curve. Let us consider a curve 1o in . such that n(p) # 0. Consider
Yo(r) == (f +1100,9, p)-

This proves transversality of the evaluation map.

Next, let us consider a curve Nt such that

Virlp(v) #0
ifveT,L—-0.
The construction of a curve nt will follow from above discussion. Now consider the curve
Yo(t) == f+in.

This proves transversality of the section y is transverse to zero.

Finally, we are ready to prove the main theorem about the multiplicity.

Theorem 3.4.10. Let u C 9 be the subspace of curves passing through w, generic points and suppose
([11:g:p) € & x LN, ().
Suppose
vallf1@p) =0, wilfl@p) =0 (fapesn(m'n). G149
Then the order of vanishing is (k+1).
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Remark 3.4.11. Note that . x LN 7@1 (1) is a smooth complex manifold of dimension 2. Hence it

makes sense to talk about the order of vanishing of a section of a rank two bundle.

Proof: Suppose ([f],q,p) satisfies equation (3.14). We will construct a neighbourhood of ([f],g, p)
inside . x L. Since ([f],q,p) € %’,’; N (7@1 ,u) and u denotes a subspace of curves in Z passing
through w, generic points, we conclude that f has an A; singularity of p. Without loss of generality,
we can take p := [0,0,1] € P2, Let us also assume that the line L passing through p is given by the

equation
L:={[X,Y,Z] € P*:aX 4+ bY =0}, (3.15)

where a and b are two fixed complex numbers. Let us now write down the Taylor expansion of f

around the point p. Let us define

X d Y
X:i=—= an ==.
Z Y7
hence, we get that
= f_;oxz + fiixy+ —fgzyz + —fé°x3 T

If f has an Ay~ singularity at p, we conclude that fy, or f>9 can not both be zero; let us assume in that
case fpo # 0. If f has an A; singularity at p, then after a linear change of coordinates, we can ensure
that f> # 0. Hence, in all the cases, we can assume without loss of generality that f, # 0.

After making a suitable change of coordinates, the function f is given by
f= P
After the change of coordinates, the line L in (3.15), will be given by
L:={[X,Y,Z] € P*: $+ Mz +E($,%) = 0},

where E is second order and M = 7; without loss of generality we are assuming b # 0. Since L is a
generic line, we can assume this (i.e., we are assuming the line is not given by x = 0). Let us now

assume that k is even (i.e., k+ 1 odd). A solution to the equation f = 0, close to (0,0) is given by

§ =k —¢> 1 is small but non zero.

=
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Furthermore, every solution to f = 0 is of this type. We now consider the second equation of evaluating

the derivative along L. That gives us

(M0s+ ) f =Mfi+ f5
=29+ (k+ )Mz

= 20K (k+ 1) M,

Hence, the order of vanishing is (k+1). If k is odd (i.e., k+ 1 is even), then there are two solutions.
Each solution vanishes with order %; hence the total order of vanishing is k + 1. In either case, the

total order of vanishing is k+ 1.

3.5 Explicit Formulas

For the convenience of the reader, we will explicitly write down the formulas for Ng(Ak)lgkgg,
NT(A1A;)1<k<7 and NT(A9),.5<5. These are obtained from Main Theorem (equation (3.1)); com-
bined with the numbers given in the papers of S. Basu and R. Mukherjee ([2], [1] and [3]). We will
then use these formulas to make low degree check in section 3.6. A mathematica program can be

found in my website
https : / [sites.google.com[view/ paulanantadulal
which evaluates the formulas for N} (Ar)1<k<s :

NIA) =6d(d—1)(d—2), NI(Ay) =12(2d> —8d*+8d—1),

NI(A3) = 4(25d° — 146d> +2284 — 84), NI (A4) = 120(3d° —20d* +36d — 15),

NJI(As) = 36(35d° — 260d> +524d —239), N (A¢) = 7(632d> — 5134d” 4 11343d — 5538),
NY(A7) = 24(651d° — 5702d4° + 13602d —7002)  and

NI(Ag) = 288(190d> — 1778d* +4533d — 2436).

63
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Next, the formulas for N] (A1Ag) | <k<7 are:

NJ(A}) =2(9d° — 45d* +30d> 4 123d* — 145d +6),
NI(A142) = 12(d — 3)(6d* — 18d° —22d> + 67d — 13),
NI(A1A3) = 12(25d° — 171d* 4 187d> + 774d> — 1535d + 426),
NJ(A1A) = 20(54d° — 414d* + 534d> + 22384 — 5207d + 1815),
NY(A1As5) = 18(210d° — 1770d* + 2572d° 4 11299d> — 29650d + 11959),
NI(A1A¢) = 21(632d° — 5766d* +9164d> + 42837d* — 123391d + 55068),

NT(A1A7) = 8(5859d° — 57177d* +97677d> + 485874d% — 1509623 +725940).
Finally, the formulas for N] (A9);<5<g are:

NI(A3) = 6(9d” — 63d°® +36d° 4 549d* — 857d° — 11484 +2266d — 300),
NJ(AT) = 18(9d° — 81d® +36d" + 1458d° — 2834d° — 8500d* + 22455d° 4 13543d> — 49222d + 10488),
N (A}) = 6(81d"" —891d"" +270d° +27270d® — 63450d" —3039124°
+1014807d° + 1348725d* — 60978764 — 1168832d> + 122592484 — 3513840),
NT(A%) = 14584" — 18954d'> +29164'! +8820904'° — 23903104° — 159015964° + 643284184
+130916898d° — 7326190084° — 395637750d* + 3855455766d°
— 4184074084d* — 7418026440d + 2643818400,
NI(A]) = 4374d"° — 65610d"* +4317138d'% — 13352850d" ! — 1142935924"'° 4 543520530d°
+ 1481762970d° — 9946281060d” — 8470208502d° 4 959004223384° + 10148143324*
— 467415101124d° 4 1687968879844 + 880782565392d — 374053619520 and
NIAY) = 1312247 —223074d"'° — 349924"° 4 197179924 — 6854349643
—7194005284"% + 39333175564 + 134001932044 — 1051202493364°
— 119845037160d® 4 1587321808632d” + 1509181087684° — 138356252549104°
+5746599271062d* + 64281794069664d> — 38151916883064d>

—120388035085920d +- 5935864 1529600.
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3.6 Low degree checks

In this section, we will make some non trivial low degree checks by comparing our formulas with the

results of others.

3.6.1 Verification with the Caporasso-Harris formula

We will start by verifying the numbers N, (A?)lgggg. We note that the Caporasso-Harris formula (
[11]) computes N, (A‘f)T for any 8. We have verified that our formulas for N, (Af) 1<5<s produce the
same answer as the Caporasso-Harris formula for several values of d; we have written a C++ program
to implement the Caporasso-Harris formula (which is available on request). The reader is invited
to use the C++ program to check that it produces the same answer given by our formula (explicitly

written down in section 3.5) for any specific value of d.

3.6.2 Verification with the results of Ran and Fomin-Mikhalkin

Here we will give a table of our numbers using the main recursive formula (3.1) which we have ver-
ified with the numbers of rational degree d curves in P? tangent to a line, denoted by M~ calculated
earlier by Z.Ran [58], Fomin-Mikhalkin [17] and others.

Such as the number of rational quartics in P? through 10 generic points can be verified with our
formula as :

MI_, = NTY(A})|s—4 — reducible tangential quartics through 10 generic points.
= 2364 ()4 = 2184.
Let us denote by N;Z’T be the number of genus g degree d curves in P? tangent to a line passing

through 3d — 2 + g generic points. These numbers are computed in [69], [11], [58], [2] and others.

Some of the numbers we tabulated as: Next, we display some of our numbers which are necessary to

degree,genus | (3,0) | (4,0) | (4,1) | (4,2) | (4,3) | (5,1) (5,2) | (5,3) (6,2)

N:,r;’l 36 | 2184 | 1010 | 144 6 | 424480 | 203616 | 49580 | 326594238

Table 3.1: Number of genus g degree d curves in P? tangent to a line.

verify the above numbers, calculated from (3.1) for k numbers of nodes, i.e., N; (A’f) as:
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3 Enumeration of curves with singularity and tangency

degree,k | (3,1) | (4,3) | (4,2) | (41D | 40) ]| (55) | (54) | (52) | (6,8)
NT(A%) | 36 [ 2364|1010 | 144 | 6 | 424480 | 204246 | 49580 | 334237506

Table 3.2: Number of reducible curves.

Finally if we denote by MZ“:‘;’ZT (A7) to be the number of reducible tangential degree d; and d, curves
in P having s numbers of nodes tangent to a given line passing through appropriate number of generic
points i.e., degree d; curves and the degree d, curve which is tangent to a line having certain number of
nodes(total degree d = d| + d reduced curves) through appropriate numbers of generic points. Note
Red,T

that if s =0 then M

) ds gives the numbers of reducible tangential curve (degree d; curve and degree

d> component is tangent to line) without singularity.

We see that all the numbers tabulated above are Né ZT = NI (AK) - Mclfﬁflf (A}).

di,d,s | (1,3,0) [ (1,5,2) [ (1,4,0) [ (1,5,3)

MEAT g 6106 6 | 49580
1.42

Table 3.3: Two componented curves with tangency.

e Presently, we can verify our numbers with the help of recursion formula avaliable in [1], [2] upto

codimension 8 numbers only.

3.6.3 Verification of N] (A>) using a result of Kazarian

In [27], Kazarian has computed the number N;(A1AA3), the characteristic number of degree d curves
with one node, one cusp and one tacnode. According to Kazaryan’s formula, that number is 2256 when
d = 4. We will verify that number.

We note that Ny(A1A2A3) is the number of quartics through 8 points that have one node, one cusp
and one tacnode. This can happen if the curve breaks into a cubic and a line, such that the cubic has a
cusp and is tangent to the given line (and the entire configuration passes through 8 points). Since the
cubic is tangent to the given line, it will intersect the curve at one more point. Let us now find out how
many such configurations are there. First of all, we could place a line through 2 points and a cuspidal

cubic through 6 points tangent to a given line. There are a total of

(5) *Maa
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3 Enumeration of curves with singularity and tangency

such configurations. The other possibility is that we place a cuspidal cubic through 7 points and a
line through one point that is tangent to this cuspidal cubic. We claim that the total number of such
configurations (n) is

n=3N3(Az).

We will justify this shortly. Using the values of NJ (A2) and N3(A;), we note that

(2) X N3 (A2) + (3) Xn= (g) x NJ (A2) + <§> x 3N3(A)
— (g) ><60+(§> x 3 x 24

= 2256.

This agrees with the number predicted by Kazaryan’s formula.
Let us now justify the value of n. Let us denote &, and &3 to be the space of lines and space of
cubics in P? respectively. We note that 2 and Z; are isomorphic to P> and P respectively.

Let us define
7 :={([f].q) € Z5 xP?: f has an A, singularity at ¢}.

For notational convenience, let us denote IP’% and IP’% to be two isomorphic copies of P2. With that

notation, we define the following space

7 ={(Ala.1f5]q3) € 21 xPT x 25 x P53 ([fs].q3) €5 fila1) =0, f3(q1)=0}. (3.16)

Next, we note that over the space 2, we have the following short exact sequence of bundles

Vil
0——L:=Ker(Vfily,) —= TPy, —2 75, 0%, — 0. (3.17)

Let us now define the following set

X = {(Ail,q1,[3),93) € 21 x P} x D3 x Py ([fil,q1, [3],43) € Z, Vfsle(v) =0, ¥veL}.
(3.18)

Let us now denote y;, y3, a; and a3 to be the hyperplane classes of Z;, %3, IP’% and IP’% respectively.
We note that intersecting [X] with y3 corresponds to studying the subspace of cubics passing through
a generic point and intersecting [X] with y; corresponds to studying the subspace of lines passing
through a generic point. Our aim is to count the configurations where the cubic passes through 7

points and the line passes through 1 point. Hence, let us intersect [X] this with y;y]. However, this
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3 Enumeration of curves with singularity and tangency

intersection will also include the number of lines that pass through the given point and the cuspidal
point of the cubic. By using the same argument as in the proof of Theorem 3.4.10, this configuration

contributes with a multiplicity of 3. Hence,
[X] - [y1y3) = n+3N3(42). (3.19)
It remains to compute [X] - [y1y]]. First we note that
(3, []) = N3(Az). (3.20)
Using equations (3.16), (3.18), (3.17) and (3.20), we conclude that

X7 13) = 1yie(¥a, © Yo Je (Vo @ %2 )e (Yo, @ 93 @ L), 91 X P} x 7))

= 6 N3(As). (3.21)
Equations (3.19) and (3.21), we conclude that n =3 N3(A;) as claimed.

3.6.4 Verification with the results of L. Ernstrom and G. Kennedy

We now verify a couple of numbers computed by L. Ernstrom and G. Kennedy (in [15]). In [15], the
authors compute the number of rational cuspidal degree d curves, passing through 3d — 3 points and
tangent to a given line. Let us denote this number to be C}. The result of their computations (in [15])

gives us the following numbers:
=60 and Cj =6912.

We now note the following fact about the numbers we have computed:

Nj (A1A,)

=6912.
2 69

N§(Ay) =60 and

This is precisely as expected. The characteristic number of rational cuspidal cubics tangent to a given

line (i.e. C7) should precisely be equal to the characteristic number of degree 3 curves having a cusp,

tangent to a given line (i.e. N; (A2)). Secondly, the characteristic number of rational cuspidal quartics

tangent to a given line (i.e. CJ) should precisely be equal to the characteristic number of degree 4
NJ(A3A,

curves having two unordered nodes and one cusp, tangent to a given line (i.e. 4T))' Note that we

divide by 2 since the nodes in N (A3A,) are ordered.
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3 Enumeration of curves with singularity and tangency

Remark 3.6.1. It should be possible to generalize our method to get similar type of result for certain
other types of singularities such as Dy, Eg, E7, and Eg. We are not aware of any low degree checks
involving tangency conditions with Dy, E¢, Eq, and Eg singularities which will support any prediction
about the formula involving those singularities. We also hope that this method can be employed to
generalize these results for other complex surfaces. In [3], the authors have obtained the results in
a compact complex surface essentially using the crucial ideas developed in [1] where they authors

studied their result considering the compact complex surface to be P2.
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Chapter 4

Higher-order tangencies on the complex pro-
jective plane

4.1 Introduction

From a broad perspective, this chapter is a sequel to the previous chapter. In this chapter, we will be
objectively focusing on the study of singular curves with a higher order of contact (we will always
refer it by tangency condition ) to a fixed smooth divisor E € P2. The study of relative geometry is
quite often considered to tackle the problems in absolute geometry. In the theory of absolute counting
of curves, one natural extension would be relative curve count. The study of relative curve count dates
back to Salmon [61]. The study of relative geometry and various enumerative questions concerning
relative invariants has a long history that can be traced back to Zeuthen. As early as 1848, Zeuthen
computed the characteristic number of rational quartics in IP? through 10 given points tangent to a given
line. Around 19-th century, the study of the enumerative question “how many conics are there tangent
to five conics?” was a very interesting incident in mathematics back then. In the stable map theory,
counts of various relative invariants such as the study of relative Gromov-Witten invariants is an active
area of research. Li ([42], [43]) had constructed the theory of relative Gromov-Witten invariants in
full generality, i.e., for the curves of any genus in a projective manifold M with fixed local orders of
contacts to some fixed hypersurface Z C M. One of the successful studies in this direction was due
to A. Gathman [20], in his thesis, extending the idea of studying degeneration to hyperplanes in P to
any arbitrary ample hypersurface. The main content of his thesis can be summarized by saying that

he obtained a systematic approach to solve the following enumerative problem:

Problem 4.1.1. Let Z be a smooth hypersurface of a complex projective manifold M. How one can

compute the Gromov-Witten invariants of Z from those of M?

