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Summary

Recent studies that combine superconductivity and spintronics have mainly dwelt on the
injection of spin-polarized quasi-particles into superconductors. However, at the interface
between metal and Superconductor, new phenomena due to Andreev reflection, like the
emergence of odd frequency correlations, formation of Majorana bound states, etc., appear.
Further, interfaces between superconductors and ferromagnets have led to many surprising
phenomena: Josephson 7 junction, the anomalous Josephson effect, and novel applications
in Josephson qubits.

In this thesis, we study the effects of spin-flip scattering on Andreev reflection-mediated
transport. In a Normal metal (N)-Superconductor (S) junction with a spin-flipper at the
interface, zero energy Yu-Shiba-Rusinov (YSR) peaks are seen in the conductance. This
zero-energy peak is almost quantized at 2¢>/h values. However, it arises due to non-
topological reasons in contrast to zero-bias conductance peak (ZBCP) formed due to the
presence of Majorana states. Further, Majorana states induced quantized ZBCP remains
stable in the presence of spin-flip scattering in a metal-p-wave superconductor junction.
At the same time, it loses its stability when the p-wave Superconductor is replaced by a
spin-orbit coupled superconducting wire (SOCSW).

Odd frequency equal spin-triplet pairing at NS interfaces is induced due to spin-flip

scattering. The importance of finding these correlations in a s-wave superconductor implies



CONTENTS

that one can effectively tune a s-wave superconductor into a p-wave superconductor via
doping with a spin-flipper. A hallmark of p-wave superconductors is the formation of equal
spin-triplet pairing of its Cooper pair. p-wave superconductors are exotic and difficult to
work with but are predicted to host Majorana fermions. However, inducing spin-triplet p
wave pairing in a s-wave superconductor would imply generating and detecting Majorana
Fermions could become much more accessible.

In Josephson junction’s too, a spin-flipper can induce 7 junction behavior. Spin flip
scattering plays a crucial role in understanding the O to 7 junction transition. The free energy
of such a system shows bistable behavior, which can play a role in quantum computation
applications. Replacing the two normal metals with ferromagnets, one observes anomalous
Josephson effect. Our spin-flipper-based junction’s main advantage over other proposals
involving anomalous Josephson current is that our junction can store quantized amounts
of superconducting phase difference in its ground state, implying its use as a quantized
Josephson phase battery. Further, a novel quantum spin torque at equilibrium can be seen
in such a Josephson junction due to the presence of spin-flip scattering.

Finally, we see that a Josephson junction loop doped with a spin-flipper attached to
two thermal reservoirs can act as a quantum heat engine, a quantum refrigerator, or even
a Joule pump or a cold pump. This device can be tuned from engine mode to refrigerator
mode or any other mode, i.e., Joule pump or cold pump, by either tuning the temperature
of reservoirs or via the enclosed flux in the Josephson junction loop. Tuning via externally
applied magnetic flux is less prone to errors than tuning temperatures of reservoirs or
operating the cycle in reverse, the latter being internal control mechanisms. This makes our

proposed Josephson thermodynamic device much more versatile for possible applications.
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Chapter 1

Introduction

“I seem to have been only like a boy playing on the seashore, and diverting
myself in now and then finding a smoother pebble or a prettier shell than

ordinary, whilst the great ocean of truth lay all undiscovered before me.”

— Isaac Newton

In 1911, Heike Kamerlingh Onnes discovered a macroscopic quantum phenomenon which
is called superconductivity. He first observed that the electrical resistance in certain mate-
rials disappeared when they were cooled down below a specific critical temperature 7,[1].
After that, hundreds of materials were discovered that are superconducting with different
critical temperatures. Zero resistance is a fundamental property of a superconductor; how-
ever, it is not sufficient to understand the nature of the superconducting state. In 1933, two
German physicists Walther Meissner and Robert Ochsenfeld, experimentally discovered
another vital property of Superconductor. They observed that inside the Superconductor
magnetic field is zero, making the Superconductor a perfect diamagnet. When a supercon-
ductor is cooled down from a normal state by applying a magnetic field, then this magnetic
field is expelled from the Superconductor. This phenomenon is called the Meissner effect.

The two phenomena, one of vanishing electrical resistance and that of the expulsion of
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1. INTRODUCTION

the magnetic field, are observed below the critical temperature, whereas above the critical
temperature superconductivity vanishes[2]. Vanishing electrical resistance and expulsion
of the magnetic field are two macroscopic quantum phenomena; however, there was no mi-
croscopic description of superconductivity for another 20 years. In 1957, Bardeen, Cooper,
and Schieffer described the first microscopic theory of superconductivity, which is known
as BCS theory[3], for which they got the Nobel Prize in Physics in 1972. They proposed
that the supercurrent in a superconductor is carried by pairs of electrons known as Cooper
pairs, which are formed due to electron-phonon interaction in the case of conventional
superconductors. For temperatures above the critical temperature (T" > T.), the lattice
vibration energy is larger than the pairing energy of the electrons leading to Cooper pairs
breaking and superconductivity being destroyed.

When a superconductor is brought into contact with a non-superconducting material
(say, Normal metal), superconducting pair correlations leak into the non-superconducting
material. This phenomenon is called the proximity effect. The superconducting pair
correlations decay monotonically inside the normal metal[4]. However, when a magnetic
material like ferromagnet replaces normal metal, then superconducting correlations show
an oscillatory decay[5] inside the ferromagnet, which is superimposed on the exponential
decay. This kind of behavior is that for ferromagnet spin-up and spin-down electrons,
Fermi surfaces are no longer degenerate. At the superconductor-ferromagnet interface,
both superconductivity and spin polarization combine to create a new superconducting
state which offers the possibility to reduce heating effects related to spintronic devices[6].
Spintronics is one of the most popular areas of research that offers the control of spin
degrees of freedom in solid-state devices. The purpose of combining superconductivity
and spintronics is the injection of spin-polarized quasi-particles into superconductors.

The interfaces between Superconductor and ferromagnet have led to many surprising
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phenomena: Josephson n junction, the spin Josephson effect, and novel applications,
such as the Josephson qubit. Recently, at superconductor-ferromagnet interfaces, spin-
triplet Cooper pairs have been discovered[7] which give a complete synergy between
superconductivity and spintronics. Spin triplet supercurrent can have a net spin component
which offers the potential to reduce heating effects linked with spintronic devices[6].
Nevertheless, to utilize this supercurrent, one has to generate and manipulate triplet Cooper
pairs in devices. Recently, there has been remarkable progress in this area, not only on
the experimental side[8] where it has become routine to create triplet Cooper pairs at
superconductor-ferromagnet interfaces but on the theoretical side, odd frequency spin-
triplet pairing is seen in Metal-Superconductor interfaces due to spin-flip scattering.

This thesis addresses spin transport in normal metals/Ferromagnets junctions with s-
wave superconductors. We make a detailed study of the effects of Andreev reflection
mediated transport at metal superconductor junctions in the presence of a spin flipper
(magnetic impurity) at the interface. The signature of Yu-Shiba-Rusinov (YSR) bound
states are observed for energies in the superconducting gap due to spin-flip scattering at
metal-superconductor interfaces. Further, we see that odd frequency equal spin-triplet
correlations at metal-superconductor interfaces occur due to spin-flip scattering. We also
examine the Josephson effect in the presence of a spin flipper. Theoretically, we show that
a tunable 0 — 7 Josephson junction is possible without taking recourse to Ferromagnets
or high T, superconductors. We also look into the possible applications of this tunable
0 — & junction in quantum computation. We study the anomalous Josephson effect in a
ferromagnetic Josephson junction in the presence of a spin flipper. We show that this
system can act as a phase battery that can store quantized amounts of superconducting
phase difference in the ground state of the junction. Further, a novel quantum spin torque

at equilibrium is induced in the presence of spin-flip scattering in such a Ferromagnetic
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1. INTRODUCTION

Josephson junction. Finally, we study the application of our spin-flipper doped Josephson
junction in quantum thermodynamics. We focus on the theoretical understanding of such
new phenomena and their potential significance concerning charge and spin transport.
Below we will introduce the three critical phenomena which are needed to understand this
thesis: (1) Andreev reflection, (2) Spin flip scattering, and (3) Josephson effect. We

start with Andreev reflection.

1.1 Andreeyv reflection

At the interface between Normal metal (N) and Superconductor (S), a particle scattering
process occurs known as Andreev reflection. It involves an electron (hole) incident on
the interface from the Normal metal side with energy below the superconducting gap. A
Cooper pair is formed inside the Superconductor, and there is retroreflection of a hole
(electron) of opposite spin and velocity but equal in momentum to the incident electron
(hole). Current in Normal metal is converted to a supercurrent in Superconductor by the

Andreev reflection process. Each process transfers a charge 2e across the interface, see

<)

Figure 1.1: Andreev reflection process: an incident electron from the normal metal is retroreflected
as a hole and a Cooper pair is formed inside the s-wave superconductor below the superconducting

gap.

2e
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1.1. Andreev reflection

Fig. 1.1(a). An incident electron at the NS interface leads to a hole being retroreflected.
The hole is the time-reversed trajectory of an electron. Since the Cooper pair consists
of both up and down spin electrons thus, the Andreev process can be thought of as two
electrons with opposite spin entering the Superconductor to form a Cooper pair. Similarly,
one can also define this Andreev process as breaking up a Cooper pair into two electrons.
In this process near the Fermi level, energy and momentum are conserved. However, the
spin magnetic moment is not conserved since the incoming electron and Andreev reflected
hole occupy opposite spin bands. Andreev reflection is also possible at the Ferromagnet
(F)-Superconductor (S) interface but is affected by exchange interaction in a ferromagnet.
Since spin-up and spin-down bands in a ferromagnet are different, there is no complete

Andreeyv reflection at an FS interfaces[9, 10].

1.1.1 Blonder-Tinkham-Klapwijk (BTK) Model

Blonder, Tinkham, and Klapwijk (BTK) model was developed in 1982. The BTK model[9]
describes Andreev and normal reflection at normal metal (N)-superconductor (S) interface,
as well as transmission of electron-like and hole-like quasi-particles through the interface
above the superconducting gap. In this model, the Normal metal-Superconductor (NS)
interface is modeled as a 6-shaped potential barrier of strength, V depicted in Fig. 1.2.
If an electron with energy E is incident at the interface from Normal metal with energy
E > A, this electron can be reflected into the Normal metal. There is also the possibility of
Andreeyv reflection, i.e., a hole can be reflected into Normal metal, while electron-like and
hole-like quasi-particles are transmitted into the Superconductor. The model Hamiltonian

in Bogoliubov-de Gennes (BdG) formalism for the setup depicted in Fig. 1.2 is given as

H AB®(x)
Y(x) = E¥(x), (1.1

A*O(x) -H
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Figure 1.2: (a) An electron, with energy E coming from the normal metal (N), interacts at
x = 0 with a 6-like potential barrier of strength V. Electron and hole are reflected back to the
normal metal (N) and electron-like and hole-like quasiparticles are transmitted into the s-wave
superconductor (S). The closed circles denote electrons and electron-like quasiparticles and the
open circles denote holes and hole-like quasiparticles. A is Andreev reflection probability, while
B denotes probability of normal reflection. C and D are transmission probabilities of electron-like
and hole-like quasiparticles respectively, (b) NIS junction where N is connected to voltage V| and
S is connected to voltage Vo and V = V| — V, is the voltage drop across the NIS junction.

where H = % + Vé(x) — EF, A is the superconducting gap, ¥ is a two component spinor
and ®O(x) is Heaviside step function. Further, in H the first term is kinetic energy of
incident electron with an effective mass m*, second term V denotes strength of the §-like
potential barrier at the NS interface and the third term is Fermi energy.

The wavefunctions in the N and S regions of the system depicted in Fig. 1.2 can be written

as

1 " 0 " 1 "
Un(x) = e +a e’ + b | e ¥ in Normal metal (x < 0), (1.2)
0 1 0

ul ., 1
and Ys(x)=c| |9 +d]| [e? ", in Superconductor (x > 0). (1.3)
% u

a, b, ¢, d are the corresponding scattering amplitudes for Andreev reflection, normal reflec-

tion, transmission of electron-like quasiparticle and transmission of hole-like quasiparticle
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1.1. Andreev reflection

respectively. u = %(1 + —~.122—A2)’ v = %(1 - —'Ez_Az) are the BCS coherence fac-

tors. kep = thlz*(EF + F) are wavevectors of electron and hole in the normal metal and

g+ = 2;,l"—;(E r = VE2 — A2) are wavevectors of electron-like and hole-like quasiparticles
in superconductor. If we consider Andreev approximation, i.e., Er > E, A, then we have
ke = kn = g+ = q- = kp, where kr is the Fermi wavevector. The boundary conditions at

x = 0 are,
2

2m*

¥s(0) =¢n(0), and W5(0) — ¢y (0) = Vyn(0). (1.4)

We impose boundary conditions on the wave functions in Egs. (1.2), (1.3) and get 4

equations which are,

cu+dv=1+b, (1.5)
cv+du=a, (1.6)
cv—du—a=-i2Za, (1.7)
cu—dv—-1+b=-i2Z(1+b), (1.8)
where, Z = % is defined as interface transparency. Solving (1.5)-(1.8) we get the

scattering probabilities, for £ > A,

2.2 22721+ 72
AslaP="0 0P =+ 22 - ), B=jp e 20T,
y Y
2 ,2y,,2 1+ZZ 2 _ .2 222
C = (u2_v2) | c |2: (u v )I/tz( ), D = (MZ_VZ) | d |2: %
v Y
and for E < A,
A2 47%(1 + Z*)(A? - E?
A=lal B=|b|*= ( a )

T EZ+ (A2— ED(1+222)7 TEr+ (14272)2(A2 - E2Y

A is Andreeyv reflection probability of an electron reflected back as a hole, while B denotes

probability of normal reflection. C is transmission probability through interface of an
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3a

(b)

Figure 1.3: Plots of reflection (A, B) and transmission (C, D) probabilities at N-S interface.

electron-like quasiparticle, while D is transmission probability through interface of a hole-
like quasiparticle. Below the gap, there is no quasiparticle transmission and only a Cooper
pair is formed, therefore C = D = 0. Generally, A, B, C, and D depend on the detailed
shape of the potential barrier and the incident angle of the trajectory. For simplicity, in this
chapter and much of the thesis, unless mentioned to the contrary, we restrict ourselves to
a one-dimensional geometry assuming that the system is translationally invariant along y-
and z-axis.

In Fig. 1.3(a) we plot different reflection and transmission probabilities for transparent
(Z = 0) regime. We see that when there is no barrier at the interface, no normal reflection
can occur. Thus normal reflection probability B = 0, but Andreev reflection probability
A =1, below the gap for Z = 0. In Fig. 1.3(b) we plot probabilities in tunneling regime
(Z = 3). We see here that normal reflection can also occur in contrast to a transparent
regime. In the Andreev reflection probability, there is a peak at the gap edge E = A.

To calculate the current across the interface, we consider the current contribution in
the energy [E, E + dE] interval. This contribution is proportional to several factors. First,

electron velocity v(E), then the density of states N(E), assumed to be energy-dependent.
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1.1. Andreev reflection

Next, Fermi distribution function f(E), which describes occupancy of electronic states,
and finally, electronic charge e. These factors are taken together and integrated over
the interface area A (assuming that current density does not vary across the interface),
the current contribution due to Andreev reflected electrons could then be written as
eAV(E)N(E)A(E)f(E)dE. In order to obtain the contribution due to other scattering
processes, similar expressions can be obtained by replacing the Andreev reflection prob-
ability A(E) with the respective scattering probability. The product N(E) f (E)dE equals
the density of electrons in the respective energy interval.

Taking into account all the relevant contributions and integrating them over the energy
range gives the total current. Since current has to be conserved, one can calculate on
either side of the interface. However, it is more convenient to do it on the metal side
as current is carried by single particles instead of quasi-particles on the Superconductor
side. An incident wave with probability amplitude 1 carries a positive current at any point
on the metallic side. The wave corresponding to Andreev reflection probability A is in
the opposite direction. However, it will contribute a positive current since it describes a
hole with an opposite charge. The wave corresponding to normal reflection probability
B represents a reflected electron and contributes an opposing current. In addition to this,
there will also be a current originating from the Superconductor, which eventually cancels
out the current due to the incident and scattered waves. At this moment, we describe
the probability of this latter current by the factor X. No current can pass in the absence
of any bias across the NIS junction, and one can equate the several currents moving in
either direction. As a result, one can find an expression for the scattering probabilities:
1+ A = B+ X, which gives X = 1+ A— B. We now have a current equation in the absence
of bias, which gives a stable situation. Applying a bias V' across the junction means the

Fermi level in the metal is raised by eV. Assuming transport across the interface is ballistic,
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which is possible in case it is point contact, with a contact diameter small compared to the
electrons mean-free path[9, 11]. The electrons in the biased metal can then be described
by an equilibrium Fermi function. The Fermi levels will align when materials are joined,
which can be taken as a reference level. Consequently, electrons originating from the metal
will have a distribution function f(E — eV), and those coming from the Superconductor
will have a distribution function f(E). Subsequently, the current in one direction will be
different from that in the other direction, and a net current will flow through the junction.
We consider the linear transport regime, i.e., ¢V < EF, such that transport occurs at or
near the Fermi energy. Thus, from BTK theory[9, 12], when a voltage bias V' is applied
across the NS interface (see Fig. 1.2(b)), the electrical current at finite temperature in one

dimension can be calculated as,
Ings = 2N(EF)evFﬂ/ [f(E—-eV)- f(E)I[]1 + A(E) — B(E)]dE, (1.9)

where f(E) is the Fermi Dirac distribution function, N(EF) denotes density of states at
Fermi level, e is the electronic charge, A is the contact area over which the Normal metal
and Superconductor touch, and v is velocity of electrons at the Fermi level. Since Fermi
distribution function f(E — eV) — f(E) is only non-zero in the region eV around EF, for
which eV < Ef, and the electron velocity as well as density of states are constant in this
interval, one may take them out of the integral.

From Eq. (1.9) its easy to see that normal reflection decreases current, while Andreev
reflection increases it. At zero temperature, the Fermi Dirac distribution functions can be
written as a Heaviside step function, f(E —eV) = O(eV — E) and f(E) = O(—E). Thus,

at zero temperature, Eq. (1.9) reduces to,

eV
Inis = 2N(Ep)evfr5ﬂ/ [1+ A(E) - B(E)]dE. (1.10)
0
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1.1. Andreev reflection

When there is no superconductor, i.e., a NIN junction, for which superconducting gap
vanishes (A = 0). Then, u = 1 and v = 0. Thus, we get the scattering probabilities, for
E > A, as

u*v?

T W+ 22—
W -v)?Z22(+ 7Y 72

0, (1.11)

= . 1.12
[u2 + Z2(u? —v?2))? 1+ 272 (1.12)
Eq. (1.10) then gives,
2N(Ep)e*vp AV V
I = = — =GyV, 1.13
NIN 1+ 72 Ry OV (1.13)
where Ry = 21\/(1'51:% is the normal state resistance and Gy = ﬁ is the normal state

conductance. If we take derivative with respect to E at E = eV on both sides of Eq. (1.10),

then we will get

2
dinis _ OIN(Ep)e*vp Al + A(eV) — B(eV)] = 1+2 [1+A(eV)—B(eV)]. (1.14)
dv Ry
2
Thus, divis _ 1+2 [1+ A(eV) — B(eV)] = Gn[1 + Z2[1 + A(eV) — B(eV)]. (1.15)
dv Ry
dInis

The quantity in Eq. (1.15) is defined as the differential charge conductance (G.) at

dv
zero temperature and it is proportional to (1 + A(E) — B(E)) at E = eV. In Fig. 1.4 we
plot differential conductance versus voltage for different values of interface transparency Z
at zero temperature. We see that there is a continuous variation of differential conductance
from transparent to tunneling limit. For transparent junction, G./Gy is constant at 2, while
for tunnel junction G./Gy almost vanishes below the gap.

In this section, we have introduced the Andreev reflection process. We have also

discussed BTK formalism and showed how an electron is Andreev reflected as a hole when

it is incident with energy E at NS interface for electron energies below the gap. When
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Figure 1.4: Differential charge conductance normalized by normal state conductance (Gy), as

function of voltage for different values of interface transparency Z at zero temperature. Here,
Gy = 2N (EFp)e*vr A

= 3 and A the superconducting gap.

electron energy is above the gap, there is a possibility of electron-like and hole-like quasi-
particle transmission into the Superconductor. The following section will discuss spin-flip
scattering, which occurs when an electron interacts with a spin flipper. Following that, we

will probe the interplay between Andreev reflection and spin-flip scattering.

1.2 Spin flip scattering

Consider a spin-up electron with energy E, incident from left normal metal (N;) region, as
shown in Fig. 1.5(a), onto the interface (x = 0). This electron interacts with the spin flipper
through an exchange potential which may induce a mutual spin flip. The electron can be
reflected (region I, x < 0) or transmitted to the right normal metal (N;), region I (x > 0),

with spin up or down. The model Hamiltonian[13] for the system depicted in Fig. 1.5 is,

p2

5~ Jod (5.5, (1.16)

H =

where the first term is the kinetic energy of electron with effective mass m*, in the second
term, Jy is the strength of exchange coupling[13] between electron’s spin § and spin flipper’s

spin S. Explicitly in terms of spin raising and lowering operators for electron as well as a
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Figure 1.5: (a) A spin up electron with energy E coming from the metallic region N, interacts
at x = 0 with a spin flipper (SF) through an exchange potential, leading to finite probability for
flipping its own spin and spin of the spin flipper, (b) N1-SF-N, junction where Ny is connected to
voltage V| and N, is connected to voltage Vo and V = V| — V, is the voltage bias applied at the
interface. High spin molecules like Fe 9-complex can act as a spin flipper.

spin flipper, we can write,
> d 1 _ + + o—
5.5 =1s5,5, + E(s ST+57S), (1.17)

where s; = ’%0',-, oi(i = x,y, z) are Pauli spin matrices, s* = s, + is, are spin raising and
lowering operators for electron and S* = S, + iS, are spin raising and lowering operators
for spin flipper. Spin flipper is a delta potential magnetic impurity that can be treated
similarly to an Anderson impurity. Spin flipper Hamiltonian H. Spin flipper = —Jo6(x)5.S
is an effective Heisenberg term which reduces the two-electron problem to a one-electron
problem[14]. Since our problem is not a time-dependent problem, we solve it using the
time-independent Schrodinger equation modified by BAG Hamiltonian. Thus, the spin
flipper has no time dependent dynamics of its own, rather it has a spin dependent dynamics
which means, if spin-flipper spin is in up state for § = 1/2, m’ = 1/2 and incident electron’s
spin is in up state, then it acts as ordinary impurity but if incident electron’s spin is in down

state, then there is probability of mutual spin flip. The problem is symmetric such that when
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spin-flipper’s spin is in down state, roles of up and down electron incident are reversed,
which differentiates our model spin-flipper from a Kondo-like magnetic impurity[15],
which has finite time dynamics, and it leads to a screening of impurity spins by metallic
electrons below Kondo temperature[16]. Experimentally, high spin molecules, for example,
Fej9-complex with a spin of S = 33/2 can to a certain extent be a model for the spin flipper.
It is to be noted that the internal dynamics of such a high spin molecule may be quite
different from the spin-flipper considered here. Even then, the spin flipper can mimic the
half-integer spin states (§) up to any arbitrary high value and the associated spin magnetic
moment of the high spin molecule and the consequence of an electron interacting with
such, to a large extent.

The wavefunctions in the different regions of setup depicted in Fig. 1.5(a) are,

1 i 0|
Yr(x) = . e S+ . e MBS 4y 1 e"hrgS, | forx <0, (1.18)

1 ikx S 0 ikx ¢S
[//II(X) = tTT el X¢m’ + tTl el x¢m,+1, forx >0 , (119)
0 1

where ryq is the reflection amplitude when an incident spin up electron is reflected as
spin up electron, while rq; is the reflection amplitude when an incident spin up electron
is reflected as spin down electron. Similarly, 741 is the transmission amplitude, when an
incident spin-up electron is transmitted as the spin-up electron, while ¢4 is the transmission
amplitude when an incident spin-up an electron is transmitted as a spin-down electron. ‘an ,
represents eigen-spinor of spin flipper, wherein § is spin angular momentum and m’ being
spin magnetic moment of spin flipper. The action of S, operator of spin flipper on spin
flipper eigen spinor is S, ¢i , = hm’d)i ,and k = W with incident electron energy

E > 0. Similarly as mentioned above, if we consider a spin down electron with energy E
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incident from Ny, the wavefunctions in different regions can be written as

ol . 1| o .
wix) = | [ e*gS, +rp | | e gS, | | e g5, forx <0, (1.20)
1 0 1

1 ikx 4§ 0 ikx ;S
1//11(x) =17 é x¢m,_1 +1 é x(ﬁm/, for x > 0, (121)
0 1

where r|1 is the reflection amplitude when an incident spin down electron is reflected as
spin up electron, while r|| is the reflection amplitude when an incident spin down electron
is reflected as spin down electron. Similarly, 7|1 is the transmission amplitude when an
incident spin-down electron is transmitted as a spin-up electron. In contrast, 7| is the
transmission amplitude when an incident spin-down electron is transmitted as a spin-down

electron. The boundary conditions at interface are,

2m* Jo3.S
= - ui(x = 0), (1.22)
x=0 h

dyry;
dx

_duy

Yyr(x=0) =y(x=0), and y
x=0 X

where 5.5 = 5.5 = 5.8, + %(S_SJr + 5787) is exchange operator[13] in Hamiltonian(1.16).
s* = sy isy and $* = S, +iS, are spin-raising and spin-lowering operators for electron
and spin flipper respectively with s, = %0’1, Sx = %ax, sy = %ay, st = %(O'X +ioy) and
sT = g(ax —ioy).

From boundary condition (1.22), when spin up electron is incident, action of 5.5 on

Y1(x =0) (see Eq. (1.18)) can be understood as follows:

— — 1 S — 1 S - O S
5.8 (x=0)=35.8 ¢, + ms.S ¢, + r18.S i1 (1.23)
0 0 1
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In Eq. (1.23) for first term and second term:

1 1 1
.S—‘)S ¢;§1/ = [SZSZ + _(S_S+ + S+S—)] ¢;§1’
2
0 0
(1.24)
1 1 1 1 1
= SZSZ ¢;S;,l/ + ES_S-'— ¢;§1/ + §S+S_ ¢;,S;1/.
0 0 0

1
Herein, s, acts on electron spinor | [, while S; acts on spin flipper spinor ¢§1 ,. Similarly,

0

1
s~,and ST and s* and S, they act on their respective spinors. Thus, s* = 0, since s*

0
is the spin raising operator for electron and there are no higher spin states for a spin-1/2

0
electron than up and so the 3rd term in Eq. (1.24) vanishes, while s~ ="h| [, the spin

0 1

0
lowering operator gives the down spin state of electron. Further, for spin-up electron

1

1 1
Sz = g , and for spin flipper: SZ¢;§1 , = hm’¢}f1 ,. The spin-raising operator acting on
0 0

spin flipper give: S+¢fn/ = C:m,gbs

. . + . S .
are1- Now, we are going to derive C_, ,. Since ¢, is

normalized, we get,
(S*193 NT(STIPS ) = ICh XS, 1S, ) = 1CF 1. (1.25)

Thus, |C} 1> = (85 ,1S7S*|¢3 ). (1.26)

But since St = §% - SZ2 — hS,, thus from Eq. (1.26) we get,

cH, = \/<¢fn/|52 — 82— 18|93,y = hS(S+ 1) —m/(m’ + 1) = /(S — m')(S + m’ + 1).
(1.27)
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Therefore, the spin-raising operator acting on spin flipper give: S* ¢fn , =V —m)(S +m’ + 1)(/)51 rel

=nhf ¢,Sn ,+1- Similarly, for spin-lowering operator S~ acting on spin flipper we can derive

that S=¢°,  =aV(S—m)(S+m’ + 1)¢>, = hf¢>,. Thus, from Eq. (1.24) we get,

m’+1

N 1 h2 {1 h2 0
] B e PO o P (1.28)
0 2

In Eq. (1.23) for third term:

23 0 S | + +¢- 0 S
5.5 1 Dot = [5:8:+ S (5787 +5787)] 1 o3,
(1.29)
0 1 0 1 10
=58 | |45, + 39 St + 5s+s ¢S,
1 1 1
.0 0 ol |1
Now,s;==%| [,s7| | =0,s7| | =] [.S:00,,, =h(m +1)¢3,  and,
1 1 1l |0
S¢S, =S —m) (S +m + D¢, =Tif¢S,. Thus, from Eq. (1.29) we get,
L=l nrm’' +1) (0 nf |l
58| |65, = —— ¢S, + Tf o3, (1.30)
1 1

where f = V(S —m')(S+m’ + 1) is spin flip probability of spin flipper when spin up
electron is incident. Similarly, when spin down electron is incident, the action of § .S on V54

at interface (x = 0) is

2 G > a O S > g 1 S - 3 0 S
s.SYr(x=0)=5s.5 ¢, + 1188 ¢ +rs.S /M (1.31)
1 0 1
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In Eq. (1.31) for first and third term:

> g O S l O S
SS| |4, =[s:S.+=(sST+s"SDHI| | o),
| 2 1
(1.32)
0 1 0 1 0
=5.5.| |4, + Es—S+ ¢S, + zs+S— o3 ..
1 1 1
0 10 0 0 1
Now,s. | |==5%]| [.s7| |=0.s"| | =] |and, $7¢5, =iV (S +m)(S-m'+ D¢, | =
1 1 1 1 0
hf'¢S, . Thus, from Eq. (1.32) we get,
N 0 h2 {0 h2 7|1
55|45, = —Tm o5, + 2f ¢S, .. (1.33)
1 1 0
In Eq. (1.31) for second term:
5.8 ¢, =155+ 5(s7ST+5787)] ¢,y
2
0 0
(1.34)
1 1 1 1 |1
= SZSZ ¢;§1/_1 + ES S+ ¢;§1/_] + §S+S ¢;§1,_].
0 0 0
1 1 0
Now,s* | | =0,s7| | =h| |, 8¢5, =h(m —1)¢5, | and,
0 0 1
St¢S, =S +m)(S—m + )¢5, =nhf'¢>,. Thus, from Eq. (1.34) we get,
Lel! 2 - 1) |1 n2f |0
58| |43, = — ¢S, |+ 2f 03, (1.35)
0 0 1

where ' = V(S + m’)(S —m’ + 1) is spin flip probability of spin flipper when spin down

electron is incident. We impose boundary conditions (1.22) on wavefunctions for spin up
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electron incident in (1.18), (1.19) and get equations which are mentioned below,

it —tn = -1, (1.36)
=ty =0, (137)
(1=idm')ry —id froy + ity = 1 +idm, (1.38)
—idfrip+ (1+id(m + 1)y + 1y, =T f, (1.39)
where J = m;JO is a dimensionless parameter which measures the strength of exchange

interaction, as the product Jyd(x)s .S has dimensions of energy, thus § which represents spin
angular momentum of electron is in units of 7 and S considered as spin angular momentum
of spin-flipper also in units of 7, §(x) having dimensions of 1/L, therefore Jy the exchange
interaction has dimensions of E — L/#2. Similarly, if we impose boundary conditions (1.22)

on wavefunctions for spin down electron incident in (1.20), (1.21), we get,

rip =t = 0, (1.40)
ry -ty =1 (1.41)
(1=id(m = V))ryp—idf'ry +1y =il (1.42)
—iJf’r” + (1 + iJm’)ru +1) = 1-iJm'. (1.43)

If we solve the equations (1.36)-(1.43) we will get different scattering amplitudes: rpp, 1y,
t11, tpy (for spin up electron incident) from normal metal Ny and rq, r||, |1, f}; (for spin
down electron incident) from normal metal N. Reflection and transmission probabilities for
spin up and spin down electron are thus: Ryt = |r11]2, Ry = |rpyl%, Typ = |t]?, Try = 11y )2
(for spin up electron incident) and Ry = |r1|%, Ry = |ryl?, Tip = |typ]?, Ty = |ty |? (for
spin down electron incident). We plot reflection and transmission probabilities with spin-
flip and no-flip as a function of exchange interaction J in Fig. 1.6 for different values of the

spin of spin flipper S(1/2,3/2,5/2). In Fig. 1.6(a), we see reflection probability without flip
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increases with an increase in the spin of spin flipper S independent of exchange interaction
J, while in Fig. 1.6(b) reflection probability with flip increases with an increase in S only

for low values of J but for high values of J it decreases with S. Next, in Fig. 1.6(c), we plot

Figure 1.6: (a) Reflection probability without flip, (b) Reflection probability with flip, (¢) Trans-
mission probability without flip and (d) Transmission probability with flip. Parameter: m’ = —1/2.

transmission probability without spin-flip. For increasing spin, it continuously decreases
independent of J. Finally, in Fig. 1.6(d), we plot transmission probability with spin-flip;
we see transmission probability increases with an increase of § for low values of J, while
for high values of J, it decreases with S.

Similar to how we explained the current calculation in the case of a N —1—S junction, we
consider the contribution of the spin-polarized carriers in the energy interval [E, E + dE].
This contribution is again proportional to electronic velocity, the density of states, and the

Fermi distribution function. The interface area where the two Normal metals touch is now
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denoted as ‘W. At this interface, the diameters of the metallic contact’s are assumed to be
much smaller than the electron’s mean free path. Further, in the linear response regime, we
assume voltage bias applied eV <« Ef (the Fermi energy) and the electrons to be moving
ballistically across the interface. When a voltage bias V(= V| — V,) is applied across the
N;-SF-N; junction (see Fig. 1.5(b)), the transmitted spin-polarized current through the

interface at a finite temperature in one dimension can be calculated as,
Iy = ,O(EF)evFW/ [f(E —eV) = f(E)][Tyo]dE, (1.44)

where f(FE) is the Fermi Dirac distribution function, ‘W denotes contact area over which
two normal metals touch, p(EF) is density of states at Fermi energy, vz is electron velocity
at Er and T, is probability for an electron to transmit to N, with spin o-, when an electron
with spin ¢’ is incident. Since the function [f(E — eV) — f(E)] is only finite in the
region eV around Fermi energy Er, the density of states as well as the electron velocity
are constant in this interval, therefore they are outside the integral. The charge current in

N at finite temperature is given as,
1. = IT + Il = p(EF)evFW/ [f(E —eV) - f(E)][TTT + TTl]dE' (1.45)

At zero temperature, Fermi Dirac distribution function is defined in terms of Heaviside
step function, f(E —eV) = O(eV — E) and f(E) = O(—E). Thus, at zero temperature,
Eq. (1.45) reduces to

ev
I. = p(EF)evFW/ [TTT + TTl]dE' (146)
0

If we take derivative with respect to E at E = eV on both sides of Eq. (1.46), then we will

get
dl.

<y = PEREvEWITy + Ty ). (1.47)
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Figure 1.7: (a) Differential charge conductance (G.) normalized by Gy, as function of exchange
interaction J for different values of spin S and fixed magnetic moment m’ of spin flipper at zero
temperature, (b) Differential charge conductance (G.) normalized by Gy, as function of exchange
interaction J for different values of magnetic moment m’ and fixed spin S of spin flipper at zero
temperature. Parameters: (a) m’ = —1/2; (b) S =3/2 and, Gy = p(Ep)evaW.

The quantity fli‘; in Eq. (1.47) is defined as the differential charge conductance (G.) at zero
temperature which is proportional to (T4 + T7)). In Fig. 1.7(a), we plot differential charge
conductance versus exchange interaction J for different values of spin § and fixed magnetic
moment m” of spin flipper at zero temperature. We see that differential charge conductance
is symmetric to exchange interaction J, and with an increase of spin § of a spin flipper, it
decreases for the entire range of J. In Fig. 1.7(b), we plot differential charge conductance
versus J for different values of magnetic moment m’ and spin S of the flipper. We see
that although the behavior of the differential charge conductance remains the same to J for
different values of m’, the magnitude of G. changes with m’. For § = 3/2 and for m’ = 3/2,
1/2, —=1/2, =3/2, flip probabilities are f = 0, V3, 2 and V3 respectively. Thus, we can
also conclude that differential charge conductance decreases with the spin-flip probability

of the spin flipper.
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1.3 Andreev reflection mediated transport in Metal-Spin

flipper-Superconductor junction

1.3.1 Andreev Reflection in presence of a spin flipper

'

<
<
I

(a) (b)

Figure 1.8: (a) NS junction with spin flipper (SF) at interface (x = 0) with spin S and magnetic
moment m’. Scattering of an incident spin up electron is shown. Normal reflection, Andreev
reflection and quasi-particle transmission into superconductor are depicted, (b) N-SF-S junction
where N is connected to voltage V| and S is connected to voltage V, and V = V| — V, is the voltage
drop across the NS interface.

We consider a metal (N)-s-wave superconductor (S) junction as depicted in Fig. 1.8(a),
with a spin flipper at metal superconductor interface (x = 0). The Hamiltonian[13, 17]

used to describe a spin flipper is again given by,
Hspin flipper = ~J00 ()5S, (1.48)

where Jj is strength of exchange interaction between electron with spin s and spin flipper
with spin S.

An electron/hole with spin up/down incident from the metallic (N) region interacts with
the spin flipper at the interface, which may result in a mutual spin flip. Electron/hole can be

reflected back to N region with spin up or down. Electron-like and hole-like quasi-particles
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with spin up or down are transmitted into the superconducting (S) region for energies above
the gap. Model Hamiltonian in Bogoliubov-de Gennes (BdG) formalism of our system as

shown in Fig. 1.8(a) is given as

HI iAO(x)5y
Hpqg(x) = e (1.49)
—iA*O(x)0y -HI
where H = p?/2m* — Jo6(x)5 S—Ep,Ais superconducting gap for s-wave superconductor
and ®(x) is Heaviside step function. First term in H is kinetic energy of an electron with
effective mass m*, second term describes the exchange interaction Jy between electron spin
(5) and spin flipper’s spin (§ ), I is identity matrix, & is the Pauli spin matrix and Ef is Fermi

energy. Strength of exchange coupling[13] can be expressed via dimensionless parameter

J = m]:FJ 0 as the product Jy5(x)s .S has dimensions of energy, thus § which represents spin

angular momentum of electron is in units of 7 and S considered as spin angular momentum
of spin-flipper also in units of 7, 6 (x) having dimensions of 1/L, therefore Jy the exchange

interaction has dimensions of E — L/h2.
The wave functions of the different regions of our system as shown in Fig. 1.8(a) can

be written as, for electron with spin up incident,

_ N ikex (S M N —ikex 4S 1 N _—ikex ;S M, N ikpx 4S T N ikpx 4S
UN(x) = @) €7 P, Freepr € TP Fregpy € g e € d L e €7y, for x <0,

Ys(x) = tllgpfei%xqﬁi, + tli(pgeiq*xqbfq,ﬂ + tyltpge_iq’xqﬁi,H + tl}llgofe_iq*xqﬁfn,, for x > 0,
(1.50)
1 0 0 0 u 0 0
0 1 0 0 0 u -y
where<p]1\'= ,cp]2V= ,cpév= ,<piv= ,<Pf= ,9052 ,90§:
0 0 1 0 0 -y u
0 0 0 1 % 0 0
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junction
y
0
and, ¢ =| [ In Eq. (1.50), ¢V is the spinor for spin-up electron, ¢ is the spinor
0
u

for spin-down electron, (,013\’ is the spinor for the spin up hole and, cpi\’ is the spinor for
a spin-down hole. Similarly, gof is the spinor for a spin up electron-like quasi-particle,
cpg is the spinor for spin-down electron-like quasi-particle, gog is the spinor for a spin up

hole-like quasi-particle and, gof is the spinor for spin-down hole-like quasi-particle. The

amplitudes rll, rlﬁ, P11 T represent normal reflection without flip, normal reflection with
eh’ " eh

spin flip, Andreev reflection with spin flip and Andreev reflection without flip respectively.

