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SUMMARY

The density functional theory (DFT) is one of the best methods in describing various

physical properties of systems starting from simple atoms, large clusters, periodic bulk

solids to surface sciences. Such dominance of DFT over other many-body methods is

the combined result of both accuracy and computational efficiency. Modern DFT starts

with the Hohenberg-Kohn (HK) theorem [Phys. Rev. 136, B864 (1964)] that provides a

complete density-dependent Schrdinger-like equation for the many-particle problem and

proves the unique mapping between the external potential and the ground state wavefunc-

tion, hence the ground state density. The practical application of DFT established with

the Kohn-Sham (KS) formalism [Phys. Rev. 140, A1133 (1965)] proposes transforming

the complete interacting real system to a non-interacting fictitious system, keeping the

ground state density fixed. In retaining the same density, the modified potential for this

imaginary system must reflect the essence of interacting system. Similar to Schrdingers

equation for wavefunction, the KS equation contains the kinetic energy term, the classical

interaction is otherwise known as Hartree interaction, interaction with the nucleus, and

the most important interaction, i.e., the exchange-correlation (xc) interaction, and all of

the energy forms are functionals of a density. However, the exact density functional form

of xc is unknown. So, we have to rely on the approximated xc functionals of the energy

hence the potential. This thesis contains the recent advancement in the approximation of

xc functionals and their convenient applications.

This whole work is centered on the development of new approximations for xc func-

tionals focusing on various properties of molecular complexes to materials. The exchange

energy can be understood as the interaction between the electron density and the exchange

hole surrounding the electron. In a broad sense, the exchange hole is the space around an

electron up to which no other electron can enter. So, by modeling the exchange hole, we



xx SUMMARY

can get the exchange energy and exchange potential. We attempt to develop new model

exchange holes to address different aspects of molecular or solid-state properties using

DFT. Moreover, we start with the dimensional aspect of DFT, where we propose new xc

functionals based on generalized exchange hole for pure two-dimensional (2D) quantum

systems. The improved xc energies against previously available functionals for parabolic

and Gaussian quantum dots are reported. Next, the concept of coordinate transformation

of the exchange hole is utilized to model exchange-only potential that is very promising

in band gap calculation of bulk materials. It is known that the hybrid methods are very

accurate in predicting various properties, however, the development of hybrid methods is

not straight forward. We need an exchange hole of any exchange energy functional to

model the corresponding hybrid method. So, we derive the exchange hole for three types

of exchange energy functionals through the reverse-engineered technique and apply them

to construct long-range corrected hybrid functionals that are very favorable for molec-

ular properties. Finally, we focus on density functional methods to address dispersion

dominated systems. In this case, we use a well-known semilocal xc energy functional

Tao-Mo (TM) [Phys. Rev. Lett, 117, 073001 (2016)], developed from density matrix ex-

pansion and generalized coordinate transformed exchange hole with the rVV10 non-local

correction [Phys. Rev. B, 87, 041108(R) (2013)] to address Van der Waals systems.



List of Figures

2.1 The mean errors of different exchange energy functionals listed in Ta-

ble 2.2 for few electron parabolic quantum dots. For systems having

N = 72, 90, and 110, ω is varied from 1 to 3.5. . . . . . . . . . . . . . . 35

2.2 The exchange potentials for a parabolic quantum dot with N=6 and ω = 1. 35

2.3 Correlation between two parameters A and B for two electron parabolic

quantum dot with ω = 1 is plotted for all the functionals. . . . . . . . . . 44

2.4 The mean errors of exchange energies as obtained from different func-

tionals are shown for parabolic quantum dots. . . . . . . . . . . . . . . . 47

2.5 Correlation energy densities of EGCS
c and ELCS

c are plotted along with the

exact density of a parabolic quantum dot having N = 6 and ω = 0.42168. 56

2.6 The variation of correlation energy densities with the correlation length

for the same quantum dot as 2.5. . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Shown are the correlation energies per electron for six electron parabolic

quantum dots with different confinement strengths. . . . . . . . . . . . . 58

2.8 Correlation energy per electron as a function of rs for the 2D uniform

electron gas using different functionals. . . . . . . . . . . . . . . . . . . 59

3.1 Exchange potentials of Ne atom using BR, and mBR methods. For BR

the γ = 0.8 is used. The exact potential as obtained from the optimized

effective potential (OEP) method is also shown. . . . . . . . . . . . . . . 72



xxii LIST OF FIGURES

3.2 Shown are the box plots for absolute errors of band gaps. The solids

present in Table 3.2 are considered for analysis of considered functionals.

The whiskers start from the minimum of absolute error to the maximum

of value absolute error. For clarity, we have scaled down the maximum

errors of PBE, BJ, and HSE to their half values. The Δ present inside the

boxes represent the MAE of corresponding methods. 25% of errors are

below the lower end of the box known as quartile one (Q1). Similarly, the

upper end known as quartile three (Q3), above which, we have 25% errors. 77

3.3 Total density of states for ZrS2 as obtained from TBMBJ, mBR-TBMBJ,

and HSE functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Theoretical band gap versus experimental band gap for solids (a) present

in Tables 3.2 (b) present in Table 3.3 to 3.6. . . . . . . . . . . . . . . . . 82

3.5 Box plots similar to Fig. 3.2 for (a) oxides present in Table 3.3, (b) TMDs

present in Table 3.4, (c) TMOs present in Table 3.5, and (d) oligoacenes

present in Table 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 The variation of enhancement factors of different functionals with α =

(τ − τW )/τuni f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 The correlation coefficient β of Eq.(4.34) plotted against the screened

parameter ν = ω/kF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 MAE plotted against ω for (a) AE6 data set, and (b) BH6 data set consid-

ering constructed LC hybrid XC functionals. . . . . . . . . . . . . . . . . 101

4.3 MAE plotted against ω for (a) AE6 data set, and (b) BH6 data set con-

sidering constructed LC hybrid XC functionals satisfying the LDA linear

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 The correlation energy per electron is plotted against the radial distance

for the argon atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



LIST OF FIGURES xxiii

5.2 The binding energy curves as obtained from TM and TMTPSS functionals

for bi-layer graphene are shown. The SCAN binding energy curve is also

given for comparison along with the RPA binding energy value. . . . . . 116

5.3 Ahown are the box plots of absolute errors of layered materials’ binding

energies. Discussed functionals TM, TMTPSS and their dispersion cor-

rected part are considered. The lower and upper ends of whiskers repre-

sent the minimum and maximum absolute error values. The quartile one

(Q1) point of represented by the bottom of the box keep 25% of errors

below this point, and above the quartile three (Q3) point represented by

the top of the box 25% of errors falls. The median for the errors are pre-

sented by the parallel lines present within the respective boxes of different

methods and the black circles represent the mean. . . . . . . . . . . . . . 119

5.4 Mean errors in binding energies of layered materials versus mean errors in

interlayer lattice constant these twenty-six materials (Table 5.2). The dis-

persion corrected methods are in the main figure, and the bare semilocal

functionals are in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 (a) Binding energy curves of Ar2 dimer, and (b) Kr2 dimer using TM,

TMTPSS and corresponding dispersion corrected methods. . . . . . . . . 123

5.6 Box plots for absolute errors in interaction energies of S22 data set using

all the functionals. The description of all box plots are similar to 5.3. . . . 126

5.7 The pictorial view of MAEs in (a) binding energies, (b) interlayer lattice

constant of 26 layered materials, (c) interaction energies of S22, and (d)

L7 test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129





List of Tables

2.1 Shown are the exchange energies of parabolic quantum dots in atomic

units (a.u.) by using EPF−KS
x , with τσ = τKS

σ and EMPF
x . The first column

shows the number of confined electrons and the second column the con-

finement strengths. The exchange energies as obtained from EPF−KS
x and

EMPF
x functionals are presented in the last two columns. Exchange ener-

gies of the exact exchange 2D-EXX, 2D-LSDA, 2D-B88, and 2D-B86 as

obtained from OCTOPUS code are also shown for the comparison. The

last row represents the MAPE, Δ. . . . . . . . . . . . . . . . . . . . . . . 32

2.2 All the columns are identical to Table 2.1 but with N = 6 to 56. . . . . . . 34

2.3 The exchange energies (in a.u.) of Gaussian quantum dots using EMPF
x

i.e. Eq.(2.21). For comparison, the results obtained with other relevant

functionals are also provided and the last row represents the MAPE. . . . 36

2.4 Tabulated are the asigned values of all the constants present in the ex-

change energy functionals EGDM
x , ET DM

x , and EGT DM
x . . . . . . . . . . . 42

2.5 The exchange energies (in a.u.) of parabolic quantum dots as obtained

from proposed exchange energy functionals −EGDM
x , −ET DM

x , and −EGT DM
x .

The first column is for the number of electrons ‘N’, 2nd is for confinement

strength ω . The self-consistent results for 2D-EXX (KLI), 2D-LDA, 2D

modified B86, 2D-B88 are shown in succeeding columns. The last row

contains the MAPE (Δ). . . . . . . . . . . . . . . . . . . . . . . . . . . 45



xxvi LIST OF TABLES

2.6 The first two columns list the number of electrons and the confinement

strength (ω). Results for two local correlation functionals 2D-LDA65 and

2D-PRM85 are given in 6th and 7th columns respectively. Other following

columns are for both XC energies. The sources for the reference values

are given below in this table. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 The correlation energies (in a.u.) of parabolic quantum dots. The con-

finement electron number, confinement strength, total energy, total exact

exchange, and reference correlation energies are tabulated from first to

fifth columns. The correlation energies of newly proposed functionals

EGCS
c and ELCS

c are given in the last two columns. The last row is for the Δ. 54

2.8 The MAPE for the exchange-correlation functionals constructed by com-

bining four 2D-meta-GGA exchanges and four correlation functionals are

shown. The correlation functionals are in the first column, and exchange

energy functionals are in the top row. The quantum dots that are shown in

Table 2.7 are used for the calculations. . . . . . . . . . . . . . . . . . . . 57

3.1 The exchange energies (in a.u.) of noble-gas atoms are shown. The MAE

as obtained taking HF as the references are given in the last row. . . . . . 71

3.2 Fundamental band gaps in eV for PBE XC energy functional and BJ,

TBMBJ, mBR-TBMBJ exchange potentials with LDA correlation are given

in second to fifth columns. The hybrid HSE and experimental band gaps

are given in the last two columns. The last row is for the MAE Δ. . . . . . 76

3.3 Fundamental band gaps (in eV) for a set of oxides are shown. The struc-

ture of these oxides and their experimental band gaps are from the refer-

ences listed below in this table. . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Fundamental Band gaps (in eV) for a set of nine bulk TMDs are shown.

All the columns are similar to Table 3.3. . . . . . . . . . . . . . . . . . . 79



LIST OF TABLES xxvii

3.5 Fundamental band gaps (in eV) for a set of TMOs are shown. The columns

are similar to the previous table. In addition, PBE+U results of these

TMOs are presented in the second last column. The last row contains the

MAE and the least error is in bold font. . . . . . . . . . . . . . . . . . . 80

3.6 Band gaps (in eV) for four oligoacenes are shown. All the columns are

identical to Table 3.3, and 3.4. . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Tabulated are the band gaps (in eV) of silicon doped graphenes having

different doping percentage. The values for HSE and G0W0 are given in

last two columns, and collected from Ref. [173]. The band gap of hBN

using different potentials and energy functionals are shown in the lower

panel of this table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 Calculated band gaps (in eV) of Si doped graphene with different doping

percentage similar to Table 3.7 are shown. The GW , GW0,173 and HSE176

values are tabulated for comparison. . . . . . . . . . . . . . . . . . . . . 86

3.9 Band gaps (in eV) of Ge doped graphene for different semilocal methods

along with the hybrid HSE functional are tabulated. . . . . . . . . . . . . 86

4.1 Fitted parameters to form H(s) for the exchange holes of APBE, PBEint,

and SG4 exchange functionals. . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Fitted parameters for β of APBE (SG4) and PBEint functional required

in Eq.(4.38). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Optimized values of the range-separated parameter ω (in bohr−1) of con-

structed functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Mean errors and mean absolute errors of different test sets as obtained

using various range-separated hybrid functionals. The last line repre-

sents the relative mean absolute error with respect to the LC-ωPBE. The

Best/worst MAE of each test are shown in bold/underline style. . . . . . . 104

4.5 Contuation of previous Table. . . . . . . . . . . . . . . . . . . . . . . . . 105



xxviii LIST OF TABLES

5.1 Test sets used in this work . . . . . . . . . . . . . . . . . . . . . . . . . 117
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Chapter 1

Introduction

Understanding the electronic structure of atoms, molecules, complexes, solids, surfaces,

and nano-structures is helping in realizing the physical, chemical interactions, and pre-

dicting new materials that help in the day-to-day life of humankind. To get adequate

knowledge, theoretical models of these complex systems are needed to be more precise

and cost-effective. All the chemical and physical properties of these systems of interest

depend on the correlated electrons present, and the number varies from the simple one-

electron hydrogen atom to jumbo structures with thousand of interacting particles. The

perfect and error-free inclusion of such many-body interaction in the theoretical model

has been a challenge for theoretical physicists and chemists. More precise inclusion of

electron-electron interaction achieve accurate description of structural properties, e.g.,

bond lengths and bond angles of molecules, lattice constants and volume of solids, trans-

port properties, e.g., electrical conductivity, and other properties, e.g., binding energies,

ionization potentials, electron affinities, atomization energies, cohesive energies, band

structures. Basically, two well-known approaches are very successful in doing so. The

first approach being the ab initio or first principle method uses the elemental Hamilto-

nian of the system and many-body Schrödinger equation needs to be solved for in this

approach And the second approach is modeling a suitable Hamiltonian from available

experimental information. The model Hamiltonian approach often uses the coupling con-

stant between two sites, and this physical parameter is determined from the experiment or
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the ab initio method. This thesis focuses on the first approach for its accuracy, efficiency,

and applicability.

We start with the electronic Hamiltonian, decoupled from a complete electron-nucleus

system by the Born-Oppenheimer approximation. The velocity of nuclei is very slow in

comparison with the motion of electrons. As a result, the wavefunction of electrons only

depends on the positions of nuclei, and the many-electron Schrödinger equation can be

solved with a fixed nuclear configuration. So, only electronic Hamiltonian is written as,

Ĥ = T̂e +V̂n−e +V̂e−e. (1.1)

The N electronic Hamiltonian along with the electronic energy E, and electronic wave

function Ψ = Ψ(x1,x2...,xn) completes the Schrödinger equation ĤΨ = EΨ. The above

Hamiltonian contains kinetic energy of N electrons T̂e =∑N
i=1

(−ih̄∇i)
2

2m , interaction between

electrons and K number of nuclei V̂n−e =−∑K
α=1 ∑N

i=1
Zα e2

|Rα−ri| , and the interaction between

electrons V̂e−e = ∑N
i, j=1;i< j

e2

|ri−r j| . The ‘m’ present in the T̂ is the mass of electrons, ri is

the position of ith electron, Rα is position of α th nuclei, e and Zαe are charges of electrons

and nuclei, respectively. In addition to all these interactions, all other external potentials

correspond to the electromagnetic field such as electric fields, Zeeman terms are readily

included.

Out of different approaches to solve the Schrödinger equation, the Hartree-Fock (HF)

approximation is the first method that uses the proper antisymmetric wavefunction, nec-

essary for electronic systems. For an N electron system, the wavefunction is prepared

from the Slater determinant of individual electronic orbitals,1,2

ΦHF =
1√
N!

�������������

φ1(r1,σ1) φ2(r1,σ1) φ3(r1,σ1) . . . φN(r1,σ1)

φ1(r2,σ2) φ2(r2,σ2) φ3(r2,σ2) . . . φN(r2,σ2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1(rN ,σN) φ2(rN ,σN) φ3(rN ,σN) . . . φN(rN ,σN)

�������������

, (1.2)

where the single particle spin-orbitals φi(r j,σ j) consist of both spatial function ψσ
i (r j)
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and spin variable σ =↑,↓. Using variational principle, all the single particle orbitals can

be determined for ground state ΦHF . For all orthonormal φ ’s, the ΦHF is normalized,

i.e., �ΦHF |ΦHF� = 1, and the energy is approximated as the expectation values of the

Hamiltonian Eq.(1.1),

EHF = �ΦHF |Ĥ|ΦHF�=
N

∑
i=1

∑
σ=↑,↓

�
d3rφ∗

i (rσ)[−1
2

∇2 +Vext(r)]φi(rσ) (1.3)

+
1
2

N

∑
i, j=1

∑
σ ,σ �=↑,↓

�
d3r

�
d3r�φ∗

i (rσ)φ∗
j (r

�σ �)
1

|r− r�|φi(rσ)φ j(r�σ �)

−1
2

N

∑
i, j=1

∑
σ ,σ �=↑,↓

�
d3r

�
d3r�φ∗

i (rσ)φ∗
j (r

�σ �)
1

|r− r�|φ j(rσ)φi(r�σ �).

The term group containing the kinetic energy of electrons and the external potential Vext

arising from the nucleus and electron interaction involve expectation values of single par-

ticle operators. Whereas, the next two terms known as direct or classical Coulomb, and

the exchange interaction of electrons involve double sums over orbitals. It is to be noted

that, the Hartree method that uses a wavefunction constructed from multiplication of in-

dividual electron wavefunctions gives rise to only classical Coulomb interaction. The HF

method corrects the one-electron interaction by canceling the classical Coulomb and the

exchange interaction at i = j. We will be using the HF exchange energy,

EHF
x =−1

2

N

∑
i, j=1

∑
σ ,σ �=↑,↓

�
d3r

�
d3r�

φ∗
i (rσ)φ∗

j (r�σ �)φ j(rσ)φi(r�σ �)

|r− r�| (1.4)

further in the thesis. Now, the total energy is minimized with respect to the wavefunction,

including orthonormality constraint and Lagrange multipliers,

N

∑
i=1

∑
σ

δ
δφ∗

i (rσ)

�
EHF [φi(rσ)]− εi

�
d3r|φi(rσ)|2 −1

��
= 0, (1.5)
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and leads to the HF equation,

�
− 1

2
∇2 +Vext(r)

�
φi(rσ)+

N

∑
j=1

δσσ �
��

d3r�φ∗
j (r

�σ �)
1

|r− r�|φ j(r�σ �)φi(rσ) (1.6)

−
�

d3r�φ∗
j (r

�σ �)
1

|r− r�|φ j(rσ)φi(r�σ �)
�
= εiφi(rσ),

or

�
− 1

2
∇2 +Vext(r)+

�
d3r�

ρ(r�)
|r− r�|

�
φi(rσ)−∑

j

�
d3r�

φ∗
j (r�σ)φ j(rσ)φi(r�σ)

|r− r�| (1.7)

= εiφi(rσ),

with ρ(r�) = ∑ j|φ j(r�)|2. It is to be noted that the exchange interaction is between the

orbitals having the same spins. This nonlocal single particle equation needs to be solved

self-consistently. The last two terms in the LHS are the classical and exchange potentials

seen by the ith electron. The solution of the HF equation results in a set of orthonormal

orbitals with corresponding eigenvalues, and the HF ground state wavefunction can be

formed from these orbitals through the Slater determinant Eq.(1.2). The above integro-

differential equation Eq. (1.8) need to be solved solved iteratively as the terms present in

the left hand side need the orbitals which are yet to be determined. The numerical solu-

tion to the HF equation is restricted to the systems where one can separately write the 1D

radial equation. To solve the HF equation for molecules, Roothaan in 1951 proposed to

use a set of atom centered basis functions in expanding the Hartree-Fock orbitals.3 Em-

ploying the determinantal wavefunction, only the Pauli correlation between electrons is

taken care. However, the most important Coulomb correlation that affects the movement

of electrons is missing in the Slater determinant, hence in the HF approach. The Coulomb

correlation can be included in the many-body approach by changing the single determi-

nant type representation of wavefunction. The solution of HF equation gives information

about unoccupied φi along with the N occupied orbitals. Both the occupied and unoccu-

pied states form a complete basis in one-particle Hilbert space and the combination of all
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determinants leads to complete basis for N-particle Hilbert space. Forming the correlated

wavefunction from the combination of single determinants, higher order wavefunction

methods such as, Møller-Plesset perturbation theory, configuration interaction, coupled

cluster method have been developed and are more accurate. But the computational cost of

these methods are very high and depends exponentially on the size of basis sets used. So,

for cost effective calculation of large systems, one has to include Coulomb correlation in

some other way to the HF exact exchange without hindering the ability of self-interaction

correction. Though the HF method is computationally favourable than higher order cor-

related methods, it needs to be avoided for larger systems as the number of basis sets

increases rapidly with electrons and hence the computational time also increases. The

remedy for such problems is the density functional theory in which one deals with the

density instead of many-body wave function with 3N number of degrees of freedom and

can calculate quantum chemistry and solid state properties with satisfactory accuracy and

computational efficiency.

1.1 Basic Theorems and Foundations of Density Func-

tional Theory

The first density-based method was proposed long back in 1927 by Thomas and Fermi4,5

to solve inhomogeneous electron gas system without considering any electron-electron

interaction. This method approximates the kinetic energy functional in terms of five-third

power of the electron density with appropriate constant. This method was extended by

Dirac in 1930, in which only density-dependent exchange interaction is added and is for-

mally known as Thomas-Fermi-Dirac approximation. The above-mentioned methods are

unable to bind molecules and do not form accurate shell structures of atoms, missing

necessary physics and chemistry. Though these methods are not very effective in physi-

cal chemistry and material applications, they put forth ideas of movement of interacting

electrons in an external effective potential and solving the many-body Schrödinger equa-

tion with density. However, a clear connection between the wavefunction method and
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the density-based solution was not clearly established. That leads to a question whether

a complete description of electronic structure is possible through only the many-body

density. An attempt to find the answer became the starting point for the modern-day DFT.

1.1.1 The Hohenberg-Kohn formulation

1.1.1.1 Density as a basic variable

Starting with a system of interacting electrons under an external potential vext(r), and only

Coulomb interaction, the Hamiltonian operator is written as Eq. (1.1). It is clear that, for

the many-body ground state wavefunction Psi, the ground state density is the functional of

external potential. And Hohenberg-Kohn6 proved that the reverse relation is also true, i.e.,

“the external potential is also a unique functional of the ground state density”. It implies

that any two external potentials differ by more than a constant will not have a simultaneous

ground state wavefunction. The proof of this theorem is by reductio ad absurdum way.

Let us assume that two external potentials vext and v�ext �= vext(or v�ext − vext = const) give

rise to same ground state density ρ with corresponding ground state wavefunctions Ψ and

Ψ�. So, we write two Schrödinger equations,

H|Ψ�= (T +Vext +U)|Ψ�= E0|Ψ�, (1.8)

and

H �|Ψ��= (T +V �
ext +U)|Ψ��= E �

0|Ψ��, (1.9)

Using the minimal property, we get

E �
0 = �Ψ�|H �|Ψ��< �Ψ|H �|Ψ� (1.10)

Now adding and subtracting vext in the right hand term, we have

E �
0 < E0 + �Ψ|[V �

ext −Vext ]|Ψ�. (1.11)
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If we interchange the primed and unprimed quantities, we get

E0 < E �
0 + �Ψ�|[Vext −V �

ext ]|Ψ��. (1.12)

Imposing our assumption of both Ψ and Ψ� give rise to a density ρ , and adding above

Eq.(1.11) and Eq.(1.12), we get

E �
0 +E0 < E0 +E �

0 (1.13)

Such contradiction arises from our assumption that the densities are the same. Thus there

exist a particular vext for a ground state density, and they are uniquely mapped to each

other. So, from the density, we can get all the quantities present in the Hamiltonian, and

hence all the properties derivable from the Hamiltonian. Now, one question arises that

whether any well behaved density that integrates to a positive finite value N will have

corresponding potential v(r). If their exist such potential then the density is called v-

representable density. However, there also exist well-behaved densities which integrate to

the correct particle numbers and are not v-representable, those are called N-representable

densities.

1.1.1.2 Universal functional and variational principle

Now, let’s define a density functional F[ρ] consisting of only kinetic and interaction en-

ergies,

F [ρ] = �Ψ[ρ]|T +U |Ψ[ρ]�. (1.14)

This functional F[ρ] is universal functional of density and does not depend explicitly on

the number of particles and the external potential. For any given external potential v(r)

the total energy functional can be written as,

E[ρ] = F [ρ]+
�

d3rv(r)ρ(r). (1.15)
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One important conclusion is extracted from the HK theorem that for the exact ground

state density ρ(r), above Eq.(1.15) will give the ground state energy E[ρ]. And energy

E �[ρ �] corresponding to any trial density ρ �(r) is greater than that of E[ρ ]. This variational

method corresponding to density can be proved as follows.

Let’s consider a N particle system with an external potential v(r), corresponding

ground state density ρ(r), and true ground state wavefunction Ψ. For any other wave-

function Ψ� that correspond to same number of electrons, we can write

Ev[Ψ�] = F [ρ �]+
�

d3rv(r)ρ �(r)> Ev[Ψ] = F [ρ]+
�

d3rv(r)ρ(r) (1.16)

or Ev[ρ �]> Ev[ρ]. So, with the help of wavefunctions, it is proved that we can get ground

state energy from the true ground state density, for a given external potential. The min-

imization of energy in ρ is easier in comparison to wavefunction. Now using the vari-

ational principle in terms of density and the electron number constraint, the stationary

principle can be written for the ground state as:

δ
�

E[ρ]−µ
��

ρ(r)d3r−N
��

= 0 (1.17)

which leads to the Euler-Lagrange equation,

δE[ρ]
δρ(r)

= v(r)+
δF [ρ]
δρ(r)

= µ, (1.18)

with chemical potential µ . So, with the true ground state density, we only need the exact

form of the universal functional F to get the exact ground state chemical potential. How-

ever, the exact density functional form of the universal functional is still far from reach.

Now, question arises that though ground state density and wavefunction are uniquely

mapped, how to get the wavefunction from the density? We address this question in the

next section.
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1.1.2 Constrained-Search Formulation

It is obvious to get the density from corresponding wavefunction, but the reverse rela-

tion is not transparent. A density can be produced from infinite number of antisymmetric

wavefunctions, but the true ground state wavefunction which will lead to ground state

density need to be identified. For this Levy-Lieb7 constrained search approach is fol-

lowed. Let’s consider only those antisymmetric wavefunctions Ψρ0 that give density ρ0

and these wavefunctions are different from the true ground state wavefunction Ψ0 that

correspond to ground state energy Eo. So, we can write,

E0 = �Ψ0|Ĥ|Ψ0� ≤ �Ψρ0 |Ĥ|Ψρ0�, (1.19)

where the N particle Hamiltonian Ĥ = T̂ + V̂ee + v(r). The external potential energy

arising from both the sides are same. Then, we can write,

�Ψ0|T̂ +V̂ee|Ψ0� ≤ �Ψρ0 |T̂ +V̂ee|Ψρ0� (1.20)

So, we get the ground state universal functional F [ρ0] by searching over the entire anti-

symmetric wavefunction and constrained to the wavefunctions that leads to exact ground

state density ρ0. Or,

F [ρ0] = �Ψ0|T̂ +V̂ee|Ψ0�= min
Ψ→ρ0

�Ψ|T̂ +V̂ee|Ψ�. (1.21)

This minimization can be extended to any N-representable densities and the ground state

density can be obtained with following two step procedure,

E0 = min
Ψ

�
�Ψ|T̂ +V̂ee|Ψ�+

�
d3rv(r)ρ(r)

�
(1.22)

= min
ρ

�
min
Ψ→ρ

�
Ψ|T̂ +V̂ee|Ψ�+

�
d3rv(r)ρ(r)

��
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In the above Eq.(1.23), first we minimize over the constrained wavefunctions that give ρ ,

and then the outer minimization is over all the obtained ρ . Now, using Eq.(1.21), we can

write,

E0 = min
ρ

{F [ρ]+
�

d3rv(r)ρ(r)} (1.23)

So, one can get the ground state energy by minimizing the energy functional with density

and the ground state density will correspond to the ground state energy. From all the above

discussions, it is clear that, we can use the density as a basic variable to express all the en-

ergy terms present in the Hamiltonian, and can get the ground state energy by minimizing

with respect to the three-dimensional density in stead of 3N-dimensional many-body trial

wavefunction. However, one obstacle still stands in the form of the universal functional.

From the Thomas-Fermi model a rough approximation can be followed for both the ki-

netic energy and electron-electron interaction energies. But this lies far from applying the

theory efficiently to practical systems. The Kohn-Sham formalism8 helps to apply the HK

theorem to practical systems with information of the universal functional and solving the

many-body problem with density as the basic variable.

1.2 Kohn-Sham Formalism

Before the formulation of advance density functional theory, starting from the Hartree

model the electronic structure calculation of atoms are done by considering the move-

ment of electrons in an effective external potential. Such single particle model allows to

interpret a eigenfunction as the state of an electron. An electron moving in the Hartree

potential VH can be written as,

[−1
2

∇2 +VH(r)]φi = εiφi, (1.24)



1.2 Kohn-Sham Formalism 11

where VH(r) = −Z
r +

� ρ(r�)
r−r� dr�, Z is the atomic number, and φi is the ith electron wave-

function. The ground state mean density associated with the the wavefunction is

ρ(r) =
N

∑
i=1

|φi(r)|2.

