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ABSTRACT

We have investigated the phase behavior and dynamics of a binary colloidal mixture of
soft spheres subjected to an external repulsive potential of both symmetric and asymmetric
form using canonical ensemble molecular dynamics simulations. At low volume fractions,
in the presence of a Gaussian potential we studied the temperature dependence of the diffu-
sivities of both the particles at low temperature regimes and found out that the larger com-
ponents of the mixture deviate from the general Arrhenius behavior in the diffusion process.
The depletion interaction between the external potential barrier and larger component in-
creases with decreasing temperature which makes the effective activation energy for barrier
crossing temperature-dependent, leading to sub-Arrhenius diffusion in larger particles. The
smaller particles follow the Arrhenius law in their diffusivities as their activation energy is
temperature independent. In a classical system like ours, exhibiting a sub-Arrhenius diffu-
sion is seldom reported in the literature before. We further studied the effect of depletion
interaction at a higher volume fraction of the system and found that above a certain volume
fraction, which is much less than the freezing volume fraction of individual components,
the large particle rich phase forms a crystalline domain in the region of the external barrier.
Because of the crystallization process, the diffusion of larger particles reduces sharply at
low temperature and high volume fractions leading to a cross-over from sub-Arrhenius dy-
namics to super-Arrhenius dynamics as we increase the volume fraction. The dependence
of these properties on the system size has been also investigated and found to be indepen-
dent of the system size for larger system sizes, but the scaling of the dynamical properties
of the larger components break down at smaller system sizes. We further expand our inves-
tigations to asymmetric Gaussian function as the external potential and studied the effect
of depletion interactions on the structure and dynamics of the colloidal mixture. The dif-
fusivity of the larger particles exhibits a cross-over from sub-Arrhenius to super-Arrhenius
behavior as the asymmetry in the external potential increases, while the smaller particles

show normal Arrhenius behavior for all asymmetry parameters and temperatures.
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Summary

The primary aim of this thesis is to extensively study the role of depletion interactions in
a binary colloidal mixtures of soft spheres under the influence of external potential barrier.
The structural and dynamical changes are governed by the depletion interactions between
the larger components of the mixture with the external potential barrier, which originates
completely because of the entropy of the smaller particles in the mixture. This influences
the overall diffusion process of the particles and its temperature dependence.

We have investigated the phase behavior and dynamics of this binary mixture of soft
colloidal particles by using classical molecular dynamics simulations in a canonical ensem-
ble. In the presence of symmetric potential, the depletion interactions between the external
potential barrier and the larger components in the binary mixture significantly alter the
structural and dynamical properties of the binary mixture. The effective attraction of larger
particles towards the barrier leads to phase separation of the mixture into a large particle(])
rich phase and a small particle(s) rich phase. The dynamics of smaller particles significantly
slow down at low temperatures at intermediate times similar to the supercooled liquids, even
at quite low volume fractions. At lower temperatures, the larger components diffuse faster
than the smaller ones due to this depletion interaction. The temperature dependence of dif-
fusion of each component also shows interesting behavior. The larger particles undergo
sub-Arrhenius diffusion while smaller particles obey normal Arrhenius diffusion. The de-
pletion interaction between the external potential barrier and larger component increases
with decreasing temperature which makes the effective activation energy for barrier cross-
ing temperature-dependent leading to sub-Arrhenius diffusion. In general sub-Arrhenius
diffusion is observed in systems where quantum effects play a predominant role in deter-
mining the rate of barrier crossing. Contrary to this, a classical system like ours, a binary
colloidal mixture, exhibits a sub-Arrhenius diffusion which is hardly reported in any clas-
sical system. On further investigation of these effects with increasing the volume fraction