Similarly IZZ, tlﬁ, tgl, tli are the transmission amplitudes corresponding to the reflection

process described before. ¢;§1 , is the eigenspinor of the spin flipper, with its S, operator

acting as: S2¢§z , = hm’qﬁi ,, with m’ being the spin magnetic moment of the spin flipper.

1
2 2\5
For E > A (for energies above the gap), the coherence factors are u? = %[1 + %],

1
v = %[1 - %], while wave-vectors in metal are k,; = ,/%(Ep + F) and in
superconductor are g, = 22’—2* (Er + VE? — A?) and for E < A (for energies below the gap)

1 1
E+i(A2—E2)2 E-i(A>-E?)2 . :
2= J[EHOER] )2 = S EHAEEDR ] while wavevectors in

metal are k,j = w/%’{‘—;(Ep + E) and in superconductor are g, = \/2?1&2* (EF £iVA? - E?)

[9], wherein E is the excitation energy of electron above Er. In Andreev approximation,

the coherence factors are u

which we will use, Er > A, E we take k, = k, = q+ = g— = kr.
Similarly as mentioned above, if we consider an electron with spin down incident from

normal metal, the wavefunctions for different regions can be written as

_ N ikex 4S W N —ikex 48 W N —ikex 48 W N ikpx ;S W N ikpx ;S
UN(X) =@y et e e NG Hrospy e gy +rog5e hE gy +r € e,y forx <0,

l S iq+x S .S iq+x S l S —l’q,X S s —iq,x S
WS ('x) teesa] e ¢m’_ teeSO D e ¢n1’ tehgoz. e ¢m’ teh904 e ¢m'_]’ fOI‘ X > 0’
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where ril, rii, rﬂl, rj%l are the normal reflection amplitude with flip, normal reflection

amplitude without flip, Andreev reflection amplitude without flip and Andreev reflection

amplitude with flip respectively. Similarly til, tii, ti/Tw tii are the transmission amplitudes
corresponding to the reflection process described before. The wavefunctions (1.50) and

(1.51) satisty the boundary conditions at x = 0,

d d 2m* Jo5.S
Uy =y, and T8N L 0TS, (1.52)

where 5.5 = 5.8, + %(S_SJr + s787) is the exchange operator in Hamiltonian (1.49),
s* = s, +isy are raising and lowering spin operator for electron/hole. As spinors are written
in both electron/hole and spin up/down basis the 5 spin operators for electron/hole are now

4 x4 matrices instead of 2 X2 matrices in section 1.2. §* = S, +iS), are raising and lowering

o 0 0 oy 0 o
spin operator for spin flipper with s, = 5 ,Sx =13 Sy =15 ,
0 -o, o, 0 oy 0
. _ 5 0 oy tioy ~ _ 5 0 Oy —ioy
sT = sy tisy =35 and, s~ = sy —isy = 3
oy —ioy 0 ox tioy 0
1 O 0 1 0 —i o ‘ ‘
o, = , Oy = and, o, = are the usual Pauli spin matrices. Action
0 -1 1 0 i 0

of exchange operator §. .S for wave-function involving spin up electron spinor, see (1.50) is,

L2 1 _ |
S.SSOJIV¢§,“ = stzsojlv¢fnr + ES S+50]1v¢§1r + §S+S (pllv¢;§,l/. (1.53)

§ acts on electron spinor, while S acts on spin flipper spinor. Now, s+<p]1V = 0, since s
is the spin raising operator for electron and there are no higher spin states for a spin-1/2
electron than up and so the 3rd term in Eq. 1.53 vanishes, while s‘go’lv = hgpé\’ , the spin
lowering operator gives the down spin state <p§] of electron. Further, for spin-up electron

szgollv = g(p[lv , and for spin flipper: Sz¢fn , = hm’qﬁfn ,. The spin-raising and spin-lowering

operators acting on spin flipper give: S+¢§1, =N —m)S+m’ + )¢S,  =hfeS

m’+1 m’+1
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= WS —m)(S+m + D5, = hifpS,, see section 1.2 Egs. (1.25)-(1.27)

and S‘(/)li

"+1
for derivation of §* ¢§1, operation.

f s

Thus, 5.5¢%¢3, & e+ =) b (1.54)

Similarly, action of 5.S for wave-function involving spin-down electron spinor, see (1.51)

is,
n2m’ o fo

> N + — % VoS, (1.55)

350 b5 =
In Egs. (1.50) and (1.51) we have only given the cases of spin up or spin down electron
incident. Similarly, we can write the normal metal wavefunctions in case of either spin up
or spin down hole incident. Action of exchange operator for wave-function involving spin
up hole is,
h m’ o

2
2f oo, |, (1.56)

and finally action of exchange operator on wavefunction involving spin down hole is,

h m’ K2
= ol oS, + —fgog%m .y (1.57)

$.5¢ oy =

In Egs. (1.54)-(1.57), f = V(S —m’)(S + m’ + 1) is spin-flip probability of spin flipper

when spin up electron or spin down hole is incident, while " = V(S +m’)(S —m’ + 1)
is the spin-flip probability of spin flipper when spin down electron or spin up hole is
incident. We impose the boundary conditions Eq. (1.52) at the interface (x = 0) on

wave-functions and solve the resulting 8 equations for each spin up and spin down electron

incident process and get the different scattering amplitudes: rll, rlﬁ, rZZ, rl,ll, tll, tlﬁ, tlll, tli

(for spin up electron incident case) and ril riﬁ rlll, ri}l til tiﬁ till W , (for spin down electron

incident case). The reflection and transmission probabilities are thus: Ree = Ireelz, Rli =
PRI = DR R = P T = @ - DR TR = 2 - v LR T = (@ -

HI% R =

2)|th|2 Tgi = (u? - vz)ltl h|2 (for spin up electron incident case) and Rﬁl [7se
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rel Ry, = Iri ARG, = g P Tl = @ = WA T = @ = W)l AT = (-
vz)ltﬂllz, Tji = (u* - vz)ltiil2 (for spin down electron incident case).
In Fig. 1.9 we plot normal and Andreev reflection probabilities with spin-flip or no-flip

for different values of the spin of spin flipper S(1/2,3/2,5/2), we fix the magnetic moment

of the spin flipper as m’ = —1/2. In Fig. 1.9(a), we see normal reflection probability
ReeTT ReeT~L
0.8
0.8

