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SUMMARY

Complex phenomena caused by collective excitations of interacting quantum

degrees of freedom is at the heart of many non-trivial phenomena. In order to

understand correlated materials and their applications, many-particle quantum me-

chanics is the standard paradigm. The Hubbard model is the simplest model that

involves local electron interaction or correlation e↵ects and has been investigated by

a variety of tools. A common open issue is reliable study of finite temperature prop-

erties on large system sizes. In this thesis we present results of a recently developed

semi-classical Monte-Carlo (s-MC) approach well suited to study finite temperature

properties of the Hubbard model. We focus on two main problems: (i) e↵ect of next

nearest neighbor hopping (t0) on the magnetic insulator in the half-filled Hubbard

model at finite temperature (ii) thermal evolution of metals and insulators in the

t � t0 ‘ionic’ Hubbard model � the Hubbard model in presence of staggered onsite

potentials, at half filling.

E↵ect of longer range hopping in the half-filled Hubbard model

At half filling, the Hubbard model on a square lattice with a interaction strength

U and nearest neighbor hopping parameter t, has a nesting-instability driven anti-

ferromagnetic (Slater) insulator at small U and Mott insulator at large U due to

strong suppression of double occupation. The ground state has long-range stag-

gered (G-type) magnetic correlations and a finite charge gap for all U values. In

this project [1] we investigates the e↵ect of next nearest neighbor hopping t0, on the

insulating phases over a wide temperature range. The motivation for looking into

e↵ects of longer range hopping is as follows: Particle-hole symmetry is broken by

t0, weakening the nesting instability. Even for small t0, the small U Slater insulator
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is likely to be destabilized. At large U , we expect t’ to produce frustrated antifer-

romagnetic exchange couplings that suppress the G-type magnetic order. Our goal

was to identify the phases arising out of the frustration e↵ects induced by t0 and

investigate their thermal evolution. Using the s-MC approach, we determine the

static magnetic structure factor, density of states, optical conductivity, and resistiv-

ity as a function of temperature. From these observables, we generate the interaction

(U)-temperature (T )-frustration (t0) phase diagram for the model.

i) Low-temperature properties: We find that t0 destabilizes the Slater insulator

at low U and prefers the paramagnetic metal below a t0 dependent critical U . A

G-type to A-type [(⇡, 0)/(0, ⇡)] magnetic transition is seen at t0 = 0.8t for large U .

The locus of critical U for metal-to-insulator transition in the U � t0 plane is found

to be non-monotonic in t0, with maximum critical U occurring at t0 = �0.8t. Due

to G-type/A-type phase competition, the magnetic and insulting order is weakened,

necessitating the largest critical U for metal to insulator transition at t0 = �0.8t.

From this data, we construct a low temperature s-MC U�t0 phase diagram. We note

that at low-temperature, s-MC tends to an unrestricted Hartree-Fock mean-field

theory. Within this approximation, we find that the magnetic and metal-insulator

boundaries reasonably agree with the literature as discussed in the thesis.

ii) Finite-temperature evolution: Next, we analyze the temperature evolution

of the observables and metal-insulator transitions at finite temperature. In the

Mott insulating phase, the magnetic transition temperature for G-type order (for

t0/t > �0.8) and A-type order (for t0/t < �0.8) show a non-monotonic dependence

on U . This trend agrees with DQMC results as shown in the thesis. We then

investigate the nature of the metallic phase at finite temperature. We calculate

transport properties within the Kubo-Greenwood formalism and construct T � t0

phase diagram at fixed U from this analysis. We find that for small U ⇠ 4t, the

insulator at t’=0 weakens, with the critical temperature for the insulator to metal
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transition monotonically decreasing with t0 and eventually leads to a metallic phase.

In contrast, for intermediate U ⇠ 5.5t, the metallic region becomes bounded by a

G-type insulator at lower t0 values and an A-type insulator at large t0/t 0.9. With

a further increase in U , the metallic regime reduces and closed for U = 6t. The

phase diagram is reminiscent of at T = 0 quantum critical point with the metallic

regime fanning out with increasing temperature. The observed phenomenology of

unbounded to bounded metallic regime results from the non-monotonic dependence

of critical U for the insulator to metal transition on t0.

iii) Pseudogapped metal at finite temperature: From the density of states, we

find that for U > 2t and t0 < �0.2t, the metal in proximity to the insulator-metal

boundary has a clear pseudogap structure. The pseudogap behavior is most pro-

nounced at low temperatures and weakens with temperature increase, and gives way

to a non-pseudo-gapped DOS at high temperatures. Thus, unlike the t0 = 0 half-

filling case where the finite local moments imply an insulator, our work reveals a

finite-temperature metallic regime with local moments. From the power law of tem-

perature dependence of resistivity (⇠ T ↵), we demonstrate a clear deviation from

the exponent value of ↵ = 2 (as expected from Fermi liquid prediction) in the pseu-

dogapped phase. We demonstrate that the pseudogappd behavior and the deviation

from the the Fermi liquid behavior originates from scattering of electrons from spa-

tially inhomogeneous local moment distribution at finite temperatures. Our finite

temperature semi-classical study suggests a phenomenology whereby with increasing

U , a small U Fermi liquid evolves into finite T pseudogapped metal (violating Fermi

liquid predictions) and finally into a Mott insulator at half-filling in the presence of

frustration.

iv) Broader relevance: Our s-MC results show deviation from the Fermi liq-

uid behavior at finite temperature, although dynamical fluctuations are explicitly

absent in the semi-classical approach. Thus, the result should be interpreted as
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a signature of a thermal fluctuation-driven deviation from Fermi liquid and not a

quantum critical fluctuation-driven phenomenon. Indeed, the notion of quantum

fluctuation controlling the non-Fermi liquid-like behavior at very high temperatures

has remained controversial [2, 3]. There are recent experiments that indeed report

finite T deviation from Fermi liquid behavior in disorder free cases that are not tied

to T = 0 quantum critical points. Also as discussed in the thesis, many body anal-

ysis of the half filled Hubbard model with the longer range hopping indeed causes a

non-Fermi liquid behavior at T = 0 aided by quantum fluctuations not necessarily

tied to a quantum critical point [4]. Our results complement these work by showing

that deviations from Fermi liquid can also occur in the temperature fluctuation dom-

inated phase (much lower than the Fermi temperature). Hence, our result points to

a possible crossover from a quantum fluctuation driven to thermal fluctuation driven

metal that does not respect Fermi liquid behavior in the presence of frustration and

interaction, but is not associated with a quantum critical point.

E↵ect of frustration and staggered potential in the half-filled Hubbard

model

A rather unexpected metallic instability arising out of a band and Mott insulating

tendencies in the square lattice Hubbard model was reported a few years ago, on

introducing staggered onsite potentials (�)—the ’ionic’ Hubbard model [5, 6]. Very

recently [7], it was shown that introducing the next nearest neighbor hopping (t0)

stabilizes the metallic instability over a broad U�� parameter regime in addition to

exhibiting half-metallic behavior at T = 0. Given our earlier study of the Hubbard

model at half-filling as a natural extension of exploring finite temperature properties

of strongly correlated systems, in this project [8], we applied s-MC to understand the

fate of the T = 0 half metal at finite temperature. By this procedure, we constructed

the complete phase diagram of the model for the first time that includes all other

previously reported T = 0 phases.
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i) Low-temperature properties: Our U�T phase diagram at a fixed � and t0 show

a paramagnetic band insulator to a low T half-metal (HM1) and finally to a Mott

insulator transition with increasing U . HM1, has a finite charge gap for one spin

channel, while the other is gapless. This low T half metal results from an e↵ective

spin-dependent staggered potential within a mean-field. HM1 and the Mott state

show staggered magnetic order. Remarkably, we also found that the charge gap for

the two spin channels is spin asymmetric in the Mott state. Given this, a couple of

interesting questions arise. Is it possible to close the charge gap of one spin channel

before the other by admitting thermal fluctuations? If yes, will the resulting state

be a half-metal as well? We answer these questions in the a�rmative in our work.

ii) Finite-temperature transport: We compute the temperature-dependent spin

resolved resistivity within the Kubo-Greenwood formalism and extract the trans-

port spin polarization from this. For HM1, the thermal fluctuation induced gradual

filling of the T=0 charge-gap (for the insulating spin channel) leads to a depolar-

ization of the electronic current. We establish that the critical temperature (TP )

for complete depolarization increases monotonically with U , up to the critical U

for Mott transition. Focusing on the thermal evolution of the Mott state, we find

that for a window in U , in the vicinity of the metal to Mott transition, the slope

of the spin-resolved resistivity for the two spin channels changes the sign from neg-

ative (insulator) to positive (metal) at two di↵erent temperatures. This behavior

stabilizes a novel spin-polarized metal that emerges upon heating a Mott insulator.

We show that the spin polarization starts below a temperature scale TP and results

from an imbalance of sub-lattice charge occupations due to the presence of �. The

di↵erential sub-lattice occupations and correlation e↵ects lead to unequal sub-lattice

magnetization (or a ferrimagnetic order) and net spin polarization of the system.

We show that the imbalance in the sub-lattice occupations and the total spin polar-

ization, which induces the spin-polarized metal, grow monotonically with reducing
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temperature. Concomitantly, we find that the spin polarization of the metal grows

with temperature decrease and reaches a maximum possible value of 100% at a

temperature scale TS. At TS, the large occupation on the sub-lattice with �� po-

tential becomes energetically untenable, and there is a first-order transition at TS,

from the 100% spin-polarized metal to a Mott insulator. We further demonstrate

that TS itself increases with increasing U . We thus have a new finite-temperature

half-metal (HM2), where we can tune the window of half metallicity by changing

U . Moreover, the spin polarization is 100% in the vicinity of TS even when TS is

enhanced. We show that the novel phase is stable over wide parameter window and

propose candidate materials where it can be realized.

iii) Broader relevance: Spin-polarized current sources or half-metals are vital

in spintronic device applications. However, all known candidate half metals have

100% spin polarization close to zero temperature and lose their polarization with

temperature increase. This behavior is due to the loss of quantum coherence on

the admission of thermal fluctuations. Our work proposes a way to circumvent the

expected thermal decoherence and sustaining a finite temperature half-metal with

100% spin polarization.
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Chapter 1

Introduction

Condensed matter physics goes hand in hand with fascinating material discoveries

and technological applications. Correlation physics of electrons in the heart of many

non-trivial phenomena enriches the subject on its own and widens the path of realiz-

ing promising materials experimentally to meet technological purposes. One of the

critical models to incorporate electron correlation is the Hubbard model [1]. The

model has been studied for more than 80 years because it captures the physics of

interacting electrons relevant to solid-state materials. Although the model approx-

imates the long-range Coulomb interaction by local repulsion, it continues to un-

veil new physics like high-Tc superconductivity, non-Fermi liquid metal, half-metal,

metal-insulator transition, spin liquids, among others.

Understanding the physics of the metallic state has remained a long-standing

goal of condensed matter theory. The single-electron picture holds primarily due

to screening e↵ects in the usual metals. The standard paradigm for understanding

metals is the Fermi liquid theory. The theory holds for interacting electrons when

adiabatic continuity to the non-interacting limit survives. The excitations of such a

theory are called quasiparticles, long-lived excitations at the Fermi surface.

With the advent of sophisticated experimental methods such as Angle-Resolved

Photo Emission Spectroscopy (ARPES), quantum oscillation measurement tech-

niques to map out Fermi surfaces coupled with transport measurements on near-
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ideal (single crystal) samples have uncovered many materials that strongly violate

of Fermi liquid theory including high-Tc cuprates[2][3], heavy fermion systems[4][5],

oxide heterostructures[6] and in the parent compound of recently discovered iron

based superconductors[7], to name a few. Experimental study for example, Neutorn-

Scattering result and NMR study of cuprate candidate, La2�xSrxCuO4 show that

mass of the quasiparticle gains slightly higher mass with out strong magnetic in-

teraction or polarizibility and it shows marginal-Fermi liquid behavior for which

the scattering rate goes linearly with thermal scale and frequency [Phys. Rev. B

48, 487 (1993)]. Other candidate for cuprate, Y ba2Cu3O6+x studied by Neutron-

Scattering and NMR show d-wave pairing indicated by spin excitation as found

theoretically in the small interaction limit for the two dimensional Hubbard model

in the presence of next nearest neighbour hopping (t0). t0 is naturally generated in

the system, confirmed by spectral function found from Angle-Resolve Potoemission

Spectroscopy (ARPES) as the next nearest neighbour hopping is needed to fit the

data [Phys. Rev. B 49, 4235 (1994)]. At present, a microscopic description of

the transport and nature of excitations in such non-Fermi liquids remains elusive.

Strong quantum fluctuations are the primary agency leading to non-Fermi liquid

behavior. The origin of such quantum fluctuations is quantum critical points at

zero temperature. We expect these fluctuations to not only destroy Fermi liquid-

like behavior at zero temperatures but modify the finite temperature response of

the metal. However, it is unclear how the low-temperature quantum fluctuations

can modify the finite temperature behavior in the temperature-dominant regime.

Recent experiments[8][9] show that, remarkably, non-Fermi liquids can indeed occur

in situations where there are no zero temperature quantum critical points. These

results go against traditional folklore and echo the views in theoretical literature as

well[10][11]. In recent years, the study of single band Hubbard model using DQMC

[12] [13] [14] and DCA [15][16] give various insights about the stripe order and su-

perconduction pairing istability. Currently, development of the cold atomic system

helps to realize Hubbard like model by Fermi gas in optical lattice and the energy

scales are reliable to study at di↵erent temperature regime up to thermal scale 0.2t
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[Science 340 6138 (2013)], in nearest neighbour hopping scale t(experimental scale

t/h ⇠ 174Hz)[Phys. Rev. Lett. 115 115303 (2015)] with tunable parameters. The

set up can be employed to study quantum magnetism in di↵erent underlying lat-

tice geometry and dimensionality like anisotropic cubic lattice, honeycomb lattice

by local entropy redistribution scheme [Science 340 1307 (2013)]. The interaction

strength (U) can be tuned with in the window [0, 30t][Phys. Rev. Lett. 115 115303

(2015)]. The cold atomic set up also can give insight in to many body physics such

as anti-ferromagnetic correlation [Nature 519 211 (2015)] and high-Tc superconduc-

tivity [Phys. Rev. Lett. 89 220407 (2002)]. As the first project in this thesis, we

use a semi-classical approach to study the Hubbard model that by design reduces

to Hartree-Fock theory at zero temperature but gets progressively accurate with

temperature increase. The technical details of the method are presented in chapter

2. Thus, there are no quantum-critical fluctuations in our work at zero temperature.

We investigate the possibility of deviations from Fermi liquid theory purely driven

by thermal fluctuations within this setup upon introducing longer range hopping.

As discussed later in the chapter our study is motivated by zero temperature work

within ‘dynamical cluster approximation’ [17] and self-consistent Random Phase

Approximation (RPA)[18], which show that weak lifting of nesting instability in

correlated systems and induce non-Fermi liquid behavior. We discuss our results of

this project in chapter 3.

As a natural extension of the previous project, we add staggered onsite potential

to the half-filled Hubbard model with next-nearest-neighbor hopping. The gener-

alized model is called the ionic Hubbard model (IHM) and was first introduced

to study charge transfer physics in organic salts[20] and for modeling ferroelectric

perovskites[21]. This innocuous-looking additional term has since led to many ques-

tions, especially on the theoretical front. In the non-interacting limit, the model is a

band insulator, while in the large interaction limit, we expect the usual Mott insula-

tor at zero temperature, as discussed earlier. However, the interest in this model is

as follows. As discussed below in detail, comparable correlation strength and charge

transfer energy can stabilize a metallic state at zero temperature within a paramag-
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Figure 1.1: (a) Schematic picture of the square lattice with nearest neighbor (nn)
hopping t and next nearest neighbor (nnn) hopping t0. There are two kind of sub-
lattice, black circles represent A sub-lattice with +� and red circles are for B sub-
lattice with �� as shown. (b) Table of usual candidate of half metals, their Curie
temperature, saturation magnetizations at 330K and spin polarization at room tem-
peratures. (c) Magnetization (solid line, di↵erent solid symbols are from di↵erent
measurement techniques) and spin polarization (solid symbols) as a function of tem-
perature for CrO2 [19].

netic background. However, this so-called ”correlated band insulator” to metal to

Mott transition had remained controversial. We will discuss below that allowing for

antiferromagnetic order suppresses the metallic state. More recently, the addition

of next nearest neighbor (nnn) hopping in the IHM has revealed that the metal can

indeed be stabilized in various magnetic backgrounds within dynamical-mean-field

theory at zero temperature. We show the schematic of the lattice structure in Fig.1.1

(a). Among the various metallic states, an antiferromagnetic half metal appears.

Given the semi-classical method we have already used in the previous project, it was

a natural next step to study the fate of half metals at finite temperature. With this

motivation, we briefly discuss the importance of half metals and why it is pertinent
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to study their properties, in particular spin polarization with temperature.

Half metals are spin-polarized conductors that are of great importance for spin-

tronics or spin-based electronics. This is because spin-based electronics rely on

spin current sources. Thus half metals are vital. In a solid-state systems, find-

ing the source of half-metal is one of the most active areas of recent theoretical

research within model Hamiltonians [22] [23] [24] [25] [26] [27] [28] [29][30] and

experiments[31][32][33]. In this regard materials like manganites[34] [35], double

perovskites[23] [24] [25], Heusler alloys[26] [27] [28] [31][32][33] have been studied

rigorously. Also creating di↵erent chemical environment in the solids, like incorpo-

rating vacancies in transition metal oxides for example inNiO,MnO[36], fluorinated

BN , ZNO [37] and ferri-magnetic inverse spinels as in Fe3S4 [38] are believed to

exhibit half-metallicity.