The Schrödinger Eq.(1.24) treats the electrons as non-interacting particles and the effect

of interactions are included in VH . It was observed that the Hartree method is much better

than that of Thomas-Fermi method for ground state properties9 and these methods differ

from each other in terms of treating the kinetic energy. So, Kohn and Sham proposed

a model to treat electrons as non-interacting particles staying within Hohenberg-Kohn

density based formalism by changing the interacting kinetic energy to non-interacting

kinetic energy. As a result, we deal with a fictitious non-interacting electronic system

having same electron number and electron density as the actual interacting system. The

energy functional for the fictitious system is written as,

EKS[ρ(r)] = Ts[ρ(r)]+
�

d3rvext(r)ρ(r)+
1
2

�
d3rd3r�

ρ(r)ρ(r�)
|r− r�| +EXC[ρ(r)]. (1.25)

Where

Ts[ρ(r)] =
N

∑
i=1

�φi|−
1
2

∇2
i |φi� (1.26)

is the kinetic energy for density distribution ρ(r) of the noninteracting system, and {φi}
are Kohn-Sham orbitals. The last term is known as exchange-correlation(XC) energy

functional. The EXC[ρ(r)] contains a part of the Ve−e except the classical coulomb inter-

action and effects of residual kinetic energy,

EXC[ρ(r)] = T [ρ(r)]−Ts[ρ(r)]+Ve−e[ρ(r)]− J[ρ(r)] (1.27)

with J[ρ(r)] being the classical interaction part. The Euler-Lagrange equation corre-

sponding to the KS Eq.(1.25) with electron number constraint similar to Eq.(1.18), written
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as

µ = ve f f (r)+
δTs[ρ]
δρ(r)

, (1.28)

and the Kohn-Sham effective potential contains,

ve f f (r) = vext(r)+
� ρ(r�)

|r− r�| + vXC(r). (1.29)

The XC potential is defined as vXC(r) = δEXC[ρ]/δρ(r). So, one can solve the fully

interacting system via noninteracting electrons moving in an effective potential ve f f by

solving single particle KS equations,

[−1
2

∇2 + ve f f (r)]φi(r) = εiφi(r), (1.30)

with

ρ(r) =
N

∑
i=1

|φi(r)|2. (1.31)

The effective potential depends on ρ(r) and the density is derived from φi(r). So, the KS

equation needs to be solved self-consistently. Starting from a guessed density, ve f f (r) is

modeled from Eq.(1.29). Then, this effective potential is used in KS equation Eq.(1.30)

to get φi(r) and hence, the new density. The equations from Eq.(1.28) to Eq.(1.31) col-

lectively represent the KS formalism. So, we have to construct an effective single particle

potential for the fictitious noninteracting system, which will lead to the same density as

the complete interacting system. But, the Slater determinant wavefunction made from the

KS orbitals φi is different from the true interacting wavefunction, and the KS energies

and orbitals have no direct physical meaning except the energy of the highest occupied

orbital. The negative of the highest occupied orbital energy(IP = −εN) is recognized as

the ionization potential of the interacting system. In addition, Janak’s theorem provides

an important observation about the eigen values. It proves the derivative of total energy

with respect to the occupation number of a particular eigen state gives the KS eigenvalue

of this state(δE/δni = εi).

In principle, the KS DFT is exact in the sense that it includes all the many-body
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interactions. However, the accuracy of the calculation depends completely on the approx-

imated form of the XC energy functional and the potential. In search of more accurate

XC functional, a lot of research have been carried out and it remains as one of the present

day research interest in the DFT community.

1.3 Approximations for Exchange-Correlation

From the advent of KS formalism, many level of approximations have been proposed

starting from the simple electron density dependent EXC to complicated non-local cor-

rected methods. All these approximations can be arranged in the Jacob’s ladder of XC

functionals10 that goes from Hartree method to heaven of accuracy methods with an er-

ror up to 1cal/mol. Out of large number of developed functionals, we will only discuss

more successful functionals and the series of functionals that are very effective for new

development.

1.3.1 Local Density Approximation (LDA)

The exchange energy form derived by Dirac for homogeneous electron gas is used in the

density functional method to treat completely interacting practical system. Only density

dependent simple form of the exchange energy functional presented as,

ELDA
X [ρ] =

�
d3rρεuni f

x [ρ], (1.32)

with εuni f
x = −3

4(
3
π )

1/3ρ1/3 being the LDA exchange energy density. This form of ex-

change energy does not contain any empirical parameter to include any physical con-

straint, and the coefficient present is completely from the properties of homogeneous

electron gas (HEG). Corresponding exchange potential vx =−( 3
π )

1/3ρ1/3 can be used to

form the KS effective potential to solve the KS equation. Though LDA enjoyed a lot

of early success, one important failure can be observed by using exponentially decay-

ing density. For a density of the form ρ(r) ∼ e−αr, the LDA exchange potential follows
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vLDA
x (r)∼ e−αr/3. Such exponential decay of the potential in the asymptotic region con-

tradicts the exact Coulombic behavior −1/r and leads to incorrect binding of molecules.

The exchange energies of atoms are underestimated by the LDA to a large extent. Un-

like the exchange, the derivation of LDA correlation energy functional is not straight

forward. But the forms at two extreme conditions high density limit (ρ → ∞), and low

density limit (ρ → 0) can be extracted from the random phase approximation (RPA), and

different ways have been proposed to interpolate these extreme cases for intermediate re-

gion. One leading correlation energy functional in this direction is given by Vosko, Wilk,

and Nusair (VWN),11 which successfully preserves both high, and low density limiting

conditions. The correlation energy of LDA usually overestimates the correlation energy.

The underestimation by the exchange and the overestimation by the correlation energy

causes the error cancellation for a particular calculation. As, the approximation is based

on HEG system, it is expected that the accuracy of the LDA EXC will be better in case

of slowly varying densities. But the results of XC energies on the application of LDA to

practical systems is far from the exact values, so more modifications are needed to model

appropriate XC functionals.

1.3.2 Generalized Gradient Approximation (GGA)

Before going to the GGA functionals, we give a short note on gradient expansion approx-

imations(GEA) of density functionals. Though the GEA is not successful in comparison

to LDA, it helps in the development of the next rung functionals. The GEA is the earli-

est semilocal approximation that considers a small variation in the density and treat it as

a perturbation to the HEG. Applying the slow variation of density, the exchange energy

functional as obtained by Svendsen et al.12

EGEA
x =

�
d3rεHEG

x [ρ]
�

1+
10
81

p+
146

2025
�
q2 − 5

2
qp+Dp2��. (1.33)

The gradient and Laplacian of density dependent parameters p = |∇ρ|2/[4(3π2)2/3ρ8/3]

and q =∇2ρ/[4(3π2)2/3ρ5/3]. An adjustable parameter D is an advantage for higher rung
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functionals that can be fixed accordingly. This form of the exchange functional having

gradient expansion up to 4th order acts as a constraint that all the higher rung functionals

should satisfy to ensure the exact slowly varying density limit of the exchange energy.

Assuming the higher order expansion terms have comparative very small effect after sec-

ond order in gradient, the second order gradient expansion(GE2) improves the exchange

energy of atoms over LDA exchange. Whereas, the inclusion of second order gradient

expansion in the correlation energy leads to positive correlation energies[13]. Overall,

GE2 faces serious issues such as; (i) the underlying exchange potential diverges for ex-

ponentially decaying density, (ii) the exchange energy of atoms improves over the LDA

but the correlation energy become positive (wrong sign), (iii) there is no improvement

over the LDA in case of solids. So different gradient dependent XC functionals have been

proposed to avoid such shortcomings of GE2 and for more accurate treatment within

semilocal DFT.

The approximated functionals in GGA level use the density and its gradient as ingre-

dients, and a general representation of the exchange energy functional can be followed

as,

EGGA
XC [ρ] =

�
d3rρ(r)εGGA

XC (ρ(r),∇ρ(r)) (1.34)

Now, we discuss some well-known GGA functionals and the physical idea behind the

construction of these functionals.

To get an appropriate asymptotic behavior of the exchange potential, the well known

exchange functional is B88,14 proposed by Becke on 1988. The form of the functional is

given by,

EB88
x = ELDA

x −β ∑
σ

�
d3rρ4/3

σ
x2

σ
1+6βxσ sinh−1xσ

. (1.35)

Here, the parameter β = 0.0042 is fixed from the exact values of six noble gas atoms, and

the dimensionless reduced density gradient xσ = |∇ρσ |/ρ4/3
σ . The exchange energies of

atoms of B88 functional improves a lot over LDA values and agree well with correspond-

ing exact exchange energies. For example, considering the exchange energy of transition

metal zinc, LDA=−65.64, B88=−69.86, whereas exact exchange energy is −69.64 a.u..

Other than Becke’s functionals, a successful series of XC functionals have been proposed
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by John. P. Perdew based on gradient expansion of exchange hole with the real space cut

off technique.15,16 In terms of the enhancement factor the exchange energy functional is

written in the form,

Ex[ρ] =
�

d3rρεuni f
x FX(s). (1.36)

The uniform exchange energy density is given by Eq.(1.32), and FX(s) is called the en-

hancement factor and for all GGA type functionals, it depends on the reduced density gra-

dient s= |∇ρ|/2kFρ , where kF = (3π2ρ)2/3 is the Fermi wave vector. Now, the main task

is to construct the enhancement factor by imposing known constraints. One of the most

important constraint is given by Eq.(1.33), i.e., for slowly varying density, the FX should

follow the term present within the curly bracket. Now, we discuss the construction of

the most used XC functional popularly known as PBE-GGA(Perdew-Burke-Ernzerhof).17

The exchange enhancement factor for PBE functional follows

Fx(s) = 1+κ − κ
1+ x/k

, (1.37)

where, x = µs2. The enhancement factor having this form recovers the LDA linear re-

sponse, i.e., at s → 0,

Fx(s) = 1+µs2, (1.38)

where µ = 0.21951 is fixed from the correlation energy to cancel gradient dependent

terms in the LDA limit. Also, such form of exchange retains the LDA as the first term.

Now, another parameter κ is fixed from imposing the tight-bound constraint of the ex-

change energy or the exchange enhancement factor. The exchange energy should obey

the Lieb-Oxford bound18

Ex ≥−1.679
�

d3rρ4/3 (1.39)

Following the above constraint for exchange energy, the enhancement factor should fol-

low Fx ≤ 1.804 which leads to κ = 0.804. To construct exchange energy functionals,

the constraints such as recovering LDA exchange, exact small s behavior, and strong

upper bound for Fx are very important. For example, changing the value of param-
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eter µ present in Eq.(1.39) to the exact value from the gradient expansion Eq.(1.33),

µGE = 10/81 ≈ 0.1235, PBEsol19 XC was proposed. The correlation energy functional

for such type of exchange energies are proposed by adding density gradient dependent

functions to the LDA correlation and imposing constraints, e.g., density scaling, variation

of density in slow and rapid conditions, and recovering the uniform electron gas limit.

Apart from this type of approximations, where new gradient dependent terms are added

to the LDA to obey physical constraints, other methods are proposed based on interac-

tion between the density and its exchange hole. The exchange energy of such type of

functionals are written as,

Ex =−1
2

�
d3rρ(r)

�
d3u

ρx(r,r+u)
u

, (1.40)

where ρx(r,r+u) is the Fermi hole or exchange hole, and u = r− r�. The exchange hole

is the exchange charge density that surrounds an electron within which no other electrons

can come. The conventional exchange hole integrates to exactly one electron deficiency,

i.e.,
�

d3uρx(r,r+u) =−1, and the exchange energy only depends on the spherical aver-

age of the exchange hole. These are the constraints to be satisfied by the model exchange

hole. Also, Becke in 198320 proposed a constraint for short-range behavior of the ex-

change hole up to second order in u,

�ρx(u)�= ρ +
1
6
�

∇2ρ −2τ +
1
2
(∇ρ)2

ρ
�

u2 + ... (1.41)

where τ = ∑i |∇φi|2 is the kinetic energy density. In all GGA type exchange energy

functionals, the kinetic energy density is replaced by its density dependent expansion

form,

τ = τuni f +
|∇ρ|2
72ρ

+
∇2ρ

6
, (1.42)

with the HEG kinetic energy density τuni f = (3/10)(3π2)2/3ρ5/3. Both Eq.(1.41) and

Eq.(1.42) are very useful and we will often recall these equations in other sections of

the thesis. Based on the exchange hole model Becke proposed two different functionals

in 198320 and 198621 that are very effective in comparison to the LDA. Throughout the
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thesis, we will use the concept of exchange hole and generalized coordinate transformed

exchange hole to construct new XC functionals. Though GGAs improve over LDA and

the accuracy is acceptable in most of the cases, the errors in comparison to experimental

methods are still high in predicting atomization energies(mean absolute error(MAE) of

15.17 kcal/mol for G2/148 test set),22 barrier heights (MAE of 9.32 kcal/mol for BH76),

ionization potential (MAE of 3.47 kcal/mol for IP13 test set),23 electron affinity (MAE

2.64 kcal/mol for the EA13 test set)23 etc. The next rung or the third rung of Jacob’s

ladder is dedicated to meta-GGA (mGGA) type XC functionals,24,25,26 which use the

kinetic energy density (τ) as an ingredient in addition to density and gradient of density.

The idea of τ dependent functionals was there from 1983 when the Taylor expansion of

the exchange hole at the small interelectronic distance limit was derived(Eq. (1.41)). The

practical implication of these functionals was made possible by the development of the

generalized Kohn-Sham (gKS) scheme.27 The use of the additional ingredient, τ , allows

the functional to satisfy more number of constraints. In addition, using τ , different type

of iso-orbital indicators can be formed to recognize various bonding regions.28 In the next

section, we discuss the construction of mGGA type XC functionals and the advantages of

such functionals.

1.3.3 Meta-Generalized Gradient Approximation (MGGA)

As discussed before, in addition to electron density and the gradient of density, the MGGA

functionals use another natural ingredient, the kinetic energy density

τ(r) =
occup

∑
i

|∇φi(r)|2. (1.43)

Preserving all the good qualities of PBE functional, Perdew-Kurth-Zupan-Blaha(PKZB)29

functional was constructed over the form of PBE. For such an exchange energy functional,

the Eq 1.36 follows

EMGGA
x [ρ] =

�
d3rρεuni f

x FX(ρ,∇ρ,τ). (1.44)
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The form of the enhancement factor for PKZB is the same with Eq.(1.37) but with a

different Laplacian of density dependent form of x given as,

xPKZB =
10
81

p+
146
2025

q̃2 − 73
405

q̃p+
�
D+

1
κ
�10

81
�2�p2. (1.45)

Such intense form of x is chosen to recover the exact behavior of the exchange energy

functional for slowly varying density up fourth order in ∇ as given in Eq.(1.33). But the

form of q̃ is different from the original reduced Laplacian of density q present in Eq.(1.33).

The form of q is transformed to

q̃ =
3τ

2(3π2)2/3ρ5/3 −
9

10
− p

12
(1.46)

such that, the new form q̃ goes to q at slowly varying limit and the divergence of q

at a nucleus is checked. The value of parameter κ = 0.804 is the same as in PBE,

and the value of D = 0.113 is fixed by minimizing the error in the atomization ener-

gies. The atomization energies and the surface energies are improved in compare to

PBE but the poor bond length and poor description of hydrogen bonded systems open

the room for further improvement. Following the same framework as PKZB, the Tao-

Perdew-Staroverov-Scuseria (TPSS)30 functional was proposed by modifying the form of

x present in Eq.(1.37). Defining a different form of q as,

q̃b =
9(α −1)

20[1+bα(α −1)]1/2 +
2p
3
, (1.47)

the form of x is changed to

xT PSS =

��
10
81

+ c
z2

(1+ z2)2

�
p+

146
2025

q̃2
b −

73
405

q̃b

�
1
2

�
3
5

z
�2

+
p2

2
+

1
κ

�
10
81

�2

p2

+2
√

e
10
81

�
3
5

z
�2

+ eµ p3
�
/(1+

√
ep)2.

(1.48)
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The form of q̃b is chosen in such a way that for b = 0, q̃b goes to q̃ of PKZB. Also,

two iso-orbital indicators z = τW/τ ≤ 1 and α = (τ − τW )/τuni f are introduced. Here,

τW = |∇ρ|2/(8ρ) is the Weizsacker kinetic energy density. The parameters c = 1.59096

and e = 1.537 are fixed by minimizing the ground state exchange energy of hydrogen

atom, whereas b = 0.40 is fixed to make the enhancement factor vary monotonically

with s. Similar to the way of PBEsol functional construction, revTPSS31 functional was

proposed by redefining the parameters and modifying cz2/(1+ z2)2 present within x to

cz3/(1+ z2)2. The post revTPSS functionals extensively use the properties of iso-orbital

indicator α . The values of α correspond to different chemical environments as, for single

orbital region α = 0, for slowly varying region α ≈ 1, and for non-covalent bonding

α ≥ 1. The revTPSS functional recovers the exact limits for α = 0 and α ≈ 1 regions, but

there is no function present in the functional form to guide it for 0 < α < 1. So recovering

these limiting conditions and interpolating α = 0 and α ≈ 1 regions, new advance density

functionals32,33,34,35 are proposed. The most successful form in this genre is the strongly

constrained and appropriately normed (SCAN)34 meta-GGA functional. The form of the

enhancement factor of SCAN is given by,

FSCAN
x (s,α) = [h1

x(s,α)+ fx(α){h0
x −h1

x(s,α)}]gx(s). (1.49)

Here, the form of h1
x(s,α) is chosen to recover the fourth-order gradient expansion of

exchange that is necessary for α ≈ 1. For α = 0, the strongly tight bound to the en-

hancement factor(Fx ≤ 1.174) is imposed, which implies, Fx(s,α = 0) = h0
xgx(s) with

h0
x = 1.174, and gx(s) = 1− exp[−a1s−1/2]. The function f (α) is the switching function

that interpolates two limiting conditions and makes sure the smooth transition. More-

over, the SCAN functional is constructed by imposing six constraints to the exchange, six

constraints to the correlation, and five constraints to both together XC energy. Again, to

make SCAN functional more numerical stable, recently, regularized -SCAN(rSCAN)36

functional has been proposed by modeling the switching function as a polynomial of α .

But the numerical stability model comes with a cost of accuracy.37 And very recently,

the r2SCAN38 functional is being proposed that claims to solve the numerical instability
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problem with retaining the accuracy of parent SCAN functional.

As discussed in the GGA section, the meta-GGA exchange energies can also be

formed from the concept of exchange hole Eq.(1.40). Examples of successful meta-GGA

exchange functionals in this group are generalized density matrix expansion (gDME),39

Voorhis-Scuseria 1997(VS97),40 VS98,26 M06-L,41 and recently proposed Tao-Mo(TM).42

All these functionals are made by forming the exchange holes from the DME. We will not

show the derivation of the 3D DME, instead, the 2D version of the DME that is derived

in parallel to 3D will be discussed in next chapter. Moreover, the idea of recent success-

ful TM functional is to construct XC functional by interpolating energy functional for

the compact density and the slowly varying density. For compact density, the enhance-

ment factor derived from the DME is suitable, whereas for slowly varying density, the

enhancement factor should follow the fourth order gradient expansion,

FT M
x (p,z,α) = wFDME

x +(1−w)Fsc
x . (1.50)

Where, w = z2+3z3

(1+z3)2 is the interpolating function, and FDME
x is the enhancement factor

derived from the DME, and Fsc
x is the enhancement factor used for the slowly varying

correction of density. The form of Fsc
x is derived in accordance with Eq.(1.33) and given

as,

Fsc
x =

�
10

��
10
81

+
50
729

p
�

p+
146

2025
q̃2

0 −
73q̃0

405

�
3z
5

�
(1− z)

��1/10

, (1.51)

with q̃0 is same as Eq.(1.47) for b = 0. The DME part of the Fx is given by,

FDME
x (p,α) =

1
f 2 +

7R
9 f 4 (1.52)

with R = 1+595(2λ −1)2 p
54 − [τ −3(λ 2 −λ +1/2)(τ − τuni f − |∇ρ|2/72ρ)]/τuni f and

f = [1+ 10(70y/27)+ βy2]1/10. Here, y = (2λ − 1)2 p and λ is the parameter used to

transform the exchange hole to make the exchange hole more flexible without hindering

the form of the exchange energy functional. The application of these GGA and meta-
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GGA type density functional can be assessed from various properties of periodic solids as

discussed in recent papers by Jana et al.43,44 It is shown that no XC functional is able to

give the least error for all the properties of solids and all meta-GGAs do not improve over

GGAs. For 3d transition metals PBE is better that meta-GGAs. For lattice constants the

TM functional is the best, whereas SCAN is the best for bulk moduli, cohesive energies,

and band gaps. For molecular properties including weak bonded systems, TM functional

is the best.45,46 Though the semilocal functionals have acceptable accuracy in predict-

ing energies, they are very poor describing ionization potential, electron affinity, proton

affinity, barrier heights etc. The hybrid methods that use some part of exact exchange to

the semilocal XC energy were emerged as the solution to these problems with additional

computational cost.

1.3.4 Hybrid Treatment

Within the KS formalism, the addition of full HF exchange with the semilocal correlation

does not attain the expected chemical accuracy.47 A different parametric combination

of semilocal exchange, HF exchange, and semilocal correlation was proposed by Becke

known as B3PW9148

EB3PW91
XC = ELSDA

XC +a0(Eexact
X −ELSDA

X )+aX ΔEB88
X +aCΔEPW91

c . (1.53)

Where, a0, aX , and aC are parameters determined by fitting with the experimental data of

atomization energies, ionization potentials, and electron affinities (a0 = 0.20, aX = 0.72,

and aC = 0.81). Other terms, Eexact
X is the exact exchange energy, EB88

X is the B88 GGA

exchange energy functional,14 and EPW91
c is the PW91 GGA correlation.49 The Δ used

behind the exchange and correlation is for optimum mixture of gradient correction. The

conclusion is that the admixture of some part of the exact exchange increases the accu-

racy significantly. Since then, different approximations have been proposed by admixing

other XC functionals with the exact exchange. One of the most successful methods is the
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B3LYP hybrid functional50 and the form of the XC functional is given as,

EB3LY P
XC = ax0ELSDA

X +(1−ax0)EHF
X +ax1ΔEB88

X +acELY P
c +(1−ac)ELSDA

C , (1.54)

with ax0 = 0.20, ax1 = 0.72, ac = 0.81, and ELY P
c is the LYP correlation.51 Another well-

known method that used the PBE XC functional with a quarter of exact exchange known

as PBE0 functional.52 These type of hybrid functionals are known as global hybrids as the

fraction of exact exchange is constant all over the Coulomb interaction range ri j. So, for a

fraction ‘a’ of EHF
X , the XC potential decays as −a/ri j instead of the correct behavior of

−1/ri j. The exact asymptotic decay of the potential is necessary for molecular complexes.

To avoid such problems, the range-separation scheme53 for the Coulomb interaction was

proposed that uses the error function to separate the range of dominance of semilocal

exchange and HF exchange. The Coulomb operator 1
ri j

is separated into short-range (SR)

and long-range(LR) parts with the help of error functions as follows,

1
ri j

=
er f c(ωri j)

ri j� �� �
SR

+
er f (ωri j)

ri j� �� �
LR

, (1.55)

with ω as a range-separation parameter. The long-range corrected hybrid functionals use

HF in LR and complete density functional exchange in SR. A thorough discussion on the

long-range corrected hybrid methods will be presented in Chapter 4 of this thesis. How-

ever, for solid-state systems that use periodic boundary conditions(PBC), the convergence

of HF is an important issue. To avoid the divergence arising from Coulomb potential,

Jochen et al proposed a model popularly known as Heyd-Scuseria-Ernzerhof(HSE).54,55

The HSE model mixes the exact exchange only for the SR interactions. The form of the

HSE model is written as,

EHSE
XC = aESR,HF

X (ω)+(1−a)ESR,PBE
X (ω)+ELR,PBE

X (ω)+EPBE
C . (1.56)

The mixing parameter a = 0.25 and the screening parameter is fixed to ω = 0.15. The

derivation of the SR part of density functional will be discussed in Chapter 4. The SR
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part of the HF exchange is calculated by multiplying the complementary error function

er f c(ωri j) to the HF exchange with appropriate value of ω . The dominance of such hy-

brid methods in the solid state properties can be found in Ref..56 So far, we have discussed

the construction of popular density functional methods that have been used in practical

applications to predict properties of solids and molecular complexes, theoretically. How-

ever, there are many XC functionals that could not be discussed in the thesis and all those

functionals can be found in LIBXC.57,58

Though there are many developments, there is always a space for further improvement

on the approximations, and there are many fields that need improved methods. For this

purpose, we focus on developing new methods or new approximations for XC interac-

tions. We adopt the exchange hole model Eq.(1.40) to construct new XC functionals. In

chapter 2, we show both empirical and non-empirical XC energy functionals in 2D. By

modeling the 2D exchange holes from the 2D DME, these XC functionals are proposed

for pure 2D systems. In chapter 3, we show the construction of a Laplacian free model

of the exchange hole potential and the use of exchange hole potential in band gap calcu-

lations. In this chapter, we also discuss the demerits of using exchange-only potentials in

case of mono-layer calculations and what can be possible alternate within semilocal DFT.

Next, chapter 4 is dedicated to long-range corrected screened hybrid functionals. Here,

we briefly discuss the technique to construct an appropriate exchange hole from any GGA

type exchange energy functionals. We construct three type of exchange holes and using

the exchange holes, new LC screened hybrid functionals are developed for molecular

complexes. In the final chapter, we discuss the status of dispersion interaction in the DFT.

We propose a model to address the long-range correlation. The model is assessed through

some molecular and solid state systems having significant van der Waals interactions.



Chapter 2

Density Functional Theory in Two

Dimensions

2.1 Introduction

Present day research interest in condensed matter physics or material science include

lower dimensional quantum problems. Accuracy of solving such lower dimensional prob-

lems needs a flawless treatment of the dimensionality of the system. The two-dimensional

systems that include semiconductor quantum dots(QDs), quantum Hall-devices, quan-

tum point contact systems, restrict the movement of electrons in two-dimensions. If one

wishes to study these systems within DFT, appropriate treatment of the dimension of these

systems is essential. The unknown and approximated portion of the energy functionals,

i.e., the exchange correlation energy functional also needs an appropriate treatment. In re-

cent articles,59,60,61 it is seen that the use of three-dimensional exchange-correlation func-

tionals in pure two-dimensional quantum systems leads significant deviation from exact

values. To address such dimensional cross-over problems, attempts have been made to

construct exchange-correlation functionals62,63,64 appropriate for quasi-2D systems. Par-

allel to the Jacob’s ladder of energy functionals in three-dimensions, Jacob’s ladder can

be formed for two-dimensional approximated density functionals. Starting from LDA,

that represents the first rung, the ladder goes to the heaven of calculation with very ac-
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curate energies and densities of interacting systems. The pure 2D systems such as QDs

have been studied by 2D-LDA exchange in combination with 2D-LDA correlation.65 To

incorporate the non-homogeneous effects of systems, GGA functionals and mGGA func-

tionals57,58 have been proposed in the last decade. The recent applications of some of

these semilocal functionals in studying artificial graphene(AG)66,67,68,69,70 encourage the

development of new more accurate density functionals for 2D quantum systems. The

AGs are engineered with appropriate quantum dot potential arranged in hexagonal lat-

tices. The use of AGs has a lot of advantages including easy access to strong spin-orbit

coupling regime, controllable inter-particle interaction, and designing and studying artifi-

cial defects and Dirac physics. To study these systems within 2D-DFT, it needs reliable

exchange-correlation density functionals. This chapter is dedicated to the development of

more accurate exchange-correlation energy functionals for above mentioned 2D systems.

We start the chapter with the density matrix expansion(DME) in two-dimensions that

will be used to construct mGGA level exchange and correlation energy functionals. The

advantages of DME to construct the functionals will be discussed along with the new pos-

sibilities of approximations to include electron-electron interaction. In the first part, we

propose parameter-free exchange energy functionals using expressions of the DME up to

second order. The efficiency of such simple form of functional is enhanced by replacing

the homogeneous momentum with the statistically averaged kinetic energy density. Next,

we explore the DME of exchange hole with use of generalized coordinate transformation,

that allows us to play with the shape of exchange hole. With the help of such generalized

exchange hole, we again propose three exchange functionals with appropriate parameter-

ization. The Fermi momentum present in these functionals is modified with the inclusion

of reduced density gradient and kinetic energy density to incorporate the inhomogeneity

of the actual system. A suitable correlation functional for such parameterized exchange

functional is modeled by incorporating the semi-local correction with the available 2D-

LDA65 correlation energy functional. In the last part, we propose a Colle-Salvetti type

two-dimensional correlation energy functional for the general use with available exchange

energy functionals. Extensive testing of these functionals are demonstrated by consider-

ing parabolic and Gaussian quantum dots (QD), by varying the confinement strength and
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the confined particle number. All these developed functionals possess their own impor-

tance in describing these 2D systems, so, we discuss all these results thoroughly and

individually. To validate the accuracy of these functionals a comparison with available

previously developed functionals is essential and we present the comparison rigorously.

2.2 Density Matrix Expansion in 2-Dimensions

The DME method is a very successful strategy that has been used to construct analytic

exchange energy functionals in three-dimensions.26,39,40,71 The functionality of such suit-

able method needs to be explored in 2D. The exchange energy within DFT can be termed

as the electrostatic interaction between the density of an electron at r and its exchange

hole that surrounds the electron.72 With this information the exchange energy in 2D is

written as,

Ex =
1
2

�
ρ(r)d2r

�
d2r�

�ρx(r,r�)�
|r− r�| . (2.1)

Here, �ρx(r,r�)� is the cylindrically averaged exchange hole in 2D. The exchange hole is

a significant quantity, and is physically understandable. One such example is the system

averaged exchange hole on top of the electron is proportional to the �ρ�. This exchange

hole can be expressed using the 1st order density matrix Γ1(r,r�) and expressed as,

�ρx(r,r�)�=−�|Γ1(r,r�)|2�
2ρ(r)

(2.2)

with

Γ1(r,r�) = 2
occu

∑
i=1

φ∗
i (r)φi(r�) . (2.3)

Here, φi are the KS orbitals filled with electrons. Hence, one can get exchange energy by

modeling the exchange hole through density matrix. Here, we use a model for exchange

hole, originally developed for 3D systems by Negele-Vautherin (NV).73 In the relative

and center-of-mass coordinates u and R, the density matrix can be expressed as,

Γ1

�
R+

u
2
,R− u

2

�
= ∑

i
φ∗

i

�
R+

u
2

�
φi

�
R− u

2

�
, (2.4)



28 Density Functional Theory in Two Dimensions

where R = r+r�
2 and u = r− r�. By employing the Taylor series expansion, Eq.(2.4) is

written as,

Γ2D
1 = eu. (

�∇1−�∇2)
2 ∑

i
φ∗

i (R1)φi(R2)|u=0 = eu (�∇1−�∇2)
2 cosφ ∑

i
φ∗

i (R1)φi(R2)|u=0 , (2.5)

where �∇1 acts on R1 and �∇2 acts on R2. Now, to derive the 2D Negele-Vautherin ex-

change hole,73 the plane wave present in Eq.(2.5) is expanded in terms of the Bessel

and hypergeometric functions using the generalized Gegenbauer additional theorem74 as

follows,

eizy =
2
z

∞

∑
n=0

(2n+1)(−1)nJ2n+1(z)C1
2n(y) (2.6)

with z = ku, y = − i(�∇1−�∇2)cosφ
2k , and k being the Fermi momentum. J2n+1 are the Bessel

functions and the polynomial Cm
2n is expressed as,

Cm
2ν(x) = (−1)ν




ν +m−1

ν


2F1(−ν ,ν +m;

1
2

;x2) (2.7)

with 2F1 being the generalized Hypergeometric function that follows a general form,

2F1(a,b;c;z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!