1
S==
2 .25 /
s=2 0.20%
2
0.15
s=2
1010F
,l' \\ lll' ‘\
¢ Q5[ A7
~~~~~~ E 1
E : = E
-2A -A 0 A 2A

Figure 1.9: (a) Normal reflection probability without flip, (b) normal reflection probability with
flip, (¢) Andreev reflection probability with flip and (d) Andreev reflection probability without flip.
Parameters are: J =1, m" = —1/2.

without spin-flip increases with an increase of spin (), while in 1.9(b), normal reflection
probability with spin-flip shows a mixed behavior. It first increases then decreases with an
increase of S for the entire range of electron excitation energy. Next, in Fig. 1.9(c), we plot
Andreev reflection probability with spin-flip; for increasing spin, it continuously decreases

for both above as well as below the gap. Finally, in Fig. 1.9(d), we plot the Andreev
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reflection probability without spin-flip; we find both above as well as below the gap, the
probability decreases as spin increases. Thus, for the high spin values of the flipper, the
normal reflection probability is significant, but the Andreev reflection probability is small.
The Andreev reflection hence is inhibited by the spin of the flipper.

In Fig. 1.10, we plot the quasi-particle transmission probabilities for spin-flip and with-
out spin-flip for the same parameter values as in Fig. 1.9. There is no single-particle state
in the gap, and transport is via Cooper pairs. Thus, there is no quasi-particle transmission
below the gap. Since there is no quasi-particle transmission below the gap, we will only

focus on the above-the-gap regime. In Fig. 1.10(a), we show that with an increase in the spin

EE ™
Tee Tee
0.7¢ 0.30 ¢
06} 0.25 f
05F o020k o
0.4F
0.15 y
0.3 F
0.2 0.10 ¢
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0.030
0.025 0.06
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0.015 Y
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Figure 1.10: (a) Electron-like quasi-particle transmission without flip, (b) electron-like quasi-
particle transmission with flip, (c) hole-like quasi-particle transmission with flip and (d) hole-like
quasi-particle transmission without flip. Parameters: J =1, m’ = —1/2.

of the spin flipper (§), the electron-like quasi-particle transmission without flip decreases.

On the other hand, in Fig. 1.10(b) with an increase in the spin of the spin flipper (), the

electron-like quasi-particle transmission with flip increases. Thus, high spin values of the
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flipper inhibit no flip transmission but boost transmission with spin-flip for electron-like
quasi-particles. In Fig. 1.10(c) and (d), we plot the probability for hole-like quasi-particle
transmission; in (c), we see that with an increase in the spin of the flipper (5), the probability
for spin-flip transmission decreases while in (d) we see the opposite. Thus high spin values
of the flipper show opposite behavior for holes; they inhibit spin-flip transmission while
boosting no-flip transmission.

As was seen earlier for NIS and N; — SF — N, junctions, we calculate the current in
the metallic side also as before we assume ballistic transport. The Metal-Superconductor
interface is considered a point contact in which the contact’s diameter is small compared
to the electron’s mean free path. The current as before is proportional to the velocity of
charge carriers, the Fermi distribution function, and interface area A. Further, the applied
bias voltage eV < EF, implying we are in the linear transport regime. Finally, we consider

1D transport assuming the setup translationally invariant along y and z directions.

1.3.2 Differential charge conductance

According to the BTK theory[9], when a voltage bias V is applied at the NS interface
(see Fig. 1.8(b)), the charge current through the NS interface at a finite temperature in one

dimension is given by,
1S = pEnesr At | 1FE=ev) - FoI + K]+ Rl - R - REE, (1.58)

where p(Er) denotes density of states at Er, vp is the electron velocity at Er, A is the
contact area over which the normal metal and superconductor touch and f(E) is the Fermi
Dirac distribution function. Since the function [f(E — eV) — f(E)] is only finite in the

region eV around Er, the density of states as well as the electron velocity are constant in
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this region, thus they are outside the integral. At zero temperature Eq. (1.58) reduces to,
ev
1Y = p(Ep)evp A / [+ R+ R~ RIT - RIYdE. (1.59)
0

If we take derivative with respect to E at E = eV on both sides of Eq. (1.59), then we will

get,
di;” 2 M, Rl _ pIl_ pll
- = p(Ep)eveAill + R) + Rl — RIL = RIL (1.60)

The quantity dff‘v,s in Eq. (1.60) is defined as the differential charge conductance (G.) at

G./G,
26

_1;5.:___
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Figure 1.11: (a) Differential charge conductance as function of energy of incident electron in
units of A for different values of exchange interaction J at zero temperature, (b) Differential charge
conductance as function of exchange interaction J for different values of spin S of spin flipper
at zero temperature. Parameters: (a) S = 1/2, m’" = —=1/2; (b) m’ = -1/2, E = 1.5A and
Gr = p(Ep)e*vp A.

zero temperature which is proportional to (1 + RZ; + Rli - RZZ — Rli). In Fig. 1.11(a), we
plot differential charge conductance as a function of the energy of incident electron E for
different values of exchange interaction J of the spin flipper. We see that with an increase
of J, differential charge conductance decreases. When there is no spin flipper (J = 0) at

the NS interface (x = 0), G./G is constant at 2 for below the gap, while above the gap it

continuously decreases, where G = p(E r)e*vp A is the normalization constant. However,
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in the presence of a spin flipper, differential charge conductance is always less than 2, and
for / = 1 beyond a peak at E = 0, G./G continuously decreases. Further, we notice
that for a high value of J (J = 2), there are peaks present symmetrically at both positive
and negative energies near the gap edges within the energy gap. In Fig. 1.11(b), we plot
differential charge conductance as a function of exchange interaction J for different values
of spin S of the spin flipper. We see that differential charge conductance is symmetric for
J, and with an increase of spin S of the spin flipper, it decreases independent of J. This
behavior is similar to what we see in the case of N;-SF-N, junction.

In this section, we have studied the effects of Andreev reflection mediated transport
at metal superconductor junction in the presence of a spin flipper at the interface. The
reason we study these systems in detail is that in chapter 2 and chapter 3 we explain
how this Normal metal-Spin flipper-Superconductor system can reveal Yu-Shiba-Rusinov
states (see chapter 2). When the s-wave Superconductor is replaced by topological p-wave
Superconductor or spin-orbit coupled superconducting wire (SOCSW), one can check the
stability of the generated Majorana bound states to spin-flip scattering (see chapter 2).
Notably, we see that such a simple system can result in generating odd frequency equal
spin-triplet correlations, a fascinating result (see chapter 3).

In the next section, we will discuss the DC Josephson effect. We will then discuss An-
dreev bound states, the total Josephson current, and its bound and continuum contribution
for superconductor-normal metal-superconductor (SNS) junction. In chapter 4 we report
on designing a tunable 0 — 7 Josephson junction in the presence of a spin flipper/magnetic
impurity without taking recourse to Ferromagnets or high 7. superconductors, and how a

spin flipper in ferromagnetic Josephson junction can result in anomalous Josephson effect.
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1.4 DC Josephson effect

In 1962, Brian Josephson[ 18] first predicted that a supercurrent /5 could exist between two
s-wave superconductors separated by a weak link (which may consist of a thin insulating
barrier). The supercurrent is proportional to the sine of the phase difference (¢) between
the two superconductors.

Is(¢) = Ic sin(¢) (1.61)

This effect is called the DC Josephson effect[18]. AC Josephson effect also exists, but it
will not be considered in this thesis. The maximum current /¢ in the current-phase relation
is the critical current. The physics behind the DC Josephson effect can be understood
in this way, an electron/hole located in the weak link cannot penetrate directly into the
superconductor if its energy is below the superconducting gap. However, charge transport
via Andreev reflection can occur. An electron incident on, say, the right interface (see
Fig. 1.12) is converted to a hole moving in the opposite direction. Thus, a Cooper pair
will be generated inside the right superconductor. Consequently, the reflected hole is again
Andreev reflected at the left interface and is converted back to an electron, resulting in
a Cooper pair being annihilated in the left superconductor (Fig. 1.12). As a result of
this cycle, a pair of correlated electrons moves from the left superconductor to the right
superconductor, generating a supercurrent flow across the junction.

There are different properties[19] of the Josephson current phase relation, which is
independent of the weak link geometry and junction’s materials:

(i) If phase of one of the superconducting electrode is rotated by 2, the physical state
of the electrodes and the weak link does not change. As a consequence, Is(¢) should not

change and is a periodic function of 2,

Is(¢) = Is(¢ + 2m). (1.62)
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Jin | e

—¢lh

S Weak link S

Figure 1.12: An electron e and the Andreev-reflected hole h are shown in weak link, between two
s-wave superconductors. A pair of correlated electrons moves from left superconductor to right
superconductor, creating a supercurrent flow across the junction. The system is in equilibrium, no
voltage bias is applied.

(ii) Is(¢) is an odd function of superconducting phase difference ¢. In the absence of
time-reversal symmetry breaking in the system, a sign change in the phase difference ¢

leads to the change in the direction of the supercurrent,

Is(—¢) = —Is(p). (1.63)

(iii) When phase difference between two superconductors is zero, i.e, ¢ = 0, no

supercurrent can flow through the junction,
Is2an) =0, n=0,%+1,£2,.... (1.64)
(iv) From (i) and (ii) one can see that the supercurrent is zero at ¢ = nn,
Is(mtn) =0, n=0,+1,£2, ..., (1.65)

thus it is enough to consider the supercurrent Ig(¢) only in between ¢ = 0 and ¢ = .
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From Egs. (1.62)-(1.65) it follows that, Is(¢) can be described by a Fourier series:

Is(¢) = Z 1" sin(ng). (1.66)

n=1

Eq. (1.66) considers multiple reflections at the interface, and /" represents the coeflicients
of the nth reflection processes of quasiparticles.

The Josephson Free energy E; is determined by E; = % fo¢ Is(¢')d¢’. As current
phase relation is sinusoidal, Is(¢) = I¢ sin(¢), the relation between Josephson Free energy

E; and phase difference ¢ is

hl
Ej(¢) = 2—ec<1 — cos(¢)). (1.67)

For a standard Josephson junction hence called 0 junction, Josephson Free energy is

minimum at ¢ = 0 when no current flows through the junction.

1.4.1 7 junctions

An interesting case arises when critical current I < 0, i.e., negative. This type of junction

is called 7 Josephson junction[20, 21] and it follows that,
Is = =Icsin(¢) = |Ic| sin(¢ + 7). (1.68)

The Josephson Free energy of a m-junction is

hl al,
E;(¢) = ’2—5‘(1+cos(¢)) - Iz_ec‘(l — cos(¢ + 7). (1.69)

From Eq. (1.69), the minimum of Josephson Free energy occurs at ¢ = 7 and the ground
state for such a junction is at ¢ = n. It contrasts with a conventional Josephson junction
where the Josephson Free energy is minimum at ¢ = 0.

Josephson 7 junction’s can be used as a phase inverter in superconducting quantum in-
terference devices (SQUIDs)[22]. Further, & junctions are preferred as a potential candidate

for designing qubits[23].
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1.5 Andreev bound states and Josephson current in SNS

junction

To calculate Andreev bound states and Josephson current, we consider a superconductor (S)-
normal metal (N)-superconductor (S) junction where there is a d-function barrier at the in-
terface between normal metal and s-wave superconductor. Superconducting gap parameters
A for left and right s-wave superconductors, are assumed to have same magnitude but differ-
ent phases ¢; and ¢ and are givenby A = Ag(T)[e'?LO(—x—a/2) +e¥RO(x—a/2)], O(x)
being Heaviside step function, Ag(T') is temperature dependent gap parameter and it follows
Ao(T) = Agtanh(1.74V(T./T — 1)), where T, is superconducting critical temperature[24].
The model Hamiltonian in BdG formalism of our system is a 2 X 2 matrix which is given

below,

H A
Y(x) = E¥(x), (1.70)
A" -H

H = p2/2m* + V[o(x +a/2) + 6(x —a/2)] — EF, here p2/2m* is kinetic energy of an
electron with effective mass m*, V is strength of § potential at both interfaces between
normal metal and superconductor and Ef is Fermi energy. If we diagonalize Hamiltonian,
Eq. (1.70), we get the wavefunctions in different regions of our system as shown in Fig. 1.13
for electron/hole-like quasiparticle incidence. There are four different types of quasiparticle
injection process into the system: an electron-like quasiparticle (ELQ) or a hole-like quasi-
particle (HLQ) injected from either the left or from the right superconducting electrode.

For a ELQ incident from left superconductor, wave function in left superconductor is,

ue'fr2 | velfr/2 | ue'fr/? .
Wsp(x) = e + ay e + by e ' for x < —a/2.

(1.71)
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Superconductor(SL) Normal Metal Superconductor(SR)

A,(T)e™ A,(T)e

X =-al2 x=al2

Figure 1.13: Josephson junction composed of normal metal sandwiched between two s-wave
superconductors.

The corresponding wavefunction in right superconductor is,

wetPr/2 ' velPr/2 '
Usr(x) = ¢y e'rr + dy e ' " for x > a/2. (1.72)
pe—itr/2 we—itr12

The wavefunction in the normal metal region is,

1 " 1 " 0 " 0 4
Wy (x) =1 et + ji e et + &y R e """ for —a/2 < x < a/2.
0 0 1 1

The coefficients a;, by, c1, and d| correspond to the scattering amplitudes for Andreev

reflection, normal reflection, transmission of ELQ, and transmission of HLQ respectively.

u= \/%(1 + —‘Ez_lAlz) andv = \/%(1 — —'Ez_lAlz) are the BCS coherence factors. ¢. are

E E

wavevectors in superconductor and k., are wavevectors in normal metal. We use Andreev

approximation [25] g+ = g- = kr and k. = kp Sg—f, where kr = 2m*Er/h? is the

Fermi wavevector, with Er > |A|. The boundary conditions at x = —a/2,

Usp(x) = ¥y (x), (continuity of wavefunctions) (1.74)
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d d 2m*V
:le - zSL = rgz Yy, (discontinuity in first derivative) (1.75)
X X

and at x = a/2,

YN (x) = Ysr(x), (1.76)

d’ﬁSR _ dlﬂN _ 2m*V
dx dx 2

UN. (1.77)

By using the above boundary conditions, one can get the different scattering amplitudes.
The wave functions for the other three types of quasiparticle injection processes are formu-

lated in the same way.

1.5.1 Andreev bound states

An electron in normal metal is incident at the NS interface with an energy below the
superconducting gap and cannot penetrate the superconductor. However, at the NS in-
terface, Andreev reflection occurs, in which a hole with opposite momentum is reflected
into normal metal, and a Cooper pair is formed in the superconductor. The same effect is
also present at the SN interface with the same coherent electron/hole. Therefore a bound
state is generated between the two superconductors, which is called Andreev bound state
(ABS)[26].

To calculate Andreev bound states we neglect the contribution from incoming quasiparticle[27],
and insert the wavefunctions (Egs. (1.71)-(1.73)) into boundary conditions (Egs. (1.74)-
(1.77)). We get a homogeneous system of 8 linear equations for the scattering amplitudes.
If we express the scattering amplitudes in normal metal region by scattering amplitudes in

left and right superconductor we get a homogeneous system of 4 linear equations,

Px =0, (1.78)
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1.5. Andreev bound states and Josephson current in SNS junction

where x is a4 X 1 column matrix and is given by x = [b1, ay, c1, d; 1" and P is a 4 x 4 matrix

which is given by,

ikpa 7£(k a+2ke a) i2k,
e 2 u(ycostkea)-(i—2Z)sin(ke a)) e 2WFATKeD |, (1yyyeiked (11y_i27)+i2Z) I
— 5 - Ty u v/n
ikpa . )
e 2 v(ylcos(kya)=(i-2Z)sin(kj, a)) _pu=lty +ei?knd 14y, -i22)+i2Z) vn ufl
y 2y
P=\ikpa _ikpa :
e 2 u(y(1+i4Z)cos(k()a)—i(y2+22(i—22))sin(keu)) ie 2 v(y(i+4Z)cos(kgu)+(—y2+ZZ(i+2Z))sin(k()a)) ul —v/n
y y
ikpa .
e 2 vy (1+i4Z) cos(ky a)—i(y?+2Z (i-2Z)) sin(kj, a)) pu(—y1+y|2—e'—kh“(yl—2[2)(1+y1—2i2)—2iz+4iy1z—422)
1 v v  ufl
(1.79)

where y = (1 +55), y1 = (1 - 52), p = e73krat2hna) | = pb(krato) and p = e3(kra=¢),
For a nontrivial solution of this system of equations to exist, Det P = 0, and we get Andreev
bound states as a function of phase difference (¢ = ¢ — ¢ ) between two superconductors.

We find that Andreev bound states are given by,

2 (E'f)+ +(E'f)(“) 2 0, %1, +2 (1.80)
—2arccos | — | + L= =2mn, n=0,+1,+2, ... )
Al =\ A )\ &

Er_s superconducting coherence length. In this thesis we mainly concentrate

where &) = Tr A

on short junction limit. In the short junction limit (a << &) the third term of the left hand

side in Eq. (1.80) is neglected and therefore we get two Andreev bound state energies

E*(¢) = +|A| cos (g) (1.81)

where ¢ = ¢ — ¢ is phase difference between right and left superconductor. In Fig. 1.14
we plot ABS’s (Eq. (1.81)) as a function of phase difference ¢ for a short SNS junction.

We see that two degenerate ABS’s appear below the superconducting gap.

1.5.2 Bound state current

Each Andreev bound state carries a supercurrent in the SNS junction. The Josephson

bound state current carried by the discrete Andreev bound states is given by[19] the sum,

+

2 dE}
Is(p) = = Zf(E;f(go))d—(;, where n =0, +1, %2, ... (1.82)
n,x
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E*/|a|

Figure 1.14: Andreev bound states E* in units of |A| (the energy gap of s-wave superconductor)
as a function of phase difference (¢) for a short SNS junction.

In short junction limit (a << &j) one can derive the Josephson bound state current as[28],

80T 1 (2 (ﬁAo(T) cos(%))_

h

Ip(p) = (1.83)

sin ( 2 2
1.5.3 Continuum current

Continuum currents can only flow if there is an imbalance in the electrical currents carried
by the quasiparticles incident from left and right superconducting contact. The current
contribution[29] originating from the imbalance in electrical current per unit energy of the

electron-like quasiparticles flowing in the continuum levels is given by,

e 2@ _lAl * 1 e e
I () = = / o T X TeEe) ~TL (B (BYE (184

Similarly the continuum contribution from hole-like quasiparticles can be calculated by

replacing ‘e’ in Eq. (1.84) by ‘#’. In Eq. (1.84) T _ , = |c1 |2 — |d1|? is transmission for the

—R

electric currents moving from left to right of the system. We have

T g(E.@) =Tf_ p(E,—¢) (1.85)

The continuum contribution from holes is found to be equal to the electronic continuum

contribution. Therefore, the total continuum current due to electron-like and hole-like

56



1.5. Andreev bound states and Josephson current in SNS junction

quasiparticles is given as,
I&(@) + 10 ()

Ic(p) = 7

1.5.4 Total Josephson current

Total Josephson current (Ir) is the sum of bound state and continuum supercurrent, i.e.,
It = Ip + I¢c. But, it can also be calculated by a different method using detailed balance,
first done by Furusaki-Tsukuda in Ref. [30]. Using the generalized version of the Furusaki-

Tsukuda formalism[30] the total DC Josephson current is given by,

(1.87)

IT((P) = eAo(T) Z q+(0~)n) + q—(wn) % (al(a)n) ar(wy) )’

2pBh Q, q+(wy) - q-(wp)

herein w, = (2n + 1)xr/ B are fermionic Matsubara frequencies with n = 0, 1, £2, ... and
Q, =, /a),% + A(z)(T). B = 1/(kpT), where kp is Boltzmann constant and 7 is temperature.
q+(wy), g-(wy), and a;(w,) are obtained from ¢,, g— and @; by analytically continuing £
to iw,. a; is Andreev reflection amplitude for electron incident from left superconductor,
while a, is Andreev reflection amplitude for hole incident from left superconductor. We

sum over Matsubara frequencies numerically. The detailed balance condition[30, 31] is

verified as,
-, E E
a(=p.E) _ axe ), (1.88)
q+ q-
bi(—p, E) = bi(p, E), i =1,2. (1.89)

In Fig. 1.15 we plot bound state, continuum, and total Josephson currents for the
transparent regime (Z = 0) for an SNS junction. We consider short junction limit (a < &).
In this limit, the continuum contribution of the total Josephson current is almost zero.
Therefore the bound current and total current are almost the same. However, in the case
of long junctions (a > &), the continuum contribution to the total Josephson current is

finite.

57



1. INTRODUCTION

05+ 4/} mmmmmees Itlly

|
(o2}

|
IS

|
N
N
IS

Figure 1.15: The bound, continuum and total Josephson current normalized with respect to
Iy = eAg/h, as a function of phase difference (¢). Parameters: Ay = 1meV, T|T, = 0.01, Z = 0.

1.6 Outline of the thesis

In this thesis, we investigate the effects of spin-flip scattering on Andreev refection-mediated
transport in the vicinity of a superconductor. In chapter 2, we study the formation and char-
acteristics of Yu-Shiba-Rusinov (YSR) bound states below the superconducting gap using
the BTK approach in the vicinity of a spin flipper. We analytically calculate the differential
conductance for a metal (N)-metal (N)-superconductor (S) junction when there is a spin
flipper between the two metals and a ¢-like potential barrier between metal and super-
conductor. We concentrate on zero-bias conductance spectra and show the formation of
a zero-bias peak due to the merger of two YSR bound states in the presence of spin-flip
scattering. However, in the absence of spin-flip scattering, a dip forms at zero bias in
conductance spectra. We further examine the stability of Majorana bound states (MBS’s)
induced zero-bias conductance peak (ZBCP) in a metal-topological superconductor junc-
tion in the vicinity of a spin flipper. We show that quantized ZBCP remains stable in
the presence of spin-flip scattering for metal-p-wave superconductor junction. However,
it loses its stability when the p-wave superconductor is replaced by a spin-orbit coupled

superconducting wire (SOCSW). The work in this chapter is based on the publications
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reported in Refs. [32, 33].

In chapter 3, we study the emergence of odd frequency equal spin-triplet correlations
in a metal-superconductor junction near a spin flipper. Using Green’s function method,
we compute the even and odd-frequency spin-singlet and triplet correlations in metallic
and superconducting regions. We have done calculations both at zero as well as finite
temperatures. We find that in the presence of spin-flip scattering, mixed spin-triplet
correlations vanish and only spin-singlet and equal spin-triplet correlations are finite. We
also calculate the spin-polarized local density of states (SPLDOS) and find its relationship
with odd frequency correlations. The work in this chapter is based on the publication
reported in Ref. [34].

In chapter 4, we study the nature of the O to m Josephson junction transition in the
vicinity of a spin flipper. We show that a spin flipper sandwiched between two s-wave
superconductors can transit from a O to 7 Josephson junction by tuning system parameters
like tunnel contact, spin, and magnetic moment of the spin flipper, or exchange coupling.
We also study the anomalous Josephson effect and the direction-dependent critical current
in the ferromagnetic Josephson junction wherein a spin flipper is sandwiched between two
ferromagnetic layers. We show that when ferromagnets are misaligned in the presence
of spin-flip scattering, time reversal and chiral symmetries are broken, and an anomalous
Josephson current flows through the junction. Further, this system can act as a phase
battery that can store quantized amounts of superconducting phase difference in the ground
state of the junction. The work in this chapter is based on the publications reported in
Refs. [35, 36].

In chapter 5, we study the origin of quantum spin torque in a ferromagnetic Josephson
junction when the magnetic moments of the ferromagnetic layers are aligned parallel

or antiparallel, and a spin flipper is embedded between two ferromagnetic layers. An
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equilibrium spin-transfer torque is seen in the ferromagnetic Josephson junction when
magnetic moments of ferromagnetic layers are misaligned. However, we show that when
a spin flipper is sandwiched between two ferromagnets, a novel quantum spin torque
is induced, i.e., even when magnetic moments of ferromagnets are aligned parallel or
antiparallel due to spin-flip scattering. The work in this chapter is based on the publication
reported in Ref. [37].

In chapter 6, we study the application of our spin-flipper doped Josephson junction in
quantum thermodynamics. We show that a 1D Josephson junction loop doped with a spin
flipper and attached to two thermal reservoirs can operate as a quantum heat engine or
quantum refrigerator, or a Joule pump, or even as a cold pump with high efficiency and
coeflicient of performance. Further, we find that this system can be tuned from engine to
refrigerator mode or to any other mode, i.e., Joule pump or cold pump, by either tuning
the temperature of reservoirs or via the flux enclosed in the Josephson junction loop. The
work in this chapter is based on the publication reported in Ref. [38].

Finally, in chapter 7, this thesis concludes with a summary of our most important results

and a perspective on future endeavors.
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Chapter 2

Formation of Yu-Shiba-Rusinov bound
states and stability of Majorana bound

states in presence of spin flip scattering

“The greater is the circle of light, the greater is the boundary of the darkness

by which it is confined.”

— Joseph Priestley

2.1 Introduction

In conventional s-wave superconductors, magnetic impurities induce bound states, whose
energy lies within the superconducting gap. It was first discovered by Yu, Shiba, and
Rusinov independently in the late 1960s and is now termed as Yu-Shiba-Rusinov([39, 40, 41]
(YSR) states. The interaction of the impurity spin with Andreev reflected electrons or
holes gives rise to these low-lying YSR excited states. In the past, YSR bound states
have been observed experimentally by scanning tunneling spectroscopy[42, 43, 44, 45] on

superconducting Pb or Nb surfaces.
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The importance of YSR bound states has been recently enhanced for several rea-
sons. One reason is the prediction of topological superconductivity, and Majorana bound
states[46, 47] (MBS’s) in chains of magnetic adatoms on superconductors[48]. MBS’s
are quasiparticle excitations within the superconductor at zero energy which are their anti-
particles[49]. Majorana zero modes can be observed at the boundary with a topological
superconductor[50]. Another reason is that there has been experimental progress on mea-
suring subgap spectra with much higher resolution than previously possible[51]. It has
motivated theoretical and experimental work examining the basic properties of YSR bound
states in more detail. Further, YSR bound states carry information on the strength of
exchange coupling between impurity spin with the Andreev reflected electrons or holes,
which measures the many-body ground state properties of the system[52].

In this chapter, we show the occurrence of YSR states using a simple BTK approach[9]
(see Introduction section 1.1.1), in the presence of a spin flipper. The exact setting we will
use is shown in Fig. 2.1. It depicts a spin flipper at x = 0 and a ¢-like potential barrier
at x = a. Inregions I (x < 0) and II (0 < x < a), there are two normal metals, while
for x > a, there is a s-wave superconductor. We study the signature of YSR bound states
through Andreev reflection probabilities and conductance spectra. We focus on zero energy
in the conductance spectra and show how a peak is formed at zero energy due to spin-flip
scattering, but for no flip, a dip forms at zero energy in the conductance spectra. This zero
energy conductance peak is almost quantized at 2e%/h values. However, it arises due to
non-topological reasons in contrast to the zero-energy peak (ZEP) formed due to Majorana
states. Technically, YSR bound states are obtained by taking exchange interaction J — 0,
impurity spin S — oo, thus rendering JS=finite[40, 53]. We also see that YSR states arise
for low values of J and high § values. Second, we examine the stability of Majorana

zero modes in a metal-topological superconductor junction in the vicinity of a spin flipper.
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Using the BTK approach, we analytically calculate the differential charge conductance
for metal-spin flipper-topological superconductor junctions with two distinct topological
superconductors: (a) spin less p-wave superconductor and (b) spin-orbit-coupled s-wave
superconducting wire in the presence of a Zeeman field. We find that the quantized ZEP
remains stable in the presence of spin-flip scattering for metal-p-wave superconductor

junction, while it loses its stability when a SOCSW replaces p-wave superconductor.

2.2 Signature of Yu-Shiba-Rusinov bound states in nor-

mal and Andreev reflection probabilities

Metal /| Metal | Superconductor

Figure 2.1: (a) A spin flipper with spin S and magnetic moment m’ at x = 0 in a Normal Metal-Spin
flipper-Normal Metal-Insulator-Superconductor junction, (b) The scattering of an up-spin electron
incident is shown. Andreev reflection and quasi particle transmission into superconductor are
depicted.

We consider a metal (N)-metal (N)-superconductor (S) junction with a spin flipper

between two metals at x = 0 and a d-like potential barrier exists at the metal-superconductor
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interface at x = a. The above model for a spin flipper in an Andreev setting matches quite
well with solid-state scenarios such as seen in 1D quantum wires or graphene with an
embedded magnetic impurity or quantum dot[14, 54]. When an electron with energy E
and spin up or down is incident from the normal metal, at the x = O interface, it interacts
with the spin flipper through an exchange potential which may induce a mutual spin flip.
The electron can be reflected or transmitted to region II, with spin-up or down. When
this transmitted electron is incident at the x = a interface, it could be reflected from the
interface. There is also the possibility of Andreev reflection of a hole with spin-up or
down. Electron-like and hole-like quasiparticles with spin-up or down are transmitted
into the superconductor for energies above the gap[32, 55]. The model Hamiltonian in
BdG formalism of our Normal Metal-Spin flipper-Normal Metal-Insulator-Superconductor

system is given below:

HI iAO(x — a)bry
A P(x) = E¥(x), 2.1)
—iA"O(x —a)b, -HI

where H = p?/2m* + V&(x — a) — Jo6(x)5.S — Ep. Wis a four-component spinor, A is
the gap in s-wave superconductor, and ®(x) is the Heaviside step function. Further, in H,
the first term is the kinetic energy of an electron with effective mass m*, for the second
term V is the strength of the ¢-like potential at the interface between normal metal and
superconductor. The third term describes the exchange interaction of strength Jy between
the electron with spin 5, and a spin flipper with spin S, & is the Pauli spin matrix and 1 is the

identity matrix, Er being the Fermi energy. We will later use the dimensionless parameter

m*V
W2kr

J = %f" as a measure of strength of exchange interaction[13] and Z =

as a measure

of interface transparency[9].

The wavefunctions in the different regions of the system are as shown in Figs. 2.1(a)
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and 2.1(b) and can be written in spinorial form[27] for an electron with spin up incident

from region I (normal metal) as:

1 1 0 0 0
of . 0 ) 1 . of . of .
Yl (x) = e’kex¢;g,l,+rgl e_’kex¢frl,+rgi e_’kex¢i,+l+rl£ e’k”x¢fn,+l+r2}1 e’k”x¢fn,, for x < 0,
0 0 0 0
0 0 0 0 1
2.2)
1 0 1 0
a0 . 1 of . 1 )
1//11\,1 (x) = teTeT e’kex¢§1, + teTel e’kex¢§1,+l + bll e_’ke(x_a)(ﬁi, + bgi e_'ke(x_a)¢fn,+l
0 0 0 0
0 0 0 0
0 0 0 0
) of . of . of .
+ cgg | e’k”(x_a)¢fn,+1 + cgi . elk”(x_a)¢,sn, + aZZ e"k"xqﬁzﬂ + aLll . e knx S for0 < x < a,
0 1 0 1
(2.3)
u 0 0 v

0| . u | . -v| . 0] .
and ys(x) = 1] et S, 4 11 e’q*’c(ﬁfn,+1 + IZ}TL e_’q‘x¢i/+1 + t;ll e7 %S forx > a.
0 -V u 0

v 0 0 u

rll(rli) and r;t(rli) are the corresponding amplitudes for normal reflection and An-
dreev reflection with spin up(down). tll(tlﬁ) and tgl(tlfl) are the corresponding ampli-
tudes for transmission of electron-like quasi-particles and hole-like quasi-particles with

spin up(down). ¢fn, is the eigenfunction of spin flipper: with its S, operator acting

as- S;¢>, = hm’¢>,, with m’ being the spin magnetic moment of the spin flipper. For

1
E > A (for energies above the gap), the BCS coherence factors are u = \/ % [1 + %],

2_A2 1 *
V= \/% [1 - %], while the wave-vector in metal is k., = ,/%(Ep + F) and in su-
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perconductor is g = 27%* (Er £ VE?2 — A?) and for E < A (for energies below the gap) the

T(AN2_F2 1 _J(A2_F2 1
BCS coherence factors are u = \/ % [w], V= \/ % [w], while the wave-

vector in metal remains same, and in superconductor is g, = \/ 2’h”—z*(E r+iVAZ — E2)[9],
wherein E is the excitation energy of electron above Er. In Andreev approximation, which
we will use, EF > A, E, thus we have k, = k;, = g = q- = kp. The wavefunctions

(Egs. (2.2)-(2.4)) satisfy the boundary conditions at x = 0,

wll\, (x) = wll\,[ (x) (continuity of wavefunctions), (2.5)
d 11 d 1 2 *J —).51)
ij _ cll//xN = hzos Y, (discontinuity in first derivative), (2.6)
and at x = a,

w]IVI (x) = ¢s(x) (continuity of wavefunctions), 2.7

dys dyy  2m*V
i) - il - 1//]1\,] (discontinuity in first derivative). (2.8)

dx dx h?

When an electron with spin-up is incident from the metallic region, at x = 0 interface, it
interacts with the spin flipper via the exchange operator 5.5 in Hamiltonian, which may
induce a mutual spin flip. This electron can be reflected with spin up or down. Then from
the superconductor, there is also the possibility of Andreev reflection, i.e., a hole with spin
up or down is reflected (see Fig. 2.1(b)). Thus the wavefunction of the first metallic region
wll\, (Eq. (2.2)) has four components with (a) spin up electron, (b) spin-down electron, (c)
spin-up hole, and (d) spin-down hole. Now when the exchange operator 5.5 acts on the
wavefunction %Iv via Eq. (2.6) we get,

For spin up electron component,

1 1 0
-0 W2m’ |0 2f|1
= S N S
s.S ¢m’ = > ¢m/ + T ¢ml+17
0 0 0
0 0 0
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while for spin down electron component:

0 0 1
o1 2 +1) |1 1 f |0
2 s s N
S.S ¢m/+1 = _T ¢m/+1 + T ¢m/,
0 0 0
0 0 0
for spin up hole component:
0 0 0
[0 mm +1) [0 nf |0
2 S N N
S| N == | [$wert 5| [P
1 1 0
0 0 1
and finally for spin down hole component:
0 0 0
L= 0 h2m/ 0 hzf 0
S.S ¢l§’l/ = 2 ¢’,Sn/ + T ¢;§1/+1.
0 0 1
1 1 0

Here f = V(S — m’)(S + m’ + 1) is the spin-flip probability[13] for spin flipper. Using the
above equations and from boundary conditions (Eqgs. (2.5)-(2.8)) we get 16 equations. We
solve the 16 equations to calculate the different normal and Andreev reflection probabilities:
RI = 1rll1% Rle = IrieP R = Ir P RY, = Ir 2.

In Fig. 2.2 we plot the normal and Andreev reflection probabilities with a spin-flip or no
flip for different values of the spin S (19/2,21/2,23/2) of the spin flipper. We fix magnetic
moment of the spin flipper- m" = —1/2 and take Z = 0.85, i.e., non transparent regime. In
Fig. 2.2(a), we plot normal reflection probability without spin-flip at both below as well as

above the gap. We see that at zero energy, i.e., E = 0, there is a dip related to the band
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Figure 2.2: (a) Normal reflection probability without flip, (b) Normal reflection probability with
flip, (¢) Andreev reflection probability with flip, (d) Andreev reflection probability without flip.
Parameters are: J =0.4, Z =0.85, m’ = —1/2 and kra = 0.8437n, are in dimensionless units.

of YSR states, and it is robust for high spin § = 23/2 of the spin flipper. In Fig. 2.2(b),
we plot normal reflection probability with spin-flip for both below and above the gap. We
see a peak related to YSR bound states at zero energy E = O within the energy gap. The
explanation of why we address the zero energy peaks as related to YSR states is given in
the next section, where we show how they arise by plotting the real part of complex poles
of the conductance. Next, in Fig. 2.2(c), we plot the Andreev reflection probability with a
spin-flip at both below and above the gap. We also see a peak at zero energy E = 0 due to

YSR bound states within the superconducting gap. Finally, in Fig. 2.2(d), we plot Andreev
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reflection probability for no spin-flip at both below as well as above the gap. We see that

there is zero energy peak related to YSR bound states.

2.3 Differential conductance and Probability density

The differential charge conductance at zero temperature is defined as[56, 57]-
Ge=1+R + R - R]l - RIL. (2.9)

After deriving the amplitudes of normal and Andreev reflection by solving the scattering

problem, we get an expression for the differential charge conductance at kra = 0 as

G.=—, 2.10
0 (2.10)

where R = 8A2(AEZ + 2+ J2((1 +m")? = ) +4J(1 + mNZ + 4ZH)2 (A% = EX) + F2I((4 + (J + 20m")>)A% — J(1 + 2m")
E(J(E +2m’E) + 4YA2 — E2))),

2.11)
and Q = 4E2(4 + J2(1 + 22 +2m’ + 2m"?) + 47Z + 8Z2)2 (A2 = E®) + (E2(J* (f2 +m’ + m™>)?2 =4 (2 +m’ + m™)Z
+8J(Z+2Z) +8(142Z%+2ZH + J2(2+4Z% + f2(4-8ZY) + m' (4 —8Z%) + m> (4 - 8Z))) - (J*(f2 +m’

+m)?2 4B+ +mP)Z+ 40 +2Z02 +8I(Z+2Z) + P2+ (4= 8FH)Z% + m’' (4 — 8Z%) + m> (4 — 8Z%)))A?)?

(2.12)

The differential charge conductance at zero bias or zero energy from Eq. (2.10) is then,

B 8(F2I2( 4+ (J +2Jm)H) + Q+ J2(—f2+ (1 +m)2) +4J (1 + m')Z + 4Z%)?)
TP+ m2)2 A3 (2w A m2)Z +4(1 +2Z2)2 + 8J(Z +2Z3) + J2(2 + (4 — 8F2)Z2 + m/ (4 — 8Z2) + m'2(4 — 8Z2)))?
(2.13)

Ge

From complex poles of the conductance G, in Egs. (2.9), (2.10) one can get the YSR
bound states E*. Real part of the poles gives the energy where YSR peaks occur, while the
imaginary part gives the width of the peak. For kra = 0 we get,

x X
— =% 700, where (2.14)
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Xo= (22 +m +m?)=20Z —4Z>)((JP(f2 +m’ +m'?) =20Z —4Z>)? + 22+ J2 (L +2m’ (1 + m"))

+4J7 + 822))\/(J2(f2 +m +m?)=2JZ —4Z2)2 + 44+ 21+ 22 +2m'(1 + m’)) + 4JZ + 8Z2)

+ I3 am +m™ =8I (fF4m’ +m™)Z +64(1 + Z2)(Z +22%)? +320(Z + 1023 +247° + 16Z7)
— 4082+’ +m™E (=1 = 6Z% + (' + m™?) (=2 +4Z%) + fH(=1+4Z7) + 167 (f* +m’ + m™)Z

(=1 4+ (=2+6f2)Z% + (m" + m") (=1 +6Z2)) = 16J°Z(~1 —8Z% —8Z* + 372(1 + 4Z°> + 8Z*) + (m’
+m?)(1+82% +247%) - 812 (-1 - 1472 = 56Z* — 4875 + 2m’ (1 + m") (-1 + 27 + 8Z* + 162%)+
2721+ 627 +12Z* +162%) + 2J%(1 + 8Z% + 8Z* + (4m” + 2m'™*)(5 - 8Z% + 24Z%) — 4m’ (-1 + 8Z?

+247%) —2m (=7 +24Z% +247%) + fA 2+ 48ZY) + 42 (=222 (5 + 12Z%) + (m” + m*)(3 - 4Z% + 24Z%))),
(2.15)

and Yp = 2(J2(f2+m’ +m™?) = 20Z = 4ZH)2 (> (2 +m' + m'™?) = 20Z - 4Z2)? + 44 + T2 + 22 + 2m’ (1 + m"))

+4J7 +87%)). (2.16)

The condition when two YSR bound state energies merge at zero energy, i.e., E* = 0, is
then from Eq. (2.14),-

Z= %(—fJ + V4T 4 8m" +8m + f2(T+20m")? £ 2GS (—1 + TP + 80T (-1 + JPym’ A+ m") + (1 + 2m")*

F(f+2fm) A +477m' L +m") + 44 m? A+ m)? = (L +2m")? + T2 +4m’ +3m"™ = 2m” = m™)))))
(2.17)

The above condition leads to the formation of the peaks at zero energy in conductance
spectra. The zero-energy YSR states are the fingerprint of quantum phase transitions in
the ground state of the junction[58]. These zero-energy YSR conductance peaks are non-
topological in contrast to the zero-energy 2¢”/h quantized conductance Majorana peaks,
therefore it helps to distinguish between trivial and non-trivial zero energy conductance
peaks. There are some important differences between YSR bound states and Andreev
bound states.

(i) Andreev bound states arise due to ordinary (non-magnetic) impurity, but YSR bound

states arise due to magnetic impurity.
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(ii) Andreev bound state can also arise at the gap edges (E = +A), however YSR bound
state can only arise below the superconducting gap (-A < E < A).

In our work in presence of spin-flip scattering Andreev bound states and YSR bound
states merge, thus we can not differentiate Andreev bound states from YSR bound states. In
absence of spin flipper (J = 0 case) and for no flip (f = 0) there are no YSR states within
gap [-A, A]. The signature of YSR bound states can also be seen in probability density. To
evaluate this, we integrate the squared absolute value of wavefunction amplitude in normal

metal region II.
a