The above studies have shown that half metallicity is a purely quantum me-

chanical phenomenon where the spin polarization is 100% at T=0. The polariza-

tion degrades with temperature due to spin direction dephasing, non-quasiparticle

states[39] near Fermi energy, and scattering from phonons. The table in Fig.1.1 (b)

shows the current state of usual half metals and their spin polarization at room tem-

perature. Also, in (c), we show a plot of magnetization and spin polarization with

temperature for chromium dioxide, showing that the polarization degrades rapidly

with temperature. Clearly, for the practical purpose of devise manufacturing, it is es-

sential to realize the half-metal with large spin polarization over a wide-temperature

regime. In chapter-4 we discuss our results on the thermal evolution of the zero

temperature half-metal reported earlier and predict a novel half-metal that emerges

from heating a Mott insulator and whose temperature domain of half metallicity can

be tuned. We will also present possible material candidates for realizing the novel

half-metal. With this introduction of the broad questions addressed in the thesis

and their importance, we now discuss the necessary technical background materials

needed for the results presented in subsequent chapters.
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1.1 Basics of Fermi liquid theory

Landau Fermi liquid is the standard paradigm for understanding a large class of

correlates materials. For non-interacting electrons, the absence of scattering implies

that an added particle above the Fermi surface or a hole below the Fermi surface

cannot decay. Landau’s deep insight was to show that these long-lived excitations

are adiabatically connected to the case of interacting electrons. In such cases, the

electrons are dressed by interaction e↵ects, and the single-particle excitations at

the Fermi energy are called quasi-particle excitations. These excitations are unique

because they are long-lived on experimental time scales. We briefly discuss the

critical conditions for the validity of Fermi liquid theory and summarize some of its

well-known properties below.

1.1.1 Adiabaticity

The adiabaticity is important in the Fermi liquid theory, through which we can

establish a one-to-one correspondence between the non-interacting states and in-

teracting states without losing the symmetries of the problem. Suppose, H0 is the

non-interacting Hamiltonian with ground state |�0i. Now, if we add a small pertur-

bation in the system by switching on small interaction and evolve slowly H0 to H1,

the total Hamiltonian will be

H(t) = H0 +H1(t) (1.1)

Now, the new ground state of H is |�̃0i. So, in the process of slowly turning on

the interaction |�0i evolves to |�̃0i. Suppose no level crossing happens in the adi-

abatic switching on of the interaction. In that case, the symmetries of |�̃0i will be

the same as |�0i and also the charge, spin, and momentum remain the same, but

dynamical characteristics like mass, magnetic moment will get renormalized in the

new interacting situation. In addition, if level crossing happens in the adiabatic



1.1 Basics of Fermi liquid theory 7

switching on the interaction, symmetries of the ground states will not be preserved

and show phase transition. So, some critical value of interaction strength may exist

below which Fermi liquid will be stable.

1.1.2 Quasi-particle excitation and its lifetime

The notion of quasi-particle lets us carry through the physics of single-particle theory

even in the interacting environment, provided the notion mentioned above of adi-

abatic connection remains valid. As mentioned before, the quasi-particle carry the

same conserved quantum numbers like charge, spin, momentum of the bare electron

but the dynamical properties like mass (m) and magnetic moment (g) get renor-

malized to m⇤ and g⇤ respectively. The quasi-particle lifetime can be determined

from the imaginary part of the self-energy, which accounts for all the intermediate

scattering of a propagating electron. The expression of self-energy is

⌃(k,! � i�) = ⌃0(k,!)� i�(k,!)

The imaginary part of the self-energy, �(k,!) (� > 0) represents the quasi-

particle decay rate, and the inverse of that gives it its lifetime. The lifetime (⌧) of

quasi-particle is found from 1
⌧
= Zk�(k, ✏⇤k) [40] and it goes like ✏2

k
. This depends on

the renormalized energy ✏⇤
k
of the bare electron energy ✏k coming from the real part

of the self-energy (✏⇤
k
= ✏k + ⌃0(k, ✏⇤

k
)) at T = 0. In these expressions the energy is

measured from the Fermi surface. Here Zk is called quasi-particle weight, defined as

the overlap between the quasi-particle state and the bare electron state. It is given

by

Zk = |hk�|c†
k�
|�i|2

The renormalized mass, as mentioned before, also can be calculated using the

quasi-particle weight as m⇤ = m/Zk. From here we see that for Fermi liquid to be

valid Z should be non zero, as it controls the overlap between the non interacting

and the interacting ground states. We also see the e↵ective or renormalized mass of

the quasi-particle diverges as Z ! 0. We would like to mention that in the case of

k-dependent self-energy, there is anisotropic mass renormalization [e.g. Phys Rev B
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96, 125154 (2017)], unlike the isotropic case for k- independent self-energy.

The essential characteristics of the Fermi liquid are T 2 behavior of the temper-

ature dependence of resistivity at low temperatures, i.e., ⇢(T ) = ⇢0 + AT 2 ; (A

is called Kadowaki-Wood ratio.). Here, ⇢0, residual resistivity comes from the im-

purity scattering of electrons. The quadratic behavior arises from the quadratic

nature of the scattering rate � / T 2. Similarly from the expression of free energy

for quasiparticles, it can be shown that the specific heat has a linear dependence

on temperature. As opposed to non-interacting case, new collective excitations can

be seen in the Fermi liquid, namely sound and zero sound. Zero sound was first

observed in liquid 3He [41].

1.2 Hubbard model

The Hubbard model on a square lattice is defined below:

H = �t
X

hiji,�

c+
i�
cj� + U

X

i

ni"ni# �
X

i

µ(ni" + ni#) (1.2)

Here, we look at the Hartree-Fock (HF) mean-field band dispersion[42] in the mo-

mentum space. This will be useful for the small U analysis and for momentum space

analysis of the Ionic Hubbard model. Since it is known that the half filled Hubbard

model has a q = (⇡, ⇡) or G-type magnetic order, we allow for this antiferromagnetic

order in the mean field analysis. For this, as usual, we consider

ni" =
1

2
n+ (�1)xi+yim (1.3)

ni# =
1

2
n� (�1)xi+yim (1.4)

where, n = hni" + ni#i and m = 1
2hni" � ni#i.

The mean-field band dispersion of the Hubbard Hamiltonian (detailed calculation



1.2 Hubbard model 9

is provided in Appendix A) will be

E±
k
=

1

2
Un� µ±

q
[4t2(coskx + cosky)2 + U2m2] (1.5)

’+’ and ’-’ refer to the conduction and valance bands respectively and m 6= 0 implies

G-type magnetic order.

1.2.1 Limiting cases of Hubbard model

We now consider two important limits of small interaction and very large interaction

strengths and discuss why the Hubbard model is insulating for any finite U at half

filing on the square lattice. These will be contrasted with our semi-classical results

in chapter 3.

a. Weak coupling limit:

To understand the origin of the small U insulator and the concomitant G-type

magnetic order, we rewrite the local interaction term in a slightly di↵erent form

using the fact that ni"ni" = n2
i
/4 � Si

2 and use the mean field decomposition rule

ÂB̂ ! ÂhBi+ hAiB̂ � hAihBi.

HHF = �t
X

hiji,�

c+
i�
cj� +

X

i

[(
U

2
hnii � µ)ni � 2USihSii] (1.6)

where the spin operator defined as Si =
~
2

P
↵,�

c†
i,↵
�
↵,�

c
i,�

and {�x, �y, �z} are the

Pauli matrices. At half filling, hnii=1 and then the chemical potential is µ = U/2.

By Fourier transforming of c+
i�

and cj�, we get the Hamiltonian in Fourier space as

Heff =
X

q,�

✏qnq� � 2UN
X

q

S(q)hS(�q)i (1.7)

Here, N indicates the number of sites, ✏q = �2t(cosqx + cosqy) is the 2D non-

interacting dispersion and spin operator in momentum space is

S⌘(q) = ~
2N

P
k+q

c†
k,↵
�⌘

↵,�
c
k,�

with �⌘

↵,�
being the Pauli spin matrices.

For small interaction at half-filling, the expectation value of S(q) in the ground state
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Figure 1.2: Schematic picture of 1st Brillouin zone for non-interacting electrons on
a square lattice in the tight binding model at half-filling. The shaded regime is the
filled Fermi surface.

is non-zero for the nesting vector Q = (⇡, ⇡) indicated by the arrow in Fig.1.2. This

Q vector connects the opposite sides of the Fermi surface and the dispersion relation

remains invariant through the relation ✏k = �✏k+Q. This causes instability coming

from the nesting of the Fermi surface and can be seen in the spin susceptibility

calculation. We get rotational invariant ground state for the order parameter S(Q)

and we assume that the ground state will be along the z-direction. Thus

h⌦|Sz

Q
|⌦i = S

Where, S denotes the staggered moment acting as a variational parameter and |⌦i

refers to the true ground state. Then we can write the e↵ective Hamiltonian as

follows.

Heff =
X

k,�

✏knk� � US
X

k

(c†
k+Q"ck" � c†

k+Q#ck#) (1.8)

Here, the sum over k vector which runs over the first Brillouin zone can be written

as the sum over k< (inside the shade regime) and k> (outside of the shade regime)

as in schematic picture in Fig.1.2. Hence, K> = k< +Q. From here onwards we use
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k< as k for simplicity. Thus, we can rewrite Heff as

Heff =
X

k,�

✏k(nk��nk+Q�)�US
0X

k

(c†
k+Q"ck"+c†

k"ck+Q"�c†
k+Q#ck#�c†

k#ck+Q#) (1.9)

The restricted sum in the second term means the summation over k vectors only

inside the shaded region. In the first term we have used ✏k = �✏k+Q. The detailed

derivation (in Appendix B) shows that the nesting driven Spin Density Wave (SDW)

gap in the weak coupling limit becomes

� ⇠ te�2⇡
p

t/U

This sets the scale of anti-ferromagnetic transition temperature TN in the small U

limit.

b. Strong coupling limit: Here, we will look into the strong coupling limit of

the Hubbard model and show how in this limit Hubbard model reduces to Heisenberg

model. We demonstrate the derivation of the Heisenberg model in Appendix C.

Heff =
4t2

U
(S1 · S2) (1.10)

This is the Heisenberg Hamiltonian with anti-ferromagnetic coupling constant J = 4t2

U

derived form the Hubbard Hamiltonian in the large U limit at half-filling.

1.3 Role of longer range hopping

There are various studies of the Hubbard model and its variant in the context of

metal-insulator transitions, pseudo-gapped phase, non-Fermi liquid, colossal magneto-

resistance, high-Tc superconductivity, half-metal to name a few. Here, we discuss

the most relevant works at zero as well as finite T to connect our investigations to

previous studies for both the cases Hubbard model at half-filling on square lattice in

the presence of frustration (t� t0 Hubbard model) and Ionic Hubbard model (IHM)

on square lattice at half-filling.

a. Non-Fermi liquid metal from imperfect nesting:
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Figure 1.3: Left panel: Brillouin zone sectors with 8 clusters depicting the definition
of the four inequivalent momentum sectors A, B, C, and D. The non-interacting
Fermi surface for t0=-0.15t at half-filling is shown by the gray line. Right panel:
Sketch of the paramagnetic DCA phase diagram of the Hubbard model, calculated
with the cluster definitions shown in the left panel, as a function of interaction
strength U vs t0. Red region depicts a Fermi-liquid metal, a sector-selective inter-
mediate phase in green shows non-Fermi liquid behavior and a completely gapped
insulating phase on the right in blue. The figure is from reproduced literature,
Emanuel Gull, Olivier Parcollet, Philipp Werner, and Andrew J. Millis, Phys. Rev.
B 80, 245102 (2009).

Investigation of the model done by Millis et al [17] hosted by Dynamical Cluster

Approximation (DCA) on an eight site cluster reveals the intriguing physics of the

metal-insulator transition at T = 0. There is a two stage transition from the metal

(Fermi liquid) to Mott insulator through the selection of K-sectors of the Brillouin

zone as a function of U . The figure in Fig.1.3 obtained from the study in Ref. [17]

shows that at smaller U and at fixed t0 in the range 0  t0  �0.3t, the inequivalent

momentum sectors B and C have spectral weight at the Fermi energy and the system

is Fermi liquid metal. As the interaction grows a spectral gap opens up in one sector

C but the sector B remains gapless. With further increase in U , B sector also starts

to show gapped behavior. In the regime of interaction where B is gapless and C has

gapped Fermi surface which leads to pseudo-gapped DOS and the system shows non-

Fermi liquid self-energy behavior and violates Luttinger’s theorem. This is clearly

an example of a non-Fermi liquid without quantum criticality. Another analysis for

the same model at half filling within self-consistent Random Phase Approximation
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Figure 1.4: This figure is reproduced from the Ref.[18]. In panel (a), the imaginary
part of the self-energy is plotted against temperature (both are in log scale) for
distinct r values. Panel (b) shows the exponent, n of temperature extracted from
the plot in panel (a) against r.

(RPA)[18] also demonstrates deviation from Fermi liquid behavior arising out of

partial nesting in presence of interaction. In this calculation the deviation of the

nesting was parameterized by a parameter r, by defining the bare dispersion as

✏(k) = t(cos(kx) + cos((ky) + (t0 � r)(cos(kx)cos(ky)) � (µ � 2r). The values of

t = 1.0, t0 = 1.0 and µ = 2.0 were chosen in the study, while r = 1 (implies perfect

nesting). The imaginary part of the self energy vs temperature in the log-log plot

is shown in Fig.1.4 (a) for di↵erent values of r. The slope provides the exponent

of T n, with imaginary part of the self energy scaling with temperature as T n. The

data is shown for the imaginary part of the self energy evaluated at k = (⇡/2, ⇡/2)

and close to the Fermi level !/t = 2. Panel (b) shows the evolution of the exponent

as a function of r. We see a clear deviation of the exponent from the Fermi liquid

value of 2 as r approaches 1.

b. Emergent magnetism:

(i) Magnetism at T = 0: A study of the t � t0 Hubbard model by Lin

and Hirsch[42] showed that a critical U exist to occur metal to insulator (anti-

ferromagnet) transition in the presence of frustration at half-filling. Another zero

temperature study of this model at half-filling using Gutzwiller projected wavefunc-

tion method, a variational based calculation showed that there is metal-insulator
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Figure 1.5: (a) This Gutzwiller t0 � U phase diagram at T = 0 is reproduced from
the paper, L. Tocchio et al. Phys. Rev. B 78, 041101(R) (2008). The phases are
indicated in the phase diagram and discussed in the text. (b) The VCA t0 � U
phase diagram at T = 0 obtained from the Ref.[44]. The blue regime in between
superconducting (SC) and N’eel anti-ferromagnetic phase is the coexisting phase of
SC and N’eel ordering and the red-white hatched area indicates the non-magnetic
phase.

transition due to interplay of Hubbard interaction and frustration comes due to the

second nearest neighbor hopping (t0)[43]. In chapter 3 we will show that our semi-

classcial calculation reproduces the phase boundaries shown in the U � t0 phase

diagram in Fig. 1.5 (a), except the spin liquid phase. There are two kind of

anti-ferromagnetic phases, q = (⇡, ⇡) (N’eel order) in the small t0 regime and

q = (⇡, 0)/(0, ⇡) (co-linear order) for the larger t0 values and both the magnetic

phase appears beyond a finite critical U (Ucrit) that depends on t0. In the larger

U values and for moderate t0, a spin liquid phase is reported as indicated in the

Fig.1.5. The metallic phase is bracketed by the Ucrit and U = 0 for entire t0 window

[0, 0.9]. However the nature of the metal was not reported in the study.

In contrary, Variation Cluster Approximation (VCA) study on an eight site clus-

ter by Tremblay et al[44] of the same model shows that the co-linear order for the

larger t0 is separated from the N’eel order by the non-magnetic phase. Allowing

for superconducting solution in the calculation, they found d-wave superconduc-

tivity (SC) below the critical values U of magnetic transitions and also a regime
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Figure 1.6: U-T phase diagram at half-filling found from the CDMFT study in
the Ref.[46] is shown here for di↵erent frustraion value (t0). The black curve with
squares is anti-ferromagnetic transition temperatures for t0 = 0 case. As the t0

destabilizes the insulating phase, the increase in t0 values lead to suppression of
magnetic transition temperatures as shown by the curves with red circles, blue
uptriangles and green downtriangles for t0 = �0.1t, �0.3t and �0.5t respectively.
The amount of suppresion increases with increase in t0 values. The regions under
each of curves are anti-ferromagnetic insulators.

of coexisting phases of SC and Néel magnetic ordering. While we do not consider

superconductivity in the present thesis, for completeness we have reproduced the

phase diagram from Ref.[44] in Fig.1.5 (b). The model studied by Yokoyama et

al. using Path Integral Renormalization Group approach[45] also reported the same

phases as in Ref.[44], but the phase boundaries are di↵erent.

(ii) Magnetism at finite temperature: Due to the fermion sign problem in pres-

ence of particle-hole symmetry breaking nnn hopping there are only sporadic study

of the model at finite temperature. Here we summarize the most relevant recent

work. The cellular dynamical mean-field theory (CDMFT) study of the model by

Fratino et. al. [46] shows that the magnetic transition temperatures (TN) are non-

monotonic with interaction U for t0 = 0 up to �0.5t and there is a overall suppression

of TN with t0 increase as shown in Fig.1.6. The degree of reduction of TN , depends

on the value of frustration. In this CDMFT study, continuous time quantum Monte

Carlo (CTQMC) is used as the impurity solver. As CTQMC su↵ers from fermion



16 Introduction

sign problem, the calculation is limited up to temperature around T/t = 0.05 and

frustration value t0 = �0.5t. In chapter 3 we will contrast our semi-classical U � T

phase diagram with the data in Fig.1.6.

With this background on the status of the literature prior to our work, we now

move on the to ionic Hubbard model.
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1.4 Staggered potential in the t�t0 Hubbard model

The Ionic Hubbard model has the form given below. While we provide the analysis

with the nnn hopping included, historically the model was first studied for only

nearest neighbor hopping case as will be discussed below. We will also present the

reason why adding nnn hopping became necessary. We begin with the mean field

analysis of the model as was done in a very recent work [47]. The work also compared

the mean field results with cluster dynamical mean field theory at T=0.