of the system, we found that the extent of demixing increases as volume fraction increases.
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And above a certain volume fraction, which is much less than the freezing volume fraction
of individual components, the l-rich phase forms a crystalline domain. This crystalline do-
main is found to be diffusing perpendicular to the external potential barrier. Such moving
crystals are earlier reported for non-equilibrium systems where the crystals are subjected to
heating or exposed to light. Because of the crystallization process, the diffusion of larger
particles reduces sharply at low temperature and high volume fractions leading to a cross-
over from sub-Arrhenius dynamics to super-Arrhenius dynamics as we increase the volume
fraction. The dependence of these properties on the system size has been also investigated
and we found that there is no system size effects on both the components of the mixture.
However, below a certain system size, and at low temperatures the larger particles do show
little deviations in their dynamics although the qualitative nature remains same. The dis-
placement distribution in these cases shows marked deviations from Gaussian distributions
and the scaling of dynamical properties fails in these configurations.

We have further used an asymmetric Gaussian function as the external potential and
studied the effect of depletion interactions on the structure and dynamics of the colloidal
mixture. The diffusivity of the larger particles exhibits a cross-over from sub-Arrhenius
to super-Arrhenius behavior as the asymmetry in the external potential increases. Near the
asymmetric side of the barrier, larger particles show higher local density forming a transient
caging. The activation energy for the diffusion of larger particles is temperature-dependent:
it decreases with decreasing temperature for low asymmetry and increases with decreasing
temperature for high asymmetry. The non-Gaussian parameter, the potential of mean force,
and the self intermediate scattering function indicate crowding of larger particles near the
barrier leading to a slowing down of dynamics and super-Arrhenius behavior. Here again,
the smaller particles show normal Arrhenius behavior for all asymmetry and temperature.
Even though the results we obtained are for a binary mixture of colloids, we believe our

findings are applicable to many other systems which involve barrier crossing.
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Chapter 1

Introduction

The work outlined in this thesis is done in the context of soft condensed matter, which
has steadfastly achieved the status of one of the most important areas of multidisciplinary
research covering physical, chemical, and biological sciences. Soft matter systems are states
of matter that can not be categorized completely into either simple liquid or crystalline
solids, conveniently known as soft condensed matter or soft matter. As its name suggests, a
soft matter system can easily be deformed. Some of the soft matter systems are polymers,
gels, colloids, emulsions, surfactant assemblies, liquid crystals, many biological systems,
etc. The characteristics and properties of these systems are strikingly different from that of
simple liquid or crystals. At mesoscopic length scales, they are organized with structural
features that are much larger than an atom, but much smaller than the overall size of the
system. For instance, the long, chain like molecules in a polymer solutions never cross
each other which leads to entanglement among them and produces viscoelastic effects in
the solutions; liquid crystals, as the name suggests, show properties intermediate between a
simple liquid (they can flow) and a crystalline solid (ordering in molecules). Colloids form
an important class of soft matter systems both from a fundamental as well as applications
point of view. The primary emphasis of this thesis is to study the structure and dynamics of

a binary colloidal system in the presence of an external potential.



1 Introduction

1.1 Colloids

Colloidal dispersion or colloids are a mixture of mesoscopic particles of size varying from 1
nm to 1000 nm dispersed in a fluid medium. The dispersed particles are called the dispersed
phase and the medium is called the continuous phase. Colloid means glue like substance,
and the term originated from the Greek word “’kolla”. We can find colloids everywhere. De-
pending on the nature of the materials the colloids are classified into many physical states.
For example, both the dispersed phase and medium can be gas, liquid, or solid. Some of
the examples of colloids are listed in Table-1.1. The scientific study of colloids started
way back in the early 19th century when the Scottish botanist Robert Brown accidentally
discovered the peculiar motion of pollen grain suspended in water by using a simple mi-
croscope. In 1827, while investigating how pollen grains impregnate the female ovule, he
observed that minute particles suspended in liquid are in continuous random motion, later
designated as “Brownian motion” [1, 2]. He also examined various products of organic
bodies, window glass, many metals and minerals, in powder form and observed the same
random motion as the pollen grains. Francesco Selmi, an Italian chemist, published the first
systematic study of inorganic colloids. Selmi demonstrated that salts would coagulate such
colloidal materials as silver chloride and Prussian blue and that they differed in their pre-
cipitating power. Later in 1860s, the Scottish chemist Thomas Graham [3], published his
many works describing the properties of colloidal solution like low diffusivity, the absence
of crystallinity, the lack of ordinary chemical relations, etc. The working theory was not
known until Einstein proposed the “’theory of Brownian motion” in 1905 [4]. The Brownian
motion of colloids is caused by the random collision of colloidal particles by the molecules
of the surrounding fluid, agitated by the thermal energy. Thus, colloidal particles are char-
acterized by observable Brownian motion, originating from thermal energy of the order of