/ WAl o 1Pdx = P = [t} P+l Pl P+ 1B P+ T P+ P+ alT 2 +1aT P (2.18)
0

where t;TeT, t;Tel, bll, blﬁ, cﬂl, cli, alll, alﬁ are the reflection amplitudes of electrons and

holes with spin up and down in region II (normal metal).

2.4 Signature of Yu-Shiba-Rusinov bound states in con-

ductance spectra

We focus on the zero energy YSR peak. In Fig. 2.3 we plot conductance spectra for both
no flip as well as the spin-flip case. We see that for no flip case (f = 0), there is a dip at
zero energy for all values of interface transparency Z (Z = 0.5,0.78, 1). But in contrast
to no flip case for the spin-flip case, we see that for Z = (.78, a peak occurs at £ = 0
due to two YSR states merging. But for Z = 0.5 and Z = 1, there are dips at £ = 0,
same as no flip case. In Fig. 2.3(b), we also see there are peaks, due to YSR bound states,
present symmetrically at both positive and negative energies for Z = 0.5 and Z = 1. The
calculated real part of poles of conductance for spin-flip case in Fig. 2.3(b) are: +0.46A
(for Z = 0.5), £0.00028A (for Z = 0.78), £0.22A (for Z = 1) and they clearly match with

the conductance peaks shown in Fig. 2.3(b). In Fig. 2.3(c), we plot the energy bound state
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as a function of interface transparency Z for the same parameters as shown in Fig. 2.3(b).
We see two energy-bound states merge at Z = 0.78 and 1.62, where zero energy peaks are

observed in conductance spectra due to YSR states.

Figure 2.3: (a) Charge conductance vs energy for no flip case. Parameters are: J = 0.4, S = 19/2,
m’ =19/2, kpa = 0.8437x, (b) Charge conductance vs energy for spin flip case. Parameters are:
J=04,8=19/2, m" = -1/2, kpa = 0.8437x, (c) Energy bound states as a function of interface
transparency Z. Parameters are: S = 19/2, m’ = —1/2, J = 0.4, kra = 0.8437n. Here charge
conductance is in units of e/ h.

In Fig. 2.4(a) we plot charge conductance as function of energy E for § = 7/2 and
different values of J (J = 0.3,0.4). We see a peak, related to YSR states, present sym-
metrically at both positive and negative energies for / = 0.3 and J = 0.4. The energies
where YSR peaks occur, i.e., values of the real part of pole of conductance calculated from
Eq. (2.14), i.e., £0.63A (for J = 0.3) and +0.69A (for J = 0.4) match quite well with
conductance peaks shown in Fig. 2.4(a). In Fig. 2.4(b) we plot charge conductance spectra
for spin flipper spin § = 9/2. We also find peaks due to YSR bound states near the gap edge
within the energy gap for both / = 0.3 and J = 0.4. Energies where YSR peaks occur,
i.e., values of the real part of the pole of conductance calculated from Eq. (2.14), £0.68A
(for J = 0.3) and +0.75A (for J = 0.4) match quite well with the conductance peak shown
in Fig. 2.4(b). In Fig. 2.4(c), we plot charge conductance spectra for spin § = 11/2 of the

spin flipper. For J = 0.3 and J = 0.4, we note that there are peaks due to YSR states near
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the gap edges within the energy gap. In Figs. 2.4(a), (b), and (c), we give a comparison

Figure 2.4: (a) Charge conductance vs energy in transparent regime with S = 7/2,m’ = —1/2,
(b) Charge conductance vs energy in transparent regime with S = 9/2,m’ = —1/2, (c¢) Charge
conductance vs energy in transparent regime with S = 11/2,m’ = —1/2. Here charge conductance

is in units of €*/h.

with the J = 0 case (absence of spin flipper) wherein there is no YSR bound state peaks in
conductance spectra. The energies where YSR peaks occur, i.e., values of the real part of
the pole of conductance calculated from Eq. (2.14) are £0.72A (for J = 0.3) and +£0.79A
(for J = 0.4) match quite well with the conductance peaks shown in Fig. 2.4(c). Thus we
can conclude that it is spin-flip scattering enabled by the spin flipper, which is the reason
behind the occurrence of YSR bound states near the gap edges.

Next in Fig. 2.5 we plot charge conductance and probability density as a function of
energy E. We see there is a peak at zero energy in conductance spectra due to YSR bound
states. We take large spin flipper/impurity spin for (a) § = 21/2, (b) § = 23/2 and exchange
interaction J = 0.4. In Figs. 2.5(c), (d) zero energy peak is also observed in probability
density. In Figs. 2.5(c), (d) we take same parameters as in Figs. 2.5(a), (b) respectively. The
calculated real part of poles of conductance in Figs. 2.5(a) and 2.5(b) are: +0.00013A and
+0.00018A respectively and they match with the peak shown in Figs. 2.5(a) and 2.5(b). In
Figs. 2.5(e) and (f) we plot energy bound states as a function of interface transparency (Z)

for same parameters as in Figs. 2.5(a) and (b) respectively. In Fig. 2.5(e) for § = 21/2, we
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Figure 2.5: (a) Charge conductance vs energy E for S = 21/2, m’ = —-1/2, Z = 0.86, J = 0.4,
kra = 0.8437n, (b) Charge conductance vs energy E for S =23/2, m’ = —-1/2, Z =0.92, J = 0.4,
kra = 0.84927, (c) Probability density vs energy E for S = 21/2, m’ = —1/2, Z = 0.86, J = 0.4,
kra = 0.8437xr, (d) Probability density vs energy E for S =23/2, m’ = -1/2, Z =092, J = 0.4,
kra = 0.8492m, (e) Energy bound states as a function of interface transparency Z. Parameters
are: S =21/2, m" = —-1/2, J = 0.4, kra = 0.8437n, (f) Energy bound states as a function of
interface transparency Z. Parameters are: S = 23/2, m’" = —1/2, J = 0.4, kra = 0.84927. Here
charge conductance is in units of €*/h.

see that two bound state energies merge at Z = 0.86 and 1.44, where we see the zero energy
peaks in the conductance spectra due to YSR bound states. In Fig. 2.5(f) for § = 23/2, we
also note that energy bound states merge at Z = 0.92 and 1.43, where zero energy peaks
due to YSR states are seen in conductance spectra.

In Ref. [59], a NS junction is considered, where magnetic impurities are distributed

homogeneously on the NS interface, however in this thesis there is a spin-flipper or single
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magnetic impurity placed between two normal metals in N-SF-N-I-S junction. Thus,
Ref. [59] deals with a different system and in Ref. [59] it is also seen that YSR bound state

energies don’t merge and these YSR peaks appear only near the gap edge.

2.5 Effectofarbitrary junction length on Yu-Shiba-Rusinov

bound states

In previous sections, we mainly concentrate on the short junction limit. In this limit, we
see YSR bound states occur at zero energy in conductance spectra for low values of J and
high S values. In this section, we study the effect of junction length on YSR bound states.
We provide a comparison of YSR bound states for short and long junctions.

For an electron with spin up incident, the wavefunction in the normal metal region I is

given in long junction limit, following Ref. [60] as

u v 0 0 0
ol . o _. —-v| _. 01 . 0] .

z,b;\,(x) = o e’k"x¢i,+rlg e ’k€x¢f1,+rli e ’k"x¢frl,+1+rgl elkhx¢ﬁl,+1+rlt e’k”x¢i,, for x < 0.
0 0 0 0 %

Similarly wavefunction in normal metal region II is given by-

u 0 v 0

’ O . ’ u . 0 . _ -V - _
w}l\{(x) =leTeT . elkex¢§1'+[€T€l . ezkex¢;9n/+] +bll . o ke (x a)¢§l/ +bli . o ke (x a)¢i,+l

0 0 0 0
0 0 0 0
™ 0 ikp (x—a) 48 T 0 ikp (x—a) 48 TT 0 —ikpx ;S T 0 —ikpx ;S
+C,p e Gl T Cop e'’th Py +ay, e Py T4, e g, for0 < x <a.
-V 0 u 0
0 % 0 u

(2.20)
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The corresponding wavefunction in superconductor is,
u 0 0 v

0 u -V 0
_ |V igex s L1 x5S 1 —ig-x S 1wV —igx s
Us(x) =te.| [T @, +1ee etrgn, L+t ey | ey, forx > a.

eh

0 -y u
v 0 0 u
(2.21)
For |[E| < EF, wecan write k., = kr+ ﬁ, where & = Er/(kpA) is Cooper pair coherence

length[25]. Boundary conditions at the different interfaces of our system are mentioned
before in Egs. (2.5)-(2.8). By imposing boundary conditions on wavefunctions mentioned
in Egs. (2.19)-(2.21) one can get different scattering amplitudes. After getting scattering
amplitudes, using Eq. (2.9) we can calculate charge conductance for arbitrary junction
length. In Fig. 2.6 we plot charge conductance as a function of energy E for different
junction lengths ‘a’. In Fig. 2.6(a) we concentrate on short junction limit (a < &). In this
limit we take three different values of a (a = 0, a = 0.1¢, a = 0.4£). We see that a peak
appears at zero energy in conductance spectra due to YSR states. We also see that peaks in
conductance formed due to merger of YSR bound states at zero energy are robust to change
in length a of the junction. We take large spin flipper spin § = 21/2, and small exchange
interaction J = 0.4. However, these YSR peaks at zero energy are unfortunately not as
robust to changes in other parameters, e.g., Z, J, S, m’. Next, in Fig. 2.6(b) we concentrate
on intermediate junction limit (a ~ £&). This limit also shows a peak at zero energy in
conductance spectra due to YSR bound states. Further, we see peaks due to YSR bound
states present asymmetrically at both positive and negative energies near the gap edge in
the subgap regime. Finally, in Fig. 2.6(c) we focus on long junction limit (a > &). In this
limit we take two different values of a (a = 2¢, a = 5¢). We see that there is a peak at zero
energy in conductance spectra. Further, many YSR peaks appear in the subgap regime of

conductance spectra. Similar features have also been seen in Ref. [52], where the magnetic
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R e

2a

@)

Figure 2.6: Charge conductance as a function of energy for different junction lengths (‘a’).
Parameters are S = 21/2, m’ = =1/2, Z = 0.86, J = 0.4, kpa = 0.8437n. Here charge
conductance is in units of €*/h.

impurity is outside the superconductor. Many YSR peaks appear in the subgap regime
of conductance spectra with an increase in temperature (see Figs. 4(b), (c) of Ref. [52]).
When the temperature is increased, superconducting coherence length decreases, and the
junction behaves like a long junction (a > &). Thus, many YSR peaks are seen in the
subgap regime of conductance spectra in the long junction limit. If the spin flipper is put
at the right junction, then the distance between spin-flipper and superconductor is zero. In

that case we still see a peak appearing at zero energy in the conductance spectra due to

YSR bound states, see Fig. 2.6(a).

2.6 Stability of Majorana zero modes in the presence of a

spin flipper

In previous sections, we have shown the formation and characteristics of YSR bound
states in the subgap regime of a Metal-Spin flipper-Metal-Insulator-s-wave superconductor
junction. This section examines the stability of Majorana bound states (MBS’s) induced,
zero bias (zero energy) conductance peak in metal-topological superconductor junction
in the vicinity of a spin flipper. Zero energy 2e?/h quantized conductance Majorana

peaks are topological in contrast to the zero-energy YSR conductance peaks which arise

7



2. ForRMATION OF YU-SHIBA-RUSINOV BOUND STATES AND STABILITY OF MAJORANA
BOUND STATES IN PRESENCE OF SPIN FLIP SCATTERING

due to non-topological reasons. YSR bound states are induced by the spin-flipper or a
magnetic impurity, while Majorana bound states can be induced without any magnetic
impurity. Majorana peaks do not change or they are robust to spin-flip scattering and
therefore are topological while YSR peaks are not. We contrast Majorana states arising at
metal-p-wave superconductor interfaces with those appearing at metal-spin orbit coupled

superconducting wire (SOCSW) interfaces.

2.6.1 Spin flipper in vicinity of metal-p-wave superconductor junction

Spin flipper z
e A e e y
I 1T 111
e , e e ed:
Normal Metal 4% i Normal p wave superconductor
pe y Metal . v
- \j \j ,
V%h 4# 4_*1, iJrh,
i'h i h i h \
- - ——
v \J \
X=-a x=0

Figure 2.7: N{-N-pSc junction in topological regime (upsc > 0) with a spin flipper (spin S,
magnetic moment m’) at x = —a and a 6-like potential barrier (strength Z) at x = 0. The
scattering of an incident spin up electron is shown. Normal reflection, Andreev reflection and
quasi-particle transmission into p-wave superconductor are represented.

We consider a 1D normal metal (N;)-normal metal (N,)-p-wave superconductor (pSc)
junction wherein a spin flipper is embedded between the two metallic regions at x = —a.
The interface at x = 0 is modeled by a §-like potential barrier (strength Z) as shown
in Fig. 2.7 and the problem is solved using BTK[9] approach, see section 1.1.1. Normal
metals Ny and N are spinful. When a spin up/down electron with energy E is incident from

the metallic region, at x = —a interface, it interacts with spin flipper through an exchange
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interaction which may cause a mutual spin flip. The incident electron is either reflected or
transmitted to N, with spin-up or down. When this transmitted electron with spin-up is
incident at x = O interface, it can be normally reflected as an electron with spin-up from
the interface or could be Andreev reflected, as spin-down hole back to N,. In p-wave
superconductor, the spin-up electron and spin-down hole form one channel of transport,
while spin-down electron and spin-up hole form another transport channel for energies
above the superconducting gap. There is no spin mixing in the p-wave superconductor.

Spin flipper is a point-like magnetic impurity, see also Ref. [13]. When an electron
interacts with a spin flipper, there are two possible processes. In the first process, an
electron (with spin s and magnetic moment m) can scatter from the spin flipper (with spin
S and magnetic moment m”) while flipping its spin and flipping the spin of the spin flipper
with a finite probability. In the second process, an electron (with spin s and magnetic
moment m) scatters from the spin flipper (with spin S and magnetic moment m”) without
flipping either its spin or the spin of the spin flipper, and there is no possibility of spin-flip
scattering.

The BAG Hamiltonians for NM and pSc, from Ref. [61] are-

Hyy = (=102 /2m* — uny) s (2.22a)

Hyse = (=002 /2m* — p1p50)T, = iMpscOx Ty, (2.22b)

where uypy and 5. are respective chemical potentials, m* mass of electron, Apg. > 0 is
p-wave pairing potential, 7, = o, ® I, with I being 2 X2 identity matrix and o, (u = x, y, z)
are Pauli matrices. For simplicity, we consider 71 = uyy = 2m* = 1. The energy spectrum

are then for Normal metals: eypy (k) = +(k? = 1) and for p-wave superconductor:

Epsex(k) = i\/(k2 - ,upgc)2 + (Apsck)z, respectively. The energy spectra of pSc for

different values of u,g. is plotted in Fig. 1 of Ref. [61]. It is seen that energy spectrum
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becomes gapless at u,s. = 0. But for nontopological regime, there is a energy gap |upsc|

in energy spectrum. Here we only concentrate on topological regime[61], i.e., upse > 0.

2
pSc

BCS structure with minima at €1 = Apgeq/tpse — A;%Sc/4 for k = +,/upsc — A;SC/Z and a

local maximum at €, = u,g. for k = 0, as also seen in Fig. 1 of Ref. [61].

For u,s. > AZ /2, positive energy spectrum for pSc shows characteristic “double-well”

Symmetry class of p-wave Hamiltonian:

If a Hamiltonian possesses particle-hole symmetry then H (k) = -1, H*(-k)7, (or,

o, H* (=k)tyoy = =H(k), or H(k) = =H*(=k), or H(k) = —1,0yH"(=k)oT,

or H(k) = —oyH*(=k)oy, or H(k) = —1,H*(~k)1,), where k is the wavevector

0010 00 —i O 10 0 O
0 0 01 00 0 —i 01 0 O
and 7, = , Ty = and 7, = are Pauli
1 000 i 0 0 O 00 -1 0
0100 0 i 0 O 00 0 -1
0100 0 i 0 0
1 00O i 0 0 O
matrices in particle-hole space, while o, = , Oy = and
0 0 01 0 0 0 —i
0 010 0 0 7 O
1 0 0 O
0 -1 0 O
o, = are Pauli matrices in spin space.
0 0 1 O
0 0 0 -1

Similarly, if Hamiltonian possesses time reversal symmetry then H (k) = 7,H*(—k)1,
(or, H (k) = tyH*(=k)1y, or H (k) = T H* (k) 1, ot H (k) = oy H " (=k)ory, or H (k) =
H*(—k)) and finally if Hamiltonian possesses chiral symmetry then H (k) = -7, H (—k) 7y,
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or H(k) = —t,H (k),.

In 1D, p-wave Hamiltonian preserves all three symmetries- particle-hole, time reversal

and chiral. The 1D p-wave Hamiltonian in Eq. (2.22b) can be written as,

k2 — MpSc

0
HpSc(k) =
Apsck

0

Using Eq. (2.23) we get-

_k2 + UpSc

0
Tpr*SC(—k)Tx =

~Apsck

0

0 Apsck
k? — wpse 0
0 —k* + Upse
Apsck 0
0 ~Apsck
—k% + ppse 0
0 k* = wpse
~Apsck 0

0
Apsck
0

_k2 + UpSc

0
—Apsck
0

k2 — HMpSc

(2.23)

(2.24)

From Egs. (2.23) and (2.24), we see H)s.(k) = —TXHP*SC(—]C)TX. Similarly we can show

that Hps.(k) = T.H’

psc(—k)rz and Hy,s.(k) = —7H},s5.(—k)7,. Thus, p-wave Hamiltonian

in Eq. (2.22b) satisfies particle-hole, time reversal and chiral symmetries and therefore

belongs to symmetry class BDI.
The wave functions for different regions of our system as in Fig. 2.7 can be written for

a spin-up electron incident at x = —a interface as

1 1 0 0 0
of . 0 . . of . .
w]I\IM (x)= . el(x+a)¢rsn’ +7'ng . e—z(x+a)¢§l/ +rli e—l(x+(l)¢§1,+] +rg£ . el(x+a)¢;5;l, +r2t el(x+(l)¢§1/+l7
0 0 0 1 0
for x < —a,
(2.25)

81



2. ForRMATION OF YU-SHIBA-RUSINOV BOUND STATES AND STABILITY OF MAJORANA
BOUND STATES IN PRESENCE OF SPIN FLIP SCATTERING

1 0 1 0
11 N 0 i(x+a) 48 T 1 i(x+a) 48 N 0 —ix 4S Tl 1 —ix 4S
‘!/NM(X) =lee e ¢m’+tee e ¢m/+1+bee e ¢m/+bee e ¢m’+1
0 0 0 0
0 0 0 0
0 0 0 0
1] O s o 109 i s |0 - ER ) s
o 0 e Gpiren | € bir +al, o e OF DS 1l e S, L for —a < x <0, (2.26)
1 0 1 0
- 0 7+ 0
0 . n- . 0 . N+ .
Ypse(x) = 1 e'k’x¢fn,+tgﬁ e’k’x¢>§1,+l +ILT1 e’k*x¢§n,+tl}t e’k*x(ﬁi,ﬂ, for x > 0,
1 0 1
1 0 1 0
(2.27)
E+k2—pp . . . .
where . = W. rll and rlﬁ are normal reflection amplitudes for an incoming
pScK+

electron with spin up (T) reflected as an electron with either spin up (T) or spin down ({)
respectively, while rlll and rlﬁ are Andreev reflection amplitudes for an incoming electron
with spin up (T) reflected as a hole with either spin up (T) or spin down (|) respectively.
Similarly, tll, tlﬁ, tgl, tli are transmission amplitudes into pSc. In Egs. (2.25), and (2.26)
we approximate wave vector in normal metal by Fermi wave vector krp = \/Zm*m /h=1
(since i = unpy = 2m* = 1) with E << Ep. Wave vector’s k.. in p-wave superconductor

are solutions of-

E? = (K = tpse)* + (Apsck)™. (2.28)

Solutions of Eq. (2.28) for various values of chemical potential y,s. > 0 (in topological

regime) with energy E are mentioned in Table I of Ref. [61].
Similarly, if we consider a spin down electron incident from metallic region I, the
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wavefunctions for different regions can be written as

0 1 0 0 0
1 1 i(x+a) ;S ) 0 —i(x+a) ) I —i(x+a) ;S ) 0 i(x+a) ;S 1 0 i(x+a) ;S
Uy =] |e Gy tree 0 e ¢ _1tree 0 e Sotro,| e RS o Bt e Oors
0 0 0 1 0
for x < —a,
(2.29)
1 0 1 0
II _ /I 0 i(x+a) ;S 'L 1 i(x+a) ;S ) 0 —ix ;S 1 1 —ix ,S
U (X)) =tog e Gov_itlee e ¢y thee e thee e e,
0 0 0
0 0 0 0
0 0 0 0
0 0 o . o .
i}TL o elx¢ 1+cu | e’x¢ , +alT 0 e_’(x“‘)qﬁfq,il +ai}ll X e_l(x+“)¢§n,, for —a < x <0, (2.30)
1 0 1 0
n- 0 n+ 0

01 . 01 . .
WpSc(x)=l£ e‘k‘quS 1+ti£ nl e'k- xq& +tlT 0 e‘k+x¢‘fn,_1+ti}ll T]1+ e‘k+x¢fn/, for x > 0,

(2.31)

” and r ! are normal reflection amplitudes for an incoming electron with spin down ({)

reflected as an electron with either spin up (T) or spin down () respectively, while rﬂl and

“ , are Andreev reflection amplitudes for an incoming electron with spin down (]) reflected

as a hole with either spin up (T) or spin down ({) respectively. Similarly, il, ii, ti;, tll are
corresponding transmission amplitudes into pSc.
Boundary conditions at x = —a are: w]IVM(x) l// »(x) and, 2id th//NM(x)

2i0 Tzl// y(x) = 2iJ5. STZl//NM(X) Boundary conditions at x = O are: w (%) = ¥psc(x)

and, (=2i0,7; + ApscT )Y psc(x) + 2i0 Tzw (X)) = 2zZTZw 2y ().
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The action of spin-flipper Hamiltonian 5. S, from boundary condition at x = —a, gives

for wave-function involving spin up electron spinor,

(=N el ]

o o O

N
¢m’

4

¢m/+l'

(2.32)

Similarly, the action of exchange operator for wave-function involving spin-down electron

spinor gives-

1o

0
1

0

0
1
0

0

S+

f/
2

S o O

S
¢m/—l'

(2.33)

Further, the action of exchange operator for wave-function involving spin down hole gives-

o o O

1

o o O

1

S
¢m/

F

2

o o ©

S
¢m”

¢m’+1 :

0

(2.34)

(2.35)

Using the above equations and solving boundary conditions we obtain 16 equations for each

spin up and spin down electron incident process. From these 16 equations we can compute
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2.6. Stability of Majorana zero modes in the presence of a spin flipper

the different scattering probabilities: RZZ = |rZZ|2, Rli = |rli|2, RZ; = |rgl|2, Rgl = |rl}l|2
(for spin up electron incident) and Ril = |r£|2, Riﬁ = Iriilz, Rﬂl = |rﬂl|2, Rit = Iri}llz (for
spin down electron incident). Next we will look at spin flip scattering in vicinity of Normal

metal-SOCSW junction, since in this junction too MBS’s have been predicted.

2.6.2 Spin flipper in vicinity of metal-spin orbit coupled supercon-

ducting wire junction

In this subsection we consider a spinful normal metal (N;)-spin flipper-normal metal
(Np)-insulator (I)-spin orbit coupled superconducting wire (SOCSW) junction as shown

in Fig. 2.8. Similar to previous subsection, we model metal superconductor interface

Spin flipper Z
e A e S b G
I +> 11 111
Normal Metal *e . @Normal . e e, SOCSW
' - S —
L Metal
V#h 4# %, .
h i h 1 h h,
- - — e
v A4 \d
X=-a x=0

Figure 2.8: N|-SF-N,-SOCSW junction with a spin flipper (spin S, magnetic momentm’) at x = —a
and a d-like potential barrier (strength Z) at x = 0. The scattering of a incident spin-up electron
is shown. Normal reflection, Andreev reflection and quasi particle transmission into SOCSW are
shown.

as a ¢o-like potential barrier with strength Z. Using the same convention as before, i.e.,

h =2m* = uyy = 1, the BAG Hamiltonians for Ny, N, and SOCSW can be written as[61]-
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Hy, = Hy, = (=07 - D1, (2.36a)

HSOCSW = —0)%7'2 - iﬁ@xTZO'Z+Bzo'x+A()Tx, (2.36b)

with g8 being strength of spin orbit interaction, Bz is Zeeman field, and Ay > O- the
proximity induced s-wave pairing potential. We also consider uniform electron masses
throughout the system and fix chemical potential of SOCSW and Zeeman interaction in the

lead to be zero[61]. The positive branches of energy spectrum[61] of SOCSW are given

as esocsw.+(k) = (k* + B2k + A3 + B2 + 2\/k4(,82k2 + B2) + A2B2)!'/2. The energy
spectrum for SOCSW is shown in Fig. 4(b,c,d) of Ref. [61] for nontopological (Bz < Ayp),
topological (Bz > Ap) and transition regimes (Bz = Ag). There is a gap in energy spectrum
except for Bz = Ag. We focus only on topological regime Bz > Ag[61, 62]. In the limit of
strong spin orbit interaction (SOC) (S > Bz, Ag), the energy spectrum of the SOCSW has
two branches[61]-(i) interior branch, and (ii) exterior branch. In Fig. 5(b) of Ref. [61] the
energy spectrum for SOCSW is plotted in the limit of strong SOC. The energy spectrum
about the minima at k = 0 form the interior branches, while the energy spectrum about the
minima at k = £ constitute the exterior branches. For low energies, SOCSW Hamiltonian,
Eq. (2.36b) can be linearized about these minima (k = 0 and k = £ /3) by introducing the

ansatz for the wavefunction:

Wsocswi(x) = Rp(x) + Ly(x)e P, (2.37a)
Wsocswi(x) = R (x)eP* + Ly (x), (2.37b)
where R,(x) and L,(x) (with o =T, ]) denote the slowly varying right moving and left

moving waves respectively. By inserting this ansatz for the superconducting wavefunction

in SOCSW Hamiltonian, Eq. (2.36b), and neglecting terms involving e*#* (fast oscillating
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2.6. Stability of Majorana zero modes in the presence of a spin flipper

terms), we get effective Hamiltonian corresponding to interior and exterior branches[61],

1
(L) — (L) 1240 (L)
H ) / Ax¥ soc5w (X Hyoesw ¥socsw (0): (2.38)

where L = i, e represents interior and exterior branches respectively. BdG Hamiltonians

for interior and exterior branches are written as,

H) oy = —iBT.0:0, + Bzoy + Aot (2.39a)
Héeo)csw = —ifT.0:0; + AoTy. (2.39b)

Symmetry class of SOCSW Hamiltonian:

In 1D, SOCSW Hamiltonian only satisfies particle-hole symmetry. The 1D SOCSW

Hamiltonian in Eq. (2.36b) can be written as,

k> + Bk By Ao 0
By  k*- Bk 0 Ao
Hsocsw (k) = . (2.40)
Ao 0 —k? - Bk Bz
0 Ag By —k? + Bk
Using Eq. (2.40) we get-
—k*- Bk  —Byz —Ag 0
. -B;  —k*+Bk 0 —Ao
0 yHgocsw (k) Tyoy = (2.41)
—Ag 0 k> + Bk  —-By
0 —Ag -B; k*- Bk
From Egs. (2.40), (2.41), we see 7y0yH, gy (—k)Ty0y = —Hsocsw (k). Similarly, we

can show that time reversal symmetry does not hold as, Hsocsw (k) # T:Hgp gy (—k) 72,
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or Hsocsw (k) # TyHg,cow (k) Ty, O Hsocsw (k) # TaHg gy (k) T, OF Hsocsw (k) #
oyHocgw (—k)oy, or Hsocsw(k) # Hgyrgy (—k). Finally, chiral symmetry also does
not hold as, Hsocsw (k) # —TxHsocsw(—k) Ty, or Hsocsw (k) # —1;Hsocsw (k)7;. Thus,
SOCSW Hamiltonian in Eq. (2.36b) only satisfies particle-hole symmetry relation and
therefore belongs to symmetry class D. The exterior branches of Hamiltonian Eq. (2.39b) in
Ref. [61] also satisfy particle-hole symmetry relation 7oy H éeo)é sw(—k)1yoy =-H éeo)c sw (K,
and therefore belong to D class[63]. The interior branch Hamiltonian Eq. (2.39a) in
Ref. [61] also satisfies only particle-hole symmetry and therefore belongs to same symme-
try class D.

The wavefunction in metallic regions I and II for spin-up electron incident with en-

ergy E is as mentioned in Egs. (2.25), (2.26). For SOCSW, the spinors for interior and

exterior branches are described in terms of slowly varying left and right moving waves as

Ri(x) Ly(x)
. L (x) Ri(x)
g | T qp© | After diagonalizing the Hamiltonians i
SOCSW = ; an soCsw = : . er lagona IZIHg (&} amiitonians 1n
_pt Al
Ri(x) L)

Egs. (2.39a), (2.39b), we will get eigenfunctions for both interior and exterior branches.
The wavefunction in SOCSW is sum of solutions for exterior as well as an interior branch

(Eq. (2.39)) and in the topological regime for spin up electron incident can be written

as[61],
S s S
—u-¢,, usd,, Vo, 0
S S s
o —v-95, G S| v, () 0 (@) uod, (@)
Usocsw ()=t L 1) mEL] ik X414 etk % 14(e) mL | i +B)x
S S S
v‘¢m’+1 v+¢m’+l u0¢m’+1 0
u-¢, sy, 0 vodi

(2.42)

where the first two terms on right-hand side denote contributions from interior branches,
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while other two terms give contributions from exterior branches. IEII)Z) and tg)z)

_ E+(E*-A)'?
- 2E

are

transmission amplitudes into SOCSW. In Eq. (2.42), for E > |A,|, u and

R e
2[Aa]

2

ut+v2 =1, while for0 < E < |A;], u 2=

17 |A K
(E>-AD)'"2
B

for the exterior branch. In strong SOC limit (8 > Bz, Ao),

and ui +v where 1 = +,0,

and Ay = Ao = Bz. The wave vectors in Eq. (2.42) are kg ) = for the interior
(EZ_A%)I/Z
B

we neglect terms proportional to kf), kD, k(e) < 1 in our calculation.

branch, and kée) =

Boundary conditions at x = —a are: ¢NM(x) = lp (X)) and, 2i0 TzleM(x) -
2i0 Tzlﬂ y(X) = 2iJs. SrszM(x) while boundary conditions at x = 0 are: w y(X) =

Wsocsw (x) and, (=27, + 1,0 IWsocsw(x) + 20Tyl (x) = =2iZTy il (x). Sub-

stituting wavefunctions (Egs. (2.25), (2.26), (2.42)) in these boundary conditions we get 16

equations. Solving these 16 equations we get the normal and Andreev reflection probabil-

ities: RZZ = |rll|2 Rli Irell2 RTT Ir |2 RTl |r |2 Similarly, if we consider a spin

down electron incident from normal metal (region I), as shown in previous subsection we
can easily write wavefunctions, solve for the afore mentioned boundary conditions and get
reflection probabilities as: Rﬁl = |reT|2 Riﬁ = |rel|2 RiT |r |2 Rli |r |2.

Using the well established definitions as in Refs. [56, 57], we calculate net differential

charge conductance as,

G = Gl + Gl, with Gl = Go(1 + Rl + RN — Rl - RI})

and G! = Go(1+ Rl + R - Rll - RY)) (2.43)

eh

with, Gy = €*/h and Gl being differential charge conductance when spin up electron is
incident from region I, while Gi being differential charge conductance when spin down

electron is incident from region I.
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2.6.3 Comparison of ZBCP between normal metal-p wave and normal

metal-SOCSW junction in the vicinity of a spin flipper

In Table 2.1, we compare the zero-bias conductance of a N;-spin flipper-N,-I-SOCSW
junction and Nj-spin flipper-N;-I-pSc junction for both transparent (Z = 0) and tunnel
(Z = 3)regimes. For spin flip case, f # 0and f’ # 0, see Eqgs. (2.32)-(2.34), implying there
is finite possibility for spin-flipper to flip its own spin while interacting with an electron/hole
incident from metallic region. On the other hand, for no flip case, f = ' = 0. We take two
different values of spin orbit coupling strength 8 (8 = 1 and 8 = 2) for SOCSW in second
and third column of Table 2.1. We also take two different values of 5. = 0.01,0.001, for

pSc in fourth and fifth column of Table 2.1.

Table 2.1: Comparison of differential charge conductance at zero bias (E = 0) in the
topological regime between Ny -spin flipper-N-I-SOCSW and N -spin flipper-N»-1-p-wave
junction

N1-SF-N»-I-SOCSW

N;-SF-Nj-1-p-wave

26896+7872.J +38888J2+5712.J3+10237J4

30976+8448.J +56864.J 2+8304.J 3 +10345.7 4

Parameters|— Z=0,E=0,a=mn Ay =0.001, B = 1.5A¢ Z=0,E=0,a=nApsc =0.07
G./Gofor B =1 G./G for B =2 G./Gy | G./Go
UJPSC=0~001) (ﬂpSt;=O~01)
Noflip(f=f"=0 |2 2 4 4
) , 800+272J%+50J% 2048+128J%+50J%
Fip(7 == 400200729 % 102432024415 4 4
. o 800+976J-+578J 2048+640J-+578J
Fiip(F =/ =V3) | 4001680743011 1024+1088.72+337 ] 4 4
Flip (f = /' = 3) 800+6928J%+20402J* 2048+8320J7+20402J% 4 4
PU=T =- 400+4040J2+10237.J*4 1024-+6464.J2+10345J4
Parameters|— Z=3E=0,a=mnr Ay =0.001, By = 1.5A Z=3,E=0,a=n,Apsc =0.07
G/Go(B=1) G./Go (B =2) G:/Go | G:/Go
(Upsc=0.001)[ (upsc=0.01)
No flip (f = £ = 0) 2 2 4 4
: _ o 53792+15744.J +4304J 2 +480. 3+5074 61952+16896J +4160J 2 +480. 3 +507
Flip(f=f"=1 26896:7872J:2792J2:336J3:2914 30976:—8448J:4640J2:62413:41J4 4 4
Flip (f = " = 3) 53792+15744J +66256J 2+9696. 3+20402J 4 61952+16896.] +67648.1 2+9696J 3204027 4| 4 4
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2.6. Stability of Majorana zero modes in the presence of a spin flipper

For no flip case we see that normalized zero bias conductance G./Gy is quantized at 2
for N{-SF-N-I-SOCSW junction, while for N-SF-N,-I-pSc junction it is quantized at 4
regardless of other parameters like S, m’, J, Z, B, ups., etc. The reason for this is that the
Andreev and normal reflection probabilities exactly cancel at zero bias in Eq. (2.43) for
N{-SF-N3-I-SOCSW junction while for N{-SF-N,-I-pSc junction there is perfect Andreev
reflection (i.e., normal reflection probabilities vanish) at zero bias and thus from Eq. (2.43),
G./Gy is quantized at 4. In Table 2.1, we notice that for N{-SF-N;-I-SOCSW junction,
G./Gy is no longer quantized and depends on the parameters S, m’, J, Z, 3, etc. However,
this is not the case for N{-SF-N,-I-pSc junction, wherein G./Gy is robustly quantized
and is independent of spin-flip scattering. For N;-SF-N,-I-pSc junction, there is perfect
Andreev reflection at zero bias even in the presence of spin-flip scattering. Thus, from
Eq. (2.43), zero-bias conductance is quantized at 4e?/h and does not depend on parameters
S,m’, J, Z, upsc, etc. For no flip case G./Gy is robustly quantized in topological regime
for both cases, see Table 2.1. Thus, in a metal-pSc junction, the “Majorana states” are
not affected by the presence of spin flipper. In contrast, for metal-SOCSW junction, the
“Majorana states” are affected by the presence of the spin flipper. In Fig. 2.9 we plot
differential charge conductance as a function of incident electron energy E for different
values of interface barrier strength Z in topological regime. In Fig. 2.9(a) for a N;-SF-
N,-I-pSc junction we see that G./Gg at E = 0 is quantized and independent of Z and
spin flip probability of spin-flipper. Thus topological character of zero-bias conductance
peak is evident, implying the stability of Majorana state in N{-SF-N;-I-pSc junction.
The differential conductance for N{-SF-N,-I-pSc junction decreases with increase of Z
(transparency of junction). Furthermore, the width of the ZBCP also decreases with

increasing Z. A discontinuity appears in the differential conductance curve at the gap edge
€1 = Apse /,upsc - A;Sc/4 = 0.007, where A,5. = 0.07, ups. = 0.01 (topological regime)
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G./Gg
2

-3 E 0 3 'Ej
0 5x10 0.01 0 10 2x10
(a) (b)

Figure 2.9: Differential charge conductance in presence of spin flip scattering as a function of
energy E for different values of interface barrier strength Z in topological regime, (a) for Ni-SF-
N-I-pSc and (b) for Ny-SF-N,-I-SOCSW junction. Parameters are: f = f' =3, 8 =3/2, J =1,
Hpse = 0.01, Apse =0.07, a =7, Ag = 0.001, B =0.5, Bz = 1.5A.

and ppse > Aisc /2 regardless of Z. The reason for this discontinuity is that the wave
vectors k. in p-wave superconductor are different for below (E < €;) and above (E > €1)
the gap (see Table I of Ref. [61]).

In Fig. 2.9(b) we do the same for N{-SF-N,-I-SOCSW junction. We see that G./Gy
at zero energy is not quantized and depends on interface transparency Z. The zero-bias
differential conductance (G./Go at E = 0) increases with increase in Z (junction trans-
parency). The differential charge conductance in N{-SF-N,-I-SOCSW case exhibits much
more complex structure than that for a junction with p-wave superconductor. Further, we
observe a discontinuity in differential conductance for SOCSW case at energy correspond-
ing to energy gaps |A_|(= 0.5A¢) and Ag. The reason for this behavior is that #,; and v, are
different for below (0 < E < |A,|) and above (E > |A,|) the energy gap, where 4 = =, 0.
Thus, in the presence of spin-flip scattering, the topological character of ZBCP seen in
the case of N{-SF-N,-I-SOCSW junction is dubious, suggesting that Majorana states seen

in such junctions aren’t stable and vanish in the presence of spin-flip scattering, begging
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the question, whether the states seen in N1-SF-N»-I-SOCSW junction are Majoranas in the
first place?

The reason for quantized zero bias conductance for N;-SF-N»-I-SOCSW junction in
absence of spin-flip scattering is exact cancellation between normal and Andreev reflection
probabilities in the conductance formula (Eq. (2.43)). Differential charge conductance is
given as, G. = e*/h(2 + (Rll + Rli + Rﬁl + Rﬁi) - (RI; + Rli + Rﬂl + Rii)). For no flip
process and at zero energy (E = 0), RZZ + Rli + Rig + Riﬁ = RZ; + RZ}Z + Ri,t + Ri}l =1.
Thus, normal reflection probabilities and Andreev reflection probabilities exactly cancel in
conductance formula and this leads to quantized conductance (G, = 2¢%/h) at zero bias.
But, in presence of spin-flip scattering (f = f’ = 1) and for parameters £ = 0, § = 1 and
Bz = 1.5A¢ from Eq. (2.43) we get-

N Tl N L _ 400+264J%+33J44320J Z+144J3 Z+640Z%+352J2 72 +2560 Z3+256 2%
Ree + Ree + Ree + Ree = 400+200J2+297%+320J Z+112J3Z+640Z2+288J2 Z2+256J Z3+256Z*’ (2.44)

" Tl ) W 400+1367%425J4+320J Z+80J3 Z+640Z2+224J2 72 +256J Z3+256Z*
Reh + Reh + Reh + Reh  400+200J2+297%4+320J Z+112J3Z+640Z2+288J2Z2+256J Z3+256Z* (2:45)

From Egs. (2.44), (2.45), it is evident that, R]} + RI{ + R + R, # R) + R, + RY + RY.
Thus, at zero bias normal and Andreev reflection probabilities do not cancel in presence
of spin flip scattering and as a consequence ZBCP isn’t quantized at 2¢?/h and depends
on parameters like J, Z, etc. Remarkably, by tuning parameters we can get a far greater
deviation from charge conduction quantization at 2 in case of N;-SF-N,-I-SOCSW junction
in presence of spin flip scattering. For f = f’ = \/3, S=5/2,J=3,Z=3,8=12,
a=mn,Ay =0.001, B = 1.5A¢ we get G./Gy = 0.25 at E = 0, which is much smaller
than quantized value of 2. We have plotted the normalized conductance as a function of
energy E for above mentioned parameters in Fig. 2.10. We see that there is a dip at zero

energy in the conductance spectra. Further, charge conductance deviates largely from its
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quantized value 2¢?/h.

G./Gy
20}

157
10

05

~ E

-3 2x107°

0 10

Figure 2.10: Differential charge conductance in presence of spin flip scattering as a function of
energy E for N-SF-N»-I-SOCSW junction. Parameters are: f = ' =5, 8 =5/2, J=3,Z =3,
a=m, Ayg=0.001, 8 =12, Bz = 1.5A,.

In the next subsection we try to find out possible reasons for this behavior by looking
at the symmetries of scattering matrix and the associated topological quantum number.
2.6.4 Topological symmetry class in presence of spin flip scattering

To understand the deviation from topological character due to spin flip scattering in case
of N{-SF-N;-I-SOCSW junction, we analyze the scattering matrix of our system, which is

a 4 x 4 matrix in the subgap regime, given by,

See Seh

Sys = , (2.46)
She Shh
Tl 0 1 A U )
r r r r r r r r
O ] ST e R e O (e OO
Fee Tee Yen Ten Yhe The i Thi

block matrix. r;’(%e " is normal reflection amplitude for an incoming electron (hole) with

spin o reflected as a electron (hole) with spin o”’. Similarly, r is Andreev reflection

oo’
e(h)h(e)

amplitude of an incoming electron (hole) with spin o reflected as a hole (electron) with spin
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o’,o =T, and o’ =T, |. Following a similar procedure as mentioned before in subsections

2.6.1 and 2.6.2 , if we consider a spin up (down) hole incident from normal metal region I,

we will get different reflection amplitudes as, r% (r

i
hh??

Yhn

Symmetry class for pSc in vicinity of a spin flipper

i T The (30 T 1)

The scattering matrix for pSc for no flip process (f = f’ = 0), and parameters J = 1,

a=n,2Z=1,E=0, ypsc = 0.0l and A5, = 0.07 is given as,

0
See Seh 0
She Shh 0
]

0
0
i

0

0 —i
- 0
0 O
0 O

(2.47)

Sqp being 2 X 2 matrices, with {a, 8} € {e, h}. Sy is an unitary matrix with SNS.S;,S =1

and Det Sys = 1. The scattering matrix Sy and its determinant, Det Sy s (Det Sys = 1)

do not change with change of parameters like J, Z, a. In Eq. (2.47) block scattering

matrices satisfy particle-hole symmetry, s.. = s,, and s, = sze. Using this particle-

hole symmetry we can choose a basis where all s, matrices have purely real elements.

This is called Majorana basis[64, 65] in which scattering matrix Sy is a real orthogonal

matrix. Majorana character of Bogoliubov quasiparticles is hidden in particle-hole basis,

but becomes evident in Majorana basis. Thus, to transform particle-hole basis into Majorana

basis of scattering matrix Sygs, we do a unitary transformation on scattering matrix Sy

such that the transformed scattering matrix is,

0O 0 0 -1
0O 0 -1 0
S = QSysQf = , where
0O -1 0 O
-1 0 0 O

1
Q=—
V2

, (2.48)
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see Ref. [64] for details of Q. The matrix § is also unitary with Det S =Det Sys = 1.
The transformed scattering matrix S and its determinant Det S remain unchanged with
change of different junction parameters like J, Z, a. Since, S satisfies S = S* (particle-
hole symmetry), S = S” (time-reversal symmetry) and S? = 1 (chiral symmetry), thus
according to classification of symmetries of scattering matrix for 1D N;-SF-N,-I-p-wave
superconductor junction is in symmetry class BDI[64]. In 1D, BDI class is topological with
topological quantum number Q, defined as number of negative eigenvalues of scattering
matrix[63, 64], i.e.,

Q =v(r) (2.49)

where v(r) is number of negative eigenvalues of scattering matrix S. Eigenvalues of S

Q Q Q Q
2.0 26 2.0 26
15 15 15 1.5
1.0 1.0 1.0 1.0

0.5 0.5 0.5 0.5

z z
05 10 15 20 25 30 -10 -05 05 10 05 10 15 20 25 30 -10 -05 05 10
(a) (b) (©) (d)

Figure 2.11: (a) Q in absence of spin flip scattering as a function of interface transparency Z, (b)
Q in absence of spin flip scattering as a function of exchange interaction J, (c) Q in presence of spin
flip scattering as a function of interface transparency Z, (d) Q in presence of spin flip scattering as
a function of exchange interaction J. Parameters are f = f' = 0 (for (a), (b)), f = f' =1 (for
(c), (d)), S=1/2,J =1 (for (a), (c)), Z =1 (for (b), (d)), ppsc = 0.01, Aps. =0.07, a = .
are- —1, —1, 1, 1. Thus, in no flip process topological quantum number for class BDI is
2. In Figs. 2.11(a) and 2.11(b) we plot topological quantum number Q as a function of Z
and J respectively. Figs. 2.11(a) and (b) shows that Q is constant (= 2), independent of J
and Z. Thus, topological quantum number Q for BDI remains robust against any change
of parameters in absence of spin-flip scattering.

Now in presence of spin-flip scattering, scattering matrix Sys (Eq. (2.47)) for Nj-

SF-N,-I-pSc junction remains identical. Similar to the preceding case of no spin-flip
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scattering, the scattering matrix and its determinant do not change with the change of
different parameters for spin-flip scattering. Thus, in the presence of spin-flip scattering,
1D N;-SF-N»-I-pSc junction also belongs to the same symmetry class BDI with topological
quantum number Q = 2. In Figs. 2.11(c) and 2.11(d) we plot topological quantum number
Q as a function of Z and J respectively in presence of spin-flip scattering. We see that
Q remains constant (= 2) and does not change with change in Z and J, similar to no flip
process. The topological quantum number determines the number of Majorana fermions
at the edge of a topological superconductor. For p-wave junction, the topological quantum
number for class BDI is the number of negative eigenvalues of scattering matrix for pSc,