H = �t
X

hi,ji,�

(c†
i�
cj� + h.c)� t0

X

hhi,jii,�

(c†
i�
cj� + h.c)

+ �
X

i2A

ni ��
X

i2B

ni + U
X

i

ni"ni# � µ
X

i

ni (1.11)

The notations carry usual meaning defined before. Here the two body Hubbard

interaction term can be written in the mean-field language as given below.

Uni"ni# ' U(hni"ini# + ni"hni#i � hni"ihni#i) (1.12)

Here i is the site index and n↵� = c†
↵�
c↵� is the number operator with spin �

and ↵ 2 {A,B} sub-lattices. We will Fourier transform of the IHM using ci↵� ⌘
P

k
c↵k�e�ik.ri↵ .

Then the mean-field Hamiltonian in k-space will have the following form.

HHF = �t
X

k,�

[✏k(c
†
Ak�

cBk� + h.c) + ak�c
†
Ak�

cAk� + bk�c
†
Bk�

cBk�] (1.13)

Where, ak� ⌘ �� µ+ ek + UnA� and bk� ⌘ ��� µ+ ek + UnB� with ek =

�4t0coskxcosky and ✏k = �2t(coskx + cosky)

If the one particle eigenstates of the Hamiltonian are |f±
k�
i = (g±

Ak�
c†
Ak�

+g±
Bk�

c†
Bk�

)|0i
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with associated eigenvalues E±
k�
, then we can write eigenvalue equation as

2

64
ak� ✏k

✏k bk�

3

75

2

64
g±
Ak�

g±
Bk�

3

75 = E±
k�

2

64
g±
Ak�

g±
Bk�

3

75 .

Therefore, the HF band energies E±
k�

will be

E±
k�

=
1

2
(ak� + bk� ±

q
(ak� � b2

k�
) + 4✏k2) (1.14)

g±
Ak�

= h±2
k�
/(1 + h±2

k�
)

g±
Bk�

= 1/(1 + h±2
k�
)

Here, h±2
k�

= �✏k/(ak� �E±
k�
). Now, we will define the order parameters �s, su, and

�n representing di↵erential sub-lattice magnetization, uniform magnetization and

di↵erential sub-lattice occupation respectively and then write the band energies in

terms of the order parameters. The definition of the order parameters are given

below.

�s = (szA � szB) (1.15)

su = (szA + szB)

�n = (nB � nA)/2

Where, sz↵ = 1
2(n↵"�n↵#) and n↵ = (n↵"+n↵#) with ↵ 2 {A,B} in the sub-lattices.

E±
k�

= �4t0coskxcosky +
U

2
� �Usu

2
� µ (1.16)

±
r

[�� U(
�n+ ��s

2
)]2 + ✏k2

So, this is the band dispersion HF mean-field Hamiltonian. The signs, ’+’ and ’-’
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Figure 1.7: The � � U phase diagram found from DMFT study of IHM in the
Ref.[48] at T = 0. The line between band insulator and Mott insulator is the
metallic instability.

refer to the conduction and valance band respectively. The ionic Hubbard model

(IHM) which is the extension of the Hubbard model was introduced by Nagaosa

et. al. and used to study the charge transfer physics in organic crystals [20] as

mentioned in the beginning of the chapter. Then the model was studied examining

various aspects of physics.

(i) t0 = 0 studies: The first DMFT study of half-filled IHM on square lattice

by Garg et. al. showed that correlation can actually drive the band insulating

phase induced by the staggered potential to metal and then to a Mott insulator

at T = 0 [48]. This investigation shows that interaction leads to closing of single

particle charge gap instead of opening a gap which typically happens in the most

cases. It is important to mention that the metal emerging out of the interplay of

correlation and ionic potential is an instability in between Band and Mott insulator

as seen from the phase diagram in Fig.1.7 obtained in Ref.[48]. The Determinantal

Quantum Monte Carlo (DQMC) study of the model at half-filling on square lattice

by Scalettar et. al. also confirms the existence of the intermediate metal[49]. But

in their investigation they found a wide metallic window rather than sliver as seen

in Fig.1.7. This however could be due to the fermion sign problem that limited
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Figure 1.8: The t0�U phase diagram found from Hartree-Fock (HF) in panel (a) and
DMFT in panel (b) in the Ref.[47] at T = 0. In the inset of panel (a), di↵erential
sublattice magnetization, �s (top inset) and uniform magnetization, su (bottom
inset) obtained from HF calculation are plotted as a function of U/t for di↵erent t0

and fixed � (= 1.0t) as indicated.

the DQMC calculations to 0.05t. The window could have narrowed down at lower

temperatures. The metallic state remained controversial as CDMFT study[50] found

a bond ordered solid instead of a metal. At present the consensus is that the metal is

preempted by an antiferromagnetic insulator (provided magnetic order is allowed in

the calculation.)[51]. Thus new avenues were looked into for stabilizing the metallic

state.

(ii) Stabilizing the metal : The first attempt to stabilize the metallic state was

by means of doping. The study of IHM has been done by Garg et. al. within

the DMFT framework showed that indeed one can not only stabilize the metal,

in fact a ferrimagnetic half-metallic window was found by doping the system[52].

More recently, in the presence of nnn hopping which acts as source of frustration,

the IHM was investigated on a square lattice at half-filling by Bag et. al. [47].

In their combined study using Hartree-Fock mean field theory and DMFT with

CTQMC as impurity solver, they found three kind of metallic phase, paramagnetic,

ferrimagnetic and anti-ferromagnetic in between the band and Mott insulator at

T = 0 for intermediate t0 regime as shown in the panel (a) and (b) in Fig.1.8 in

the HF and DMFT respectively. The mean field phase diagram can be constructed
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by tracking �s, su and �n defined in Eq.1.38 as a function of U,� and t0 after a

standard self consistency procedure. �s and su plotted against U/t for � = 1.0t for

di↵erent t0 values as indicated, are shown in the top and bottom insets respectively

in panel (a). We clearly see that beyond a critical t0, the a metallic window opens

up, but is a lot richer than a simple paramagnetic metal as was found in the original

study [48]. We also observe that remarkably the Hartree-Fock and the DMFT phase

diagrams match qualitatively, quite well.

In the above investigations of IHM using various numerical techniques, the find-

ing was that of a half-metal at T = 0 sandwiched between the small U band and

large U Mott insulator. The 100% spin polarization of half-metal occurs absolutely

at zero temperature. Although finite temperature study of IHM has been performed

but still its not clear about the thermal depolarization of the T = 0 half-metal. This

is particularly true because of analytic continuation issues with imaginary time im-

purity solvers at finite temperatures in calculating real frequency quantities such

as spin dependent density of states and conductivity. Thus, our semi-classical ap-

proach is ideally suited for the finite T study, particularly given the good qualitative

match of the T=0 Hartree-Fock and DMFT phase diagrams. While we started out

with the modest goal to study the finite temperature fate of the half metallic state

reported above, we discovered a novel half metal what is obtained by heating the

Mott insulator. We discuss our results for the IHM in chapter 4.





Chapter 2

Model and Numerical Methods

As discussed in the previous chapter, the Hubbard model being the prototypical

model for strong correlation physics has been investigated purely from a theoretical

standpoint as well as has remained as one of the most active playgrounds to study

a number of non-trivial many body phenomena in strongly correlated materials.

Study of the model and its variants have shed light on phenomenon like the

pseudogapped phase in doped cuprates [53] [54] and high-Tc superconductivity [55]

[56], Mott-metal transition[57] [58], half-metals [51], non-Fermi liquid behavior in

the heavy fermionic systems [59] [60], rare earth nickelates [61] [62] [63] and lay-

ered dichalcogenides [64], name a few. For these studies a plethora of techniques

have been employed. In this chapter we will briefly summarize a number of such

techniques and end with a detailed discussion of a recent semi-classical Monte-

Carlo approach that has been used in this thesis. The Hubbard model has been

studied using various techniques such as Hartree-Fock Mean-Field theory (HF)[42]-

[44] , Exact Diagonalization (ED)[65] [66], Lanczos[67][68], Density Matrix Renor-

malization Group theory (DMRG)[69] [70], Determinantal Quantum Monte Carlo

(DQMC)[71] [42], variational calculation[72][73], Dynamical Mean Field Theory

(DMFT)[74][17][75][76][77], slave boson theory[78], Gutzwiller projected wave-function

method[43][79], many-body perturbation theory[80] [81] [82] . As it is well known

that all the listed techniques have there respective advantages and shortcomings.
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We summarize the most popular ones below:

(i) Exact Diagonalization: In ED the matrix representation in the many body

Hamiltonian is diagonalized by brute force . But as the Hilbert space grows expo-

nentially (4N) with the system size N increase for spin half fermions, it is impos-

sible to handle reasonable system sizes using current computing resources. Hence,

the method is restricted to small system size for one orbital Hubbard model. For

multi-orbital systems, the size limitation becomes even more severe. For Lanczos,

the many body ground state is iteratively approximated by dropping insignificant

states. Its system size limitations is less severe compared to ED but the method

typically loses out on the excitation spectrum.

(ii) Hartree-Fock mean field theory: Hartree-Fock mean field theory is one of

the easiest approaches to get some insight into characteristics of the system by the

study this kind of model. In this minimal theory, the actual many body interaction

is approximated by a one body theory coupled to the mean fields by dropping all

quantum fluctuations[83], as we have discussed in the introductory chapter. Hence

the theory becomes an e↵ective one body problem. It gives a mean-field ground state

of the system after minimization of the energy or within a self consistency scheme.

It has di↵erent flavors of approximation like restricted and unrestricted mean field

theories. For the case of restricted Hartree-Fock mean field theory, the average

values of the order parameters are considered to be same for all the sites. Whereas

in the unrestricted case those are distinctly calculated for all the sites. Hence the

unrestricted theory is a better approximation to the many particle ground sate at

zero temperature as it incorporates spatial fluctuations. Use of the approach at finite

T, where the temperature enters through the Fermi function for computing average

values gives incorrect results. For example, it can not capture the non-monotonic

dependence of TN with U, preformed local moment, Mott insulator, physics of doped

Mott insulator for one band Hubbard model.

(iii) Dynamical Mean Field Theory: DMFT is a non-perturbative impurity+

bath based approach to study strongly correlated systems[84]. Unlike Hartree-Fock

mean field theory, DMFT contains charge and spin fluctuations at the impurity site.
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It has been used extensively for studying a large class of strong interacting electron

systems, with no limitation of the interaction strength or filling and over a wide

temperature ranges. The method is exact for lattice with infinite coordination or in-

finite dimensions. However, the impurity based method cannot capture momentum

resolved quantities and extensions such as DCA(Dynamical Cluster Approximation)

and CDMFT (Cluster DMFT) (K-space and real space cluster generalizations) are

comparatively very expensive. But currently, in DCA, the cluster size can be in-

creased up to 64 sites[16] which was a limitation few years back. Also as in any

quantum impurity based method, a good impurity solver is essential. These are nu-

merically costly and are typically formulated in imaginary frequency. The analytic

continuation to real frequency for real frequency dependent quantities such as den-

sity of states is troublesome , as is well known in the use of the Maximum Entropy

method.

(iv) Density Matrix Renormalization Group: DMRG approach is based on e�-

cient truncation of Hilbert space using quantum entanglement[85]. It is restricted

to low (one or quasi one) dimensional systems of strongly correlated electrons. Al-

though the truncation of Hilbert space allows to access larger system, it becomes

ine�cient except for one dimension or ladder like systems due to the area law of

growth of entanglement entropy. n a bipartite system the entanglement between

the sub-parts is proportional to the boundary area. In 1 dimensional lattice the

‘area’ is simply a link and a line in 2D and so on. This growth of entanglement

proportional to the boundary rather than the volume of the bulk of the sub-system

is called to area-law of entanglement and is measured in terms of the entanglement

entropy [Rev. Mod. Phys. 77 (1 2005), pp. 259–315 ].Although, the technique is

usually restricted to zero temperature but progress of the field made it possible to

go finite temerature[86][87].

(v) Determinantal Quantum Monte Carlo: DQMC incorporates both quantum

and thermal fluctuation. It is based on the Hubbard-Stratonovich (HS) transfor-

mation of the Hubbard interaction which is exact and a Monte Carlo procedure

to anneal the HS auxiliary fields[88]. Also in this method, the system size can be
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accessed reasonably larger compared to ED. Hence it can be deployed for one as

well as multi-orbital Hubbard model. Along with these advantages, DQMC has a

serious limitation. DQMC based Monte-Carlo su↵ers from the infamous fermion

sign problem where the probability of acceptances of HS fields becomes negative,

except for special cases like the half-filled Hubbard model. Away from half-filling

and the cases when longer range hopping which breaks the particle-hole symmetry,

the sign problem is severe. The fermion sign problem becomes more severe at low

temperatures and for large system size. Owing to antisymmetry of the many-fermion

wave-function, the Monte-Carlo acceptance rate in DQMC can turn negative. This

can be quantified by the average sign of the acceptance rate. When the average

sign approaches zero, the Monte-Carlo becomes unstable. This is known as the

fermion sign problem, which increases with system size and with lowering tempera-

ture [Brazilian Journal of Physics, 33, 1, (2003)].The method is otherwise exact in

the absence of sign problem. However, the sign problem limits the investigations of

Hubbard model to high and intermediate temperatures.

(vi) Semi-classical Monte Carlo: In this thesis we have used a recently developed

numerical technique called semi-classical Monte-Carlo approach (s-MC)[89] [90] to

study the Hubbard model and its variants at finite temperatures. Like DQMC

in s-MC the two body Hubbard interaction term is decoupled through Hubbard-

Stratonovich transformation that allows us to write the interaction term as non-

interacting fermion coupled to auxiliary fields. But unlike DQMC, in this scheme we

only retain the spatial fluctuations of the auxiliary fields, as shown in the schematic

Fig.2.1. In the figure, the constant red dashed arrow is the temporal path for

auxiliary fields in s-MC, as opposed to in DQMC represented by the black arrows

that allows non-trivial time evolution for the auxiliary fields. We will discuss this

approximation in detail later in this chapter. Dropping of the fluctuation over time

allows to extract e↵ective one body spin-fermion Hamiltonian. The many body e↵ect

and thermal fluctuation enter in the calculation through the spatial distribution of

auxiliary fields. The method at T = 0 tends towards unrestricted Hartree-Fock mean

field theory. But at finite temperature, it exhibits qualitatively good result and it
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progressively becomes accurate as temperature increase in the thermally dominated

regime. s-MC compares well with DQMC in a wide temperature window. It is

numerically inexpensive and allows access to large system sizes.

Figure 2.1: Imaginary time slice and temporal path for s-MC and DQMC shown by
the red dashed arrow and black arrows respectively

2.1 Inhomogeneous Mean Field theory

Since s-MC reduces to unrestricted Hartree-Fock at low temperatures, we derive

(in Appendix D) the inhomogeneous mean-field Hamiltonian in real space. This

complements the k-space mean-field theory discussed in chapeter 1. This also will

be useful to contrast the Hartree-Fock Hamiltonian and the closely related e↵ective

Hamiltonian of the semi-classical Monte-Carlo approach.

The Mean-Field (MF) Hubbard Hamiltonian in real space have the following

form, found from Appendix D.

HHF = �t
X

hiji,�

c+
i�
cj� +

U

2

X

i

[nihnii+ 2h~Sii
2
� 4~Si.h~Sii � (1/2)hnii2] (2.1)
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2.2 Semi classical Monte-Carlo Technique

Our goal in this thesis is to study the Hubbard model at finite temperatures and

extract the physics of the model for di↵erent circumstances like incorporation of

frustration and staggered potential. For the derivation of the semi-classical Monte-

Carlo approach we follow recent literatures[89] [90]. The detailed derivation to get

to the e↵ective one body spin-fermion Hamiltonian is given below followed by the

exact diagonalization + classical Monte-Carlo scheme (ED+MC) for solving the s-

MC e↵ective Hamiltonian. To reduce the numerical cost and access larger system

size we use Travelling Cluster Approximation (TCA)[91]. The details of TCA are

discussed after we present the s-MC scheme.

2.2.1 Derivation of Heff in the semi-classical approach

The Hubbard Hamiltonian is

H = H0 +HU = �t
X

hiji,�

(c†
i�
cj� + hc) + U

X

i

ni"ni# � µ
X

i

ni (2.2)

Where, t is the nearest neighbor hopping amplitude (which sets the energy scale, so

we take t=1 throughout this thesis), U is the on site Hubbard interaction and i runs

over the sites on the two dimensional square lattice and µ is the chemical potential

introduced to fix the particle number in the system. Here c†
i�

(ci�) is the electron

creation (annihilation) operator and ni� is the number operator for � spin at a site

i.

Now, our goal is to simplify the two body Hubbard interaction term. For setting

up the formalism we write the interaction term through the exact transformation

as the square of number n and spin S operator as the following rotational invariant

form.

ni,"ni,# =
1

4
(n2

i
)� (Si · ⌦̂i)

2. (2.3)
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Where, the spin operator is Si = ~
2

P
↵,�

c†
i,↵
�
↵,�

c
i,�
, ~ = 1, {�p; p = x, y, z} are

three Pauli matrices, and ⌦̂ is an unit vector along arbitrary direction. To reach

to the above identity, use the identity: (Si · ⌦̂i)2 = (Si,x)2 = (Si,y)2 = (Si,z)2. The

above identity simplified by the Hubbard-Stratonovich (HS) transformation gives

the proper Hartree-Fock saddle point. The partition function for Hamiltonian, H

is Z = Tre��H . The trace is taken over the occupation number basis. The inverse

temperature is � = 1/T , where kB is 1. The window [0, �] is sliced to M number of

segment having interval width �⌧ , or equivalently � = M�⌧ . In the limit �⌧ ! 0

by using Suzuki-Trotter decomposition, we can write e��(Ho+H1) = (e��⌧Hoe��⌧H1)M

to the first order in �⌧ . For a given time slice ’l’ the exponential of (-�⌧) times the

interaction term is written by using HS transformation to the following form:

const.⇥
Z

d�i(l)d�i(l)d
2⌦i(l)⇥

e��⌧ [
P

i(
�i(l)

2

U +i�i(l)ni+
�i(l)

2

U �2�i(l)⌦̂i(l).Si)]

Here the auxiliary fields �i(l) and �i(l) are introduced through the HS transforma-

tion which couple to the charge density and spin operator respectively at every site

i. We define a new vector auxiliary field mi(l) which is the product �i(l)⌦̂i(l) at

each site. Then we can rewrite the full partition function as following

Z = const.⇥ Tr
1Y

l=M

Z
d�i(l)d

3mi(l)e
��⌧ [Ho+

P
i(

�i(l)
2

U +i�i(l)ni+
mi(l)

2

U �2mi(l).Si)] (2.4)

In the above equation the integrals are taken over {�i(l),mi(l)} and a time order

product of M time slices from M th to 1 is used. The di↵erential for the vector

auxiliary field mi(l) is written as d3mi(l). At this stage the partition function is

exact. We now make approximation by dropping time dependence and keeping only

spatial fluctuation of the auxiliary fields. By doing so and using the saddle point

value of the auxiliary field �i(l) we extract the e↵ective one body Hamiltonian Heff .