Now, using Eq.(2.6) and Eq.(2.7), the density matrix Eq.(2.5) up to second order in u2

is derived as,

Γ2D
1

�
R+

u
2
,R− u

2

�
=

2J1(ku)
ku

ρ(R)+
6J3(ku)

k3u

�
4cos2 φ

�∇2ρ
4

−2τ
�
+ k2ρ

�
, (2.8)

where τ = ∑occ
i |�∇φi|2 is the KS kinetic energy density. Now, we calculate the cylindri-

cally averaged density matrix to get rid of angular dependency of the density matrix and
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hence the exchange hole. With the realization of

�
|Γ2D

1
�
R+

u
2
,R− u

2

�
|2
�

cyl
=

�
|Γ2D

1
�
R+

u
2
,R− u

2

�
|
�2

cyl
+O(u4)

= ρ(R)+
u2

2
ρ(R)[

1
4

∇2ρ(R)−2τ]+O(u4), (2.9)

the cylindrical average density matrix is written as,

�
|Γ2D

1t
�
R+

u
2
,R− u

2

�
|
�

cyl
=

2J1(ku)
ku

ρ(R)+
6J3(ku)

k3u

�∇2ρ
2

−4τ + k2ρ
�
. (2.10)

Now, if one expands the Bessel functions, hence Eq.(2.10), it perfectly recovers the exact

form for small u from Eq.(2.9). In 3D, such type of expansion has been used by Negele-

Vautherin,73 Scuseria and co-workers,26,39,40 and Tsuneda et. al.71 Recently proposed

Tao-Mo 3D-mGGA functional42 that is based on the density matrix expansion and the

series resummation technique is transformed to its 2D counterpart74 by Jana et al. Here,

the main motivation is to derive a very simple form of the exchange energy by terminating

our exchange hole up to u2, and without applying the series resummation technique. So,

using the simple form of cylindrical averaged density matrix of Eq.(2.10), the cylindrical

averaged exchange hole can be written as,

�ρx(R,u)�cyl =−2J2
1(ku)ρ(R)

k2u2 − 12J1(ku)J3(ku)
k4u2

�∇2ρ
2

−4τ + k2ρ
�
. (2.11)

For homogeneous density, the Laplacian of density present within the square bracket be-

comes zero, and other two terms cancels with each other. So, in the homogeneous limit,

only the first term in Eq.(2.11) survives which is the exact exchange hole for uniform

electron gas. The recovery of the correct exchange hole in the HEG limit is a positive

sign to proceed, and we will be using such exchange hole to construct exchange energy

functionals in the following section.
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2.2.1 Parameter-free exchange energy functional

Now, we use the above-developed cylindrical averaged density matrix expansion and

hence the exchange hole to construct a parameter-free exchange energy functional. In

the center-of-mass coordinate system, the exchange energy expression Eq.(2.1) becomes

Ex =
1
2

�
d2R

�
d2u

ρ(R)�ρx(R,u)�cyl

u
. (2.12)

The use of cylindrically averaged exchange hole of Eq.(2.11), the exchange energy Eq.(2.12)

is written as,

Ex =−1
2

�
d2R

�16ρ2

3k
+

32ρ
15k3

�∇2ρ
2

−4τ + k2ρ
��

. (2.13)

The above form of exchange energy functional contains the Laplacian of density and

the presence of ∇2ρ may lead to numerical instability. This is because it diverges near

nucleus for 3D systems, and also some of previous studies in 2D74,75 suggest to replace

the Laplacian of density with appropriateform. So, we replace the Laplacian of density by

utilizing the identity suggested by Voorhis and Scuseria40 in 3D and adopted by Pittalis

et. al.76 for 2D. This leads to,

Ex =−1
2

�
d2R

�16ρ2

3k
+

32ρ3

15k3

�x2

4
−
�4τ − k2ρ

ρ2

���
, (2.14)

where x = |∇ρ|
ρ3/2 is the 2D reduced density gradient. Now, using the spin density scaling

relation,

Ex[ρ↑,ρ↓] =
1
2

Ex[2ρ↑]+
1
2

Ex[2ρ↓] , (2.15)

the spin polarized exchange energy becomes,

Ex[ρσ ,kσ ,τσ ] =−1
2 ∑

σ

�
d2R

�32ρ2
σ

3kσ
+

128ρ3
σ

15k3
σ

�x2
σ
8
− zσ

��
. (2.16)

Here, a dimensionless quantity z is defined as zσ = (4τσ − 2k2
σ ρσ )/4ρ2

σ . The 1st choice

for kσ is quite obvious i.e. the Fermi momentum kσ = kFσ =
√

4πρσ . In general the mo-
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mentum kσ can be thought as a parameter which obeys one restriction, i.e., the dimension

of kσ should be length inverse (wavevector).40 Now, we make a kinetic energy density

τσ (R) dependent kσ , similar to a previous work by Tsuneda et.al.71 in 3D through the

following relation,

τσ (R) = 2�k2

2
�ρσ (R) = ρσ (R)

�
k2

σ fσ (R,kσ )d2kσ�
fσ (R,kσ )d2kσ

=
k2

σ
2

ρσ . (2.17)

The distribution function fσ (R,k) is approximated by the step function in the momentum

space.71 As the kσ of Eq.(2.17) is identical to the Fermi momentum in our exchange

energy expression, we will be taking the help of this kinetic energy dependent kσ . Upon

using Eq.(2.17), kσ can be expressed as,

kσ = kσ [τσ ] =

�
2τσ
ρσ

. (2.18)

In above Eq.(2.18), If we use the 2D Thomas-Fermi (TF) kinetic-energy density, τT F
σ =

2πρ2
σ , then momentum vector kσ will be identical to the 2D Fermi momentum kFσ =

√
4πρσ for the homogeneous system. Using kσ from Eq.(2.18) in Eq.(2.16), we get a

vanishing zσ , and a simple parameter-free, meta-GGA exchange functional (EPF) in 2D

is obtained,

EPF
x [ρσ ,∇ρσ ,kσ [τσ ]] =−1

2 ∑
σ

�
d2R

32ρ2
σ

3kσ

�
1+

x2
σ ρσ

10k2
σ

�
, (2.19)

Now, let’s replace kσ with help of Eq.(2.18). This replacement leads a kinetic energy

dependent mGGA exchange functional of form,

EPF
x [ρσ ,∇ρσ ,τσ ] =−1

2 ∑
σ

�
d2R

32ρ5/2
σ

3
√

2τσ

�
1+

x2
σ ρ2

σ
20τσ

�
. (2.20)

The choice of τσ present in Eq.(2.20) can be used as a progressive part, i.e., the form

of τσ can be varied with our convenience. We start from the simple form of τ . Con-

sidering the uniform electron gas, the Thomas-Fermi kinetic energy density τσ = τT F
σ is
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Table 2.1: Shown are the exchange energies of parabolic quantum dots in atomic units
(a.u.) by using EPF−KS

x , with τσ = τKS
σ and EMPF

x . The first column shows the number
of confined electrons and the second column the confinement strengths. The exchange
energies as obtained from EPF−KS

x and EMPF
x functionals are presented in the last two

columns. Exchange energies of the exact exchange 2D-EXX, 2D-LSDA, 2D-B88, and
2D-B86 as obtained from OCTOPUS code are also shown for the comparison. The last
row represents the MAPE, Δ.

N ω −E2D−EXX
x −E2D−LSDA

x −E2D−B86
x −E2D−B88

x −EPF−KS
x −EMPF

x
2 1/6 0.380 0.337 0.368 0.364 0.373 0.413
2 0.25 0.485 0.431 0.470 0.464 0.479 0.527
2 0.50 0.729 0.649 0.707 0.699 0.726 0.789
2 1.00 1.083 0.967 1.051 1.039 1.085 1.167
2 1.50 1.358 1.214 1.319 1.344 1.365 1.457
2 2.50 1.797 1.610 1.748 1.728 1.812 1.908
2 3.50 2.157 1.934 2.097 2.074 2.175 2.258
Δ 16.55 2.94 3.59 0.83 7.35

our first choice. But the uniform kinetic energy density is far from the exact interacting

system. So, upon using τT F
σ in in Eq.(2.20), we get unsatisfactory results. Hence, we

are omitting the discussion of this form of exchange energy in the calculation section.

The second form of the τ , is the Kohn-Sham kinetic energy density τKS
σ , and we are de-

noting the corresponding exchange functional obtained from Eq.(2.20) as EPF−KS
x . The

results for EPF−KS
x are discussed in Table 2.1 and Table 2.2 that present exchange energies

of parabolic quantum dots having different confinement strength and confined electrons.

However, some mediocre results of Eq.(2.20) prompted us to remodel the functional form

Eq.(2.19) more appropriately. The potential reasons for such results are also explained in

the next part in more detail.

As mentioned, the modifications in the form of the functional are done by imposing

physical constraints. For any nonuniform systems, we seek an energy form, the first term

of which must recover the LDA, and the subsequent terms can be regarded as the advance

order corrections to LDA. For this purpose, we have replaced kσ present in the first part

of Eq.(2.19) with kFσ , and used the kσ from Eq.(2.18) in the second part. After such
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changes, the modified parameter free (MPF) exchange functional (EMPF
x ) becomes

EMPF
x [ρσ ,∇ρσ ,τσ ] =−1

2 ∑
σ

�
d2R

8kFσ ρσ
3π

�
1+

x2
σ ρσ

10
��

2τσ
ρσ

�2

�
(2.21)

The form of EMPF
x is simple, and the first term represents the LDA exchange energy. The

stability of EMPF
x is expected to be more as it recovers the LDA exchange completely, and

the non-uniform effects are taken care by the second term.

2.2.2 Numerical Demonstration - I

We demonstrate the performance of newly developed 2D functionals EPF−KS
x , and (EMPF

x )

by applying it to multi-electron quantum dots (QD). The parabolic potential representing

the QD is “V0 = ω2r2/2”, ω is the confinement strength. The exchange energies corre-

sponding to 2D-KLI,77 2D-LSDA,78 2D-B8879 and 2D-B8676 are also calculated within

the spin DFT implemented in the OCTOPUS code.80 The output densities, and the kinetic

energy densities of self-consistent KLI-OEP are used as the input for all the new func-

tionals. The performances of the newly proposed exchange energy functionals, Eq.(2.20)

with τσ = τKS
σ and Eq.(2.21) are given in Table 2.1 for two electrons and in Table 2.2 for

N = 6 to N = 56. The value of the confinement strength is varied from 1/6 to 3.5. We

intentionally present the results in two tables to show the advantages of EMPF
x for N > 2.

From Table 2.1, we observe that EPF−KS
x which is constructed by the replacement of

τσ with τKS
σ in Eq.(2.20) give better exchange energies for two electrons QDs and leads

to the best mean absolute percentage error (MAPE). So, the functional EPF−KS
x presented

in Eq.(2.20) can be used to study the properties of the quantum dots having only two

confined electrons. However, the first term in Eq.(2.20) with the KS-KE density looks

unstable, and it is observed that with the increase of electrons and ω value, the error

increases. Such inefficient performance is caused due to the delocalization of τKS
σ relative

to the density of electrons ρσ . In 3D, a similar outcome can be seen in the work of

Tsuneda et. al..71 So, for betterment, we have modified Eq.(2.19) into Eq.(2.21).

Next, we examine the performance of EMPF
x presented in Eq.(2.21). The results for
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Table 2.2: All the columns are identical to Table 2.1 but with N = 6 to 56.

N ω −E2D−EXX
x −E2D−LSDA

x −E2D−B86
x −E2D−B88

x −EPF−KS
x −EMPF

x
6 1/1.892 1.735 1.642 1.719 1.749 1.775 1.743
6 0.25 1.618 1.531 1.603 1.594 1.655 1.626
6 0.42168 2.229 2.110 2.206 2.241 2.283 2.238
6 0.50 2.470 2.339 2.444 2.431 2.532 2.481
6 1.00 3.732 3.537 3.690 3.742 3.830 3.745
6 1.50 4.726 4.482 4.672 4.648 4.851 4.740
6 2.50 6.331 6.008 6.258 6.226 6.491 6.337
6 3.50 7.651 7.264 7.562 7.525 7.829 7.642
12 0.50 5.431 5.257 5.406 5.387 5.559 5.442
12 1.00 8.275 8.013 8.230 8.311 8.474 8.282
12 1.50 10.535 10.206 10.476 10.444 10.789 10.534
12 2.50 14.204 13.765 14.122 14.080 14.535 14.169
12 3.50 17.237 16.709 17.136 17.086 17.620 17.153
20 0.50 9.765 9.553 9.746 9.722 9.968 9.783
20 1.00 14.957 14.638 14.919 15.029 15.266 14.977
20 1.50 19.108 18.704 19.053 19.188 19.496 19.123
20 2.50 25.875 25.334 25.796 25.973 26.376 25.867
20 3.50 31.491 30.837 31.392 31.603 32.063 31.445
30 1.00 23.979 23.610 23.953 24.091 24.410 24.005
30 1.50 30.707 30.237 30.665 30.836 31.249 30.722
30 2.50 41.718 41.085 41.651 41.878 42.420 41.686
30 3.50 50.882 50.115 50.794 51.068 51.694 50.778
42 1.00 35.513 35.099 35.503 35.671 36.071 35.561
42 1.50 45.560 45.032 45.538 45.747 46.259 45.606
42 2.50 62.051 61.339 62.007 62.286 62.946 62.062
42 3.50 75.814 74.946 75.748 76.085 76.837 75.771
56 1.00 49.710 49.256 49.722 49.919 50.407 49.771
56 1.50 63.869 63.289 63.871 64.117 64.739 63.921
56 2.50 87.164 86.378 87.148 87.479 88.281 87.160
56 3.50 106.639 105.684 106.609 107.010 107.918 106.542
Δ 2.75 0.45 0.58 1.97 0.17
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Figure 2.1: The mean errors of different exchange energy functionals listed in Table 2.2
for few electron parabolic quantum dots. For systems having N = 72, 90, and 110, ω is
varied from 1 to 3.5.
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Figure 2.2: The exchange potentials for a parabolic quantum dot with N=6 and ω = 1.
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Table 2.3: The exchange energies (in a.u.) of Gaussian quantum dots using EMPF
x i.e.

Eq.(2.21). For comparison, the results obtained with other relevant functionals are also
provided and the last row represents the MAPE.

N ω2 −E2D−EXX
x −E2D−LSDA

x −E2D−B86
x −E2D−MPF

x
6 0.10 6.525 6.193 6.450 6.521
6 1/6 7.454 7.076 7.367 7.444
6 0.25 8.255 7.840 8.160 8.232
6 0.50 9.744 9.260 9.635 9.688

12 0.10 14.324 13.887 14.241 14.255
12 1/6 16.304 15.812 16.211 16.187
12 0.25 17.986 17.437 17.873 17.824
12 0.50 20.908 20.295 20.795 20.634
20 0.1 25.386 24.871 25.311 25.354
20 1/6 28.692 28.122 28.611 28.606
20 0.25 31.349 30.736 31.263 31.197
Δ 3.47 0.70 0.48

QDs with N = 2 are tabulated in Table 2.1, and the MAPE is better than the 2D-LSDA and

inferior to 2D-B88 and 2D-B86. But for QDs having more than two confined electrons,

EMPF
x gives the best result(Table 2.2), and it will be very useful to study practical systems

in 2D. We emphasize on the calculated MAPE of EMPF
x ) given in Table 2.2, i.e., 0.17

which is the best MAPE calculated so far. We plot the mean error (ME) of the functionals

presented in Table 2.2 in Figure 2.1 considering parabolic QDs with a set of electron

numbers up to 56. The color bars represent the exchange energy functionals. It can be

seen that, the deviations of EMPF
x are very small the 2D-KLI (origin). In Figure 2.2, we

have plotted the exchange potentials of discussed functionals for a parabolic QD with

N = 6 and ω = 1. The potential of MPF matches comparatively more appropriately with

the KLI potential, but all the semilocal potentials fail to produce exact behavior in the

asymptotic region.

Next, we analyze the performance of the simple parameter free exchange energy

functional applying to the Gaussian quantum dot system with external potential “V (r) =

−V0exp(−ω2r2)”, where −V0 be the depth of the potential. Here, the shape of the poten-

tial depends on ω and V0. For the present study, we have fixed V0 at 40 a.u., and varied
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the electron number (N) and confinement strength ω . The exchange energies for these

systems are tabulated in Table 2.3. In this case, the reduction in error for EMPF
x is quite

encouraging. A clear improvement over 2D-LSDA is observed from the above table. The

small error of EMPF
x functional in both types of quantum dots increases the merit of such

construction.

The EMPF
x functional has a very simple mathematical form and the accuracy is very

good for systems having electrons more than two. The underlying exchange hole always

has a scope for new developments and we use the general coordinate transformation of it

to model new exchange-correlation energy functionals in the next section.

2.3 Coordinate transformation of the exchange hole and

energy functionals

In the previous section, we formulated the density matrix expansion for 2D, and used

the same to make exchange hole and hence the exchange energy functional. Here, we

take advantages of coordinate transformation, which will make the density matrix and

the exchange hole more localized and the shape of the exchange hole can be controlled.

Now, we use the general coordinate transformation (r,r�) → (rλ ,u) with rλ = λr +

(1− λ )r� and u = r� − r. The Jacobian of such transformation is 1 and a real number

λ lies between 1/2 and 1. The advantage of such transformation can be understood if

we analyze the behavior of exchange hole at two extreme values of λ . At λ = 1/2, the

exchange hole is transformed to the center of the mass coordinate system, leading to a

maximally localized hole. On the other hand, λ = 1 leads to a conventional hole. Now,

using this transformation in the exchange energy expression Eq.(2.1), the exchange energy

written as

Ex =
1
2

�
d2rλ

�
d2u

ρ(rλ )ρx(rλ ,u)
u

, (2.22)
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and Eq.(2.2) can be rewritten as

ρx(rλ ,u) =−�|γ t
1(rλ − (1−λ )u,rλ +λu)|2�

2ρ(rλ )
, (2.23)

where γ t
1(rλ − (1−λ )u,rλ +λu) is the transformed single-particle density matrix. Now,

expanding the density matrix about u = 0 and using the Bessel and Hypergeometric func-

tions as discussed before, the density matrix Eq.(2.10) transformed to

Γ1t = 2ρ
J1(ku)

ku
+

6J3(ku)
k3u

�
4cos2 φ{(λ 2 −λ +

1
2
)∇2ρ −2τ}+ k2ρ

�
. (2.24)

Such expansion is comprehensible as the zeroth order expansion recovers the 2D-LDA

and the λ dependency is only restricted to the second term. The second term takes care

of the non-uniformity involved in the actual system. Now this transformed density matrix

can be used to get a general coordinate transformed cylindrical averaged exchange hole

by using Eq.(2.23), and is expressed as

ρx(r,u) =−2J2
1(ku)ρ
k2u2 − 12J1(ku)J3(ku)

k4u2 A − 18J2
3(ku)

k6u2ρ
A 2, (2.25)

where, A = 2(λ 2 − λ + 1
2)∇

2ρ − 4τ + k2ρ . The first term in above Eq.(2.25) is the

exchange hole for the homogeneous system, i.e., the LDA exchange hole is perfectly re-

covered with our method. And the transformation of exchange hole is reflected in other

subsequent terms without affecting the uniform limit. The translational-invariance of uni-

form system can be well observed. To get exchange functionals with reliable accuracy,

we keep the expansion up to 4th order in u. Next, we use this averaged exchange hole to

model exchange, and correction energy functionals.

2.3.1 Parameterized Exchange energy functionals

Now, to construct the desired semilocal meta-GGA type exchange functionals, we use

the exchange hole presented in Eq.(2.25) in the exchange energy form of Eq.(2.22), and

replace the Laplacian of density with the help of integration by parts (similar to Eq.(2.14)).
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The final exchange energy form is written as,

Ex =−
�

d2r
�8ρ2

3k
+

16ρ3

15k3 B+
32ρ4

35k5 B2
�
, (2.26)

where

B =
�

λ 2 −λ +
1
2

�
x2 −

�4τ − k2ρ
ρ2

�
(2.27)

and x = |∇ρ|
ρ3/2 is the 2D reduced density gradient. The exchange energy functional pre-

sented in above Eq.(2.27) depends on the electron density ρ , the kinetic energy density τ ,

parameter λ , and the momentum k. The choice of momentum k is in our hand, and that

can be used to enforce the functional to include non-uniformity of the real system. Re-

placing k with the Fermi momentum kF =
√

2πρ , and using Thomas-Fermi kinetic energy

density τuni f = πρ2/2, it can be seen that the homogeneous constraint is well satisfied.

To go beyond the local-density model other physically motivated forms of momentum k

need to be adopted. Before going to model different forms of k, we present the spin-scaled

form of the exchange energy using the relation presented in Eq.(2.15) as,

Ex =−1
2 ∑

σ=↑,↓

�
d2r

�32ρ2
σ

3kσ
+

128ρ3
σ

15k3
σ

Gσ (xσ ,zσ )+
512ρ4

σ
35k5

σ
G 2

σ (xσ ,zσ )
�
, (2.28)

where

Gσ (xσ ,zσ ) = (λ 2 −λ +
1
2
)
x2

σ
2
− zσ , (2.29)

and “zσ = τ
ρ2

σ
− 2π” is a dimensionless quantity. As discussed, the functional form of

the momentum is not unique, but any accepted choice must obey one constraint, i.e., k

should follow inverse of length dimension. Using the obvious choice k = kF , the exchange

functional becomes,

Ex =−1
2 ∑

σ=↑,↓

�
d2r

32ρ2
σ

3kF

�
1+

4ρσGσ (xσ ,zσ )

5k2
F

+
48ρ2

σG 2
σ (xσ ,zσ )

35k4
F

�
. (2.30)

However, our priority is to add the inhomogeneity of the interacting system by choosing

different forms of momentum k. Depending on the physically admissible choices of k
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other than kF , we propose different exchange energy functionals. To incorporate the non-

uniformity of the real system in the energy form through momentum, suitable functionals

having density dependency need to be added intuitively, and the LDA exchange func-

tional must be recovered upon imposing the homogeneity limit. In principle, it is possible

because the form of the exchange energy functional, i.e., Eq.(2.30), depends on dimen-

sionless quantities xσ and zσ . For uniform systems, xσ becomes zero as it depends on ∇ρ ,

and zσ goes to zero at τ = τuni f (HEG). Using xσ , and zσ as the ingredients, functionals

are developed in the next subsections.

2.3.1.1 Density gradient dependent momentum

Here, we modify the Fermi momentum by utilizing the dimensionless reduced density

gradient. The addition of x2
σ to kF obeys the required constraints, i.e., the new momentum

kF,g secures the dimension of length inverse and becomes kF in the homogeneous density

limit. We propose the first modification to the Fermi momentum as,

kF,g = kF(1+αx2
σ ), (2.31)

where α is an adjustable parameter that takes care of the gradient effect. Using kF,g from

Eq.(2.31), in Eq.(2.30) the new semilocal exchange energy functional EGDM
x (exchange

energy with gradient dependent momentum) becomes,

EGDM
x [xσ ,zσ ] =−1

2 ∑
σ=↑,↓

�
d2r

�32ρ2
σ

3kF,g
+A

128ρσGσ (xσ ,zσ )

15k
3
F,g

+B
512ρ2

σG 2
σ (xσ ,zσ )

35k
5
F,g

�
.

(2.32)

In the present study, we have terminated the density matrix at 2nd order. Hence, the

underlying exchange hole is not completely correct. To take care the left over effect, two

adjustable parameters A and B are introduced, which will be fixed later. Also, because of

kF,g present in the denominator of the first term, the first term is different from the LSDA

exchange energy. To incorporate these effects, parameterization of higher order terms are

essential.
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2.3.1.2 Kinetic energy dependent momentum

Next, we attempt to modify the momentum through the kinetic energy density. The ki-

netic energy density is encountered through the term zσ present in the exchange energy

functional Eq.(2.30). The inclusion of zσ in kF , will make the momentum to depend on

the kinetic energy density. In this way, the inhomogeneous effect of the interacting system

can be included in the functional form. It is conspicuous that addition of a fraction of zσ

to kF obeys the dimension and uniform density limit restrictions. Thus, a new form of the

transformed momentum is proposed to be,

kF,t = kF(1+αzσ ). (2.33)

Similar to Eq.(2.31), α is the adjustable parameter introduced to add the inhomogene-

ity through a small fraction of zσ . Now, putting the transformed momentum Eq.(2.33)

in the exchange form of Eq.(2.30), the exchange energy functional ET DM
x (τ dependent

momentum), similar to Eq.(2.32) written as,

ET DM
x [xσ ,zσ ] =−1

2 ∑
σ=↑,↓

�
d2r

�32ρ2
σ

3kF,t
+A

128ρσGσ (xσ ,zσ )

15k
3
F,t

+B
512ρ2

σG 2
σ (xσ ,zσ )

35k
5
F,t

�
.

(2.34)

Similar Eq.(2.32), A and B are the adjustable parameters. The Eq.(2.34) only differs from

Eq.(2.32) by a different choice of momentum, i.e., kF,g is replaced by kF,t .

2.3.1.3 Reduced density gradient and kinetic energy density dependent momentum

So far the reduced density gradient xσ and zσ are used individually in the momentum to

include the inhomogeneity effects in the semilocal functionals. The use of both xσ and zσ

together is also an option as the addition of both terms in appropriate order will respect

the required constraints. Following a simple form to add both the kinetic energy density

and reduced density gradient in the momentum as,

kF,g,t = kF{1+α(x2
σ + zσ )}, (2.35)
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Table 2.4: Tabulated are the asigned values of all the constants present in the exchange
energy functionals EGDM

x , ET DM
x , and EGT DM

x

Functional α A B
EGDM

x 0.001 0.2 0.3303
ET DM

x 0.001 0.2 0.0824
EGT DM

x 0.001 0.2 0.3646

where α is an adjustable parameter defined in the same manner as Eq.(2.31) and Eq.(2.33).

The exchange energy functional EGT DM
x (gradient and τ dependent momentum) with kF,g,t

is,

EGT DM
x [xσ ,zσ ] =−1

2 ∑
σ=↑,↓

�
d2r

� 32ρ2
σ

3kF,g,t
+A

128ρσGσ (xσ ,zσ )

15k
3
F,g,t

+B
512ρ2

σG 2
σ (xσ ,zσ )

35k
5
F,g,t

�
,

(2.36)

where A and B are again tunable constants. The effects of higher-order terms in the density

matrix expansion can be included through these parameters.

2.3.2 The correlation energy functional

After developing the exchange energy functionals, we focus on the correlation part of

the total energy. It is necessary to construct an appropriate semilocal correlation func-

tional which will be more relevant for our exchange energies, constructed above. The

2D-LDA correlation energy functional65 is a commonly used functional in calculating 2D

systems. The analytic form of 2D-LDA correlation energy functional was constructed

by interpolating two limiting behaviors, the low-density limit from the Diffusion Monte

Carlo (DMC) data and high-density limit from a 2D LDA type exchange-correlation en-

ergy functional,81 and given as,

εLDA
c (rs,ζ ) = (e−β rs −1)ε(6)x (rs,ζ )+α0(rs)+α1(rs)ζ 2 +α2(rs)ζ 4, (2.37)

where rs = 1/
√πρ , ζ is the usual spin-polarization and ε(6)x (rs,ζ ) = εx(rs,ζ )− (1 +

3
8ζ 2 + 3

128ζ 4)εx(rs,0) is the Taylor expansion of εx beyond fourth order in ζ . Here, the
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2D-LSDA exchange energy term, εx = −2
√

2[(1+ ζ )3/2 +(1− ζ )3/2]/3πrs. The func-

tional form of αi(rs) is taken as a 2D generalization form from electron-gas correlation of

Perdew-Wang49 and is given by,

αi(rs) = Ai +
�

Bi +Cir2
s +Dir3

s

�
× ln

�
1+

1

Eirs +Fir
3/2
s +Gir2

s +Hir3
s

�
. (2.38)

The values of these parameters present in the above Eq.(2.38) is same as present in the

Table II of reference.65 This correlation functional is local as it depends only on spin-

polarization ζ and the electron density ρ via rs. However, such LDA functional tend to

overestimate the correlation energy of the parabolic QDs up to a large extent, that can be

observed from Table 2.6. So, modification to the functional form is essential for applying

it to non-uniform systems. We suggest that the non-local effects of the interacting system

can be induced in the LDA correlation energy via a parametric form of the exchange func-

tional derived above. In fact, use of the exchange enhancement factor in the correlation

energy is encountered in recent 3D correlation functionals.26,82 Similar to 3D, here, we

have used a modified form of EGT DM
x with convenient parameters. The modified form of

momentum from Eq.(2.35) with a different constant can be written as,

kF,g,t = kF{1+δ (x2
σ + zσ )}= kFΓσ (xσ ,zσ ). (2.39)

Now, this form of momentum can be used in place of kσ present in the Eq.(2.28), and

with this replacement Eq.(2.28) modified to,

Ex =−1
2 ∑

σ=↑,↓

�
d2r

32ρ2
σ

3kF

� L
Γσ

+
M 4ρσGσ (xσ ,zσ )

5k2
FΓ3

σ
+

N 48ρ2
σG 2

σ (xσ ,zσ )

35k4
FΓ5

σ

�
, (2.40)

where L, M, and N are parameters through which the effect of neglected higher order

terms can be included. The above Eq.(2.40) differs from EGT DM
x by a small change in

the enhancement factor. This modification is essential to have a suitable multiplicative

factor for the correlation functional. It is to be note that, Eq.(2.40) is not for the exchange

energy calculations, but to include the non-local effects in the correlation functional using
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Figure 2.3: Correlation between two parameters A and B for two electron parabolic quan-
tum dot with ω = 1 is plotted for all the functionals.

the enhancement factor like term present within square bracket.