which is 2 irrespective of spin-flip scattering. Thus, the number of Majorana fermions is

two at the edge of p-wave superconductor.

Symmetry class for SOCSW in the vicinity of a spin flipper

Next, we do a similar analysis as was done for N{-SF-N;-I-pSc junction for N{-SF-N;-
I-SOCSW junction. Our aim is to understand the loss of ZBCP in presence of spin flip
scattering in a NM-spin flipper-NM-I-SOCSW junction. We first analyze the case where
there is no spin flip scattering. The scattering matrix, for no flip process (f = f’ = 0,
S =1/2), and for parameters / =1, Z =1, E =0, § =0.5,a = n, and Bz = 1.5A¢ is-

0.065 - 0.261i —-0.543 —0.043i -0.130+0.326; 0.696 + 0.152i

0.326 - 0.130i —0.369 —0.609i 0.261 —0.065;  —0.217 — 0.5i
Sns = (2.50)

0.217 - 0.51 0.261 +0.065i —0.369 + 0.609; —0.326 —0.130i
0.696 — 0.152i 0.130+0.326i  0.543 - 0.043i  0.065 + 0.261i

where Sy is an unitary matrix with SNS.S}:,S = 1 and Det Sys = —1. The scattering

matrix Sys however changes with change of parameters unlike scattering matrix for Nj-
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SF-N,-I-pSc junction. For a = /2 it is-

—-0.133 + 0.668i 0.594 —0.096i -0.214 +0.228; 0.255 + 0.107i

~0.214 +0.228; 0.255+0.107i  0.659 — 0.173i  —0.346 — 0.492i
Sns = 2.51)
0.346 —0.492i  0.659 +0.173i 0.255-0.107i  0.214 +0.228i

0.255-0.107i 0.214 +0.228; —-0.594 —0.096i —-0.133 —0.668i

with the other parameters being same as for Eq. (2.50). As shown in Egs. (2.50), (2.51), the
scattering matrix for a 1D N1-SF-N,-I-SOCSW junction in absence of spin-flip scattering
changes with change in junction length a, while its determinant (Det Sys = —1) does not
depend on a. In both cases, for a = 7 and a = 71/2, Det Sys = —1. We have checked that
scattering matrix Sys changes with other parameters like J, Z, although its determinant
remains constant at —1, i.e., Det Syg = —1. Similarly, as mentioned before, when we
transform the particle-hole basis of the scattering matrix into Majorana basis by doing an
unitary transformation on Sy, the transformed scattering matrix is,

—0.109 + 0.087i  0.043 +0.022i  0.848 + 0.391: —-0.326i

0.913-0.196i -0.196 -0.261¢i 0.087 +0.109;  0.022 — 0.043i
fora=nmn:8 = (2.52)
—0.022 - 0.043; 0.087 - 0.109; -0.196 +0.261i —0.913 —0.196i

0.326i —-0.848 + 0.391i -0.043 + 0.022i -0.109 —0.087i

0.127+0.148  0.861 +0.206i —-0.028 + 0.087;  0.129 + 0.392i

0.053 -0.074i -0.005-0.412i -0.195-0.012i -0.747 +0.474i
and fora = /21is: S = (2.53)
0.747 +0.474i —0.195+0.012i —0.005+0.412i —0.053 —0.074i

0.129 -0.392i  0.028 + 0.087i —0.861 + 0.206i 0.127 — 0.148i

S is again an unitary matrix with Det § =Det Sys = —1. Similar to Sy, the transformed
scattering matrix S changes with change of parameters like J, Z, a, but its determi-
nant remains unchanged. We verify that S only satisfies particle-hole symmetry relation
17,0,8*1y0, = S, thus scattering matrix for no spin-flip scattering in case of a 1D Nj-

SF-N,-I-SOCSW junction belongs to symmetry class D. In 1D, symmetry class D is
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Abs(Q")
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Figure 2.12: (a) Q' as a function of Z (with J = 1) and (b) Q' as a function of J (with Z = 1) in
absence of spin-flip scattering. (c) Absolute value and Argument of complex Q' as a function of Z
(with J = 1) and (d) Absolute value and Argument of complex Q' as a function of J (with Z = 1)
in presence of spin-flip scattering. Parameters are f = f' =0 (for (a), (b)), f = f' =1 (for (¢),
(d)), S =1/2, Ap =0.001, B =0.5a =m.

topological with topological quantum number for class D defined as determinant of the

scattering matrix[63, 64],

Q" = Det(S) (2.54)

In Figs. 2.12(a) and (b), topological quantum number Q is plotted as a function of Z and
J respectively. We see that Q' is constant (= —1) and does not change with Z and J.
Thus, the topological quantum number Q’ for class D remains robust against any change of

parameters in the absence of spin-flip scattering.

In presence of spin-flip scattering (f = f" =1, § = 1/2), and parameters J = 1, Z = 1,
E =0, =05 and Bz = 1.5A¢, the scattering matrix for a 1D N;-SF-N,-I-SOCSW
junction is given as-

~0.055+0.435;  0.428+0.199i  —0.109+0.207i  0.698 + 0.207i

. ~0.436 +0.492i —0.055+0.435i 0.184-0.039i —0.232 — 0.536i
a=%: Sys= . (255)

~0.232-0.536;i  0.698 +0.207i  0.151 —0.301i  —0.022 — 0.123i

0.184 - 0.039; -0.109 + 0.207i —-0.767 —0.456i  0.151 —0.301:

—0.166 — 0.525; —-0.313+0.121i 0.249+0.299i  0.656 + 0.037i
0.546 +0.028; —0.166-0.525i 0.289-10.140i  0.161 —0.518i

while for a = m: Syg = , (2.56)
0.161 - 0.518i 0.656 +0.037i —-0.158 +0.343; —-0.145 - 0.332i

0.289-0.140i  0.249+0.299i  0.733 -0.254i —0.158 + 0.343i
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where Sy is an unitary matrix with Sy S.S;, ¢ = 1. The determinant of Sys for a = 7/2

—i2.76667 i2.92505

and a = mare e and e respectively with absolute value 1. In contrast to no

flip case, both Sy s and its determinant Det Sys change with change of parameters like J,
Z. Similarly, as discussed before, when we do a unitary transformation on Sy to transform

its basis from particle-hole to Majorana, we have,

-0.123 - 0.098; 0.901 +0.245;  0.003 —0.164; -0.161 + 0.225i

-0.418 —=0.021i -0.123-0.098; -0.474 +0.166i —0.73 —0.041i
fora = %, S = , (2.57)
0.739 +0.041;  0.161 -0.225; 0.219+0.231i —0.495-0.168i;

0.474 - 0.166i —0.003 +0.164; -0.785+0.057i 0.219 +0.231i

0.043 -0.200i  0.427 - 0.068; 0.843 -0.048; —-0.227 —0.084i

0.929 —0.253;  0.043 -0.200{ -0.141-0.093; 0.026 + 0.041:
while fora =n, S = , (2.58)

—-0.026 - 0.041i  0.227 +0.084i —-0.368 +0.018; —0.885 —0.143i
0.141 +0.093i -0.843 +0.048; 0.351 +0.027; -0.368 + 0.018i

where § is an unitary matrix with Det S =Det Syg. Similar to Syyg, its determinant Det
S depends on various junction parameters. We find that 7,0,S8*7,0, # S, i.e., S does
not satisfy particle-hole symmetry relations in presence of spin flip scattering. Thus, spin
flip scattering leads to breaking of particle-hole symmetry. We have also checked that
scattering matrix S does not satisfy any symmetry relation and therefore belongs to class
A in presence of spin flip scattering.
In Figs. 2.12(c) and 2.12(d) we plot both absolute value and argument of the complex
Q’ (determinant of S) as a function of Z and J respectively for a 1D N;-SF-N,-I-SOCSW
junction (Fig. 2.8). We notice that Abs(Q’) remains constant at 1, while the argument of

Q' (Arg(Det S)) changes with J and Z.
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2.7 Conclusion

In this chapter, we have analytically studied YSR bound states in the vicinity of a s-wave
superconductor in the presence of a spin flipper using a BTK approach. We focus on zero
energy in the conductance spectra. We see that when the spin flipper does not flip, there
is a dip at zero energy in conductance spectra; however, a zero-energy peak is observed
due to the occurrence of YSR bound states. We plot the real part of the complex poles
of conductance as a function of interface transparency Z and see that two YSR bound
states merge at particular values of Z. Where the bound states merge gives a zero-energy
peak in conductance spectra. We also study the effect of arbitrary junction length on YSR
bound states. We see that YSR peaks appear at zero energy in conductance spectra for any
arbitrary length of the junction. Further, for long junctions, multiple YSR peaks are seen
in the subgap regime of the conductance spectra. This zero-energy peak is robust against
change in junction length a, but not against any other parameter values like exchange
interaction J, interface transparency Z, etc.

Moving on to the effect of spin-flip scattering on MBS’s, we have shown that zero bias
quantized conductance Majorana peaks remain unaffected in the presence of spin-flip scat-
tering for N1-SF-N,-I-pSc junction while the zero bias quantized conductance Majorana
peak at N;-SF-N»-I-SOCSW junction loses its quantization in the presence of spin-flip scat-
tering. We find that in the presence of spin-flip scattering, a 1D N;-SF-N,-I-pSc junction
Hamiltonian and scattering matrix belong to symmetry class BDI and topological quantum
number for class BDI does not change with a change of parameters. The scattering matrix
for a 1D N;-SF-N,-I-SOCSW junction satisfies only particle-hole symmetry relation. It
belongs to topological symmetry class D in the absence of spin-flip scattering. In contrast,

in the presence of spin-flip scattering, the scattering matrix does not satisfy any symmetry
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relation and belongs to the non-topological class A. The reason for ZBCP in a 1D Nj-
SF-N,-I-SOCSW junction, in the absence of spin-flip scattering, is the exact cancellation
at zero bias of normal and Andreev reflection probabilities. However, in the presence of
spin-flip scattering in a 1D N|-SF-N,-I-SOCSW junction, the exact cancellation of normal
and Andreev reflection probabilities doesn’t occur. As a consequence, ZBCP loses its

quantization.
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Chapter 3

Spin flip scattering induced odd
frequency equal spin triplet correlations

in metal-superconductor junction

“A theorist can explain any correlation, and its inverse”

— Thomas Gold

3.1 Introduction

The symmetry of the Cooper pair defines the characteristics of a superconductor. Fermi-
Dirac statistics imply that the Cooper pair wave function or pairing amplitude must be
anti-symmetric under the exchange of all quantum numbers: time (or frequency), spin,
and orbital coordinates. In general, pairing occurs between electrons at equal times. It
leads to either even frequency, spin-singlet, and even parity (ESE) state or even frequency,
spin-triplet, and odd parity (ETO) state where even or odd denotes the orbital part of the
Cooper pair wave-function. s and d wave pairing are examples of ESE pairing, while p

wave pairing is an example of ETO symmetry[66]. However, pairing, surprisingly, may
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also occur at different times or finite frequency, first noticed in Ref. [67] in >He and then
predicted to occur in disordered superconductors[68, 69] also. This finite frequency pairing
implies an odd frequency superconductor with either odd frequency, spin-singlet, and odd
parity (OSO) or odd frequency, spin-triplet, and even parity (OTE) pairing. Odd-frequency
superconductivity implies that the Cooper pair’s two electrons are odd in the relative time
coordinate or frequency. OSO pairing state has been predicted to occur in a conventional
spin-singlet superconductor[70]. Recently, odd frequency superconductivity has also been
expected to occur in a host of different systems[71, 72, 73, 74, 75], in addition to driven
systems[76, 77].

Odd-frequency superconducting pairing can also be induced in hybrid systems such as
normal metal-superconductor (NS) junction[78, 79, 80], ferromagnet-superconductor (FS)
junctions[7, 81, 82, 83, 84], as well as topological insulator-superconductor junctions[85,
86, 87, 88]. In NS junctions odd frequency pairing arises because spatial parity may be bro-
ken at the interface leading to transition from even s-wave to odd p-wave symmetry[89]. Fur-
ther, odd frequency pairing has been seen in systems with Rashba spin-orbit coupling[89,
90, 91]. Odd frequency pairing enables long range superconducting correlations, as seen
in FS junctions[92, 93, 94]. Moreover, there is a deep relationship between odd fre-
quency correlation and topological superconductors which might host Majorana fermions
(MF’s)[95, 96, 97, 98]. For a MF, the normal propagator (G/,) which describes the prop-
agation of free electrons and the anomalous propagator (G, ) which describes dynamics
of Cooper pairs are same, G, (wn) = G, (Wn)[99], where w,, is Matsubara frequency.
Further, since G/, (w) = 1/(iwy) for a MF, the pair amplitude (G/,) for an isolated MF
is necessarily odd in frequency[100, 101, 102].

This chapter shows that odd frequency equal spin-triplet pairing can be induced in

an NS junction due to interface spin-flip scattering. To date, most predictions of odd
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frequency pairing in NS junctions have either been spin-singlet or mixed spin-triplet
type[103, 104]. Odd frequency mixed spin-triplet correlations have been predicted to
occur in various hybrid superconducting junctions due to a magnetic interface at an NS
junction[103], a thin ferromagnetic layer in an NS junction[104], a Kondo-type impurity
embedded in a s-wave superconductor[15] or randomly embedded magnetic impurities
in a s-wave superconductor[105]. A recent experimental paper on a single embedded
magnetic impurity in a s-wave superconductor also sees odd frequency mixed spin-triplet
correlations[106]. Odd frequency mixed spin-triplet correlations can also be induced by
the spin mixing process[103, 104]. Spin mixing and spin-flip scattering are two differ-
ent processes. In spin mixing, an electron experiences spin-dependent phase shifts[107],
while via spin-flip scattering an electron/hole flips its spin[13]. A thin ferromagnetic layer
at the NS interface can only generate spin mixing, and it can not generate any spin-flip
scattering[104]. However, a spin flipper at the NS interface generates spin-flip scattering
and does not generate any spin mixing. We will discuss this in more detail in section 3.5.
Further, in Refs. [15, 105] odd frequency mixed spin-triplet correlations arise due to mag-
netic impurity similar to what happens in NFS junction wherein only spin mixing occurs,
however in this chapter, we will show that spin-flip scattering at NS interface induces both
even and odd frequency equal spin-triplet correlations. What differentiates our work in this
chapter from the examples above is equal spin-triplet correlations, which are not seen in
any of these works.

Now, why are odd frequency equal spin-triplet correlations important? The importance
of seeing these correlations in a s-wave superconductor implies that we have effectively
turned a s-wave superconductor to a p-wave superconductor via interface spin-flip scatter-
ing in an NS junction. A hallmark of p-wave superconductor is equal spin-triplet pairing

of its Cooper pair. Examples of p-wave superconductors are SroRuQO4, which are exotic
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and difficult to work with but are predicted to host Majorana fermions. However, inducing
spin-triplet p-wave pairing in a s-wave superconductor would imply generating and detect-
ing Majorana Fermions could become much more accessible. Further, equal spin-triplet
correlations support dissipationless pure spin currents, which are generally long-range
and are of great interest in superconducting spintronics[107, 108]. Dissipationless pure
spin current reduces power consumption by several orders of magnitude in ultralow-power
computers[109].

Using a scattering Green’s function approach, we calculate the even and odd frequency
spin-singlet and triplet pairing correlations induced in normal metal and superconducting
regions. We see that locally, only even frequency, spin-singlet even parity correlations, and
odd frequency equal spin-triplet, even parity correlations are finite. Non locally, however,
both even and odd frequency, spin-singlet, and equal spin-triplet correlations are non-zero.
We further determine the local magnetization density of states (LMDOS) and the spin-
polarized local density of states (SPLDOS), which can help detect these odd-frequency

equal spin-triplet correlations.

3.2 Spin flip scattering at NS interface

A NS junction is shown in Fig. 3.1, with a spin flipper at the interface (x = 0). The BdG

Hamiltonian of this system is given as

HI iAO(x)5y
Hpac(x) = . (3.1)
—iN*O(x)0y -HI
where H = p?/2m* — Jy6 (x)5 S—Ep,Ais superconducting gap for s-wave superconductor

and ®(x) is Heaviside step function. First term in H is kinetic energy of an electron/hole

with effective mass m* and momentum p, second term describes the exchange interaction
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Jo between electron/hole spin () and spin flipper’s spin (S), I is identity matrix, o is the

Pauli spin matrix and EF is Fermi energy. We will later use the dimensionless parameter

J = m,:FJO as a measure of strength of exchange coupling[13].

Spin flipper
A

II

B

>
=y

x=0

Figure 3.1: A spin flipper with spin S and magnetic moment m’ at x = 0 in a NS junction. Scattering
of an incident spin up electron is shown. Normal reflection, Andreev reflection and quasi-particle
transmission into superconductor are depicted.

If we diagonalize BdG Hamiltonian (Eq. (3.1)) we get wavefunctions in different regions

of the NS junction, for various types of scattering processes, which are given as,

‘pl lkex¢S +b]1(,0 e—lkexqu +b12(p e—tkex¢m+l +(111(p elkhx¢m+l +a12¢i\leikhx¢fn/, X<0,

Yi(x) =
S

119 elk x¢S + Cy; e’k x¢m+l + d]](,D € [k x¢m+l + dmpfe lkhxqﬁfn,, x> 0.

\P( ) ¢£Vetkgx¢§1,+b21wi\le—tkex¢fn +b221,0 e—tk x¢S +a21¢ etkhx¢S +a22<,0 elkhx¢m, i, X <0,
2(X) =

—ik$ ikS
Q19 Seike XS+ o e’k‘x¢f1, +dypse i gS  + dpgle xS, | x> 0.
N ,—ikpx S N ,—ikex 4S N ,—ik S N Likpx 4S N ik S

W) p3 e tn ¢m’ +a31¢,01 g e ¢m’—1 +a32<,02 et exqﬁm, + b31(p3 ettn ¢m’ + b32904 e' hx¢m’—l’ x <0,

3(X) =
S ikSx 1S S . ikSx 1S k S k S

C31g01€l 3x¢m,_1 +C32g02€1 fxqﬁm, +d31(p e’ x¢ +d32(p e’ x¢ 1> x>0

” ( ) ‘104}1\, lkhx¢5 +a414,0 e —ike x¢m/ +a42€0 e —ike x¢m’+1 +b41§0 etk;1x¢m+1 +b42§0£\lelkhx¢fn,, X <0,
4(X) =

lk X lk X d zk  x d S —ik X 0

capie®e XS+ cppielte ¢S+ dygle ¢S, +dngje ¢35, x>0.
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csipNehex S 4 esyplNemthexgS o+ ds ol elngS 4 dsypl elngS x <0,
Ps(x) =
S
(pf —ik3 x¢S +b51<p elk x¢S +b52§0 elk x¢m+l +Cl51()0 e lkhx¢m+1 +a52¢4 lkhx(ﬁfn” x> 0.
Cﬁ](pl e ke x(ﬁ;i qt 662¢9]67ik"x¢g1, + déltpéveikhx¢rsn, + dszgoiveikhxqﬁil,_] s x <0,
We(x) =
_i S S i-S _ikS
90‘;6 zk({x¢£ﬂ +b6190felk“x¢fn/,1 +b62‘10§elk“x¢,sn/ +a51tp§e lk”x¢g1, +a62‘P e —ik? X¢S( Lox> 0.
crpNehexgS o epelekex ¢S 4 dy ol el n ¢S + dpyplelnrgS x <0,
¥7(x) =
@5 e’khx¢ +ane; Seike X¢m, 1+a72<p‘2?eik§"¢§1, +b71<p e ki x¢ +b72g0 e ki x(l)S/ >, x>0
819, Ng—ike X¢S + 200, Ne-ike x¢m ot dg](,D elk’lx¢m+l + dgzgoiveik”x¢rsn,, x <0,
W(x) =
_ikS
g'oSe‘khx¢S +f18]‘/7 ezk x¢S +082‘P elk x¢m+l +b81‘P e tk x¢m+l +b8290§e lkhx¢§1” x> 0.
(3.2)
1 0 0 0 u 0 0
1 0 u -V
h N _ 0 N _ N _ N _ 0 S _ 0 _ _ d
where ¢} = s Py = NS s Py = s P = » Py = » P33 = an
0 0 1 0 0 -V u
0 0 0 1 v 0 0
%
S O . . .
@, = . ¥, ¥, W3 and W4 represent scattering processes when spin up electron, spin
0
u

down electron, spin up hole and spin down hole are incident from N region, while W5, W,
W7 and s represent scattering processes when spin up electron-like quasiparticle (ELQ),
spin down ELQ, spin up hole-like quasiparticle (HLQ) and spin down HLQ are incident
from S region respectively. b;; and g;; are normal and Andreev reflection amplitudes,
while ¢;; and d;; are transmission amplitudes for ELQ’s and HLQ’s. (/)fn , represents
eigenspinor for spin flipper with its S, operator acting as: S,¢5, = im’¢S ,, with m’ being

11 4 Y=o 11 - Y=

spin magnetic moment of spin flipper. u = and v = are
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BCS coherence factors. k., = lzhﬂz(E F *+ w) are electron/hole wave-vectors in normal

metal, while k;i h = %(E F* m) are ELQ/HLQ wave-vectors in superconductor.
Conjugated processes P; required to construct Green’s functions in next section are obtained
by diagonalizing Hamiltonian H; 46 (—k) instead of Hpyi(k). In case of Normal metal-
spin flipper-Superconductor junction (Fig. 3.1) we find that ;¥ = ¢N® hence \P; = ¥,
resulting in identical scattering amplitude, e.g., b1 = b;; and soon. Inthe limit Ef >> A, w
one can approximate k., = kr(l £ ﬁ) with kp = \/W and k.«f,h ~ kp + ik with
K = qu /(2EF)]. Further, superconducting coherence length[110] is given by
& = h/(m*A).

Scattering amplitudes are determined from boundary conditions, which at x = 0 are,

d¥;(x >0) d¥i(x<0)  2m*Js.S

¥i(x <0) = ¥;(x >0), and, I e 2

Y;(x =0), (3.3)

where 5.5 = 5.5 + %(s‘S+ + s*87) is exchange operator in Hamiltonian Eq. (3.1). s* =
sy % isy are raising and lowering spin operator for electron/hole, while S* = S, +iS, are
raising and lowering spin operator for spin-flipper. s* are 4 X 4 matrix defined in section
1.3 of chapter 1. From boundary conditions (3.3) we get 8 equations for each scattering
process, see Eq. (3.2). From each set of these 8 equations we can calculate different
scattering amplitudes: b;;, a;j, ¢;j, d;j. In the next section we will use these scattering
amplitudes to compute retarded Green’s function in each region of our system. From
retarded Green’s function we can calculate the induced pairing correlations, e.g., ESE,
ETO, OSO, OTE, and SPLDOS in each region of the junction. Further, we also calculate

the LMDOS & SPLDOS which will help in detecting these pairing correlations.
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3.3 Method to calculate induced pairing correlations

3.3.1 Green’s function

Our motivation in this chapter is to see if via spin flip scattering one can induce odd
frequency spin triplet pairing in our setup. For this purpose, we use the approach of
Refs. [88, 89] and set up retarded Green’s function G” (x, x’, w) with incoming and outgoing

waves in both N and S regions due to interface[111] scattering. Retarded Green’s function

then are,
Pr)lan Pl () + @ (1) + a3 P (1) + @14 ¥g (1]
+¥ () [P (') + anPL(x') + a3 Pl (&) + a2a Pf (1)]
+¥3(0) 31 Pl () + Pl () + e3P () + a3 P] (x)]

G (o) = P () @ P () + e P () + a3 ¥] () + g PE(N], x> o

Ys(O[BuPT () + BraVh (') + B3 Vh (') + BraV] (x)]
+W6(0) [ B PT (x") + B2¥] (&) + BosPE (xX') + BoaPl ()]

+¥7(0)[B31¥] () + B3Pl (x) + B33 PE(x) + B3] (x)]

+W3(0)[Ba1 T (') + Ba¥] (x) + Bz VL (X)) + BaaPT ()], x <
(3.4)

Coeflicients a;; and $,,, in Eq. (3.4) are calculated from
[w — Hpac (x)]G" (x, X', w) = 6(x = x'), (3.5)
Eq. (3.5) on integration at x = x’ yields,

’ r ’ d r ’ d r ’
[Gr(x > X )]x=x =[G (x < X")]x=r, and [EG (x>x )]x:x’_[aG (x < xX)]x=x = n7700,

(3.6)
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wherein 7 = 2m* /? and 7;, o; are Pauli matrices in particle-hole and spin spaces. Green’s

functions are 2 X 2 matrix in particle-hole space,

G, G
G (x,x,w)y=| “ ", (3.7)
r r
Ghe G
where each element is a matrix, which in presence of spin flip scattering, can be written as

[G;ﬁ]TT [G:yﬁ]Tl

[Goplit [GLplu

Analytical expressions of all Green’s functions are provided in Appendix A.

G;ﬁ(x, X, w) = ,with a, B € {e, h}. (3.8)

3.3.2 Pairing amplitudes

The anomalous Green’s function propagator G/, (off diagonal element in Eq. (3.7)) can be

expressed in terms of pairing amplitude * /7 as

G, (x,x,w) = ii fhoaos, (3.9)

1=0
where o7 is identity matrix, o 1(4 = 1,2,3) are Pauli matrices. In Eq. (3.9), f; is spin-
singlet (T, — |71), flr’2 are equal spin-triplet (|| £ 7TT) and f3’ is mixed spin triplet (T| + lT)
component. Equal spin triplet components 1T and || are given by fyy = if; — f{ and
SfiL = if; + f], respectively. Herein, f) denotes pairing amplitude or correlation, while
|f7l = J(fD(f)* refers to pairing magnitude. Using Egs. (3.7)-(3.9), we get pairing

amplitudes or correlations as,

(GGl =[G, )i (G =[G In

fox X, w) = 2 . 1 x, w) = 2 ,
(3.10)
[Gr ] + [Gr ] [Gr ] + [Gr ]
iy, w) = —< uz. n 1 and iy, w) = —< T . eh T
1

The even and odd frequency components can be extracted from (3.10) as,

(6 X w) + fI (X —w "(x, x,w) = f4x, X, —w
[ X, w) = Tl ) I ), and f¢(x,x",w) = Ja ) zf/l( ),

2
(3.11)
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where f7 is related to advanced Green’s function, which can be determined from re-
tarded Green’s functions, via G*(x, X', w) = [G"(x’, x, w)]7[88]. Even and odd frequency

components of equal spin triplet correlations can be obtained from Eq. (3.11) as,
fh=ifs —ff fh=ifs + At =ifd - f0. and f{=if?+f0.  (3.12)

At finite temperature we go to the Matsubara representation and replace w with iw,,. In this
case Eq. (3.9) can be written[112] as,
3
D Gl xiw) =i ) fioao, (3.13)
w,>0 1=0

wy, = kT (2n + 1) are Matsubara frequencies and n = 0, +1, +2, ....

3.4 Results

Following the procedure mentioned in section 3.3, herein we analyze the induced odd/even
frequency spin-singlet and spin-triplet correlations in N (x < 0) and S (x > 0) regions at

zero as well as at finite temperatures.

3.4.1 Zero temperature

Odd and even frequency spin-singlet correlations

Induced odd/even frequency pairing amplitudes or correlations are directly calculated from
anomalous particle-hole component of retarded Green’s function using Egs. (3.10)-(3.12).
Detailed derivation is provided in Appendix A and the Mathematica code used to calculate

pairing correlations are mentioned in Appendix D. For even and odd frequency spin singlet
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correlations we get,

— a2 o=tk M (43 cos kg (x — x)), for x < 0 (N region)

E ’ _ nuy —k|x—x'| | glkFIx=x"| emikElx=x] nuy —k(x+x") | Bsjethr D
Jo (6 X\ w) = 3055 € | I[ w ot t € feed) W (.14)
1
—ikp (x+x') _ , (x=x" ik (u2—v? .
bgre — :| zi(u;I_VZ) e~ K(x+x’) asi cos[kF (X(]fz)iik;; +ik(u=—v ))7 for x > 0 (S reglon)
h F

_%e_ikM(Hx/) sin[kp(x — x")], for x < 0 (N region)
Gy w) = ‘ (3.15)

nagi (kr (U2=v2)+ix) N (x+XT) :
WD) sin[kr(x — x")]e , for x > 0 (S region)

where kM = wkp/(2EF). Both even frequency spin singlet (ESE) and odd frequency spin
singlet (OSO) correlations are interface contributions in normal metal(N) region (x < 0)
as is evident, being proportional to Andreev reflection amplitude a;,. In S region (x > 0),
ESE correlations have a bulk contribution (first term of Eq. (3.14) for x > 0), in addition
to interface contribution while OSO correlations have only an interface contribution. Bulk
contribution to ESE correlations in S region (x > 0), from Eq. (3.14) (independent of

interface scattering amplitudes) is

fog = LA~ )e-K'H"[ (3.16)

eikle—x’I e—ikF|X—X’|
2i(u? —v? ’

+
S S
% kS

while interface contributions from Eq. (3.14) which depend on interface scattering ampli-

tudes, are
E __ v —Kk(x+x") b51€ikp (x+x") bgze_ik’:(x"'x,)
fO,I —Zi(uz _v2)€ [ k_eS‘ kg ]
3.17)
n e—K(x+x’) agy coslkp (x — x")](kp + iK(MZ - Vz))
2i(u? —v?) (k%: + K2) :

Bulk contributions do not exhibit any local space dependence, as substituting x = x” in
Eq. (3.16), makes them independent of x. In contrast interface contributions Eq. (3.17),
are x dependent. Thus, for x — oo bulk contribution Eq. (3.16), is finite, while interface
contribution Eq. (3.17), vanishes. Therefore, local even frequency spin singlet correlations

are finite in bulk. From Eq. (3.14) we see that ESE correlation in S region depends on both
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normal reflection (bs;, bgy) and Andreev reflection amplitude (ag;), while in Eq. (3.15)
OSO correlation in S region is proportional to Andreev reflection amplitude ag;. Atx = x’,

OSO vanishes, while ESE is finite and becomes maximum.

Figure 3.2: Absolute values of even and odd frequency spin-singlet correlation induced in N
(x < 0)and S (x > 0) regions as a function of position x for (a) no flip case and (b,c) spin flip
case. Parameters are: S = 1/2 (for (a) and (b)), S = 5/2 (for (c)). Spin-flip probabilities are:
f=f"=0(@), f=f =10b), f=f =3(c). Other parameters: J =1, x’ =0, w = 0.1A,
Er = 10A.

We plot spin-singlet pairing correlation induced in N and S regions in Fig. 3.2. In
Fig. 3.2(a) OSO (blue, solid) and ESE (red, dashed) correlations are finite and show
nice periodic oscillations as function of position x in N (x < 0) region, while in S
(x > 0) region both OSO and ESE correlations exhibit an oscillatory decay in absence
of spin-flip scattering, i.e., flip probability: f = f’ = 0. The decay length 1/x with
k= VA2 — w2 [kr/(2EF)], and oscillatory nature of correlations is determined from Fermi-
energy Er (through kr, see Egs. (3.14), (3.15) for x > 0). In Fig. 3.2(b) for finite spin-flip
scattering, i.e., flip probability f = f’ = 1, we see similar oscillatory behavior, albeit
with a lower magnitude than no-flip case. The more interesting thing is what is shown
in Fig. 3.2(b) in the S region, wherein we see OSO correlations dominating over ESE
correlations. For high values of spin-flip scattering, i.e., f = f* = 3, both OSO and
ESE correlations are suppressed, but their nature does not change as shown in Fig. 3.2(c).

Further, we also note that non-local (x # x") spin-singlet correlations are finite regardless of
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odd or even frequency. In contrast, local (x = x") OSO correlations vanish, and local ESE
correlations are finite. In all figures, x has been normalized by superconducting coherence

length £ to make it dimensionless.

Odd and even frequency equal spin-triplet correlations

Even and odd frequency, spin-triplet correlations are of two distinct types, mixed spin-
triplet or equal spin triplet. To distinguish between these, we denote odd frequency equal
spin-triplet correlation as OTE-equal, while odd frequency mixed spin-triplet correlation as
OTE-mixed. Similarly, in the case of even frequency, we have ETO-equal and ETO-mixed
correlations. Uniquely, we find that mixed spin-triplet correlation for both odd and even
frequency vanishes ( f3E = f30 = 0) in our set-up, while equal spin-triplet correlation for
both odd and even frequency is finite ( fTET’O = - ﬁ’o # 0).

The reason why mixed spin triplet correlations (both even and odd frequency) vanish,
can be traced back to the scattering amplitudes, and Green’s functions derived from them
in sections 3.2 and 3.3. If one looks at the Andreev reflection amplitudes, they satisfy
the relations: a3; = —a4p and as; = —aq;. Thus, anomalous electron-hole components of
Green’s functions in N region are related as: [G), ]y = =[G, ]}, and [G}, ]| = —[G}, 111
(see Appendix A for detailed calculation). This same relation, for anomalous electron-hole
components of Green’s functions also holds true in S (x > 0) region as well. Therefore,
from Eq. (3.10), f; = 0 and f; = 0, with fy; = —f,. Spin flip scattering at junction
interfaces, induces equal spin triplet correlations only. Interestingly, we find odd frequency
equal spin-triplet correlation (OTE-equal) dominating over even frequency equal spin-
triplet correlation (ETO-equal) in the S region, which can have significant applications in

superconducting spintronics.
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For the even/odd frequency equal spin triplet correlations, using Eq. (3.12) we obtain

E E _gaTLle_ikM(“x,) sin[kp(x — x")], for x < 0 (N region)

I xw) =-f(xx,w) = o (3.18)

_77a62(kF(u —VI)+iK) . o —k(x+x") .
D) sin[kr (x — x")]e , for x > 0 (S region)

—inan p=ik™ (+x) coglkp (x — x7)], for x < 0 (N region)

2ke
0} ’ _ 0] ’ _ 7 _ ~N| b —ikp (x+x’) b ik (x+x’)
S0, w) = = f{ 00 ¥, @) = § S et | e B b (3.19)
1

—k(x+x") Q6 CoS[kp (x=x") [ (kp +ik W?—v?))
(k2. +x2) ’

n

T ¢

for x > 0 (S region)

in presence of spin flip scattering, while in absence of spin flip scattering they vanish. In
absence of spin flip scattering, both incident quasi particle spin and spin flipper’s spin are
in same direction (either up or down) and they do not flip their spins after interaction. For
S = 1/2, m’ can be 1/2 (when spin flipper’s spin is in up direction) or —1/2 (when spin
flipper’s spin is in down direction). When spin up quasiparticle is incident, no-flip process
implies S = m’ (i.e., f = 0) while when spin down quasiparticle is incident S = —m’ (i.e.,
f’ = 0). When spin up quasiparticle is incident and m’ = 1/2, then there won’t be any spin

flip scattering (f = 0) and from Eq. (1.54) we get

L= I | 1
5.8¢) 92 = Zgollv¢i. (3.20)
2 2
Similarly, when spin down quasiparticle is incident and m’ = —1/2, then there will not be
any spin flip scattering (f = 0) and from Eq. (1.55) we get
L= 1 1 1
5.5¢) ¢ = Z¢N¢il‘ 3.21)
2 2

From Egs. (3.20), (3.21) we see that in absence of spin-flip scattering s’ S operates similarly
on spin up and spin down quasiparticle spinors, and therefore the system becomes spin-
inactive. Thus, at NS interface when spin flipper does not flip its spin, spin-singlet to
spin-triplet conversion can not take place, and spin triplet correlations do not arise in

such a situation (see Appendix A for detailed calculation of how spin triplet correlations
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vanish in absence of spin flip scattering). From Egs. (3.18), (3.19), we see that both
even and odd frequency, equal spin triplet correlations are interface contributions. We
further notice that in S (x > 0) region ETO-equal correlation is proportional to Andreev
reflection amplitude aey, while OTE-equal correlation depends on both normal and Andreev
reflection amplitudes. In N (x < 0) region both even and odd frequency equal spin triplet
correlations are proportional to Andreev reflection amplitude a;;. At x = x’, local ETO-
equal correlations vanish, i.e., fﬁ =—f ﬁ = 0, but local OTE-equal correlation is finite,
ie, fﬁ = —fﬁ # 0.

In Fig. 3.3 ETO-equal and OTE-equal correlations are plotted as function of position
x for low (f = f/ =1, Fig. 3.3(a)) and high (f = f’ = 3, Fig. 3.3(b)) values of spin flip
scattering. We see that in the metallic region fﬁ’o or ﬁ’o is finite and exhibits an oscillatory
behavior as function of position x and survives infinitely far away in presence of spin flip

scattering. The reason for this kind of behavior can be understood from Eqgs. (3.18), (3.19)

F o o o (o]
04 [Fra™ I=lfy ™ | 030 [ A [Fra ™ 1=lfus™ |
Iy
E E Iy E E
“““ [far=1=lfe s | 025+ 1 AT T =T
oy g
P A
0.20 Vo "|
! Voo i\
! [ Doy ' -
R S A T A N A A
i ! [ R N Y
I Vi [ Loy
O A O A N
N 7~ >~ /h Vi iy “,' Vo \
Oh I ! 1 e \
v vl \ \ " 1 f )
(W (W} 1 1] 1 [ [H ]
v/ ! ] [ [ Y
X/f - - n 'l 1 1 X/§
-4 -2 0 2 4 6 8
(a) (b)

Figure 3.3: Absolute values of even and odd frequency equal spin-triplet correlation induced in N
(x <0)and S (x > 0) regions as function of position x for spin flip case. Parameters are: S = 1/2
(for (a)), S =5/2 (for (b)), f=f"=1(for(a)), f=f =3 (for (b)), J=1,x"=0, w =0.1A,
Er = 10A.

for x < 0, where we see that the equal spin-triplet pairings are proportional to sin[kr (x—x")]

for even frequency and cos[kr(x — x’)] for odd frequency respectively. However, in the
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S region, we find that both ETO-equal and OTE-equal correlations exhibit an oscillatory
decay in the presence of spin-flip scattering. It contrasts with what we see for spin-triplet
correlations in the normal metal region (x < 0). The reason one obtains different results
for equal spin-triplet correlations in N and S regions can be understood from Eq. (3.18) for
x > 0, where we see that equal spin-triplet correlation in the S region is proportional to
sin[kr(x — x")]e™*C+*) and therefore shows an oscillatory decay with decay length 1/«.
In contrast, in the N region, correlations don’t decay. Another interesting thing to note
from Fig. 3.3 is that in a ballistic NS junction, non-local even and odd frequency equal
spin-triplet correlations are finite only in the presence of spin-flip scattering, which is an
exceptional result since other papers in NS junctions report odd frequency mixed spin-triplet
correlations with vanishing odd frequency equal spin-triplet correlations[88, 89]. Further,
locally at x = x’, we notice that ETO-equal correlations vanish, but OTE-equal correlations
are non-zero. In addition, we notice that in the S region, the OTE-equal correlation is larger
than the ETO-equal correlation for low values of spin-flip scattering. In contrast, for high
values of spin-flip scattering, ETO-equal correlation dominates over OTE-equal correlation.
Finally, we reiterate that both ETO-mixed and OTE-mixed correlations vanish regardless
of spin-flip scattering, i.e., ff = f30 = 0 in our setup.

As an aside, for an NS junction based on 1D nanowires with Rashba spin-orbit
coupling[89] and proximity-induced s-wave spin-singlet superconductivity, although even/odd
frequency mixed spin-triplet correlations are induced, the even/odd frequency equal spin-
triplet correlations vanish. Spin-orbit coupling does not generate equal spin-triplet corre-

lations in NS junctions.
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3.4.2 Finite temperature

In the previous section we have discussed spin singlet and triplet correlations at zero tem-
perature. In this section we will study effect of finite temperature on spin singlet and triplet
correlations. To calculate correlations at finite temperature we use Matsubara representa-
tion, replacing w with iw, in anomalous electron-hole propagator (see Egs. (3.9), (3.13)).
In electron-hole propagator at finite temperature (Eq. (3.13)), summation is taken over pos-
itive frequencies only because all pairing correlations become odd functions of frequency.
From electron-hole propagator at finite temperature (Eq. (3.13)), we can compute even/odd

frequency spin singlet and spin triplet correlations, see Eqs (3.14), (3.15), (3.18), (3.19).

Odd and even frequency spin-singlet correlations

At zero temperature, both even and odd frequency spin-singlet correlations in the N region

exhibit an oscillatory behavior and survive infinitely far away. But, at finite temperature

ESE and OSO correlations show an oscillatory decay in the N region since decay length

(én) in the N region goes as %[l 13, 114].
Even and odd frequency spin singlet correlations at finite temperature are given as,
5, x\T) = Z fE (X, 0 > iw,), and fOO (x,x",T) = Z fOO (x, X", w — iwy,)
wp>0 wp>0

(3.22)

where f(f (x, x’,w) and fOO (x, X', w) are given in Egs. (3.14), (3.15). In Fig. 3.4 we plot spin

singlet correlation induced in N(x < 0) and S(x > 0) regions as function of position x at

finite temperature for both no flip (Fig. 3.4(a)) and spin flip (Figs. 3.4(b,c)) processes. Even

and odd frequency spin singlet pairings are finite and show a nice oscillatory decay as func-

tion of position x in normal region. The reason for this kind of behavior can be understood

by substituting w with iw, in Egs. (3.14), (3.15) where ESE correlation is proportional to
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Figure 3.4: The absolute values of the even and odd frequency spin-singlet correlation induced in
the N region (x < 0) and S region (x > 0) as a function of the position x for (a) no flip process and
(b) spin flip process. Parameters are: S = 1/2 (for (a) and (b)), S = 5/2 (for (¢)), f = f' =0
(for (@), f=f'=1(for (b)), f=f' =3 (for(c)), J=1,x"=0,T/T. =0.01, Ep = 10A.
ekM/(x+x’) COS[k ( _ . . . kM/(x+x’) . )
r(x—x")] and OSO correlation is proportional to e sin[kp(x—x")]

in N region (x < 0), with M = w,kp/ (2Er). This is in contrast to what we observe
at zero temperature where ESE and OSO correlations exhibit a nice oscillation instead of
oscillatory decay at zero temperature. In S region, we see a nice oscillatory decay similar to
zero temperature, only the magnitudes of pairing correlations may change but qualitatively
there is no change when w — iw, since the factor x (= v/(A2 — w?)[kr/(2EF)]) occurring
in the superconducting wavefunctions is function of w?.

In our figures we normalize the pairing amplitudes to the value of spin singlet pairing

amplitude in the bulk superconductors[115],

A

;n: \/w%+A2.

The temperature dependence of the bulk pair potential A is given as

fsb=2 (3.23)

A(T) = A(0) tanh(1.74VT,/T — 1), where T is the critical temperature[24].
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Odd and even frequency equal spin triplet correlations

Finite temperature, even and odd frequency equal spin triplet correlations ( fﬁ (x,x",T), fTOT(x’ x',T))

are derived by substituting iw, for w in Egs. (3.18), (3.19). Thus

FRa D) = =ffinx' 1) = 3 fhiexio —io) == 3 a0 = i), (324)

wnp>0 wn>0

FGx,T) = =fx Ty = Y fO0ux 0 —iwy) == D fOxx,0 = iw,), (3.25)

>0 >0
in presence of spin flip scattering. Similar to zero temperature case, in absence of spin flip
scattering equal spin triplet correlations (Eq. (3.24), (3.25)) vanish.

In Fig. 3.5 we plot ETO-equal ( fﬁ, f ﬁ) and OTE-equal ( fﬁ, fﬁ) correlations as a
function of position x for small (f = f’ = 1, Fig. 3.5(a)) and large (f = f’ = 3, Fig. 3.5(b))
values of spin flip scattering. We see that equal spin triplet correlations are finite and exhibit
an oscillatory decay in N region. This is in contrast to what we see for equal spin triplet

correlations at zero temperature, see Figs. 3.3(a), 3.3(b). The reason for this behavior can be

Fra©lfsyl=lfy € /fepl g Fra® /sy l=lfy o 1

Fra & Ifep|=lfy LB 1fgp

Figure 3.5: Absolute values of even and odd frequency equal spin-triplet correlation induced in N
region (x < 0) and S region (x > 0) as a function of position x for spin flip process. Parameters
are: S = 1/2 (for (a)), S =5/2 (for (b)), f = f' =1 (for (a)), f = f" =3 (for (b)), J =1,
x'=0,T/T, =0.01, Ep = 10A.

understood by substituting w with iw, in Egs. (3.18), (3.19) where ETO-equal correlation

is proportional to k" () sin[kp(x — x”)] and OTE-equal correlation is proportional
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to X" ) cos[kp(x — x')] in the N region (x < 0). In S region we see the similar
behavior for both ETO-equal ( fﬁ, f fi) and OTE-equal ( fﬁ, fﬁ) correlations as seen at
zero temperature. Finally, we note that both even as well as odd frequency mixed spin triplet

correlations vanish regardless of spin flip scattering, i.e., ff(x, x',T) = f30 (x,x,T) =0.