If we keep �i and treat as the auxiliary field in the Monte-Carlo, it is clear from
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Eq.2.4 that it breaks the Hermiticity of the Hamiltonian as the term with �i linearly

coupled to ni is imaginary. Further we also re-scale mi(l) as U

2mi. From here on

we will refer to auxiliary field as (Aux. F) which basically refers to mi. Finally, the

form of the e↵ective Hamiltonian looks like following

Heff = Ho +
U

2

X

i

(hniini �mi.�i) (2.5)

+
U

4

X

i

(mi
2 � hnii2)� µ

X

i

ni

We would like to point out that if we replace the Aux. F mi in the Eq.2.5 by the

average value of the spin operator, we would get back the HF mean field Hamiltonian

given in the Eq.2.1. Hence at T = 0 our e↵ective Hamiltonian Heff reduced to HF

theory. In s-MC, the Aux. F are variables that, at finite temperature can take

arbitrary values and not restricted to the mean-field values, we obtain in a Hartree-

Fock theory.

The summary of the scheme of the semi-classical approach is given in the flowchart

in Fig.2.2.

2.2.2 Details of the Monte-Carlo procedure

Now, to solve the e↵ective Hamiltonian Heff found above, we use ED coupled with

classical Monte-Carlo (MC) in the background of classical auxiliary fields {mi}

randomly generated from the random number generator. We use the Metropolis

scheme to update auxiliary fields sequentially on the lattice and generate thermalized

configurations. The Metropolis algorithm is given in the steps below.

1. We initialize the Aux. F mi background randomly and an uniform hnii

distribution.

2. We diagonalize the Hamiltonian in the background of the random Aux. F.

and compute energy Ep.

3. We propose an update at a site i for the Aux. F mi.

4. We rediagonalize the Hamiltonian (with the update) and calculate energy
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Figure 2.2: Flow chart of the semi-classical Monte-Carlo scheme.

Ec.

5. Now if �E(= Ec � Ep)  0 then the changed Aux. F will get accepted.

6. If�E(= Ec�Ep) > 0, the update is accepted with the probability exp(���E)

7. We repeat the steps 3-6 by visiting each site of the system sequentially until

we cover all the sites (one Monte-Carlo system sweep).

8. We calculate hnii self-consistently in the fixed MC configuration for every

10th MC sweep to allow the charge to distribute to readjust to the change of the

Aux. F.

Let us elaborate this step in some detail. In the Monte-Carlo calculation the

Hamiltonian is a functional of the {mi} fields and the average local densities {hnii}.
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The Monte-Carlo update of the {mi} fields is spilt into two parts at any given

temperature, say Tk. The average local densities {hnii} are either chosen randomly

at the highest temperature (Th) starting point of the calculation or inherited from

the previous (immediate higher temperature point) if Tk < Th. We first perform 10

Monte-Carlo system sweep keeping the local densities {hnii}s fixed. We then stop

the update of the {mi} fields and perform a self-consistency in the local densities.

Once the local densities have converged, we then hold these densities fixed and

perform another 10 Monte-Carlo sweeps. This slow two-stage process is continued

for all thermalization Monte-Carlo system sweeps. We have checked that continuing

the process beyond thermalization does not modify observables calculated.

9. We perform su�ciently large number of Monte-Carlo sweep (repeat the steps

from 3-8) until the system gets thermalized for a given temperature.

Figure 2.3: Flow chart of the Metropolis scheme.
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We start the MC from high T and reduce the temperature in small steps so that

the system doesn’t get trapped in local minima up to very small T. The informa-

tion of the thermal fluctuation gets encoded in the equilibrium classical auxiliary

field configurations. To get the thermalized configurations we first leave half of the

Monte-Carlo sweep annealing for a given temperature and the last half of MC sweep

configurations will be saved for calculations. To avoid auto correlation between the

configurations due to the pseudo-random number generator that is to generate in-

dependent auxiliary field distribution we use every 10th configuration of the 2nd half

of the MC sweeps to compute thermal averages.

We use single flipping scheme in the Metropolis algorithm in our Monte-Carlo

procedure. There are various cluster flipping schemes to basically avoid critical

slowing down close to phase transition such as the Wolf algorithm, Swendsen and

Wang algorithm and so on. We have checked that our single flip protocol is su�cient

to equilibrate the Aux.F.

In our study, we use 4000 MC sweeps out of which the first 2000 are utilized for

thermalization of the system and for every 10th MC sweeps we have self-consistently

calculated hnii in the fixed Aux. F background. The last half (2000) configurations

are employed for computing physical observables. We use every 10th configuration

of the later 2000 MC sweeps for evaluating thermodynamic quantities to avoid auto

correlation. Here, the equilibration is determined by plotting the average energy

of the system as a function of Monte-Carlo system sweeps, where equilibration cor-

responds to the MC steps at which the average energy settles to a constant value

(within numerical accuracy). In all typical cases the equilibrium is achieved earlier

than 2000 MC sweeps as seen in the Fig.2.4. In panel (a), the average energy as

a function of MC sweep is plotted for half-filled Hubbard model for U = 4.0t and

t0 = 0 at T = 0.1t on a 162 square lattice with 4000 MC sweeps. We have also

presented for correlations, U = 2.0t in panel (b) and U = 8.0t in panel (c) in Fig.2.4

at temperature, T = 0.05t for the same system size using same MC sweeps. The

data are shown for t0 = 0 with black and finite t0 (t0 = �0.3t) with red colour.

We see that the burn in time for small U is lesser than for large U in the unfrus-



34 Model and Numerical Methods

Figure 2.4: This shows the average energy vs MC sweep data found from MC
annealing for a 162 system size square lattice using 4000 MC sweeps for the case of
half-filled Hubbard model for di↵erent interaction strengths U = 2.0t, 4.0t and 8.0t
shown in panel (b), (a) and (c) respectively for t0 = 0 and t0 6= 0 cases. Panel (a) is
presented only for t0 = 0 case at T = 0.1t. Where as panel (b) and (c) are shown
for t0 = 0 and �0.3t indicated by the black and red colours for above mentioned
correlation values at fixed temperature T = 0.05t.

trated case. The burn in times are larger in the case of frustration as expected.

As we increase temperature number of MC steps to thermalize will be less compa-

rable to low temperature, as at low T the acceptance rate decreases due to small

Boltzmann weight which is used as probability of acceptance in the Monte-Carlo

procedure. Also it should be mentioned that when the system is highly frustrated

for around t0 = �0.8t and Uh20t where paramagnetic insulating phase with short

range correlation (possibly candidate for spin-liquid (SL)) appears, we have done

40, 000 Monte-Carlo sweeps but the result does not change from 4000 Monte-Carlo

sweep calculation.

We begin the Monte-Carlo run at T = 100t and decrease T with interval �T/t =

10 up to 1. Then, we make the spacing 1.0t to reach T = 1.0t from the value 10t.

Then gradually T is lowered to 0.3t from 1.0t in the step of 0.1t and then from that

value it is decreased to 0.1t with �T/t = 0.05. The temperature is reduced to 0.01t

by an amount of 0.01t in every step. Finally, T is further decreased to 0.005t with

interval 0.001t from T = 0.01t.
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Figure 2.5: Scematic diagram of TCA scheme.

2.2.3 Travelling cluster approximation:

As discussed above in the s-MC approach we need to do exact diagonalization in

the background of the Aux. F mi and hnii mean field to calculate free energy which

is used to accept or reject a proposed update. The diagonalization cost for a system

with the total number of sites N goes like N3 for every diagonalization. Further, a

sequential system sweep costs a factor of N. This makes the cost of a single system

sweep N4 which increases up to 10N4 for 10 hnii self-consistency loops, performed

after a system sweep. The typical size accessible by this method is ⇠ 102-122. The

Travelling Cluster Approximation (TCA)[91] and its parallelized version [90] allows

one to access larger system sizes. In TCA we assume that the e↵ect of a local

update (or at a site) for Aux. F does not propagate very far. Thus the Monte-Carlo

acceptance/rejection can be decided based on a cluster Hamiltonian built around

the site where the update is proposed for the Aux. F. For example, we choose a

reference site at which we propose a change of Aux. F as shown by the blue circle

around a red arrow in the schematic picture in Fig.2.5. We form the cluster around

that central site represented by the green regime. The cluster size Nc is chosen

to be smaller than system. Then we get the energy after diagonalizing the cluster
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Hamiltonian. This reduces the numerical cost to N ⇥N3
c
. We would like to mention

that in our calculation, we have used periodic boundary condition (PBC) for the

cluster under TCA scheme following literature [S. Kumar and P. Majumdar Eur.

Phys. J. B 50 571 (2006); Anamitra Mukherjee et. al Phys. Rev. E 91 063303

(2015).]

Using TCA we can access very large system size and till now 402 for 2D lattice

for the single orbital Hubbard model. In our calculation, we have used 322 system

size and kept the cluster size as 82. This significantly reduces the cost comparable

to the direct (without TCA ) 322 calculation.

2.2.4 Benchmarks for s-MC

As we have mentioned that the e↵ective Hamiltonian extracted from the formalism

becomes unrestricted Hartree-Fock mean field Hamiltonian at T = 0. At a finite

value of T, the thermal fluctuation is imprinted in the Aux. F and the method

exhibits results which is not only qualitatively but quantitatively in agreement with

the DQMC study[92].

Fig.2.6 shows the finite temperature U � T magnetic phase diagram found from

the half-filled Hubbard model for cubic lattice[89]. The red solid squares are the anti-

ferromagnetic q = (⇡,⇡,⇡) or G-type magnetic order transition temperatures TN at

di↵erent U/t values. It is clear that s-MC method captures the non-monotonic be-

havior of the N’eel temperatures, TN qualitatively matches with the result of DQMC

shown by the open squares. It should be also mentioned that this approach captures

large U perturbative scaling of TN of ⇠ �O(t2/U)[93] . It also captures the non-

trivial preformed local moment region where moments are formed but they are not

ordered, obtained upon heating the long range anti-ferromagnetic order. This region

is shown in blue. The local moment insulator to paramagnetic metal crossover is

shown by the boundary between the blue and the gray regions. In contrast, the finite

temperature Hartree-Fock results produce a TN which grows monotonically with U

(blue dashed line) and the entire region below it would be a G-type antiferromag-
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Figure 2.6: Finite tmperature U�T magnetic phase diagram. The red solid squares
and open squares are the anti-ferromagnetic Neel temperature TN found from s-MC
[89] and DQMC [92] study respectively. The blue dashed line is TN line got from
HF theory. The light blue regime is the preformed local moment regime.

netic insulator. It also does not capture the regime of preformed local moment.

Because of the power of capturing rich physics the method is successfully employed

for various systems such as one [94] and two orbital Hubbard model[95], Anderson-

Hubbard model[96], frustrated[97] and attractive Hubbard model for studying BEC

to BCS crossover[98].

we would like to emphasize here, that the Auxiliary fields are sampled through a

Monte-Carlo (Metropolis algorithm) that includes the quantum one-body Hamilto-

nian containing the same Auxiliary fields. Thus a single update at any Monte-Carlo

step in not an uncorrelated update, but a correlated one. This is a case of annealed

disorder rather than a quenched one. As is well-known in literature, [Phys. Rev.

B 49, 147 (1994); Phys. Rev. Lett. 95, 126602 (2005)] Anderson localization

(localization of single particle states in low dimensions in the presence of random

potentials) is suppressed in such cases.

In the next two chapters we will present results for the finite temperature prop-

erties of the Hubbard model using s-MC under introduction of longer range hopping
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and staggered onsite potentials.



Chapter 3

Frustration and temperature

e↵ects at half filling

3.1 Introduction

In this chapter, we will discuss the results of our study of the Hubbard model in

the presence of frustration on the square lattice at half-filling. Next nearest neigh-

bor hopping can act as a source of frustration that disrupts long range staggered

magnetic order, destabilizes insulating tendency, and can induce new paramagnetic

metallic state. In chapter 1 we saw that this deviation from perfect nesting can lead

to non-Fermi liquid behavior. In our work, we focus on the finite T metal-insulator

and magnetic properties of the t � t0 Hubbard model. We will also demonstrate

deviations from Fermi liquid behavior and a pseudogapped regime in nnn hopping

induced metallic states in the following sense: Since our approach is semi-classical

that goes over to the Hartree-Fock approximation as T ! 0, ‘non-Fermi liquid’

behavior in this thesis refers to deviation from Fermi-liquid driven bt thermal fluc-

tuations. We will however show some exact diagonalization results at T=0, that

provides clues to the T=0 limit.
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3.2 t� t0 Hubbard model

The t� t0 Hubbard model on a square lattice is defined as

H = �t
X

hi,ji,�

(c†
i�
cj� + h.c)� t0

X

hhi,jii,�

(c†
i�
cj� + h.c) + U

X

i

ni"ni# � µ
X

i

ni

where, c†
i�

(ci�) are electron creation (annihilation) operators at the site i with spin

�. t and t0 are respectively the nearest and nnn hopping amplitudes. We choose

t0/t < 0 in our study inspired from cuprates. ni� = c†
i�
ci� is the number operator for

spin � at a site i and ni is the spin summed local number operator. U is the local

Hubbard repulsion. µ denotes the chemical potential, and is adjusted to maintain

half filling. To study the finite temperature properties of the model we use the

following observables: static magnetic structure factor Sq, density of states N(!),

resistivity ⇢(T ) within the Kubo-Greenwood formalism, local moment distribution

in real space P (M), spin-spin correlation in real space, C(r), These indicators are

defined in Appendix E.

3.3 Emergent phases at low temperature

The low temperature U/t� t0/t phase diagram is shown in the Fig.3.1 at T = 0.005t

obtained by cooling down within the Monte-Carlo protocol discussed in chapter-

2. This phase diagram should to thought of as a good approximation to the T=0

unrestricted Hartree-Fock phase diagram. As we have discussed in chapter 1, the

~Q = (⇡, ⇡) nesting instability is disrupted in presence on t0, so the insulating phase

is pushed to finite Ucrit that depends of the value of t0. There are also interesting

magnetic transitions driven by the nnn hopping in the insulating regime. These are

discussed below. We would like to emphasize that in 2-dimensions with continuous

spin rotation symmetry, there is no true long range order in the thermodynamic limit
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Figure 3.1: Low temperature U � t0 phase diagram. The various phases obtained
are a paramagnetic metal (PM-M), q = (⇡, ⇡), (G-type) antiferromagnetic insulator
AF1-I; q = (⇡, 0)/q = (0, ⇡), (A-type), antiferromagnetic insulator AF2-I; and a low
T correlated paramagnet (C-PM) insulator at large U . For 5.2 < U/t < 6, there is a
re-entrant insulator to metal transition around t0/t ⇠ �0.8. The data was obtained
on a 322 system. The open circles, crosses and open squares are data reproduced
from L. Tocchio et al. Phys. Rev. B 78, 041101 (2008). These are discussed in the
text. The phase diagram is calculated at the lowest temperature T = 0.005t.
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due to the well known Mermin–Wagner theorem[99]. The various TN , the magnetic

ordering scales should be interpreted at the temperature at which magnetic corre-

lation extends over the system size, as is routinely done in 2-dimensional studies of

magnetic order[100]. We will however show some data in 3-dimensions to show that

our 2-dimensional magnetic scales are reliable indicators of systematics of magnetic

tendencies with variation in U and t0.

3.3.1 Description of the phase diagram

The locus of critical values of the interaction (Ucrit) for transition to a insulator is

shown in Fig.3.1 by solid line with filled squares. The dependence on t0/t is evident

from the plot. The left side of the line is the region where the metallic phase exists

i.e for U < Ucrit and the right side is the insulating phase (U > Ucrit). The metal-

insulator boundary has a non-monotonic dependence on t0/t, with the maximum

value of the critical value of the Ucrit is 6t at t0/t = �0.8. The insulating phase

has magnetic ordering that depends on the value of the frustration (t0). The regime

below t0/t = �0.8 is a G-type (⇡, ⇡) anti-ferromagnetic ordering which is shown by

the yellow shade. In contrast, the region above t0/t = �0.8 has A-type (⇡, 0) or (0, ⇡)

which is shown in green color. As mentioned above this boundary is constructed

based on finite temperature behavior of resistivity. We will discuss this later in the

chapter.