In [20], the author studied relative Gromov-Witten invariants using this degeneration technique

and one of his major development using this technique was to prove genus-zero Mirror symmetry
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4 Higher-order tangencies on the complex projective plane

for quintic threefold inside P* using this idea. In other words, one can relate invariants of P” to the
invariants of the hypersurfaces. Although all of these works are extremely motivating and fascinating,
it only studies the curves with at most nodal singularities. It would be interesting to study relative
invariants in this setup, possibly including higher singularities. Unfortunately, there were some partial
results concerning further development of the relative study with higher singularities.

Let us consider one classical enumerative problem on plane curves as follows:

Question 4.1.2. Let E C P? be a smooth plane curve, and consider ot = (01, &, --- ) and B = (By, B2, - ).
How many degree d rational plane curves in P> meet E at oy, “fixed” points with order of contact k
and By “moving” points with order of contact | passing through 3d — 1 — Y (kay. + (I — 1) B;) points in

IP? in general position, if all contacts with E occur at uni-branched points?

Note that when oo = 0 and § = (3d,0,---) the above question reduces to the question (1.2.1),
the solution to which is given by Kontsevich using the theory of Gromov-Witten invariants for P?.

In [10], the above question has been solved completely when E is a line using generalized Severi
variety techniques. Implicitly, they have defined relative Gromov-Witten invariants in the process of
generalizing the theory of Gromov-Witten invariants to higher genus.
In [68], the author then extended their idea when E is a smooth conic, later on, in [10], the authors had
solved the question (6.2.2) when E is a smooth cubic for all ¢, B except for (o, ) = (0,e34) using
different technique.

After so much earlier developments in this direction one extremely natural question can be asked

as follows:

Problem 4.1.3. If E is smooth degree d curve inside P?. How to enumerate degree d curves in P>
having one or more degenerate singularities ( possibly more degenerate than nodes) that are tangent

to E to some order passing through an appropriate number of generic points?

So far, a few results are known. We have made a very brief survey in the previous chapter on this.
We have seen that the above problem involving singularities more degenerate than nodes remains
unexplored. An important relationship of this question is to count curves with higher singularities
which is the main attraction of this thesis. We have seen that the study of nodal curves took more than
150 years in literature. Hence, enumerating curves with various higher singularities is an extremely

difficult subject. In this thesis, we have attempted to study higher singularities by reducing them to
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4 Higher-order tangencies on the complex projective plane

an intermediate object; the study of singular curves with higher-order tangency to a certain divisor.
We are not aware of any developments when E is singular, how to study relative invariants? We will
now extend our method to higher-order tangencies to a fixed-line in P>. When the singularities are
nodes we saw agreement with the result due to Caporaso-Harris. We have performed some low degree
checks when the divisor is any degree d; curve inside P2, giving us consistent answers with the result
of Gathman, Fan, and Yu ([20], [16]) that enables us to remark that our method extends suitably for
any smooth divisor in P2. We intend to explore this question for singular divisors using our technique

in the future.

4.2 Notations and Preliminaries

In the first section, we recall the singular curves mean that the degree d curve has some singularity in
it. We specialized ourselves to only A singularities as earlier. Now we want to study the geometry of
these singular curves that are tangent to any order to a fixed-line E in P2.

We will now introduce some more notations and definitions which will help us to present our result
precisely. Let us denote Z to be the space of non-zero homogeneous degree d-polynomials in three
variables upto scaling, i.e.,

2 :=PH"(P?,0(d))) ~ P%.

Let X be a singularity of a given type. We will make abuse of notation and we will denote X to be
the space of curves and a marked point p such that the curve has a singularity of type X at p. More

precisely,
X :={([f], p) € Z xP?: f has a signularity of type X at p}.
For example,
Az :={([f], p) € 2 xP?: f has A3 singularity at p}.
Next, given n subsets My, M, ..., M, of 2 x P?, we define

MyoMpo...oM, := {<[f]a pl""7pn) €I X (Pz)n:([f]v pl) €M1,...,([f], pn) €My,

and Pise-s Dy are all distinct}.
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4 Higher-order tangencies on the complex projective plane

For example, A? oA, denotes the space of curves with four distinct ordered points, where it has three
ordinary nodes at three points and a cusp at the last point. Similarly, A; oA, is the space of curves
with two distinct ordered points, where it has a simple node at the first point and a singularity at least
degenerate as cusp at the last point; the curve could have a tacnode at the second marked point.

For any n tuple K = (kq,--- ,k,), where each k; are non-negative integers, we will define the fol-
lowing:

|K|=ki+- +kn

We will denote the sequence (0,---,1,---,0) by e, that is all the entries of e, are zero except 1 at the
n-th position (so that any n tuples m can be be expressed as }.I'_; m;e;).

Let us now define our object of study. Let E be a fixed line in P?. Then our basic objects are degree
d curves in P?. Given a non-negative integer &, let us define

i

Te:={(f], [f], p) € 21 x D4 x P?: ftangent to f of order k at p }

Then we can define the following space as

)

AnoTk::{([f] [f]? q, p)G@l X‘@dxpzxpzz([f]v Q) € An,

ftangent to f of order k at p , p # ¢}

Similarly, for 6§ > 2 we can define
A?OT;c = {([f]) [f]7 q1,:,4s, p) € -@1 X -@d X <P2)6 XPz : ([f]? qi,: - 7q5) GA?

ftangent to f of order k at p , p # q;, ¥V i}

Let us define N (%% o T, 0---oTy,) to be the number of degree d curves in P? having 6 number
singularities of type X of codimension cdy and it is tangent to E, a fixed line in P? of order K =
(ki,---,k,) at n points of E at intersection of m;, V i = 1,--- n generic lines, (this notion due to
Caporaso-Harris [11], i.e., when m; = 0 it corresponds to the tangency at unspecified points and m; = 1
corresponds to tangency at specified points), passing through appropriate number of points in general
position.

In the simplest case, when § = 0, then N¥ (Ty, o --oTx,, m) denotes the number of degree d curves
in P? with the order of tangency K to E € P? at the intersection of m generic lines, passing through
8;— | K| — | m| points in general position. Similarly if § = 1 and K = 0 the notation N¥ (X) = N(X,E)
denotes the singularity X lies on the divisor E.

Next, we will describe the tangency condition locally with the help of the following Lemma:
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4 Higher-order tangencies on the complex projective plane

Lemma 4.2.1. Let f = f(r,s) be a holomorphic function defined on a neighbourhood of the origin in
C? such that foo =0, Vf l00) + 0 and there exists a non-zero vector 1 = (vi,v2) € Ker(Vf, ‘(0‘0)) such
that at the origin Vf(n) = 0. Let x 1= vir+vps,y := —vor+vis and fij be the partial derivatives
with respect to the new variables x and y. Then, the curve f~1(0) represents tangency of order k to
F~YH0) at the origin if fo1 # 0 and the directional derivatives T; defined as % are zevo for all i <k

and Tk+1 75 0.

Proof of observation: Let us consider that the Taylor expansion of F' is given by
F(x,y) = Ag(x) + Ay (x)y + Ag(x)y* + ...

By our assumption on F, Aj(0) # 0. We claim that there exists a holomorphic function B(x,y) such

that after we make a change of coordinates y = B(x,y)yj, the function F is given by
F = Ag(x)+B(x,y)y

for some B(x,y) (i.e., B(x,y) = fo1 + fi1x+ fooy+---). Since A;(0) # 0, B(x,y) exists by the Implicit
Function Theorem. Therefore, we can compute B(x,y) as a power series using (3.11) and then compute

Ay(x). Hence,

T T T,
F(x,y) =B(x,y)y1 + Tix+ 2—fx2+3—fx3+..., where Tvl = fo (4.1)

Remark 4.2.2. Note that B(x,y) is unique if we require B(0,0) = 0.

Now, since B(0,0) # 0 we can further change of coordinate as § = B(x,y)y;. Then the above

reduces to

F(x.9) = 9+ frox+ L2 2+%x3...

TX
4.3 Recursive formulas

In this section, we will state our results explicitly. This section is a part of an ongoing project. How-
ever, we will provide the proofs of weaker results than expected. Our main results can be summarized

as follows:

Theorem 4.3.1. LetK = (ky,--- ,k,), andm = (my,--- ,my) be two n tuples consisting of non-negative

integers. The number Nf (Ty, o--- o T,, m) denotes the number of degree d curves in IP? tangent to E
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at n distinct points in E of order ki, ¥ i =1,--- ,n passing through 8;— | K | — | m | general points and
the tangency points are at the intersection of m generic lines. Then we have established a recursive

formula for N (T o---oTy,, m) providedd > | K | .

The above theorem describes the case when there are no singular points involved, i.e., all the points

of our study are only tangency points.

Remark 4.3.2. Note that the numbers obtained from the above formula can be verified with the result
of Caporaso-Harris[11]. Let us mention an important point, our underlying geometry on curves with
so many tangency conditions has no relation with the result obtained [11]. Also, note that in [11], the
numbers for curves having tangency condition are bi-product to some other question namely, counting

nodal curves question. So, in that perspective, this result is different from the result [11].
Next, we will invoke singular points along with the tangency point.

Theorem 4.3.3. Let X = A or A, be two singularities of codimension 1 and 2 respectively. Let k, m;
and { = (ny,--- ,ng) be a tuple of non-negative integers. Then for & € {1,2} we established explicit
recursive formulas for NE (A‘lS oTy, £, m) and NE (Ay o Ty, ny, m) respectively provided d > din, where

dpin = cdx +k+ 1.

Theorem 4.3.4. Let m|, my are two non-negative integers. Let us denote by Ny (Af OA%, mpy, my)
the number of degree d curves in P? having two nodes lying on the same line passing through 8; — 4
points in general position, both the nodes are at intersection of m| and my generic lines. We have an

explicit formula to compute Ny (Af oAf, my, my) provided d > 2.

Remark 4.3.5. As an important corollary of the above theorem, we can compute curves of degree d
having a tacnode passing through a right number of generic points in P2. Note that this study does

not invoke cuspidal curves.

Remark 4.3.6. As we have pointed out the fact in the introduction that when the divisor is singular,

we have no answer to these above questions.

Let us now briefly describe the procedure to compute our numbers and what are the actual
difficulties we face along the way. Suppose we want to count the singular curve in P? with some
higher tangencies. Then one of the main difficulties is to study the type of the resultant singularity

when the point of singularity and the point of tangency of certain order collide with each other. For
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example, suppose we want to enumerate NZ (A; o T5), i.e., the number of degree d curves in P> having

a node tangent to a fixed-line to order two.

AroTo:={([f], If], ¢, p) € Z1 x Z x (IP’Z)2 | ([f], ) €Ay, fistangentto f of order 2, p # q}.

Our first step would be to find some suitable space that we already have studied and whose closure
contains A o T, as a subset. Here an obvious candidate is a space A; o T which we have studied
earlier. Let us consider u to be the homology class representing the enumerating constraint, i.e., the
constraint which fixes the line and it should pass through §; — 2 generic points in P2. Now we will
make use of the lemma (4.2.1) and we can express the number N-(A; o T5) as the cardinality of the

set

(1], [f], @& p) €A T | V2 f,(vav) =0, v € Ker(VF,) } Nu. 4.2)

Note that Aj o T; = A; o T;. We now have to study the following boundary

’%:{([fL [f]v q, p)EAloTl ’q:p}

Next, we will interpret the condition V2£,(v®v) = 0 as a section of a vector bundle .#, over the

space Aj o 71 and we will show that the induce section is transverse to the zero set. Thus the number
(e(&,), ATOTN[K]) = Ni(A10T2) + Cany.

The main difficulty is to compute Cpny, in the above formula. Note that the left-hand side can be
easily calculated using the properties of vector bundles. So the main obstacle to solve these type of
questions is to understand %4 and the excess contribution of it to the Euler class. In this thesis, almost
all the problems that we have studied have analogous difficulties. We have used a topological method

as indicated in the second chapter to approach the above issue.

4.4 Proof of the recursive formulas

We are now ready to prove the recursive formulas that we have stated in section (4.3). We will begin

by proving the following:

Theorem 4.4.1. Let k, m be two non-negative integers and Nf (T, m) denotes the number of degree d

plane curves tangent to the divisor E to order k passing through 8; — k — m points in general position
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at the intersection of m generic lines. When E is a line in P> we have

k+1)(d—k) ifm=0
NE (T, m)={d—k ifm=1 4.3)
0 otherwise

provided d > k.

Proof. Let us define
Te = {([fa], [f], p) € Dux D xP?: f; istangent to f at p to order k}

Let us consider u to be the generic cycle representing the following cycle

Sd—k 5dl m
d

[.u]:y Yy a

We now define the sections of the following bundles:
Yy, 0 D % P xP* — Ly =V, 05 ® M y;fl is defined by
{wr, (Ufa); [F) P)Y(fas ) = (Fa(p), F(P))
Y Y N0) — % =75, ®L" @ ¥ is defined by

{vr, (Ufa), 1], P} (fa@v) = Via(v)

4.4
Yy, WT_kl—l (0) — .,?Tk =Yg, QL*® Yp2 is defined by
Ty (U 17 I fa @y 0v) = VA (9 @)
k k
we will show shortly that these sections above are all transverse to zero.
Hence
(e(:Z; ), [Te—t] N [u]) = Ng (Te, m) +Cpoy (4.5)

where Cpny denote the contribution from the points of the boundary BN u to the Euler class. We
now claim that BNy 1(0) = ¢ for all i > 1. Since we are only interested in the components of the
boundary where the sections vanish. Now suppose that the point degenerates to a singular point then
we can see that the corresponding vertical derivative for tangency (which is the derivative along the

divisor ) can not vanish. Hence plugging Cpry, = 0 and computing the left-hand side of the equation
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(4.5) we will get our desired formula.
Let us now explain how to compute the left-hand side of the equation (4.5). We will denote

y=ci1(¥g,),y1 = c1(¥;) and a := c1(¥;,). Recall that 1 represents the subspace of curves passing

B . . . kG
through yo% %y ldl generic points; hence it represents the homology class Poincaré dual to y% "yld1 .