3.5 Processes at play

In section 3.4 we see finite odd frequency equal spin-triplet correlations with vanishing
odd frequency mixed spin-triplet correlations when only spin-flip scattering is present
in the system. In this section, we explain the reasons behind our results. We examine
three different situations: (a) when both spin-flip scattering and spin mixing are present
in the system, (b) when only spin mixing is present in the system, and (c) when only
spin-flip scattering is present in the system (sections 3.3 & 3.4). Spin mixing and spin-flip
scattering are two separate processes. In the spin mixing process, an electron experiences
spin-dependent phase shifts[107], while in the spin-flip scattering process, an electron flips
its spin[9]. Thus, when an electron propagates through a ferromagnetic layer, only spin
mixing occurs[116], while when an electron propagates through two ferromagnetic layers
with misaligned magnetizations, both spin mixing and spin-flip scattering occur[117].
However, only spin-flip scattering occurs when an electron interacts with the spin flipper in
an NS junction. We will discuss below the spin structure of the retarded Green’s functions

and induced pairing correlations and SPLDOS for each of these three cases.
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3.5.1 Retarded Green’s functions and induced pairing correlations

Both spin mixing and spin-flip scattering occur

In the case of Superconductor-Ferromagnet-Ferromagnet-Superconductor (S-F;-F;-S) junc-
tion or Ferromagnet-Ferromagnet-Superconductor (F;-F;-S) junction with misaligned mag-
netizations both spin mixing and spin-flip scattering occur when an electron/hole propa-
gates through two ferromagnetic layers. The S-Fi-F,-S junction case has been dealt with
elaborately in Ref. [117]. Hereinbelow, we show the calculations for F{F;S junction.

A F1F>S junction is shown in Fig. 3.6, wherein magnetization vectors of the two Ferro-
magnets make an angle 6 with each other. In Fig. 3.6, the scattering of an up spin electron
incident is shown and normal reflection, Andreev reflection and quasi-particle transmis-

sion into superconductor are represented. The model Hamiltonian in BdG formalism of

1 —1—e> Ilﬁz 111
h, : Z 0 ji'
1 -
V*h | h,
1 v 2 \J
X=-a x=0

Figure 3.6: Ferromagnet (Fy)-Ferromagnet (Fy)-Superconductor (S) junction with misaligned
magnetizations. The scattering of a spin up electron incident is shown. Normal reflection, Andreev
reflection and quasi-particle transmission into superconductor are depicted.

the system as depicted in Fig. 3.6 is given as:
Hrl iA®(x)0y

HF pag(x) = Bt (3.26)
—iANO()Gy  —Hpl
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where Hp = p2/2m*—l71.&@(—x—a)—lﬁ.é’@(x+a)®(—x)—EF. The magnetization vector

(h}) of right ferromagnetic layer (F3) is at an angle 6 with z axis in the y — z plane, while

that of left ferromagnetic layer (F}) is fixed along the z axis. Thus, hy.0- = hy sin 00y +

hy cos 86-;. 1f we diagonalize BAG Hamiltonian Hr ps6(x) we will get wavefunctions in

different regions of our system for various types of scattering processes. Wavefunctions

for different types of scattering processes are given as

Yi(x) =

¥a(x) =

Y3(x) =

Yi(x) =
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P+ - P P P+
(p]lvequ (x+a) + a;]spé\]equ (x+a) + ab(pi\/equ (x+a) + bilﬁajlve_l% (x+a) + bizﬁaé\]e_lql (x+u)’
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s N ,~iqf(x+a) r N _—ig}(x+a) ;N _igZ(x+a) ;N _iqT(x+a)
8s;pp e 1 + 850, € + h51¢3 e + h52g04 el s X< -a
s+
Ws(x) cfyf Dl f U g g o Y g F e e of !N e !
5(X) =
+flpf e (rra) flpye (x+a) —a<x<0
.S _ 7S 2. S .S
¢fe_lkgx+a;1§03 lk x+a2(p4 zkhx_i_bgl(pfelkex+b§2¢§elkex, x>0
o . o o
g N e T OTD fgr QN T CHD 1 N i ) hé2¢pf‘\’e‘ql (eta) x<-a
P+ Pt it :
Yo (x) Cél‘pfel% ) 4 Céz¢§elql b +dél¢,0fe i déz‘l"l;e N e ‘PF ot e 90F e
6(x) =
+f61190131767tq{(x+a) + fézsofeiqu(XJra) > —a<x<0
-7 S 1S 1S .S .S
cp‘;e_’kex + aé1<p§e ik, x 4 aéchfe ik, x bgltpfelkex + bgztpge’kex, x>0
o . . o
g§1§0f1€ iq} (x+a) +g§2(,0§’e iq] (x+a) +h§l‘,0gvequ (x+a) + ]/lézgaéjt\/elql (x+a), X< —a
. .
¥ (x) chyf Dt F U gy o Y g o €T e !N e ol
7(x) =
+f7/190§:€_qu Cora) + f7'2(pfe_lql Cra) > —a<x<0
S ikd ikS kS S —ik3 S ,—ik3
@Se*n ¥ +ab ol + al SR X + bl T e i + bl pF e x>0
s N ,~iqi(x+a) r N —ig}(x+a) ;N _ig7(x+a) ;N _iqT(x+a)
gpre 1 +8ppye +hi ey e + h82¢4 el s x < -a
. -
ey = RO g T T g I T g
g(X) =
+fé190§e_l% k) 4 féz(pfe"% v —a<x<0
S lk x lk x S ikSx r S —ikSx r S ik x
ppe +a gol +a824,0 e +b81903e h +b82g04e X x>0
(3.27)
[ . s 0
oS 5 isin 5 0 0
isin > CoS 3 0 0
F _ 2 F _ 2 F _ F _
Where ‘101 - ’ Soz - ’ ‘103 - ’ 904 - . lP]? \PZ’ \P3 and \P4
0 0 cosg —i sing
0 0 [ sin 5 oS 5

represents the scattering processes when spin up electron, spin down electron, spin up hole

and spin down hole are incident from ferromagnetic region I respectively, while V5, ¢, V7

and Wg represents the scattering processes when spin up electron, spin down electron, spin
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up hole and spin down hole are incident from superconducting region respectively. b;. and
ij

alfj are normal reflection amplitudes and Andreev reflection amplitudes respectively, while

’

glfj and hu are transmission amplitudes for electron-like quasi-particles and hole-like quasi-

particles respectively. g = \/ zhﬂz (EF £ w + pgh) are the wave-vectors for electron (g})
and hole (g) in the Ferromagnet, with p, = +1(=1), o =7 (]). Conjugated processes i,

needed to construct the Green’s functions are determined by diagonalizing the Hamiltonian

N(S) — SN
l

H;’BdG(—k) instead of Hr pgg(k). In case of F{F;S junction we find that @; @

and ¢;" = (¢7)*. In the limit of Ef >> A, w we approximate g% ~ kr(1 + g+ pg%)
with kg = \/2m*Ep /h2. Scattering amplitudes are obtained from the boundary conditions,
at x = —a:

dyi(—a < x <0) B dyi(x < —a) _

Yi(x < —a) =yi(-a < x <0), and, 0, (3.28)
dx dx
atx =0:
Vi(ca < x < 0) = gi(x > 0), and, WiX>0 diza<x<0) _, 5

dx dx

Solving the above boundary conditions, we get 16 equations for each type of scattering
process as discussed in Eq. (3.27). From each set of these 16 equations we can determine
the different scattering amplitudes. Using these scattering amplitudes and following the
similar procedure as discussed in section 3.3, we can compute retarded Green’s function
and induced pairing correlations in each region of junction. In the left ferromagnetic region

for electron-electron and electron-hole components of Green’s function we get,

i Sigt (eax') |, ighIx-x' i e i e
(Gl =~ b7 4 )G = S g T ey
g
i it + . l s .
(Glolty = =l b)) (G ]y = - iR,
2q] 247
i ity l , e
[GZh]TT = _z_n—aéle l(qTx qTX )’ [Gzh]ll — _2_77_a426 l(qlx qlx )’
4y q;
] —i(qgtx—q x' l et~
[G;h]Tl __a:He l(qTx qLX), and [G:h]lT = —%aéze l(qlx qTx). (330)
L 1
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Substituting Eq. (3.30) in Eq. (3.10) we get,

fo e ’7 (a41 i(qix—qjx’) ) aézei(qliqux’)) fl ) = 77 (a42e t(qlix—ql'x’) ) aélei(qiqux’))’
q, q; q, 4q;
fi (e w) = ——(aélel(qiw = e ) and f(xx', ) = =1 (aile_l(qix_qi 7 e X/))
9 9y 4 9y a7
(3.31)

Thus, equal spin triplet correlations f1r and f) are finite, f1r = if5—f] = —%agle
t

—i(qfx=q7x’)
+ —q. ’ . . . .
and f| =if] + f] = a42e ~@7=49,%) 3nd mixed spin triplet correlations 5 are also

finite. For even and odd frequency spin singlet correlations, using Eq. (3.11) we get,

”7 a e—lkN(x+x’) a:“ e—ikN’<x+x') /
o, w) = — - — cos[kr(x — x’)], and
4 4 q,
a’ - e— KN Cx) e—ikN’(x+x')
fE X, w) = g[ 2 - ]sin[km—x’)], (3.32)
4 q,

where kV = % and KV = % Similarly, for even and odd frequency equal spin

triplet correlations, using Egs. (3.11) and (3.12) we obtain,

al, . ,
fTET(x,x’,w) = ——7; 3L =ik M () in[k L (x — x7)], fTOT(x,x’,w) = 727 31 eIk ) o[k E (x — x7)],
a7
fﬁ(x, xl’ 0.)) — T; 4_2 —ikM (x+x") Sln[kL (X _ .X/)], andfﬁ(x, xl’ 0.)) - _ 727 i2 —lkM()H-X ) COS[kL (X X )]
(3.33)

where kM = %, kL = kp(l + %) and kY = kp(1 - %). Finally, even and odd

frequency mixed spin triplet correlations, using Eq. (3.11) we get,

d eV Crx)  r ik ()
FEx, ¥ w) = —Q[ 2 -4 ]sin[kp(x —x")], and
4 5 q,
-1 N ’ -7 N’ ’
; a’ e—lk (x+x") a e—lk (x+x")
2x ¥ w) = ——'7[ 2 -4 cos[krp(x — x")].  (3.34)
4 £0 ]

From Egs. (3.33), (3.34) we see that both even and odd frequency equal and mixed spin-
triplet correlations are finite when spin mixing and spin-flip scattering both are present in

the system.
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Only spin mixing occurs

In Fig. 3.6, when magnetization vectors of the two Ferromagnets are parallel to each other,
i.e., @ = 0, then spin flip scattering does not occur and only spin mixing occurs in the system
due to the exchange field of the Ferromagnets. Spin mixing also arises in NS junction with
Rashba spin-orbit coupling, see Ref. [89]. In case of spin mixing process occuring in a FS
junction (this is same as a F{F»S junction with aligned magnetization, and with vanishing
length of F, layer, see Fig. 3.6), normal and Andreev reflection amplitudes with flip are
zero, i.e., bj, = by, = a}; = a;, = 0. Thus, from Eq. (3.30) we get [G¢ Iy, = [G 11 =
(G}, I = [G},];1 = 0 and from Eq. (3.33) we get fﬁ = fTOT = fﬁ = fﬁ = 0. Therefore,
when only spin mixing occurs, even and odd frequency equal spin-triplet correlations

vanish, but mixed spin-triplet correlations (f3) are finite (see Eq. (3.34)).

Only spin-flip scattering occurs

In the case of Normal metal (N)-Spin flipper (SF)-Superconductor (S) junction, our chosen
system depicted in Fig. 3.1, only spin-flip scattering occurs. In section 3.4.1 we have
already shown that when only spin-flip scattering occurs, even and odd frequency equal
spin-triplet correlations are finite, but mixed spin-triplet correlations vanish.

In our system, there is a spin flipper at the N-S interface. When an electron/hole
with spin up/down is incident from the metallic region at N-S interface, it interacts with
the spin flipper through an exchange potential (Jo5.S), which may induce a mutual spin
flip. Electron/hole can be reflected with spin-up or down. Spin-up or down electron-like
and hole-like quasiparticles are transmitted into the S region for energies above the gap.
Electron/hole does not experience any spin-dependent phase shifts when interacting with
the spin flipper. Thus, there is no spin mixing, and only spin-flip scattering occurs. Spin

flip scattering induces only equal spin-triplet correlations as shown in Fig. 3.3.
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3.6 Detecting odd frequency correlations

To detect experimentally odd frequency pairing correlations, one makes use of LDOS
v(x, w) and local magnetization density of state (LMDOS) m(x, w) which can be calculated[ 15]

from retarded Green’s function as,

1 1
vix,w) = —— liIT(l) Im(Tr{G.,(x, x, w+i€)}), and m(x,w) = —— lirr(l) Im(Tr{c).G,, (x, x, w+i€)}).
T e T e~

(3.35)
From Eq. (3.35), spin up (00 = +1) and spin-down (0 = —1) components of SPLDOS are

given as vy, = (v + olm|)/2.

3.6.1 Spin polarized local density of states (SPLDOS) & local magne-
tization density of states (LMDOS)

From section 3.5, we have three cases:

(i) Both spin mixing and spin flip scattering occur:

In case of F;F,S junction with misaligned magnetizations as shown in Fig. 3.6, both spin
mixing and spin flip scattering are present in the system. LMDOS for F{F,S junction,

using Eq. (3.35) is given by,

| .. N n
m(x,w) = - ll—l}(l) Im[([G). I1) + [GL 111X +i([GL 1 — [GL111) P + ([Glo I — (Gl 111) 2],
(3.36)
and SPLDOS is given by,

1 r r
Vo = — E 11_1;% Im([Gee]TT + [Gee]ll)

g .
. ll_{r(l) Im([G, 11 + [Ghelyp)? + Im(i([Ghelyy — [Ghelin)? + Im([Ghe Iy — [Ghely)?,

(3.37)
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where [G,, 11, (G111, [G.]11, and [G),];; are mentioned in Eq. (3.30) for left ferromag-
netic region. Thus, both equal (77 or |]) and mixed (] or |T) spin components of Green’s
function are finite and contribute to LMDOS and SPLDOS.

In Figs. 3.7(a) and 3.7(b) we plot even and odd frequency equal and mixed spin-
triplet correlations respectively as a function of position x in the superconducting region
(x > 0) for F1F,S junction when magnetization vectors of the two ferromagnetic layers are

misaligned (8 # 0). We see that along with odd frequency correlations dominating over

Spin flip + Spin mixing
Spin flip + Spin mixing 0.

Spin flip + Spin mixing

Figure 3.7: Absolute values of even and odd frequency (a) equal spin-triplet correlations and (D)
mixed spin-triplet correlations induced in superconducting region for F1F,S junction as function
of position x when both spin flip scattering and spin mixing occur, (c¢) Frequency dependence
of SPLDOS at x = 0 for F\F>S junction when both spin flip scattering and spin mixing occur.
Parameters are: h\/Er = hp/Ep = 0.8, x’ =0, w = 0.1A (for (a) and (b)), EF = 10A, 6 = /2,
krpa = m.

even frequency correlations, there is also a peak at w = 0 for spin-up LDOS (v), while

there is a dip at w = 0 for spin-down LDOS (v,), see Fig. 3.7(c).

(ii) Only spin mixing occurs:

In case of a NS junction with Rashba spin-orbit coupling or a NFS junction or for a FS
junction, spin flip scattering is absent and only spin mixing occurs. In absence of spin
flip scattering, [G), 11| = [G,.];1 = 0. From the definition of LMDOS and SPLDOS, see

Eq. (3.35), one can calculate LMDOS and SPLDOS for a NFS junction or FS junction as,
1 : r r PN
m(x, w) = — lim Im([Ge Iy = [Geell)% (3.38)
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and SPLDOS is given by,

1 r r g . r r
Vo = _g ll_I}(l) Im([Gee]TT + [Gee]ll) + E ll_r)% \/Im([Gee]TT - [Gee]ll)z‘ (3.39)

Thus, only equal (17 or ||) spin components of Green’s function are finite and contribute
to the LMDOS and SPLDOS.
Since, there is no spin flip scattering, even and odd frequency equal spin-triplet corre-

lations vanish and therefore in Fig. 3.8 we plot even and odd frequency mixed spin-triplet

correlations and SPLDOS. We see that when odd frequency mixed spin-triplet correlations

25
Ifs° | \_ﬁ

0.25 |

Only spin mixing

0.20
0.15
0.10 |

0.05

0.00

Figure 3.8: Absolute values of even and odd frequency mixed spin-triplet correlations induced in
superconducting region for FS junction as function of position x wherein only spin mixing occurs,
(¢) Frequency dependence of SPLDOS at x = 0 for FS junction. Parameters are: h/Er = 0.8,
x' =0, w =0.1A (for (a)), EF = 10A.

dominate over even frequency mixed spin-triplet correlations, a peak is seen at w = 0 for
spin-up LDOS (v7), while a dip is seen at w = 0 for spin-down LDOS (v)) at FS interface,

while LMDOS is polarized in z—direction.

(iii) Only spin flip scattering occurs:

In case of a Normal metal-Spin flipper-Superconductor junction we find that, [G), 111 =

[GL ]y, and [Gl, 11, = [GL,.]}1 both in normal metal and superconducting region. Thus,
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from Eq. 3.35, we get,

r

2 . 1. (o
m(x,w) = —;Im([Gee]“)x, and v, = —;ll_r)I(l)Im([Gze]TT)+;ll_r)r(l)lm([Gge]”). (3.40)

From Eq. (3.40) we see that only mixed (T]) spin component of the Green’s function
contributes to the LMDOS, while both equal (17) and mixed (T|) spin components of the
Green’s function contribute to the SPLDOS. The mixed spin component of the Green’s
function, i.e., [G},]1; is finite only in presence of spin flip scattering. Thus, [G), ]| is
responsible for the modification of the predicted SPLDOS at NS interface. In both N
(x < 0)and S (x > 0) regions for SPLDOS we find,

2
in(1 —i2kex ; —i2kex .
%Im(’”(””kl—e)) + Im(%) , for x <0 (N region)
e e

ya_(x’a)) = (341)
2K % (%Im(pl) + %\/Im(pz)z), for x > 0 (S region)
in(2ag kpuv + bs1€2kF X2 (kp — ik) + bgre KXV (kg + ik) + X (kp — i(u? — v?)k))
where, p1 = )

(u? = v2) (k% + K?)
_ in(byv* (kg + ik)e X — 2ag kpuv — beiu* (kp — ik)e'2kFX)
(u? = v2) (k% + K?) '

From Eq. (3.41) we see that SPLDOS has a bulk as well as interface contribution. Further,
there is a decay term e~>** in Eq. (3.41) for x > 0. The first term in Eq. (3.41) represents
LDOS, while the second term represents LMDOS. For LMDOS, from Eq. (3.35) we get

%Im(mb‘zzﬂ)ﬁ, for x < 0 (N region)
m(x,w) = ¢ (3.42)

%Im(pz)ﬁ, for x > 0 (S region)

From Eq. (3.42) we see that LMDOS is parallel to x axis. The reason why LMDOS is
parallel to x direction, can be found from the scattering amplitudes and Green’s functions

obtained for them in sections 3.2 and 3.3. If one looks at the normal reflection amplitudes,
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they satisfy the relations: by; = by and bya = by;. Thus, normal electron-electron
components of Green’s functions in N region are related as: [G), It = [GL,. ]} and [G),]1| =
[GL.];1 (see Appendix A for detailed calculation). This same relation, for normal electron-
electron components of Green’s functions holds true in S region as well. Therefore, from
Eq. (3.35), y and z components of LMDOS vanish and LMDOS is parallel to x axis. In
presence of spin-flip scattering, scattering amplitude bj, (normal metal region) and p> (in
superconducting region) are finite in Eq. (3.41). Thus, spin up and spin down components of
SPLDOS are unequal, i.e., vy # v, therefore LDOS is spin-polarized, although f11 = —f|;.
However, in absence of spin-flip scattering both b1, and p, are zero in Eq. (3.41), which
implies LDOS is unpolarized, i.e., vy = v| = v. While, in Ref. [89], the presence of Rashba
spin-orbit coupling leads to mixed spin-triplet correlations and spin-polarized LDOS. In
our setup, spin-flip scattering leads to equal spin-triplet correlations and spin-polarized
LDOS. However, in Ref. [89], in the absence of spin-orbit coupling, as also in our setup
in the absence of spin-flip scattering, LDOS is not spin-polarized. To conclude, while in
Ref. [89] spin orbit coupling is responsible for spin polarization of LDOS, in our setup spin
flip scattering is responsible for spin polarization of LDOS.

In Figs. 3.9(a) and 3.10(a) we plot spin-up and spin-down LDOS as a function of w at
the NS interface (x = 0). We see that for low values of spin flip scattering (f = f' = 1)
when fTOT dominates over fﬁ, there is a peak at w = 0. But, for increasing values of spin flip
scattering (f = f’ = 3) when even frequency-equal spin triplet correlation (ETO-equal),
ie., fTET is greater than odd frequency equal spin triplet correlation (OTE-equal), i.e., fTOT’
there is a dip at w = 0 in Fig. 3.10(a). In Figs. 3.9(b) and 3.10(b) we plot spin polarized
LDOS as function of position x in both N (x < 0) and S (x > 0) regions. We notice that
SPLDOS in N region shows nice periodic oscillations, while SPLDOS in S region (x > 0)

exhibits an oscillatory decay due to normal reflection. Next we analyze, possible relation
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Figure 3.9: (a) Frequency dependence of SPLDOS at NS interface, (b) spatial dependence of the
SPLDOS in N (x < 0) and S (x > 0) regions. Parametersare: S =1/2, f=f'"=1,J=1,x=0
(for (a)), Ep = 10A, w = 0.1A (for (b)).

Figure 3.10: (a) Frequency dependence of SPLDOS at NS interface, (b) spatial dependence of
the SPLDOS in N (x < 0) and S (x > 0) regions. Parameters are: S =5/2, f = f' =3, J =1,
x =0 (for (a)), Er = 10A, w = 0.1A (for (b)).

between odd and even frequency pairing amplitudes with SPLDOS. SPLDOS in N region
depends on normal reflection (see Eq. (3.41) for x < 0), while even and odd frequency spin
singlet as well as spin triplet correlations in N region depend only on Andreev reflection
(see Egs. (3.14), (3.15), (3.18), (3.19) for x < 0). In S region, SPLDOS depends on both
normal and Andreev reflection (see Eq. (3.41) for x > 0), while only even frequency spin
singlet correlations and odd frequency equal spin triplet correlations in S region depend on

both normal and Andreev reflection (see Egs. (3.14), (3.19) for x > 0). In addition, since
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SPLDOS is a local measurement, it is quite natural to analyze only local (x = x’) odd and
even frequency correlations. We see that only ESE and OTE-equal correlations survive at

x = x’, see Egs. (3.43) and (3.44) below,

. . .
__nai e—sz x’ for x <0 (N reglon)
2%,
EL =Jd_mw |1 ., 1 nuy kx| Bsie2kEx by e2ikEx 4
0 (-xa (L)) 2i(u2—V2) kg + ki 2i(u2_v2)e k‘g + ki‘ (3. 3)
i —2xx ag1 (kg +ik@?=v?)) .
22— € KXW, for x > 0 (S region)
_%e_mk X, for x < 0 (N region)
fO,L( ) — O,L( ) - J e—ZKx % nuy b72€_[2kFx _ b6lei2kpx (3 44)
o (hw)=—f"(xnw) = P o - ‘
__ 0 ae(kp+iku?=v?)) .
27 (ktkd) , for x > 0 (S region).

Since OSO and ETO-equal correlations are proportional to sin[kr(x — x’)] as shown in
Egs. (3.15), (3.18), they vanish at x = x’. In Fig. 3.11 we present spatial dependence
of local odd and even frequency correlations and spin-up LDOS in the N(x < 0) and
S(x > 0) regions. In S region (x > 0) both local odd frequency equal spin triplet
correlation and spin-up LDOS show an exponential decay and a nice oscillatory behavior.
But, in N region, x < 0, local odd and even frequency correlations are independent of
position x, while spin-up LDOS exhibits a nice periodic oscillation. From Figs. 3.11(a)
and 3.11(b), we also see that only local OTE-equal correlations show a nice oscillatory
decay in the S region similar to spin-up LDOS. In contrast, local ESE correlations exhibit
an oscillatory behavior without decay. Therefore, one is justified in associating only
local odd frequency equal spin-triplet correlation with SPLDOS. By computing SPLDOS,
we can extract the associated coefficients and calculate odd frequency equal spin-triplet
correlations in the superconducting region of our junction. Consequently, a large SPLDOS

indicates significant odd frequency equal spin-triplet pairing whose signature can be seen
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Figure 3.11: Spatial dependence of the (a) local even frequency correlations, (b) local odd
frequency correlations and (c) spin-up LDOS in N and S regions. Parameters are: S = 1/2,
f=f"=1J=1, Er = 10A.

experimentally.

Thus, in all three cases, LDOS is spin-polarized, or LMDOS is finite. In Table 3.1, we

compare OTE-equal and OTE-mixed correlations along with LMDOS and SPLDOS seen

in these three cases. We find that both OTE-equal and OTE-mixed correlations are finite,

Table 3.1: Comparison of OTE-equal, OTE-mixed, LMDOS and SPLDOS between three
cases: both spin mixing and spin flip scattering, only spin mixing and, only spin flip

scattering
OTE- | OTE- | LMDOS SPLDOS
equal | mixed
w=0 w = A

Both spin mixing | Finite | Finite | Polarized in arbitrary direction | Peak in spin-up | Dip in spin-up
and spin flip scatter- with %, §, Z components LDOS and dip in | LDOS and peak in
ing (F1F>S junction spin-down LDOS | spin-down LDOS
with misaligned (Fig. 3.7(c)) (Fig. 3.7(c))
magnetizations,
Fig. 3.6)
Only spin mixing | Zero | Finite | Polarized in z-direction Peak in spin-up | Dip in spin-up
(NS junction with LDOS ans dip in | LDOS and peak in
Rashba  spin-orbit spin-down LDOS | spin-down LDOS
coupling (Ref. [89]) (Fig. 3.8(b)) (Fig. 3.8(b))
or FS junction)
Only spin flip scat- | Finite | Zero | Polarized in x-direction Peak in  both | Dip in both spin-

tering (NS junction
with spin flipper,
Fig. 3.1)

spin-up LDOS and
spin-down LDOS
for low values of
spin flip scattering
(Fig. 3.9(a))

up LDOS and
spin-down LDOS
for low values of
spin flip scattering
(Fig. 3.9(a))

and LMDOS is polarized in an arbitrary direction when both spin mixing and spin-flip
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scattering occur. When only spin mixing occurs, OTE-equal correlations vanish, but OTE-
mixed correlations are finite with LMDOS polarized in z-direction. Finally, when only
spin-flip scattering occurs, OTE-equal correlations are finite, but OTE-mixed correlations

vanish with LMDOS polarized in x-direction.

3.7 Conclusion

In this chapter, we have studied the emergence of odd frequency equal spin-triplet correla-
tions at the interface of an NS junction with a spin flipper. We have analytically calculated
even and odd frequency spin-singlet and equal spin-triplet correlations using scattering
Green’s function approach. Interestingly, we have found that in the presence of spin-flip
scattering, mixed spin-triplet pairing vanishes, and only spin-singlet and equal spin-triplet
pairings exist in our setup. In our normal metal-spin flipper-superconductor junction, we
have observed that pairing correlations in the normal metal region show a nice oscillatory
behavior at zero temperature. In contrast, at finite temperature, they show an oscillatory
decay. In superconducting region pairing correlations exhibit an oscillatory decay at both
zero and finite temperatures. At low frequency and small values of spin-flip scattering, odd
frequency equal spin-triplet correlations dominate over even frequency equal spin-triplet
correlations in the superconducting region. It tallies with large values of the spin-polarized
local density of states found for the same parameters. We have also compared our obtained
results for normal metal-spin flipper-superconductor junction with results from other hybrid
junctions wherein either only spin mixing or both spin mixing and spin-flip scattering occur.
When only spin mixing occurs, odd frequency equal spin-triplet correlations vanish but
odd frequency mixed spin-triplet correlations are finite with local magnetization density of

state polarized in z-direction. When both spin mixing and spin-flip scattering occur, both
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METAL-SUPERCONDUCTOR JUNCTION

odd frequency equal spin-triplet correlations and odd frequency mixed spin-triplet correla-
tions are finite, and the local magnetization density of the state is polarized in an arbitrary
direction. However, in the N — SF' — S system, only spin-flip scattering is present, leading
to finite odd frequency equal spin-triplet correlations with vanishing odd frequency mixed
spin-triplet correlations and local magnetization density of state polarized in x-direction.
Odd frequency equal and odd frequency mixed spin-triplet correlations can be effectively
distinguished via the spin-polarized local density of states or local magnetization density

of states.
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Chapter 4

Spin-flip scattering induced tunable
0 — m Josephson junction and quantized
anomalous phase in Ferromagnetic

Josephson junction

“In order to describe a particular subculture, you might want to portray people
who are typical or representative of that subculture; but to dramatize it, to make
it an interesting setting for a story, you want to bring someone anomalous into

that setting, to see how she conforms to it, and it to her.”

— Jonathan Dee

4.1 Introduction

Josephson junctions were introduced in chapter 1. They are generally of two types: 0
junction (when Free energy is minimum at zero phase difference across the left and right

superconductors) and 7 junction (when Free energy is minimum at 7 phase difference
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across the two superconductors). m junctions are in high demand as the basic building
blocks of a quantum computer[118]. Tunable O — & Josephson junctions have inherent
potential applications as a cryogenic memory element[119], which is an essential com-
ponent of a superconducting computer that would be much more energy-efficient than
supercomputers[ 119, 120, 121] based on current semiconductor technology.

Interestingly, Josephson Free energy can sometimes be minimum at a phase difference
¢o (# 0 or ). The current-phase relation in such ¢g- Josephson junction’s[122, 123, 124]
satisfies I(¢) = I.sin(¢ + ¢p), i.e., there is a phase shift ¢g in the conventional current-
phase relation. This suggests that Josephson current can flow even at zero phase difference
(¢ = 0) between two superconducting electrodes[125, 126, 127, 128, 129]. This effect is
known as anomalous Josephson effect (AJE), and the junction which shows this effect is
called anomalous Josephson junction. 1, = I(0) = I, sin(¢y) is referred to as anomalous
Josephson current.

The physics behind the anomalous Josephson effect is naturally linked with the breaking
of some symmetries of the system[130, 131]. One of them is time-reversal symmetry (TRS)
and it implies I(—¢) = —I(¢), which results in /(¢ = 0) being zero. So, when the system
preserves TRS, there is no anomalous current in the junction. However, breaking TRS is
necessary but insufficient to produce anomalous Josephson current at ¢ = 0. For junctions
with ferromagnetic coupling, TRS is broken, but there is no anomalous Josephson current[5,
82]. Itimplies some other symmetry is present in the system, which prevents the appearance
of anomalous Josephson current at ¢ = 0. This symmetry is called chiral symmetry[132]
which ensures that at ¢ = 0 the tunneling amplitude relating electron tunneling from
left superconductor to right superconductor is the same as the one related to tunneling in
reverse, i.e., from right to the left superconductor. These leftward and rightward tunneling

processes cancel each other, leading to vanishing current flow at ¢ = 0. Thus, to have
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anomalous Josephson current at ¢ = 0, one needs to break both symmetries. Different ways
have been suggested earlier to break these symmetries and generate anomalous Josephson
current. These include Josephson junctions with conventional s-wave superconductors
in the presence of both spin-orbit interaction and Zeeman field[133, 134], ferromagnetic
Josephson junctions with non-coplanar magnetizations[127], SNS junctions with s-wave
superconductors where N region is a normal magnetic metal[135, 136, 137], a quantum
dot[138, 139] or a quantum point contact[140, 141]. Further, anomalous Josephson effect
can also be found in systems with unconventional superconductors[ 142, 143, 144, 145, 146].
Experimentally, ¢o phase shift has been recently predicted in a Josephson junction-based
nanowire quantum dot[147]. More interestingly, some Josephson junctions reveal the
remarkable feature that the phase shift ¢ is accompanied by a direction-dependent critical
current (1., # I._), where I., and I._ are the absolute values of maximum and minimum
Josephson current respectively[148].

In this chapter, first, we show that a spin flipper sandwiched between two s-wave
superconductors can transit from a 0 to 7 Josephson junction via tuning any one of the
system parameters like interface transparency Z, the spin S or magnetic moment of the
spin flipper or the exchange coupling J. Our motivation for looking at this setup stems
from the fact that most of the 7 junction proposals depend on either ferromagnet or d-wave
superconductor[ 149, 150] for their functioning. Integrating Ferromagnets into current su-
perconductor circuit technology has not been easy. Controlling Ferromagnets is an onerous
task. Further d-wave superconductors, in effect high 7. superconductors, also have a poor
record of being integrated into current superconductor technology. This chapter obviates
the need for any Ferromagnets or d-wave superconductors by implementing a Josephson
7 junction with a spin flipper. Second, we study the anomalous Josephson effect and

the direction-dependent critical current in a junction consisting of two Ferromagnets with
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misaligned magnetizations and a spin flipper sandwiched between two s-wave supercon-
ductors. This system acts as a quantized phase battery that can supply anomalous current
even at zero phase difference. The main advantage of our system over other proposals
involving anomalous Josephson current is that our system can store quantized amounts of
phase ¢q in the ground state of junction. The reason we are interested in ¢ Josephson
junction is because of the various applications of such junctions in phase qubits[151], su-
perconducting computer memory components[152], superconducting phase batteries[153]

and in rectifiers[140].

4.2 SNS junction in presence of a spin flipper

We consider a junction of two normal metals with a spin flipper sandwiched between
two conventional s-wave singlet superconductors, as shown in Fig. 4.1. There are normal
metal regions in —a/2 < x < 0 and 0 < x < a/2 and a spin flipper at x = 0 and

two superconductors at x < —a/2 and x > a/2. The above model for a spin flipper in

Superconductor(SL) Metal(N,) Metal(N,) Superconductor(SR)
s

Ay(T)e" |~ 4,(T)e""

X =-al2 |x:0 X =al2

Figure 4.1: Josephson junction composed of two normal metals and a spin flipper with spin S and
magnetic moment m’ at x = 0 sandwiched between two s-wave superconductors.

a Josephson junction matches quite well with solid-state scenarios such as seen in 1D
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4.2. SNS junction in presence of a spin flipper

quantum wires or graphene with an embedded magnetic impurity or quantum dot[ 14, 54].
The model Hamiltonian in BAG formalism of our system is a 4 X 4 matrix which is given

below:

HI  iAGy
YY) = E¥(x), 4.1)
—-iN*0y —-HI

H =p?2m* + V[6(x + a/2) + §(x — a/2)] - Jod(x)f.s;— Er, here p?/2m* is the kinetic
energy of an electron with effective mass m*, V is the strength of the ¢ potential at the
interfaces between normal metal and superconductor, Jj is the strength of exchange inter-
action between the electron/hole with spin § and a spin flipper with spin S. Further, ¥
is a four-component spinor, & is Pauli spin matrix and [ is 2 x 2 unit matrix, Er being
Fermi energy. The superconducting gap parameters A for left and right superconductor,
are assumed to have the same magnitude but different phases ¢; and ¢g and are given by
A = Ay(T)[eLO(—x — a/2) + €RO(x — a/2)], O(x) is the Heaviside step function, Ag(T)
is temperature dependent gap parameter and it follows Ag(T) = Ag tanh(1.74V(T,./T - 1)),
where T,- the superconducting critical temperature[24] for a widely used s-wave super-
conductor like lead is 7.2K. If we diagonalize BdG Hamiltonian (Eq. (4.1)), we get the
wavefunctions in different regions of our system for electron/hole-like quasiparticle inci-
dence. There can be eight different types of quasiparticle injection into our system: an
electron-like quasiparticle (ELQ) with spin up or down or a hole-like quasiparticle (HLQ)
with spin up or down injected from either the left or from the right superconducting elec-
trode. For injection of spin up ELQ from left superconductor, the wave function is given
by[27]-
s M ,SL ig-x xS 1 St ig-x

SL iq.x Tl Sr —ig+x

_ S T Sr —i S S
Usp(x) = @)r e TG Areept e YL AT oc 0y e w1 HT oy 03 €I ATy e g for x < —

4.2)
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u 0 0 %
0 u -y 0
where ()OfL = ,(pgb = ,()0“;1“ = and, goiL = . The amplitudes rll rlﬁ rll rl}l
0 —v u 0
% 0 0 u

represent normal reflection without flip, normal reflection with spin flip, Andreev reflection
with spin flip and Andreev reflection without flip respectively.

The corresponding wave function in the right superconductor is-

SR i S SR i S SR —ig_-x ;S SR —ig-x ;S
Usr(x) = tlelRe"’*anm, + tlitpz"e”’*xaﬁm,ﬂ + tl}l%’*e RS +tl}ltp4’*e Mt forx > £, (4.3)

ue' 0 0 vel¥
0 ue'? —ve'? 0
S S S S
where gDlR — ’ gDZR — ’ g03R — , 904R = and, tll, tlﬁ, tlz, tlt
0 -y u 0
v 0 0 u

are the transmission amplitudes, corresponding to the reflection process described above

and ¢ = pr — ¢ is the phase difference between right side and left side superconductor.

The BCS coherence factors are defined as u = %(1 + —‘Ez_wz), v=,/1 (1 - —'Ez_lAlz).

E 2 E

gs = \/ 2}"1@* (Er + \E? — |AJ?) is the wavevector for electron-like quasiparticle (¢g;) and
hole-like quasiparticle (g-) in the left and right superconducting wavefunctions, ¥ s; and

Ysgr. The wavefunction in the normal metal region (V) is given by-

l;le (.X) =(eNeike(x+a/2) + fNe_ikex)‘p{Vgﬁi/ + (e;veike(x+a/2) + f}/\]e—ik(,X)SaéV(prSn/+l

+ (gne HnOr D g et N ¢S+ (g e Ot 4 pl ey ol g, for —§ < x < 0.

(4.4)

Similarly the wavefunction in the normal metal region (V,) is given by-

Uy (1) =(an e’ + bNe—ik(,(x—a/z))QOiv(ﬁfn, + (a;veikex + b;ve—ik(,(x—a/Z))spévgbi/H
+ (ene Hnx 4 dNeik”(x_“/z))gog\’aﬁfn,H + (c}\,e_ik"x + d}veik’l(x_a/z))goi\%fn,, for0 <x <4,

4.5)
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4.2. SNS junction in presence of a spin flipper

where (pfv, i = 1,2,3,4 are as defined in section 1.3 of chapter 1. k.5 = /2;_1"—2*(EF +FE)

are the wave vector in normal metals. We use Andreev approximation[25] g+ = g- = kF

and k. = kr £ gg—f where kr is Fermi wavevector, with Er > |A|.

The boundary conditions at x = —a/?2 are,

dl,//]\]l dl//SL _ 2m*V
dx dx 2

lﬁSL(.X) = le (X), wNp (46)

and at x = 0 are,

dyy, dyy,  2m*Jos.S
le (X) = wNz(xL dx - dx = - h2 le- (47)

Finally, at x = a/2 are,

d dyy, 2m*V
W, () = Ysr(x), Z;R— ij = ";2 Un,. (4.8)

m*Jo
kp

We will later use the dimensionless parameter J = as ameasure of strength of exchange

m*V
n2kr

interaction and Z = as a measure of interface transparency. By imposing boundary
conditions on the wavefunctions, one can get the different scattering amplitudes. The wave
functions for the other seven types of quasiparticle injection processes are formulated in

the same way.

4.2.1 Josephson current in presence of a spin flipper

Total Josephson current

Using the generalized version of Furusaki-Tsukuda formalism[30] we can calculate the

total DC Josephson current-

Ir(p) = d(kra),

eAo(T) L /27r Z q+(wp) + g—(wy) % ay(wy) — ax(wy) +a3(wn) — as(wy)
20 21 Jo o Q, q+(wp) q-(wpy)

4.9)
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herein w, = (2n + 1)nr/B are fermionic Matsubara frequencies with n = 0, 1, £2, ... and

Q, = \Jwi + AX(T). kpa is the phase accumulated in normal metal region. 8 = 1/(kgT),

kp is Boltzmann constant, and 7 is temperature. ¢.(w;), g-(w,), and a;(w,) are ob-

tained from g4, g— and a; by analytically continuing E to iw,. Here a;(i = 1,2,3,4)

1

ei is Andreev reflection amplitude without flip for spin-up ELQ, incident from

left superconductor, similarly a; = rgl

witha; =r
is Andreev reflection amplitude without flip for

T 1
h

f are Andreev
e e

spin-down ELQ, incident from left superconductor, az = r,” and a4 = r
reflection amplitudes without flip for spin-up HLQ and spin-down HLQ incident from
left superconductor respectively. There are other ways of writing Josephson supercurrent
formula in Furusaki-Tsukuda approach[27, 154], all such ways give identical total Joseph-
son current. These different ways involve different scattering amplitudes, as due to the
fact that Furusaki-Tsukuda procedure obeys both detailed balance as well as probability
conservation, allowing for the possibility of different representations of the same formula.

We sum over the Matsubara frequencies numerically. The detailed balance conditions[30]

are verified as follows:

a(-¢.B) _as@E) ax(-¢E) _ a4 E)

and, b;(—¢, E) = bi(¢, E),

q+ q- q+ q-
where b;(i = 1,2,3,4) with by = rll is normal reflection amplitude without flip for spin-up
ELQ, incident from left superconductor, similarly b, = riﬁ is normal reflection amplitude

without flip for spin-down ELQ, incident from left superconductor, b3 = r/Tqu and by = rﬁl

are normal reflection amplitudes without flip for spin-up HLQ and spin-down HLQ incident

from left superconductor respectively.

Bound state contribution

Neglecting the contribution from incoming quasiparticle[27] and inserting the wave func-

tion into the boundary conditions, we get a homogeneous system of 24 linear equations
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4.2. SNS junction in presence of a spin flipper

for the scattering amplitudes. If we express the scattering amplitudes in the two normal
metal regions by the scattering amplitudes in the left and right superconductor we get a

homogeneous system of 8§ linear equations[24],

Mx =0, (4.10)

where x is a 8 X 1 column matrix, given by x = [rll, rlﬁ, rgl, rl}l, tll, tlﬁ, tlll, tli]T and M is

a 8 X 8 matrix which is explicitly written in Appendix B. For a nontrivial solution of this
system of equations, det M = 0, we can get a relation between the Andreev bound state
energy and phase difference, i.e., Andreev levels with dispersion E;, i = {1, ...,4}[155]. We

find that E;(¢) = E5(¢) = £Ex(¢), (o =1,]) and

|A(@)| + pov|B(9)
2|C] ’

EZ(p) = iAo(T)\/ (4.11)

wherein py() = +1(=1) and A(¢), B(¢),C depend on all junction parameters. Their
explicit form is given in Appendix B. For simplicity we have taken all wavevectors equal to

the Fermi wavevector (Andreev approximation). For transparent regime (Z = 0) we find-

Ao(T)
V2
+ poNQRIZ(O4F4I% +3(J +20m")? + 4F2(16 + J2(5 + 4m" (1 + m'))) + 4> (=4 + 16 f* — (1 + 2m")?) cos(¢)

Ef(p)= + V@B + 2 +m" +m™)? + 2B+ 22+ 6m' (1 +m')) + 8 + J>(1 = 2f% +2m’ (1 + m"))) cos())

+((J+2Jm")? = 4£2(16 + (J +20m")?)) cosRe))) /(16 + JH(fZ +m’ + m™)? + J>(4 + 8% + 8m’(1 + m")))))
(4.12)
For Z = 0, interestingly the bound states are independent of any phase (kra) accumulated
in normal metal region. For tunneling regime (Z — Large) we get-
@+ 20 =2 2+2m"A+m")) + @+ J2 (=1 +2f2 =2m’(1 + m"))) cos(kra)) cos(¢)

1674 sin(X£9)2(4 — J2(f2 + m’ + m™) + (4 + J2(f2 + m’ + m?)) cos(kpa) + 2J sin(kra))? |
(4.13)

E:(p) = 0o(T) | 1+
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For Z — Large, we can clearly say that bound states are phase (kra) dependent. From An-

dreev bound states energies Eq. (4.11) we can derive the Josephson bound state current[19]-

2e 1 [ 2e 1 [ E
IB(so)———/ Zf(E)  dlkra >————/ Zt nh ﬁ— —d(kF )
(4.14)