Mixing the local contribution from Eq.(2.37) and the non-uniformity via Eq.(2.40), a

new spin-polarized correlation energy functional is written as,

ENIL
c,σ =

1
2 ∑

σ=↑,↓

�
d2r εLDA

c,σ (rs,ζ )Fc,σ (xσ ,zσ ). (2.41)

Where

Fc,σ =
L

Γσ
+

M 4ρσGσ (xσ ,zσ )

5k2
FΓ3

σ
+

N 48ρ2
σG 2

σ (xσ ,zσ )

35k4
FΓ5

σ
. (2.42)

Here, Fc,σ is a dimensionless quantity and has no dimensional effect on any multiplied

physical quantity. After assigning appropriate values to all the parameters the above non-

local effect induced LDA correlation functional ENIL
c,σ will be completed. This task will

be completed in the next section by comparing the result with the exact values for the

parabolic quantum dots.

2.3.3 Numerical Demonstration - II

Similar to the previous section, we demonstrate the efficiency of these parameterized

functionals by applying them on parabolically confined QDs, also known as artificial

atoms having external potential as ω2r2/2, ω being the confinement strength. The SCF
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Table 2.5: The exchange energies (in a.u.) of parabolic quantum dots as obtained from
proposed exchange energy functionals −EGDM

x , −ET DM
x , and −EGT DM

x . The first column
is for the number of electrons ‘N’, 2nd is for confinement strength ω . The self-consistent
results for 2D-EXX (KLI), 2D-LDA, 2D modified B86, 2D-B88 are shown in succeeding
columns. The last row contains the MAPE (Δ).

N ω −E2D−EXX
x −E2D−LDA

x −E2D−B86
x −E2D−B88

x −E2D−GDM
x −E2D−T DM

x −E2D−GT DM
x

2 1/6 0.380 0.337 0.368 0.364 0.387 0.387 0.387
2 0.25 0.485 0.431 0.470 0.464 0.492 0.492 0.492
2 0.50 0.729 0.649 0.707 0.699 0.736 0.736 0.736
2 1.00 1.083 0.967 1.051 1.039 1.086 1.086 1.086
2 1.50 1.358 1.214 1.319 1.344 1.354 1.354 1.354
2 2.50 1.797 1.610 1.748 1.728 1.772 1.772 1.772
2 3.50 2.157 1.934 2.097 2.074 2.100 2.101 2.100
6 0.25 1.618 1.531 1.603 1.594 1.640 1.634 1.638
6 0.50 2.470 2.339 2.444 2.431 2.496 2.487 2.491
6 1.00 3.732 3.537 3.690 3.742 3.758 3.747 3.751
6 1.50 4.726 4.482 4.672 4.648 4.750 4.737 4.741
6 2.50 6.331 6.008 6.258 6.226 6.340 6.325 6.328
6 3.50 7.651 7.264 7.562 7.525 7.630 7.620 7.619

12 0.50 5.431 5.257 5.406 5.387 5.458 5.451 5.448
12 1.00 8.275 8.013 8.230 8.311 8.295 8.285 8.279
12 1.50 10.535 10.206 10.476 10.444 10.541 10.529 10.521
12 2.50 14.204 13.765 14.122 14.080 14.163 14.146 14.136
12 3.50 17.237 16.709 17.136 17.165 17.133 17.108 17.103
20 0.50 9.765 9.553 9.746 9.819 9.803 9.794 9.788
20 1.00 14.957 14.638 14.919 15.014 14.991 14.979 14.968
20 1.50 19.108 18.704 19.053 19.159 19.131 19.116 19.101
20 2.50 25.875 25.334 25.796 25.973 25.854 25.838 25.817
20 3.50 31.491 30.837 31.392 31.603 31.399 31.399 31.365
42 1.00 35.513 35.099 35.503 35.671 35.590 35.547 35.520
42 1.50 45.560 45.032 45.538 45.747 45.589 45.572 45.539
42 2.50 62.051 61.339 62.007 62.286 62.005 61.989 61.944
42 3.50 75.814 74.946 75.748 76.085 75.674 75.622 75.592
56 1.00 49.710 49.256 49.722 49.919 49.757 49.744 49.709
56 1.50 63.869 63.289 63.871 64.117 63.885 63.867 63.824
56 2.50 87.164 86.378 87.148 87.479 87.076 87.040 86.994
56 3.50 106.639 105.684 106.609 107.010 106.408 106.330 106.309
72 1.00 66.708 66.219 66.746 66.972 66.772 66.758 66.716
72 1.50 85.814 85.186 85.844 86.129 85.850 85.832 85.781
72 2.50 117.312 116.456 117.327 117.712 117.260 117.228 117.171
72 3.50 143.696 142.650 143.697 144.163 143.519 143.426 143.406
90 1.00 86.631 86.111 86.698 86.954 86.697 86.682 86.633
90 1.50 111.558 110.889 111.622 111.946 111.585 111.566 111.504
90 2.50 152.723 151.808 152.779 153.217 152.608 152.593 152.515
90 3.50 187.262 186.139 187.306 187.838 186.974 186.869 186.844
110 1.00 109.595 109.048 109.695 109.981 109.681 109.666 109.609
110 1.50 141.255 140.548 141.357 141.720 141.304 141.283 141.214
110 2.50 193.617 192.647 193.715 194.210 193.526 193.515 193.421
110 3.50 237.612 236.420 237.706 238.306 237.369 237.263 237.223
Δ 4.2 0.71 1.04 0.39 0.36 0.38
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results for 2D-LDA,81 2D-B88,83 and 2D-modified GGA84 along with the EXX results for

these systems are presented again in Table2.5, similar to Table 2.2. The exchange energies

for these QDs having electrons from 2 to 110 and the confinement strength from 0.25 to

3.5 are shown considering above mentioned available functionals, and newly constructed

functionals.

Before going to results, the first task is to get appropriate values of all the constants

present in the exchange and correlation energy functionals. There are four adjustable pa-

rameters A,B,λ , and α present in all the three exchange energy functionals EGDM
x , ET DM

x ,

and EGT DM
x . For all the cases, the parameter λ that is defined for the localization of the

exchange hole is chosen to be 0.5, and this value corresponds to maximally localized

exchange hole. The LSDA like term present as the first term in all the exchange energy

functionals contains parameter α via the modified k. To add some non-uniformity in

the Fermi momentum kF , the parameter α is introduced. So, we expect the effect of all

the increasing ordered terms to decrease gradually. Keeping this in mind, and by taking

A=B= 0, we fix α = 0.001. Also, we observe that for higher values (α > 0.001), the cal-

culated exchange energies differ more from the exact values in case of smaller ω valued

QDs. To fix other two parameters A and B, a two-dimensional scan is performed for under-

standing their interdependency. For this, we show the variation of A and B depending on

each other in Figure 2.3, and it is observed that they are negatively correlated. Also, there

exists a B for every value of fixed parameter A that leads to exact exchange energy. we

have two observations: (i) for A > 0.5, the exchange energies of higher electron systems

differs from the exact, and (ii) for A < 0.1, the exchange energies for lesser number of

confined electrons differs from the exact values. Analyzing above points, we fix A = 0.02.

With α = 0.001 and A = 0.2, exchange energies of only two electron QDs (present in Ta-

ble 2.5) are calculated taking different values of B. The mean of all B’s that gives the

exchange energy same as the EXX is concluded as the final value. We follow the same

procedure to fix the parameters in case of all exchange energy functionals and values for

these parameters are tabulated in Table 2.4.

In Table 2.5, we present the number of electrons (N), confinement strength (ω) in first

two columns. Then exchange energies of four known functionals, and three newly pro-
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Figure 2.4: The mean errors of exchange energies as obtained from different functionals
are shown for parabolic quantum dots.

posed functionals are tabulated in subsequent columns. The MAPE for all the functionals

are given in the last row for comparison. It is clear from Table 2.5 that the new functionals

are very competitive and give better exchange energies. The MAPE of Exchange energy

functional EGDM
x , ET DM

x , and EGT DM
x are 0.39, 0.36, and 0.38 respectively for all 46 cal-

culations. The mean error for these functionals are shown in Figure 2.4. The heights of

different color bars represent the ME corresponding to the exchange energy functionals

considered in the present study.

Similar to exchange energy functionals, the correlation energy functional ENIL
c,σ from

Eq.(2.41) also contains four parameters as, δ , L, M, and N. We fix these parameters by

comparing with the exact correlation energy of QDs. In DFT, we can get the correlation

energy from the total energy , and the EXX, as Ere f
c = Ere f

tot −EEXX
tot , where Ere f

tot is the

exact total energy of the system and EEXX
tot is the total energy of the system taking taking

only exact exchange. First, keeping M = N = 0, and calculating two extreme cases of

smaller (N = 2, ω = 1/6) and larger (N = 6, ω = 0.42168) QDs, we fix the values of

δ and L. Then a model of a practical QD is considered for fixing M and N. This QD is

modeled with parabolic potential with N = 6, and ω = 0.42168, and it represent a GaAs

QD93 having 5mev confinement strength. The final value for these constants are δ =

0.001, L= 0.86, M = 0.07, and N = 0.0448. We tabulated the correlation energies for two,
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six and twelve electrons in Table 2.6. Two local-type correlation functionals65,85 along

with the reference values are shown in the same table for comparison. In addition, the

exchange-correlation values for Emod
xc combining EGT DM

x exchange, and ENIL
c,σ correlation

is also shown in the same table, and similar result is expected from both EGDM
x and ET DM

x .

The self consistent exchange-correlation energies of ELDA
XC = E2D−LDA

x + E2D−LDA
c and

EB86−PRM
XC = E2D−B86

x +E2D−PRM
c are also presented for comparison. It is observed from

Fig 2.4 that the exchange functionals EGDM
x , ET DM

x and EGT DM
x have positive mean error

for the higher number of electrons. Hence, for these systems some part of these ME will

be compensated by negative mean error of ENIL
c,σ . Also the mean error cancellation in

case of LSDA is clearly easily perceived from Table 2.6. The MAPE for the constructed

correlation functional is recognizable in Table 2.6. Also the combination of the exchange,

and correlation energy functional Emod
xc agrees well with the reference values in parabolic

quantum dots.

Up to now, we have discussed the exchange energy functionals constructed from the

DME, and a correlation energy functional developed from the combination of LSDA and

enhancement factor from DME. In the next section, we propose a correlation energy func-

tional that can be used with other available 2D exchange energy functionals. The basis

of the construction is Colle-Salvetti-type correlated wave functions. Also, a special case

with the vanishing density gradient is analyzed.

2.4 Colle-Salvetti type correlation functionals in two di-

mensions

Among different construction methods, the use of correlated wavefunction to construct

the correlation energy functional has been proved to be very successful. This corre-

lated many-particle wavefunction having single determinant Hartree-Fock function used

by Colle and Salvetti94,95 to construct the correlation energy functionals. As required,

such form of wavefunction able to take care of the correlation energy between the differ-

ent spin pair electrons. A method in this direction is developed by Tsuneda et al.96,97 that
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assimilates the correlation between similar, and opposite pair of electrons. Satisfying the

electron-electron cusp condition,98 this type of very effective wavefunction is written as,

Ψσ1σ2(x1,x2...,xN) = ΨHF
σ1σ2

(x1,x2...,xN)× Π
i> j

[1−ϕσ1σ2(ri,r j)], (2.43)

where xi is the spatial-spin-coordinate of the ith electron, and ri is the spatial part, σ1 and,

σ2 are two spin components. The ΨHF
σ1σ2

is defined as a spin-polarized one-determinant

HF wavefunction. The form of ϕσ1σ2(ri,r j) imposes the electronic cusp conditions to

be satisfied by the wavefunction. For opposite spin pairs, the form of ‘ϕ’ in relative

r = |ri − r j| and center of mass R = (ri + r j)/2 coordinates is given by,96

ϕσ1σ2(R,r) = e−β 2
σ1σ2

r2
[1−Φσ1σ2(R)(1+αr)]. (2.44)

Here, the correlation potential can be controlled by both Φσ1σ2 and the parameter βσ1σ2 ,

and the parameter α is used to impose the cusp conditions via the pair correlation function.

A obvious observation from Eq.(2.43) and Eq.(2.44) is that, Eq.(2.43) will reduce to ΨHF

if the distance between two electrons is very large, and hence the electrons are barely

correlated. Similarly, when the pair of electrons share the same spatial positions, i.e.,

ri → r j, the function becomes,

Ψ = ΨHFΦ(R).

The value of α present in Eq.(2.44) is settled as one in two dimensions,85 to satisfy the

pair correlation cusp conditions.98 The approximated form of Φ, as shown in,85

Φ(R)�
√

πβ√
πβ +π/2

, (2.45)

and it is deduced by imposing the condition,

�
d2r ϕ(R,r) = 0. (2.46)
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The parameter β being the crucial parts of the correlation energy, is determined by fol-

lowing a method used in 3D,96 and it makes the form of β more adaptable. To fix β , we

start with the exchange energy of the form

Ex ≡−1
2 ∑

σ

�
ρσ �r−1

σ � d2R, (2.47)

the correlation length proposed by Becke82 in 3D and Pittalis et al. in 2D,86 is given as,

Zσ1σ2 =Cσ1σ2

� 1
�r−1

σ1 �
+

1
�r−1

σ2 �
�
, (2.48)

where Cσ1σ2 is the proportionality constant, ρσ is the electron density of spin σ and �r−1
σ �

is the mean inverse radius of Fermi hole. In 2D, the form of B8879 functional is given as,

E2D−B88
x =−1

2 ∑
σ

�
d2rρ3/2

σ

� 16
3
√

π
+

γ2D�x2
σ

1+8γ2D�xσ sinh−1�xσ

�
. (2.49)

Here, �xσ = |∇ρσ |
ρ3/2

σ
is the reduced density gradient, and the value of the constant γ2D = 0.007.

The Eq.(2.49) is written as,

E2D−B88
x =−1

2 ∑
σ

�
d2rρσ (ρ

1/2
σ Kσ ), (2.50)

and Kσ follows the mathematical expression present within parenthesis in Eq.(2.49). Now,

comparing equations (2.47), (2.48), and (2.50), the correlation length in 2D is written as

Zσ1σ2 =Cσ1σ2(ρ
−1/2
σ1 K−1

σ1
+ρ−1/2

σ2 K−1
σ2

). (2.51)

The concept of the correlation length can be used to calculate β , and hence the exchange

energy dependent β can be used in the correlation energy. For this, it can be thought

that, the area A, where the correlation energy or ϕσ1σ2(ri,r j) deviates well from zero is

expressed as85

A = 2π
�

e−β 2r2
r dr =

π
β 2 . (2.52)



52 Density Functional Theory in Two Dimensions

If the area of the exchange energy is assumed to be proportional to the area of the circle

having the radius half of the correlation length, then

Aσ1σ2 = π(Zσ1σ2/2)2. (2.53)

Using Eq.(2.52), Eq.(2.53), and the form of Zσ1σ2 , we have

βσ1σ2 = qσ1σ2

� Kσ1ρ1/2
σ1 Kσ2ρ1/2

σ2

Kσ2ρ1/2
σ2 +Kσ1ρ1/2

σ1

�
. (2.54)

The proportionality constant qσ1σ2 determines the correlation length. Now the exponent

of Eq.(2.44), i.e., βσ1σ2 will have the form of Eq.(2.54) along with Becke’s Kσ . So, from

Eq.(2.43) and Eq.(2.44), the correlation energy is expressed as,

Ec
σ1σ2

=−
�

Pσ1σ2
2HF (r1,r2)[2ϕσ1σ2(r1,r2)−ϕ2

σ1σ2
(r1,r2)](1/r) d2r1 d2r2, (2.55)

Pσ1σ2
2HF (r1,r2) being the second-order reduced density matrix, which is obtained by multi-

plying ΨHF to itself. Taking Taylor expansion of a function up to second order, a general

equation can be written as94

�
e−β 2r2

(1/r)F(r,R)dr = 2πF(0,R)
�

e−β 2r2
dr+

π
2
(∇2

rF(r,R))r=0

�
e−β 2r2

r2dr.

(2.56)

The above identity Eq.(2.56) can be projected on Eq.(2.55), as a result,

Ec
σ1σ2

=−π
�

ρσ1ρσ2

�
2
�

e−β 2r2{1−Φ(1+ r)}dr−
�

e−2β 2r2{1−Φ(1+ r)}2dr+

Lσ1σ2

2

�
e−β 2r2{1−Φ(1+ r)}r2dr− Lσ1σ2

4

�
e−2β 2r2{1−Φ(1+ r)}2r2dr

�
d2R,

(2.57)

where

Lσ1σ2 =
[∇2

r Pσ1σ2
2HF (R+ r

2 ,R− r
2)]r=0

ρσ1(R)ρσ2(R)
. (2.58)
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In the present study, the correlation energy only between two opposite pair of electrons is

considered. This is because the correlation energy between the same spin oriented elec-

trons will vanish due to Pauli’s exclusion principle, if, we terminate the Taylor expansion

of Eq.(2.56) up to first order. To derive the above Eq.(2.57), we have used the relations

Pσ1σ2
2HF (R,R) = ρσ1(R)ρσ2(R)/2 and Pσσ

2HF(R,R) = 0. Now, to evaluate the Eq.(2.57), we

use the value of β from Eq.(2.54), and neglected some insignificant valued terms (� 0).

Then the correlation energy term reduces to,

Ec
σ1σ2

=−
� �ρ1/2

σ1

Kσ2

+
ρ1/2

σ2

Kσ1

�2 1.793+0.942/βσ1σ2 −Mσ1σ2(0.168+0.164/βσ1σ2)

(qσ1σ2)
2(1+1.772/βσ1σ2 +0.785/β 2

σ1σ2
)

d2R,

(2.59)

where Mσ1σ2(R) = Lσ1σ2(R)/β 2
σ1σ2

(R).

To make a very simple form, we further approximate Eq.(2.59) with the help of one

of the principal CS scheme as used before in the references.94,96 Then the form changes

to,

Ec
σ1σ2

=−
� �ρ1/2

σ1

Kσ2

+
ρ1/2

σ2

Kσ1

�2 a+ cMσ1σ2e−d/β

1+b/β
d2R. (2.60)

Here, a, b, c, and d are constants, and they will be fixed in the next section by compar-

ing with reference energies. Taking {α,β} spins for σ1,σ2 electrons and imposing the

condition Ec
α,β = Ec

β ,α , the total correlation energy is written as

Ec[ρα ,ρβ ] = 2Ec
α,β . (2.61)

It is to be noted that, previously a correlation energy functional is derived for 2D sys-

tems based on CS scheme, and using the correlated wavefunction by Pittalis, Räsänen,

and Marques (PRM).85 They approximated the underlying pair density99 as a Gaussian

approximation, and made the functional local, and electron number (N) dependent. But

in our case, the correlation energy Eq.(2.60) depends on the gradient of density, and inde-

pendent of confined electron number. Here, an option arises to model the PRM functional

by the inclusion gradient dependent β from Eq.(2.54). However, such modification able

to produce accurate correlation energies for less number of confined electrons, but the
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Table 2.7: The correlation energies (in a.u.) of parabolic quantum dots. The confinement
electron number, confinement strength, total energy, total exact exchange, and reference
correlation energies are tabulated from first to fifth columns. The correlation energies of
newly proposed functionals EGCS

c and ELCS
c are given in the last two columns. The last

row is for the Δ.

N ω Ere f
tot EEXX

tot −Ere f
c −EAMGB

c −EPRM
c −EGCS

c −ELCS
c

2 1/6 2/3a 0.7686 0.1020 0.1221 0.1100 0.1012 0.1019
2 0.25 0.9324b 1.0462 0.1138 0.1390 0.1230 0.1156 0.1172
2 1.00 3a 3.1619 0.1619 0.1987 0.1632 0.1618 0.1677
6 0.25 6.995c 7.3910 0.3960 0.4574 0.3990 0.3895 0.3870
6 1/1.892 7.6001d 8.0211 0.4210 0.4732 0.4103 0.4029 0.4009
6 0.42168 10.37e 10.8204 0.4504 0.5305 0.4493 0.4504 0.4504
6 1.00 20.1821c 20.7223 0.5402 0.6476 0.5204 0.5409 0.5465
12 0.25 23.6548c 24.5129 0.8581 0.9680 0.8363 0.8324 0.8210
12 1/1.892 25.636d 26.5532 0.9172 1.0000 0.8583 0.8593 0.8486
12 0.50 39.211c 40.2231 1.0121 1.1665 0.9664 0.9953 0.9891
12 1.00 65.768c 66.9130 1.1450 1.3555 1.0745 1.1396 1.1405
20 0.25 57.2088c 58.8188 1.6101 1.6956 1.4527 1.4648 1.4401
20 0.50 93.9838c 95.7435 1.7597 2.0144 1.6538 1.7255 1.7078
20 1.00 156.030c 158.0235 1.9935 2.3301 1.8288 1.9648 1.9570
30 0.5 187.2425c 189.9525 2.7095 3.1042 2.5303 2.6628 2.6294
30 1.0 308.832c 311.9588 3.1268 3.5769 2.7854 3.0179 2.9978
30 2.0 515.976c 519.2705 3.2945 3.9938 2.9779 3.2987 3.2933
Δ 16.03 5.57 2.21 2.72

a-Analytic solution by Taut from Ref. [88].
b-CI data from Ref. [89].
c-Variational Monte-Carlo data from Ref. [92].
d-Diffusion QMC data from Ref. [90].
e-Variational QMC data from Ref. [91].

error increases with the increase of N. So, we are skipping the results for such modified

form of PRM functional.

To fix the parameters, we start with the parameter c attached to M(Eq.(2.60). For a

simple functional form and to avoid the Laplacian of the second order density matrix,

we assign c = 0. Also, such choice of c changes the correlation energy to a new form

which would be same as the form obtained by terminating Eq.(2.56) only at first order.

So, not considering the other higher order terms, the correlation energy only takes care

the coulomb correlation between two opposite spin-electrons, and it makes one to think
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all the equal spin correlation effects are considered by the exchange energy part of the

Exc. However, for c �= 0, one can follow a procedure by Lee, Yang, and Parr51 to use the

Laplacian of density matrix as a progressive part that depends of orbital free form of the

kinetic energy density. Due to unavailability of advance only-density dependent kinetic

energy functional, we fix c = 0 as final option. This value of c implies no need to fix

the parameter d. So, imposing the above parameters on Eq.(2.60), the gradient dependent

Colle-Salvetti (GCS) correlation functional (EGCS
c ) is written as,

EGCS
c =−

� �ρ1/2
σ1

Kσ2

+
ρ1/2

σ2

Kσ1

�2 a
1+ x/β � d2R, (2.62)

where β � = (Kσ1ρ1/2
σ1 Kσ2ρ1/2

σ2 )/(Kσ2ρ1/2
σ2 +Kσ1ρ1/2

σ1 ) and x is the resulting constant of b

and qσ1σ2 .

Also, we present one special case of this gradient dependent correlation functional

EGCS
c by forcing the density gradient to zero for the local density case. So, using ∇ρσ = 0

in Kσ of 2D-B88, Kσ [ρσ ] changes into a constant. Hence, EGCS
c modifies to a local

type correlation functional that depends on the density and two adjustable parameters.

We name it as local-Colle-Salvetti (LCS) correlation functional ELCS
c . We discuss the

numerical correlation energy results for both these functionals below.

2.4.1 Numerical Demonstration - III

The 2D parabolic QDs are also used here to examine the effectiveness of these correlation

functionals. Before going to evaluate the correlation energies, we need to fix the parame-

ters a, and x present in these energy expression Eq.(2.62). First considering the real GaAs

QD analogous 6-electron QD with ω = 0.42168, a rough values of a and x are determined.

As we have only two parameters, a in numerator and x in the denominator, there always

exist a value of x for any fractional value of a that will give the exact reference correlation

energy (QMC). So for the above mentioned QD, we calculate the correlation energies by

varying a from 0.1 to 0.2 with corresponding values of x. The extracted pairs of a and

x are used to calculate correlation energies for the first two closed shell QDs (present in
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Figure 2.5: Correlation energy densities of EGCS
c and ELCS

c are plotted along with the exact
density of a parabolic quantum dot having N = 6 and ω = 0.42168.

Table 2.7), and the optimized values are taken by comparison with corresponding QMC

references. The final values of these two constants are determined to be a = 0.156 and

x = 0.2643. Also the Same procedure is followed to fix the parameters ELCS
c , and are

determined to be a = 0.155 and x = 0.2783.

To examine the nature of variation of the correlation energy densities of these con-

structed functionals with the electron density, we plot the correlation energy density of

both EGCS
c , and ELCS

c along with the exact density in Figure 2.5. A parabolic QD with

N = 6, and ω = 0.42168 is considered for this figure. It is clearly observed from Figure

2.5 that energy densities of both LCS, and GCS have smooth decay in the tail of density.

The faster decay of EGCS
c compare to ELCS

c shows the effect of presence of the gradient

of density. Also, for the same QD, we plot the correlation energy densities with the cor-

relation length 1/β � in Figure 2.6. The used correlation length β � is different from β in

the way that in β � no proportionality constant is used. Our correlation length depends

inversely on both Kσ , and the square root of density. As a result, the correlation length for

LCS increases rapidly with the decrease of density (and constant Kσ ). But the rapidness

is compensated by the presence of Kσ in case of GCS. Due to different scaling, we plot

the correlation energy density for LCS in the inset of Figure 2.6. It is observed that both

εGCS
c and εLCS

c start around 0.08, but decay in different ways. GCS energy density decays

quickly almost to zero at 27, whereas the LCS energy density decays slowly to zero at

above 500. In both the cases, the correlation contribution is higher for small values of the
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Figure 2.6: The variation of correlation energy densities with the correlation length for
the same quantum dot as 2.5.

Table 2.8: The MAPE for the exchange-correlation functionals constructed by combining
four 2D-meta-GGA exchanges and four correlation functionals are shown. The correla-
tion functionals are in the first column, and exchange energy functionals are in the top
row. The quantum dots that are shown in Table 2.7 are used for the calculations.

EGDM
x ET DM

x EGT DM
x EPF

x
EAMGB

c 3.04 2.92 2.93 2.49
EPRM

c 0.95 0.92 0.98 0.64
EGCS

c 0.48 0.43 0.48 0.43
ELCS

c 0.79 0.71 0.75 0.42

EGDM
x , ET DM

x , and EGT DM
x are from reference [100]

EPF
x from reference [101]

correlation length, and it decreases as the correlation length increases.

Now, we apply these two correlation energy functionals to parabolic QDs, and the en-

ergy are tabulated in Table 2.7. Similar to the discussed exchange energy functionals, the

correlation energy functionals for QDs are calculated with spin-DFT implemented within

the OCTOPUS80 code. Similar to Table 2.6, the reference correlation energies are calcu-

lated, and the output density of EXX is used as input for the correlation energy functionals

EGCS
c , and ELCS

c . Use of these inputs in a post-hoc manner is acceptable and discussed

in Ref. [86]. The SCF energies for two local correlation functionals Attaccalite-Moroni-

Gori-Giorgi-Bachelet(AMGB)65 and PRM are also calculated and presented in Table 2.7.

In this table, the correlation energies of QD are presented by varying the confined electron
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Figure 2.7: Shown are the correlation energies per electron for six electron parabolic
quantum dots with different confinement strengths.

number N and confinement strength ω . The correlation energies for EGCS
c , and ELCS

c as

given in last two columns along with AMGB, PRM, and reference values can be com-

pared for the efficiency of new development. From the MAPE (given in the last row),

following clear observation can be made. The 2D-LDA functional, i.e., EAMGB
c has the

maximum error. The functional EPRM
c is more accurate than AMGB, and the proposed

functionals EGCS
c and ELCS

c outdated these local functionals. Also, by comparing LCS

and GCS, the usefulness of gradient of density is realized as EGCS
c gives more accurate

correlation energies with MAPE of 2.21, i.e, the best error value. The more advantages

of using GCS, and LCS is that for more confinement electrons, the difference between

the exact and the calculated correlation energies decreases. To test the compatibility

with the exchange energy functionals, we add these correlation energies to previously

developed mGGA type exchange energy functionals E2D−GDM
x (2.32), E2D−T DM

x (2.34),

E2D−GT DM
x (2.36), and EPF−KS

x (combination of 2.20, and 2.21. 2.20 is used for 2 elec-

tron quantum dots and 2.21 used for other quantum dots). In Table 2.8, we present the

MAPE for these 2D-Exc. EGCS
c correlation functional is appropriate for all the meta-GGA

exchange energy functionals and it has the minimum MAPE for all the cases except the

combination with EPF
x .

In Figure 2.7, the correlation energy per particle is plotted for AMGB, PRM, LCS,

and GCS functionals. Proposed functionals EGCS
c and ELCS

c follow the reference values

more closely. To understand the usefullness of these functionals in 2D homogeneous
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Figure 2.8: Correlation energy per electron as a function of rs for the 2D uniform electron
gas using different functionals.

electron gas limit, in Fig. 2.8, we plot the correlation energy per electron as a function

of rs = 1/
√πρ . For homogeneous limit, the reference functional is 2D-AMGB. From

Fig. 2.8, it is clear that both GCS and LCS excellently match with the reference AMGB

and only differ at very weak correlation limit, i.e, at very small value of rs. We believe the

newly constructed correlation functionals are propitious for the higher number of elec-

tronic systems. EGCS
c functional has advantages over ELCS

c functional due to the gradient

of density effect.

2.4.2 Fundamental conditions

Here, we want to test ability of the proposed correlation functionals EGCS
c and ELCS

c to

satisfy some fundamental conditions and scaling relations that exact correlation energy

functional should obey.

(a) For a given density, the correlation energy is less than or equal to zero, i.e.,

Ec[ρ]≤ 0. (2.63)

For negative correlation energy, the terms within the integral of Eq.(2.62) must be

positive. The constants a and x present in Eq.(2.62) are positive, and the first term is

positive due to the presence of square. Also, Kσ present in β � is always positive, as
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the exchange energy Eq.(2.50) is negative. So, for any given density, the correlation

functionals, EGCS
c and ELCS

c obey the important condition Eq.(2.63).

(b) By scaling all the coordinates uniformly, the scaling of 2D correlation energy func-

tionals can be derived. For 3D correlation functionals, the correlation scales as,102

Ec[ρλ ]< λEc[ρ] (λ < 1), (2.64)

Ec[ρλ ]> λEc[ρ] (λ > 1), (2.65)

with ρ(Rx,Ry,Rz) → ρλ = λ 3ρ(λRx,λRy,λRz). The 2D correlation energy func-

tional also obey same conditions Eq.(2.64), and Eq.(2.65) with scaled density ρλ =

λ 2ρ(λRx,λRy). Under uniform scaling of coordinates, Kσ of 2D-B88 functional

Eq.(2.50) is dimensionless. So, using the scaled density and scaled β � (β �[ρλ ] =

λβ �[ρ]) in Eq.(2.62), it can be observed that the functionals EGCS
c and ELCS

c satisfy

these two conditions.