Hence, the left-hand side of equation (4.5) is equal to

(e(Lr), [Tma] N ful) = (e ), Temr] N {ul)+
ey e, ), [Tt ) + (@ = 20) (@ e(Zr, ), Tl ) Vi > 1.
Claim 4.4.2. Let us consider ([f4),[f1],p) € Ti—1. Then there exist points ([f3],[f'], p(t)) € T suffi-

ciently close to ([fy],[f1], p), such that

vy (Ul [7),p) =0

where v is a nonzero vector belongs to T, F~10). Furthermore, every such solutions satisfies the

condition

wTkH ([fd], [f]vp) #£0.

Proof. We will prove the above working in an affine setting. Let p = [0: 0 : 1] and in this affine

coordinate system the Taylor series expansion of the curve is
F(x,y) = Ao(x) + A1 (x)y + As (x)y* + .. ..

Next, if the curve is tangent to f;~ ! (0) at p, to certain order then after a suitable change of coordinate

we can express the curve as

F(x,9) =Y+ fiox + %x2+%x3... (4.6)

Now since ([f}],[f{],p:) € Tk—1, then the equation (4.6) reduces to
AN & fkoxk
F(x¢,1) —)’H—F p e

By choosing p; = (x,0), we gather from above equation

ftk—m o ftko 2
m = ﬂx, + 0(xt ) (47)
So the above solution shows that T, contributes to the Euler class with multiplicity one. O
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Let us now prove the corresponding transversality claims. We will consider the affine setup where

2

R Next, let us look at

p=1[0:0:1]. Let us consider dy and d, to be the standard basis vectors for 7T’

the following short exact sequence
0 — L=Ker(Vf) — TP* — 750 9%5 — 0

then there exist a nonzero vector v € Ker(V ﬂp) We can certainly assume that v = [d,]. Let us now
consider the polynomial

P = X+ 797F.
We observe that
pk()(p) = 07 Vipko<p) = 07 V1 <i<k-— 17 Vkpko(p) 7é 0.

Consider the curve ¥, : (—€,€) — Py x 2 x P? defined by

YkO(t) - (fd+tpk()7 f~7 p)

Note that {Vyg ([fa], [f], P)}(7,(0)) = V*p,,(p) # 0 holds for any k. Hence the transversality
follows. U

Next, we will study the case when there are multiple points of tangency involved. Before going

into the proof of the general case let us concentrate on some particular computations as below:
Computation of the number N(T| 0Ty, my, mp)
Let us define the space

)

TioTa:={([fl, [f], 4> 4,) € Z1 x Dy x (P*)* : ftangent to f of order
one and two at ¢, ¢, ,where ¢, # ¢,.}

Let us consider u to be the generic cycle representing the following cycle

dy my np

8,—2. 6.
[.u]:ydd Y1 ap ay

Then N(T o T) is the cardinality of the set

{<[f]v [f]a q,, %) €D x Yy % (PZ)Z : ([f]v [f]a q,, %) €TioT

V2 £ (v, v)|q2 =0,V3f(v,v, v)‘q2 #0,veT, LiNnp.
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4 Higher-order tangencies on the complex projective plane

We now consider section
TioT Ly =y 0 T L% 0 yd
Y 1 T10T1 — L= Y0 T L7 0 .
We will show that the above section is transverse to zero. Hence
(e(Lp),[TroT1]N[u]) = N*(T1 0 T2) + Capry

where
#:={([f], [f:91,02) € B:q1 = g2}
Hence, Cyny = NE(T3). We have shown that it contributes to the Euler class with multiplicity 2.

T3
T Ty

Figure 4.1: When two T;’s collide to each other.

Computation of the number N, (T 0T, 0 T4, my, my, mz)
Let us defined the space

Y

TioTaoTs:={([f], If], 4> 4,95) € Z1 x Dy x (P*) : f tangent to f of order

one, two and three at ¢,, ¢, and g, respectively ,q, # q, # q,}-

Let us consider u to be the generic cycle representing the following cycle

1 ,,m 2 m3

8;—7_ 84
)=y, "y taytay as”,

Then N(Tj0Tpo Ty, my, my, m3) is the cardinality of the set

{<[f]7 [f]a q,, 9,, Q3) € @1 X @d X (]P)z)3 : ([fl]a[f]7q17q27Q3) € Tl OT20T37
Vi), =01nu.

We now consider section
Wy, 1 TioT,0Ts — Vg, =7, T"L @ 7.
We will show that the above section is transverse to zero. Hence
(e(7,),[TroTaoTa|N[u]) = N*(Ti o Tyo Ty, my, my, m3)+Cary
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4 Higher-order tangencies on the complex projective plane

where
B =%B1URB,.
We will describe
%= {(f), lfl,a1,92:43) € B: q1 = ¢3}
and

B> ={([f], [f],91,92:93) € B: g2 = q3}.

We will show that % = T5 and %, ~ T¢. Furthermore, we will show that the contribution from Ts
to the Euler class is 2 and T contributes 3 to the Euler class. Plugging all these we will get the final
recursion for N(Tj 0T, 0Ty, my, my, m3). Here we omit the proofs of all the claims that we have

made since we will prove the general statement in one go.
Proof of the Theorem (4.3.3) for § = 0 case

Proof. We will now prove our formula for Nf (Tg, 0---0Tg,, m), when E is a fixed line in P?. Let us

now define
Ty 00Ty = {([fal, [f], 1o+ Pn) € Dax T x (P*)" = ([fa), [f], P1s--+ s 1n)
€Ty 0---0Ty,, fs istangentto fat p;toorderk;,Vi=1,---,n}.

Let us consider u to be the generic cycle representing the following cycle

ke (ke —1) =y e — 1)
[H]:)’fgd kye—(kn—1)—m; m”yldlarlnl"'a?"

We will define the section corresponding to the k,-th order tangency to the divisor at the last marked

point as:

. -1 R kn
V/Tklo---oTkn : wTklo"'oTkn—l (0) — ZTklo---OTkn T /}{f@d ®L* X /}/532

the section is defined as

(v oo, ([l [P 1 )M (fa 0y 0v) = VR fy(ye - 0). (4.8)
P K

We will prove very shortly that this section is transverse to zero.
Let us now define Z =Ty 00Ty | — Tg, 00Ty, 1.

Hence
(e(Lry ooTy)s [Thy 00T ] N [K]) = Nj (Tgy 0---0 Ty, m) +Cpry 4.9)
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4 Higher-order tangencies on the complex projective plane

where Cpny, denote the excess contribution from the boundary BN u to the Euler class. We have seen
that BN ‘//'Fkl. (0) = ¢ for all i > 1 when there is only one tangency point involved. Now we will study

the boundary when there is more tangency point involved. We will define

Biy oo = {([fa, ) P1, s on) € Tigo-0Th, 0 piy =+ = pj, }-

Let us now consider %, ,, V i=1,---,n.

T Tiei+

va&{

Figure 4.2: when T, and T, are collide to each other.

We claim that %, ,, ~ Tt.. , where % indicates i-th point collides to the last point. We will justify

i+n’
this claim shortly. Note that wTklo'”OTk” section vanishes on Tk,— ..» hence it also vanishes on Tk,— Saye
We claim that the excess contribution from each of the points of %;, N is (i+ 1) N¥(Ty, 00

Tyti, m). Thus the total contribution to the Euler class from the two pointed boundary is

(i+1) N (Tayse - Tk, m).

-

N
Il
-

Next, we will consider the three pointed boundary namely, %; ; ,. We claim that %; ; , N l,l/-Fkll ooy, =
¢. Infact %;, ... ;. N I/IT’kl1 ooy, = ¢ for all n > 3. That is when three or more tangency points collides
to each other then there is no contribution to the Euler class from the boundary points. Hence plugging
Cpny and unwinding the left-hand side of the equation (4.9) we will get our desired formula.

The computation on the left-hand side of the equation (4.9) follows in from similar computation

as in the equation (4.5).
(e L1, oneety ) [T 00 Ti1) N )
= (y e(Lr, ooty ). [Trr oo T N )+
(kn y1 €(L, 001y, )y [Thy 00 Ty N 1))+
(d —2ka){a (L, oomy,)s [Thy 00 Tg, I N[U]) Yk >1
Finally, we will prove the closure, multiplicity, and transversality claim that we indicated earlier.

Claim 4.4.3. Let us consider for each 1 <i<n—1, ([fal,[f1],pP1, ", Pis=** s Pn)

€Ty o o'T'ki, -+-0Tg,... Then there exist points ([f}], i, p1(2),--+, pa(t))
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4 Higher-order tangencies on the complex projective plane

< Tkl’”' 7Tkn suﬁ’iciently CIOS€ fo ([fd]? [f1]7p17"' 7pAi7"' 7pn)) SUCh that

V/Tklo“'oTk” ([fd]v [f]vplv te 7pn) =0

where v is a nonzero vector belongs to T, f 1(0). Furthermore every such solutions satisfies the

condition

WTkIOmoTk”H ([fd]7 [f]vph T 7pn) 7& 0.

Remark 4.4.4. Note that the above claim explains the following situation when three pointed tangency

question:

* if the first and the third tangency point collide then we will get the following Ty, o Ty, 0Ty, D

Tkz o Tk3+k1+l

* similarly if the second and the third tangency point collide then we will get the following Ty, o Ty, 0 Ty, D

Tk] © Tk3 +ko+1

the second part of the Lemma says that the nearby curve that found as small solution those can not lie

in Tkl OTk2 OTk3+1

Proof. We will concentrate on the affine setting. Let p, = [0:0: 1] and in this affine coordinate

system the Taylor series expansion of the curve is
F(x,y) = Ag(x) + Ar (x)y + Ag(x)y* + ...

Now, in this affine setup we will consider the directional derivative v = d, where v € T,,, f 1(0). Next,
if the curve is tangent to f~1(0) at p,(¢) to certain order then after a suitable change of coordinate we

can express the curve as

F(x,9) =9+ frox + %x2+%x3... (4.10)

Now since ([f1], [f],p1(t), -+, pa(t)) € 7 (Tg, 0+ -- 0Ty, ), then the equation (4.10) reduces to

f’k +2,0 Kk
n+2, nt2

N o D t1.0 k1
F<xt7yt):yt+ﬁxt e

since the tangency condition on the last point implies that

falpn)) =0.Vfg () =0,....VofG (%) =0,

pn(t) pn (1)
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4 Higher-order tangencies on the complex projective plane

The curve ([f4], [fi], P15+ Dis-+ s pn) lies in Ty, o--0T 00Ty SO fi.is1 7 0 and hence

n+i+1
in the new coordinate system f;, .., # 0. Next, we will treat the equation (4.11) as primary equation
to analyze the collision of T; condition to the T,-th condition. We will distinguish the resultant curve
in equation (4.11) by denoting F, so that there will be no notational confusion.

Note that the T; condition amounts to

F(pi(t)) =0,VF, (v)=0,...,V5F  (v®k)=0
pil0) pil)
Then the above implies to solve the following:
fk +1,0 _k f’
n +1 kn+2,0 _kp+2
" I X ...=0
It e T
D10 k fk+20 ky+1
. " L " ...=0
k! TRt T (4.12)
Ttnt1,0 i Dentit 10k, .
m A T Txt +...=0
From the above equations we can solve
fi fi
kn+i,0 — kp—+i+1,0 X +0(xt2)

kn +1! kn+i+1!
Likewise we can solve for other equations using the above solution. Finally, if we plug in the iterative

solution from the equation (4.12) in the equation (4.10), then we get the small solution as

o GEOPRS

X )
(Kn) (Kin +1) -« (e +1) " (4.13)
and P(k) is a non-homogeneous polynomial of degree i.

fro =AXTT+O(x?) Vi>1, where A= (1)

Since both (x,y) # 0, therefore, we can assume x # 0 but small and A # 0 giving us the required small

solution. m

R . .
Corollary 4.4.5. Let YT o Thy l,l/-l-k1 e Th, 0) — .,Z”Tkl - Ty, a8 introduced before. The rank of this
vector bundle is same as the dimension of \; ,(Ty, 0---0Ty,) and YT, 00Ty, @ generic smooth section.

Suppose that the curve with ordered tangency ([f], [fi],p1,- - s Pis-+,Pn) € Tiy 0---0T 00T

n+i’

Then the section
T WTk “Th, lI’Tkl,~ , n(O) — "nglw'ka,,
vanishes around ([fql,[f1],P1, -, Piy -, Pn) With the multiplicity (i +1).
Proof. This follows from the equation (4.13). (|
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4 Higher-order tangencies on the complex projective plane

Let us now prove the corresponding transversality claims. We will mainly follow the earlier
affine setup where p, =[0:0: 1]. As before let us consider d; and d, to be the standard basis vectors

for T}P’fp . We will assume as before v = [d,]. Let us now consider the polynomial

Z k Z(pp_ kn—1
ik, = ( <p1)X—Z) pd—ki .y (MX—Z> Zd—kt1 ok 7d—ky
X(p1) X(pn-1)

We observe that
Pryoky (i) =0,i=1,---.n—1, - Vhipp 4 (p;)=0,i=1,---,n—1but V¥p;, .4 (pn) #O0.
Consider the curve ¥, ..t : (—€,&) — Py x 2 x (P?)" defined by
Vi, don (1) = (fa +1Pkyoys o217, D).

Note that {VWTkn<[fd]7 [f]vpla Tt 7Pn)}<'}’/,q...kn (0)) = Vk"Pk1~-k,, (Pn) 7& 0 holds for any ki and any of

the n points. Hence the transversality follows. O

4.5 Proof of the recursive formulas involving singularity

In this section we will study the higher-order contact with the divisor E when the underlying curve is

singular i.e, the curve may have node or cusp as singularities in it. Next, we will proceed to the cases

when 6 # 0.
Computation of the number Nf (Ajo Ty, n,, m) for all k

Note that this question can be seen as a special case of the main result [11] when n; = 0. However, for
n1 # 0 this can be obtained via their method with some effort. We will compute these numbers using

a topological method. Our numbers are consistent with those obtained [11].