wherein e is electronic charge and f(E;) denotes Fermi-Dirac distribution function. For

transparent regime (Z = 0) we obtain the current-phase relation,

Is(g) _ AoT)sin@)((C1 + Oy tanh () - (€1 - Gy tanh (F))

= , 4.15
T G (4.15)

where, Ci = (V2J*Af2 = 16f* + (1 + 2m")?) + V2724 2(16 + (J + 20m")?) = (J + 2Jm")?) cos(p)),

Co= 8+ > =212 F2+272m' (1 + m"))NI*(OAFI? +3(J +20m")? + 4216 + J>(5 + 4m’(1 + m")))

+42(=4 2 +16 /4 — (1 +2m")?) cos(@) + ((J +2Jm")? —4F2(16 + (J + 2Jm")?)) cos(2¢))),

Cs= (16 + T4 (2 +m" +m™)? + JP(4 + 82 +8m’ (1 + m" )V (64 FJ? +3(J +2Jm")? + 4f%(16

+ 25 +4m' (1 +m'))) +4J2 (=42 + 16 f* — (1 + 2m")?) cos(g) + ((J + 2Jm")? —4f*(16 + (J

+2Jm")%)) cos(2¢)))).

In Eq. (4.15), Iy = eAo/h and Eq()) are given in Eq. (4.11). For tunneling regime

(Z — Large) and at zero temperature, we find,

Ig(p) 1 /2” [ @+ 20 =22 +2m" A +m")) + 8+ J2(—=1 +2f2 = 2m’ (1 + m"))) cos(kpa)) sin(e)

Io 21 Jo | 4z4sin(AE9) 24— J2(f2 4 m! 4+ m2) + (4 + J2(f2 + m’ + m2)) cos(kpa) + 2J sin(kpa))?
(4.16)

Continuum contribution

The continuum contribution to Josephson current is a sum of currents carried by ELQ and
HLQ outside the gap. Using formalism, developed earlier in Refs. [29, 156] the continuum

contribution from ELQ is given below[29]

21 [ A 1 e e e
() = 2L / + /AI T B T B )T T (B o) TE PV (EVE}d (kra).

h 2m 0
4.17)
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4.2. SNS junction in presence of a spin flipper

Similarly continuum contribution from HLQ can be calculated by replacing 'e’ in Eq. (4.17)
with 'h’. In Eq. (4.17) TzT_I R= Itlll2 - ItZLIZ, is transmission without flip for ELQ currents

moving from left to right of the system as depicted in Fig. 4.1. TzT_l) R = |tlﬁ|2 - II%I2 is
transmission with flip for ELQ currents moving from left to right of the system and similarly
Tz(T_T  and TEE » are transmission without flip and with flip for ELQ currents moving from

right to left of the system respectively. Here we have,

T (B @) = T (B ~@), TR (E, @) = i (B, ~9).

The continuum contribution from HLQ is found to be equal to the ELQ continuum contri-
bution. Therefore, the total continuum current due to ELQ and HLQ is given as,

I&(@) + 11 ()

Ic(p) = >

= I4(g). (4.18)

We have verified the total current conservation: I7(¢) = Ig(¢) + Ic(p).

4.2.2 Andreev bound states

The Andreev bound states (ABS) as obtained in Eq. (4.11) are analyzed in this subsection.
We focus on the role of spin S and magnetic moment m’ of the spin flipper on ABS. In

Fig. 4.2(a), we plot ABS for § = 1/2 and m’ = 1/2, as here the spin flip probability

f =V -m)(S+m +1) = 0 which corresponds to no flip, we get only two bound
states, but in Fig. 4.2(b) with § = 1/2 and m" = —-1/2, f # 0 thus due to spin flip
processes we get four bound states. In Fig. 4.2(b) we see that two bound state energies
touch at phase difference ¢ = 0.727 and ¢ = 1.297. Andreev bound states do not cross
but they are degenerates at those ¢ values. In Josephson junctions where either spin-flip
scattering (S-N;-SF-N»-S junction) or spin mixing (S-F-S junction) is present two bound

state energies can touch, however in case of SNS junction where neither spin-flip scattering
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nor spin mixing is present, two bound state energies cross, see Fig. 1.14. To address the
situation of large spin S in spin flipper in Fig. 4.3 we plot ABS for § = 9/2 and all allowed

m’ values. For particular S, as m’ changes, the separation between the electron (positive)

Eai/Ao Eai/Ao

Figure 4.2: Andreev bound states as a function of phase difference (¢). Parameters are Ag = 1meV,
S=1/2,m"=+1/2,J=1,Z=0,T/T, =0.01.

Eo*lag Eq*lo Eg*l80
—_— e =
0.5 m'—g 0.5 m'—2 0.5F m'—l
’ 2 2 2
-6 -4 -2 2 4 s ¢ e -4 -2 2 4 s ? o -4 -2 2 4 s ¢
-05 -05 -0.5f
—_— T — — T~ —
—_— e 4 10
(a) (b) (c)
Eqgtlng Eq*Ing Eqtlng
_— e _— e e .
05 m=-1 0.5 m=-3 0.5 m=-2
’ T2 T2 T2
-6 -4 -2 2 4 s ¢ e -4 -2 2 4 s ? s -4 -2 2 4 6 ¢
-05 -0.5 -05
o 4 _— e

Figure 4.3: Andreev bound states as a function of phase difference (¢). Parameters are Ag = 1meV,
S=9/2, m"=+1/2,+£3/2,49/2, J =1, Z=0,T/T, = 0.01.

bound states and hole (negative) bound states increases. Similarly, for particular m’, as we
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4.2. SNS junction in presence of a spin flipper

change S, this separation increases. For large S, ABS lie at the gap edge. It is seen for
large m’ as well. This behavior is also seen as one changes J, Z as well. We only plot ABS
form’ = +1/2,+3/2,+9/2, but we do not plot for m" = +5/2, +7/2 because the separation
between electron bound states and hole bound states increases from m’ = 3/2tom’ = 9/2
and these m’ values lie between m’ = 3/2 and m’ = 9/2. Large S, m’, Z, J lead to ABS

shifting to gap edge.

4.2.3 Josephson current: 7 junction behavior

The considered model (Fig. 4.1) shows 7 junction behavior. To see this, we plot the bound
state, continuum, and total Josephson currents for spin-flipper spin § = 1/2 (Fig. 4.4)
and § = 9/2 (Fig. 4.5). We choose the transparent regime (Z = 0) case. A separate
subsection will be devoted to the effect of tunnel contacts. One can conclude that continuum
contribution to the total current is negligible. Therefore bound state current and total current
are almost the same. In Fig. 4.4(a), as there is no flip, we have a O junction. The Josephson

current changes sign in the 0 < ¢ < & regime for the spin-flip case. In Fig. 4.5 we

0.5r

Figure 4.4: The bound, continuum and total Josephson current as a function of phase difference
(). Parameters are Ag = 1meV, T|/T. =0.01, S=1/2, m' =x1/2, J=1,Z =0.

deal with the high spin (S = 9/2) value of the spin flipper. Here, also we see that for
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m' =5/2,3/2,1/2,-1/2,-3/2,-5/2,-7/2 we get & junction. But for m" = 9/2,7/2,-9/2

we get 0 junction. So, here too, there is a switching from O to 7 and again from 7 to 0 with
the change of m’ from 9/2 to —9/2. One can safely conclude that all r shifts are due
to spin-flip scattering (f # 0), but the reverse is not necessarily true. This m-junction
state has been studied earlier in Ref. [157] with spin-active normal metal superconductor
(NS) interfaces, but they did not consider any high spin magnetic impurity. Their system
shows a 0 — & transition as a function of the kinematic phase, misorientation angle, and

temperature.

Iglly

Figure 4.5: Josephson supercurrent as a function of phase difference (¢). Parameters are
Ao = 1meV, T|T, =0.01, S =9/2, m’ = £9/2,+7/2,+£5/2, +3/2,£1/2, J = 1, Z = 0. Josephson
supercurrent for m’ = 7/2 and m’ = =9/2 are same and similarly for m’ = 5/2 and m’ = =7/2,
m' =3/2and m’ = =5/2, m’ = 1/2 and m’ = =3/2 are same.

4.2.4 Josephson current in long junction limit

There are eight different types of quasiparticle injection into our system: an electron-like
quasiparticle (ELQ) with spin up or down or a hole-like quasiparticle (HLQ) with spin up or

down injected from either the left or from the right superconducting electrode. Following
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4.2. SNS junction in presence of a spin flipper

the procedure established in section 4.2, we write the wavefunction for the injection of spin
up ELQ in left side superconductor as-

_ SL ig.x 4S ™M Sp —igix .S T Sp —igix .S ™M SL ig-x ;S T SL o ig-x ;S a
UsL(x) = @)he' TGl Areept e NG Aros gy e By i1 T o #5 e' G 1 T o1 P e, forx < 7.

(4.19)
Similarly the corresponding wave function for right side superconductor is-

Sk _iqs Sk _iqs Sk _—iq- Sk _—iq-

Usr(x) = tlltpl"e’q oS, + tlitpz‘*e“’ XS+ tlle%Re axgS |+ tli%"e ia-xS  for x > 5. (4.20)
The wavefunction in the normal metal region (N;) is given by for the long junction limit
following Ref. [60],

Uy (1) =en e et Dyl b 1 fyem e Xugll oo, + ey e D ()Y g+ fre e upl g

+ 4371\]6_“‘"(““/2)(—v)<,0§v¢fn,+l + hNeik"xuwéqurSn,H + gl've_ik”(““/z)vgoi\](ﬁi, + h;\,eik"xugoivqﬁfn,, for -5 < x <0.

4.21)

Similarly the wavefunction in the normal metal region (V,) is given by-

S

Un, (x) =ane*e vl g7, + by e e (a2

—ike(x—a/2)

N S ike N ,S NS
ugy Gy +ane N (=v)gy ¢, + bye UPy G

ikp (x—a/2) —ikpx

V‘Pi\]¢§1/ + d;veikh(xfa/z)mpivqﬁs for0 < x < £,

+ cN(—v)goéve*’khquS +dye u<pév¢;sn,+1 +oye . g

m’'+1

4.22)

For |E| <« Ef, we can write k., = kp £ where &y = Ep/(kpAg) is the BCS

_E
2h0&o’
coherence length[25]. By using boundary conditions as mentioned in section 4.2 one
can get the different scattering amplitudes. The wavefunction for the other seven types
of quasiparticle injection process are formulated in the same way. Using the generalized
version of Furusaki-Tsukuda Josephson current formula mentioned in subsection 4.2.1 we
can calculate the total DC Josephson current in long junction limit. In Fig. 4.6 we plot the
Josephson current for a long junction. In Fig. 4.6(a) we plot Josephson supercurrent as a
function of junction length a for ¢ = m/2 and different values of spin (S) of spin flipper

from S = 1/2t0 S = 11/2. We see that Josephson supercurrent dies monotonically with an

increase in the junction’s length (a). For large a, the Josephson supercurrent goes to zero.
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I+l

10 — S=1/2 — al§=5
— S=3/2 — al§p=10
— S$=5/2 — al&§=15
0.5F — S=712 — al&y=20
— S=9/2 5 4 6 ¢

Figure 4.6: (a) Josephson supercurrent as a function of junction length (a) for different values of
spin (S) of spin flipper. Parameters are Ag = 1meV, T|/T, = 001, ¢ = /2, m’ = -1/2, J =1,
Z =0, (b) Josephson supercurrent as a function of phase difference (@) for different junction length
(a). Parameters are Ay = 1lmeV, T|/T. =0.01, S=9/2, m" =-1/2,J=1,Z =0.

In Fig. 4.6(b), we have plotted Josephson supercurrent as a function of phase difference
(¢) for different junction lengths a and high spin of the spin flipper (S = 9/2). We see that
Josephson supercurrent decreases with an increase of junction length a. In Fig. 4.6(a) and
4.6(b) the magnetic moment of spin flipper m’ = —1/2 and the junction transparency Z = 0.

However, change in length does not affect the sign of the Josephson current, signifying that

the 7 junction is robust to change in normal metal length.

4.2.5 Free energy

We can also determine the nature of the junction, i.e., 0 or & by the minimum of the Free

energy, which is given by

2n 2n
F(y) =—%%/O 1n[U(1+e—ﬁEf<¢>)]d(kFa) =—%%/0 Zr:ln [2cosh(%((p))]d(k,va)
(4.23)

In Fig. 4.7 we have plotted F/A( as a function of phase difference for spin § = 9/2 and

different values of m’, we have considered a transparent junction (Z = 0). In the same
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4.2. SNS junction in presence of a spin flipper

figure we see that the Free energy for m’ = 9/2 is almost half than that of the other cases

(m’ # 9/2). A plausible reason for why these occurs could be that for m’ = 9/2 there is

F/ag
6 -4 -2 | 2 4 e ¢ T m=92
---------------------------------------------- m'=7/2
------ _"'1:0-»---" Seean eeeeees MI=5/2
P - m'=3/2
I m'=1/2
-1.4F —_— =12
[ m'=-3/2
'1'6;' m'=-5/2
. — m'=-92

-2.0t

Figure 4.7: Free energy as a function of phase difference (¢). Parameters are Ay = 1meV,
T/T. =0.01,8§=9/2, m" = +£9/2,+7/2,+5/2,+3/2,+1/2, J = 1, Z = 0. Free energy form’ =7/2
and m’ = =9/2 are same and similarly for m’ = 5/2 and m’ = =7/2, m’ = 3/2 and m’" = -5/2,
m’ = 1/2 and m’ = =3/2 are same.

Figure 4.8: Free energy as a function of phase difference (¢) for different values of interface
barrier strength (Z). Parameters are Ag = 1meV, T/T, =0.01, S =5/2, m’ =1/2, J = 1.

no spin-flip process (f = 0) while for the other cases f ranges from 3 to 5. In Fig. 4.8 we
plot the Free energy for S = 5/2 and m’ = 1/2 for different values of interface transparency
Z. At a particular value of Z = 0.383, the Free energy shows a bistable behavior, i.e., the

Free energy minima occur at both 0 and 7, meaning that the system’s ground state does
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not occur at either 0 or 7 exclusively but is shared by both. These bistable junctions have a

major role to play in quantum computation applications[158, 159, 160].

4.2.6 Understanding O — 7 junction transition

Effect of tunnel contacts & exchange coupling

In Fig. 4.9 we plot Josephson supercurrent as a function of phase difference for different
values of interface barrier strength. From Fig. 4.9(a) where m’ = 5/2 we see that there
is no 7 shift from transparent to tunnel regime, and the ground state of the system always
stays at ¢ = 0. The reason that ground state stays at ¢ = 0 in Fig. 4.9(a) is due to absence of
spin-flip processes as § = m’ = 5/2 and f = 0. In Fig. 4.9(b) the ground state of the system
shifts from ¢ = 7 to ¢ = 0 as function of Z. In fact, for a transparent junction (Z = 0),
the ground state is at ¢ = &, and as we increase Z, we see the ground state shift from x
to O state. Of course, in this case, as S = 5/2 and m’ = 1/2, therefore the probability for
the spin flipper to flip (f # 0) is nonzero. Thus, spin-flip processes aid in the transition
from O to 7 junction. Notably, this transition can be tunned by the transparency (Z) of the
junction, as is evident from Fig. 4.9(b). Of course, not all cases wherein the spin flipper
flips its spin leads to a transition from O to 7 state, as is evident in Fig. 4.9(c). In Fig. 4.9(c)
the ground state stays at ¢ = 0, but here as S = 5/2, m" = 3/2 and f # 0, so spin-flip
processes occur in contrast to Fig. 4.9(a). In Fig. 4.9 the strength of exchange interaction
J is taken as 1. It has to be pointed out that J has a nontrivial role in the 0 to 7 state
transition, evident in the next subsection. Thus our conclusions regarding Fig. 4.9(c) has
to be qualified by the fact that we have not focused on the issue of exchange interaction so
far.

In Hamiltonian H, in Eq. (4.1) the term Jyd(x)S. S represents the exchange coupling of

strength Jy between the electron/hole with spin 5 and a spin flipper with spin S. In Fig.4.10
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4.2. SNS junction in presence of a spin flipper

Figure 4.9: Josephson supercurrent as a function of phase difference (@) for different values of
interface barrier strength (Z). Parameters are Ag = 1meV, T/T, = 0.01, J =1, § = 5/2 and
for (a) m" = 5/2, (b)y m" = 1/2 and (c¢) m’ = 3/2. Josephson supercurrent for m’ = 3/2 and
m’ = —=5/2 are same and similarly m’ = 1/2 and m’ = =3/2 are same.

the Josephson supercurrent is plotted as a function of phase difference for different values

of strength of exchange interaction in the transparent regime. We choose S = 5/2 and

Figure 4.10: Josephson supercurrent as a function of phase difference (@) for different values
of exchange interaction (J). Parameters are Ay = 1meV, T/T, = 0.01, Z =0, S = 5/2 for (a)
m’ =5/2, (b) m" =3/2 and (c¢) m’ = 1/2. Josephson supercurrent for m’ = 3/2 and m’ = —5/2
are same and similarly m’ = 1/2 and m’ = =3/2 are same.

allowed values of m’. For the no spin-flip case, one sees there is no transition from 0 to
7 junction, while for cases with spin-flip, one can see a 0 to n state transition. Thus all

spin-flip process i.e., f # 0 and with J > 2 show 7 junction behavior.
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Effect of electron-electron interaction (phenomenological)

We have considered a phenomenological[161, 162] approach to electron-electron interac-
tions. The effect of such interactions are included through an energy-dependent transmis-
sion probability which is given as-
E a
To| 7|
E a
-1o(1-|5])

with Ty being the transparency of the metal superconductor interface in the absence of

T(E) = (4.24)

electron-electron interactions. @ (0 < @ < 1) represents the electron-electron interaction
strength (@ = 0 corresponds to no interactions while @ = 1 corresponds to a maximally
interacting system), Dy is a high energy cutoff obtained by the energy bandwidth of the
electronic states. Now for non-interacting case the parameter Z is a constant and is related

to the transmission probability 7y as

1-Tp
7% = . 4.25
T (4.25)

Now in the presence of electron-electron interaction, 7Ty is replaced by T'(E) in the above
equation. Thus, the interface transparency Z, which is considered identical at both inter-

faces, will be energy-dependent and will change from Z to Z,,:

ol =T
1

72 = \Dﬂo = |D£0 7 (4.26)

For Z =0 (Ty = 1), Z.. = 0 which implies that for a transparent interface electron-electron
interaction have no effect on electronic transport. In Fig. 4.11 we plot the Josephson
supercurrent as a function of phase difference for different values of electron-electron
interaction parameter @. We see that for m’ = 5/2, 1/2, —3/2 there is no 0-x transition with
increase of electron-electron interaction strength. But for m’ = 3/2, —1/2, -5/2 there is a

change from 7 to O junction with increase of electron-electron interaction strength ().
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4.2. SNS junction in presence of a spin flipper

Figure 4.11: Josephson supercurrent as a function of phase difference (¢) for different values of
electron-electron interaction strength («). Parameters are Ay = 1meV, Dy = 100Ag, T/T. = 0.01,
J=3,2=0.1,8=5/2and for (a) m" =5/2, (b) m" =3/2, (c) m" = 1/2 and (d) m" = —-1/2.
Josephson supercurrent for m’ = 3/2 and m’ = —=5/2 are same and similarly m’ = 1/2 and
m’ = =3/2 are same.

Effect of high spin/magnetic moment states

In Fig. 4.12(a) we see that Josephson supercurrent at ¢ = /2 is positive for § = 1/2, but
as we increase spin (S) of spin flipper it changes to negative from § = 3/2to S = 9/2. We
choose phase difference ¢ = /2 to see the sign change of the Josephson supercurrent. In
the inset of Fig. 4.12(a), we plot the Josephson supercurrent for still higher spin states of
the spin flipper (S = 11/2 to 19/2 in steps of 1). In Fig. 4.12(a) for different values of S,
the magnetic moment of spin flipper is m” = —1/2 and junction transparency Z = 0. The
reason for the change in sign of the Josephson supercurrent can be guessed from the fact

that spin-flip probability (f) of spin flipper for negative Josephson supercurrent is greater
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than 1. However, this previous statement is subject to qualification: negative supercurrent
for low spin states of spin flipper requires smaller values of spin-flip probability f than do

high spin states of the spin flipper. In Fig. 4.12(b), we look at the effect of spin magnetic
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Figure 4.12: (a) Josephson supercurrent vs spin flipper spin (S). Parameters are Ay = 1meV,
T/T. =001, ¢ =n/2, J =1, m" = =1/2, Z = 0, (b) Josephson supercurrent vs spin flipper
magnetic moment (m’). Parameters are Ay = 1meV, T|T. =0.01, p =n/2,J=1,5=9/2, Z =0,
(c) Josephson supercurrent vs spin flipper spin (S). Parameters are Ag = 1meV, T /T, = 0.01,
wo=mn/2,J =1, m =-1/2, Z =1, (d) Josephson supercurrent vs spin flipper magnetic moment
(m’). Parameters are Ag = 1meV, T|T, =0.01, o =n/2,J=1,8=9/2, Z=1.

moment states on Josephson supercurrent. We consider the spin S of the spin flipper
to be 9/2. The Josephson supercurrent changes sign with m’. One can see when the
spin-flip probability of spin flipper (f)> 3, Josephson supercurrent is negative, but for flip

probability f < 3, Josephson supercurrent is positive for transparent junction, Z = 0. We
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

see in Fig. 4.12(c) the possibility of a 7 junction also at Z = 1 (intermediate transparency).
In Fig. 4.12(c), we plot the Josephson supercurrent, including still higher spin states of the
spin flipper (S = 1/2 to 19/2 in steps of 1). In Appendix B we juxtapose the spin state
S, magnetic moment m’, and spin-flip probability f of the spin flipper in a tabular format.
Finally in Fig. 4.12(d) we plot Josephson supercurrent at Z = 1 (non-transparent junction)
as a function of spin magnetic moment m’ for § = 9/2. We see non-transparent junctions
inhibits a 0 — 7 junction transition for S = 9/2. However, one has to qualify the statement
above by looking at Fig. 4.12(c). In Fig. 4.12(c), we see that finite Z (= 1) can act as a
barrier to the O — 7 junction transition. To overcome this barrier, one needs to go to higher
spin states like S = 15/2, 17/2, 19/2. Thus in Fig. 4.12(d) instead of plotting for S = 9/2 if
we had plotted § = 15/2, 17/2, 19/2 we would have seen a 0— 7 junction transition for some
value of m’. So to conclude this subsection for transparent interfaces, spin-flip processes
lead to a 0 to 7 junction transition. However, when junction transparency reduces, one has
to go to higher spin states to see a 0 —  junction transition. The moral of the story is that
a finite Z inhibits 0 — 7 transition, but a large S can overcome the Z barrier. The m—shift
seen due to change in S can be experimentally implemented. One can control the impurity

spin S optically as shown in Refs. [163, 164].

4.3 Ferromagnetic Josephson junction in the presence of

a spin flipper

We designed a tunable 0 — r Josephson junction with a spin flipper and two normal metals
sandwiched between two conventional s-wave superconductors in the previous section. We
also studied the role of tunnel contacts, exchange coupling, electron-electron interactions,

and high spin states on 0 — 7 junction transition. In this section, we replace the two normal
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metals on either side of spin-flipper with Ferromagnets, see Fig. 4.13, which shows a spin
flipper at x = 0 and two superconductors: one at left, x < —a/2 and another at right,
x > a/2. The magnetization vectors of the two Ferromagnet’s make an angle 6 with each

other. The BAG equation for our junction is[27],

~L .

v \
3 /
Superconductor(S, ) Ferromagnet(F,) Ferromagnet(F,) Superconductor(S,)
—»
i, h S| ip
A(T)e - - A,(T)e™
0 /
X = -a/2 x=0 X =al2

Figure 4.13: Josephson junction with two Ferromagnet’s and a spin flipper (spin S, magnetic
moment m’) at x = 0 sandwiched between two s-wave superconductors.

HI  iAG,
| = Ey(x), (4.27)
~iNGy, —H*T

where H = p?/2m* + V[§(x+a/2) +6(x —a/2)] - Jod(x)§.§— ﬁ.é’[@(x +a/2)+0O(a/2-
x)] — Er, with p?/2m* being the kinetic energy of an electron/hole with effective mass
m*, V denotes the strength of ¢ potentials at the interfaces between Ferromagnet’s and
Superconductor, Jy denotes strength of exchange coupling between electron/hole with spin
§ and spin flipper with spin S. Y (x) defines a four-component spinor, while Er is Fermi
energy, &’s are Pauli spin matrices and / is 2 x 2 identity matrix. The magnetization vector
(ﬁ) of left ferromagnetic layer (F}) is at an angle 6 with z axis in y — z plane, while that of

right ferromagnetic layer (F>) is fixed along z axis. Thus, h.6- = hsin 00, +hcos 06 ,[165].
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

If we diagonalize BdG Hamiltonian, Eq. (4.27), we get wavefunctions in different
regions of our junction for ELQ/HLQ incidence. If a spin up ELQ is incident at x = —a/2

interface from left superconductor, then wave function[27] in left superconductor (Sy) is,

_ Sp ikix 4S M Srp —ikix ;S T Sp —ikix ;S M, Sr jik-x 4+S T Sp jik-x ;S
WSL(X)—()Dl e ¢m,+ree(,01 e ¢m'+ree‘;02 e T tr,pye Do st tr, e ¢

(4.28)

where il rld, erTq’ rl/lq

are amplitudes for normal reflection without flip, normal reflec-
tion with spin flip, Andreev reflection with spin flip and Andreev reflection without flip

respectively. The corresponding wave-function in right superconductor (Sg) is,

Sr ks Sr iks Sg —ik- Sg —ik_
Vs (¥) = 101" NN gL b 1le@y NGl gL et e g, 429)
where tll, tlﬁ, IZ;’ tli are transmission amplitudes, corresponding to reflection processes

described above. The wave-function in left Ferromagnet (F}) is,

U () =(epe T D 4 fre TGl gN + (e D 4 LN g

+ (gFe—iqT'(x+a/2) + hFeiqT_x)QO’f‘pi/_,_l + (g;:e—iql‘(x+a/2) + h;:eiql'x)‘pf(ﬁS (430)

m’?

where gof ,1 =1,2,3,4 are defined in section 3.5 of chapter 3. Similarly wave-function in

right Ferromagnet (F3) is,

Ui, (x) =(ape ™ + bpe T OTUDNN GS (gl o UF 4 oA N 4

m'+1
+(cpe Y 4 dpe TN ONGS 4 (e Y 4 d TN gS | (4.31)
and g; = 2;,?—;(EF + poh £ E) is wave-vector for electron (g;) and hole (g) in Fer-

romagnet, wherein p, = +1(—1) with o =T (|). We use Andreev approximation, i.e.,

ky = k_ = th*zEF = krpand gy = kp4/1 %, with kr being the Fermi wave-vector,

and Er > |A| E.

The boundary conditions at x = —a/?2 are,

dwFl _ deL _ 2m*V
dx dx K2

s, (x) = yF (%), Y, (4.32)
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and at x = 0 are,

dyp, dyr 2m*]0§.§

UF (x) = YR (x), iy Pl s, - (4.33)

Finally, at x = a/2 are,

dl//s dlﬁF 2m*V
= o s m U (4.34)

sz (x) = wSR (x),

We use dimensionless parameters J = k m”J a5 a measure of strength of exchange interaction[13]

and Z = is a measure of interface transparency[9].

h2k
4.3.1 Anomalous Josephson current and Andreev bound states

To calculate bound state contribution to Josephson current we follow the procedure estab-
lished in section 4.2 and Ref. [24]. We neglect contribution from incoming quasi-particle,
i.e., first term gofLe””" ¢§1 , of Eq. (4.28) and insert wavefunctions into boundary conditions.

We get a homogeneous system of linear equations for the scattering amplitudes,
Rx =0, (4.35)

where x is a 8 X 1 column vector, given by x = (”ZZ Zi Z; rli tTT tTl tTT tTl) R
is a 8 X8 matrix obtained by eliminating the scattering amplitudes for the two Ferromagnet’s
via the scattering amplitudes of the left and right superconductor. For a nontrivial solution
of this system, the determinant of R = 0. If we solve det R = O for energy E, we get the
Andreev bound state energy spectrum E = E;, i = {I,...,8}[155]. We find that Andreev

energy bound states E;(i = 1, ..., 8) can be written as el +g/(l =1,...,4). From Andreev

bound state energies we get Free energy[24] of our system as,

F= —%ln[n(l +e—ﬁE = —%Zln 2cosh )] (4.36)

i
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

We consider the short junction limit, such that the total Josephson current can be determined
by considering bound state contribution only. The Josephson current at finite temperature
is defined as the derivative of the Free energy F of our system to the phase difference ¢

between left and right superconductors[166],

4
B 2e aF 2e ,381 881
I - Z .

= 4.37
I (4.37)

Using Eq. (4.37) we can calculate the anomalous Josephson current, which is given as-
1,, = (¢ = 0), absolute value of maximum Josephson current, as- /.. = | max /(¢)| and
absolute value of minimum Josephson current, as- /.- = | min /(¢)|. In case interfaces are

completely transparent, i.e., Z = 0, we have,

2eA3(T)
= —2—(ta

nh (ﬁ2 *) Al +tanh ('8‘242)A’2+tanh (%)Agﬂanh (%)Ag) (4.38)
wherein A, Ay, Az, Ag, A’l, A’z, A; and A:1 are expressions that depend on exchange
interaction (J), magnetization of Ferromagnet’s, spin (S) and magnetic moment (m’) of
spin-flipper, phase (kra) accumulated in Ferromagnet’s and spin-flip probability (f). The
explicit forms for Ay’s and A7 ’s (k = 1,2, 3,4) are given in Appendix B.4. In Appendix B.4
we show that for no flip (f = 0) or absence of spin-flipper (J = 0) or = 0 (magnetizations
of Ferromagnet’s are aligned), the anomalous Josephson current (/,,) vanishes.

In Fig. 4.14 we plot Andreev bound states and Josephson current as a function of
phase difference ¢ between two superconductors for both no flip and spin-flip cases. In
Fig. 4.14(a) we deal with the no flip case, i.e., f =0,and S = m’,i.e., S =3/2, m" = 3/2.
A spin flipper cannot flip its spin while interacting with an electron/hole if S = m’.
However, there is a finite probability for the spin of an electron or hole to flip due to the

misalignment in the magnetization of the Ferromagnets. We see that there are four positive

and four negative Andreev levels. In junction where time reversal symmetry is not broken,
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Figure 4.14: Andreev bound state energies as a function of phase difference (¢) (a) for no flip,
(b) for spin flip. (c) Josephson current as a function of phase difference (¢). Parameters are
Ag = 1meV, J =1, h = 0.5EF, Iy = eAo/h, T/T, =0.01, Z =0, kpa = 121, 8 = n/2, for flip:
S=3/2, m"=-1/2, f =2, and for no flip: S =3/2, m" =3/2, f =0.

Andreev bound states £;(¢) are invariant with respect to inversion of phase difference ¢,
i.e., /(—¢) = g/(¢). As aresult, in Fig. 4.14(c), for no flip case Josephson current satisfies
I(—¢) = —1(¢) and there is no current flowing through the junction when phase difference ¢
between two superconductors is zero. Thus, absolute value of maximum Josephson current,
1.+ is identical to absolute value of minimum Josephson current, /._. In Fig. 4.14(b) we
deal with spin flip case, i.e., f # 0, for this case S # m’, i.e., S = 3/2, m" = —1/2, for spin
flipper. Thus, there is finite probability for spin flipper to flip its own spin when interacting
with electron/hole. We see that for m’ = —1/2, Andreev levels are doubly degenerate
and phase inversion symmetry, i.e., £/(—¢) = &;(¢) is broken. As a result, anomalous
Josephson current flows, i.e., I(—¢) # —I(¢) for spin-flip process in Fig. 4.14(c), where
not only the anomalous current /(¢ = 0) # 0, but also difference between the absolute
value of maximum and absolute value of minimum Josephson currents, /., # I._ is finite.

In Fig. 4.15 we show the effects of exchange interaction (J) of the spin flipper, the
magnetization of Ferromagnet’s (), interface transparency (Z), and misorientation angle

(0) between two ferromagnetic layers on the anomalous Josephson current. In Fig. 4.15(a),
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we plot anomalous Josephson current as a function of exchange interaction J of spin

flipper for different spin-flip probabilities. We see no change in the direction of anomalous
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Figure 4.15: (a) Anomalous Josephson current as a function of exchange interaction J of spin
flipper, (b) Anomalous Josephson current as a function of magnetization (h) of the Ferromagnet’s,
(¢) Anomalous Josephson current as a function of the interface barrier strength (Z), (d) Anomalous
Josephson current as a function of misorientation angle (6) between two Ferromagnets’ for different
spin flip probabilities of spin flipper. Parameters are Ag = 1meV, Iy = eAo/h, T/T. = 0.01, J =1
(for (b), (c¢) and (d)), h = 0.5EF (for (a), (d)), h = 0.8Er (for (¢)), kra = n, Z = 0 (for (a),
(b) and (d)), 6 = /2 (for (a), (b) and (¢)).

Josephson current for ferromagnetic coupling (J > 0) with a change in J. However, for

anti-ferromagnetic coupling (J < 0), there is a change in the direction of 7, as J changes

from J = 0 to J = —4, implying tun-ability of the sign of anomalous Josephson current

via exchange interaction of spin flipper. We also see that anomalous Josephson current
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is asymmetric to J. Further, the maximum value of /,, decreases with an increase of
spin-flip probability of spin flipper. The Mathematica code used to calculate anomalous
Josephson current /,, is mentioned in Appendix E. In Fig. 4.15(b), we plot anomalous
Josephson current as a function of magnetization (#) of the ferromagnetic layers. In
contrast to Fig. 4.15(a), anomalous Josephson current is symmetric to magnetization s of
Ferromagnets. In Fig. 4.15(c) we plot I, as a function of interface barrier strength (Z). We
see that there is no change in the direction of /,,, with an increase of interface barrier strength
Z. Further, the anomalous Josephson current is almost zero in the tunneling regime. It is
also evident from Fig. 4.15(b) and Fig. 4.15(c) that maximum of /,, decreases for large
values of spin-flip probability. In Fig. 4.15(d) 1, is plotted as function of misorientation
angle (6) between two ferromagnetic layers. We see that magnitude of anomalous current
decreases with increasing spin-flip probability. Further, one can see that sign of anomalous
Josephson current can be tuned via misorientation angle 6 between magnetization direction
of two Ferromagnets. Anomalous current is periodic as a function of misorientation angle
with period 2. From Fig. 4.15(d), we also see that when the magnetic moments of the
Ferromagnet’s are aligned parallel or anti-parallel (8 = 0 or 6 = ), anomalous Josephson
current vanishes even when the spin flipper flips its spin.

In Fig. 4.16 we plot the absolute value of the anomalous Josephson currents as a function
of the misorientation angle 6 for the same parameter values as in Fig. 4.15(d). We see
that the anomalous current, regardless of flip probability, is symmetric about y-axis but

asymmetric to z-axis.

4.3.2 Quantized anomalous phase

In the previous subsection, we have shown the results of Andreev bound states and Anoma-

lous Josephson current. In this subsection we discuss the results of anomalous phase ¢ and
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

Figure 4.16: Absolute value of anomalous Josephson current as function of the misorientation
angle (0) between two Ferromagnet’s for different values of spin and magnetic moment of the spin
flipper. Parameters are Ay = 1meV, Iy = eAo/h, T/T, =0.01, J =1, h =0.5EF, kra =n, ¢ =0,
Z=0.
asymmetry of the critical current 8 = (/. — I.-)/(I.+ + I._). In Fig. 4.17(a), we plot Free
energy as a function of exchange interaction J and phase difference ¢. When J # 0, for
particular values of J, the minimum Free energy is at ¢ = ¢o(# 0, +7) and a ¢g-Josephson
junction is realized[122, 123, 124]. Thus, for each value of J, we get the anomalous phase
o numerically, where the Free energy of the junction becomes minimum. In Fig. 4.17(b)
we plot Free energy as function of magnetization /4 and phase difference ¢. When & # 0,
for each value of 4, the minimum Free energy is at ¢ = ¢o(# 0, +m). Thus, again for
each value of A, we get an anomalous phase ¢y numerically, where the Free energy of the
junction is minimum. This procedure of calculating ¢ is well known and is also done in
Refs. [133, 148].

In Fig. 4.18 we plot anomalous phase ¢q as function of exchange interaction J of spin
flipper and magnetization £ of the Ferromagnet’s. In Fig. 4.18(a), we see ‘“‘quantized” steps

in the anomalous phase ¢y which are of the same magnitude (/100 radians) although the
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Figure 4.17: (a) Free energy as a function of exchange interaction J of spin flipper and phase
difference ¢ across two superconductors. (b) Free energy as a function of magnetization h of the
Ferromagnet’s and phase difference ¢ across two superconductors. Parameters are Ay = 1meV,
T/T, =0.01, S =1/2, m" = -1/2, h = 0.5EF (for (a)), kpa=mn, 0 =n/2, Z =0, J = 0.5 (for
().

width linearly decreases as one goes from anti-ferromagnetic to ferromagnetic coupling. In
our work, an anomalous current is always accompanied by a quantized anomalous phase.
We never see anomalous current with nonquantized anomalous phase. In Fig. 4.18(b)
anomalous phase ¢( is shown as a function of the normalized magnetization h/Efr of
Ferromagnet’s. Similar to Fig. 4.18(a), we also see quantized steps in anomalous phase
o which are again exactly of the same magnitude (/100 radians). However, the width
initially decreases and then increases as one changes 4/ Er from —0.99 to 0 and then from 0
to 0.99. The quantized step magnitude or height remains the same for different spin values,
magnetic moment, and different spin-flip probability of spin flipper. Quantized behavior of
¢ is also shown in Fig. 4.18(c), where we show density plot of ¢q as a function of J and .
It is also evident from Fig. 4.18(c) larger values of exchange interaction and magnetization

correspond to increasing magnitudes of anomalous phase ¢9. The Mathematica code used

to calculate anomalous phase ¢ is mentioned in Appendix E. In Ref. [133], anomalous
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Figure 4.18: (a) Phase difference ¢y as a function of exchange interaction (J) of spin flipper.
(b) Phase difference ¢o as a function of magnetization (h) of Ferromagnet’s. (c) Density plot of
©o as function of exchange interaction (J) of spin flipper and magnetization (h) of Ferromagnet’s.
Parameters are Ay = 1meV, T|T, = 0.01, S = 1/2, m’ = —=1/2, h = 0.5EF (for (a)), kra = n,
0=n/2,Z=0,J=0.5(for (b)).

Josephson current is seen in a semiconducting nanowire-based junction in the presence
of both spin-orbit interaction (SO) and Zeeman field, which is equivalent to what we see
for finite spin-flip probability in our system without any need for spin-orbit scattering or
Zeeman fields. However, in Ref. [133] anomalous phase ¢y changes continuously with
change in a magnetic field and is not quantized in contrast to what is shown in this chapter.

Finally, in Fig. 4.19 we perform a similar analysis for the asymmetry of the critical
current, defined as[148] N8 = (I.4+ —I.-)/(I.+ +I.-). In Fig. 4.19(a), we plot N as a function
of the exchange interaction J and see that the maximum value of N almost remains the same
for different spin-flip probabilities. Further, it is also evident from Fig. 4.19(a), the sign of
N can be tuned via J, and N is asymmetric to J. Figure 4.19(b) shows the asymmetry N
as a function of magnetization & of Ferromagnet’s. We see that in contrast to Fig. 4.19(a),
the maximum in N is different for different spin-flip probabilities. Further, X is symmetric
with respect to 4/Efr. In Fig. 4.19(c), we show a density plot for asymmetry in critical

current (N) as a function of exchange interaction J of the spin flipper and magnetization &

171



4. SPIN-FLIP SCATTERING INDUCED TUNABLE (0 — 7 JOSEPHSON JUNCTION AND QUANTIZED
ANOMALOUS PHASE IN FERROMAGNETIC JOSEPHSON JUNCTION

- X
05 ‘ 0.15

O 0.10
Er
-3 2 1 2 3Y -05 ‘ 0.05
{t—— f=1(S=112,m'=-1/2) - 0
iy =2 (S=3/2,m'=— k) -1.0
e as w0 0s 1o l_gg
e f = =5/2,m"=~’ =V.
-0.2 - HolEF J

(c)

Figure 4.19: (a) Asymmetry of critical current as a function of exchange interaction (J) of spin
flipper. (b) Asymmetry of critical current as a function of magnetization (h) of Ferromagnet’s.
(c) Asymmetry of the critical current as a function of exchange interaction (J) of spin-flipper and
magnetization (h) of Ferromagnet’s. Parameters are Ay = 1meV, T/T, = 0.01, f =1 (S = 1/2,
m’ =—=1/2) (for (¢)), h = 0.5Ef (for (a)), kpa=mn,0=n/2, Z=0, J =0.5 (for (b)).

of Ferromagnets. We find a maximum value of N =~ 0.16 with N changing sign from anti-
ferromagnetic to ferromagnetic coupling. Asymmetry of critical current is also calculated
in Ref. [148] as a function of spin-orbit interaction and magnetization. Nevertheless, in

contrast to our case, N is larger for larger spin-orbit interaction and magnetization values.

4.3.3 Reasons for the existence of Anomalous Josephson effect

Explaining quantum spin-flip scattering

The significant role played by the spin flipper entails a detailed analysis of this process.
The Josephson current flowing through either ferromagnetic layer (F; or F3) is spin-
polarized in the direction of magnetization of that ferromagnetic layer. Subsequently
when this spin-polarized Josephson current state, denoted by a macroscopic wave-function
~ |Wsele¥® ~ (u00v)Tes (where K = L or R, i.e., left or right superconductor),
interacts with the spin flipper, there is finite probability for mutual spin flip. It is, of
course, a probability, not a certainty, since the interaction of spin-polarized Josephson

current with spin flipper is quantum in nature. Thus, the combined state of spin-polarized
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

Josephson current and spin flipper after the interaction is in a superposition of mutual
spin-flip and no flip state given by the joint wavefunction of spin-polarized Josephson
current and spin flipper. Quantum spin-flip scattering plays an integral role in observing
the anomalous Josephson effect, as we discuss later. In the absence of spin-flip scattering
probability (f = 0), anomalous Josephson current vanishes since time-reversal symmetry

is not broken, which we will explain later.

Explaining chiral symmetry breaking

All standard Josephson junctions have a symmetry, called chiral symmetry. Due to this
symmetry, at ¢ = 0 one cannot distinguish between electron tunneling from left to right
superconductor and vice-versa. Thus, electron tunneling amplitude from left to right
superconductor equals that from right to left superconductor when there is no phase dif-
ference between two superconductors (¢ = 0). Thus for our system, as in Fig. 4.13,
when Ferromagnet’s are aligned (6 = 0), tll(go =0) |Lor= tll((,o = 0) |L_gr, Where
tll lL—r and tll |L—g are the transmission amplitudes for electron tunneling from left to
right superconductor and vice-versa. This implies chiral symmetry is not broken and as
a result, /(¢ = 0) is strictly zero. But, when Ferromagnet’s are misaligned (6 # 0), then

tll(go =0) |Lor# tll(go = 0) |L—r, i.e., chiral symmetry is broken.

Explaining time-reversal symmetry breaking

Hamiltonian matrix, in Eq. (4.27) is denoted as Hp 6 (¢), such that Hp (@)Y (x) = E¥(x).
When spin flip probability f = 0 or Ferromagnet’s are aligned 8 = 0, Hg; () preserves
time reversal symmetry (7T), thus T HpiG ((,p)TT = Hpac(—¢), whichimplies thatif Hpy6(¢)
possess an energy eigenvalue €;(¢), then Hp;6(—¢) must have the same energy eigenvalue.

The Andreev bound states then satisfy: &;(¢) = €;(—¢), and as a result for Josephson
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current /(@) = —I(—¢) and there is no anomalous Josephson effect. In presence of spin
flip scattering (f # 0) and when Ferromagnet’s are misaligned (6 # 0), time reversal