(c) In the high-density limit (λ → ∞), and under uniform coordinate scaling, 3D-

correlation functionals scale to a constant103

lim
λ→∞

Ec[ρλ ] = const. (2.66)

Following the same procedure as,103 it is seen that in the high-density limit, the

exact 2D correlation energy functional scales to a constant value. The correlation

energy functionals EGCS
c and ELCS

c satisfy this condition (c).

(d) Similar to above condition (c), in the low-density limit (λ → 0) the 2D-correlation

energy follows

lim
λ→0

1
λ

Ec[ρλ ] = const. (2.67)

This condition is also satisfied by both the correlation functionals, as Kσ of 2D-B88

functional is dimensionless.

(e) Now, taking non-uniform scaling of coordinates, within the high-density limit (λ →
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∞), the exact 3D-correlation energy functional should scale as104

lim
λ→∞

λEc[ρx
λ ] = const. (2.68)

For two-dimensions, the condition is the same, i.e., for non-uniform scaled density

ρx
λ = λρ(λRx,Ry), the correlation energy approaches to a constant value under

high-density limit, similar to Eq.(2.68). Both the proposed correlation functionals

do not satisfy this condition. Due to the presence of λ in the numerator of scaled

correlation energy, the left-hand side of Eq.(2.68) goes to −∞ instead of a constant.

(f) Similar to (e), within low-density limit and nonuniform scaling the correlation en-

ergy follows,

lim
λ→0

1
λ

Ec[ρx
λ ] = 0. (2.69)

Both EGCS
c and ELCS

c functionals do not satisfy this condition.

The proposed correlation energy functionals EGCS
c and a local version of it, ELCS

c sat-

isfy four important conditions that the exact 2D-correlation functional satisfies. But both

the functionals do not satisfy the limiting conditions at high and low-density under non-

uniform scaling of coordinates. Though they fail in these limiting cases, the correlation

energy for the discussed parabolic systems are satisfactory.

2.5 Concluding remarks

In our attempts to construct new exchange-correlation energy functionals for two-dimensional

quantum systems, we successfully derived exchange energy functionals based on den-

sity matrix expansion, and the correlation energy functionals are derived based on both

DME and the Colle-Salvetti method. The proposed parameter-free simple exchange en-

ergy functional is proved to be very accurate for quantum dots with confined electrons

more than two. Also, the parameterized exchange energy functionals derived by using

the reduced density gradient and the kinetic energy densities are accurate for all forms

of parabolic QDs. These exchange energy functionals accompanied by similar type of
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correlation energy functional with parameterized form. Finally, we derived a correla-

tion energy functional using the Colle-Salvetti type many-body wave function very useful

for 2D-systems, and it becomes more accurate with the parameter-free exchange energy

functional.



Chapter 3

Laplacian free and asymptotic

corrected semilocal exchange potential

applied to the band gap of solids

Prediction of reliable, and more accurate band gaps of narrow band gap semiconduc-

tors to large band gap insulators is very necessary within the semilocal method of DFT.

Before proceeding, a short discussion on fractional particle numbers and the derivative

discontinuity is necessary. This is required to understand, why the KS method tends

to underestimate the bandgaps? Let’s consider the trial KS density ρ(r) integrates to

number of electrons N = M +η , with M > 0, and 0 < η < 1.105 Such fractional elec-

tron number may arise from the density variation in the open systems. To get the min-

imum energy for such system, one needs to take superposition of two pure states ΨM

and ΨM+1 corresponding to electron numbers M and M + 1 with probabilities of 1−η ,

and η . Such choice leads to (1−η)M+η(M+1) = M+η and the density is given by,

ρ(r) = (1−η)�ΨN |ρ̂(r)|ΨN�+η�ΨN+1|ρ̂(r)|ΨN+1�. The use of above constrained den-

sity in the variational method to minimize the total energy guarantees the electron number

N +η and the minimum average energy is given by

EM+η = (1−η)EM +ηEM+1. (3.1)
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It implies the variation of E with N is a continuous line segments joining integer electron

numbers. But discontinuity at integer electron numbers are observed, i.e., µ = δE/δN

is discontinuous at integer N. And the slope on the positive and negative side of E(N) is

equal to electron affinity (EA) and ionization potential(IP). For an atom having integral

nuclear charge Z, the chemical potential follows,

µ =





−I, (Z −1 < N < Z)

−A, (Z < N < Z +1)

Where, the IP I = −(EZ −EZ−1) and the EA A = −(EZ+1 −EZ). Or for an N-electron

system I(N) = E(N − 1)−E(N) and A(N) = E(N)−E(N + 1). In the KS system the

fundamental gap is given by Eg = I(N)−A(N) and the center of fundamental band is

given by −[I(N)−A(N)]/2. The infinitesimal change in the charge density due to ad-

dition or removal of infinitesimal electron number may be thought as it is arising from

the potential. Such infinitesimal change in the potential will not change the one-electron

energy and with help of Janak’s theorem, we can write, the IP of the KS system is same

as the negative of highest occupied electron energy, i.e., I(N) = −εN(N), and the EA is

A(N) =−εN+1(N), where εN+1 is the energy of lowest unoccupied state.106 But, in strict

sense, an infinitesimal change through an integer electron number will see a constant jump

Δ in the potential106

δρ(r)↔ δve f f (r)+Δ (3.2)

The derivative discontinuity Δ in the XC energy arising at integer electron number give

as,

Δxc =
δExc[ρ]
δρ(r)

����
+

− δExc[ρ]
δρ(r)

����
−

(3.3)

The positive and negative signs means functional derivatives need to be calculated from

above and below the integer particle number, respectively. The fundamental gap of the

KS system underestimates the band width equal to the derivative discontinuity Δxc.105,107

However, the KS formalism able to predict the correct band center. So, for getting the

gap close to the experimental values, the approximated exchange-correlation functional
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must include Δxc. To take care one of such important constraints, few other methods be-

ing proposed such as the exact-exchange (EXX) formalism that by construction includes

Δxc.108,109,110 Also, the hybrid methods are very accurate in this direction, but the expen-

sive calculation make them ineffective in case of large crystal structures. In this regard,

the meta-GGAs methods are very appealing and have acceptable accuracy. Several meta-

GGA functionals30,34,42 with the ability of producing admissible band gaps have been

developed in recent past. Though these functionals are sufficient to describe the ground

state properties, they unable to describe the excited property such as the band structure

up to expectation. The underlying cases being given to the inherent “delocalization er-

ror”111,112 and the absence of (Δxc).105,106 These two important constraints are included

within the hybrid functionals,113,114 but it is much more expensive than the meta-GGA

methods. However, later it is observed that the meta-GGA functionals within the gen-

eralized Kohn-Sham scheme posses some amount of Δxc.115,116 Other than the hybrid

methods, there are several methods such as self interaction correction (SIC),117,118,119

on-site potential correction with density functional formalism (DFT + U),120 DFT based

dynamic mean field theory (DFT+DMFT), and and quasi particle self energy corrections

(GW)121,122,123,124,125,126 are also proposed. But, except DFT+U, other methods are com-

putationally expensive and DFT+U is only for the localized electronic systems with 3d or

4 f electrons.

To get rid of such problems, exchange only potentials suitable for both the prob-

lems have been proposed and successfully applied to crystals.127,128,129,130,131,132,133,134

In attempt to incorporate such effects simple GGA type exchange potentials proposed by

Leeuwen and Baerends (LB),135 Gritsenko et al. (GLLB)136 meta-GGA type exchange

only potential proposed by Becke and Johnson (BJ) potential.127 In BJ potential, to get

the step structure of the exact potential, KS kinetic energy dependent term is added to

the Slater potential. To make a semilocal form of the BJ potential, the Slater potential

is replaced by asymptotically correct Becke-Roussel (BR)137 semilocal potential. In this

work, we attempt to modify the BR potential through its under lying exchange hole, and

use the modified potential for band gap calculations. First, we replace the Laplacian of

density present in the exchange hole with the help of KS kinetic energy density. It is
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necessary to avoid the divergence of exchange hole near the nucleus, as the finite ex-

change hole is always needed everywhere through out the system.42,138 By avoiding the

Laplacian, the form of the potential will be very simple, and such strategies are usually

encountered in the construction of meta-GGA functionals. Also, in avoiding Laplacian,

we avoid numerical problems arising from the higher order derivatives of density.139,140

Secondly, We use the generalized coordinate transformation42 to make the exchange hole

more localized72 and more precise. Finally, similar to first chapter, we modify the Fermi

momentum to include in-homogeneity of the system without obstructing the uniform limit

of exchange hole.

Integrating all these ideas, we propose a modified version of BR potential (mBR) by

employing the Laplacian free, generalized exchange hole. Within the frame of Tran and

Blaha129 exchange potential, the mBR is utilized in the band gap calculation of a wide

range of materials. This test set includes various oxides, transition metal dichalcogenides,

crystals of oligoacenes. For comparison purpose, we compare the proposed potential with

previously developed potentials along with available references. Besides these materials,

we analyze the performance on the band gap opening of silicon doped graphene and in

monolayer of hexagonal boron nitride.

3.1 Theoretical Background

Representing the exchange energy functional in terms of spherical averaged exchange

hole �ρxσ (r,r+u)� surrounding electron density ρσ (r), similar to Eq.(2.1), and Eq.(2.22),

Ex =−1
2 ∑

σ

� � ρσ (r)�ρxσ (r,r+u)�
u

drdu. (3.4)

The exchange hole present in the above Eq.(3.4) depends on the electronic separation

(u) along with its orientation. Similar to Eq.(2.2), and Eq.(2.3), writing the spherically

averaged exchange holein terms of 1st order spherically averaged reduced density matrix

as,

�ρxσ (r,r+u)�=−�|Γ1σ (r,r+u)|2�
ρσ (r)

. (3.5)
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The spherically averaged reduced density matrix is formed from the usual reduced density

matrix via

�|Γ1σ (r,r+u)|�= 1
4π

�
Γ1σ (r,r+u) dΩu , (3.6)

and the reduced density matrix is written by the KS orbitals ψiσ as

Γ1σ (r,r+u) =
occ

∑
i

ψ∗
iσ (r)ψiσ (r+u) . (3.7)

Now using the exchange potential that can be generated from the spherically averaged

exchange hole, the exchange energy form of Eq.(3.4) expressed as,

Ex =
1
2 ∑

σ

�
ρσ (r)Uxσ (r)dr . (3.8)

Where, Uxσ (r) is the exchange potential generated from the exchange hole and

Uxσ (r) =−
� �ρxσ (r,r+u)�

u
du . (3.9)

As can be seen, the exchange hole is an important entity, from which we can make the

exchange potential, and hence the exchange energy. One important point needs to be

added here that, the above-mentioned exchange potential is not the functional derivative

of any exchange energy.

In this regard, a form of exchange potential is proposed by Becke and Roussel,137

which is defined as

Uxσ =−(1− e−x − 1
2

xe−x)/b, (3.10)

where b = (x3e−x/(8πρσ ))
1/3, and the value of x is the solution of a nonlinear one-

dimensional equation,
xe−2x/3

x−2
=

2π2/3ρ5/3
σ

3QBR
σ

. (3.11)

Here,

QBR
σ =

1
6
(∇2ρσ −2γDBR

σ ) (3.12)
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with DBR
σ = τσ − (∇ρσ )

2/4ρσ and γ = 0.8. The form of QBR
σ is obtained from the second

order term of in the Taylor series expansion of the spherical averaged exchange hole near

the reference,

�ρxσ (r,u)�= ρσ (r)+
u2

6

�
∇2ρσ (r)−2γDBR

σ

�
, (3.13)

In the following section, we discuss the proposed modifications over BR potential.

3.1.1 Semilocal View of Slater Potential: a generalized coordinate

transformation based approach

In the previous chapter, we have localized the 2D-exchange hole through the general-

ized coordinate transformation, and this idea is also encountered in 3D functional con-

struction.72,141 The benefits from such transformation can be interpreted as follows, (i)

depending on the coordinate transformation parameter, different exchange hole, hence

the exchange potential can be constructed,142 (ii) it well respects the uniform density

limit, and only affects higher order non-uniform terms, (iii) the on-top value of exchange

hole remains unaltered.72 In this process, one of the important properties, i.e., the nor-

malization constraint is lost.72 However, this constraint can be imposed following the

re-summation technique of Jianmin et. el..42 Also, following the BR model, we consider

the small ‘u−’ behavior of the exchange potential, so that the asymptotic behavior can be

retained.

Let’s start with the generalized coordinate transformation of 1st order reduced density

matrix as discussed in Eq.(2.23),

Γ t
1σ (r,r+u) =

occ

∑
i

ψ∗
iσ (r+(λ −1)u)ψiσ (r+λu), (3.14)

and the corresponding spherically averaged exchange hole is written as

�ρ t
xσ (r,r+u)�=−�|Γ t

1σ (r,r+u)|2�
ρσ (r)

, (3.15)

Based on the coordinate-transformation parameter λ , the localization of exchange hole is
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handled. Now, this transformed hole can be used to obtain the transformed potential,

Ut
xσ (r) =−

� �ρ t
xσ (r,r+u)�

u
du (3.16)

and the exchange energy

Et
x =

1
2 ∑

σ

�
ρσ (r)Ut

xσ (r)dr. (3.17)

To get the improved version of BR potential, we start with the transformed exchange

hole developed from the density matrix expansion (DME).42 Use of such exchange hole

has advantages, (i) controlled localization of hole, (ii) inclusion of inhomogeneity without

disturbing the uniform density limit, and (iii) avoiding the Laplacian of density through

well known substitution. Incorporating all these rectifications, the small u expansion of

the exchange hole written as,

�ρ t
xσ (r,u)�= ρσ (r)+

u2

6

�
2(λ 2 −λ +

1
2
)∇2ρσ (r)−4τσ +

6
5

k2
σ ρσ (r)( f 2

σ −1)

+
1
2
(2λ −1)2 (

�∇ρσ (r))2

ρσ (r)

�
,

(3.18)

with,

fσ =
�
1+10(

70
27

)
1

4(6π2)
2
3
(2λ −1)2x2

σ +
β

16(6π2)
4
3
(2λ −1)4x4

σ

� 1
10
. (3.19)

The reduced density gradient xσ = |∇ρσ |/ρ
4
3
σ . There is no unique form of fσ , and is used

to include the non-uniform effect via the momentum was fixed by using the normaliza-

tion condition of the exchange hole.42 Any quantity obeying a particular constraint that

reduced to unity in the homogeneous limit can be an observable option. The used parame-

ters λ , and β will be determined later. With the limiting conditions fσ ≈ 1, and λ = 1 that

defines the slowly varying density, and conventional exchange hole, above transformed

exchange hole 3.18 reduces to BR exchange hole 3.13. Also, the uniform limit exchange

hole is well respected. The proposed modifications on the exchange hole makes it more

flexible, and more accurate, as it able to recover correct small -u behavior, uniform density
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limit, and adjustable shape.

Now, we collect the modified Qσ from the second order term of the transformed ex-

change hole,

QmBR
σ =

1
6

�
2(λ 2 −λ +

1
2
)∇2ρσ (r)+

6
5

k2
σ ρσ (r)( f 2

σ −1)−2γDmBR
σ

�
, (3.20)

where DmBR
σ = 2τσ − 1

4(2λ − 1)2 (�∇ρσ (r))2

ρσ (r) , and parameter γ will be fixed later. As dis-

cussed before, to avoid the divergence of exchange hole near nucleus, and to avoid the

complexity arising in the inclusion of divergence, we take the help of the density depen-

dent kinetic energy density,42,137 and replace the Laplacian as,

∇2ρσ (r)≈ 3[2τσ − τuni f
σ − 1

36
(�∇ρσ (r))2

ρσ (r)
] . (3.21)

With these rectifications, the present model of QmBR
σ attains the form as,

QmBR
σ =

1
6

�
6(λ 2−λ +

1
2
)
�

2τσ −τuni f
σ − 1

36
(�∇ρσ (r))2

ρσ (r)

�
+

6
5

k2
σ ρσ (r)( f 2

σ −1)−2γDmBR
σ

�
.

(3.22)

Similar to BR,137 using the general exchange hole model as analytically derived from the

hydrogen orbital, the above derived QmBR
σ can be used in the non-linear one-dimensional

equation(3.11),
yexp(−2y/3)

y−2
=

2
3

π2/3 ρ5/3
σ

QmBR
σ

. (3.23)

For a given density, its gradient, and the kinetic energy density, the value of y can be found

numerically. And at any reference point the coordinate-transformed exchange potential

becomes,

Ut
xσ (r) =−(1− e−y − 1

2
ye−y)/bt (3.24)

with

b3
t =

y3e−y

8πρσ
. (3.25)

Finally, the proposed transformed exchange hole has asymptotically decaying potential,
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Table 3.1: The exchange energies (in a.u.) of noble-gas atoms are shown. The MAE as
obtained taking HF as the references are given in the last row.

Atoms HF LDA BR BR mBR
γ = 1.0 γ = 0.8 γ = 1.0

λ = 0.877
β = 20.0

He -1.026 -0.884 -1.039 -1.039 -1.032
Ne -12.11 -11.03 -12.19 -12.33 -12.23
Ar -30.19 -27.86 -30.09 -30.55 -30.33
Kr -93.89 -88.62 -92.88 -94.77 -93.97
Xe -179.2 -170.6 -176.4 -180.3 -178.7

MAE(Δ) 3.48 1.20 0.51 0.16

and satisfy all other discussed constraints. Now, we need to assign appropriate values to

the constants β , λ , and γ present in the potential.

3.1.2 Testing mBR on atoms

To fix the parameters present in the potential, we take help of exact potential of hydrogen

and Helium atom. We fix γ = 1 similar to BR model. The parameter λ used to play with

the shape of the exchange potential is fixed to 0.877, by matching the exact exchange en-

ergy of of hydrogen atom(i.e., 0.312 Hartree). The value of parameter β is fixed to 20.00

by comparing to exchange energy of He atom. With these constants, we calculate the ex-

change energies of noble gases from He to Xe, and the exchange energies are tabulated in

Table 3.1. For comparison, we put the exchange energies of BR, Hartree-Fock, and LDA.

For these calculations, we use numerical Hartree-Fock orbital of Clementi-Roetti.143 The

improved exchange energies of these noble gases by mBR over BR can be observed. As

atomic number increases, the exchange energies of mBR becomes more close to the HF

energies. We compare the exchange (hole) potential of Ne atom considering both BR,

and mBR methods in Fig. 3.1. The exact exchange potential (optimized effective poten-

tial (OEP) ) is also prsented in the same figure. The close resemblance between these two

potentials will allow the replacement of BR with the Laplacian free mBR. The successful

application of mBR potential on noble gas atoms encourages us to use the potential in

calculation of band gap of solids
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Figure 3.1: Exchange potentials of Ne atom using BR, and mBR methods. For BR the
γ = 0.8 is used. The exact potential as obtained from the optimized effective potential
(OEP) method is also shown.

3.2 Band Gaps using mBR

To apply asymptotically correct mBR potential to calculate band gaps of solids, we follow

the framework of Becke and Johnson (BJ).127 The exchange potential of BJ has a good

resemblance with the atomic potential. A basic yet effective idea lies in the development

of BJ potential. As the Slater potential fails to recover the atomic shell structure, the

difference between the optimized effective potential (OEP) and the Slater potential, i.e.,

ΔvXσ = vOEP
Xσ − vSlater

Xσ is added to the Slater potential. The form of ΔvXσ is carefully

chosen so that it depends on the fraction of kinetic energy density and the charge density.

Also, the BJ potential is tested with the BR potential(Eq. 3.10) by replacing the Slater

potential, and the form is written as,

vBJ
X ,σ = vBR

X ,σ +
1
π

�
5
12

�
2τσ
ρσ

, (3.26)

In combination of LDA exchange and correlation, Tran et al.,128 used the form of BJ ex-

change potential in the self-consistent method to calculate the band gaps of non-magnetic

semiconductors and insulators. This method improves the band gaps of these solids in

comparison with conventional LDA, and GGA methods. The underestimation by PBE
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functional is corrected up to 0.5-1 eV. Though BJ able to reduce the difference between the

experimental and popularly used PBE functional, the underestimation still exists. Such

scope allows Tran and Blaha129 for more improvement. They proposed a modification

usually known as TBMBJ potential, and is written as,

vT BMBJ
X ,σ =CvBR

X ,σ +(3C−2)
1
π

�
5

12

�
2τσ
ρσ

. (3.27)

The parameter C present in the above potential Eq.(3.27) makes it different from Eq.(3.26).

The form of this parameter is given by,

C = A +B

�
1

Vcell

�

cell

|∇ρ(r�)|
ρ(r�)

d3r�
�1/2

, (3.28)

The parameter C depends on the structure of system or on the lattice parameter of the

crystal through the volume of the unit cell Vcell . Other two parameters of TBMBJ model

were fixed to be A =−0.012 and B = 1.023 bohr1/2, and the strategy to fix these param-

eters was to compare the calculated band gap with the experimental band gap for a test

set of solids. The TBMBJ model reduces to the BJ model potential when the parameter

C is set to 1. It is shown that the use of lattice structure dependent parameter C in the

TBMBJ potential increases the accuracy of band gaps in cases of noble gas solids with

insulating band gaps, semiconductors, and transition metal oxides (Table I of Ref. [129]).

Also other analysis144 shows the improvement of TBMBJ in the band gap calculation. It

is concluded that the variation of parameter C affects the band gap linearly,129,144 i.e., the

smaller values of C are good for narrow band gap solids, and larger C are better for large

gaps solids. Also, different sets of constants A , B, and the exponent are suggested by

fitting with larger testing set.145

Now, staying in the framework of TBMBJ, we use the mBR potential Eq.(3.24) in

Eq.(3.27). By this we have the final form of the potential as,

vmBR−T BMBJ
X ,σ = C̃vmBR

X ,σ +(3C̃−2)
1
π

�
5

12

�
2τσ
ρσ

. (3.29)
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The parameter C̃ is similar to C but with different values of used constants A , and B. The

values of constants A , and B are determined by comparing the band gaps of semicon-

ductors with corresponding experimental references. With these constants the parameter

C̃ is determined to be,

C̃ =−0.030+1.0
�

1
Vcell

�

cell

|∇ρ(r�)|
ρ(r�)

d3r�
�1/2

(3.30)

Now, we apply the newly developed exchange-only potential to predict the band gap

of a wide variety of solids and monolayer systems. Before doing all the calculations, we

list the details of our calculation procedure.

3.3 Computational details and Results

Aiming to calculate the band gaps of solids, we use full-potential linearized augmented-

plane-wave (FLAPW) method implemented within WIEN2K146 code. The band gaps

for PBE functional, and BJ, TBMBJ exchange potentials are calculated using WIEN2K

code. And mBR-TBMBJ potential is implemented in the framework of TBMBJ in the

WIEN2K code. In addition, to get more qualitative picture of the functionals, we cal-

culate the band gaps of the discussed test sets with a more accurate method, i.e., hybrid

functional given by Heyd-Scuseria-Ernzerhof (HSE).55 For these calculations, we use

projector-augmented-wave (PAW) method implemented within the Vienna ab initio sim-

ulation package (VASP).147,148,149,150 For all the calculations, we use experimental lattice

constants. For Brilloun zone interaction, we use 1000 k points for all the solids, 6 k points

for the oligoacenes, and 100 k points for mono-layer calculations. All other requirements

for WIEN2K calculations are taken to be default values provided with WIEN2K pack-

age. The hybrid methods are carried out by VASP because of computational efficiency of

pseudopotential method. The hybrid methods need a part of Hartree-Fock exchange in ad-

dition to density dependent exchange, so calculation with all electron method WIEN2K is

very expensive. Using these computational set up, we do calculation for different test sets

having contemporary importance. The first test set comprise of narrow band gap semi-
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conductors to wide band gap of noble gas solids. Then, we consider the solids having

experimental band gaps within 5 eV.

3.3.1 Bandgaps of semiconducting and insulating solids

To demonstrate the performance of developed exchange potential, we first use a set of

solids having narrow band gaps to large band insulators as discussed in Table 2 of Refer-

ence.128 In Table 3.2, Fundamental band gaps of PBE functional are tabulated in second

column. For all the exchange only potentials, we use LDA exchange energy and LDA

correlation energies to do SCF calculations. The band gaps corresponding to these po-

tentials are listed in next three consecutive columns. For comparison, we provide more

accurate hybrid functional values, and the experimental values in the last two columns.

In the last row, MAE of of all the methods corresponding to the experimental values are

shown, and the least error is marked with bold font. Usually noble gas-solids possess

high insulating band gaps, and PBE, BJ, HSE method seen to be underestimating up to

large extent. However, results of two potentials TBMBJ and mBR-TBMBJ are very close

to experimental gap, and mBR-TBMBJ overestimates the gap (maximum up to 3.11 eV

for Neon and exact for Xenon). Also the a little overestimation in case of narrow band

gap semiconductors by mBR-TBMBJ is observed. To deeply understand the performance

through error, we do a box plot Fig. 3.2 for the absolute errors of all the methods. From

the statistical plot, it is clear that the mBR-TBMBJ is better than all other methods in

terms of least quartile points except TBMBJ as TBMBJ has the lower maximum error

value.

3.3.2 Bandgaps of Oxides

Here, we calculate fundamental band gaps of fourteen oxides with different space groups

and structures. This test set comprised of semiconducting oxides is not biased to any

exchange-correlation functionals. The band gaps of the oxides as obtained from consid-

ered methods are tabulated in Table 3.3. All the columns are similar to Table 3.2, and the

MAE of all these calculated methods are in the last row. In the Reference [151], the au-
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Table 3.2: Fundamental band gaps in eV for PBE XC energy functional and BJ, TBMBJ,
mBR-TBMBJ exchange potentials with LDA correlation are given in second to fifth
columns. The hybrid HSE and experimental band gaps are given in the last two columns.
The last row is for the MAE Δ.

Solids . PBE BJa TBMBJ mBR-
TBMBJ

HSE Expta

Ne 11.59 13.14 23.74 24.81 14.27 21.70
Ar 8.72 9.63 13.87 16.11 10.37 14.20
Kr 7.31 7.98 11.38 13.04 8.71 11.60
Xe 6.21 6.76 8.68 9.80 7.44 9.80
C 4.16 4.42 5.07 5.24 5.26 5.48
Si 0.58 0.84 1.16 1.36 1.17 1.17
Ge 0.06 0.18 0.82 0.96 0.82 0.74
LiF 9.18 10.17 13.01 13.71 11.46 14.20
LiCl 6.37 6.96 8.89 9.82 7.81 9.40
MgO 4.77 5.64 7.26 7.50 6.47 7.83
ScN 0.00 0.17 0.87 1.10 0.90 0.90
BN 4.47 4.98 5.82 6.08 5.76 6.25
MgS 3.56 4.11 6.22 7.02 4.66 4.78
SiC 1.36 1.84 2.25 2.37 2.23 2.40
ZnS 1.91 2.57 3.50 3.71 3.30 3.91
GaN 1.65 2.21 2.70 2.71 3.15 3.20
GaAs 0.51 0.75 1.61 1.72 1.40 1.52
CdS 1.13 1.51 2.61 2.94 2.14 2.42
AlN 3.34 4.87 4.97 5.10 4.55 6.28
Δ 2.67 2.05 0.58 0.71 1.37 −

a-Reference [128, 129]
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Figure 3.2: Shown are the box plots for absolute errors of band gaps. The solids present in
Table 3.2 are considered for analysis of considered functionals. The whiskers start from
the minimum of absolute error to the maximum of value absolute error. For clarity, we
have scaled down the maximum errors of PBE, BJ, and HSE to their half values. The
Δ present inside the boxes represent the MAE of corresponding methods. 25% of errors
are below the lower end of the box known as quartile one (Q1). Similarly, the upper end
known as quartile three (Q3), above which, we have 25% errors.

thors discussed the optoelectronic properties of oxides with general formula MCuOCh(M

= Bi, La; Ch = S, Te) and the underestimation in the gap is shown considering the

GGA(PBE) method. For the same oxides with the experimental lattice constant, we calcu-

late energy gap using PBE-Exc, all the exchange potentials, and hybrid HSE06 methods.

For BiCuOS and BiCuOTe, PBE has underestimating gaps; BJ band gaps are close to the

reference gap, and all the advance methods, i.e., TBMBJ, mBR-TBMBJ, HSE06 have

slightly overestimating gaps. For LaCuOS and LaCuOTe, the gap increases from PBE

to HSE. The solids having larger band gaps like CuAlO2 and BaSnO3 are noteworthy

materials for optoelectronic applications, and materials like LiCoO2 and LiBiO3 having

comparatively smaller band gaps are valuable for photovoltaic cell and battery applica-

tions. Similarly, PbTiO3 and BaTiO3 are very effective for memory and energy storage

devices. In most of the cases, the band gaps of PBE are well smaller than the experi-

mental gaps. Though BJ able to improve over PBE, it still falls short to the reference.

The advance exchange potentials TBMBJ and mBR-TBMBJ are more accurate in the

semilocal treatment of DFT and mBR-TBMBJ is more substantial method. In some of

the cases, e.g., Ag2PdO2, LiCoO2, LiNbO3, HSE overestimates the gap. From the MAE
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value shown in the last row of Table 3.3, mBR-TBMBJ and HSE are very close and good

have good agreement with the experiment.

Table 3.3: Fundamental band gaps (in eV) for a set of oxides are shown. The structure of
these oxides and their experimental band gaps are from the references listed below in this
table.

Oxides PBE BJ TBMBJ mBR-
TBMBJ

HSE EXPT.