Theorem 4.5.1. Let Nf (A1 0Ty, n,, m) denotes the number of degree d curves having a node tangent
to E of order k passing through 8; — (k+ 1) —ny — m generic points where the node is at the intersection

of n1 and the tangency is at m generic lines. Then the recursive formula for Ng(A1 0Ty, n,, m) is given

by
2(d— I)Nd(Al, I’L])—ZNd(Al;E, I’l]) fOl’k: 1, m=0
Ny(Ay, n) —2Ny(AE, ni+1)  fork=1,m=1
0 fork=1 m>?2
Nf(Al OTk7 n17 m) == fO}"k Z 2, (414)

NE(Ay 0Ty, n,, m)+(d —2k) NE(AjoTyy, n,, m+1)

\ _N5<A-1rk717 n, +m)
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4 Higher-order tangencies on the complex projective plane

providedd > k+ 1.

Proof. Let us define the space

AvoTi:={(f], [f], 4, P) € Z1 x Za x (P*)*: ([f], q) € A

f tangent to f of order k, g # p}.

We will apply theorem (3.1.3), equation (3.1) when k = 1.
Next, we will focus on the case k > 2. Let us consider u to be the generic cycle representing the

following cycle

(Sd—k—l 5(11 nl m

[“]:yd Yy a ay.

We will abbreviate N5 (A1 o Ty, n,, m) as NE (A o T},). Then the number N5 (A; o Ty,) is the cardinality

of the set

{([f), I7], 4, p) €A1 0Ty Ika(vwk)\p =0,veT,L}Np.
We now consider the section
‘Prk PAL X Th —>ka = Y*@®T*L®k®y§§.

We will show that the above section is transverse to the zero set which is equivalent to show that the

the line bundle .Z;, is k+ 1 ample. Let us now define
B :Al OTk—l _Al OTk—l-
Hence

(e(25), WioTet]N[u]) = NF(A10Ty) + Cary (4.15)

where the excess contribution Con,, comes from the points of 28N u to the Euler class. We will prove
it in [50]. We note that only the points of %, where the section vanishes is relevant for us. Hence we

are only interested to the component of 4 N u where g becomes equal to p. Next, let us define

#(q.p) :={(f), [/], 4, p) € B:q=p}.

We claim that (g, p) ~ A-lr"‘1 . Geometrically, #(q, p) denotes the component of the boundary where

the nodal point and the point of tangency collide with each other. So we can expect the following thing
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Ty | AR
£ N

Figure 4.3: Nodal curve and is tangent to the line of any order.

to happen:

We claim that the excess contribution from AIT"‘1 to the Euler class is 1. We plug in the value for
AN in (4.15) we get the final recursion.
Let us now prove the corresponding transversality claims. We will consider the affine setup as

before. Let us assume the tangency point p =[0:0: 1] and g = [x; : y; : 1]. Let us consider d, and 9,

2

to be the standard basis vectors for TIP"p.

Next, let us look at the following short exact sequence
0 — L=Ker(Vf) — TP?> — Vé@yﬁfl — 0.

Then there exist a nonzero vector v € Ker(V f|p) Without loss of generality we will assume that

v = [dy]. Next, consider the polynomial

Pk = (%X —Z)z xk zd=k=2,

We observe that
Pi(p) =0, Vipi(p) =0,V 1 <i<k—1---,Vipy(p) #0.
Consider the curve i : (—€,€) — ;¥ 2 x P? x P? defined by

Yie(t) = (fa+tpi, f.4.p)

Note that {Vy ([fa]; [f]:4: )} (714(0)) = V¥pix(p) # 0 holds for any k. Hence the transversality
follows. U

Now we will consider the enumerating curves with tangency when the curve has two nodes.
Computation of the number N¥ (A20 Ty, n,, m) for all k

Theorem 4.5.2. Let Nf (A% o Ty, n,, m) denotes the number of degree d curves having two nodes

tangent to E of order k passing through 8; — (k+2) — n; — m generic points where the last node is
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at the intersection of ny and the tangency point is at m generic lines respectively. Then the recursive

formula for Ny(A3 o Ty, n,, m) is given by

2(d —1)Ny(A3, n) —4Ny(A1 0AE, ny)  fork=1,m=0

Ny(A3, ny) — 4N (A oA E, ny +1) fork=1,m=1

0 fork=1,m>2

NE(ATo Ty, n,, m) =< fork > 2, (4.16)

NE(A2oTy_1, n,, m) + (d—2k) NE(A2oTy_1, n,, m+1)

—2 NE(A, oAlTk’l, n, +m)

provided d > k+ 3.

Proof. Let us recall the space

A%oTk = {<[f]7 [ﬂa 91,49, p) € D1 X Dy X <P2)3 : ([f]a quz) GA%

ftangent to f of order k, q, # q, # p}.

Note that when k = 1, we will apply the theorem (3.1.3), equation (3.1). Hence we only focus on the
calculation of the number Nf (A% o T}) (here we are using an abuse of notation for Nf (A% o Ty, n,, m))

when k > 2.

Let us consider u to be the generic cycle representing the following cycle
] =3 2y anay.
Then N(A? o T;) is the cardinality of the set
{([f1, IF], 41+ @s> P) EATO Ty : VEF(VY) =0,v e T,LY Np.
We now consider the following section

W, tAToTio — Ly =Yy 0 T L 0y

We will show that the above section is transverse to the zero set which is equivalent to show that the

the line bundle .Z7, is k + 2 ample. Let us now define
B=AoTi—AloT,_,.
Hence
(e(n), [AFoTimalN[u]) = Nj (AT 0 Ti) +Canry (*.17)
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where Cn,, denotes the excess degenerate contribution of the section ‘PTk to the Euler class from the
points of Z N . We note that only the points of %, where the section vanishes is relevant for us.
Hence we are only interested to the component of % N u where g; becomes equal to p. Next, let us

define as before
B(q1, p) = {1, [f]; a1, a2, p) € B:q1 = p}.

We will prove it in [50] that
B(q1,p) ~AjoA* . (4.18)

Geometrically, #(q1, p) denotes the component of the boundary where the nodal point and the point

of tangency collide with each other. So we can expect the following thing to happen:

Figure 4.4: Curve having two nodes tangent to the line of any order.

Similarly we can show that the boundary contribution %(q,, p) = A; oA-er to the Euler class is
1. Next we will explain the computation of N(A; oA-lrk, m). We will abbreviate N(A, oA-lrk, m) as

N(A; oAlT" ) for notational simplicity.

Proposition 4.5.3. For a positive integers k > 1, the number N(A, oA-lr") is given by
T T T
(e(Z), [AroA N [u]) = NS (A1 0A%) + Ni(AF) (4.19)

providedd > k+3

Assuming our claim (4.18) and the proposition (4.5.3) we will show that the total boundary con-

tribution is

Ti-1

2NE (A oA m) (4.20)

with multiplicity 1 to the Euler class. Thus plugging in the value of Cgn, from (4.20) we get the final
recursion formula.

Let us now prove the corresponding transversality claims. We will consider the affine setup as
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before. Let us assume the tangency point p =[0:0: 1] and ¢; = [x; : y; : 1], Vi =1,2. Next, we

consider the polynomial

Z(q1) —Z)z (Z(fh)

X —Z) *xk zd—k—4,
X(q1) X(q2)

Pk = (

We observe that
P2(qi) =0, Vypy =0V i=1,2.
P2(p) =0, Vipou(p) =0, Vi=1,--- . k—1, V¥py(p) #0.

Consider the curve Yy : (—€,8) — Py x Z x P? x P? x P? defined by

Vu(t) = (fa+1tpax, f.91,92. p).

Note that {V 7% ([fals [F],91, 92, P) } (¥ (0)) = VEpar(p) # O holds for any k. Hence the transversality
follows. O

Next, we will study the case where there are singularities that are more degenerate than nodes

involved.
Computation of the number N5 (A, 0 Ty, n,, m) for all k

Theorem 4.5.4. Let Nf (Ay0Ty, n,, m) denotes the number of degree d curves having a cusp tangent
to E of order k passing through 8; — (k+2) — ny — m generic points where the cusp and the tangency
is at the intersection of ny, m generic lines respectively. Then the recursive formula for Ny(Ap o
Tk, n,, m) is given by

2(d—1)Ny(Az, ny) —3N4(AxE, ny) fork=1,m=0

Ny(A2, n1) —3Ny (A3 E, ny+1) fork=1 m=1

0 fork=1,m>2
N5 (Ayo Ty, ny, m) =X fork>2, 4.21)

NE(Ayo Ty, n,, m) +(d—2k) NF (Ao Ty, n,, m+1)

-2 Nf(AZT’H, n, +m)

provided d > k+2.

Remark 4.5.5. We note that the case k = 1, i.e., the first order tangency problem is included in theorem

(3.1.3), equation (3.1). Thus we will prove the above theorem for k > 2.
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Proof. Let us define the space

Ao Ti:={([f], [f]: 4, P) € 21 x Da x (P*)*: ([f], q) € A>

ftangent to f of order k, g # p}.

Let us consider u to be the generic cycle representing the following cycle

8i—k=2 84 n m

=y y, ‘d"ay.

We will abbreviate N (A, 0 Ty, n,, m) as NE(Ay o Ty.). Then the number N5 (A, o Ty.) is the cardinality

of the set
{([f1, [f], @, P) EAroTiy: ka(v@)k)\p =0,veT,L}Npu.
We now consider the following section
W, 1Ayo Ty — Vg =Y, @ T L™ 0 pd.

We will show that the above section is transverse to the zero set which is equivalent to show that the

the line bundle 77, is k42 ample. Let us now define
PB=AroTi | —AzoTy 1.
Hence
<e(7/Tk), AroTe )N [u]> = NE(Ayo Tk, n1, m)+Caprp (4.22)

where Czry, denotes the excess contribution of the section ‘I’Tk to the Euler class from the points of
PN u. We will prove it in [50]. We note that only the points of A, where the section vanishes is
relevant for us. Hence we are only interested to the component of % N u where ¢ becomes equal to

p. Next, let us define where

#(q, p) :={(f), [f]. 4, p) €B:q=p}.

We claim that #(q, p) ~ A;"‘l . Geometrically, #(q, p) denotes the component of the boundary
where the cuspidal point and the point of tangency collide to each other. So we can expect the following

thing to happen:
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Th—1
P\ —
q

Figure 4.5: When the cuspidal point and the tangency point collide.

Furthermore, we claim that the contribution from A;"‘l to the Euler class is 2. We plug in the value
for ZNu in (4.22) we get the final recursion. Note that the numbers for k > 2 are all new. We are not
aware of any previous result in the past which calculates these numbers by any method.

Let us now prove the corresponding transversality claims. We will consider the affine setup as

before. Let us assume the tangency point p = [0:0: 1] and ¢ = [x; : y; : 1] be the cuspidal point. Let

2

us consider d, and 8y to be the standard basis vectors for TIP‘]?.

Next, let us look at the following short
exact sequence

0 — L= Ker(Vf) —>TIP2—>V%®]/§,§1 — 0.

Then there exist a nonzero vector v € Ker(V ﬁp) Without loss of generality we can assume that

v = [dy]. Let us now consider the polynomial

P, = (X—X(CI)) (Y—Y(Q)> xkz4==2,
We observe that
Py, (¢) =0, V\quz = 07det<V2f)\q =0
pA2 (p) = 07 VPA2 (p) = 07 e 7Vk_1pA2 (p) = 07 but VkPA2 (p) 7& 0.
Consider the curve ¥y : (—€,€) — Py x 9 x P? x P? defined by
’}/AZ (t) = (fd+ tpAza f~7 q, p)
Note that {Vyr, ([fa], [f], ¢, )}, (0) = V¥p,, (p) # 0 holds for any k. Hence the transversality

follows. O

Theorem 4.5.6. Let Ny(A} o AL, ¢, m) be same as defined earlier. The polynomial to compute this

number is given by
(d—2)(9d —25) whenm =0
N(AF o AL, m)={3d—38 whenm =1 (4.23)
0 whenm > 2
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4 Higher-order tangencies on the complex projective plane

Proof. Let us recall the space

AL AL = {([7], If], P, @) € 21 x 2 x (P?)*| f has two distinct nodes on f, p # ¢}.
Since we know the number N (A1 o T{) from the theorem (4.14), as a special case we can compute
N(A}oT)), i.e., the number of degree d curves in P? having a node that is tangent to a fixed-line L
passing through §; — 3 generic points, where the node lies on the line. The corresponding space can

be visualized by the following picture:

L AN\ /S

[y

Figure 4.6: Node lying on a line at p and tangency at g.

Next, we will compute the number N(A} o AL) by studying the section corresponding to the nodal
condition over the space Af o T at the tangency point. Let us consider the cycle [u] corresponding to
the insertion conditions Poincaré dual to y3 y%~3 a2, The number N(A} o AL) is the cardinality of a

set as follows

N(AToAT) = [{ (If], [f], p, @) €ATOT1 | Vflgw) =0, wg Ly .

Now, we will express the nodal condition on top of tangency i.e., we have to express the vanishing of

the derivative along the normal direction as a section of the following bundle

Yy, iAIl‘OTl —>$A1 = }’;@(TPZ/TL)*(@YE,Z‘Z

defined by {W4, ([f], [/], p, @)}(f®w) = V| f(w).

We will show that the above section is transverse to the zero set which is equivalent to showing that

the line bundle .Z}, is k+ 3 ample. Let us now define
PB :AII‘OTI —A%OTI.

Hence

(e(Zu,), [AboTi]N[u]) = Na(AT 0 AT, €, m) + Cory (4.24)

where Cgpny, denotes the boundary contribution of the section ¥ 4, 1O the Euler class from the points

of 2N 1. We note that only the points of %, where the section vanishes is relevant for us. Hence, we
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4 Higher-order tangencies on the complex projective plane

are only interested to the component of N 1 where g becomes equal to p. Next, let us define where

P(q, p) ={(f), [f]. 4, p) €B:q=p}

We claim that #(q, p) ~ BA-lr‘. Geometrically, #(q, p) denotes the component of the boundary
where the nodal point and the point of tangency on L collide to each other. So we can expect the

following thing to happen:

q
p / P=4aq
KL
A1 13143"1

Figure 4.7: When the nodal point and the tangency point on L collide to each other.

Hence the contribution from ZNu ~ BA-lrl. Furthermore, we will show that the excess contribution
from the points of BA-II—1 M u to the Euler class is 1. Then we plug in the value for Z N u in (4.24) we
get the final recursion.