The earliest study of the current model by Lin and Hirsch[42] using Hartree-

Fock and quantum Monte-Carlo (QMC) numerical techniques says that indeed there

exist finite critical values of U in the presence of t0 instead of U = 0 unlike for case

t0 = 0. The critical value is Ucrit = 2.1t as found from Hartree-Fock (HF) study

but DQMC technique at t0 = 0.2t on a system having system size N = 64 (8 ⇥ 8

lattice) gives the value Ucrit = 2.5t ± 0.25t at half-filling. So, there is a reasonable

agreement with HF and DQMC. Also it has been found using HF method that Ucrit

increases with t0 within the regime 0 > t0/t > �0.45t. In our study, we found 2.6t as

the critical interaction value at the same magnitude next nearest neighbor hopping
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Figure 3.2: This plot shows finite temperature U/t�T/t phase diagram at di↵erent
t0 values. The red with open circles, green with open up-triangles, blue with open
down triangles and magenta with open diamonds are the curves of antiferromagnetic
N’eel temperature TN for t0 = 0.0, �0.4t, �0.6t and �1.0t respectively, plotted
against interaction value U/t which are found from the static magnetic structure
factor calculation. The parameters are indicated with same colors in the figure.
Out of four curves, red, green and blue (t0 = 0.0, �0.4t, �0.6t) are for q = (⇡, ⇡)
and the magenta (t0 = �1.0t) is for q = (⇡, 0) or q = (0, ⇡) magnetic ordering. The
various dashed and dashed dotted lines are referring T ⇤ scale which is associated
with thermal fluctuation evolved Metal-Insulator transition indicted with respective
colors.

value. Finally in Fig.3.1 we have added the phase boundaries obtained in literature

using Gutzwiller variational approach (L. Tocchio et al. Phys. Rev. B 78, 041101

(2008)). These agree remarkably well with the low T s-MC magnetic and metal

insulator phase boundaries. In the Gutzwiller study a possible spin liquid phase (in

the region where we find a low-T correlated paramagnet shown in orange) was also

reported, unfortunately ascertaining whether our C-PM is a spin liquid or not is

beyond the semi-classical approach. However, we will discuss its properties in the

next section.

3.4 Magnetic phases at finite temperatures

Now we concentrate on the finite temperature magnetic phases found from our s-

MC study. The U/t � T/t phase diagram is presented in the Fig.3.2 for di↵erent
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t0 values. The solid red line with open circles is the anti-ferromagnetic (q = (⇡, ⇡))

Neel temperature (TN) for the corresponding U/t values for the t0 = 0 case. TN has a

non-monotonic dependence on U which agrees with the weak and strong correlation

limits as found from the study of the model using perturbation theory[101]. In the

strong coupling limit, ⇠ O(t2/U) scaling of TN has been found in our study. For the

weak interaction strength, nesting in the Fermi surface for the wave vector q = (⇡, ⇡)

leads to G-type anti-ferromagnetic ordering in the system at half-filling. The perfect

nesting happens for t0 = 0 when the system exhibits particle-hole symmetry. And

TN for this case goes like the gap � ⇠ te�2⇡
p

t/U as in chapter 1. However due to

finite lattice and the resulting energy gap in the spectrum, exact form of the nesting

induced TN unfortunately cannot be captured within our approach.

When next nearest neighbor hopping is switched on then not only does the

Ucrit become finite at low T, but also the N’eel temperature is suppressed from the

case with t0 = 0 as shown for the green solid line with up-triangle and blue solid

line with down-triangle for t0 = �0.4t and t0 = �0.6t. We should note that for

0 > t0/t � �0.8 the system shows q = (⇡, ⇡) anti-ferromagnetic correlation. For

t0 > �0.8t the A-type or q = (⇡, 0)/(0, ⇡) anti-ferromagnetic correlations emerge

in the system as mentioned before. The solid magenta curve with open diamond

is shown as a representative curve of TN as a function of U for t0 = �1.0t, for

A-type magnetic order. For t0 6= 0 case, the scaling of TN will have both t and

t0 dependence. Presence of both t and t0 leads to nearest neighbor (J1) and next

nearest neighbor (J2) anti-ferromagnetic super-exchange interactions with J1 ⇠ �4t2

U

and J2 ⇠ �4t02

U
[51][47]. The reduction in TN in comparison to t0 = 0 case is due to

the frustrating J2 interaction scale. The solid symbols correspond to the structure

factor (S(⇡, ⇡, ⇡)) for 3D lattice (83 system) that are free of Mermin-Wagner issues.

As typical examples, the static magnetic structure factor is presented at various

t0 values are shown for U = 4.0t in Fig.3.3 (a) and for U = 8.0t in Fig.3.3 (b). The

red line with circle in the Fig.3.3 (a) shows S(⇡, ⇡) with the magnetic transition

temperature (TN = 0.125t) for U = 4.0t and t0 = 0. Now, if we switch on the

t0, TN gets suppressed as for the case t0 = �0.4t shown by the green line with up
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Figure 3.3: In the figure, panel (a) shows static magnetic structure factor as function
of temperature for U = 4.0t for the frustration values as indicted in the panel
with respective colors. Panel (b) represents also static magnetic structure factor
plotted against T for U = 8.0. Here red, green and blue are for (⇡, ⇡) magnetic
ordering where as the magenta is for (q = (⇡, 0)/q = (0, ⇡)) magnetic ordering. The
parameters are mentioned in the panel with same color schemes. (c) shows the real
space spin correlation C(r) as a function of the Manhattan distance, r =

P
i2x̂,ŷ |ri|,

between the spins, at T = 0.005t. The data is shown for U/t = 2 and 22 and
t0/t = �0.7. (d) show the momentum space map of Sq for U/t = 22 at T = 0.005t.
All results are shown for 322 real space system.

triangle. Further increase in the frustration value shown here for t0 = �0.6t and

�1.0t with blue triangle and magenta diamond, leads to complete collapse of the

magnetic ordering. Where as for U = 8.0t in Fig.3.3 (b) TN for zero frustration

value is ⇠ 0.125t given by the red curve with circles. The (⇡, ⇡) order is lost for

t0/t < �0.8. Typical data is presented for t0 = �0.4t and t0 = �0.6t by green

line with up triangle and the blue line with down triangle respectively. These have

the transition temperatures 0.08t and 0.02t respectively. Beyond t0 = �0.8t, A-type

(q = (⇡, 0) or q = (0, ⇡)) magnetic ordering emerges in the system, the corresponding

structure factor for t0 = �t is shown by magenta line with diamond in Fig3.3 (b). (c)

shows the real space correlation between spins C(r) at low temperature for U = 2t

and U = 22t at t0 = �0.7t. C(r) is defined in the Appendix E. (d) shows the

structure factor map for all q values in the first Brillouin zone at low temperature

for U = 22t. The correspondig map for U = 2t, the usual paramagnetic state is

homogeneous (not shown). We clearly see that the C-PM phase has short range
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Figure 3.4: Enlarged form the low temperature phase diagram given in the fig-1.
The three dashed lines are guide to the eye for di↵erent U/t values as 4.0 5.6 and
6.0.

spin correlations but no long range order.

3.5 Frustration induced phase transitions

3.5.1 Re-entrant metal-insulator transition at low T

The magnified version of the low temperature phase diagram with smaller window

over U/t and keeping t0/t range fixed, reproduced from the full phase diagram in

Fig.3.1, is presented in the Fig.3.4. The phase diagram shows a PM-M phase on

the left side of the solid line. On the right side of the line, there are two magnetic

insulating phases. The AF1-I is the G-type anti-ferromagnetic insulating phase for

0 > �t0/t � 0.8 and for �0.8 > t0/t � �1.0 the is AF2-I, A-type anti-ferromagnetic

insulator. The red dashed lines are the guide to the eye, representing fixed U cross-

sections of the phase diagram at U = 4.0t, 5.6t, and 6.0t. We will discuss the

metal-insulator transition with the help of density of states (DOS) for these U/t

values. We start with U = 4t for which DOS is presented in Fig.3.5 (a). When
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Figure 3.5: This figure shows the density of states (DOS) for three values of U , 4.0t,
5.6t, and 8.0t in the panels (a), (b), and (c) respectively. In (a), the DOS for t0 = 0,
�0.4t are insulating and for �0.8t is metallic as depicted by the black, red, and
green lines respectively. In panel (b) the red and green are for t0 = �0.3t and �1.0t
respectively which are gapped but the magenta for t0 = �0.8t has a pseudo-gap
at the chemical potential, referring to the re-entrant metallic phase. The panel (c)
shows that DOS for t0 = 0, �0.6t and �1.0t with black, red, and green solid lines
respectively as indicated in the figure are all gapped and this refers to the MI phase.

0 � t0/t > �0.5, in the yellow regime the DOS is gapped as shown by representative

black and red curves at �t0/t = 0.0 and 0.4 respectively (corresponding phase is

Mott insulating with G-type magnetic order) and in the window �0.5 > t0/t � �1

(gray region) the DOS is gapless which is shown by the green curve at t0/t = �0.8

(metallic phase). At low T for U = 5.6t in Fig.3.5 (b), DOS shows gapped behavior

below t0/t = �0.7 which lies under the solid line (the Mott phase shown in the

phase diagram in Fig.3.4) given by the red line at t0/t = �0.3. With increasing

the |t0/t|, the Mott gap decreases and becomes zero ( close to t0/t = �0.7), and

beyond that value of frustration, a pseudo-gapped DOS develops which is indicated

by the magenta curve at t0/t = �0.8. Further increase of frustration makes the

DOS gapped again, as shown by the green curve for t0 = �t. This leads to ’re-

entrant’ insulator-metal-insulator transition. The two gapped DOS are for (⇡, ⇡)

and (⇡, 0)/(0, ⇡) magnetic ordering for t0/t < �0.7 and t0/t ⇠ �1 respectively.

The intermediate metal is a pseudo-gapped metal which we will discuss later. For

U = 6.0 the metallic phase closes (within numerical accuracy) at t0 = �0.8t. On

the both sides of this t0/t value, the system exhibits insulating phase with di↵erent

magnetic orders (smaller t0 shows G-type magnetic order where as larger value give



48 Frustration and temperature e↵ects at half filling

A-type magnetic order ). The re-entrant metal-insulator transition we obtained is

agreement with the previous study[102]. For larger value of the U/t for example

8.0, the DOS is always gapped for any �t0/t as indicated by the representative

values 0, 0.6 and 1.0 in the Fig.3.5 (c). The previous study of J1 � J2 Heisenberg

model for S = 1
2 shows that the G-type and A-type magnetic ordering occur for

J2/J1 < 0.4 and J2/J1 > 0.6 respectively[103][104]. The intermediate phase in

the window between 0.4  J2/J1  0.6 is a paramagnetic phase (probably a spin

liquid state). In our semi-classical approach at large U , we find that the transition

from AF1 to C-PM occurs at t0/t = �0.6 and then to AF2 occurs at t0/t = �0.8

as seen from Fig.3.1 at the largest U = 22t in our calculation. Then using with

J1 ⇠ �4t2/U and J2 ⇠ �4t02/U , this implies the AF1 to C-PM transition occurs at

J2/J1 ⇠ 0.36 and that from C-PM to AF2 happens at J2/J1 ⇠ 0.64. These are in

close agreement with the above mentioned J2/J1 ratios for the same transitions for

the J1 � J2 Heisenberg model.

3.5.2 Metal-insulator transition at finite T

At low T we have seen that Ucrit for Mott transition depends non-trivially on t0 that

includes a non-monotonic dependence. We will now focus on the finite temperature

metal-insulator transition by presenting t0 � T phase diagrams in the top row of

Fig.3.6 from panel (a) to (c) for U = 4.0t 5.6t and 6.0t respectively.

In Fig.3.6 (a) for U = 4.0t, at t0 = 0 the phase is G-type anti-ferromagnetic

insulating phase with a sizable Néel temperature. As t0/t grows in magnitude, the

magnetic transition temperature which is found from the static magnetic structure

factor, decreases monotonically as shown by the solid line and finally goes to zero

at t0/t = �0.6. Here the metal-insulator transition that is also indicated by the

solid line, follows the critical T for magnetic transition temperature. The metal-

insulator boundary is found from the optical conductivity �(!) calculated using the

Kubo-Greenwood formula which is given in detail in Appendix E.

It is well known that thermal fluctuation induced filling of the charge gap in
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Figure 3.6: (a) to (c) show t0�T phase diagrams for U = 4.0t, 5.6t and 6.0t. (d)-(f)
show !�(!) vs ! plots for t0 = 0.6t, 0.9t and 1.0t at fixed U = 5.6t shown. In (a)-(c),
the yellow regime is the (⇡, ⇡) insulator (AF1-I) phase. In (b) and (c) the orange
regions are paramagnetic insulator (PM-I) and the green regions indicate A-type
insulator (AF2-I). The dotted regime is a paramagnetic metal (PM-M) in all three
cases. !�(!) in (d) to (f) are plotted for two temperatures each as indicated. The
solid lines are linear extrapolations starting from !/t = 0 in the lower three panels.

DOS for a Mott insulator does not necessarily imply metallization. For example,

the preformed local moment regime above the TN in the half filled Hubbard model is

gapless but insulating. For crossover to metal, the local moments have to collapse.

For ascertaining insulator to metal transition driven by temperature we use the low

frequency behavior of the optical conductivity. For a metal !�(!) should behave

linearly with ! indicating a constant conductivity as ! ! 0. This analysis is dis-

cussed in detail for the specific case of U = 5.6t is discussed below. For the present

case of U = 4.0t, the insulator-metal boundary is determined by similar analysis.

For U = 5.6t, the G-type anti-ferromagnetic (AF1-I) ordering appears in the

window of t0 2 [0,�0.7t] at low-T. In the t0�T phase diagram in Fig.3.6 (b), AF1-I

is shown by the yellow regime in the t0 starting from �0.5t up to �0.7t. In this case

unlike U = 4.0t in Fig.3.6 (a), magnetic transition and metal-insulator transition do

not happen at the same temperature as a function of t0/t. The magnetic ordering

temperature shown by the solid black line separating the yellow (AF1-I) to the
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orange (paramagnetic insulator, PM-I) regime is smaller compared to the metal-

insulator crossover defined by the solid black line in between the orange (PM-I) and

the dotted regime. Both the temperature scales decrease monotonically with t0/t

and go to zero at t0 = �0.7t. At higher frustration values, in the window �0.9t �

t0/t � �1.0t a new magnetic phase which has (⇡, 0)/(0, ⇡) anti-ferromagnetic order

ot the A-type magnetic phase (AF2-I) emerges. The critical magnetic and insulator

to metal crossover temperatures for this phase have smaller values comparable to

the (AF1-I) phase but this scale increases with t0/t going from -0.9 to -1.0. The

transition from the AF2-I to PM-M is also not direct but goes a PM-I shown by the

orange region. The intervening t0 window, �0.7t > t0/t > �0.9t is metallic at low T

in s-MC and fan out with temperature increase. In the low temperature U�t0 phase

diagram in Fig.3.4, the metallic phase closes at the largest value of Ucrit = 6.0t for

t0 = �0.8t. The finite temperature extension of the phase is shown in the t0 � T

phase diagram in Fig.3.6 (c). It is similar to that for U = 5.6t except that the

metallic region closes within the numerical accuracy at low T . This overall behavior

is due to the re-entrant I-M-I transition at low temperature.

Determining metal insulator boundary at finite temperatures: We close this sub-

section by briefly discussing the approach for determining insulator-metal boundary

at finite temperature. As mentioned before to extract the metal-insulator phase

boundaries, we compute the optical conductivity and check the linearity and non-

linearity of !�(!) in the limit ! ! 0 . Therefore, !�(!) vs ! are plotted at three

t0/t values �0.6, �0.9 and �1.0 shown in the panels from (d) to (f) respectively in

Fig.3.6 for di↵erent temperatures one below and other above of the metal-insulator

transition temperature, for fixed U = 5.6t as the representative curves. In (d) !�(!)

as a function of ! for two temperatures, one for 0.05t and another for 0.325t are plot-

ted. For T = 0.05t, !�(!) shows non-linear behavior in the low frequency regime

with ! and hence results insulating behavior. But as we heat up, at T = 0.325

!�(!) vs ! exhibits linear dependence and hence becomes metallic. This tempera-

ture point shown here lies in the PM-M phase. In Fig.3.6 (e) for t0 = �0.9t !�(!) vs

! is plotted at two temperatures T = 0.01t and 0.08t. Both the curves show linear



3.5 Frustration induced phase transitions 51

Figure 3.7: Panel (a) represents thermal evolution of the density of states (DOS)
for U = 5.6t at t0 = �0.8t. The orange, blue, green and red curves represent DOS
for T = 0.3t, 0.1t, 0.05t and 0.04t respectively as indicated. (b) shows temperature
dependent resistivity in units of ⇡e

2

~a , ⇢(T ) at t0 = �0.8t for di↵erent U as shown
in the plot. The green, magenta, violet and black curves are for U = 6.0t, 4.0t,
3.0t and 1.0t respectively. In (c), the exponent, ↵ of resistivity, ⇢(T ) is plotted
against U for t0 = �0.8t and t0 = �0.3t represented by the open squares and
solid hexagons respectively. (d) shows the distribution of local moments P (M)
for di↵erent temperatures for U = 5.6t and t0 = �0.8t. The solid red line with
diamonds, blue line with circles, orange line with up triangles and brown dashed
line are for T = 0.04t, 0.1t, 0.3t and 3.0t respectively.
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behavior in the small ! regime and both imply metallic phases. These points lie

in the dotted paramagnetic metallic phase in the finite temperature phase diagram

in the Fig.3.6 (b). For higher t0/t value �1.0 shown in Fig.3.6 (f), at the same U ,

the product of frequency and the optical conductivity as a function of ! exhibits

non-linear behavior for T = 0.01t and gives insulating phase, whereas at higher T ,

0.05t it is linear and hence it represents metallicity. We note that these results are

consistent with the usual way of using the sign of d⇢/dT as an indicator of insulator

to metal transition.

3.5.3 Nature of the metal at finite T

We now discuss the nature of the frustration induced metal at finite T . For this we

chose U = 5.6t at t0 = �0.8t. We have already seen in Fig.3.5 (b) that at low T ,

s-MC shows that the DOS has a pseudo-gap. In Fig.3.7 (a) we show the DOS for

the same parameter point for di↵erent temperatures. We find that the pseudo-gap

(PG) feature reduces with temperature increase and is absent for T = 0.36t. Such

PG is also seen for U = 6.0t and U = 4.0t as well. In Fig.3.7 (b) we show that the

⇢(T ) in units of ⇡e2/~a for t0 = �0.8t and di↵erent values of U . We see a metallic

behavior for U < 6t. For U = 6t resistivity diverges signaling the closing of the

metallic window. We fit the ⇢(T ) to AT ↵ + B for the metallic cases and extract

↵. For t0/t = �0.8. We find ↵ = 2 only for small U values. From U = 0.5t,

the exponent drops sharply and eventually saturates to a sub-linear value with U

increase as shown in Fig.3.7 (c). From there ↵ remains constant till the Mott state

is reached. We show the exponent calculated at t0/t = �0.3 as well with hexagons

to show the same evolution with U .