BiCuOS 0.68 0.97 1.23 1.30 1.46 1.1b

BiCuOTe 0.09 0.34 0.61 0.70 0.81 0.5b

LaCuOS 1.85 1.94 2.18 2.35 3.00 3.1b

LaCuOTe 1.35 1.42 1.65 1.83 2.25 2.4b

Ag2PdO2 0.00 0.37 0.96 1.07 1.12 0.18c

CuAlO2 1.84 2.14 2.14 2.16 3.34 3.11d

LiCoO2 1.06 1.77 3.66 3.99 4.09 2.7e

BaSnO3 1.34 1.82 3.04 3.31 2.55 3.4 f

NaBiO3 1.42 1.80 2.84 3.06 2.65 2.6g

LiBiO3 0.54 0.87 1.61 1.71 1.62 1.8h

LaMnO3 0.00 0.00 0.84 1.33 2.40a 1.7i

PbTiO3 2.37 2.38 2.76 3.03 3.32 3.4 j

BaTiO3 1.91 2.05 2.62 2.78 3.05 3.2k

LiNbO3 3.65 3.85 4.37 4.39 5.02 3.78l

MAE (Δ) 1.05 0.83 0.57 0.51 0.49 −

a - Reference [152] b - Reference [151] c - Reference [153] d - Reference [154] e -
Reference [155] f - Reference [156] g - Reference [157] h - Reference [158] i -
Reference [159] j - Reference [160] k - Reference [161] l - Reference [162]

3.3.3 mBR-TBMBJ for Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDs) are good candidates for solar cell applications

due to their indirect semiconducting band gaps. Due to high temperature and high-

pressure stability, these layered materials are very convenient for photovoltaic and photo-

electrochemical solar cells. We take a test set containing nine TMDs and calculate their

semiconducting band gaps with the above mentioned exchange functionals and exchange

potentials. Similar to Table 3.3, we tabulated the band gaps of these TMDs in Table 3.4.
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Table 3.4: Fundamental Band gaps (in eV) for a set of nine bulk TMDs are shown. All
the columns are similar to Table 3.3.

TMDs PBE BJ TBMBJ mBR-TBMBJ HSE EXPT.
HfS2 0.93 1.03 1.64 2.14 1.70 1.96-2.85a

HfSe2 0.48 0.60 1.06 1.42 1.14 1.13b

MoS2 0.88 0.94 1.12 1.23 1.46 1.23c

MoSe2 0.83 0.89 1.02 1.13 1.33 1.09c

WS2 0.99 1.05 1.23 1.40 1.56 1.35c

WSe2 0.95 1.01 1.15 1.26 1.44 1.20c

ZrS2 0.79 0.83 1.26 1.51 1.59 1.68-1.72d

ZrSe2 0.32 0.39 0.70 0.89 1.00 1.20e

ZrSeS 0.65 0.70 1.08 1.29 1.30 1.44e

Δ 0.63 0.56 0.25 0.11 0.21 –

a- Reference [163, 164, 165] b- Reference [163] c- Reference [166] d- Reference [163,
167] e- Reference[167]

It is observed that the band gap values increase from PBE to HSE except HfS2 and HfSe2.

In these two cases, the predicted band gap by HSE is smaller than that of mBR-TBMBJ,

and the band gap of HfS2 as determined by mBR-TBMBJ is more close to the experi-

mental value. However, in most of the cases, PBE has large underestimated gaps, and

HSE has little over estimated gaps. Because of the higher values of mBR-TBMBJ than

TBMBJ, it acts like a bridge between TBMBJ and HSE. From Table 3.4, it is observed

that in most of the cases, the band gaps obtained from mBR-TBMBJ are more close to

reference values, as a result the MAE of this method is the least among all the considered

methods. In Fig. 3.3, total density of states (DOS) of ZrS2 is plotted for TBMBJ, mBR-

TBMBJ, and HSE functionals. The band gap for all these methods can be observed from

the difference between the valence band maximum(VBM), and the conduction band min-

imum(CBM). The valence density of states of this dia-magnetic n-type semiconductor is

dominated by p-orbitals of Sulfur and the conduction DOS is dominated by d-orbitals of

Zirconium. Also, all these methods can produce the peak of X-ray photoemission spectra

ZrS2
168 correctly.
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Figure 3.3: Total density of states for ZrS2 as obtained from TBMBJ, mBR-TBMBJ, and
HSE functionals.

Table 3.5: Fundamental band gaps (in eV) for a set of TMOs are shown. The columns are
similar to the previous table. In addition, PBE+U results of these TMOs are presented in
the second last column. The last row contains the MAE and the least error is in bold font.

TMOs PBE BJ TBMBJ mBR-
TBMBJ

HSE PBE+U EXPT.

CoO 0.00 0.48 2.93 3.03 3.41 3.62 3.6a

FeO 0.00 0.34 1.80 1.99 2.20 2.05 2.4b

MnO 0.86 1.13 3.02 3.14 2.80 2.39 3.9b

NiO 0.95 1.64 4.13 3.98 4.42 3.26 4.0,4.3b

MAE(Δ) 3.02 2.57 0.56 0.43 0.47 0.65 –

a - Reference [169] b - Reference [129]



3.3 Computational details and Results 81

3.3.4 Band gaps of Transition Metal monoxides

In this subsection, we calculate the band gaps of four magnetic materials that are chal-

lenging for density functionals due to their insulating behavior. These transition metal

mono-oxides (TMOs), i.e., CoO, Feo, MnO, and NiO known as Mott insulators are con-

sidered to study the performance of discussed methods. We adopt spin-polarized calcu-

lation of these anti-ferromagnets with appropriate magnetic ordering. It is known that

the most used DFT method, i.e., GGA(PBE) predicts the Mott insulator as conductors. It

can be followed from Table 3.5 that PBE unable to predict the insulating behavior CoO

and FeO, and substantially underestimates the gaps of MnO and NiO. In addition, for

these TMOs, we calculate the band gaps using PBE+U (PBE is used instead of the LDA)

method in WIEN2K code with the value of parameter U same as Reference [120]. All

these exchange energy potentials BJ, TBMBJ, mBR-TBMBJ able to give finite band gaps

in all the cases, and band gap values follows BJ<TBMBJ<mBR-TBMBJ. Though HSE

and PBE+U determine close gap values for some TMOs, mBR-TBMBJ has minimum

MAE as it has better values in all the anti-ferromagnetic solids.

3.3.5 Band gaps of Oligoacenes

In a attempt to address the prediction of band gaps of organic molecular crystals, we cal-

culate discuss the electronic properties of oligoacenes. These oligoacenes are are known

for the application in field of organic optoelectronic. We follow the Reference [170] for

crystal structure information and the structure for the calculation are collected from Cam-

bridge Structural Database (CSD).171 The band gap of these cata-condensed polycyclic

aromatic hydrocarbons (PAH) depends on the size, i.e., with the addition of the CH rings,

the gap decreases. All the exchange-correlation functionals and the exchange potentials

able to follow the trend. Drastic underestimated band gap by PBE is observed, even the

HSE has smaller values up to 1 eV than the experiment. From PBE to HSE, the gap values

increase, and the MAE decrease gradually. The MAE of HSE is the minimum among all

the cases.
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Table 3.6: Band gaps (in eV) for four oligoacenes are shown. All the columns are identical
to Table 3.3, and 3.4.

Oligoacenes PBE BJ TBMBJ mBR-
TBMBJ

HSE EXPT.

Napthalene(2A) 3.343 3.428 3.690 3.836 4.088 5.0a

Anthracene(3A) 1.548 1.603 1.705 1.718 2.115 3.9a

Tetracene(4A) 1.408 1.457 1.678 1.830 1.883 2.9a

Pentacene(5A) 0.968 1.005 1.202 1.350 1.423 2.2a

MAE (Δ) 1.68 1.62 1.43 1.31 1.12 –

a - Reference [170]
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Figure 3.4: Theoretical band gap versus experimental band gap for solids (a) present in
Tables 3.2 (b) present in Table 3.3 to 3.6.

3.4 Potentials on mono-layer: A case study

Electronic properties of bulk solids change in their two-dimensional structure. Prioritizing

the band gaps of doped graphene and hexagonal boron nitride (hBN) sheets, we examine

the performance of the discussed exchange potentials. Graphene, a mono-layer extracted

from graphite is recognized for its generous properties. However, due to its it effective

zero band gap, graphene is inefficient for semiconductor applications. For electronics

applications, and to open semiconducting band gaps, iso-valent foreign atom doping is a

trivial option. In recent articles,172,173 authors discussed the optical and electronic prop-
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Figure 3.5: Box plots similar to Fig. 3.2 for (a) oxides present in Table 3.3, (b) TMDs
present in Table 3.4, (c) TMOs present in Table 3.5, and (d) oligoacenes present in Table
3.6.

erties of silicon doped graphene with varying concentrations. It is seen that the band gap

of such doped graphenes genuinely depend on the percentage of silicon. To address the

band gap of such systems, we consider PBE energy functional, three exchange potentials,

and HSE hybrid functional. To get appropriate stable structure, first, we relax the atomic

positions of the structures with the TPSS30 meta-GGA exchange-correlation functional

in VASP using optimized lattice constants discussed in [173]. Then, we use this relaxed

structure to calculate the band gaps for all the examined methods. To confine the elec-

trons in the plane, we add vacuum layer above 20Å in all the cases. It is to be noted that

TBMBJ and mBR-TBMBJ have lattice constant dependent parameter C. To get rid of the

effect of vacuum in the parameter C, It is recommend to use an average ∇ρ/ρ from the

bulk calculation of the same material.146 So, we extract this factor from graphite and bulk

boron nitride to be used in Si-doped graphene, and hBN sheet, respectively.
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Table 3.7: Tabulated are the band gaps (in eV) of silicon doped graphenes having different
doping percentage. The values for HSE and G0W0 are given in last two columns, and
collected from Ref. [173]. The band gap of hBN using different potentials and energy
functionals are shown in the lower panel of this table.

% of Si PBE BJ TBMBJ mBR-TBMBJ HSE G0W0
50 2.54 2.94 3.41 3.22 3.42 3.73
25 1.42 1.62 1.90 1.80 1.83 2.10

12.5 1.04 1.16 1.33 1.28 1.13 1.30
8.33 0.81 0.88 0.97 0.95 0.79 0.78

hBN 4.66 5.28 5.13 4.13 5.7 5.96a

a - Experimental band gap from the Reference [174]

We tabulated the band gaps of those mono-layer structures considering PBE, BJ,

TBMBJ, mBR-TBMBJ, HSE, and G0W0 in Table 3.7. In the lower panel of the same

table, we show the band gaps for hBN. Comparing all the cases of Si-doped graphene,

it is observed that the band gap decreases with the increase of doping percentage of sil-

icon. The G0W0 method for 50% doped silicon opens the gap of 3.73 eV that is highest

among all. For this percentage of Si, the band gap of TBMBJ and HSE are almost same.

However, the behavior of mBR-TBMBJ potential is different from the bulk calculation.

It is seen that, mBR-TBMBJ band gaps are larger than that of TBMBJ in all the bulk

calculations, but this behavior reverses in layer calculations. For hBN, mBR-TBMBJ be-

comes inadequate even in comparison to PBE GGA functional, and BJ potential band gap

is more close to HSE and G0W0. Such anomaly in case of layer calculation comes from

the choice of parameter C. It is seen that in case of bulk , the band gap increases mono-

tonically with parameter C, but this not the same in case of discussed layer calculations.

We observe that the band gap for mono-layers attains a maximum value at a certain C,

then the gap decreases. Also, different values of constants present within C, i.e., α , β ,

and the exponent used in article [145] will not improve the hBN band gap. Using the

cell average of |∇ρ|/ρ (second term in the right hand side of Eq. 3.28) from the bulk

structure is admissible in case Si-doped graphene, but in case of hBN, it fails. So, it will

be problematic to conclude the band gap of mono-layers from potentials constructed on
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Figure 3.6: The variation of enhancement factors of different functionals with α = (τ −
τW )/τuni f .

TBMBJ exchange potential unless a particular model appropriate for 2D systems is de-

veloped in the TBMBJ framework. So, the question is which method within the semilocal

DFT should be adopted for these systems? As the potentials can not be trusted, we have

to depend on the exchange energy functionals. We examine recently-developed meta-

GGA XC functionals TM, SCAN, and MGGAC22 to calculate the band gaps of graphene

based systems. The meta-GGA functionals include some amount of derivative disconti-

nuity through the kinetic energy density and the amount of included Δxc is proportional to

the slope of the negative slope of the enhancement factor with α .175 So, In Fig. 3.6, we

show the variation of Fx(s,α) with α for these functionals. For a fixed value of reduced

gradient s = 0 and s = 2, both TM and SCAN have different curves, whereas due to no

s dependency, MGGAC curve is fixed for all any value of s. The slopes of SCAN and

MGGAC have more steep slope than TM, so we expect better band gaps for SCAN and

MGGAC than TM.

In Tables 3.8 and 3.9, we present the band gaps of Si and Ge doped systems for dif-

ferent doping percentage. It is observed the accuracy of the MGGAC functional is at the

same level of HSE hybrid method. The considered functionals can be organised according

to the predicted band gaps of these systems and follows, PBE<TM<SCAN<MGGAC.

The MGGAC functional only depends on the iso-orbital indicator α , this is an advantage

of MGGAC functional over other semilocal functionals. And for 2D materials, the MG-
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Table 3.8: Calculated band gaps (in eV) of Si doped graphene with different doping per-
centage similar to Table 3.7 are shown. The GW , GW0,173 and HSE176 values are tabulated
for comparison.

Doping % GW GW0 HSE PBE SCAN TM MGGAC
50 4.10 3.88 3.42 2.57 2.85 2.68 3.44
25 2.51 2.27 1.83 1.29 1.53 1.37 1.84

12.5 1.69 1.46 1.13 0.76 0.92 0.81 1.12
8.33 1.11 0.92 0.79 0.53 0.64 0.56 0.77

Table 3.9: Band gaps (in eV) of Ge doped graphene for different semilocal methods along
with the hybrid HSE functional are tabulated.

Doping % HSE PBE SCAN TM MGGAC
50 2.79 2.06 2.25 2.20 2.83
25 1.50 0.92 1.11 0.92 1.43

12.5 1.00 0.67 0.78 0.72 0.97
8.33 0.72 0.49 0.57 0.51 0.69

GAC energy functional is an alternate and welcome option with the accuracy in the level

of hybrid methods.

3.5 Concluding remarks

In this chapter, we propose a exchange-only potential appropriate for calculating band

gaps of bulk solids having experimental band gaps from narrow band gap semiconduc-

tor to wide band gap insulators. For this our first step was to modify the Becke-Roussel

potential by replacing the Laplacian of density with the expansion of Kohn-Sham kinetic

energy density, modifying the exchange hole using the generalized coordinate transfer

model, and introducing the non-homogeneity of the actual system through the Fermi wave

vector. Due to the Laplacian free model of this potential, it can be implemented in any

density functional code within generalized KS scheme. Though the generalized coordi-

nate transformation allows a family of exchange hole, we picked one that is close to the

hydrogenic exchange hole. Then the mBR potential is used in the framework of TBMBJ

potential model to calculate the band gaps of a wide variety of sets containing solids of
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present day interest. Starting from the narrow band gap semiconductors, insulators, ox-

ides, transition metal dichalcogenides, transition metal mono-oxides, organic crystals to

mono-layered structures, we examined the band gaps of developed mBR-TBMBJ poten-

tial. To compare the results, we tabulated the band gaps for PBE, BJ, TBMBJ, and hybrid

HSE functionals. Analyzing the band gap of bulk solids, the underestimation by PBE

functional for all the structures is concluded. Though the BJ potential improves over PBE,

the predicted band gaps by it is still far from the experimental data. Other two potentials

have the accuracy close to comparable costlier hybrid method, i.e. HSE06. In most of the

cases , it is seen that mBR-TBMBJ acts like a bridge between the TBMBJ and HSE06

method, and the mean absolute error of it is more close to HSE06 functional. Moreover,

the mBR-TBMBJ potential improves the band gaps of solids for which TBMBJ potential

underestimates. By applying these exchange-only potentials to silicon-doped graphene

and hexagonal Boron nitride, we observe the anomaly in using the parameter C. It is ob-

served that for bulk calculation, the band gap increases monotonically with C, however,

in case of mono-layered structures this condition is not followed even if C is extracted

from the corresponding bulk structure. So it is concluded that due to the use of crystal

structure dependent parameter C, it is not advised to use such advance potentials in the

calculation of two-dimensional structures with the vacuum. Hence, our examined MG-

GAC XC functional is an alternate method for 2D materials with accuracy level close to

hybrid methods.





Chapter 4

Reverse Engineered Exchange holes and

Long-range corrected screened

hybrid-functionals

Though the GGA and meta-GGA XC functionals are quite successful, they face limi-

tations in describing the excited state properties e.g. reaction barrier heights,177 charge

transfer,178 Rydberg excitation,179 and excitation energies180,181 etc. These problems are

attributed to the inherent many-electron self-interaction (MESI) error182,183,184 and wrong

prediction of energies at noninteger electron numbers by the semilocal density functional

approximations(DFAs). The discontinuity arising at the integer electron number N is ig-

nored by DFAs and DFAs predict very low energies at fractional N. Again, the HF method

is also unable to produce the linear behavior of the energy at fractional particle num-

bers(Eq.(3.1)) and predicts average higher energies at N. These aforementioned problems

are bypassed in hybrid approach. As mentioned in the introduction, the hybrid methods

use some part of exact exchange or HF exchange in addition to the DFAs. The global

hybrid functional having forms similar to Eq.(1.53) and Eq.(1.54) suffers from incorrect

asymptotic potential and thus the range separated hybrids are adopted to obey such im-

portant constraints for molecules. The range-separation of Coulomb interaction Eq.(1.55)

allows to employ the HF in the LR and the DFA in the SR. So, the LR- corrected hybrid
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methods written as,

ELC−hybrid
XC = ESR−DFA

X (ω)+ELR−HF
X (ω)+EDFA

C , (4.1)

with screening parameter ω . With help of the error function and the complementary error

function Eq.(1.55), the cut-off distance is selected. The LR-HF part of the exchange is

obtained by multiplying the LR operator with Eq.(1.4) and given by,

ELR−HF
X =−1

2

N

∑
i, j=1

∑
σ

�
d3r

�
d3r�

φ∗
i (rσ)φ∗

j (r�σ) er f (ω|r− r�|) φ j(rσ)φi(r�σ)

|r− r�| (4.2)

The numerical implementation can be followed from the Ref. [185]. The correlation

part is complete density functional. The remaining SR-DFA construction is our main

motivation. The form of the SR-DFA is written as,

ESR−DFA
X (ω) =

1
2

�
d3r

�
d3r�

ρ(r)(1− er f (ω|r− r�|))ρx(r,r�)
|r− r�| . (4.3)

To get the SR-DFA, we need a form of the exchange hole ρx(r,r�). Direct form of ex-

change hole can be derived from the density matrix using Eq.(3.5). But to get a GGA

type exchange hole, we need to use the reverse engineered technique as there is no direct

derivation to get the exchange hole. A positive side of this method is it satisfies constraints

like on-top exact hole, uniform gas limit, energy sum rule, and normalization condition.

the widely used LR corrected hybrid functional known as LC-ωPBE186 was constructed

by using the reverse engineered exchange hole of PBE17 functional. The PBE exchange

hole was modeled by Ernzerhof and Perdew (EP) first used by LC-ωPBE. However, the

EP model suffers more problems in analytic integration and in the differentiation with

respect to the density to get the potential. Also, it violates the Lieb-Oxford bound and

for large s the energy obtained from model hole deviates from the PBE exchange energy.

So, we adopt the Henderson-Janesko-Scuseria (HJS)187 model to get exchange holes of

GGA type exchange energy functionals. The exchange hole is the charge distribution that
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interacts with the electron and using the pair-distribution function, it is written as,

ρ(r)ρx(r,r�) =−ρ1(r;r�)ρ1(r�;r), (4.4)

where, the electron density is ρ(r) = ρ1(r;r). Following Eq.(3.4) and Eq.(3.5) exchange

energy can be calculated from the exchange hole. But for a given exchange energy, to get

corresponding exchange hole, we will use all the known constraints that exchange hole

should satisfy. So let’s list all the constraints that can be used for construction,

1. Negativity: the exchange hole is negative, ρx(r,r�)≤ 0

2. On-top exchange hole: From Eq.(4.4),

ρx(r,r) =−ρ(r)/2. (4.5)

3. Normalization: the exchange hole density integrates to exact negative one,

�
dr�ρx(r,r�) =−1. (4.6)

4. Energy constraint: The exchange hole should reproduce energy same as the given

functional,
1
2

�
dr dr�

ρ(r)ρx(r,r�)
|r− r�| = Ex. (4.7)

In addition, another constraint from the curvature of LDA shape function J̃ will be used.

The angle-averaged and system-averaged LDA exchange hole is related to the shape func-

tion as,

ρx(r,r+u) = ρLDA
x [ρ(r),u] = ρ(r)J̃LDA(y). (4.8)

Where u = r� − r, y = kFu and kF = (3π2ρ)1/3 is the Fermi wave vector. So, we need

a form of the shape function J̃ to get the exchange hole. To avoid Friedel oscillations

observed in the exchange hole of HEG, a smooth non-oscillating model for the shape
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function was first proposed by Perdew and Wang (PW92)188 as,

JPW92(y) =− A
y2

1
1+(4/9)Ay2 +

�
A
y2 +B+Cy2

�
e−Dy2

. (4.9)

Where A = 0.59, B = −0.54354, C = 0.027678, and D = 0.18843. Any form of J re-

lated with the exchange hole as Eq.(4.8) should respect the constraints that exchange hole

satisfies. Now, we derive the constraints for J using the listed constraints for exchange

holes.

1. Due to positive electron density, J̃LDA(y)≤ 0 (following first constraint of exchange

hole)

2. The second constraint Eq.(4.5) implies

J̃LDA(0) =−1
2

(4.10)

3. Following Eq.(4.6), we can write

� ∞

0
du 4πu2ρ(r)J̃LDA(kFu) =

4
3π

� ∞

0
dy y2J̃LDA(y) =−1. (4.11)

4. From Eq.(4.7), using HEG exchange energy density, it can be written as,

2π
� ∞

0
du u ρ(r)J̃LDA(kFu) =−3kF

4π
⇒ 8

9

� ∞

0
dy yJ̃LDA(y) =−1 (4.12)

5. For small inter-electronic distance the HEG shape function goes as,

J̃LDA(y)→−1
2
+

y2

10
+ ....,

that leads to
d2J̃LDA(y)

dy2 |y=0 =
1
5

(4.13)
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6. For large inter-electronic distance,

J̃LDA(y)→− 9
4y4 −

9cos(2y)
4y4 (4.14)

These constraints for the shape function are used by PW to model a non-oscillatory model

of shape function given in Eq.(4.9). But Eq.(4.9) is not smooth enough and contains an

unwanted small shoulder at large u. To get rid of such this unnecessary part EP model

was proposed by adding y4 term as,

JEP(y) =−A

y2
1

1+(4/9)A y2 +

�
A

y2 +B+C y2 +E y4
�

e−Dy2
. (4.15)

We have already noted the problems of EP model and addressing those problems, the HJS

model for LDA shape function was proposed as,

JLDA
HJS (y) =− 9

4y4

�
1− e−A y2

�
+

�
9A

4y2 +B+C y2 +E y4
�

e−Dy2
. (4.16)

The HJS model only differs from the EP model by the behavior of the shape function

at large inter-electronic distance. Now, the task is to assign appropriate values to the

constants present in Eq.(4.16). Imposing the on-top constraint Eq.(4.10), we get

B =
9
4

�
A D − A 2

2

�
− 1

2
. (4.17)

Next, imposing the shape function constant Eq.(4.13), the value of C in terms of A , B,

and D is obtained as,

C = BD +
3A 3

8
− 9A D2

8
+

1
10

. (4.18)

Similarly, the parameter E is fixed from the normalization constraint Eq.(4.11),

E =
6
5
A 1/2D3(2D1/2 −A 1/2)− 2

5
C D − 4

15
BD2 − 4

5
√

πD7/2. (4.19)
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The parameters B, C , and E are represented in term of A , and D . By imposing en-

ergy constraint Eq.(4.12), the values of A , and D are determined to be A = 0.75211,

and D = 0.609650. These values leads to B = −0.106364, C = −0.118649, and E =

−0.0477963. Up to now, we have discussed the construction of LDA shape function.

Next, using the LDA shape function, we will show the HJS model to construct GGA type

shape function JGGA
HJS . Introducing the gradient dependent functions in JLDA

HJS (y), an ansatz

for the GGA is given as,

JGGA
HJS (y,s)=

�
− 9

4y4

�
1− e−A y2

�
+

�
9A

4y2 +B+C F (s)y2 +E G (s)y4
�

e−Dy2
�

e−s2H (s)y2
.

(4.20)

The function F (s) is determined imposing the small u behavior and given as,

F (s) = 1− s2

27C (1+ s2/4)
− s2H

2C
(4.21)

Before derivation of other two s dependent functions, we write some useful expressions

that will be used later. (i) ζ = s2H (s), (ii) η = A + ζ , and (iii) λ = D + ζ . For a

particular form of F (s) and H (s), we impose the normalization constraint Eq.(4.11) to

the GGA shape function,

4
3π

� ∞

0
dy y2J̃GGA

HJS (y,s) =−1. (4.22)

And solving the above Eq.(4.22) for G (s), we get

3√
π

��
ζ −√

η
�
+

5E G (s)
4
√

πλ 7/2 +
C F (s)

2
√

πλ 5/2 +
B

3
√

πλ 3/2 +
3A

2
√

πλ 1/2 =−1

⇒ E G (s) =−2
5
C F (s)λ − 4

15
Bλ 2 − 6

5
A λ 3 − 4

5
√

πλ 7/2 − 12
5

λ 7/2
��

ζ −√
η
�

(4.23)
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Finally to get the energy value of assigned energy functional, we use the energy integral

Eq.(4.7) and Eq.(4.12),

− 8
9

� ∞

0
dy yJ̃GGA

HJS (y,s) = FGGA
x (s)

Or A − 4B

9λ
− 4C F (s)

9λ 2 − 8E G (s)
9λ 3 +ζ ln

�
ζ
λ

�
−η ln

�η
λ

�
= FGGA

x (s)
(4.24)

For any GGA type enhancement factor FGGA
x (s), we solve the Eq.(4.24) to get H (s),

numerically. Putting derived forms of F (s) and G (s) in Eq.(4.24) on left side and us-

ing target s dependent enhancement factor, we solve for a numerical H (s). Then the

numerical solution is fitted ta rational function,

H (s) =
� 7

∑
i=2

aisi
�
/
�

1+
9

∑
i=1

bisi
�
. (4.25)

Having an appropriate shape function in our hand, we calculate the range-separated en-

hancement factor for SR region as,

FSR−GGA
x (s,ω,kF) =−8

9

� ∞

0
dy yJ̃GGA

HJS (y,s)
�

1− er f
�

y
kF

ω
��

. (4.26)

Or,

FSR−GGA
x (s,ω,kF) = A − 4B

9λ
(1−χ)− 4C F (s)

9λ 2

�
1− 3χ

2
+

χ3

2

�

− 8E G (s)
9λ 3

�
1− 15χ

8
+

5χ3

4
− 3χ5

8

�
+2ν

��
ζ +ν2 −

�
η +ν2

�

+2ζ ln

�
ν +

�
ζ +ν2

ν +
√

λ +ν2

�
−2η ln

�
ν +

�
η +ν2

ν +
√

λ +ν2

�

(4.27)

where ν = ω/kF and χ = ν/
√

λ +ν2. We use this HJS method to get exchange holes of

three prototype exchange energy functionals.
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4.0.1 Three prototype long-range corrected hybrid functionals

To construct LR corrected hybrid functionals, we take three prototype XC functionals

that are developed based on PBE XC functional given in Eq.(1.37). The asymptotic

PBE (APBE)189 functional developed from the semiclassical atom theory, PBE func-

tional for interfaces (PBEint)190 developed by bridging the slowly and rapidly varying

densities, and the semiclassical GGA at fourth order (SG4)191 constructed by taking gra-

dient expansion up to fourth order. These semilocal GGA functional are well known for

their performances e.g. the APBE is accurate for atoms, molecules, and molecular com-

plexes,189,192,193 PBEint is satisfactory for hybrid interfaces and metal clusters,190,194,195

and SG4 produces significantly well solid-state properties.191,196,197

APBE: Starting with the APBE GGA, the enhancement factor is given by,

FAPBE
x = 1+κ −κ/[1+µMGE2s2/κ], (4.28)

with µMGE2 = 0.26 and κ = 0.804. The value of κ is same as PBE and fixed from

the Lieb-Oxford bound. But the value µ is different from PBE and fixed from modi-

fied second-order gradient expansion (MGE2).189 Regarding the correlation energy func-

tional, it is only different from the PBE with different value of β = 3µMGE2/π2 which is

fixed from the local density linear response.

PBEint: The exchange enhancement factor of PBEint functional given by,

FPBEint
x = 1+κ −κ/[1+µ(s)s2/κ] , (4.29)

where µ(s)= µGE2+(µPBE −µGE2) αs2

1+αs2 and α = 0.197. The used µ(s) in PBEint act as

an interpolation function such that for rapidly varying density µ → µPBE and for slowly

varying density it goes to PBEsol, i.e., µ → µPBEsol As a result PBEint maintain good

properties of both PBE and PBEsol XC functionals. Similar to APBE, PBEint correlation

functional has the value for β PBEint = 0.052.
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SG4 : The exchange enhancement factor for the SG4191 functional is written as,

FSG4
x = 1+κ1 +κ2 −

κ1(1− µ1s2

κ1
)

1− (µ1s2

κ1
)5

− κ2

1+ µ2s2

κ2

. (4.30)

It was constructed to recover the exact behavior of the modified gradient expansion of the

exchange energy density up to fourth order. In addition, it keeps the Lieb-Oxford bound

unchanged by imposing κ1 +κ2 = 0.804. To recover the second order expansion another

condition µ1 + µ2 = µMGE2 = 0.26 was employed along with κ2 = −µ2
2/νMGE4. The

parameters ν = −0.195 is the fourth order coefficient and µ1 = 0.042 is fixed by fitting

with the ionization potential in the semi classical neutral atom limit.

For the correlation energy density of the SG4 model is given by,

εSG4
c = εLDA

c +φ αt3
H(rs,ζ , t). (4.31)

The parameters t = |∇ρ|/(2ksΦρ) known as reduced density gradient for correlation,

ks = (4kF/π)1/2 is known as Fermi screening wave vector, and Φ is the spin scaling

factor. The value of α = 0.8 was fixed by minimizing the entropy function. In the slowly

varying limit (t → 0), to recover LDA linear response, the relation H → βΦ3t2 should be

followed. For SG4 XC functional the form of β is given by

β = β0 +σt(1− e−r2
s ), (4.32)

with β0 = 3µMGE2/π2 and σ = 0.07. However, it is observed that α and σ are not flexible

with the LC hybrid method. So, we only use APBE correlation functional which is the

special case for SG4 correlation at β = β0 = 0.07903, σ = 0, and α = 0.