Let us now prove the transversality claim. We will continue with the setup as earlier. We will
assume as before p = [x; : y; : 1] be the nodal point and g = [0: 0 : 1] as tangency point and v = [dy].
Let us now consider the polynomial

2
b = (XX () 1 204

We observe that

pA%(q) = 07 VPA%<C]) = 07 T ;Vk_IPA%(CI) = 07 but VkpAf(q) 7é 0.

Consider the curve o : (—£,€) — Dy x 9 x P? x P? defined by

YA%(I) = (fd—i_tpA%v f~7 q, p)
Note that {Vya, ([fa], [f], ¢, P)}(7,.(0)) = VkPA{(Q) # 0 holds for any k. Hence the transversality
1

follows.

Claim 4.5.7. Let us consider ([f], [f], g, p) € BA-lrl. Then there exist ([fi], [fi], ¢, pr) € ALo T,

such that
{Wa, (If], [f], P, 9} (f2w) =0

where w ¢ T,L. Moreover, the section vanishes with multiplicity 1.
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4 Higher-order tangencies on the complex projective plane

Assuming the above multiplicity claim, the proof is complete.

O

Now we are ready to illustrate the most exciting consequence of the above study. As a corollary

of the above theorem we will prove the following:

Claim 4.5.8. Let N(A3, m) be the number of degree d curves in P> having a tacnode passing through

04 — 3 — m generic points at intersection of m generic lines. The polynomial to compute this number

is given by
168 — 192d +50d> whenm =0
N(As, m) = —48 +25d whenm =1 (4.25)
5 whenm =2
0 whenm >3

Proof. Let us recall
AL AL = {([F], If], P, @) € 2 x 2 x (P*)?| f has two distinct nodes on f, p # q}.
Then the cycle representing AL o AL denoted by [Z] in the ambient space  x 2 x (P?)2. Next, we

will consider the space of all lines in P? and two distinct points such that two points comes together

along the line as

Vi={(f]: p. 9) € 2 x(P*)*| p=gq}.
Thus therefore we can think of the class [Z] Poincaré dual to (a; +a; — y1) inside 2 x (P?)2. Then
we want to look at the intersection of the two cycles Z, Z inside 2 x 2 x (IP?)? that produces curves
with tacnode, i.e., geometrically we are looking at collision of two points p, g along the line L. Geo-

metrically the following happens

A YA
(NN

p

PG

Figure 4.8: Two node on the same line collide into a tacnode.

Claim 4.5.9. Let the cycles [Z), [Z] as above. Then the intersection of [Z] and [71']’22] inside 9 x 9 x

(P2)? is transverse, where 7y : 9 x 9 x (P*)2 — 9 x (IP?)? be the projection map.
The above lemma follows from the regular value technique as before. Hence the proof. (|
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4 Higher-order tangencies on the complex projective plane

Remark 4.5.10. We have also studied the enumeration of Nf (A? o Ty), i.e., the number of degree d
curves having three nodes, tangent to order two to a fixed-line in P* passing through 8; — 5 points in
general position. Which may enable us to study some other curve counting problems having higher
singularities. The number Nf (A? o Ty) for k > 3 requires an understanding of curves with a triple
point that are tangential to some order to the line. At this moment we do not know how to deal with
these obvious obstacles. We hope to explore the above and the questions concerning multiple tangency

point constraints in recent future.

4.6 Some explicit polynomials

In this section, we will explicitly write down some of the polynomials that we have obtained from our
recursive formulas. We have written a Mathematica program to compute all these numbers which is

available on my web page
https://sites.google.com/view/paulanantadulal

These polynomials are often useful for various nontrivial low-degree checks. When there are two or
more tangency points involved and the divisor is the line for all the tangency conditions, we have the

following

NE(T1oTy) =24 —20d +4d*

NE(T 0Ty) =72 —42d + 64>

NE(Ty0Ty0Ts) = —9072 4+ 3942d — 567d> 4 27d°
NE(T 0T20Ty) = —151204 5730d — 720d> + 30d>

NE(T 0Ty0T30Ty4) = 2059200 — 723120d + 94920d> — 5520d° + 120d*
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4 Higher-order tangencies on the complex projective plane

Similarly when the curve has the singularity A‘f or A, tangent to order k to the given line in P2, for

some k the corresponding polynomials are given by

NE(Ay0Ty) =3+33d —36d* +9d°

NE(Ay0T3) = 16+ 64d — 60d* + 12d°

NE(A20T,) = 120 — 798d +441d* + 180d° — 162d* +27d°
NE(AT0T3) = 168 — 1620d + 732d* +360d> — 252d* + 364°
NE(A30T)) = =124 96d — 96d* 4 24d°

NE(Ay0Ty) = —644-248d — 180d” + 364°

4.7 Checks with existing results
In this section, we will verify our results with the earlier existing results.

4.7.1 Consistent checks with Caporaso-Harris and Fan-Wu

We note that the Caporasso-Harris formula ([11]) computes
NE (A‘ls 0Ty, 0Ty, 0---0oTy,) for any 8 when the divisor E is line. When the divisor is a line we can
directly verify that our formula for the above produces the same answer as the Caporasso-Harris for-
mula for several values of d; we have written a program to implement our formula (which is available
on request). The reader is invited to use the program to check that it produces the same answer given
by Caporaso-Harris.

Very recently, in [16], the authors have obtained the recursive formula to compute degree d rational
curves in P> with maximal order of contact with a smooth divisor at a specific point. When our divi-
sor is smooth degree d; > 2 curve in P2, we have verified that our numbers agree with the numbers

calculated in [16].

4.7.2 Curves with cusp satisfying tangency condition

In [15], the authors have obtained a formula which computes the degree d rational cuspidal curves in
IP? passing through a points in general positions tangent to b general lines and tangent to ¢ general
lines a specific point on it such that a + b+ 2¢c = 3d — 2. Actually, their formula tells us the number
of the above types of curves lying on some cycles in P>. Now in our recursive formula containing the

singularity cusp directly produces the numbers tabulated in the paper [15] till rational cubic. We also
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4 Higher-order tangencies on the complex projective plane

verify the number for rational quartics tangent to a line. A little more thought is required to get this

number from our formula, which we have explained in the previous chapter.

4.7.3 Curves with higher-order tangency to a smooth cubic and other hyper-
surfaces

Counting relative invariants even in P? turns out to be a very difficult problem when the degree of
the divisor becomes large. For example, when E is a smooth cubic [10], the authors have a solution
to the question 6.2.2 for all (¢, 3) except for (0,e34). In his thesis, A. Gathman [20] had studied
the problem of counting relative invariants for hypersurfaces. He had shown that absolute invariants
can be calculated using those relative invariants. So we can use his program “GROWI” to calculate
relative numbers when the divisor E € P? could be any smooth curve of degree d; > 2. We have
seen the agreement of these numbers with ours. When the smooth divisor E is a line we will we will

tabulate some initial numbers that we have checked from “GROWI” as follows:

d, d, NE(A1oT) [ NE(AjoT3) [ NE(A|oTy)
d=3,d =1 21 0 0
d=4,d =1 135 80 0
d=5,d =1 393 336 195

Table 4.1: Numbers from the GROWI program.
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Chapter 5

Two pointed singularities

5.1 Introduction

We have seen earlier that counting plane curves having certain singularities (possibly more degenerate

than nodes) is a very hard problem. Let us state an enumerative question in this regard:

Question 5.1.1. Let L — X be a holomorphic line bundle over a compact complex surface and
2 :=PH"(X,L) =~ P% as defined earlier. What is N(AS o X), the number of curves in X, that belong
to the linear system H°(X L), passing through 8 — (k + 8) points in general position and having &

distinct nodes and one singularity of type X whose codimension is k?

The above question has already been studied by numerous mathematicians using several different
techniques. It has been observed that this question itself becomes increasingly difficult when the total
codimension i.e., § + k increases, as well as X, becomes more and more degenerate. In [3], Basu and
Mukherjee have given explicit formulas for the following numbers N (A‘lS o X), the number of degree
d curves having 6 different nodes and one singularity of type X, such that they also pass through the
required number of generic points where the total codimension is at most 8, i.e., 0 +k < 8. In this
section, our main aim is to obtain recursive formulas for the number of degree d curves in P? having
singularities of type X, and Xy, passing through an appropriate number of generic points, such that
the total codimension k; + k, < 6. For simplicity, we denote it by N(X; 0 X;).

In the chapter 3, we have introduced the notion of Ay singularities, now we will define another type

of singularities that we will encounter in this thesis.

Definition 5.1.2. Let f : P2 — 0(d) be a holomorphic section. A point g € f~'(0) is of singularity

type Dy, Es, E7, Eg or Xo if there exists a coordinate system (x,y) : (U,q) — (C2,0) such that
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5 Two pointed singularities

F~H0)NU is given by

Dp:yx+xX"1=0 k>4,
Es:y’+x*=0, E;:y’+y=0, Eg:y'+x°=0,

X9:x4—|—y4:O.

This question has strong consequences and a deep relationship with various developments in both
Algebraic geometry and symplectic geometry. Till 2010, there was an extensive amount of work has
been done to study & nodal curves on an algebraic surface. It includes a century’s worth of outstanding
mathematicians amongst them Kazaryan [27], Z. Ran [58], Caporaso-Harris [11], Ravi Vakil [69],
lonel-Parker [24], Tehrani-Zinger [64], [40].

Let us now ask a sufficiently general question as follows:

Question 5.1.3. What is N(X 0---0X,), the number of curves in X, that belong to the linear system
HC(X,L), passing through & — (cdx, + --- +cdx,) points in general position and having n number

of singularities of the type X1,--- X, whose codimensions are cdx,,--- ,cdx, respectively?

Note that when the total codimension }; Cd%k,- <7 then the above question has solved by Kazaryan.
A few results are scattered around the literature for the above question with a total codimension higher
than 7. We are aware of two such results due to A. Weber, M. Mikosz, and P.Pragacz ([55], [49])
where they solve the question for codimension 8 with one singular point by extending the method of

Kazaryan. For a broad overview of this subject, we refer the reader to [32].

5.1.1 Relation to Gromov-Witten invariants

Let us consider another interesting and classical enumerative problem; namely enumeration of curves
with fixed genus. To start with, we can focus on genus zero curves ( known as rational curves), which
we have already seen in chapter 1 in this thesis. Modern enumerative geometry gets accelerated due
to a systematic understanding of such kinds of problems. However, the breakthrough in this setting
comes from physics motivation. For example, the solution to counting rational curves, the theory of
Gromov-Witten invariants, and quantum cohomology due to Kontsevich-Manin and independently by
Ruan-Tian. After that study of genus g curves via stable map theory revolutionized this subject due
to many interesting works of Algebraic geometers and Symplectic geometers. Recently this subject is

also fascinating for Tropical geometers. In this setting, counting curves with higher singularities (i.e.,
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5 Two pointed singularities

genus g curves with higher singularities) is a much more difficult question and this type of question
has not been much explored. Pandharipande [54] and later Kock [36] computed rational curves in
IP? with cusp. Latter on Zinger, studied counting rational curves with cusp and some selected higher
singularities using the Symplectic geometric method. This question is indirectly related to the counting
problem in a linear system that we are studying.

Counting rational cubic through 8 generic points in P? is the same as the number of nodal cubics
through 8 generic points in P?. Next, we can think of rational quartics through 11 generic points in P2
is the same as irreducible quartics with three unordered nodes through 11 points in general position.
Hence, we can subject our obtained numbers to a related question in the stable map setting. In most

all the chapters of this thesis, we have been able to verify our numbers using the above phenomena.

5.2 Setup and Notations

The notation X throughout this thesis represents a singularity type ( of the type Ag, Dy or E}) of a
degree d curve at some point in P2, We also use the notation X to denote the space of degree d curves

having a singularity type X at some point of 2. In set theoretic notation, we can express X as
X:={([f],p) € Z x P?: f has a singularity of type X at p}.

Let us continue following the notation as earlier chapters of this thesis and [1]. In a similar manner,

we can define the space of degree d curves having two arbitrary singularities, say X; and X,,

X10Xy :={([f],p,9) € 2 xP* xP*: ([f],p) € X1. ([f].q) € X2, p #q}-

Let us now define a projectivised vector bundle over P? as 7 : PTPP?> — P2, where the fibre over each
point p is a tangent vector at the point p, known as projectivised tangent bundle over P2. It turns out
studying the space of curves with the above singularities becomes a hard question to tackle, on the
other hand, we will define an auxiliary object X which makes this question somewhat a tractable

question. We can now define the space of curves with a singularity of the above type where certain
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directional derivatives vanish along some specified direction. In particular, we will define

24, =1{(fl,l,) € 2 xPTP*: ([f],p) €A, V*flp(v,)=0 Wvel} if k>2,
2Dy :={([f],1,) € Z xPTP*: ([f],p) € Dy, V’f(v,»,v) =0 Yvecl,},

2Dy = {([f],l,) € 2 xPTP?: ([f],p) €Dy, Vif(vv,)=0 Wvel,} if k>S5,
PE, = {([f,,) € 2 xPTP?: ([f],p) € Ex, V’f(vv,-) =0 WYvel,} if k=678,
2D} = {([f),p) € Z xPTP?: ([f],p) € Dy, V> flp(v,v,v) =0, V>f|,(v,v,w) #0,

Vvel,—0 and we (T,P?)/l,—0},  if k>4.

As an example, ZA, is the space of degree d curves with a marked point p and a marked direction
v € I, such that the curve has a cusp at p and v belongs to the kernel of the Hessian.
Next, the projection map 7 : ZA, —> Ay is one to one for all k > 2. Similarly, the projection map

T : XDy — Dy is three to one. Next, we will define
‘@Al = {<[f]7 l[?) € ‘@ X ]PTPZ : ([f]?p) EA], VZf’P(vvv) = 07 \V/V € ll?}

Space ZA| is the space of curves with a marked point p and a marked direction v € /,,, such that it has a
node at p and the second derivative along with v vanishes. Hence, the projection map 7 : ZA; — A,
is a two to one map since there are two such marked directions.

Now we can define the following:

Px10P%y :={([f], I, l;) € 2 xPTP} xPTP3 : ([f], I,) € X1, ([f], L) € P X2, p #q}.

Before, we proceed further, let us make some conventions regarding certain notations. If S C

2 xP? and let T : 2 x PTP?> — 2 x P? be a map. Then S := 7~!(S) and codim(S) = codim(S).
« S represents a specific direction in a particular fiber attached to S.
« S represents attaching a fiber over S.
.S represents attaching fibers in the same direction over S (possibly at the same point).