kpT for each colloidal particle. Just as the pressure of an atomic gas is affected by the
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Continuous Dispersed Term Examples
phase phase
Solid Solid Solid Sol Concrete, Metal alloys
Liquid Solid Emulsion Butter, Cheese
Gas Solid Foam Bread, Pressed powder, Sty-
rofoam
Liquid Solid Sol, Gel Ink, Paint, Jelly
Liquid Emulsion Mayonnaise, Milk
Gas Foam Whipped cream, Foam on
bear
Gas Solid Solid Aerosol Smoke, Dust
Liquid Liquid Aerosol Cloud, Fog, Smog

Table 1.1: Examples of different types of colloids

interaction between the atoms, the physical properties of a colloidal dispersion depend on
the potential of the mean force between colloidal particles. In contrast to pair interactions
between atoms, interactions between colloidal particles can be tuned by choosing particle
type, temperature, solvent, by supplementing additives such as electrolytes, polymers or
colloidal particles, or by modifying the particle surface. The physical state of a colloidal
dispersion is a function of the interaction between the colloidal particles.

The early years of the 20th century witnessed various key developments in physics
and chemistry, which help in understanding the colloids better. These includes advances
in the knowledge of the electronic structure of atoms, in the concepts of molecular size
and shape, and in insights into the nature of solutions. Moreover, efficient methods for
studying the size and configuration of colloidal particles were soon developed, for example,
ultracentrifugal analysis, electrophoresis, diffusion, and the scattering of visible light and
X-rays. More recently, biological and industrial research on colloidal systems has yielded
much information on dyes, detergents, polymers, proteins, and other substances important
to everyday life. All colloidal systems can be either generated or eliminated by nature as
well as by industrial and technological processes. The colloids prepared in living organisms

by biological processes are vital to the existence of the organism. Those produced with

3
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inorganic compounds in earth and its waters and atmosphere are also of crucial importance

to the well-being of life forms.

1.2 Colloidal Interactions

As mentioned earlier, the physical properties of colloids are determined by the potential of
mean force between the colloidal particles. In close separation, the attraction between the
colloidal particles increases and they tend to aggregate into large clusters causing precipita-
tion and the desired dispersed state is lost. Most of colloid science is concerned with main-
taining the dispersed state. Stabilization in colloidal system refers to processes where the
particles remain evenly distributed throughout the volume of the fluid. Colloidal particles
have large surface area compared to atoms or molecules. Thus understanding and control
of interfacial forces is central to colloid science. These interfacial interactions can be tuned
by changing temperature, medium, particle type, by adding electrolytes, salt, polymers, col-
loidal particles,etc or by modifying the surface of colloidal particles. One can achieve the
desired dispersed state by balancing the attractive interaction with required repulsion by

tweaking the interfacial forces.