The reason of deviation of the exponent of resistivity and pseudo-gapped (PG)

density of states (DOS) lies in the real space distribution of local moment P(M)

at di↵erent temperatures presented in the Fig.3.7 (d) for U = 5.6t at t0 = �0.8t.

It shows a single dominant peak at very high T (as for T = 3.0t). At these tem-

peratures, the e↵ect of U is highly suppressed and the P(M) peaks at values close
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Figure 3.8: Panel (a) shows the single particle DOS found from Lanczos on a 4⇥ 6
cluster at T = 0 for t0 = �0.8t and di↵erent U values. Panel (b) shows the local
moment (M) as a function of U/t for the system for the same t0 value.

to 0.5. The corresponding DOS is non-PG. With the reduction in T , at 0.3t for

example a shoulder develops at M ⇠ 0.7, signaling local moment formation. Below

this temperature, the DOS develops a PG and is correlated with the formation of

a broad distribution of local moments. Thus we infer the PG as a result of elec-

tron scattering from spatially inhomogeneous local moments and is also the cause

of Fermi liquid (FL) to non-Fermi liquid (non-FL) crossover.

3.5.4 Pseudogapped metal at T = 0

So, we have already shown the existence of the finite temperature PG. We have

discussed that its origin is due to the scattering of electrons from the inhomogeneous

distribution of local moments in the real space. At low temperatures, the quantum

fluctuation will take over the thermal fluctuations. As the s-M technique can not

capture quantum fluctuation in this regime, it produces static solution with uniform

moments over the system. So, it can not exhibit PG state. Hence, we show Lanczos

based ED density of states for di↵erent U values and local moment length as a

function of U at T = 0 in panels (a) and (b) of Fig.3.8 respectively. The data are

shown for t0 = �0.8t on a small 4 ⇥ 6 cluster. In panel (a), it can be seen that

at small U , the DOS is non-PG (normal) but a pseudo-gap feature develops as we

increase U/t values from 5 � 7. In this interval of U , the moment length increase
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from 0.5 (uncorrelated value ) to 0.8. The increase of the local moment size as a

function of U is shown in Fig.3.8 (b). This indicates the correlation between the

moment size and the PG DOS at T = 0. The PG becomes robust and then goes to

Mott gap when the moment size exceeds 0.8. This T = 0 PG induced by quantum

fluctuation meets the PG driven by the thermal fluctuation at finite T in s-MC

calculation as discussed before.

3.6 Conclusions

Here, we have studied the e↵ect of correlation and frustration in the half-filled

Hubbard model using the semi-classical Monte-Carlo approach on a square lattice

at finite temperature. We have investigated the temperature evolution of magnetic

phases, metal-insulator transitions. We have also calculated the thermal scale (T ⇤)

of the crossover of the PG regime to normal metal. The results found from the

finite temperature s-MC and T = 0 Lanczos are consistent. They exhibit that the

transition of the small U Fermi liquid to large U Mott in the large frustration t0

regime is not a direct transition, but through an intermediate PG metallic state.

Although we have concentrated at the frustration value t0 = �0.8t, we have found

that this holds for the t0 regime from �0.2t to �1.0t.

As we have pointed out in the model and method chapter (chapter 2) that in

s-MC technique our goal is to generate thermally equilibrium Aux. F configurations

by means of classical Monte-Carlo at a given temperature. The acceptances or

rejections of a proposed update of Aux. F depends on both the classical Aux.

F background and the quantum mechanical fermion part. We have noticed that

away from the metal-insulator phase boundary, the uniformly distributed Aux. F

thermalize the system and show Fermi liquid metallic behavior in the small U regime

or spatial uniform distribution of local moment gives thermal equilibrium state in

the large U region which leads to Mott phase. But at finite T and close to the

metal-insulator boundary, thermal fluctuation helps the Aux. F to access the free

energy minima for both the Fermi liquid and Mott insulator. This leads to the
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inhomogeneous spatial distribution of local moments and electrons scatter from them

give rise to PG state at finite temperature. The Aux. F get decoupled from the

fermions at very high temperature (T > T ⇤) that was discussed in our previous

work on the unrestricted Hubbard model [89] and as a result, the PG state goes

away. As a complementary to the s-MC study, T = 0 Lanczos calculation on a

4 ⇥ 6 cluster shows that there is a frustration driven PG phase arises between the

Fermi liquid and Mott insulator. We finally note that our finite T deviation from

Fermi liquid expectations is qualitatively similar to the renormalized RPA results

discussed in chapter 1, and importantly shows that is such behavior survives in the

thermal fluctuation dominated regime.

Comparison with quantum approaches: In the chapter 2, in the sub-section

“Benchmarks of s-MC” we have discussed that in previous study for the unfrustrated

case, Phys. Rev. B 90, 205133 (2014), the magnetic phase boundary found from

s-MC calculation show good qualitative agreement with DQMC. Quantitatively, s-

MC underestimates the TN due to lack of quantum coherence when compared with

DQMC, as seen in Fig.12 (a) and (c) in [Phys. Rev. B 90, 205133 (2014)]. For the

case with frustration, as shown in Fig.3.1 of the present thesis, the T ! 0 limit of

s-MC, again has good qualitative agreement with Gutzwiller variational approach

study [Tocchio et al. Phys. Rev. B 78, 041101 (2008)] with regards to the various

phase boundaries. The quantitative agreement is however found to be better for

smaller frustration cases. In particular the critical U for PM-M to AF1-I and AF2-

I are again underestimated in s-MC. Similarly the large frustration driven CPM

phase occurs for larger critical U in s-MC than for the quantum calculation Simi-

larly, the TN in the frustrated case is systematically underestimated in s-MC , as

seen by comparing Fig.1.6 and Fig.3.2 in the thesis. Thus as a general conclusion,

s-MC quantitatively underestimates the finite T phase boundaries due to lack of

quantum coherence. At T = 0, the same lack of quantum fluctuations favours mag-

netic ordered phases over a paramagnet at smaller U values, particularly at larger

frustrations, where such quantum fluctuations are significantly greater.





Chapter 4

Temperature driven half metal

from a Mott Insulator

4.1 Introduction

The subject of this chapter is to study the impact of staggered onsite potential

(�) on the half filled Hubbard model in two dimensions in addition to the e↵ect

of next nearest neighbor (nnn) hopping (t0) discussed in the previous chapter. The

motivation for this work is to investigate the physics of half metallicity (conductors

with carriers of only one spin channel) at finite temperatures. As seen in the previous

chapter, the half filled Hubbard model has a nesting driven Slater insulating ground

state at T = 0 (with nearest neighbor hopping) at small correlation strength. At

large interaction strength U we have a Mott insulating ground state. We have

also shown that nnn hopping lifts the nesting instability and destabilizes the Slater

insulator. In the large interaction Mott limit, nnn hoping acts as a frustrating

agency when examined within the Heisenberg limit and causes a G-type to A-type

change in the magnetic order. Thus, nnn hopping is one way for metallizing the

half filled Hubbard model. In earlier work [48] on the half filled Hubbard model

with staggered onsite potential, also known as the Ionic Hubbard model (IHM), a

curious correlation driven metallization was reported within a paramagnetic DMFT
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calculation. The intuitive picture for this phenomena is as follows. In the non

interacting IHM, the presence of onsite energies opens up a band gap, with the sub-

lattice with lower onsite energy being doubly occupied. In the other limit of only

interaction, and nearest neighbor kinetic energy, we have the original Mott state

with singly occupied sites. In the third limit of both agencies are present but no

kinetic energy, it is easy to see that doubly occupied sites with �� potential are

preferred for U < 2� and for U > 2�, we have singly occupied sites. The single

particle charge gap is U � 2�. Clearly if U = 2�, the charge gap vanishes. Thus a

metal may be expected when hopping is switched on. However, on allowing magnetic

order to set in the metallic state was shown to be preempted by an antiferromagnetic

insulating ground state[50].

Very recently[47], it was shown that inclusion of nnn hopping that weakens insu-

lating tendency and frustrates G-type magnetic order as discussed above, can allow

a metallic state even in presence of magnetic order. More interestingly as discussed

in the introduction chapter, the state can be a half metal or paramagnetic metal

depending on the parameters at T = 0. In this chapter we investigate the finite

temperature evolution of the IHM. The study of half metals are of great relevance

for spintronic device applications which are based on electron spin based electronics

as discussed in chapter 1.

We will show that our semiclassical method can capture the DMFT results[47] at

low temperatures qualitatively. We will present the transport response of the model

at finite temperature, in the band insulator, Mott insulator and half metallic regime.

We will show that a novel half metal can emerge out of a Mott insulating state up

on heating in the vicinity of the Mott-metal boundary. We will characterize this

‘finite-T’ half metal by conduction electron polarization, sub-lattice magnetization

and local moment systematics to provide a clear microscopic phenomenology of the

novel half metal. We will show that the temperature window of half metallicity can

be tuned by varying the model parameters. We will conclude with a brief discussion

of materials where this phase can be realized and plausibility of constructing the

same in cold atomic systems.
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4.2 t� t0 Ionic Hubbard model

The IHM on a square lattice is defined as follows:

H = �t
X
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where, c†
i�

(ci�) are electron creation (annihilation) operators at the site i with spin

�. t and t0 are respectively the nearest and nnn hopping amplitudes. We choose

t0/t < 0 in our study. ni� = c†
i�
ci� is the number operator for spin � at a site i and ni

is the spin summed local number operator. � is the magnitude of ‘ionic’ potential

and takes positive (negative) values on the A (B) sub-lattice. U is the local Hubbard

repulsion. µ denotes the chemical potential, and is adjusted to maintain half filling.

All indicators used in this chapter are defined in Appendix E.

4.3 Transport response

Here we present the resistivity vs temperature behavior at fixed t0/t = �0.2 and

� = 1.0t but by varying U . We will later discuss the e↵ect of varying t0 and �.

4.3.1 Band insulator

As we discussed already that in the presence of �, the model gives band insulating

phase in the small interaction regime at low T . The conductivity, �(!) is calculated

using Kubo-Greenwood formalism along x-direction. The spin resolved conductivity

in the small frequency regime, integrated over small window is used to evaluate spin

resolved resistivity, ⇢�(T ) at di↵erent temperatures T which is plotted at fixed U ,

2.6t for � = 1.0t and frustration caused by the second nearest neighbor hopping

t0 = �0.2t in the Fig 4.1 (a). The red solid line with square is ⇢#(T ) for the down

spin channel. The resistivity for the up spin species, ⇢"(T ) is represented by the blue
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Figure 4.1: The spin resolved resistivities are presented in panel (a) for t0 = �0.2t
and � = 1.0t at fixed interaction U = 2.6t in the panel. The blue line with up-
triangles is the resistivity for up spin and red square with solid line depicts the
down spin channel of the resistivity. The curves are on top of each other. Panel (b)
shows the sublattice resolved density of states (DOS) for the same parameter values
at low T. The green line and red lines are DOS for sublattice A and B as shown
respectively.

line with up-triangles lie below the curve of ⇢#(T ). Both the curves show negative

slope (d⇢�(T )/dT < 0) with the temperature axis at all T . Therefore, the system

exhibits weakly correlated band insulating property as � dominates over U/t in this

parameter space. The band insulating phase exist in the window 0  U/t  2.8

at the chosen values of � and t0. The sublattice-resolved density of states (DOS)

shown in (b) shows a gapped spectra at low T . The B sub-lattice is filled, while the

sub-lattice A is primarily empty, apart from small admixtures due to kinetic energy.

4.3.2 Mott insulator

In the regime when U dominates over �, Mott insulating phase appears in the

system. For � = 1.0t and t0 = �0.2t, the Mott phase starts beyond U = 4.75t. A

representative spin resolved transport characteristics at finite T are shown in the

Fig 4.2 (a) for U = 5.5t at the above mentioned ionic potential and frustration

values. The red solid line with squares and the blue solid line with up triangles
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Figure 4.2: In panel (a) spin resolved resistivity in the Mott phase at U = 5.5t
for fixed frustration and ionic potential t0 = �0.2t and � = 1.0t respectively. The
resistivity for up spin and down spin are given by solid blue line with up triangle
and solid line with square respectively. The low T spin resolved DOS is shown in
panel (b) for the same U , t0, and � with blue line indicating the up spin channel
and red one is for down spin channel as indicated by the arrows with same colours.

are the spin resolved resistivity for down and up spin respectively plotted against

temperature. The up and down channel resistivites (⇢"(T ) and ⇢#(T )) are on top of

each other. We find d⇢�(T )/dT changes sign from negative to positive at T ⇠ 0.1t

for both spin channels. This insulator to metal crossover scale is denoted by T ⇤

and is the analog of the same scale in the Hubbard model discussed in the previous

chapter. It is important to point out here that below T ⇤, preformed local moments

appear without any magnetic order (which sets in below TN). The spin-resolved

DOS in (b) shows a gapped ground state. However, we clearly see that the charge

gap for the two spin species are not equal. This observation will play a vital role in

stabilizing the novel ‘finite-T’ half metal to be discussed later.

4.3.3 Low T half-metal

At low temperature when the e↵ect of ionic potential � is screened exactly by the

Hubbard interaction U , the system has metallic instability which is enhanced and

made stable by the frustration caused by the second nearest neighbor hopping t0.
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Figure 4.3: In this figure, panel (a) shows the spin resolved resistivities as a function
of temperature at U = 3.2t for frustration t0 = �0.2t and ionic potential � = 1.0t.
Here, the blue up triangles with solid line resistivity for the up spin and the red
one with solid squares is that for the down spin channel. Slope of the curve for
the down spin is negative and hence refers to insulating behavior where as the up
channel because of negative slope, gives metallicity . The point where both curves
merge, polarization goes to zero (explained in the main text) the temperature scale
is named as Tp. The panel (b) shows the low T spin resolved DOS at the same
interaction value U and t0 and �. The red dotted line is for the down spin channel
and shows insulating behaviour whereas the blue solid line represents the up spin
channel which shows metallic behaviour.

The metallic phase arises in the window of interaction 2.8t  U  4.57t. A typi-

cal thermal evolution of spin resolved resistivity data is presented in Fig.4.3 (a) at

U = 3.2t at fixed ionic potential, � = 1.0t and frustration value �0.2t. Red solid

line with square and blue solid line with up triangle show the down and up resis-

tivity respectively. The diverging characteristic at low T of the resistivity of down

spin channel, ⇢#(T ) having negative slope (d⇢#/dT < 0), decreases as temperature

increases. The curve changes slope at the temperature indicated by the arrow and

then remains positive (d⇢#/dT > 0) at higher temperatures. In contrast, the resis-

tivity for the up spin channel has positive slope, d⇢"/dT > 0 for all temperatures.

We refer to the lowest temperature where the down and up channel resistivity meet

as the polarization temperature TP , indicated by the arrow. As will be shown below

for T  TP , the system shows spin polarized conduction, with the spin polarization
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being 100% at low T and decreasing gradually with temperature increase. At and

above TP , the spin polarization goes to zero and both spin species take part in the

conduction process. In this case TP is 0.04t.

The spin-resolved DOS for the same parameters point is shown in Fig.4.3 (b)

at low T . The blue solid line and red dotted lines are for up and down spin re-

spectively as designated by the solid up and down arrows with same colors used in

the curves. It is clear from the figure that the up channel has finite weight at the

chemical potential shown by the black thick arrow and makes the system metallic

for this particular spin. But the DOS for down spin is gapped and makes the sys-

tem insulating. Therefore as at low T only one spin channel (up here) participate

in the conduction process, the system shows half-metallicity which also found from

the transport calculation discussed above. Increase in temperature causes a gradual

filling up of the charge gap for the down spin channel which eventually kills o↵ the

polarization beyond TP .

4.3.4 Finite-temperature half metal

In Fig.4.4 (a) we show the resistivity vs temperature for the two spin channels for

a U(= 4.8t) value close to the low temperature Mott-metal boundary of U = 4.75t.

As expected at low T the resistivity of the two spin channels diverge. However in

remarkable contrast to the previous three cases, at a low temperature scale (defined

as TS), d⇢"/dT for the up spin channel switches sign, while the down spin channel

continues to evolve as an insulator with temperature. The resistivity for the two

spin channels eventually merge at TP . The inset shows the total resistivity, clearly

showing the transition to a metal at the temperature scale TS. This gives a strong

indication of an insulator to a spin polarized metal to a paramagnetic metal evolution

with temperature. The low temperature spin-resolved DOS Fig.4.4 (b), shows an

unequal charge gap for the two spin channels, much like the DOS at large U Mott

insulator. To understand the thermal evolution, in Fig.4.5 (a) we show the spectral

weight at the chemical potential (N(0)) as a function of temperature for the two
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Figure 4.4: The panel (a) shows spin resolved resistivity (⇢�(T ), � ="#) vs tem-
perature (T ) at U = 4.8t for � = 1.0t and t0 = �0.2t. The red line with solid
squares and blue line with solid up-triangle represent T dependent resistivity for
down and up spin respectively. The black arrows defining Ts and Tp are corresponds
to on set metallic phase and polarization temperature. This is discussed in details
in the main text. In the inset the total resistivity is plotted against T at the same
parameters value. In panel (b) spin resolved DOS is plotted. The blue and red solid
line represent the DOS for up and down spin channel respectively for � = 1.0t and
t0 = �0.2t at U = 4.8t. The arrows with respective colours show the spin channels
in panel.

spin channels. We see that the temperature induced gap filling is lot more rapid

for the up spin channel (the one with the smaller charge gap at low T ). The two

spectral weights finally become equal at TP . The location of TS is also marked

in the figure. Since, as discussed in the previous chapter thermally induced gap

filling does not guarantee a metal, we rely on the resistivity (extracted from the

conductivity data as explained above) to decide on metallic and insulating states.