« § denotes attaching a fiber at the first position and fixing a specific direction and a dot at the

second position denotes attaching a fiber, where the direction is not fixed.

IfSC 2 xP?xP? — §C 9 xPTP? x PTP2.
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e IfSC 2 xP2xPTP? — 'S C 2 x PTP? x PTP2.

e IfSC 2 xPTP2 xP? — S~ C 2 x PTP? x PTP2.

IfS;08, C 2 x P2 x P2, Then
e S108), C 2 x PTP? x P2,
¢ S108) C 2 x P2 x PTP2.
« S108, C 2 x PTP? x PTP2.
IfS; € 2 xP?and S, C 2 x PTP? . Then
¢ S108, C 9 x PTP? x PTP2.

¢ 08, C 9 x PTP? x PTP2.

We now set up some notation for the cohomology classes that we will encounter in this thesis repeat-

edly. First, let us define

cri=ci(L), x;:=ci(T*P?), A :=c|(§), y:= c1(Yy)

where Y9 — & and § — PT X are the tautological line bundles. These are all cohomology classes in
P2, PTP? and Z; by pulling them back via relevant projection maps, they define cohomology classes
in 2 x P? and 2 x PTP? respectively. For notational simplification, we will denote the constraints
for intersection number in 2 x P(TP?) by u := (n,my,my, 8), where the class of [u] is Poincare dual
to y"c" x| 229, For example, 1, 6+1 would mean the constraint has type (n+1,m,my,0 +1).
Then we will use abuse of notation by denoting the constraint for intersection number in 2 x TP? as
U= (n,my,my).

We will now state and prove some important lemmas involving certain properties of the underlying
singularities of the plane curve. We can now define some numbers for a singularity X or #X of

codimension k as follows

N(AT 0 s my, my, ) = (Y3 komm—2m=d g g (5

N(AS 0 PX; ny, my, my,0) = (yoa—hkm=m=2m=0=8 mym )0 (48, px)).
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Lemma 5.2.1. Let f = f(x,y) be a holomorphic function defined on a neighbourhood of the origin in
C such that foo,V fl0,0), V2f |(0,0) = 0 and there does not exist a non-zero vector w = (w1, wz) such

that at the origin V3 f(w,w,-) = 0. Then the curve f~1(0) has a D4 singularity at the origin.

Lemma 5.2.2. Let f = f(r,s) be a holomorphic function defined on a neighbourhood of the origin
in C such that fy,V f |(070),V2 fli0,0) = 0 and there exists a non-zero vector w = (wy,w) such that
at the origin V3f(w, w,-) =0. Let x = wir+wss, y = —wor+wis and fij be the partial derivatives
with respect to the new variables x and y. Then, the curve f~'(0) has a 9y-node at the origin (for
5<k<7)if fio # 0 and the directional derivatives %f defined in (5.3) are zero for all i < k and
D1 #0.

The proof of these above Lemmas follows the similar arguments that we have used to prove (4.1)
in chapter 3; it involves the study of the Taylor expansion of the curve in a local coordinate system with

appropriate change of coordinates. For the sake of completeness, we will prove the Lemma (5.2.2).

Proof. Let us consider the Taylor series expansion of f near the origin is given by

f03 3, fa0 4
Doy 4 L .1)

Flxy) =207+

2!
since by hypothesis we have f30 =0, f>; = 0 and fj» # 0. Now we will make change of coordinate
by x = ¥+ B(y) so that we can express the function as F = XFj (%,y). This implies that we can kill of

all powers of y. Assuming such B(y) exist, we can write the expression for F} (%,y) as
Fi(%.y) = Ao(&) + A1 (B)y + Aa () + - (5:2)

where we claim that B(y) is a holomorphic function and we will show the existence of B(y) by Implicit
function theorem. Recall that we want to describe the equation (5.1) as F' = XFj (%, y) by the change of
variable x =¥+ B(y). This is equivalent to saying that we need to produce a B such that F (B(y),y) = 0.

Next, we note that plugging in x = ¥+ yG(y) in the equation (5.1) we have the following

fiz fo3 fao i
0=F(G(y),y) = 7y3G(y) + ?f + ?y“G(y)4 + ?y4G(y)3 4o

Now this implies that

G(y)+ % + %yG(y)4 + %yG(yf +o=0

fiz
2!
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Then by the Implicit function theorem, G(y) exist since f1, # 0, whence B(y) = yG(y).

We will now make another change of coordinate y = y+ C() so that

~

Fy = Ag(%) + Ay (£)y* + A3 (%)) + -

A

i.e. A(%) = 0 since A>(0) # 0, this is possible. So we left with the following expression:

A

F = x(Ao(%) + A2 (8)y* + A3 (%)y” + )

Let us now consider Ag(% = Zs 6)23—1— SEX"+ - then F is given by
D, D

D 6~3 T4

F =51+ = TR T )

where §7 = Ay (%)y? +A3(%)y® +---. Thus we notice that if Ag(¥) = 0 then F = %§?7. Otherwise, we

will choose a smallest integer k such that 7, # 0. Now let us make the change of variable by

| D1 Dis2 .
— k=l k—1 k
X1 \/(k—l)!x =+ ! + -

k—1
with ¥ = fx; + O(x?) and f = (%:3') . Thus in this new change of coordinate gives us

= (fa1 +xih)97 + 2!
for some holomorphic function (xy,¥;). Now one can define y; = $;+/f +x;h then we get

F = y%xl —l—x]l‘*l

as intended. Let us recall f;; : aa,l;ajjfy o where f = f(x,y) is a holomorphic function defined on
0,0)
a neighbourhood of the origin in C2. Then we can define

2 3 2
5 5 10 5
f40, Df fS f31, Dg f60 f()3f31f50 f31f41 f()3f31 J622f31

3f12 314 fiz 311 fh

(5.3)

O

5.3 Overview of our method

In this chapter, our objective is to study the enumeration of curves with certain singularities. The
crucial aspect of the method we used in this thesis is due to A.Zinger. The fact that a curve has a
certain singularity of the type we have encountered before means that certain derivatives vanish (an

example of this fact is the Implicit Function Theorem and a version of the Morse Lemma). We usually
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interpret these vanishing derivatives as the section of some appropriate bundle. Thus, our intersection
numbers are the zeros of a section of some bundle restricted to the open part of a variety (or manifold).
Note that the region we typically have to restrict ourselves to the open part of a manifold because we are
mainly interested in enumerating curves with more than one singular point; hence we have to consider
the space of curves with a collection of marked points, where all the marked points are distinct.
Next, we observe that if the line bundle is sufficiently ample, then the sections corresponding to

taking certain derivatives will be transverse to the zero set restricted to the open part.

Remark 5.3.1. In our case, the open part of our variety/ manifold will always going to be smooth.

Next, we evaluate the Euler class of this bundle on the fundamental class of the variety/manifold.
We may hope that this number is our required number. As one might expect, and it is always the case
that we will encounter some extra contribution from the boundary. This is because the section will
usually be going to vanish on the boundary and hence give an excess (degenerate) contribution to the

Euler class.

Remark 5.3.2. Any algebraic variety defines a homology class since the singularities have at least
real codimension two. This follows from the standard results from differential topology, namely that
any singular space whose singularities are of real codimension two or more (i.e., a pseudo cycle)

defines a homology class.

As we have seen the central part of the problem is therefore to study the degenerate locus. It
turns out any enumerative problem involving degenerate singularity posses this phenomenon.

The most famous and well-studied method of computing degenerate contributions to the Euler class
goes under the name global excess intersection theory, which is developed in Fulton’s book [19].

In this thesis, we use a local intersection theory to compute degenerate contributions to the Euler
class due to Aleksey Zinger [75]. This approach never deals with taking any blowups. It mainly
involves perturbation of the relevant section smoothly and counting (possibly up to a sign) the number
of zeros of the section near the degenerate loci.

As we have mentioned earlier that we will heavily make use of the fact (3.2.1) from differential
topology. However, all most all the time we can not directly use it since we will be typically studying
some spaces that have non-smooth closure. When the set of singular points has real codimension two

or more, we will be using the following:
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Theorem 5.3.3. Let X C P" be a compact, smooth algebraic variety and let Y C X be a smooth sub-
variety, not necessarily closed. Let V — X be an oriented vector bundle having rank that is exactly

equal to the dimension of Y. The following are equivalent:

 The closure of Y inside X is an algebraic variety and it defines a homology class.

» Let s : X —> V be a smooth generic section, then the zero set of s intersect Y transversely and

intersect Y —Y nowhere.

o The number of zeros of s inside Y, counted with appropriate signs, is the Euler class of the

bundle V evaluated on the homology class [X], i.e.,
| £571(0)NX |= (e(V), [X])

Let us give a brief idea of enumerating curves with some singularity using our method.
Suppose we want to compute the number N(ZX; 0 #X,,). Then we will first find some ZX; for
which N(Z X, 0 #X) has already been calculated and most importantly which contains X, in the
closure. In particular, we want #X; o0 #X,, to be a subset of m. Then we have to describe
the closure of ZX; and #X; 0 X explicitly as
PX; = PX; U PXp U B
PXj0 PX; = PXj0PX; U PX 0(PE;— PXj) U By
PXj0 PXj = PXj0PX; U PXjo(PEm U By) U By
where %), 98, may contain one or more degenerate singularities known as degenerate locus which
is the most difficult part of our method. The central essence of our method is that we will explicitly

describe the degenerate locus and we will calculate the multiplicity to which it contributes to the

Euler class. Note that X0 X ; = &X;0 £X;. Our main focus of this project is to compute %,
explicitly which in turn same as studying the collision of two singularities more degenerate than nodes

with at most total codimension of the two singularities.

Definition 5.3.4. A holomorphic line bundle L — M over a compact complex manifold M is said to
be k ample if L ~ L(?” © & — M for some n > k, where Ly — M is a very ample line bundle and

& — M is a line bundle such that the linear system H°(M &) is base point free.

All the results that we obtain in this thesis are valid satisfying some ampleness conditions. The

ampleness criterion is imposed to prove that the sections we encounter are transverse to the zero set.
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5 Two pointed singularities

However, the bound that we impose is not at all optimal bound. Note that the intersection numbers that
we compute need not always be enumerative, i.e. each curve appears with a multiplicity of one in the
linear system. Thus ampleness plays a crucial role to study certain intersection number is enumerative

or not.

5.4 Recursive formulas

We are now ready to state the recursive formulas that we have obtained till now. We will only con-

centrate on the new recursive formulas that we have obtained up to codimension 6.

Theorem 5.4.1. Let the total codimension of the two singular points is 2, then

N(PA10 DAy, 1, i) =N(Aro PAy, w, i) +N(A1o DAy, Wy, f)+2 N(A o PAy, pipey, i)

provided the line bundle is sufficiently (2d + 2)-ample.
Theorem 5.4.2. Let the total codimension of the two singular points is 3, then

N(PA10 PAy, 1, i) =N(PA1o PAy, U, L) +N(PAio PAy, W, fav1) +N(PAro DAL, W, fint1)

—4AN(PA3, W+ 1) = 2N(PDy, pi+ i) —=N(PDy, p+ 1) —3N(PDa, i+ i)
provided the line bundle is sufficiently (2d + 3)-ample.
Theorem 5.4.3. Let the total codimension of the two singular points is 4, then

N(PAyo PAy, 1, L) = N(PAjo PAy, u, i)+
N(,@AIO,@A% Hp1, ﬂ—'—N(‘@AlOf@AZ? M1, [L)_3N(‘@A47 ‘U,+ﬂ)

provided the line bundle is sufficiently (2d +4)-ample.
Theorem 5.4.4. Let the total codimension of the two singular points is 5, then

N(PAyo PAj, 1, i) = N(PAyo PAy, U, L) +N(PAyo PAs, U, flay1) +3N(PAyo PAs, U, [ig11)

provided the line bundle is sufficiently (2d + 5)-ample.
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5 Two pointed singularities

Theorem 5.4.5. Let the total codimension of the two singular points is 6, then

N(PAzo PAs, 1, i) = N(PAyo PAs, U, i) +N(PAyo PA3, lint1, L)
+3 N(PAyo PAs, o1, i) —4 N(PAg, w+ 1) — 5 N(PDg, u+ i) — 6 N(PDg, u+ i)
provided the line bundle is sufficiently (2d + 6)-ample.
Remark 5.4.6. Note that the various numbers upto codimension 6, for example the numbers corre-

sponding to the one pointed singularities, i.e., N(ZAy), N(ZDy) and N(ZEy) such that k < 6 and

the formulas for two pointed singularities i.e., N(Ay o PA;), N(A| o ZDy) such that k < 5 can be

found in [1], [6] and [3].
5.5 Proof of recursive formulas

In this section, we will prove the recursive formulas that we have obtained assuming the corresponding
closure and multiplicity claims. We will prove the closure and multiplicity claims in our upcoming
paper [52]. Assuming these technicalities we will present the main ideas to prove our formulas. We

will start with a known theorem in [2]

Theorem 5.5.1. Let yu = (n,m,r,p®) and fi = (ii,m,7,0) tuples of non negative integer. Then

0, if p6 =0
N(Ajo PA;1, u, i) = N(Ajo PAy, 1, fi), if po =1
N(Ajo PAy, Uit po—1, L) —N(A1 LAY, U +1.p0—2, (L)
provided the line bundle is sufficiently (2d + 2)-ample.

Proof. The proof can be found in [2], Theorem (1.2). O
Theorem 5.5.2. Let us consider W = (n,m,r) and fi = (i, m, 7, 0) tuples of non negative integer. Then
N(Ayo PAy, b, i) =
ON(Ajo PAs, u, L) +2N(Aj0 PAs, tnr1, fi)+
2N(Ayo PAz, Wmyv1, L) +3N(PAs, w+ 1) +3N(PDy, 1+ 1)
provided the line bundle is sufficiently (2d 4 4)-ample.