1.2.1 Van der Waals attraction

The Van der Waals interaction is the dominant attractive interaction in a colloidal suspen-
sion. This force of attraction between any two atoms or molecules arises because of the
interaction of fluctuating dipole moments among them which is a quantum mechanical ef-
fect. This interaction is independent of whether the particles are charged or uncharged. The
dielectric properties of the colloidal particles and the background medium determine the

strength of the interaction. For two identical colloidal spheres with radius 12 and separated
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by an interfacial distance h, the Van der Waals attraction is given by [5, 6]

Al 2R? 2R? h* + 4Rh
Wyow(h) = —2 z 11
vow (1) 6 h2+4Rh+h2+4Rh+R2+n(h2+4Rh+R2)1( )
A = COrn*n? (1.2)

where A is the Hamaker constant which depends on the nature of both the dispersed phase
and the medium; A is the closest distance between the surfaces of two spheres, n is the
number density and C' is the dispersion coefficient. C' depends upon the electronic polariz-
ability and frequency of the colloidal particle. At short interparticle separations (small &),
the Van der Waals attraction is very strong and varies as, Wy pw (h) ~ —AR/h. In order
to stabilize a colloidal dispersion a significant repulsion is needed preventing the particles
getting too close and flocculate irreversibly. Another way to minimize the effect of Van der
Waals attraction is by refractive index matching. The biggest contribution to the Van der
Waals interaction is from the optical frequencies. If one can match the refractive index of
the medium with the dispersed particles, the value of A can be minimized. This will in turn
reduces the strength of Van der Waals attraction and hence can increase the stability of the

colloidal dispersion.

1.2.2 Electrostatic double layer repulsion

Usually the colloidal particles have electric charges on their surfaces when they are dis-
persed in a medium and the interaction arising from it must be accounted for while studying
the colloidal interactions. This interaction is different from the bare Coulomb interaction,
as there are dissolved ions in the solution. In particular, the electrostatic interactions are
screened by dissolved ions; which modifies the interaction between two charged bodies to
a screened Coulomb interaction which exponentially decays in strength with distance.

In Figurel.1, we have two charged colloidal particles in solution of charged ions[5, 6].

The counterions will surround the particles around the surface and the coions will be de-
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Figure 1.1: Two charged colloids in an electrolytic solution[5]

pleted from the surface. The inhomogeneous layer is termed double layer” and its width
depends on the ion concentration in the bulk solution. The colloidal surface charges are
screened if more number of ions are present. When the two colloidal particles approaches
towards each other and their double layers overlap, a repulsive pair potential develops which
leads to a repulsive pressure. Dispersed like-charged colloids hence repel each other upon
approach due to screened-Coulomb or double layer repulsion.

The interparticle separation dependence of double layer repulsion is approximately expo-

nential,

Wpr = U exp(—h/Ap) (1.3)
GEQkBT %

Ap = 1.4

P (262n022) 14

Here h is interfacial distance; A p is called the Debye screening length upto which this force
is operational; n is the ionic concentration in bulk solution, e is the electronic charge, z
is the number of charges, and ¢ is the dielectric constant of the medium. Note that the
Debye screening length is inversely proportional to the square root of ionic concentration.
At distances larger than \p , the strength of the direct electrostatic interaction between

charged colloidal particles rapidly falls to zero, as schematically depicted in figurel.2.
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Figure 1.2: Schematic plot of a Van der Waals attraction and double layer repulsion between
charged colloidal spheres and their sum, the DLVO interaction potential[5].

1.2.3 DLVO theory and stability of colloids

The basic understanding of colloidal interactions commenced in the 1940s when Derjaguin,
Landau, Verwey and Overbeek (DLVO) pointed out that the stability of a colloidal disper-
sion is determined by the balance between the electrostatic interaction and the van der Waals
interaction between particles [7, 8, 9]. The DLVO theory provides the foundation for the
description of the interaction between colloidal particles. The stability of colloidal systems
consisting of charged particles can be understood from the DLVO theory. In a dispersion
of charged colloids in an electrolyte solution, the Van der Waals attraction between two
colloidal particles are opposed by the repulsion originating from electrical double layers,
hence retains the desired dispersed state. This foundation for the stability of colloids is
known as the DLVO theory and has been remarkably successful in explaining the results of
a vast number and broad range of experiments.

The DLVO potential describes the long range interaction between colloidal particles as
the combination of a van der Waals attraction and an electrostatic double layer repulsion.