4.0.2 Range-separated hybrid using APBE, PBEint, and SG4

The range-separated hybrid functional using APBE, PBEint, and SG4 is only possible

after constructing the exchange holes of corresponding functionals. So, employing the



98 Reverse Engineered Exchange holes and Long-range corrected screened hybrid-functionals

Table 4.1: Fitted parameters to form H(s) for the exchange holes of APBE, PBEint, and
SG4 exchange functionals.

APBE PBEint SG4
a2 0.02273221 0.0047333 0.02273221
a3 -0.06039976 -0.0101441 0.04855297
a4 0.07814309 0.01072278 -0.12481836
a5 -0.05481418 -0.00608029 0.09963666
a6 0.01738706 0.00144668 -0.03066345
a7 0.0008502 0.0000766 0.00432085
b1 -2.91638499 -2.39737305 1.93055176
b2 3.86022942 2.5499878 -5.47264766
b3 -2.97137272 -1.54388838 5.37181798
b4 1.52515139 0.59184499 -2.91240963
b5 -0.57570311 -0.15548226 1.12772142
b6 0.18417949 0.03286721 -0.31905254
b7 -0.0462847 -0.00608099 0.10263425
b8 0.01406773 0.00122022 -0.02540923
b9 0.00066305 0.00005888 0.00343592

enhancement factors Eq.(4.28), Eq.(4.29), and Eq.(4.30) in the right side of Eq.(4.24), the

s dependent function H(s) is constructed numerically. In Table 4.1, we list all the fitted

constants to form H(s) (Eq.(4.25)) of APBE, PBEint, and SG4. To recover exact second

order gradient expansion, we fix the parameter a2, the coefficient of s2 as,

a2 =
1

6718464
(1215D2µx −4)2

D5 . (4.33)

For PBEint µx = µGE2 = 10/81 and for both APBE and SG4 µx = µMGE2 = 0.26 . By

using this condition Eq.(4.33), we make sure the behavior of the functional well preserves

in slowly varying density limit.

4.0.3 Correlation energy from local-density linear response

In constructing hybrid methods, it is a general practice to use the complete GGA corre-

lation, i.e., without doing any changes in the form of the correlation energy functional.

However, to get the XC energy functional that satisfies the local density linear response,
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a small change is necessary in the correlation part. It is shown that LDA is a better ap-

proximation than the gradient expansion for small density variation around the uniform

density.198 So, for small density variation or at s → 0, the coefficient of gradient depen-

dent terms in both exchange and correlation energy functionals should cancel out each

other. By imposing this constraint, we change the correlation energy parameters. Here,

we show LC hybrid functionals with two choices of correlation energy functional. First

one is the use of original APBE, PBEint, and SG4 correlation with corresponding SR-

DFA exchange and another one is modifying the correlation energies that will satisfy the

LDA linear response. The correlation energy functionals are developed by assigning the

value of β present in the Eq. 7 of Ref. [17] as β = 3µGE/π2. Here, µGE is fixed from

the gradient expansion form of the exchange at slowly varying density. In case of hybrid

methods, as, we are using both DFA and HF in different ranges, we assign the correlation

coefficient

β = 3(µωGGA,SR
x (ν)+µωLR−HF

x (ν))/π2. (4.34)

to satisfy the LDA linear response. The second order coefficient µωGGA,SR
x (ν) is calcu-

lated by taking the Taylor expansion of Eq.(4.27) with respect to s and given by,

µωGGA,SR
x (ν)=

4
243

�
1− 3

2 χ + 1
2 χ3

D2

�
− 8

9D3

�
2

135
D − 12

5
D7/2a1/2

2

��
1− 15

8
χ +

5
4

χ3 − 3
8

χ5
�

(4.35)

On the other hand, the LR-HF must recover the screened exchange gradient expansion

derived in Ref. [199]. Then, we obtain

µωLR−HF
x (ν) =

7
81

− 2π2

3

� ∞

0
dz z ax er f c(zν/2), (4.36)

with

ax =
−72+(72−36z2 + z4)cos(z)−2z(−36+5z2)sin(z)

54π2z4 . (4.37)

In Fig.4.1, we plot β for the hybrids methods APBE, PBEint, and SG4. We mention

that the APBE and SG4 functionals were constructed to recover the local density linear
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Figure 4.1: The correlation coefficient β of Eq.(4.34) plotted against the screened param-
eter ν = ω/kF .

Table 4.2: Fitted parameters for β of APBE (SG4) and PBEint functional required in
Eq.(4.38).

APBE and SG4 PBEint
a1 0.06929609 0.00000000
a2 0.02090877 0.06413244
a3 73.63025684 27.06803466
a4 3.84513730 3.61233368
a5 0.00000049 0.00005694
β0 0.07903052 0.03750000
β∞ 0.02626845 0.02626845

response with β APBE = β SG4
0 ≈ 0.07903. Again, we note that β of Eq.(4.34) depends on

both ω and kF , and the GE2 correlation coefficient β GE2 is also kF -dependent.200

For simplicity, we fit the exact β curves, with the formula

β f it(ν) =
β0 +a1ν +a2ν2 +β∞a3ν3

1+a4ν +a5ν2 +a3ν3 , (4.38)

with β0 = 3µGGA
x /π2, and β∞ = 3(7/81)/π2. The fitted β curves are very smooth and

follows strictly the original curve. It can be observed in Fig.4.1. The parameters required

for fitted β are listed in Table 4.2.

With the form of functionals in hand, we apply all the hybrid methods to well known

test sets. The hybrid method satisfying the LDA linear response will be shown with an
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Figure 4.2: MAE plotted against ω for (a) AE6 data set, and (b) BH6 data set considering
constructed LC hybrid XC functionals.

Table 4.3: Optimized values of the range-separated parameter ω (in bohr−1) of con-
structed functionals.

LC-ωPBE LC-ωAPBE LC-ωPBEint LC-ωSG4 LC-ωAPBE (β f it ) LC-ωPBEint (β f it ) LC-ωSG4 (β f it )
0.40 0.37 0.52 0.50 0.37 0.53 0.53

extension −β f it now onward. Before going to calculation part, we need the value of

parameter ω .

The value of ω is optimized by minimizing the MAE of atomization energies (AE6)

and barrier heights (BH6) test sets. For a particular value of ω , we calculate the MAEs

of these test sets using developed hybrid functionals and are plotted in Fig. 4.2 and Fig.

4.3. It is observed that the LC-ωSG4 has the minimum at ω = 0.50 bohr−1. For LC-

ωAPBE and LC-ωPBEint, we fix ω using ω = ωAE6
min /4+3ωBH6

min /4 and the values of ω

are obtained to be 0.37 bohr−1 and 0.52 bohr−1, respectively. Next, for the β f it function-

als, we use the same formula as before to fix ω . The least MAE for these functionals

in case of AE6 and BH6 data sets can be seen in Fig. 4.3. The values for ω in case of

LC-ωAPBE(β f it), LC-ωPBEint(β f it), and LC-ωSG4(β f it) are fixed to be 0.37 bohr−1,

0.53 bohr−1, and 0.53 bohr−1, respectively.

In Table 4.3, we list the optimized values of ω for all the developed functionals along

with a most used hybrid method LC-ωPBE. It is observed that the functionals with β f it

correlation have similar range separation parameters as original functionals.
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Figure 4.3: MAE plotted against ω for (a) AE6 data set, and (b) BH6 data set considering
constructed LC hybrid XC functionals satisfying the LDA linear response.

4.1 Results for thermochemistry and noncovalent inter-

actions

With optimized range-separated parameters available for all the functionals, they are

ready to be applied to different test sets to assess the performances of these function-

als against previously proposed functionals. So, we list the test sets that are employed to

examine the functionals.

4.1.1 Benchmark test sets and computational details

The proposed LC-hybrid functionals are implemented in the NWCHEM software201 to do

the SCF calculations. We take help of Minnesota 2.0 data set202 and G2/148 test set203 to

calculate atomization energies. The collected thermochemical and non-covalent interac-

tions test sets are : (i) AE6 − test set of 6 small molecules,202 (ii) G2/148 − atomization

energy of 148 molecules. The reference CCSD(T) values of the G2/148 set are taken from

ref. [42], (iii) PA8 - 8 proton affinities,202 (iv) BH6 - 6 barrier heights,202 (v) HTBH38

- 38 hydrogen transfers barrier heights,202 (vi) NHTBH38 - 38 non-hydrogen transfers

barrier heights,202 (vii) BH76RC - energies of 30 chemical reactions,204 (viii) HB6 - 6

hydrogen bond dissociation energies,202,205,206,207 (ix) DI6 - 6 dipolar bond dissociation

energies,202,205,206,207 (x) PPS5 - 5 π −π system dissociation energies,202,205,206,207 (xi)
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CT7 - binding energies of 7 charge transfer complexes,202,205,206,207 (xii) ABDE12 - 12

alkyl bond dissociation energies,202,205,206,207 (xiii) ISOL6 - isomerization energies of

6 large molecules,202,208 (xiv) DC9 - 9 difficult cases,202,209 (xv) HC7 - 7 hydrocarbon

chemistry,202,210and (xvi) πTC13 - thermochemistry of 13 π systems.202,211,212 All the

calculations are performed using the 6− 311++(3d f ,3pd) basis set. The errors for

all these test sets considering all the proposed functionals and LC-ωPBE functional are

tabulated in Table 4.4. Due to large number of data sets the Table 4.4 extends to Table

4.5.

First, we calculate the atomization energies of two popular test sets AE6 and G2/148.

Better atomization energies are necessary to claim a functional to be better. From Ta-

ble 4.4, it can be observed that the LC-ωAPBE(β f it) functional has the best MAE for

both the test sets. The improvement is even better than the LC-ωPBE functional. But

other β f it functionals are not sustainable as fail to improve over their base LC functionals.

The LC-ωSG4(β f it) functional is the worst performing functional in both the AE6 and

G2/148 test sets with MAE ≈ 8.1 kcal/mol. All the considered functionals are accurate

in predicting the proton affinities. As applied to the PA8 test set, it is observed that the

maximum error is 0.117 eV for LC-ωAPBE and LC-ωPBEint has the least error of 0.077

eV. Using the β f it correlation energy the LC-ωAPBE(β f it) improves the proton affinity in

compare to original correlation, and the error reduced from 0.117 eV to 0.079. But this

improvement of β f it is not true always. It can be observed that for reaction barrier heights

(BH6), LC-ωAPBE(β f it) deteriorates the error from LC-ωAPBE. But in other two β f it

cases the error improve. In case of hydrogen reaction barrier heights (HTBH38), the least

error is observed for LC-ωAPBE with MAE=1.20 kcal/mol, and all the three β f it func-

tionals have more errors. The worst observed error is 1.99 kcal/mol for LC-ωSG4(β f it).

But for non-hydrogen reaction barrier heights (NHTBH38), the use of β f it correlation

methods improve over regular correlation energies in LC hybrid functionals. The LC-

ωAPBE(β f it) method is the best with MAE=1.81 kcal/mol. The recalculated reaction

barrier heights BH76RC test is a combined set of both HTBH38 and NHTBH38. The

LC-ωAPBE has the minimum error and LC-ωAPBE(β f it) has the second least error. So,

the LDA linear response corrected functionals have moderate improvement over regular
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methods in predicting reaction barrier heights.

Now, we discuss the capability of LC hybrid functionals in predicting dissociation

energies of non-covalent interactions. In the first test set HB76 that contains six hy-

drogen bonded complexes, LC-ωSG4 is the best in describing the interaction energies.

A considerable improvement is also observed by the linear response recovered method

LC-ωAPBE(β f it). For other non-covalent data sets dipole interacting systems (DI6 test),

π −π systems (PPS5 test), and dissociation energies of charge transfer molecular com-

plexes (CT7 test), the LC-ωSG4(β f it) has minimum errors in all the cases. The impor-

tance of LDA linear response satisfied correlation energies can be felt by observing the

β f it functionals and regular ones. Particularly, the LC-ωAPBE(β f it) method improves a

lot in comparison to LC-ωAPBE.

Next, in the alkali bond dissociation energies ABDE12 data set, the errors are not

much sensitive to the β f it correlation. In fact, the HF mixing percentage has more ef-

fect on this test set. The best functionals are LC-ωPBEint and LC-ωSG4, followed by

LC-ωPBE, and the worst functionals are LC-ωAPBE and LC-ωAPBE(β f it). For isomer-

ization energies test set (ISOL6), it is clear that the LC-ωPBE is the best method with

least MAE of 1.57 kcal/mol. However, the accuracy of all the functionals are acceptable

as the MAEs are around 2 kcal/mol. The use of β f it correlation marginally worsen the

error in compare to original correlation. For nine complexes constituting DC9 test set and

seven hydrocarbon chemistry HC7, the LC-ωAPBE(β f it) is the best method. Finally, for

the thermochemistry of thirteen π systems, the LC-ωPBE functional has the least error.

The MAE of LC-ωAPBE(β f it) is very close to the minimum error and it improves over

the the regular LC-ωAPBE method.

In the end, we show the relative errors of present methods with the well-known and

most used LC-hybrid LC-ωPBE in the last row of Table 4.5. The RMAE is calculated as

RMAE =
1
M

M

∑
i=1

MAEi/MAEi,LC−ωPBE,

where M is the total number of test sets used. We perceive that the local density linear

response based LC-hybrids improve over their regular counterparts. The β f it methods
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are very close to the LC-ωPBE method. The LC-ωAPBE(β f it) method is better than

the LC-ωPBE functional as the RMAE is 0.92. However, all the methods are close to

LC-ωPBE and the LC-ωAPBE(β f it) method can be an alternate method for quantum

chemistry calculation in hybrid level.

4.2 Summary and conclusions

The usefulness of the LC-hybrid functionals are discussed. We have presented a brief note

on the way to construct LC-hybrid functionals. The range separated hybrid methods need

the exchange hole of a given exchange functional and there is no direct derivation for the

exchange hole. We adopted HJS model to construct exchange holes of three exchange en-

ergy functionals APBE, PBEint, and SG4. The constructed exchange holes are employed

to make three type of LC-hybrid methods with corresponding correlation energy func-

tionals. Here, we show that by separating the range and using some part of HF exchange

in the exchange part of the hybrid method, the LDA linear response constraint is ignored.

To address such issue, we proposed the correlation energies that make whole hybrid XC

method to satisfy the LDA linear response. All the developed methods are applied to a

wide range of test sets representing main-group thermochemistry and non-covalent in-

teractions. It is seen that the proposed hybrid named LC-ωAPBE(β f it) outperforms the

well-known method LC-ωPBE in many cases. Overall, the proposed method to construct

the correlation energy that will make the XC functional obey the LDA linear response

will be very beneficial for future functional construction.





Chapter 5

Dispersion corrected semilocal density

functionals for solid state and quantum

chemistry applications

In this chapter, we explore the efficiency of DFT in describing the nonlocal, long-range,

and weak dispersion interactions. Being one of the most used many-body approach, DFT

is successfully applied to several fields from atoms, molecules, solids to larger-sized clus-

ters. In principle, the way in which the electron-electron interaction is treated must contain

all type of long or short-range interactions including the van der Walls (vdW). However,

DFT at any level starting from LDA, GGA, meta-GGA to hybrid approximations is unable

to account this weak, long-range interaction completely.55,213,214,215 This weak interaction

present in the dispersion bonded matter arises due to the long-range correlation between

the electrons. The instantaneous quantum electronic charge fluctuations are the causes for

such correlations and the construction of local or semilocal approximations do not include

such concepts. Density functional approximations behave well when the densities of the

considered system overlap, but in case of vdW interaction, the overlapping of densities

are barely encountered. Therefore, to describe systems having such essential long-range

correlations e.g. noble gas dimers, layered solids, bio-molecular complexes, the cluster of

molecules, etc. within DFT, we need to add such correlation separately along with usual
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Exc. The wave function methods like MP2, CCSD(T) are capable of including the long-

range correlation, but are very expensive calculations. Therefore, the semilocal method

within DFT is the most preferred way for dispersion-bonded systems.

Several ways to include the nonlocal correlation are followed within DFT. However,

the most common approach is to combine the long-range correlation with the approxi-

mated semilocal XC energy functional Exc, i.e.,

Exc = Esl
xc +Enl

c , (5.1)

where Esl
xc is the semilocal XC energy and Enl

c is the nonlocal correlation representing

the long-range interaction. A number of approximations with different series such as

DFT-D,216,217,218 Tkatchenko-Scheffler (TS)219,220,221 method, vdW-DF,222,223,224,225,226

and exchange-hole dipole moment (XDM),227,228,229,230 are proposed and extensively ap-

plied.231,232 The well-known DFT+D series, in the prelimnary stage used the dispersion

coefficient that depends on the dispersion coefficient of constituent atoms, a scaling pa-

rameter, and a damping function to cut-off the length of interactions. In later stages, the

vdW coefficients are modified to depend on the chemical environments of elements. The

advance vdW methods DFT-D3 and TS methods applied successfully to molecules and

solids.232,233,234 However, the accuracy of the calculation depends on the choice of both

semilocal and nonlocal corrections.235,236 Among these nonlocal corrections, we find the

Rutgers-Chalmers method is preferred for solids having weak dispersion interactions.

Among various well-known nonlocal correlation methods, we find the Rutgers-Chalmers

vdW-DF method is the most preferred method for vdW interacting solids. The vdW-DF

method uses a nonlocal kernel connecting two densities, and the form of the correlation

energy is written as,224

Enl
c =

1
2

� �
drdr�ρ(r)Φ(r,r�)ρ(r�) , (5.2)

Here, the nonlocal kernel Φ(r,r�) =Φ(ρ(r),ρ �(r�), |∇ρ(r)|, |∇ρ �(r�)|, |r−r�|) is obtained

from the adiabatic connection formula representing the density-density response function.
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Different density dependent form of the nonlocal correlation part along with various form

of semilocal density functionals are applied to molecules and solids,237,238,239,240 suc-

cessfully. Among such approximations, rVV10241 method is simple and more accurate

within the vdW-DF series. The rVV10 functional is the revised version of VV10 nonlocal

correlation,242 and both these exchange-correlation functionals have common semilocal

Exc, a refitted form of PW8616 exchange functional(rPW86)243 and the LDA correlation

functional. Due to the adjustable parameters b and C present in non-local correction, the

rVV10 long range correlation is compatible with any semilocal Esl
xc. It is seen that the

non-local corrections are more effective when added with semilocal functionals having

no significant dispersion interactions. In other words, to avoid double counting of disper-

sion interaction the nonlocal correction should be used along with functionals giving no

significant binding energy in van der Waals complexes. In a recent work,244 Peng et al.

combined the rVV10 nonlocal correlation with the SCAN34 semilocal meta-GGA func-

tional with appropriate parameter b. Also, the rVV10 correction is added to the Perdew-

Burke-Ernzerhof (PBE),17,245 PBE for solids (PBEsol),246,247 GGA functional from semi-

classical atom theory (SG4),248,249 and Armiento and Mattsson (AM05).250,251 In every

cases, the parameters are different and are fixed to be suitable for respective functionals.

However, the Recently developed (TM)42 meta-GGA functional suitable for both

chemistry and solid-state systems is yet to be examined on dispersion bonded solids and

molecules. In this work, we propose a van der Waals model combining the TM Esl
xc and

rVV10 non local correlation. The present method is applied to a wide range of test sets

comprising of molecules and solids. As, we are fixing the parameters from the layered

material test set, we name the functional as TM+rVV10L.

5.1 Theoretical background

5.1.1 The rVV10 nonlocal correlation

As mentioned above, the rVV10 nonlocal correlation is modified over the VV10 corre-

lation kernel, and both of them are based on vdW-DF224 nonlocal functionals and are
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written as

Enl
c =

�
drρ(r)

�
1
2

�
dr�ρ(r�)Φ(r,r�)+β

�
. (5.3)

Here, Φ(r,r�) is the correlation kernel same as Eq.(5.2), β = 1
32 [

3
b2 ]

3/4 is a parameter

used to control the short-range damping of the R−6 (R = |r−r�|) asymptotic. The rVV10

Kernel is written as

ΦrVV 10 =−3
2

1
(qR2 +1)(q�R2 +1)(qR2 +q�R2 +2)

, (5.4)

where q(r) = ω0(r)/k(r) and similarly for q�. Here,242

ω0(r) =

�

ω2
g (r)+

ω2
p(r)
3

, (5.5)

k(r) = 3bωp(r)
k2

s (r)
, ks =

√
3ωp/vF is the Thomas-Fermi screening wave vector, and the local

Fermi velocity given as vF = (3πρ)1/3. The ωp is the local plasma frequency related to

the density as ω2
p = 4πρ and the local band gap given by

ω2
g (r) =C

����
∇ρ(r)
ρ(r)

����
4

. (5.6)

Now, we have two parameters, b present within β , and parameter C present in Eq.(5.6).

The parameter C is used to extract an accurate C6 coefficient of van der Waals interaction.

Due to presence of these two parameters, rVV10 functional is more flexible with any

semilocal Exc.

5.1.2 The TM and TMTPSS functional

We outline the construction of the TM functional so that it will be convenient to un-

derstand the influence of the semilocal as well as the nonlocal correlation effects. As

mentioned, the TM functional is constructed from the DME, and it is correct up to fourth-

order gradient expansion (GE4252) for solids. Rewriting the XC energy form using en-
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hancement factor Eq.(1.50),

ET M
xc [ρ↑,ρ↓] =

�
d3rρεuni f

xc (ρ↑,ρ↓)[wFDME
x +(1−w)Fsc

x ]. (5.7)

The weight factor w = [(τW/τ)2+3(τW/τ)3]/[1+(τW/τ)3]2 controls the portion of com-

pact density (for which the DME is accurate) and the slowly varying correction (for

which the GE4 is accurate). For homogeneous electron density, w is 0 and for one-

electron bound-state densities, w = 1. The von Weizsäcker253 kinetic energy density

τW = |∇ρ|2/8ρ is used. The spin-unpolarized form of the DME part of the enhancement

factor written as,

FDME
x =

1
f 2 +

7
9 f 4

�
1+

595
24

(2λ −1)2 p (5.8)

− 1
τuni f

�
τ −3(λ 2 −λ +

1
2
)× (τ − τuni f − 1

72
|∇ρ|2

ρ
)

��
,

where f = [1+10(70y/27)+βy2]1/10, y = (2λ −1)2 p, and β = 79.873. And p = s2 =

(|∇ρ|/2kFρ)2 with the Fermi vector being defined as kF = (3π2ρ)1/3, and τuni f is the

uniform kinetic energy density. The fourth order gradient expansion required for slowly

varying electron density is included through Fsc
x as given in Eq.(1.51). Because of the use

of both FDME
x , and Fsc

x along with the weight factor, the TM functional able to perform

well in both uniform and slowly-varying-density limiting conditions. In the work of TM,

both TPSS,30 and a modified form of TPSS correlation energy are combined with the

exchange energy. The correlation energy of TPSS is modified through C(ζ ,ξ ) (present in

Eq. 12 of Ref. [30])

C(ζ ,ξ ) =
0.1ζ 2 +0.32ζ 4

{1+ξ 2[(1+ζ )−4/3 +(1−ζ )−4/3]/2}4
, (5.9)

where ζ = (ρ↑+ρ↓)/ρ is the spin-polarization and ξ = |∇ζ |/2kF . The imposed small

change make the correlation functional more compatible with the TM exchange by im-

proving the behavior in the low-density limit. The combination of TM exchange with

modified TPSS correlation, and with the original TPSS correlation energies are called
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Figure 5.1: The correlation energy per electron is plotted against the radial distance for
the argon atom.

TM and TMTPSS functional, respectively. It is to be noted that, both the correlation

energies are one-electron self-interaction free. To get a clear picture of these two cor-

relation energies, we plot the correlation energy per particle for Ar atom using both the

functionals in Fig. 5.1. It can be seen that, within the core region both the functionals

do not show any significant difference. However, in the valence region, the difference is

clear, and TMTPSS decays slower than the TM. We believe that such small difference in

the valence region will have notable effect on long-range chemical properties. Also, it is

concluded that the TM correlation functional is slightly better than TMTPSS functional.

5.1.3 Compatibility and parameters for rVV10 with TM and TMTPSS

First, we need some analysis on the choice of functionals in the combination of rVV10.

Both the functionals in the semilocal form are applied to a test set of 26 layered mate-

rials.251 The inter-layer distance and the binding energies of these layered materials are

dominated by van der Waals interactions. It is seen that the GGA functionals (e.g., PBE,

PBEsol, etc.) usually underestimate the binding energies and incorrectly bind the layers

due to absence of the vdW interaction.249,251 Whereas, the SCAN functional, that contains

some amount of the short and intermediate vdW interactions possess improved results

than GGAs.244 It was discussed that the TM functional also includes some part of the vdW

interaction through the DME exchange hole.254 The correlation of TM functional respects
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the low-density or strong interaction limiting conditions. As a result, TM behaves better

compared to the SCAN in the case of noncovalent interactions, layer-layer binding energy

(Eb), interlayer lattice constants (c), and hydrogen-bonded systems.255,256,257 But this im-

provement is not up to mark in case of TMTPSS method, and it is seen that TMTPSS have

quite different solid state properties compare to TM. For example, the inter-layer binding

energies and the inter-layer lattice constants are underestimated by TMTPSS more than

the TM. So, we examine the compatibility of both these methods with the rVV10 non-

local correlation. For this, we need to fix the above discussed parameters b, and C of

rVV10 correction for TM, and TMTPSS, separately. To get a rough idea, first, we plot

the binding energy of graphite using SCAN, TM, and TMTPSS functionals in Fig. 5.2.

From this plot, it is clear that both TM and TMTPSS methods have quite improved curve

than the SCAN, but still away from the reference RPA binding energy. By analyzing the

fixed parameter of SCAN+rVV10,244 we expect TM+rVV10, and TMTPSS+rVV10 re-

quire higher values of b than 15.7. It is because the non-local correlation varies inversely

with b, and b = 15.7 is fixed for SCAN+rVV10. Now, the proposed dispersion corrected

XC functional is given as

ET M/T MT PSS+rVV 10L
xc = ET M

x +ET M/T PSS
c +ErVV 10

c . (5.10)

From previous work, it is observed that to fix the parameters, different ways have been

adopted by different authors. Keeping the value of parameter C = 0.0093( at its origi-

nal value242), the value of b is determined by using a set of molecular complexes,241,242

determining the binding energy curve of rare-gases,244 and from layered materials test

set.245,251 Besides, some authors preferred to change247,249,251 the value of constant C. In

our work, we fix C = 0.0093 as the effect of C is not so drastic for our chosen semilocal

functional. And b is fixed comparing the calculated binding energies of 26 layered materi-

als(present in (Table 5.2) with the RPA reference values. The fixed parameters b = 25 and

22.7 are for TM+rVV10L and TMTPSS+rVV10L, and L is added to the names because

the parameters are fixed using layers. As discussed before, such higher values of b and

order of b for these functionals (SCAN<TMTPSS<TM) are expected.
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Figure 5.2: The binding energy curves as obtained from TM and TMTPSS functionals for
bi-layer graphene are shown. The SCAN binding energy curve is also given for compari-
son along with the RPA binding energy value.

5.2 Computational details and Results

To apply proposed dispersion methods on molecules and solids, we discuss the prereq-

uisites for the calculations. The calculations are done with the projector-augmented-

wave (PAW) method as implemented within the Vienna ab initio simulation package

(VASP).147,148,149,150 First, TM and TMTPSS functionals are implemented in the VASP

code, and the rVV10 dispersion method as implemented by Peng et al.244 is used. An

orthorhombic box having 23×24×25 Å3 dimension is used to perform the calculations

of noble gases, and complexes present in the S22 data set.259 For larger complexes L7 test

set,260 we use 30Å sided cube. A plane wave energy cutoff 650 eV, 900 eV, and 1200 eV

are used for L7, S22, and nobles gases, respectively. A single Γ point is used for sampling

the Brillouin-zone of all the molecular calculations, and an energy convergence criterion

of 10−6 is used. The energy cutoff of 800 eV was used in all calculations along with the

k-point sampling of 16× 16× 8 and 16× 16× 1 for bulk and monolayers are used. For

physisorption calculations, the plane-wave energy cutoff of 600 eV and k-point sampling

of 8×8×1 Monkhorst-Pack262 are employed. To avoid interaction between layers in the

perpendicular direction, we used a vacuum layer of 20Å. All the considered test sets are

summarized in Table 5.1.
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Table 5.1: Test sets used in this work

Test set description
26 layer solids251 26 layer materials for interlayer,

intralayer lattice constants and
binding energy

NGS4258 Lattice constants and cohesive energies
for four noble -gas solids

NG2244 Binding energy of 2 Noble gas dimer
(Ar2 and Kr2)

S22259 binding energy of 22 non-covalent
interactions

L7260 7 large molecular complexes with more
long-range dispersion effect

Physisorption261 adsorption of Ar, Kr, and Xe noble gases
on different metal surfaces

5.2.1 Layered materials

The interaction between different layers of material are dominated by the vdW interaction.

To predict inter-layer lattice constant and binding energies of such materials, dispersion

corrected methods are essential. Due to extensive practical applications of such materials,

synthesis and electronic structure calculations of new predicted materials are present-day

research interests.264,265,266,267 We calculate the inter-layer lattice constant c and binding

energies Eb of 26 layered materials251 using proposed new dispersion corrected methods

and their bare semilocal methods. Inter-layer lattice constants and the distance between

any two layers are dominated by the vdW interaction, but the intralayer lattice constant

a of these materials are dominated by covalent interactions. So, we tabulated only c,

and Eb for these 26 layers using TM, TMTPSS, TM+rVV10L, and TMTPSS+rVV10L

in Table 5.2. Also, we provide the RPA reference values251 of binding energies, and

experimental inter-layer lattice constants of this test set for comparison. Focusing on two

bare semilocal methods, it is clear that only semilocal DFT significantly underestimates

the binding energies and loosely binds the layers. Between TM and TMTPSS, TM is more
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Table 5.2: Binding energy (Eb) in meV/Å2 and interlayer lattice constant c in Å for a set
of 26 layered materials are shown. The RPA values for Eb and the experimental c values
taken as reference from Ref.[251, 263]. The last two rows represent MAE and MAPE.