Remark 5.5.3. Note that the explicit formula for N(A| o &Dy) has been studied [1]. The nontrivial
closure of space Ay o Dy has been analyzed there. Thus we can find a recursive formula to compute
N(Ay 0 PDy) by studying the section corresponding to the det(V? f) over the space A1 o ZD,. W can

analogously follow the proof of the above theorem to complete the recursive formula for N(Ay o & Dy).
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5 Two pointed singularities

Proof of theorem 5.5.2
We have defined the space
Ajo PAy = {([fl,q1,13,) € Z x X x PTX : fhas a singularity of type A; at g1, type A> at g2,
V2f(v,.) =0,q1 # q2, Vv € Iy, }
Let us denote [ufi] to be the generic cycle representing the homology class Poincaré dual to
& Xrln I irzhz RTAEY) 01,04 (it 1+ 21y +2m)+-6-+3)

We will now define the intersection number considering the following line bundle that is induced

by the determinant of the hessian map, namely:
Y, = A1 0 PAy — Ly =7 2 AT X L2

defined by
(VA0 V()
Vas(If), a1, ) (f 2 veow) = det <v2f<w, V) sz(W»W)>

We will prove shortly that L is sufficiently (2d +4)-ample, then this section is transverse to the zero
set. Next, let us define

P ::ZI 9] e@Az —Zl o @Az.
Hence
(e(Lier), [Aro PA)N[Uf]) = N(Ay PAs, 1, i) + Capnpup (5.4)

where Cry; denotes the contribution of the section to the Euler class from the points of %N pfi.
Here we are using the result from [3], i.e we know the explicit description of the boundary Z N puji.
Although the whole boundary is not relevant while computing the contribution to the Euler class; only
the points at which section vanishes are relevant.

Hence we conclude that using the result [3], Equation(3), Lemma 6.3, we know
B(q1,q2) = {([f}q1,lg,) € B q1 = @2} = PALUP Dy
Hence the total contribution from boundary to the Euler class is
my N(PAq, 4, i) +my N(PDy, u, i)

we will now justify the multiplicities m; and m, respectively by proving the following claims
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5 Two pointed singularities

Claim 5.5.4. If ([f],q1,14,) € PAsN 1//A_21 (0), then this section vanishes on ([f],q1,lq,) with a multi-
plicity 3.
Proof of the claim 5.5.4

It is shown in [2], Lemma 6.11

{([f]7QIvlq1) €A OWAQ} D A@A4

and

{([f],91,1g,) € A1 0 PA}NAPAs = ¢

Furthermore, if ([f],q1,l;,) € APA4 then all the small solutions (] ft],q’l,lqrz) € Aj o PA, are con-

structed as follows:
A =0, $=0, x#0 (butsmall)

fi “Qfsft 2 3
oy = 2_Oxt +0(x;) 5.5
24"
A = ==+ ()
Next, using the above-constructed solutions we see that the multiplicity of the equation
Vif(vv)  V2F(rw)\
e (g /) ) = 60

is 3, which justifies m; = 3.
In a similar manner we can justify m, = 3. Hence, the total contribution from all the components

of type %(q1,1,,) equals
3N<<@A47N7ﬁ)+3N<<@D47“7ﬁ)

Thus plugging in the value for %(q1,1,,) in the equation (5.4) we get the final recursion formula.
Now let us now justify the transversality. Without loss of generality let us assume that gp = [0:0: 1]
and ¢; = [X; : Y : 1]. Since we have g # ¢» so X1,Y; both can not be zero; let us assume that X is

nonzero. The consider the polynomial
Nder = (X =X1)* X> 2774

we note the following properties of 1.

ndet(qi) :07 VZ: 172
VNau(g,) =0, Vi=1,2 (5.7)
(ffzoffoz - fti )|q1 7& 0
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5 Two pointed singularities

Now consider that the curve y: (—¢,&) — 2, given by

v(t) = ([f +tNaels 91, 92)

We see that because of equation (5.7), the curve ¥(¢) lies in Aj o ?A;. We now note that

{Vym, HY (0)) = (g foor = fi ), (58)

(171, qp» 112)
then we observe that the right-hand side of the above equation is nonzero, hence the section vy, is

transverse to zero. This completes the proof.
Proof of the theorem 5.4.1: computation of N(ZA| o ZA, i, 1)
Let us recall that
PA, oZl ={(f), Iy, 1)) € Z x PTP? x PTP? : f has a singularity of type 274 at g,
(7] 1p) €A1, p#a}.

Let [ufi] be a generic cycle, representing the class

[‘u‘a] _ yﬁd—(nl+m1+2m2+6+n1+m1+2m2+p9+2)crlllCrlnllpek erlnlxrznziﬁnli’znz

We now define a section of the following line bundle
Y, PA oAl — Loya, =750 7 3f

defined by {‘P{@Al ([f]alqwlt{z)}([f]vva V) = Vf\p (V’ V)

where ¥ — PTP? be the tautological line bundle. We will show shortly that the above section is

(5.9)

transverse to zero set with some ampleness condition. Next, let us define

B .= PA ozl — PA oA_I

Hence
(e(Lpa,), [PA10AN[ui]) = (5.10)
N(@Alo,@Al,,ﬂ,,u)Jngwﬂ. (5.11)

where the notation C,; denotes the excess contribution of the section W 4, to the Euler class from
the points of ZNuji. We now describe %(l,, 1,) as before. We only need to consider the component

of % where two points ¢, p become equal, i.e.,

By, 1p) ={([f], lg: Ip) € B |q=p}
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5 Two pointed singularities

Let us define a few things. Let v be a fixed non zero vector that belongs to [,,. Let us define the subsets

W, and W, as
Wi = {([f], lg, Ip) € PA10A, 3V2f|qp Z 0},
Wa = {([f], L, 1) € PA; 04, :sz‘qp =0},
(5.12)
We claim that
B(ly,1,) W,y ~ PAsOW, (5.13)
B(ly,1,) "Wy = Dy Wy (5.14)

We can now explicitly describe 4, i.e., using the equations (5.13), (5.14) we can conclude that
B~ PA;UD, (5.15)

We claim that the contribution to the Euler class from each of the points of 22A3 N i and 54 nup
are 0 and 3 respectively. Note that when we intersect 2A3 with pfi, we will get an isolated set of a
finite number of points. Hence, our section ¥ g4, will not vanish there. Thus it does not contribute

to the Euler class. Next, let us make the following claim

Claim 5.5.5. If ([f], lg, I,) € D4 ﬁ‘Pf@lAl (0), then this section vanishes on ([f|, lg, 1,) with a multi-

plicity 3.

Therefore the total contribution from the boundary to the Euler class is
3Ny, 1+ ). (5.16)

Plugging this contribution in the equation (5.10) we get the final formula as (5.4.1).
We will now show that the section W 4, is transverse to the zero set.

Note that we want to prove A o ZA is a smooth complex submanifold of 2 x (2 TP?)? (pro-
videdd > 26 +1). We will prove even a stronger statement: we will show that Z2A| 0 2A; is a smooth
complex submanifold of 2 x (ZTP?)? and the section ¥ 5 4, are transverse to zero. Our desired claim
follows immediately from this statement since ZZA; o A, is an open subset of ZA;| o ZA;.

Let us now begin by showing that ¥ 54, is transverse to zero if d > 26 + 1. Suppose

{‘P!ﬁm([ﬂ, q,s qz)}<f®V) =0.
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5 Two pointed singularities

Without loss of generality, we can assume g, = [0:0: 1] and ¢, = [X; : Y} : 0]. Since all the g, are
distinct, we conclude that X,Y both can not be zero. Let d; and d, be the standard basis vectors for

TP?| g, (corresponding to the first two coordinates). Hence
lg, = [a10x+azd,] € IE”TIE”2|q2

for some complex numbers a,a; not both of them are zero. Without loss of generality, we can assume

lg, = [0]. Let us now consider the homogeneous degree d polynomial, given by
Py 1= (X X2 X2 24
and consider the corresponding curve 7,,(z). We now note

(V¥ onl 1,11 O 2 020) = Vopy, (980 #0

Thus we conclude that the section is transverse to zero. Hence the theorem is complete assuming the

equations (5.16) and the claim5.5.5.
Proof of the Theorem 5.4.2
We have defined the space
P10 DAL= {(f], Iy 1) € 2% (TP ([f1,1y) € A1, (], ) € PAL, 4, #4,)-
Let [ufi] be a generic cycle representing the homology class Poincaré dual to
CVIH57111x71n1i71h1x72n2i27lzlGipeyﬁd—(nl+ﬁ1+m1+r711+2m2+2rh2+9+p9+3)‘

We now define a section of the following line bundle

Pon, : PAI0 PA| — Lga, =707 @ (" TP /) 0 %4,  givenby

{¥ 2, ([f], lqlv lqz)}<f®v®w) = sz’qz (v, w).

We will prove that this section is transverse to zero provided it satisfies the ampleness condition. Next,

let us define
B = PA 0o PA| — PA o PA,.
Hence
(e(Ln,), [PAr0 PAIN[ufi]) = N(PAIPAs, i, 1) + Coprpus- (5.17)
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5 Two pointed singularities

where Cyny denotes the excess contribution of the section W »4, to the Euler class from the points
of ZNufi. We now give an explicit description of . As before, we only need to consider the
component of % where two points ¢, become equal. Define #(l,,, I,,) as before. We will study the

boundary locus #(l,,, l;,) as we do in the previous computation and we will show in [52] that

Bly 1,,) ~ PA3 U DDy U DDy U Dy, (5.18)

For example, we observe the following:
7~ p = 1
—+
( ) \ / \

Figure 5.1: When two &?A; collide we get ZAs.

Furthermore, we also prove that the excess contribution from &?A3 N pfi to the Euler class is 4. Sim-

ilarly we will prove that the contribution from &2, N uji and 22, N pufi are 2 and 1 respectively,
while the contribution from 9?4 N u is 2 and the contribution from Ds N u is 1. Hence the total contri-

bution from all the components of type #(l,,1,) equals

AN(P A3, + 1)+ 2N(PDy + 1) + N(P Dy, i + i) + 2N (Dy, o + 1) +2N(Ds, p + o).
(5.19)

Plugging in the degenerate contribution from equation (5.19) to the equation (5.17), hence giving us
Theorem 5.4.2.

Next, we want to prove A o ZA, is a smooth complex sub-manifold of 2 x (PTP?)? (provided
d > 26 +2). We will prove a slightly stronger statement: we prove that ZA; o ZA; is a smooth
complex sub manifold of 2 x (PTP?)? and the section ¥, 4, and are transverse to zero. Our desired
claim follows immediately from this statement since ?A| o #2A, is an open subset of PA| o0 PA,.

We will begin by showing that ¥, Ay is transverse to zero if d > 28 + 2. Suppose

{TL@AZ([f]a q, QQ)}<f®V®W) =0.

Without loss of generality, we can assume ¢, = [0:0: 1] and ¢, = [X; : ¥; : 0]. Since all the g, are
distinct, we conclude that X,Y both can not be zero. Let d; and d, be the standard basis vectors for

TP?| g, (corresponding to the first two coordinates). Hence

lg, = la10x + a29y] € PTP?|,
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5 Two pointed singularities

for some complex numbers ap,a;, both of them can not be zero. Without loss of generality, we can

assume ;= [dx]. Let us now consider the homogeneous degree d polynomial, given by
P, i=(X=X)* XYz

and consider the corresponding curve 7, (f) analogously as before. Then the transversality follows

from the computation of the derivative of the section ¥ ,, along the curve ¥, (t) as before.

Proof of the Theorem 5.4.3

We have defined the space
PA0 PAy={(f], lg,, lg)) € Z2x (PTP*)*: ([f], lg,) € PA1,  (If], lg,) € PAs, 4, #4,}-
Let [ufi] be a generic cycle representing the homology class Poincaré dual to
C7111ElillelnliflhleznzighzlGipeyad—(nl+f11+m1+ﬁ11+2m2+2rﬁ2+9+p9+4)‘
We now define a section of some bundle as follows:
Pon, : PA1o PAy — Laa, =707 @ (" TP /§)* 0 %d,  givenby

{Pon (1], Lo, 1g,)}(Foveow) == V2 flg (vw).

We will shortly prove that this section is transverse to zero set satisfying the ampleness condition.

Next, let us define
B = ml o ,@Az —Wl o) ,@Az.

Hence

(e(Lony). [PA10 P NU)) = N(PAro PAg, t, 1)+ Comrp. (520)

as before, the notation Cny; denotes the excess contribution of the section W »4, to the Euler class
from the points of Z N ufi. We now give an explicit description of 4. As before, we only need to
consider the component of # where two points become equal. Define %(l,, I,) as before. We will

study the boundary locus analogously to the previous computation and we claim that

By, 1)~ PAL U PDs U PPs U PDs U PDs. (5.21)
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5 Two pointed singularities

Furthermore, we show that the contribution from &?A4 N uji to the Euler class is 3. Similarly the

contribution from ZDs N pji, ZDs N uji and 37355 Nuftare 2, 1 and 1 respectively, while the con-
tribution from @fﬁs N wft is 2. Hence the total degenerate contribution from all the components of

type #(ly, 1,) equals
3N(PAy, p+i1) + 2N(PDs, u+ji) + N(PDs, u+ji)
F2N(DPDs, u+ji) + N(PDs ,u+i). 622
Then plugging the above for Cyr, in the equation (5.20) giving us Theorem 5.4.3.

Let us now prove the above transversality and multiplicity claims. Let us continue with the

same setup as earlier computation. Let g, = [0:0: 1] and g, = [X, : Y» : 1]. Consider the polynomial
C,=(X—-X)*xyzi~*

and consider the corresponding curve as 71 (¢) in a similar fashion as we do for the computation of
N(PAyo PAy,u,ji). We note that the section W4, is transverse to zero by computing the derivative
of the section along 7, (t). Hence, 2A; o0 A, is a smooth complex submanifold of 2 x (PTP?)2.

Hence this completes the proof assuming the equation (5.21), the multiplicity claim (5.22).
Proof of the Theorem 5.4.4

We have defined the space

PAyo Phy = {([f), Iy, Ig,) € 7% (BTEP: ([f], ) € PAs, (), ) € PAs, 4, #4s).

Let [ufi] be a generic cycle representing the homology class Poincaré dual to
c11115}111xr1n1ir1h1xr2n2igﬁzlGipeyad—(nl+ﬁ1+m1+r711+2m2+2r712+9+p9+5)‘

We now define a section of the following bundle

53

Yo, PAro PAy — L, =75 Q7 ®}/§>§l, given by

{Woas([f], Ly, 1g,)}(f @ V) i= V2 flg, (mwv).