The total DLVO potential is the addition of van der Waals(VDW) attraction and double
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layer repulsion(DR) :

Wprvo = Wypw + Whpr (1.5)

In Figure 1.2, the DLVO interaction potential Wy o is schematically sketched together
with its two contributions. At large h, there is no interaction between the colloidal particles,
as it is short-ranged interaction potential. However, at very small separation h, the van der
Waals attraction is strong, as the particles get very close into the so called primary minimum,
which is deep enough for irreversible coagulation. Given a large enough period of time all
particles will move toward their global minimum energy state, leading to the flocculation
of the suspension. However, if the repulsive force is high and the maximum of Wp, o
is sufficiently high (larger than a few kgT'), coagulation is prevented, and the dispersion
remains stable. Flocculation does occur when particles are at the secondary minimum, but
this flocculation is not strong enough and can be reversed to dispersed state by shaking the
solution.

For practical purposes in the industries, the stability of colloids are desired. This can be
achieved by tuning the interaction between the colloidal particles. One such example is by
adding salt in the solution or increasing the ionic concentration in the solution. As the van
der Waals interaction depend upon the ionic concentration, the DLVO will depend upon the
ionic strength. At low salt concentration the electric double layer repulsion dominates and
surpasses few kpT of energy barrier hence permanent dispersed phase or stable colloidal
solution is achieved. Adding a little more salt still gives a repulsive interaction with a
shallow minimum which gives rise to weak flocculation which can be reversed as mentioned
earlier.

There are many ways where the stability can be achieved by increasing the repulsive
force. One of the most important practical methods for stabilizing colloids is by coating

the particle with a polymer layer which gives extra repulsive force at short interparticle
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distances[10]. The chains are attached by one end at the surface of colloidal particles and
the other end stick out into the solution. If two such modified colloids come close to each
other, the osmotic pressure in between them increases dramatically due to steric hindrance
of the polymer chains on both particles. This competition between the chains for the same
volume leads to a repulsive force between them and provide an extra repulsion needed for

stabilization.

1.3 Depletion Interaction

Apart from the direct interaction like Van der Waals interactions or electrostatic double
layer repulsion, there is one indirect interaction known as “depletion” interaction which
plays a very important role in the structure and dynamics of colloidal systems. This inter-
action is extremely useful in the understanding of colloids. Generally, depletion interaction
arises when size asymmetric particles are present in a colloidal solution. The presence of
smaller particles induce an entropic effect which results an effective attraction among the
larger particles. In 1954, Asakura and Oosawa published a paper describing the depletion
interaction for the first time in colloid polymer solution[11, 12]. They observed that by the
addition of non-adsorbing polymers to colloidal suspensions the mixture phase separates
into a colloid-rich and a polymer-rich phase. Flocculation or phase separation can occur,
which depend on some parameters, such as the polymer concentration, the chain length, the
solvent quality, and the size of particles. Depletion interaction is a crucial interaction that
describe the underlying phenomena of many observations in the structure and dynamics
of colloids successfully. An in depth knowledge of the depletion potential is necessary to
understand the phase behavior of the colloid dispersion.

Lets try to understand this very important interaction as follows. Suppose we have only

one type of colloidal particles in the container. They will move randomly in the container.
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Now adding small particles will change the dynamics of the system. Because there are more
number of smaller particles, the free energy of the system is dominated by the entropy of

the smaller particles. So the partition function of smaller particles is given by,

AR
Z:m(ﬁ) (1.6)

The Helmholtz free energy of the system will be,
F = —kgTinZz (1.7)

When the volume of the system changes, the free energy of the system also changes to

d
dF = —NkBTVV (1.8)

From the above equation it is clear that the free energy of the system goes down as the
change in volume increases. The volume available to the the small particles is not what it
might seem first. As the smaller particles come closer to the larger particles, they can not
get any closer than their radius. Each larger particles has some area surrounding it where
the smaller particles can not get in, this region is known as ”excluded volume region” or
“exclusion zone” or depletion zone”. So the actual volume available for smaller particles is