For this reason we do not define the polarization using the usual definition (N"(0)�

N#(0))/(N"(0) + N#(0)). Instead, we compute conduction electron polarization or

transport polarization P (T ) ⌘ (Jx

" (0) � Jx

# (0))/(J
x

" (0) + Jx

# (0)). The current is

easily read o↵ from the low frequency conductivity using the relation Jx = �xxEx.

P (T ) computed in this manner is shown in Fig.4.5 (b). The data is shown for the

low temperature half metal at U = 3.2t in blue triangles and for two other cases

U = 4.8t and 4.9t. These two later U values are close to the low temperature Mott-
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Figure 4.5: The panel (a) shows the spectral weight of up and down spin channels
at the chemical potential as a function of temperature. The red solid line with
squares and blue solid line with up-triangles are the temperature evolution the zero
frequency weight of the down and up spin channels respectively. The black thick
arrows specifies the Ts and Tp as in the resistivity calculations. In panel (b), the
polarization of conduction electrons, (P (T )) vs temperature (T ) is plotted for three
di↵erent interaction values U = 3.2t, 4.8t and 4.9t and corresponding curves are
shown by solid blue line with uptriangles, solid red line with circles and solid black
line with squares respectively. The arrows are indicating Ts and Tp with respective
colours for these U values.

metal boundary and are representative of the ‘finite-T’ half metal. The location of

TP for the low-T half metal (U = 3.2t) and that of TS and TP for the ‘finite -T’ half

metal (U = 4.8t) are indicated in the figure. The low-T half metal has 100% spin

polarization or P (T ) = 1 at low temperature, while in contrast the spin polarization

for U = 4.8t is zero up to TS. The onset of ‘finite-T’ half metallicity is triggered

at TS, where P (T ) abruptly jumps to 1. The subsequent thermal evolution sees a

gradual decrease in P (T ) up to TP . The polarization is zero for T > TP . We see

that for a small increase in U from 4.8t to 4.9t, TS is pushed up from 0.02t to 0.06t,

showing that the onset of half metallicity can be tuned by changing U .
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4.4 Magnetism & metallicity

The temperature dependent sublattice magnetization is hSz

↵
(T )i, where ↵ being the

sub-lattices A and B i.e ↵ 2 {A,B}. For a particular temperature it is defined

as hS↵

z
i = (hn"

↵
i � hn#

↵
i)/2. Here, the angular bracket stands for both quantum

and thermal averages. In Fig. 4.6 (a) we show the sub-lattice magnetization for

U = 3.2t and U = 4.8t, as a function of temperature. For U = 3.2t we find that the

half metal has staggered magnetic order with |SA

z
| = |SB

z
| at all temperatures below

TP . This implies an antiferromagnetic half metal (which agrees qualitatively with

the DMFT results[47]). For U = 4.8t, however the evolution is rather no-trivial.

At low T , in the Mott insulator with unequal charge gap for the two spin channels,

|SA

z
| = |SB

z
| and has a staggered orientation. This shows antiferromagnetic order in

the Mott state, again in agreement with DMFT. However at TS, there is an abrupt

jump in the sub-lattice magnetizations leading to a magnetic state with |Sz

A
| > |Sz

B
|.

It can be easily seen that in this state the system is forced to generate a net spin

polarization, due to the relation �n/2 = SA

z
+ SB

z
. The �n is shown in Fig. 4.6 (b)

for U = 4.8t, 4.9t and 4.95t.

Due to the unequal sub-lattice magnetizations we refer to this phase as a ferri-

magnetic ‘finite-T’ half metal. Finally since the ground state is a Mott insulator,

it is relevant to ask if local moments survive in the the metallic state. In panel (c)

we show the system averaged local moment distribution in real space for U = 4.8t

as a function of temperature. The sublattice local moment di↵erence is shown in

(d) as a function of temperature. Analogous to the definition in the previous chap-

ter, we define the sub-lattice local moment M↵, as M↵ = hn↵i � 2hn↵"n↵#i with

hn↵i = hn↵" + n↵#i. Finally system averaged local moment shown in (c) is averaged

over the two sub-lattice moments and �M shown in (d) is MA �MB.

To comprehend the above temperature-driven behavior, consider that finite �

imposes a double occupancy penalty of U + 2� (U � 2�) on the A (B) sub-lattice

in the zero hopping limit. For finite hopping, this di↵erential penalty exists, but

with a renormalized value. Fig. 4.7 (a) depicts the typical temperature evolution
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Figure 4.6: In this figure, the panel (a) shows the sub-lattice magnetization as a
function of temperature for U = 3.2t and 4.8t as indicated at fixed t0(�0.2t) and
�(1.0t). The red line with open squares and blue line with open circles are for A
and B sub-lattices respectively for U = 3.2t. The curves with same colours but
with solid symbols show the results for U = 4.8t. In panel (b), up and down spin
density di↵erenece i.e. �n = n" � n# is plotted as a function of T at U = 4.8t, 4.9t,
4.95t indicated by solid gray line with uptriangles, green line with diamonds and
blue line with circles respectively for t0 = �0.2t and � = 1.0t. In panel (c), the
local moment distributions in real space are plotted for di↵erent temperatures at
U = 4.8t for � = 1.0t and t0 = �0.2t. The blue, orange, green, brown and black
with solid and dashed lines are shown here for temperatures, T = 0.01t, 0.03t, 0.07t,
0.1t and 1t respectively. Panel (d) shows the sub-lattice local moment di↵erence,
�M = MA �MB plotted against temperature for the same U values as in panel (b)
represented by solid gray line with open uptriangles, green line with open diamonds
and blue line with open circles respectively for t0 = �0.2t and � = 1.0t.

of the sublattice double occupations hn↵"n↵#i with ↵ 2 (A,B) for the ‘finite-T’

half metal. It clearly illustrates that, at all temperatures, hnB"nB#i > hnA"nA#i.

Fig. 4.6 (a) shows that the higher cost of double occupation at A initially causes

a finite magnetization SA

z
at TP (= 0.09t), whereas SB

z
becomes non-zero only at a

lower temperature. It also keeps |SB

z
| < |SA

z
| and, as a result, a finite �n following

SA

z
+ SB

z
= �n/2 for TS < T < TP . The unequal sublattice local moments in Fig.

4.6 (d) in the same temperature range has the same cause.

At low temperatures, however, the large build-up of doublons (hnB"nB#i) be-

comes unsustainable energetically. Below TS, a first-order transition reduces the

di↵erence in sublattice double occupations, making the sublattice magnetizations

equal, quenching �n and limiting the half-metallic state to a finite temperature. In

the temperature window of the finite temperature half metal, the conduction elec-
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Figure 4.7: The sublattice resolved double occupasion is plotted as a function of
temperature in panel (a) for t0 = �0.2t and � = 1.0t at U = 4.8t. The blue and
black lines are for A and B sub-lattices respectively. In the panel (b), the di↵erences
of local moment for sublattice A and B, obtained from cooling and heating procedure
in s-MC method are plotted against temperature for U = 4.9t at the same t0 and �
as in panel (a). The hystersis in �M hints towards the first order transition at the
onset of HM2 phase.

tron spin direction is identical to the net spin polarization �n, ‘up’ in this case, as

seen in Fig. 4.4 (a). It also translates into N"(0) > N#(0) for TS < T < TP , and

can be viewed as thermal fluctuation-driven spin-asymmetric charge gap filling, as

seen in Fig. 4.5 (a). The local moment distribution in Fig. 4.6 (c) becomes broad

at intermediate temperatures exactly as in the previous chapter and acts as the the

source of scattering leading to the filling-up of the Mott gap. In Fig. 4.7 (b) we show

data from heating and cooling cycles of �M which shows a large hysteresis window

lending support to the first order transition from an antiferromagnetic insulator to

a ferrimagnetic half metal. Similar hysteresis is seen on �n and Sz

↵
as well.

4.5 Phase diagrams

We now construct a U � T phase diagram to put the various properties discussed

so far for fixed �(= 1.0t) and t0/t = �0.2. We will discuss the e↵ects of these
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Figure 4.8: Panel (a) shows the full U � T phase diagram for fixed t0(= �0.2t)
and �(= 1.0t). In panel (b) magnified version of the full phase diagram is shown
focusing into the HM2 phase. In both the figures, same colours scheme are used for
indicating di↵erent phases. The gray and yellow regimes show the HM1 and M � I
phases respectively. The red region is the finite T half-metallic phase, HM2. The
details are discussed in the text.

parameters later. The full U � T phase diagram is shown in Fig. 4.8 (a). The

U � T phase diagram shown in Fig. 4.8 (b) is the same figure, but focusses on the

‘finite-T’ half metal. For brevity we will refer to the low-T half metal is HM1 and

the ‘finite-T’ half metal as HM2 while discussing the various phase diagrams.

In (a) we first see that for T/t  0.02, U(= 4.75t) separates HM1 and Mott insu-

lating (M-I) phases. We also see that HM1 starts at U = 2.8t and the TP increases

with U , reaching a maximum of (0.055t) close to UM where the triangles denote TP

while the plusses denote the TN obtained from the staggered magnetization analysis,

such as shown in Fig. 4.6 (a). Thus we conclude that HM1 has an antiferromagnetic

background and the magnetic transition temperature TN , coincides with TP . We

discuss the rest of the phases by referring to panel (b). Here we see that the HM2

phase emerges from the M-I in the range 4.75 < U < 5t and above a U dependent

TS, indicated by diamonds. The ferrimagnetic order in HM2 is destabilized at the

corresponding TP values (squares), as seen for example, for U = 4.8t in Fig. 4.6 (a).

Circles represent the antiferromagnetic transition temperature for the M-I phase
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beyond the HM2 window or U > 5t.

For HM2, we can also see that TS increases rapidly with U . The necessity for more

thermal energy to fill the Mott gap at increasing U values explains this trend. As U

increases, however, we travel deeper into the Mott state, suppressing the influence

of �. As seen in Fig.4.6 (b) and (d), the more dominant role of U manifests itself

in a systematic decline in the magnitudes of �n and �M . This can be concluded

by comparing these quantities for the three U values shown. While the window of

finite �M and �n moves to higher temperatures as U increases, their magnitudes are

systematically reduced. As the sub-lattice moment magnitudes approach each other

with increasing U , TP and TS merge into a single transition temperature TN , of the

(M-I) phase beyond U = 5t. As a marker of tunability of TS, the temperature where

the spin polarized conduction is 100%, we find that TS increases by 350% over the

window in U for which HM2 is stable.

We can see in (a) that the window for HM2 is quite narrow. As a result, we must

determine whether this phase is the result of a numerical accident of fine tuning.

For this reason, as well as to demonstrate a broad domain of stability for HM2, we

will now discuss the e↵ect of t0 and �.

As mentioned at the start of the chapter, t0 plays the role of an agency for

frustration to G-type magnetic order and promoted metallicity. In our numerical

calculations, we find that neither half metals occur for |t0/t| < 0.05. In Fig. 4.9 (a)

we show the variation of TS and TP for a fixed � and U as indicated in the figure.

As seen in Fig. 4.9 (a), increasing the magnitude of t0/t above 0.05 systematically

pushes the critical U for Mott transition to larger values to overcome frustration

e↵ects. Consequently TS increases as the Mott state is shifted to higher U .

However, once the Mott state is pushed to large enough U with increasing |t0/t|,

the reduced impact of � becomes inadequate to support HM2. This manifests as a

symmetric temperature-driven gap-filling for both spin channels. For �/t = 1, we

find that HM2 is no longer realized for |t0/t| � 0.3. Finally in panel (b), we show the

U vs � phase diagram at low temperature, for t0 = �0.2t. The solid line demarcates

UM , with the Mott insulating (M-I) phase lying above it. For simplicity, here, we
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Figure 4.9: In this figure, panel (a) shows the tunneblity of HM2 phase as a function
of t0/t for fixed U = 4.8t and � = 1.0t. The solid blue line with uptriangles is the
thermal scale Ts for onset of HM2 and solid red line with squares denotes the
polarization temperature Tp. In panel (b), the � � U phase diagram is shown at
t0 = �0.2t. The brown region is the M � I phase and the window in between the
black dashed line and the solid line is the HM2 phase emerges up on heating the
M � I phase close to the Mott-metal transition. For simplicity the band and HM1

phases are not shown here.

do not show HM1. The region between the dashed and the solid lines, following

�/U ⇠ 0.3, shows the regime of the Mott state, which at finite temperature supports

HM2. These conclusions also hold for t0/t ⇠ �0.1 to �0.3. From which we infer

that HM2 can be stabilized for Mott insulators with �/U ⇠ 0.2 to 0.3, over a large

window of U and �.

4.6 Candidates for experimental realization

a. Correlated oxides: From the above discussion we gather the main features that

can help identify possible ways to realize the novel ‘finite-T’ half metal. Firstly the

ration of � to U has to be about 0.3. Secondly, a non zero next nearest neighbor

hopping is essential to the stability of the half metallic phases. Keeping these facts

in mind we consider epitaxial thin films of cubic double perovskites, X2ABO6 with

A and B represent two species of transition metal (TM) atoms. X can be chosen
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to be rare-earth, alkaline-earth, or alkali elements to control the electron filling as

discussed below. We believe that the natural choice for the TM atoms should be

made from the 4d elements. This prevents high U and strong Hund’s coupling

e↵ects, unusal in 3d TM elements. In addition, not considering 5d TM elements

avoids strong spin-orbit coupling.

In the 4d TM series, {Zr, Nb, Mo, Tc, Ru and Rh} starting with Zr, di↵erence in

the charge transfer energy (�) between successive elements range between 0.2eV to

1.0eV [105]. The onsite energies from the density functional calculations from [106]

is reproduced in the table below, in the second row. Following the same reference, we

list the values of �, as the di↵erence between successive materials, if successive pairs

of TM elements from the list to create the double perovskite . The local correlation

strength U is moderate, ranging between 1eV and 3eV [107][108]. Hence, �/U ⇠ 0.3

required for the ‘finite-T’ half metal, can be achieved easily. Assuming typical cubic

4d SrZrO3 SrNbO3 SrMoO3 SrTcO3 SrRuO3 SrRhO3

✏p (eV) -6.23 -6.03 -5.31 -4.41 -3.40 -2.47
� (eV) -0.23 -0.72 -0.9 -1.01 -0.93

double perovskites with octahedral crystal field, the 4d orbitals are known to split.

For the 4d TM atom octahedral crystal field splits the 5d orbitals by �CEF =3eV to

4eV [109], into high energy eg and low energy t2g levels. Given these estimates, we

have � << �CEF , that implies that � does not induce any t2g � eg hybridization.

This facilitates the formation of partially filled t2g bands. We suggest that suitable

choice of X site element can be made for half-filled t2g manifold. X also plays

the role the parameter for tune U by controlling the electronic bandwidth. nnn

hopping is also relevant for 4d TM elements[110][111] due to larger spatial extent

of the 4d orbitals as compared to 3d TM elements. Hence one can potentially

identify a number of candidates that are insulators with small charge gap, such as

Sr2RuMoO6 [112]. Based on the above mentioned literature we can crudely estimate

URe/Mo ⇠ 3 eV, � ⇠ 1� 2 eV and a t2g � eg splitting of 3eV. These estimates yield

�/U ⇠ 0.3 � 0.6 eV, which is within the ballpark of the ratio needed for HM2
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for Sr2RuMoO6. We expect complete quenching of orbital angular momentum in

a half-filled t2g 4d orbital; however, one has to investigate the role of small Hund’s

coupling [113], prior to identifying realistic material candidates.

b. Cold atomic lattices: We now briefly discuss how the ‘finite-T’ half metal can

be realized in cold atomic lattice. IHM has recently been realized for fermionic cold

atomic systems for hexagonal lattice [114]. This experiment showed the band to

Mott insulator transition by tracking suppression of double occupation over wide

variations of � and U [0, 41t] and [0, 30t], respectively, in the units of nearest-

neighbor hopping strength t/h ⇠ 174Hz. This range of parameter variation should

be easily possible for the square lattice as well. t0/t ratio can be tuned over a large

window on shaken optical lattices [115]. Also, the highest TS/t ⇠ 0.1 is within the

ballpark of the experimental temperature scales of 0.2t [116][117]. We suggest that,

�n would be the natural quantity to measure as a signature of HM2, analogous to

spin polarization measurements for metallic (Stoner) ferromagnets in cold atomic

systems [116].

4.7 Conclusions

To summarize, we have shown that a subtle interplay of U and � can stabilize an

antiferromagnetic Mott insulating ground state with unequal charge gaps for the

two spin channels in half-filled IHM. We have demonstrated a temperature-driven

transition from this antiferromagnetic Mott insulator to the novel ferrimagnetic

half-metal, at a U dependent onset temperature. We have revealed that the spin

polarization is 100% in the vicinity of the onset temperature within numerical accu-

racy. Finally, we have shown that enhancing the onset temperature by increasing U

does not degrade the spin polarization. The mechanism of the finite T half metal is

distinct from all previous low T half metals. In particular, unlike double exchange

mechanism, there is no interaction between large Hund’s coupled core spins and

itinerant electrons. Also it is di↵erent from the Slater-Pauling rule in the Heusler

alloys and clearly unlike the low T half metal HM1. Unlike all previous propos-
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als where half metallicity is a ground state property, here we have demonstrated

that a half-metal can emerge from a Mott insulating ground state. The insulating

ground state ensures that the half-metal with 100% spin polarization occurs at a

finite temperature and protects against temperature-induced depolarization e↵ects.

Comparison with quantum approaches: As disscussed in chapter 2 that results found

from s-MC study of Hubbard model in the unfrusted case are in good agreement

with DQMC calculation of the model but the s-MC study underestimates the phase

boundary (critical parameter value of a transition) due to lack of quantum coherence

in the system. Similar conclusions can also be seen for the ionic Hubbard model in

Phys. Rev. B 103, 155132 (2021), which compares CDMFT phase boundary with

Hartree-Fock (the low T limit of s-MC). While there is no reliable finite T quantum

calculation data for the frustrated case, we believe the finite T magnetic boundaries

will be underestimated in s-MC in this case as well.