Reference TM TMTPSS TM+rVV10L TMTPSS+rVV10L
Eb c Eb c Eb c Eb c Eb c

Graphite 18.32 6.70 11.28 6.63 10.71 6.71 18.69 6.43 18.76 6.51
H-BN 14.49 6.54 12.54 6.47 11.82 6.56 19.44 6.30 19.54 6.38
HfS2 16.13 5.84 9.56 5.89 8.38 5.95 16.97 5.83 16.56 5.83
HfSe2 17.09 6.16 10.34 6.21 9.10 6.29 17.61 6.13 17.14 6.18
HfTe2 18.68 6.65 13.00 6.76 10.27 6.86 20.67 6.66 18.79 6.76
MoS2 20.53 12.3 11.37 12.49 9.63 12.61 21.79 12.27 20.93 12.38
MoSe2 19.63 12.93 11.69 13.15 10.10 13.3 21.52 12.95 20.77 13.06
MoTe2 20.80 13.97 18.86 14.21 16.33 14.4 22.84 13.99 21.54 14.16
NbSe2 19.57 12.55 14.96 12.67 12.41 12.89 24.55 12.52 22.84 12.65
NbTe2 23.03 6.61 18.86 6.93 16.33 7.08 26.84 7.04 26.32 7.04
PbO 20.25 5.00 19.71 4.78 17.68 4.87 26.71 4.71 25.11 4.71
PdTe2 40.17 5.11 32.85 5.08 26.72 5.17 42.23 5.08 36.67 5.14
PtS2 20.55 5.04 12.07 5.19 10.07 5.36 21.71 4.99 20.42 5.14
PtSe2 19.05 5.11 12.37 5.25 8.10 5.54 22.19 5.07 18.59 5.30
TaS2 17.68 5.90 12.79 5.99 11.00 6.06 23.19 5.94 21.47 5.95
TaSe2 19.44 6.27 13.39 6.37 11.89 6.44 22.7 6.28 21.57 6.33
TiS2 18.88 5.90 13.75 5.72 11.91 5.79 21.54 5.70 20.83 5.71
TiSe2 17.39 6.27 14.41 6.05 12.26 6.17 22.02 6.04 20.79 6.05
TiTe2 19.76 6.50 17.07 6.56 13.47 6.69 24.53 6.54 21.93 6.61
VS2 25.61 5.75 16.50 5.85 14.38 5.93 24.59 5.81 24.54 5.82
Vse2 22.26 6.11 15.59 6.27 12.88 6.34 23.38 6.11 22.92 6.21
WS2 20.24 12.32 10.89 12.58 9.26 12.68 21.47 12.36 20.76 12.39
Wse2 19.98 12.96 11.43 13.22 9.54 13.37 21.60 13.03 19.16 13.03
ZrS2 16.98 5.81 9.96 5.87 8.75 5.93 17.28 5.77 16.80 5.82
ZrSe2 18.53 6.13 10.87 6.19 9.57 6.27 18.09 6.14 17.53 6.16
ZrTe2 16.34 6.66 14.36 6.72 12.55 6.84 21.71 6.65 20.68 6.74
MAE − − 6.01 0.13 8.18 0.21 2.59 0.07 1.75 0.11
MAPE − − 30.3 1.88 41.37 2.93 13.64 1.18 9.16 1.64
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Figure 5.3: Ahown are the box plots of absolute errors of layered materials’ binding
energies. Discussed functionals TM, TMTPSS and their dispersion corrected part are
considered. The lower and upper ends of whiskers represent the minimum and maximum
absolute error values. The quartile one (Q1) point of represented by the bottom of the box
keep 25% of errors below this point, and above the quartile three (Q3) point represented
by the top of the box 25% of errors falls. The median for the errors are presented by
the parallel lines present within the respective boxes of different methods and the black
circles represent the mean.

accurate in predicting both c, and Eb than TMTPSS. The addition of rVV10 nonlocal

correlation increases the accuracy in predicting both c, and Eb. The TMTPSS+rVV10L

is better for binding energies and the error is less than that of TM+rVV10L, but in the

performance of interlayer lattice constant c, TM+rVV10L is better. Also, 50% reduction

in the MAE of c is observed by the addition of rVV10 vdW correction.

In Fig. 5.3, we show the box plots for absolute errors of binding energies. The min-

imum and maximum error values represented by lower end and upper end of vertical

lines. The quartile one (Q1) point represented by lower end of rectangular boxes be-

low which 25% of data lies, and above Q3 presented by upper end of box, 25% of data

lies. The median and the mean of the errors are presented by the bands and the dark

circles within the boxes. The Q1 and Q3 points of TMTPSS+rVV10L are smaller than

those of TM+rVV10L. For a better understanding, in Fig. 5.4, we plot the mean errors

in the binding energies and mean errors of interlayer lattice constant for the complete

data set. The main figure is for Two dispersion corrected functionals TM+rVV10L and

TMTPSS+rVV10L, and the inset is for the bare semilocal functionals. The underestima-

tion in the binding energy for bare semilocal methods is clear from the inset figure, as the
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Figure 5.4: Mean errors in binding energies of layered materials versus mean errors in
interlayer lattice constant these twenty-six materials (Table 5.2). The dispersion corrected
methods are in the main figure, and the bare semilocal functionals are in the inset.

Table 5.3: The MAE and MAPE in binding energy (Eb) and lattice constant (c) of different
functionals for 26 layered materials. The references for the collected functionals are given
in bottom of the table. The smallest values are in bold font.

Methods Eb c
MAE MAPE MAE MAPE

SCANa 12.37 62.38 0.32 4.34
TM 6.01 30.30 0.13 1.88
TMTPSS 8.18 41.37 0.21 2.93
PW86R-VV10b 10.01 52.49 0.09 1.29
PW86R-VV10solb 1.52 7.05 0.25 3.38
AM05-VV10solb 2.26 11.13 0.16 2.19
rev-vdW-DF2a 4.66 24.77 0.07 1.12
PBE+rVV10Lc 1.70 8.68 0.15 2.04
PBEsol+rVV10sd 2.86 14.57 0.08 1.39
SCAN+rVV10a 1.62 8.37 0.08 1.29
TM+rVV10L 2.59 13.64 0.07 1.18
TMTPSS+rVV10L 1.75 9.16 0.11 1.64

a-Ref. [244], b-Ref. [251], c-Ref. [245], d-Ref. [247]
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ME in binding energies fall below the zero line. And the underbinding in c is clear, as

most of the errors in interlayer lattice constants fall in the right zone. The improvement

due to the addition of vdW correction are understandable as comparative more number of

points are close to the crossing point of two zero lines. To get an idea of the accuracy of

the present methods, in Table 5.3, we list the MAE and MAPE of some available vdW

corrected methods for the layered material test set. Among three semilocal functionals

and nine long-range corrected functionals, PW86R-VV10sol method251 has the least er-

ror in the binding energy. For lattice constant c, both rev-vdW-DF2240 and TM+rVV10L

are equally good. However, three meta-GGA functionals in combination with rVV10 cor-

rection, i.e., SCAN+rVV10, TM+rVV10L, and TMTPSS+rVV10L methods are close in

describing the layered materials.

5.2.2 Noble-gas Solids

In the formation of noble-gas solids, the dispersion interaction is crucial. In accessing the

proposed vdW methods, we calculate lattice constants and cohesive energies of a test set

containing four noble gas-solids Ne, Ar, Kr, and Xe.258,268,269,270 We present the lattice

constants, and cohesive energies for TM, TMTPSS, TM+rVV10L, TMTPSS+rVV10L

along with the experimental results in Table 5.4. It is observed that the semilocal func-

tionals without the vdW correction are quite good in describing the lattice constants of

noble-gas solids. Due to addition of rVV10 to these semilocal functionals, the equilibrium

lattice constant reduces and goes away from the reference values resulting overbinding of

atoms. The TM method is the best among considered functionals with MAE of 0.14 Å.

Though the vdW methods TM+rVV10L, and TMTPSS+rVV10L unable to increase the

accuracy in describing lattice constants, they are impressively good for cohesive energies.

From the lower panel of Table 5.4, the cohesive energies of TM, and TMTPSS are far

from the reference and addition of nonlocal correction significantly increases the the co-

hesive energies towards the experimental values. Between the bare meta-GGA methods,

TM is better than that of TMTPSS, however TMTPSS+rVV10L has the least error, and

TM+rVV10 is good for all the solids except Ne.
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Table 5.4: The lattice constants (in Å) and Cohesive energies(in meV/atom) of first four
noble-gas solids as obtained using considered functionals are tabulated. The reference
experimental values258,268 are given in the last column. The bold font numbers are the
MAE and MAPE.

Solids TM TMTPSS TM+rVV10L TMTPSS+rVV10L Expt.
Lattice constants (Å)

Ne 3.97 3.93 3.90 3.83 4.35
Ar 5.16 5.18 5.05 5.05 5.23
Kr 5.60 5.62 5.47 5.47 5.61
Xe 6.13 6.19 6.00 6.03 6.10
MAE 0.14 0.15 0.24 0.16 −
MAPE 3.10 3.34 5.01 3.65 −

Cohesive energies (meV/atom)
Ne 36.0 22.9 51.0 43.3 27.2
Ar 69.4 66.4 98.4 98.9 88.9
Kr 83.5 78.8 118.9 117.8 122.5
Xe 102.2 94.3 151.5 148.3 169.8
MAE 33.7 36.4 13.8 12.5 −
MAPE 31.4 30.2 27.9 19.9 −

5.2.3 Noble-gas dimers

Similar to noble-gas solids, the formation of noble-gas dimers mainly depend on vdW

interaction. The prediction of correct interaction energy curves of noble-gas dimers that

shows the correct bond length and the binding energy has been a tough task for DFT. In

an attempt to apply semilocal as well as nonlocal corrected methods, we plot the binding

energy curves for Ar2, and Kr2 dimer in Fig. 5.5. Such assessment is necessary to examine

the stability and effect of vdW corrections. From these plots, it is clear that the semilocal

methods are able to bind the monomers but the energy values are far from the CCSD(T)

reference values. And the improved calculated energies corresponding to different atomic

distances by the use of rVV10 correction are clear. Though both TM+rVV10L, and

TMTPSS+rVV10L are close to CCSD(T) curve, TMTPSS+rVV10L behaves better than

TM+rVV10L. The deviation from the reference curve by TM+rVV10L is expected due

to comparatively larger value of parameter b. We observe the binding energy curve for

TM+rVV10L will get very close to the CCSD(T) for b = 12.5. However, such smaller b
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Figure 5.5: (a) Binding energy curves of Ar2 dimer, and (b) Kr2 dimer using TM,
TMTPSS and corresponding dispersion corrected methods.

will cause unacceptable errors in all other test sets. Again, it can be seen that the fixed

parameters for both TM+rVV10L and TMTPSS+rVV10L give minimum energy values

at the equilibrium distance of 3.75 Å for Ar2 and 4.05 Å for Kr2 respectively, which are

very close to the CCSD(T) results.

5.2.4 The S22 benchmark set

The S22 data set259 is a very relevant test set for applying new proposed vdW function-

als. Out of twenty two complexes, seven are hydrogen-bonded, eight dispersion dom-

inated, and seven mixed complexes. In Table 5.5, the interaction energies of all these

complexes are tabulated for TM and TMTPSS semilocal methods, TM+rVV10L and

TMTPSS+rVV10L vdW methods, and CCSD(T) reference values. The bare TM func-

tional is very accurate for all the subsets of S22, and it is far better than TMTPSS with

the MAE of 0.50 kcal/mol. Also, this is the least error for this test set. The nonlocal cor-

rection to TM leads the interaction energies to differ from the reference resulting increase

of MAE. However, the MAPE for TM+rVV10L is lesser than the bare TM. Between two

rVV10 corrected methods, the MAE of TMTPSS+rVV10L, and MAPE of TM+rVV10L

are lesser in magnitude. Also, the TMTPSS+rVV10L has more accurate binding energies

of H-bonded complexes, and both nonlocal corrected methods are quantitatively similar in

case of dispersion and mixed bonded complexes. In attempt to compare the performance
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Table 5.5: Binding energies (in kcal/mol) for complexes present in S22 data set using
TM, TMTPSS, TM+rVV10L, and TMTPSS+rVV10. The CCSD(T) values271,272 are
tabulated for reference.

Complexes (Symmetry) CCSD(T) TM TMTPSS TM+rVV10L TMTPSS+rVV10
7 hydrogen-bonded complexes
NH3 dimer (C2h) 3.15 3.34 2.88 3.01 2.96
H2O dimer (Cs) 5.00 5.32 5.05 5.30 5.12
Formic acid dimer (C2h) 18.75 19.95 18.90 19.94 19.19
Formamide dimer (C2h) 16.06 16.73 14.07 13.83 14.35
Uracil dimer (C2h) 20.64 19.87 17.10 17.22 17.60
2-pyridone-2-aminopyridine (C1) 16.94 17.33 14.04 14.20 14.58
Adenine-thymine WC (C1) 16.74 16.27 13.16 13.48 13.80

8 dispersion-bound complexes
CH4 dimer (D3d) 0.53 0.45 0.44 0.52 0.52
C2H4 dimer (D2d) 1.48 1.39 1.35 1.56 1.52
Benzene-CH4 (C3) 1.45 0.91 1.07 1.37 1.30
Benzene dimer (C2h) 2.66 2.02 1.82 2.63 2.56
Pyrazine dimer (Cs) 4.26 3.32 3.17 4.02 3.92
Uracil dimer (C2) 9.78 9.08 8.61 9.89 9.77
Indole-benzene (C1) 4.52 3.61 3.25 4.48 4.33
Adenine-thymine (C1) 11.66 11.1 10.38 12.03 11.98

7 mixed complexes
C2H4-C2H2 (C2ν ) 1.50 1.31 1.09 1.23 1.19
Benzene-H2O (Cs) 3.28 3.28 3.31 3.63 3.52
Benzene-NH3 (Cs) 2.32 2.25 2.09 2.34 2.31
Benzene-HCN (Cs) 4.54 4.41 4.07 4.47 4.32
Benzene dimer (C2ν ) 2.72 1.94 1.95 2.50 2.42
Indole-benzene (Cs) 5.63 4.78 4.42 5.17 5.07
Phenol dimer (C1) 7.1 6.47 6.32 7.04 6.89
MAE − 0.50 1.02 0.71 0.62
MAPE (Δ) − 10.88 15.84 7.08 7.20
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Table 5.6: MAE and MAPE of S22 data set for some available functionals.

Methods MAE MAPE
SCANa 0.94 20.7
TM 0.50 10.88
TMTPSS 1.02 15.82
PW86R-vv10b 0.35 4.87
PW86R-VV10solb 1.17 26.47
AM05-VV10solb 1.44 36.27
vdW-DF2a 0.94 14.71
rVV10a 0.30 4.52
SCAN+rVV10a 0.43 6.46
TM+rVV10L 0.71 7.08
TMTPSS+rVV10L 0.62 7.20

a-Ref. [244], b-Ref. [251]

Table 5.7: Interaction energies in kcal/mol of L7 data set for different functionals. The
structure and reference QCISD(T) values are collected from Ref. [260]. The calculated
MAE and MAPE for all these complexes, calculated taking QCISD(T) as reference val-
ues, are tablulated in the last two rows. The bold font numbers are the least errors.

L7 Complexes QCISD(T) SCAN TM TMTPSS SCAN+rVV10L TM+rVV10L TMTPSS+rVV10L
Octadecane dimer (CBH) -11.06 -3.40 -6.34 -6.08 -8.23 -8.83 -11.45
Guanine trimer (GGG) -2.40 0.84 -0.53 -0.36 -1.50 -1.73 -2.39
Circumcoronene· · ·Adenine dimer (C3A) -18.19 -7.35 -10.54 -9.99 -13.83 -13.88 -16.82
Circumcoronene· · ·Guanine-cytosine dimer (C3GC) -31.25 -13.04 -18.94 -17.97 -24.41 -24.75 -28.21
Phenylalanine trimer (PHE) -25.76 -22.65 -20.73 -20.54 -25.94 -22.57 -23.52
Coronene dimer (C2C2PD) -24.36 -8.22 -12.46 -11.79 -16.77 -16.74 -19.08
Guanine-cytosine dimer (GCGC) -14.37 -0.25 4.68 4.94 -6.05 2.09 -0.56
MAE − 10.47 8.93 9.37 4.43 5.85 3.75
MAPE − 71.24 57.56 60.54 28.18 35.82 21.10

of the newly proposed methods with previously developed functionals, we list MAE and

MAPE of the interaction energies in Table 5.6. It is observed that for S22 test set, the

parent rVV10 method is better than other methods with MAE of 0.30 kcal/mol. To get

a clear idea of error statistics, we show a box plot in Fig. 5.6 for the absolute errors of

all the complexes present in S22. The maximum difference of TM for any complexes is

very less and it is suitable for all the complexes present in S22. Though the top end of the

whiskers are comparatively higher in position for the rVV10 corrected functionals, 50%

of the absolute errors represented by the median line, and 75% of errors represented by

Q3 are below 0.23 kcal/mol, and 0.45 kcal/mol respectively.
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Figure 5.6: Box plots for absolute errors in interaction energies of S22 data set using all
the functionals. The description of all box plots are similar to 5.3.

5.2.5 L7 molecular data set

After applying the developed vdW methods to noble gases and smaller molecular com-

plexes, we examine the performance on large-sized complexes combined under L7 data

set.260 Such large complexes require significant amount of dispersion interaction to bind

the complexes. Such data set dominated by dispersion interaction is a challenge to new

contemporary vdW methods. In Ref.,260 importance of these complexes, the structures,

and the reference binding energies can be perceived. Applying SCAN, TM, and TMTPSS

meta-GGA functionals, and nonlocal correlation added functionals SCAN+rVV10, TM+rVV10L,

and TMTPSS+rVV10L to this test set, we list the interaction energies in Table 5.7. Be-

sides theses methods, we collect quadratic configuration interaction(QCISD(T)) values

for reference. Analyzing Table 5.7, it is observed that, the binding energies of bare

SCAN functional are far from the QCISD(T) values, and SCAN unable to bind the gua-

nine trimer (GGG). Both the errors of TM and TMTPSS are better than SCAN but they

fail to bind guanine-cytosine dimer (GCGC). The improved binding energies by adding

the nonlocal correlation to the semilocal Exc are clear for all the vdW methods. Among

all the vdW methods only TM+rVV10L does not bind GCGC complex, but all other

functionals SCAN+rVV10 and TMTPSS+rVV10L have negative binding energies for

all the large complexes. Except Guanine-cytosine base pairs, the interaction energies of

TMTPSS+rVV10L functional are more close to reference values. Also, it is observed that
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the errors for TMTPSS+rVV10L reduces 50% in the absence of GCGC complex.

5.2.6 Adsorption of noble gas on Metal surfaces

The vdW interaction is the most dominant interaction in predicting the interaction ener-

gies and the distance of noble gases on metal surfaces. Previous theoretical, and experi-

mental researches on such systems show the importance of physisorption of noble gases

on the metal surfaces. The conclusion of on-site preferences of noble gases on metal

surfaces was in confusion for long time. In Ref. [231], Authors satisfactorily reviewed

the history of preference by noble gases on metal surface site (on top or hollow). Some

recent studies231,261,273 show that the noble gases prefer to stay on top of metal atom

instead of higher coordinate sites. So, in our calculations, we discuss only the on-top ad-

sorption of Ar, Kr, Xe on Cu(110), Cu(111), Pd(111), and Pt(111) metal surfaces. In Table

5.8, both the adsorption distances and the energies are tabulated considering PBE func-

tional representing the GGA method, SCAN, TM, TMTPSS representing meta-GGA, and

SCAN+rVV10, TM+rVV10L, TMTPSS+rVV10L methods representing vdW corrected

meta-GGA functionals. Also, we collect some available experimental values and tabu-

lated in the last row. Compare to available experimental values, it is observed that PBE

overestimates the distance between the noble gas atom and metal atom, and underesti-

mates the adsorption energy (Ead) up to a large extent. The adsorption distance (d) of

SCAN and TMTPSS functionals for Xe on Cu(111) surface is 3.56 and 3.55 Å , respec-

tively, and these are close to the experimental value. But for this system, the adsorption

energy Ead of SCAN and TMTPSS are far from the reference value Ead=190 meV. The

addition of rVV10 non-local correlation to the meta-GGA functionals shorten the adsorp-

tion distance d and increase Ead . The adsorption obtained using the SCAN functional

in case of Xe/Cu(111), TM in case of Xe/Pd(111), and SCAN+rVV10 in Xe/Pt(111)

agree more closely with the experimental values. TM adsorption energy for Xe/Cu(111),

SCAN+rVV10 adsorption energies for Kr/Pt(111), TM+rVV10L adsorption energy for

Xe/Pt(111), and TMTPSS+rVV10L energy for Xe/Pd(111) are close to experimental val-

ues. The adsorption energy magnitude of both TM+rVV10L and TMTPSS+rVV10L are
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Figure 5.7: The pictorial view of MAEs in (a) binding energies, (b) interlayer lattice
constant of 26 layered materials, (c) interaction energies of S22, and (d) L7 test sets.

more than SCAN+rVV10 functionals in all the cases, which implies more tightly bound

systems than SCAN+rVV10.

5.3 Concluding Remarks

The long-range dispersion interaction is very crucial for the systems starting from sim-

ple noble-gas dimer, smaller molecular complex, larger molecular complexes to layered

materials. In this context, we propose the use of advance rVV10 correlation with the

recently developed TM meta-GGA exchange-correlation functional. As two correlation

functionals of TM, and TMTPSS can be combined with the TM exchange, we examine

the compatibility of both these correlations with the rVV10 non-local correction. The de-

veloped functionals named TM+rVV10L and TMTPSS+rVV10L are very effective due

to the adjustable proportion of semilocal functionals and the rVV10 correlation.Applying
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these functionals to systems dominated by dispersion interaction e.g., a set of 26 layered

materials, noble gas-solids, noble gas-dimers, a set of 22 molecular complexes, a set of

7 large sized complexes, and physisorption of noble gases on metal surfaces, it is con-

cluded that these methods can be applied to new contemporary molecular complexes to

solids due ti their well-balanced accuracy. Also, we find that TM+rVV10L functional is

better in predicting structural properties, whereas TMTPSS+rVV10L is better in describ-

ing binding energies. For an overview and comparison, we plot mean absolute errors of

different data sets in Fig. 5.7 using developed functionals and some available results. Due

to the more precise interpretation of interaction energies, the present proposition can be

used for the large scale structural properties of the van der Waals systems.



Chapter 6

Summary and Outlook

The whole thesis is dedicated to the construction of new exchange-correlation energy

functionals within density functional theory. The basic proposition is to work on model

exchange holes for proposing new methods. Starting with two-dimensional models, we

have shown the importance of 2D DFT and its application. Our methods for 2D XC func-

tionals are promising for quantum dot systems. The presence of Laplacian of density in

functionals or potentials leads to numerical problems, particularly, the Laplacian of den-

sity tends to diverge near nucleus. So, using Laplacian free model of exchange hole, the

band gap problem of KS DFT is addressed. Next, we have shown the construction of

exchange holes from a given exchange energy functional and constructed three types of

range-separated hybrid functionals that are accurate for quantum molecular complexes.

Finally, we use a non-local correlation with the semilocal XC functional constructed from

the exchange hole to address dispersion dominated systems. Overall, we covered impor-

tant fields where DFT needs to be revisited repeatedly.

Our development in these fields will help the DFT community do multiscale calcu-

lations and further develop new methods. Notably, using our 2D XC functionals, the

quantum dot systems representing artificial graphene-like systems can be analyzed more

accurately. In calculating the bandgap of bulk materials, our model MBR-TBMBJ is quite

successful, but in the case of 2D-layered materials, new potentials are needed to be devel-

oped. Again, our proposition, along with the HJS model, will be beneficial in the case of
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hybrid functional development. To study van der Waals systems, the nonlocal correction

to the semilocal density functionals is a successful method. Other than rVV10 nonlo-

cal correlation, the correlations like D2, D3, or D4 can readily be made appropriate for

advance semilocal functionals.
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[175] Thilo Aschebrock and Stephan Kümmel, Phys. Rev. Research, 1, 033082 (2019).

[176] Abhilash Patra et al., Phys. Chem. Chem. Phys. 21, 19639–19650 (2019).

[177] Jingjing Zheng, Yan Zhao, and Donald G. Truhlar, J. Chem. Theory Comput. 5,

808–821 (2009).

[178] Andreas Dreuw, Jennifer L. Weisman, and Martin Head-Gordon, J. Chem. Phys.

119, 2943–2946 (2003).

[179] David J. Tozer and Nicholas C. Handy, J. Chem. Phys. 109, 10180–10189

(1998).

[180] Aron J. Cohen, Paula Mori-Snchez, and Weitao Yang, Chemical Reviews, 112,

289–320 (2012).

[181] Aron J. Cohen, Paula Mori-Sánchez, and Weitao Yang, Science, 321, 792–794

(2008).

[182] Paula Mori-Snchez, Aron J. Cohen, and Weitao Yang, J. Chem. Phys. 125, 201102

(2006).

[183] Paula Mori-Sánchez, Aron J. Cohen, and Weitao Yang, Phys. Rev. Lett. 100,

146401 (2008).

[184] John P. Perdew et al., Phys. Rev. Lett. 49, 1691–1694 (1982).

[185] Aliaksandr V. Krukau et al., J. Chem. Phys. 129, 124103 (2008).



REFERENCES 143

[186] Oleg A. Vydrov and Gustavo E. Scuseria, J. Chem. Phys. 125, 234109 (2006).

[187] Thomas M. Henderson, Benjamin G. Janesko, and Gustavo E. Scuseria, J. Chem.

Phys. 128, 194105 (2008).

[188] John P. Perdew and Yue Wang, Phys. Rev. B, 46, 12947–12954 (1992).

[189] Lucian A. Constantin et al., Phys. Rev. Lett. 106, 186406 (2011).

[190] Eduardo Fabiano, Lucian A. Constantin, and Fabio Della Sala, Phys. Rev. B, 82,

113104 (2010).

[191] Lucian A. Constantin et al., Phys. Rev. B, 93, 045126 (2016).

[192] Eduardo Fabiano et al., J. Chem. Theory Comput, 11, 122–131 (2014).

[193] E Fabiano, Lucian A Constantin, and F Della Sala, J. Chem. Theory Comput, 7,

3548–3559 (2011).

[194] E Fabiano, Lucian A Constantin, and F Della Sala, J. Chem. Phys. 134, 194112

(2011).

[195] E. Fabiano, Lucian A. Constantin, and F. Della Sala, Int. J. Quantum Chem. 113,

673–682 (2013).

[196] Aleksandr V Terentjev et al., Computation, 6, 7 (2018).

[197] Fabien Tran, Julia Stelzl, and Peter Blaha, J. Chem. Phys. 144, 204120 (2016).

[198] Saverio Moroni, David M. Ceperley, and Gaetano Senatore, Phys. Rev. Lett. 75,

689–692 (1995).

[199] Julien Toulouse, Franois Colonna, and Andreas Savin, J. Chem. Phys. 122, 014110

(2005).

[200] CD Hu and David C Langreth, Phys. Rev. B, 33, 943 (1986).

[201] M. Valiev et al., Comput. Phys. Commun. 181, 1477 –1489 (2010).



144 REFERENCES

[202] Roberto Peverati and Donald G. Truhlar, Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 372,

(2014).

[203] Larry A. Curtiss et al., J. Chem. Phys. 94, 7221–7230 (1991).

[204] Lars Goerigk et al., Phys. Chem. Chem. Phys. 19, 32184–32215 (2017).

[205] Yan Zhao and Donald G. Truhlar, J. Chem. Theory Comput. 3, 289–300 (2007).

[206] Yan Zhao and Donald G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

[207] Ekaterina I. Izgorodina, Michelle L. Coote, and Leo Radom, J. Phys. Chem. A,

109, 7558–7566 (2005).

[208] Sijie Luo, Yan Zhao, and Donald G. Truhlar, Phys. Chem. Chem. Phys. 13,

13683–13689 (2011).

[209] Roberto Peverati and Donald G. Truhlar, J. Chem. Theory Comput. 8, 2310–2319

(2012).

[210] Roberto Peverati, Yan Zhao, and Donald G. Truhlar, J. Phys. Chem. Lett. 2,

1991–1997 (2011).

[211] Yan Zhao, Nathan E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103

(2005).

[212] Yan Zhao and Donald G. Truhlar, J. Phys. Chem. A, 110, 10478–10486 (2006).

[213] Oleg A. Vydrov and Gustavo E. Scuseria, J. Chem. Phys. 125, 234109 (2006).

[214] Oleg A. Vydrov and Troy Van Voorhis, J. Chem. Phys. 130, 104105 (2009).

[215] V. Wang et al., Solid State Commun. 177, 74 –79 (2014).

[216] Marcus Elstner et al., J. Chem. Phys. 114, 5149–5155 (2001).

[217] Stefan Grimme, J. Comput. Chem. 27, 1787–1799 (2006).

[218] Stefan Grimme et al., J. Chem. Phys. 132, 154104 (2010).



REFERENCES 145

[219] Alexandre Tkatchenko and Matthias Scheffler, Phys. Rev. Lett. 102, 073005

(2009).

[220] Alexandre Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012).

[221] Wei Liu et al., Phys. Rev. Lett. 115, 036104 (2015).

[222] Henrik Rydberg et al., Phys. Rev. B, 62, 6997–7006 (2000).

[223] H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003).

[224] M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004).

[225] Kyuho Lee et al., Phys. Rev. B, 82, 081101 (2010).

[226] Fabien Tran et al., Phys. Rev. Materials, 3, 063602 (2019).

[227] Axel D. Becke and Erin R. Johnson, J. Chem. Phys. 122, 154104 (2005).

[228] Erin R. Johnson and Axel D. Becke, J. Chem. Phys. 123, 024101 (2005).

[229] Axel D. Becke and Erin R. Johnson, J. Chem. Phys. 123, 154101 (2005).

[230] Erin R. Johnson and Axel D. Becke, J. Chem. Phys. 124, 174104 (2006).

[231] R D Diehl et al., J. Phys. Condens. Matter, 16, S2839–S2862 (2004).

[232] Robert A DiStasio, Vivekanand V Gobre, and Alexandre Tkatchenko, J. Phys.

Condens. Matter, 26, 213202 (2014).

[233] Jonas Moellmann and Stefan Grimme, J. Phys. Chem. C, 118, 7615–7621 (2014).

[234] Tomá š Bu čko et al., Phys. Rev. B, 87, 064110 (2013).

[235] Kanchana S. Thanthiriwatte et al., J. Chem. Theory Comput. 7, 88–96 (2011).

[236] N. N. Andriichenko and A. Yu. Ermilov, Russ. J. Phys. Chem. A, 87, 1342–1348

(2013).
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