We will prove that whenever the ampleness condition is satisfied, the above section is transverse to

the zero set. Next, let us define
B = @Az o ,@Az — ,@Az o ,@Az.
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5 Two pointed singularities

Hence
(e(Lpa,), [PAr0 PAs|N[u]) = N(PAro PAsz, . i) +Cary- (5.23)

As before, the notation Cq 5 denotes the excess contribution of the section W »4, to the Euler class
from the points of ZNujfi. We now give an explicit description of . As before, we only need
to consider the component of % where two points become equal. Note that the whole boundary is
not relevant while computing the contribution to the Euler class; only the points at which the section
vanishes is relevant. Define %’(lq1 , lqz) as before. We will analogously study the boundary locus as

before and we claim that

Blg, \lg,)) ~ PAs U PEg (5.24)

Furthermore, we show that the contribution from Z?As N u is 3. The contribution from & %N u and

PPN 1 are 0 respectively, while the contribution from ZE¢ N i is 16. Hence the total boundary

contribution from all the components of type %(ly , Iy, ) equals
3N(PAs, u+ i) + 16 N(PEs, u+ i) (5.25)

Then plugging the above for Cynyj in the equation (5.23) giving us Theorem (5.4.4).
We now need to show that 24, 0 #As is a smooth complex sub manifold of 2 x (PTP?)? and whence
W4, is transverse to the zero set. Let us now continue with the earlier setup. Let g, = [0:0: 1] and

g, = [X1 : Y1 : 1]. Next, consider the polynomial
Goi=(X—Xx))>x3 747
and consider the corresponding curve 50(¢) as
To(t) = (F+1G30, Ly, Ig,)-

Then by computing the derivative of the section W4, along ¥30(¢) we can conclude the section Y4,
is transverse to the zero set. Hence the proof is complete assuming the (5.24) and the multiplicity

claim (5.25).
Proof of the Theorem 5.4.5

We have defined the space
Phyo PAs:= (), Iy, ly,) € 7 x (BTPV: ([f], Iy) € PAz,  ([flly,) € PAs, 4, #4).
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5 Two pointed singularities

Let [ufi] be a generic cycle representing the homology class Poincaré dual to

C'I” 5’;1x’1n1i’;11x’2"2fg"21elpeyad—(nl+ﬁ1+m1+ﬁ11+2m2+2ﬁ12+9+p9+6)‘

We now define a section of the following line bundle
Y pa, : PAyo P Az — La, ::7@6@7“3@ ]Péi, given by

We will prove that this section is transverse to zero set satisfying some ampleness condition. Next, let

us define
B 2:WZO,@A3 —%zo@Ag,.

Hence

(e(Lipa,). [PAro PAS|N[ufi]) = N(PAs0 PAs, 1, 1) +Coarpp. (5.26)

where Cny; denotes the degenerate contribution to the Euler class from the points of N ufi We
now describe the boundary 2 explicitly. As before, we only interested to the component of % where
two points g, become equal. Next, define (lq17 lqz) as before. We will follow the exact same path

to study #(ly, ,lq,) and we will claim that

By, lg,) ~ PAg U PDs U P (5.27)

Furthermore, we show that the degenerate contribution from Z?A¢ N wfi to the Euler class is 4. Anal-
ogously, the contribution from 53256 N W is 5, while the contribution from @D% Nuf is 6. Hence

the total contribution from all the components of type %4 (lq1 , lqz) equals

AN(DPAg, u+fi) + SN(PDg, u+ii) + 6 N(ZDg, u+ i) (5.28)

Hence, plugging in the value of Cgnyp in the equation (5.26) giving us Theorem 5.4.5.
Let us now continue with the same setup as earlier computation. Let g; = [0:0: 1] and g, = [X> :
Y, : 1]. Consider the polynomial
Go = (X —X2)? X3 2473
and consider the corresponding curve as %,,(¢) in a similar fashion as we do for the earlier computa-
tions. We note that the section Y4y, is transverse to zero by computing the derivative of the section
along 7, (t). Hence, ZA30 PA; is a smooth complex sub manifold of  x (PTP?)2. Thus the proof

is complete assuming (5.27), and the multiplicity claim (5.28).
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5 Two pointed singularities

Remark 5.5.6. Note that if 6 or pO is equaled to zero then we are not in the projectivised space
anymore. Hence, no direction is involved. Therefore our recursive formula for 8 or p0 =0 will

recover the corresponding codimension 6 numbers computed earlier by Kazaryan [27].
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Chapter 6

Conclusion and future research

6.1 Conclusion

Our area of research is enumerative geometry. Gromov-Witten’s theory and the related structures
lead the path of modern enumerative geometry. As a result beautiful solutions to various classical
enumerative problems some of which were long-lasting open problems, are completely understood.
For example, the problem of counting genus g curves in P? passing through 3d — 1 + g general points
in P? is well understood.

Our research interest can be divided into two parts looking at the nature of the enumerative prob-
lems. Broadly speaking my interest can be localized by saying that my focus is on counting singular
curves some times it might have a large order of contact with some divisor in a linear system and
Gromov-Witten theory and its related structures. All of these questions have a long history that traced
back to the eighteenth century or even before. For example, one can look at ([72],[30]), for a more

detailed overview let me refer the reader to ([32]).

We conclude our doctoral thesis as follows. We consider the setting is degree d curves in I3, that
are rational and are contained in a plane. The analogous problem in P> was open until Kontsevich’s
breakthrough result revolutionized the field. The setting we choose is one higher dimensional count,
but even more importantly, can be interpreted as a “family version™ of the “static version™ studied by

Kontsevich. More precisely, we studied

Theorem 6.1.1 (A.Paul, R.Mukherjee and R. Singh [51]). There is an explicit recursive formula for
counting rational degree d curves are there in P> whose image lies in some P? (known as planar

curves) passing through s points and intersecting r lines in general position such that r+2s = 3d + 2.

We have discussed this in greater detail in the second chapter.
Next, in the third and fourth chapters we have considered the study of plane curves with singulari-

ties in a linear system. Here we consider curves that may be singular, and/or are tangent to a divisor,
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in a possibly singular way, as well as possibly satisfy some constraints on the directional derivatives
in specific directions. To deal with such situations we use differential topological methods.

In this direction we have obtained our first result (3.1). Next, we consider another twist on the
setting. Namely, here we require the rational curve to have higher tangency to a fixed divisor. This
higher tangency is encoded by an integer vector k. Recursions for such counts are more difficult to
prove. Here we have presented (4.3.1).

Finally we consider the enumeration of curves with two higher singularities, the permitted singu-
larities are required to have some vanishing directional derivatives in specified directions. We have
studied the counting problem of degree d curves in P? having any two degenerate singularities of type

Ay such that the total codimension of the two singularities can be at most 6, i,e., (5.4.1) to (5.4.5).

6.2 Future Research

Let us define a planar curve in IP? to be a curve, whose image lies inside a P2. In [51], jointly with R.
Mukherjee and R.K. Singh, we have studied the enumeration of genus-zero planar curves in a moving
family of P2. Moreover, we can say have studied the parallel question of counting stable rational
maps into a family of moving target spaces. This question can be thought of as a family version of the
famous question of enumerating rational curves. We have used the famous WDVV equation to obtain
the above result. Now in recent times, the localization technique became one of the most powerful
methods to study enumerative problems. Nemours problems have been successfully studied via local-
ization in enumerative geometry where the WDV'V equation does not provide any useful information.
The first proof of genus-zero Mirror symmetry was proved using the localization technique by A.

Givental [20].

Now we want to study the result obtained in [51], using the localization technique. This
enables us to compute the numbers for planar curves directly. This project will be a re-derivation of a
previously known result using a completely unrelated technique that has no relation with the previous
method.

After knowing all these results for the genus-zero case, we want to study the following:

Question 6.2.1. How many genus one degree d curves are there in P* that are tangent to a fixed
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divisor at multiple points in P* passing through an appropriate number of generic points?

6.2.1 Stable maps and relative invariants

A great body of work has been done to understand Gromov-Witten invariants and the underlying
geometric structures that it carries, yet Gromov-Witten invariants are unclear in general. A parallel
interesting study would be the stable maps satisfying certain incidence conditions to some fixed or
“variable” divisor. These questions are of great interest known as the relative Gromov-Witten invariant
theory. A. Gathman ([20],[22]), in his thesis, started solving the genus 0 and 1 relative invariant count,
and no further development is known. He had shown that the study of a relative invariant is important
by showing that the absolute invariants can be calculated using those relative invariants.

Counting relative invariants even in P> turns out to be a very difficult problem when the degree of

the divisor becomes large. Let us ask the following question:

Question 6.2.2. Let E C P? be a smooth divisor, and consider & = (a1, 0, --) and B = (B1, B2, --).
How many degree d rational plane curves in P> meet E at oy, “fixed” points with order of contact k
and B; “moving” points with order of contact | passing through 3d — 1 — Y (kay. + (I — 1) B;) points in

IP? in general position, if all contacts with D occur at unibranched points?

In [10], the above question has been solved completely when E is a line, in fact, implicitly they
have defined relative Gromov-Witten invariants in the process of generalizing the theory of Gromov-
Witten invariants to higher genus. Then Vakil [68] extended the result when E is conic in the stable
map setting. After that Cadman and Chen extended the result for a smooth cubic [10] for all («, )
except for the case (0,e34) (i.e., except for maximal tangency). The above question itself is not yet

completed for divisors of a large degree and any order of contact.

6.2.2 Stable maps with higher singularities

We have seen an extensive body of work that has been studied involving singularities in a linear
system. Analogously one can think of singularity questions in the setting of stable maps. In particular

one can ask the following question:

Question 6.2.3. How many genus g degree d curves are there in P> “having a Ay, k > 27 singulari
g g g y

passing through appropriate number of points in P* in general position?
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It turns out the above problem is extremely difficult provided the concept of having a Ay, k > 2
singularity in this setting is understood. There are only a few results are known such as ([76],[77])
solves the question (6.2.3) for cusp, D4 and Eg. The question of enumerating genus g curves involving

higher singularities remains unexplored.

6.2.3 Counting singular curves in a linear system

We will now describe some developments in the setting of a linear system. We will begin by the

following question:

Question 6.2.4. Let L — X be a holomorphic line bundle over a compact complex surface and
2 :=PH (X ,L) = P% be the space of non zero holomorphic sections upto scaling. Let (8;,---,8,)
are n-tuples of non-negative integers. What is N (.’%ﬁf‘ . -IS"), the number of curves in X, that belong
10 the linear system H°(X, L), passing through &, — (81cdx, + - -+ S,cdx, ) generic points and having

n number of singularities of type X; for i = 1,--- ,n whose co-dimensions are cdx, respectively.

We will briefly mention the development of the above question a little later. Let us fix a complex
compact surface to be CPP? and define the concept of tangency to some divisor. Then we will describe
the most general question one can ask in this setting and subsequently, we will discuss the correspond-
ing development.

Let us fix a divisor E € P2. We now define what do we mean by saying a curve in P2 is tangent

to E to a certain order, i.e

Definition 6.2.5. Let us consider that the divisor E is a fixed line in P?. Let f : P> — O(d) be a
holomorphic section. The curve is tangent to L of order k at the point g € f~(0), then there exists a

coordinate system (x,y) : (U,q) — (C?,0) such that f~'(0)N% is given by
y+x =0
Now we are ready to state the most general question one can ask in this setting:

Question 6.2.6. Let us consider (Op,,-- - ,OF,) be al-tuple, (O, - , Ok, ) be am-tuple and (ky,--- ,k,)
be a n-tuple of non-negative integers. Let there are a total of 1 +m+ n points in P? in general position
out of which | number of points are outside E and m + n number of points are in E. Then we will
define the number

15 OF, .0
Nd(Z{lFl . o F’%IEI ---%S,Em Tk, ---Tu,), the number of degree d curves in P2, that passes through
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appropriate number of generic points, having 8p, number of singularities of type X; at | number points
outside E, which are denoted by %?F’ Or, number of singularities of type X; at m number points on the
divisor E, which are denoted by %?E" and the curve is tangent to E of order k; at n number of smooth
points in E.

1) Or, .0
What is Ng(X) .. %1% x0T, Ty )?

Remark 6.2.7. Note that the above question for | = 0 implies that we want to count curves with
singularities and tangency conditions in addition to that the singularities lie on the divisor. It turns
out the idea of solving the question (6.2.6) for | = 0 gives a very good understanding of the question
when m,n = 0. In other words, counting curves with degenerate singularities is a difficult problem
and the geometric behavior of this question is not systematic at all. However, for | =0 case behaves

nicely and the solution implies the enumeration of curves with singularities which I intend to explore

further.

The above question in such generality is open till the date. However, in the literature, this ques-
tion in some special situation classically understood which brought several branches of mathematics
together. We will now describe the development of the above question in some special situations.
Along the way, we will describe our contribution to this question.

We will start by mentioning the recent motivating result by ([25],[66]) which explains that there
exists a universal polynomial in terms of chern classes that count the numbers for the above problem.
Very recently in [41], the author proved a generalisation of the famous Géttsche Conjecture for a rela-
tive effective divisor C on a smooth projective family of surfaces. Finally, they apply their method to
calculate node polynomials for plane curves intersecting general lines in three-dimensional projective
space.

Let us consider that m,n = 0 for the question (6.2.6), i.e, the number of a singular point lying on
the divisor £ and the number of points where tangency occurs are zero then (6.2.6) reduces to the
question of counting curves with various singularities which is an open problem. When all the singu-
larities are nodes then this question has been extensively studied by algebraic geometers from various
perspectives. In this direction, some beautiful results can be found in ([40],[8], [30]), etc. Next, when
the singularities are more degenerate than nodes there are only a few results available in the literature
such results include amongst all ([15], [27], [29], [74]).

Main results of the papers ([2], [1], [3]) has some partial solution to the question (6.2.6) namely,
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for two singular points and the first singularity is a node and the second singularity is any singularity
of codimension & i.e, we have a solution for Ny (A‘f%) such that k+ 6 < 8. So jointly with my advisor
Ritwik Mukherjee and R. Singh we are working on the problem (6.2.4) for two singular points when
both singularities can be any singularity such that the total codimension is 9. This work is in progress
and we have shorted out this question till the total codimension is 6. Next codimensional stratum i.e,
7,8 and 9 codimensional study is in progress.

Next, when m = 0, and the singularities are all nodes then the question (6.2.6) is completely
solved by Caporaso-Harris ([11]). As recently as 2020, [16], the authors found a recursive formula
for the number of rational curves maximally tangent to a given divisor using the WDVV equation.
This problem is also of great interest in Symplectic Geometry. In their recent paper in 2019 ([48]),
D. McDuff and K. Siegel use methods from Symplectic Geometry to count rational curves with max-
imal tangencies to a divisor in a Symplectic Manifold.

Unfortunately, there is almost no progress when the singularities are more degenerate than nodes.
There are some results in the literature when the singularity is a cusp, we will refer the reader to ([15],
[77]). When [,m, and n all are nonzero and the singularities are nodes then there are some partial re-
sults scattered in the literature, and there is almost no result available for singularities more degenerate

than nodes. Finally, we want to understand the question (6.2.6) for higher singularities.
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