The experimental realization of this unique finite-temperature half-metal will be

a significant step toward the goal of creating spin-polarized current sources at room

temperature,. We have identified a class of TM double perovskites where the finite

T half metal can be realized.
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Momentum space mean-field

theory

Here, we will do the Fourier transformation of the Hubbard Hamiltonian in Eq.1.2.

Using Eq.1.3 and Eq.1.4 (from chapter 1) to get the mean-field band dispersion.

Then, the Hamiltonian can be written as

HHF = �t
X

hiji,�

c+
i�
cj� + UN(m2 � 1

4
n2) + Um

X

i

(�1)xi+yi(ni" � ni#) (A.1)

� (µ� 1

2
Un)

X

i

(ni" + ni#)

N is the total number of sites in the system. Now, Fourier transforming using

ci� = 1p
N

P
k
cke�ik.ri we get the Hamiltonian as

HHF =
X

k,�

Hk� + UN(m2 � 1

4
n2) (A.2)

With

Hk� = (✏k +
1

2
Un)nk� + (✏k+⇡ +

1

2
Un)nk+⇡� � �Um(c†

k�
ck+⇡� + c†

k+⇡�
ck�) (A.3)

k runs over the Brillouin zone with |kx ± ky| = ⇡. The density, n and staggered
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magnetization, m are calculated self-consistently using the equations

n =
X

k

[f(E+
k
) + f(E�

k
)] (A.4)

m =
Um

N

X

k

[f(E+
k
) + f(E�

k
)]

[(12(✏k + ✏k+⇡))2 + U2m2]
1
2

(A.5)

f(E�

k
) is the Fermi function and non-interacting dispersion relation is

✏k = �2t(coskx + cosky) on a square lattice.

Finally, we get the mean-field band dispersion which is given below.

E±
k
=

1

2
Un� µ±

q
[4t2(coskx + cosky)2 + U2m2] (A.6)

’+’ and ’-’ refer to the conduction and valance bands respectively and m 6= 0 implies

G-type magnetic order.



Appendix B

Slater insulator at weak coupling

Here we derive the SDW energy gap in the weak coupling limit. For that, we write

the Hamiltonian in Eq.1.9 (in chapter 1) in a basis � to diagonalize it. The basis

transformation is given below.

�a
k" = ukck" + vkck+Q" (B.1)

�b
k" = vkck" � ukck+Q"

�a
k# = ukck# � vkck+Q#

�b
k# = vkck# + ukck+Q#

The corresponding inverse basis transformation is given as follows.

ck" = uk�
a

k" � vk�
b

k" (B.2)

ck+Q" = vk�
a

k" + uk�
b

k"

ck# = uk�
a

k# + vk�
b

k#

ck+Q# = �vk�
a

k# + uk�
b

k#
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Here, a and b stand for conduction and valance bands respectively. Using these

transformation we get the following relation from the first term in the Eq.1.9 (in

chapter 1).

nk" � nk+Q" = (u2
k
�a†
k"�

a

k" + v2
k
�b†
k"�

b

k" � ukvk(�
a†
k"�

b

k" + �b†
k"�

a

k")) (B.3)

�(v2
k
�a†
k"�

a

k" + u2
k
�b†
k"�

b

k" + ukvk(�
a†
k"�

b

k" + �b†
k"�

b

k"))

nk# � nk+Q# = (u2
k
�a†
k#�

a

k# + v2
k
�b†
k#�

b

k# + ukvk(�
a†
k#�

b

k# + �b†
k#�

a

k#)) (B.4)

�(v2
k
�a†
k#�

a

k# + u2
k
�b†
k#�

b

k# � ukvk(�
a†
k#�

b

k# + �b†
k#�

a

k#))

Hence,

nk" � nk+Q" = (u2
k
� v2

k
)(�a†

k"�
a

k" � �b†
k"�

b

k")� 2ukvk(�
a†
k"�

b

k" + �b†
k"�

a

k") (B.5)

nk# � nk+Q# = (u2
k
� v2

k
)(�a†

k#�
a

k# � �b†
k#�

b

k#) + 2ukvk(�
a†
k#�

b

k# + �b†
k#�

a

k#) (B.6)

The second term gives

c†
k+Q"ck" + c†

k"ck+Q" = 2ukvk(�
a†
k"�

a

k" � �b†
k"�

b

k") + (u2
k
� v2

k
)(�a†

k"�
b

k" + �b†
k"�

a

k") (B.7)

c†
k+Q#ck# + c†

k#ck+Q# = �2ukvk(�
a†
k#�

a

k# � �b†
k#�

b

k#) + (u2
k
� v2

k
)(�a†

k#�
b

k# + �b†
k#�

a

k#)

So, the e↵ective Hamiltonian becomes

Heff =
0X

k,�

[(✏k(u
2
k
�v2

k
)�2USukvk)(�

a†
k�
�a
k�
��b†

k�
�b
k�
)+�(US(u2

k
�v2

k
)�2✏kukvk)(�

a†
k�
�b
k�
+�b†

k�
�a
k�
)]

(B.8)
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Setting the o↵-diagonal term zero we have

�(u2
k
� v2

k
) + 2✏kukvk = 0 (B.9)

Where, � = �US, is the SDW energy gap scale.

As u2
k
+ v2

k
= 1, defining the relation Ek =

p
✏2
k
+�2 we found the coe�cients as

uk = [
1

2
(1 +

✏k
Ek

)]
1
2 (B.10)

vk = [
1

2
(1� ✏k

Ek

)]
1
2

Then the final e↵fective Hamiltonian will have the following form.

Heff =
0X

k,�

Ek(�
a†
k�
�a
k�

� �b†
k�
�b
k�
) (B.11)

In the spin density wave ground state �b†
k�
|⌦i = �a

k�
|⌦i = 0 and then the variational

parameter can be calculated in the ground state.

h⌦|Sz

Q
|⌦i = S = � 1

2N
2

0X

k

ukvk (B.12)

=
1

4N

0X

k

�

Ek

= ��
U

Changing the summation over k to integration of ✏ and using density of states that

has singularity at ✏ = 0 we get the gap equation in the weak coupling limit.

� ⇠ te�2⇡
p

t/U

This is the SDW energy gap in the weak coupling limit.



Appendix C

Strong coupling Heisenberg limit

To get to the Heisenberg model, we do a toy calculation of Hubabrd model (H =

�t
P

hi,ji,�
(c†

i�
cj�+h.c)+U

P
i

ni"ni#, the notations carry usual meaning) with two sites

and two electrons. In this situation the possible basis states would be

| ", #i = c†2#c
†
1"|0i (C.1)

| #, "i = c†2"c
†
1#|0i

| "#, .i = c†1#c
†
1"|0i

|., "#i = c†2#c
†
2"|0i

| ", #i and | #, "i are covalent states. Whereas, | "#, .i and |., "#i are ionic states.

The matrix form of the Hamiltonian in the basis will have the following form.
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H =

h", # | h#, " | h"#, .| h., "# |
2

66666664

3

77777775

0 0 �t �t | ", #i

0 0 +t +t | #, "i

�t +t U 0 | "#, .i

�t +t 0 U |., "#i

After diagonalization we get the eigenvalues

✏± =
U

2
±

p
U2 + 16t2

2
(C.2)

✏cov = 0

✏ion = U

And the correspondig eigenvectors are

 ± =
[| ", #i � | #, "i � ✏±

2t (| "#, .i+ |., "#i)]
q
2 +

✏
2
±

2t2

(C.3)

 cov =
1p
2
(| ", #i+ | #, "i)

 ion =
1p
2
(| "#, .i � |., "#i)

In the large U limit ✏cov = 0 and ✏� ⇠ �4t2

U

Therefore,  � is largely covalent with a small ionic admixture.

Now, we project out the low energy states of Hilbert space with the help of down-

folding.

The block inversion of a matrix can be obtained in the following manner. Let’s take
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the matrix

A =

2

4

3

5A0 A1

A2 A3

Let’s consider the inversion of the A matrix will be

A�1 =

2

4

3

5B0 B1

B2 B3

Then we can write the matrix elements of the inverse matrix A�1 in terms elements

of original matrix A as given below.

B0 = (A0� A1.A3�1.A2)�1 (C.4)

B1 = �B0.A1.A3�1

B2 = �A3�1BA2.A3�1

B3 = A3�1 � (B2� A1.A3�1.A2)�1

We follow the same procedure to Hamiltonian in terms of block matrices and invert

to calculate the Green’s function.

H =

2

66666664

3

77777775

0 0 �t �t

0 0 +t +t

�t +t U 0

�t +t 0 U
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⌘

2

4

3

5H00 T01

T10 H11

Where, H00, H11, and Tij are covalent Hamiltonian, ionic Hamiltonian and covalent-

ionic transitions respectively.

The Green’s function can have the form

G(✏) ⌘ (✏�H)�1 =

2

64
✏�H00 �T01

�T10 ✏�H11

3

75

�1

.

⌘

2

4

3

5G00 G01

G10 G11

The energy-dependent covalent part G00 can be written as

G00(✏) = (✏� [H00 + T01(✏�H11)�1T10])�1

This reduces to G00(✏) = (✏ � Heff )�1, definition of Green’s function. It can be

easily found an e↵ective Hamiltonian having the form

Heff (✏) = H00 + T01(✏ � H11)�1T10 ' Heff (✏0) with ✏0 being the typical covalent

energy. Here ✏0 = 0

So, the e↵ective Hamiltonian in the covalent states becomes after plug in the block

matrices

Heff (0) = �2t2

U

h", # | h#, " |
2

4

3

51 �1 | ", #i

�1 1 | #, "i

After diagonalizing the 2⇥ 2 matrix we have eigenvalues and eigenvectors.

✏s =
�4t2

U
;  s ' 1p

2
(| ", #i � | #, "i) ( s has small ionic admixture.)

and

✏t = 0;  t =
1p
2
(| ", #i + | #, "i) ; Where ’s’ and ’t’ correspond to singlet and
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triplet states. The energy corresponds to the other triplet states | ", "i) and | #, #i)

also are zero because of restriction of Pauli principle in the hopping of electrons. In

terms of fermionic operators the e↵ective Hamiltonian will look like as the following.

Heff = �2t2

U
(c†1#c1#c

†
2"c2" � c†1"c1#c

†
2#c2" � c†1#c1"c

†
2"c2# + c†1"c1"c

†
2#c2#) (C.5)

We can rewrite Heff using the properties of Pauli spin matrices.

Heff =
4t2

U
(S1 · S2 �

n1n2

4
) (C.6)

(ni = ni" + ni# for ith site) For half-filling the 2nd term gives 1
4 and hence ignoring

that term we have

Heff =
4t2

U
(S1 · S2) (C.7)

In the Heisenberg Hamiltonian shown above J is the anti-ferromagnetic coupling

constant with J = 4t2

U
. The above calculation is a quick demonstration, the same

result can also be derived from the degenerate perturbation calculation with more

number of sites.
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Inhomogeneous mean-field theory

Here, we derive the mean-field form of the Hubbard Hamiltonian. Let’s consider the

interaction term of the Hubbard model:

HU = U
P

i
ni"ni#

Where, U is the repulsive Hubbard interaction strength and ni� is the number

operator at ith site for the spin � (� =" or #).

Hartree term:

The Hartree decomposition for the quadratic interaction term ni"ni# = c†
i"ci"c

†
i#ci#

is given below. Here, c†
i�
and ci� are the creation and annihilation operator of electron

at site ’i’ of the spin � (� =" or #).

ni"ni# = ni"hni#i+ ni#hni"i � hni#ihni"i

= 1/2(ni"hnii � ni"hni"i+ ni"hni#i+ hniini# � ni#hni#i+ ni#hni"i � 2hni#ihni"i)

= 1/2(nihnii � ni#hnii � 2Sizhni"i+ ni"hni#i+ ni#hni"i � 2hni#ihni"i)

= 1/2(nihnii � 4SizhSizi+ 2hSizi2 � 1/2hnii2)

(D.1)

The spin operator is Si =
~
2

P
↵,�

c†
i,↵
�
↵,�

c
i,�

and {�x, �y, �z} are the Pauli ma-

trices. Here, Siz is the z-component of the spin.
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Fock term:

The Fock term of the interaction Hamiltonian is in the following.

ni"ni# = c†
i"ci"c

†
i#ci#

= �hc†
i"ci#ic

†
i#ci" � c†

i"ci#hc
†
i#ci"i+ hc†

i"ci#ihc
†
i#ci"i

= �hS+
i
iS�

i
� S+

i
hS�

i
i+ hS+

i
ihS�

i
i

= �2(SixhSixi+ SiyhSiyi+ hSixi2 + hSiyi2)

(D.2)

Six and Siy are x and y components of the spin respectively.

Then the e↵ective Hubbard interaction becomes

HHF

U
= Hartree+ Fock

= U
X

i

[
1

2
(nihnii � 4SizhSizi+ 2hSizi2 � 1/2hnii2)� 2(SixhSixi+ SiyhSiyi+ hSixi2 + hSiyi2)]

= U/2
X

i

[nihnii+ 2h~Sii
2
� 4~Sih~Sii � 1/2hnii2]

(D.3)

Therefore, the total e↵ective mean-field Hubbard Hamiltonian in real space will

be

HHF = �t
X

hiji,�

c+
i�
cj� +

U

2

X

i

[nihnii+ 2h~Sii
2
� 4~Sih~Sii � 1/2hnii2] (D.4)
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Definitions of indicators

Here, we define the indicators (observables) used in this thesis. We use 200 copies out

of 2000 thermalized configurations leaving 10 MC sweeps to avoid self-correlations

in the data to calculate all the observables. Again, the results found from 10-20

di↵erent runs with distinct random seeds are averaged over to obtain final results

for each of the observables at every temperature.

a.Static magnetic structure factor:

The static magnetic structure factor Sq is the Fourier transform of spin-spin corre-

lation and is defined as the following.

Sq =
1

N

X

i,j

eiq·(ri�rj)hSi · Sji, (E.1)

Where i and j run over all the sites on the lattice and N is the total number of sites

in the system.

b.Total density of states (DOS) and the spin resolved form of the DOS:

The total density of states is defined as

N(!) =
X

�

�(! � ✏�) (E.2)

Where, ✏� are the eigenvalues of the fermionic sector and the summation runs over
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all the eigenvalues of Heff .

The spin resolved form of DOS is given by

N↵,�(!) =
X

�

|h↵, �| �i|2�(! � ✏�) (E.3)

Here ↵ 2 {A,B}, the two sub-lattices and � is the spin index. | �i are the eigen-

vectors corresponds to the eigenvalues ✏�. Lorentzian representation of the above �

function is used to compute DOS. The broadening of the Lorentzian is ⇠ BW/2N .

Where BW is the non-interacting bandwidth and N is the total number of lattice

sites in the system.

c.Optical conductivity:

The total d.c conductivity �dc along x-direction is calculated using the Kubo-Greenwood

formalism [118] for optical conductivity.

�(!) =
⇡e2

N~a0

X

↵,�

(n↵ � n�)
|f↵�|2

✏� � ✏↵
�(! � (✏� � ✏↵)). (E.4)

Where, f↵� are the matrix elements for the current operator and has the form of

h ↵|jx| �i. The non-interacting current operator is defined by jx = ia0
P

i,�
[t(c†

i,�
c
i+a0x̂,�

�

h.c) + t0(c†
i,�
c
i+a0x̂+a0ŷ,�

� h.c)]. Here,  ↵ and ✏↵ indicate the single-particle eigen-

states and corresponding eigenvalues respectively. n↵ = f(µ � ✏↵) is the Fermi

function. We calculate the average d.c. conductivity by integrating over small fre-

quency window as �dc = (�!)�1
R �!

0 �(!)d!. The interval is taken as �! ⇠ 0.005t.

The spin resolved conductivity, �dc is calculated using appropriate spin resolved

states and operators by constructing f�

↵�
= h ↵|j�x | �i in the conductivity formula.

The resistivity is found from the inverse of the average dc conductivity. The conduc-

tion electron polarization, P (T ) is computed from �dc,"(µ)��dc,#(µ)
�dc,"(µ)+�dc,#(µ)

using the relation

J�

x
/ �xx

dc,�
. Here, up refers to the electron spin channel which delocalizes to form

the half-metal.
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d.Local moment and it’s real space distribution and double occupancy:

The double occupation (D) and local moment (M) are defined as the following.

D = hn"n#i (E.5)

M = h(n" � n#)
2i

= hni � 2hn"n#i

Where n" and n# are the number operators for up and down electrons.

The sublattice resolved double occupancy and local moment have the following form.

D↵ = hn↵

"n
↵

# i (E.6)

M↵ = h(n↵

" � n↵

# )
2i

= hn↵i � 2hn↵

"n
↵

# i

Here, ↵ 2 {A,B}, the sublattices. The distribution of local moment is given by

P (M) =
X

Mi

�(M �Mi) (E.7)

The notations carry usual meaning and are defined before.

e.The spin and sub-lattice resolved density:

The expression for average spin and sub-lattice resolved density is given by

hn↵�i =
2

N

X

i2↵,�

|hi�| �i|2f(✏� � µ) (E.8)

where, ↵ 2 {A,B}, � is the spin index and ✏� is the eigenvalue corresponding to the

eigenvector �. f(✏� �µ) is the Fermi function and µ denotes the chemical potential.

The sub-lattice resolved occupation is calculated by summing over density for A and
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B, for each spin independently. The sublattice magnetization is calculated using the

up and down densities.

e.Real space spin correlation:

The spin correlation function is defined as,

C(|r|) = 1

P

X

|r|=|i�j|,a

(�1)|i�j|hSa

i
Sa

j
i. (E.9)

In C(|r|) the summation runs over all P pairs of sites at a Manhattan distance |r|

and is normalized accordingly. The sum over a runs over the three directions x, y,

and z.
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