symmetry is broken, as a result, £;(¢) # £;(—¢), i.e., Andreev bound state symmetry is
also broken and thus Josephson current obeys I(—¢) # —I(¢), which implies /(¢ = 0) # 0.
Thus, when both f # 0 and 6 # 0, i.e., both time reversal symmetry and chiral symmetry
are broken, an anomalous Josephson current flows across the junction. In contrast, when
f =0and 6 # 0, i.e., only chiral symmetry is broken, but time reversal symmetry is not
broken then anomalous Josephson current vanishes.

In Table 4.1 we discuss time reversal symmetry, chiral symmetry, anomalous Josephson
current and Josephson current for three distinct cases: (a) finite spin flip scattering but
Ferromagnets are aligned, i.e., f # 0 but 6 = 0, (b) no spin flip scattering but Ferromagnets
are misaligned, i.e., f = 0 but & # 0 and (c) when spin flip scattering is finite and

Ferromagnets are misaligned, i.e., f # 0 and 6 # 0. We see that when f # 0 and

Table 4.1: Effect of breaking chiral and/or time reversal symmetry on anomalous Josephson
current (spin flip probability is f; misorientation angle=6)

Parameters—| f #0and 6 =0 f=0and6#0 f#0and 6 £0
Properties|
Timereversal | Preserved, ;(¢) = g;(—¢) Preserved, ;(¢) = &;(—¢) Broken, &;(¢) # €1(—p)
symmetry
Chiral sym- | Preserved, Broken, Broken,
metry
2h@=0) lor=1l@=0)lncr | hig=0)lLor#tlb(@=0)locr | dlp=0) 1L r# L@ =0) Lcr
Anomalous Zero Zero Finite
Josephson
current
Josephson I(—¢) = -1(p) I(—¢) = -1(p) I(—¢) # -1(p)

current

6 = 0, both time-reversal symmetry and chiral symmetry are preserved. As a result,
anomalous Josephson current vanishes, and Josephson current satisfies the relation I(¢) =

—I(—¢). For f = 0 and 6 # 0, chiral symmetry is broken, but time-reversal symmetry is
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4.3. Ferromagnetic Josephson junction in the presence of a spin flipper

preserved. As aresult, anomalous Josephson current is zero, and Josephson current follows
I(¢) = —=I(—¢). In contrast, when f # 0 and 6 # 0, both time-reversal symmetry and
chiral symmetry are broken. As a result, anomalous Josephson current flows through the

junction, and Josephson current obeys (@) # —I(—¢).

4.3.4 How different values of 7/T, affect anomalous Josephson cur-

rent?

In Fig. 4.20, we show the effect of finite temperature on anomalous Josephson current,
anomalous phase, and asymmetry of the critical current in the presence of scattering with
f=1,ie,S=1/2andm’ = —1/2, while J = 1 for a transparent junction. In Fig. 4.20(a) of
our manuscript, we plot anomalous Josephson current as a function of misorientation angle
(0) between two ferromagnetic layers for different values of 7/7,.. We see that magnitude
of anomalous current increases with increasing 7/7,. Further, the sign of anomalous

Josephson current does not change with 7/7,. In Fig. 4.20(b) we plot asymmetry of the

Lanlly
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Figure 4.20: (a) Anomalous Josephson current as a function of mis-orientation angle (0) between
two Ferromagnets’ for different values of temperature. (b) Asymmetry of the critical current for
different values of temperature calculated as a function of exchange interaction (J) of spin flipper.
(¢) Phase difference @q as a function of exchange interaction (J) of spin flipper for different values
of temperature. Parameters are Ay = 1meV, J = 1 (for (a)), h = 0.5EF (for (a), (b) and (c)),
Ip=eMNo/B, f=1(S=1/2, m"=-1/2), Z=0, kra=mn,0=mn/2 (for (b) and (c))

critical current N as a function of exchange interaction J for different values of T/T,. We
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see that the maximum value of N increases with increasing temperature. In Fig. 4.20(c) we
plot anomalous phase ¢ as a function of exchange interaction J of spin flipper for different
values of T'/T.. We see that magnitude of anomalous phase ¢q increases with increasing
T /T, although magnitude of the ‘“‘quantized” steps in the anomalous phase ¢y remain
unchanged, i.e., 7/100 radians regardless of 7'/T,, meaning the quantization of steps at the
value /100 radians is independent of 7'/T,. Further this quantization at 7/100 radians is
independent of J, Z, h, 6, S, m" and kpa suggesting this is an “aniversal” feature of our

device.

4.4 Experimental realization

The set-up as envisaged in Figs. 4.1 and 4.13 can be realized in a experimental lab.
Superconductor-Normal metal-Superconductor Josephson junctions have been experimen-
tally realized since long[167]. Superconductor-Ferromagnet-Ferromagnet-Superconductor
(S-F-F-S) Josephson junctions have also been designed experimentally for quite some time
now[168]. The amalgamation of a Superconductor-Normal metal-Superconductor (SNS)
junction with a spin flipper or embedding an S-F-F-S junction with a spin flipper at the
interface between two ferromagnets should not be difficult, especially with a s-wave super-
conductor like Aluminum or Lead, it should be perfectly possible. 7 Josephson junction
with a quantum dot sandwiched between two superconductors has been demonstrated ex-
perimentally in Ref. [169]. They observe a gate-controlled transition from the O to the 7
state. Further, in Ref. [170] they look at the Josephson effect in a quantum spin Hall system
coupled with a localized magnetic impurity. Our work in this chapter will help experimen-
talists in designing tunable 7 junctions without taking recourse to Ferromagnets or high T,

superconductors or any applied magnetic fields and also designing anomalous Josephson
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junction without applying any external magnetic field but with only a spin flipper.

4.5 Conclusion

In this chapter, we have provided an exhaustive study of the nature of the 0 to 7 Josephson
junction transition in the presence of a spin flipper. We have studied various aspects of
the problem like the strength of the exchange interaction (J) between the spin flipper and
charge carriers, the effect of electron-electron interactions («) albeit phenomenologically,
the effect of junction transparencies (Z), and of course the high spin states S, spin magnetic
moment mm” of the spin flipper itself. We identify the spin-flip probability of the spin flipper
as the key to understand the O to 7 junction transition. We also focused on applications of
our junction in quantum computation proposals.

Further, we have studied the anomalous Josephson effect and the direction-dependent
critical current in S-Fi-spin flipper-F>-S junction where Fi, F, are the two ferromagnetic
layers with misaligned magnetization. In absence of spin-flip scattering, Andreev bound
states are time-reversal symmetric, i.e., £;(¢) = €/(—¢). As a result, Josephson current
is sinusoidal with I(¢) = —I(—¢), and there is no anomalous Josephson supercurrent at
¢ = 0. However, in the presence of spin-flip scattering, an anomalous Josephson effect
is seen. Andreev bound states break time-reversal symmetry, i.e., £;(¢) # &/(—¢) as
well as chiral symmetry, as a result, Josephson current breaks phase inversion symmetry
I(¢) # —1(—¢), and an anomalous Josephson current can flow at phase difference ¢ = 0.
More importantly, the ferromagnetic Josephson junction with spin-flipper acts as a phase
battery that can store quantized amounts of anomalous phase ¢ in the ground state of the

junction.
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Chapter 5

Spin-flip scattering induced quantum
spin torque in a Ferromagnetic

Josephson junction

“To be successful, you've got to get the kind of torque that’s created by a push

and a pull”

— Roger Ailes

5.1 Introduction

When a spin-polarized current enters a ferromagnetic layer, there is generally a transfer
of spin angular momentum between the conduction electrons and the magnetization of
the ferromagnet. It was first proposed by Slonczewski[171] and Berger[172] in 1996 as
a novel mechanism for switching the magnetization of a ferromagnet by a spin-polarized
current. It was experimentally realized in spin-valve trilayers in 2000[173]. Since then,
spin-transfer torque has been investigated in various magnetic nanostructures[174, 175].

In a spin valve, when an electric current passes through a fixed magnetic layer, it becomes

179



5. SPIN-FLIP SCATTERING INDUCED QUANTUM SPIN TORQUE IN A FERROMAGNETIC
JOSEPHSON JUNCTION

spin polarized along the direction of the magnetic moment of the fixed magnetic layer.
After passing through a nonmagnetic metal layer, the current enters into the free magnetic
layer and polarizes along the magnetization direction of the free magnetic layer. When
the magnetic moments of the two magnetic layers are not parallel or antiparallel, the
free magnetic layer can absorb the spin-polarized current[176]. Due to this absorption,
some angular momentum can be transferred to the free layer. Thus, a torque arises on
the magnetic moment of the free layer, which can cause the switching of the free layer’s
magnetization. The torque above is generally described as nonequilibrium spin-transfer
torque since it needs a voltage bias to operationalize it. The spin-transfer torque can also
arise in an equilibrium situation without a voltage bias as in a Josephson junction.

In ferromagnetic Josephson junction’s[177, 178], Josephson current at equilibrium gen-
erates an equilibrium spin transfer torque on the magnetic moments of the ferromagnetic
layers[179] which is proportional to the sine of the difference in magnetization direction of
the two ferromagnets. If # is the free energy of the superconductor-ferromagnet-normal
metal-ferromagnet-superconductor (SFyNF,S) junction and 6 is the angle between the

magnetic moments of the ferromagnets, then equilibrium spin transfer torque is defined
2e OF
hodp’

2e 97¢4
no oy

as[179] 7¢4 = 9L with Josephson supercurrent[166], I =

S and ¢ being the phase

difference between the two superconductors. Thus, % =

. 59 , relates Josephson su-

percurrent to equilibrium spin-transfer torque. The Josephson supercurrent, as shown in
Fig. 5.1, depends on the sine of phase difference across superconductors (¢; — ¢g). This
Josephson supercurrent induces an equilibrium spin-transfer torque due to the misaligned
magnetic moments of the ferromagnetic layers. Equilibrium spin-transfer torque points
perpendicular to the plane spanned by the two magnetic moments of the ferromagnetic
layers[179] and its magnitude is sinusoidal in the difference of magnetization directions of

the two ferromagnets. Sign and magnitude of the equilibrium spin transfer torque can be

180



5.2. What is quantum spin-torque?

Superconductor(S) Ferromagnet(F,) Normal metal(N) Ferromagnet(F,)  Superconductor(S)
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Figure 5.1: Conventional mechanism of the equilibrium spin transfer torque in a superconductor-
ferromagnet-normal metal-ferromagnet-superconductor junction. (a) Magnetic moments of the
ferromagnets are misaligned (61 # 6,). Equilibrium spin-transfer torque t¢* oc sin(6, — 6,) and
points perpendicular to the plane spanned by the two magnetic moments of the ferromagnets, (b)
Magnetic moments of the ferromagnets are aligned (6, = 6,). 7°1" = 0: equilibrium spin-transfer
torque vanishes.

controlled by the phase difference between the two superconductors[179].

5.2 What is quantum spin-torque?

Spin torque seen previously in SFFS junction[179] or SFFFS junction[165] or SFSFS
junction[180] is due to misalignments of ferromagnets leading to equilibrium spin-transfer
torque. The origin of equilibrium spin-transfer torque is “classical”. It can be easily
understood via a “classical mechanism”. But, this conventional view of the origin of
spin-transfer torque may not always be applicable. The quantum origins of spin torque, as
opposed to the “classical” spin-transfer torque, have been speculated recently in Refs. [181,

182].
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This chapter gives an example where the spin torque mechanism is quantum in nature
and due to spin-flip scattering alone. Classically, when the electron’s magnetic moment
is parallel or antiparallel to the magnetic field, there is no torque exerted on the electron.
Similarly, when the two magnetic moments of the ferromagnetic layers are parallel or
antiparallel, equilibrium spin-transfer torque vanishes, see Fig. 5.1(b). In Ref. [179], the
equilibrium spin-transfer torque also follows the same behavior. But in this chapter, our
primary motivation is to show that in Ref. [179] if we replace normal metal with a spin
flipper between two ferromagnetic layers, we will see a new effect- the existence of a finite
equilibrium spin-torque even when magnetic moments of the ferromagnets are aligned
parallel or antiparallel. We show that a spin flipper can engender torque in such a junction.
We call this effect “equilibrium quantum spin torque”. Thus spin-flip scattering can lead
to finite equilibrium spin-torque, which has no classical analog.

We are interested in spin-transfer torque because of possible applications in switch-
ing the magnetization of ferromagnets for sufficiently large current without any external
magnetic field. This switching provides a mechanism to create fast magnetic random ac-
cess memories[183]. Further spin-transfer torque can also be used for excitation of spin
waves[184]. The equilibrium spin-transfer torque first shown in Ref. [179] with s-wave

superconductor has been extended to d-wave in Ref. [185].

5.2.1 Difference between equilibrium quantum spin torque and nonequi-

librium quantum spin torque

Quantum spin-torque discussed in this chapter arises in equilibrium when Josephson current
flows through the Superconductor-Ferromagnet-Spin flipper-Ferromagnet-Superconductor
(S-F-SF-F-S) junction with aligned magnetizations. It is called equilibrium quantum

spin torque. However, quantum spin torque can also arise in a nonequilibrium situation,
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i.e., in the presence of a voltage bias, when a current flows perpendicular to the layers
in Ferromagnet-Spin flipper-Ferromagnet (F-SF-F) junction with aligned magnetizations.
There are some crucial differences between equilibrium and nonequilibrium quantum spin
torque.

(i) Equilibrium quantum spin-torque points perpendicular to the plane spanned by the
magnetization vectors of the two ferromagnetic layers. On the other hand, nonequilibrium
quantum spin-torque mainly lies in the plane spanned by the magnetization vectors of the
ferromagnets.

(ii) Equilibrium quantum spin torques on the magnetic moments of both ferromagnets
are equal in magnitude but opposite in sign. However, no such relationship exists for
nonequilibrium quantum spin torque.

(iii) Equilibrium quantum spin torque can be tuned via phase difference across the
superconductors. But, nonequilibrium quantum spin torque can be tuned by the direction

of the current flow through the junction.

5.3 Ferromagnetic Josephson junction in the presence of

a spin flipper

To show the existence of an equilibrium quantum spin torque even when magnetizations in
ferromagnets are aligned, we consider a Josephson junction consisting of two ferromagnets
with a spin flipper sandwiched between two conventional s-wave superconductors. The
superconductors are isotropic and our model is shown in Fig. 5.2, with a spin flipper
at x = 0, two s-wave superconductors on either side at x < —a/2 and x > a/2 and
two ferromagnetic layers in regions: —a/2 < x < 0 and 0 < x < a/2. In general,

h the magnetization vectors of the two ferromagnetic layers are misaligned by an angle
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6. However, in our calculation § — 0, i.e., magnetization vectors are aligned parallely.
We take the superconducting pair potential of the form A = Ag(T)[e'?2O(—x — a/2) +
e"PRA(x — a/2)], where A(T) is temperature dependent gap parameter, ¢; and @ are the
superconducting phases for left and right superconductor respectively. The temperature
dependence of Ay(T) is given by Ag(T) = Agtanh(1.74+/(T,/T - 1)), where T, is the

superconducting critical temperature[24].

~L.

Superconductor(S,)

AO(T)ei%

Superconductor(S, )

A,(T)e™

X =-al2 x=0 X =al2

Figure 5.2: Josephson junction composed of two ferromagnets and a spin flipper with spin S and
magnetic moment m’ at x = 0 sandwiched between two s-wave superconductors. In our model
01 = 0 and 6, = 0. When ferromagnets are aligned, i.e., 6 — 0, equilibrium spin transfer torque
vanishes (see Fig. 5.1(b)), however in our setup a new quantum mechanism of spin flip scattering
gives rise to a non-zero torque, which we denote as Equilibrium quantum spin torque (EQST). In
this chapter, we mainly concentrate on the limit 6 — O.

The BdG equation of our system is given below[27]:

Hol  iAG,
U(x) = Ey(x), (5.1

A

~iA*Gy —HT

where Hy = p?/2m* +V[6(x+a/2) +6(x—a/2)] - Jo§(x)5.S — h.o[O(x+a/2)+O(a/2 -
x)] — Er. In the Hamiltonian “Hy”, the first term describes kinetic energy of an electron
with mass m*, the second term depicts interfaces: V is the strength of the §-like potential

at the two interfaces between ferromagnet and superconductor, the third term describes
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5.3. Ferromagnetic Josephson junction in the presence of a spin flipper

spin flipper with Jy being the strength of exchange interaction between electron with spin
§ and spin flipper with spin S[13], the fourth term describes ferromagnets with h being
the magnetization vectors of the two ferromagnets and © is the Heaviside step function.
Further, (x) is a four-component spinor, Ef is Fermi energy, & is Pauli spin matrix and [
is a 2 X 2 identity matrix. In general, magnetization vector (71) of left ferromagnet (F7) is
assumed to be at an angle of 6 with z axis in the y — z plane, while that of right ferromagnet
(F3) is fixed along the z axis. Thus, h.o- = hsin 60y + hcos 05,[165]. However, in our

study we only concentrate on the case where 6§ — 0, i.e., Ferromagnets are aligned. In the

subsequent analysis we take the dimensionless version of Jy and V given as J = mk 7 and
_ m'V
Z = % [9].

If we solve the BAdG equation for superconductors, see Eq. (5.1), we will get wave-
functions for left and right superconductors. Let us consider a spin up electron incident at
x = —a/2 interface from left superconductor. The wave function[27] in left superconductor

for x < —%)is,
2
S ik S S k S S ik, S S jk_ S S ik_
s, (x) = @yt e® g wrllgtte R ex oS e ligSt e ¢S wrlT St ehxgS  rllgirettxgS | (5.2)

where gofgL, i = 1,2,3,4 are as defined in section 4.2 of chapter 4 and amplitudes
rll, rlﬁ, rgl, rTl are the normal reflection without spin flip, normal reflection with spin
flip, Andreev reflection with spin flip and Andreev reflection without spin flip respectively.

The corresponding wave function in right superconductor (for x > 7) is given by,

S fes S ky S ik_ S S ik_ S
Use () = 11l g¥R e oS+ illgSRe®e xS il SRk 1) SR eikx g

eh¢3 eh <P4 m’’ (53)

where cpr , 1 = 1,2,3,4 are as defined in section 4.2 of chapter 4 and tll, Zi, tgl, tli

represent transmission amplitudes, corresponding to the reflection process described above

and ¢ = ¢g — ¢ represents phase difference between right and left superconductors.

Similarly solving the BdG equation for ferromagnets, we get the wavefunction in
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ferromagnets. The wavefunction in the left ferromagnet (F7) is given by,

U (x) =(epe D D 4 TN OFgS (e W OTD 4 fr T o S

m'+1

+ (gpefiq{(xm/z) + hpeiq{x)gogqbfn,ﬂ + (g}eiiqli(xm/z) h X )1,04 qﬁ . for -5 < x <0,

(5.4)
where (pf ,1 =1,2,3,4 are defined in section 3.5 of chapter 3. Similarly, the wavefunction
in the right ferromagnet (F») is given by,

Ui () =(ape ™ + bpe TNV GY - (ap U + b TN gl
+ (cpe MY + dpe'h O “/2))g03 ¢S, + (e X et (o= “/2))<p4 ¢S, for0 < x < z.

(5.5)

where golN, i =1,2,3,4 are defined in section 1.3 of chapter 1. ¢ = 2I;"—Z*(EF + poh £ E)
is the wavevector for electron (¢ ) and hole (¢, ) in the ferromagnetic layers, wherein

po = +1(—1) is related to o =T (|). We have used the Andreev approximation k, = k_ =

2’";2EF kr and gy = kF 1+ E , where kp is the Fermi wavevector, with Er > A, E.

The boundary conditions[27] can be written as follows: at x = —a/2, Y5, (x) = YF, (x)

and, &0 _ D5 _ 2V while at x = 0 (see Fig. 5.2), wp, (x) = g (x), and o2 —
di’:l = 2 JOY S VE . Flnally, at x = a/2, the boundary conditions are- Y, (x) = g, (x),

dys,  dyr, 2m*v
- = Y

- - = P =s.5; + i(s_SJr + 57S7) is exchange coupling due to spin

flipper in the Hamiltonian. 5 represents electron spin operator acting on electron/hole states

¢;,, while S represents the spin operator acting on spin flipper states ¢rSn ,. ¢, is eigenspinor
. S s . . . . . 2 1es . .

of electron/hole while ¢ , is eigenspinor of spin flipper with m and m’ being spin magnetic

moment of electron/hole and spin flipper respectively. s is spin of electron, while S is spin

o 0 0 o 0 o
of spin flipper, with s* = s, +is,, s, = g : , Sy = g g LSy = g Y ,
0 -0, oy 0 oy 0
1 0 01 0 —i
where o, = ,Ox = ,Oy = . The action of spin raising and spin
0 -1 1 0 i 0

lowering operators for spin flipper are discussed below.
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5.3. Ferromagnetic Josephson junction in the presence of a spin flipper

For spin up electron incident ¢;, = gollv , with s = 1/2, m = 1/2. Now, when spin flip
term of our Hamiltonian acts on spin up electron (pzlv , and the spin flipper state (/)51, we have-

L2 1 _ 1, _
s.Sgo11V¢§1, = sZSzgollvcﬁ,i, + ES S+9011V¢,Sn, + §s+S ¢11V¢,Sn,. (5.6)

Now, s*¢l = 0, since s* is the spin raising operator and there are no higher spin
states for a spin-1/2 electron than up and so the 3rd term in Eq. (5.6) vanishes, while
s‘gojlv = hgoév , the spin lowering operator gives the down spin state (piz\’ of electron. Further,
for spin-up electron s.¢" = 2o, and for spin flipper- S.¢5, = Am’¢S,. Further, the

spin-raising and spin-lowering operators acting on spin flipper give: S+¢S =nf ¢m el =

WE-—m)S+m +1)¢5, and S™¢>, =S —m)(S+m' + )¢ ,.
2 n?
Thus, 5.5¢) ¢3, = = 5 m'¢) VoS, + —\/(s m)(S+m' +DedeS, . (5.7

From Egs. (5.6), (5.7) we thus have-

R h2 2
§.S(,011V¢ = ?m "h ¢ + fgoé\I(/),i,H (for both no flip and spin flip processes)

5.3.1 Andreev bound states and Josephson charge current

Following the procedure enunciated in Ref. [24] to calculate bound state contribution to
Josephson supercurrent we neglect the contribution from incoming quasiparticle, i.e., first
term go‘fL e"k”‘qbf;1 , of Eq. (5.2) and insert the wave functions in the boundary conditions, we
get a homogeneous system of linear equations for the scattering amplitudes, Qx = 0, where
x is a 8 X 1 column matrix and is given by x = [rll, lﬁ, rT,E, rllﬁ, tll, tlﬁ, tlll, “]T and Q is a
8x 8 matrix obtained by expressing the scattering amplitudes in the two ferromagnetic layers
by the scattering amplitudes in the left and right superconductor. For a nontrivial solution

of this system, Determinant of Q = 0, we get the Andreev bound state energy spectrum E;,

i ={1,...,8}[155]. This is the usual procedure for calculating the bound state spectra in
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Josephson junctions, see Refs. [24, 27]. We find that E;(i = 1,...,8) = xg,(p = 1,...,4).

From Andreev bound states energies[155] we get the Free energy of our system, which is

given by[24]:
11 (2= . 21 [ B
?:_Eﬂ/o ln[H(1+e ’BE’)]d(kFa) :_Bﬂ/o Zln [2cosh(%)]d(kw)-

i p=1
(5.8)

We consider only the short junction limit, i.e., a << &, where ¢ is the superconducting
coherence length and a the width of the intervening ferromagnetic layers between super-
conductors, such that only the bound state contribution determines the total Josephson
current, the continuum contribution is negligible and so neglected[24, 27]. The charge
Josephson current at finite temperature is the derivative of the Free energy F of our system

to the phase difference ¢ between left and right superconductors[27, 166],

2e 0F 2e 1 [ Bep\ O
lo=""—=-" h(=2)=2 . .
e ) Ztan ( 5 )890 d(kra) (5.9)

5.3.2 Equilibrium spin torque

From the Free energy of our system, Eq. (5.8) we calculate the equilibrium spin torque[179]
by taking derivative of the Free energy with respect to misorientation angle ‘0’(the angle
between magnetic moments of the two ferromagnets),

2 4 0
204 — % _ _i/o > tanh (@)ﬁd(kﬂz). (5.10)

The equilibrium spin torque is also referred as equilibrium spin current in some papers[6,
180]. In our calculation as previously mentioned we focus on the case where magnetization
in two ferromagnets is aligned, i.e., & — 0. In this limit we surprisingly see a finite

equilibrium quantum spin torque (EQST) due to spin flip scattering upending, the classical
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5.3. Ferromagnetic Josephson junction in the presence of a spin flipper

reason behind spin torque being due to nonaligned magnetization. For transparent regime

(Z = 0) we find,
74 |g_ 0= A0 Zﬂ(t h(%)M’ h(%)M’ tanh %)M’ h(% M])d(k
0-0= — /0 an > | +tan > ,+tan ( > ;+tan > ) 4) (krpa)

(5.11)
where M, M,, M3, My, Ml’ , Mz’, M3’ and Mé are functions of exchange interaction (J),
magnetization of ferromagnets, spin (S) and magnetic moment (m’) of spin flipper, the
phase (kra) accumulated in ferromagnetic region and spin flip probability of spin flipper
(f). Their explicit forms are given in Appendix C. In Appendix C we show that for no flip
case, the EQST (7Y |y9—0) vanishes. In the next subsection from figures we will show that

the EQST is zero in the limit / — 0 and Z — oo.

5.3.3 Analyzing equilibrium quantum spin torque

In this subsection we analyze via various plots this unique quantum spin torque due to spin
flip scattering alone. In Fig. 5.3 we plot both Josephson charge supercurrent as well as the
EQST for different interface transparencies Z as function of the phase difference ¢. We
consider magnetic moments of the ferromagnetic layers to be parallel (§ — 0) and deal with
the spin-flip case, i.e., f # 0. For this case, S # m’, for the spin flipper. Thus there is a finite
probability for the spin flipper to flip its spin while interacting with an electron/hole. We
see both Josephson charge current and EQST is inhibited by increasing interface barrier
strength (Z). Further, similar to the charge Josephson current, the EQST vanishes at
¢ = 0 and ¢ = 2n. Usually, the spin-transfer torque opposes the Josephson current (see
Ref. [179]), however the equilibrium quantum spin torque (EQST), as shown here, can
flow in the same direction as the Josephson current, see Fig. 5.3(a), —0.7 < ¢ < 0.7.
This behavior is also seen in Ref. [182] for the quantum spin-transfer torque in a different

context.
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Io/lo

Figure 5.3: Josephson charge current and equilibrium quantum spin torque (EQST) as a function
of phase difference (@) for different values of interface barrier strength (Z). Parameters are
Ao = 1meV, Iy = eAo/h, T/T, =0.01, J =0.5, h/EF =0.5,0 =0, S =5/2, m" = —1/2. Both I,
and ¢4 are inhibited by increasing Z and also EQST is zero for ¢ = 0 and ¢ = 2.

In Fig. 5.4(a) we plot EQST as a function of phase difference (¢) for different values of
exchange interaction J again for 6 — 0. We see that with change of exchange interaction J
there is a sign change in EQST. The change in sign of 7¢¢ via a change in ‘J’ implies that
the EQST seen in our system can be tuned via ‘J’ and the sign of 7¢¢ can be controlled
by the phase difference as shown in Figs. 5.3(b), 5.4(a) & 5.4(b). In Fig. 5.4(b) we plot
EQST as function of phase difference (¢) for different values of magnetization (%) of the
ferromagnets. We see that the EQST increases with increasing ‘A’

In Fig. 5.5 we study EQST from low to high spin states of spin-flipper and for different
values of spin-flip probability of spin flipper again at 6 — 0 for a transparent junction,
ie.,, Z = 0. In Fig. 5.5(a), J = 1 and we see that EQST monotonically decreases with
increasing ‘S’, for particular value of m’ = —%, implying high spin states inhibit EQST. In
Fig. 5.5(b), we plot EQST for a particular spin S = 5/2 and all possible values of spin-flip
probability of spin flipper. We see that EQST is enhanced for f > §, but for f < §, EQST

is suppressed.
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— J=1 0.03f -, —— WER=0
S ===== J=-025 S S

Figure 5.4: EQST as a function of phase difference (¢) for (a) different values of exchange
interaction (J) of spin flipper and for (b) different values of magnetization (h) of the ferromagnets.
Parameters are Ag = 1meV, Iy = eAo/h, T/T, =0.01, Z =0, J =1 (for (b)), h/EFr =0.5,6 =0,
S =5/2, m'" = -1/2. In (a) EQST changes sign with change of exchange interaction J and phase
difference . In (b) EQST increases with increasing magnetization h of the ferromagnets.

In Fig. 5.6(a) we plot the EQST for flip (S = 3/2,m’ = —1/2, f # 0) case as well
as no flip (S = 3/2,m’ = 3/2, f = 0) case and also for a superconductor-ferromagnet-
ferromagnet-superconductor (S-F;-F3>-S) junction without spin flipper (J = 0) in the same
figure as a function of misorientation angle (6) between ferromagnets. We see that in
contrast to S-F;-F»-S junction (J = 0 case) and no flip case, EQST is finite at § — 0
and 8 = m when spin flipper flips its spin. Thus the reason for finite EQST at 6 — 0 is
a finite probability for flipping. It can be explained as follows- after passing through the
first ferromagnetic layer, the supercurrent becomes polarized in the magnetization direction
of the first ferromagnetic layer. When spin-polarized supercurrent interacts with the spin

flipper through the exchange interaction, there is a finite probability for a mutual spin flip.

The equation below depicts the interaction process:

|s.c) ® |45, = 4 /m?/INo flip) + \/g |Mutual-flip) (5.12)

where |s.c) is the state of spin-polarized supercurrent, see paragraphs above and below
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Eq. (5.7) on how this equation described above comes into being. Due to this spin-flip
scattering, the direction of the spin of supercurrent will be in a superposition too and
thus will differ from the direction of the magnetization vector of the ferromagnetic layer.
Thus, when the supercurrent enters the second ferromagnetic layer, the magnetization
vector of the second ferromagnetic layer will exert a torque on the spin flipped component
of the supercurrent wave function to rotate the supercurrent’s spin along the direction of
magnetization while leaving the non-spin flipped component as it is. From the conservation
of spin angular momentum, the supercurrent will also exert an equal and opposite torque
on the magnetic moment of the second ferromagnetic layer leading to a finite EQST even
at § — 0. However, in the absence of a spin flipper (J/ = 0 case) and for no flip case,
the spin-polarized supercurrent state does not flip its spin. Thus, in the absence of spin
flipper or the case of no-flip scattering, the spin-polarized supercurrent’s spin and the
magnetization vector of the ferromagnetic layers will be in the same direction. Therefore,
EQST vanishes in the case of J = 0 and the no-flip process, but for the spin-flip process,
it is finite. This finite 7°¢ can be a check also on whether SFFS junctions are clean
or contaminated with magnetic adatoms. In Fig. 5.6(b) we plot EQST as a function of
exchange interaction J from antiferromagnetic coupling (J < 0) to ferromagnetic coupling
(J > 0) at phase difference ¢ = n/2. For § — 0, ferromagnets have no role in flipping
the electron’s/hole’s spin[186] and spin-flip is only due to the spin flipper. We see that for
ferromagnetic coupling, there is no change in the direction of the EQST with a change in
J. However, for antiferromagnetic coupling (J < 0), there is a change in the direction of
7¢4 as J changes from J = 0 to J = -2, implying tunability of the sign of EQST via the
exchange interaction of spin flipper.

Finally, in Fig. 5.7 we plot EQST as a function of interface barrier strength (Z). We

see no change in the direction of EQST with the increase of interface barrier strength Z.

192



5.3. Ferromagnetic Josephson junction in the presence of a spin flipper

Teg/ A\
eq/Bo Teq/Do
Teg/A
0.14f eq/Bo [ N
0005 ¢ 0.035
0.12f 0.004 0.030}
[ ]
010 0.003 0025l .
0.002 *
0.08f ® . 0.020f
k 0.001 -
L Y ! S [
0.08 12 132 152 17/2 1972 0015
0.04f * 0.010f
0.02F * 0.005f *
g [ ]
L L L L L S L L L f
112 32 5/2 712 912 2236 28284 3
(a) (b)

Figure 5.5: (a) Equilibrium quantum spin torque (EQST) vs spin (S) of spin flipper. (b) EQST
vs spin flip probability (f) of spin flipper for S = 5/2 and m’ = 5/2(f = 0),m’ = 3/2 and
m’ = =5/2(f =2.236),m’ = 1/2and m’ = =3/2(f = 2.8284) and m’ = —1/2(f = 3). Parameters
are Ag = 1meV, T|T. =0.01, o = /2, J =1, m" = =1/2 (for (a)), Z=0,0 =0, h/Er = 0.5.
EQST decreases with increase of spin S of spin flipper.
Further, EQST is almost zero in the tunneling regime.

The theoretically predicted numerical value of equilibrium spin-transfer torque (ESTT)
is ~ 1072 meV in Ref. [179]. On the other hand, for the parameter values Z =0, J = 0.5,
¢ =mn/2,5 =5/2and m’ = —1/2, the numerical value of equilibrium quantum spin torque
(EQST) is 0.04 meV. Thus, the value of equilibrium quantum spin torque (EQST) is almost
the same as the value of equilibrium spin-transfer torque as predicted in Ref. [179].

Equilibrium spin current/torque in superconductor-ferromagnet-superconductor junc-
tions with inhomogeneous magnetization is studied in Ref. [187]. They pointed out discon-
tinuous jumps in the equilibrium spin current or torque whenever the junction undergoes a
0 — & transition. They find numerically that the spin current or torque is symmetric to the
phase difference between two superconductors. They also show that for specific values of
the thickness of the ferromagnetic layer, a pure spin current can flow through the junction

without any charge current. Similar to their work, we see quantum spin torque is finite even

when charge current vanishes. This finite quantum spin torque is antisymmetric to phase
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Figure 5.6: (a) EQST as function of misorientation angle (9) for ¢ = n/2. (b) EQST as function
of exchange interaction (J) of spin flipper for ¢ = n/2 and 8 = 0. Parameters are Ay = 1meV,
Io = eNo/B, T/T. = 0.01, Z =0, h/Er = 0.5, spin flip case: S = 3/2,m’" = —1/2, no flip case:
S =3/2,m’ =3/2 and for (a) J = 1. In (a) EQST is zero for J = 0 and no flip case (f = 0), but
finite for spin flip case (f # 0). In (b) EQST changes sign with change in J for antiferromagnetic
coupling (J < 0) and is also asymmetric with respect to J.

difference between two superconductors in contrast to their work.

-0.01F-"

Figure 5.7: EQST as a function of interface barrier strength (Z). Parameters are Ag = 1meV,
Iy = eNo/h, T/T, = 0.01, 8 =0, h/Er = 0.5, ¢ =7/2, J =05, 8 =5/2, m" = -1/2. EQST
decreases with increase of Z and in the tunneling regime (Z —large) EQST vanishes.
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5.3.4 Physical picture of equilibrium quantum spin torque

To understand the physical basis of the equilibrium quantum spin torque, we go back
to Fig. 5.2. When the Josephson supercurrent enters the first ferromagnetic layer, it
becomes spin-polarized along the magnetization direction of the first ferromagnetic layer.
This spin-polarized supercurrent then interacts with the spin flipper through the exchange
coupling, and there is a finite probability for a mutual spin flip. One should note that
this is a probability, not a certainty, since the interaction of spin-polarized supercurrents is
quantum in nature. Thus while before interaction the supercurrent wavefunction and spin
flipper wavefunction are completely independent after interaction both are in a entangled
and in a superposed state of: %|N0 — flip) + \/;|Mutual — flip).

This finite probability of spin-flip scattering implies the direction of the supercurrent’s
spin polarization is now in a superposition of either polarized in the direction of the
magnetization of ferromagnetic layers or not. Thus, since the direction of the magnetization
vector in both ferromagnetic layers is the same, this implies the magnetization direction
of the second ferromagnetic layer will now differ from that of the supercurrent’s spin
polarization state, which is in a superposition. Thus, when this supercurrent enters the
second ferromagnetic layer, the magnetic moment of the second ferromagnetic layer will
exert a torque on that part of the supercurrent wave-function, which is not in the same
direction as the ferromagnets. This results in rotation of the spin state of the spin flipped
component of supercurrent’s wave-function along the direction of magnetization while
leaving the non-spin flipped part of the supercurrent’s wave-function as it is. From the
conservation of spin angular momentum, the spin flipped component of the supercurrent’s
wave function will also exert an equal and opposite torque on the magnetic moment of the

second ferromagnetic layer. In this way, a torque arises although ferromagnets are aligned.
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However, for the no flip process, wave-function is not in a superposition, and in that case,
there is only a single no flip component. The spin-polarized state of the supercurrent does
not flip its spin when interacting with the spin flipper. Thus, in case of no flip scattering, the
direction of spin-polarized supercurrent and direction of magnetization of the ferromagnets
will remain the same. Thus, equilibrium quantum spin-torque vanishes in case of no flip

process, but it is finite for the spin-flip process.

5.4 Experimental realization

The experimental detection of the novel phenomena pointed out in this chapter shouldn’t be
difficult. Superconductor-Ferromagnet-Ferromagnet-Superconductor (S-F-F-S) junctions
have been fabricated experimentally for quite some time now[168]. Doping a magnetic
adatom or spin flipper in S-F-F-S junctions with identical magnetization for ferromagnets

will experimentally implement our setup as shown in Fig. 5.2.

5.5 Conclusion

This chapter presents an exhaustive study of the nature of equilibrium spin torque in the
presence of a spin flipper in a hybrid Ferromagnet-Superconductor junction. We focus
on the situation when the magnetic moments of the ferromagnetic layers are parallel. We
identify spin-flip scattering to be critical in inducing a quantum spin torque in such an
equilibrium configuration. Further, we see that one can control the sign of this spin-flip
scattering induced equilibrium quantum spin-torque via the exchange interaction of spin
flipper and the phase difference across the two superconductors. Tuning the direction
of the equilibrium quantum spin-torque leads to control over the magnetization of the

ferromagnets. It has critical applications in various spintronic devices as by changing

196



5.5. Conclusion

the direction of magnetization, designing faster magnetic random access memories[183]

becomes easier.
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Chapter 6

Josephson quantum thermodynamics

and spin flip scattering

“Weather systems are natural heat engines, and like all other heat engines,
both natural and artificial, they are driven not by temperature per se, but by

differences in temperature between one location and another.”

— Robert Zubrin

6.1 Introduction

Recently, superconducting hybrid systems have drawn attention due to their possible device
applications as sensitive detectors[ 188, 189, 190], low-temperature sensitive thermometers[191,
192, 193], heat valves[194, 195, 196], solid-state quantum machines[197, 198, 199], solid-
state micro-refrigerators[200, 201, 202] and thermoelectric generators[203, 204, 205].
Quantum thermodynamics implies the study of thermodynamic processes from the prin-
ciple of quantum mechanics[206]. Refrigeration means the transfer of heat from low to
high-temperature region[207] aided by work done on the system. Thermodynamic[208,

209, 210, 211] properties of a Josephson Stirling engine have been discussed in Ref. [212],
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wherein a quantum spin Hall insulator based Josephson junction is shown to act as a quan-
tum heat engine. Josephson Stirling engines are not the only game in town. Diffusive SNS
junctions have been shown to operate as Josephson-Otto or as Josephson-Stirling engines
in Ref. [213].

In this chapter, by doping a spin flipper in a 1D Josephson junction (JJ) loop, which is in
turn attached to two thermal reservoirs at unequal temperatures via thermal valves, we show
that the device can be employed both as a quantum heat engine as well as a refrigerator and
can also work as a Joule pump or cold pump. When operating as a quantum heat engine,
the efficiency of this device exceeds that of some recent Josephson heat engine proposals.
Further, as a quantum refrigerator, the coefficient of performance of this device is much
higher than previously proposed Josephson junction-based refrigerators. In addition, this
device can be tuned from engine mode to refrigerator mode or any other mode, i.e., Joule
pump or cold pump, by either tuning the temperature of reservoirs or via the enclosed
magnetic flux in the Josephson junction loop. It makes the proposed device much more
versatile as regards possible applications.

Our proposed device’s main advantage over other proposals is its tunability by the
magnetic flux that threads the JJ loop. Tuning our device via magnetic flux means external
control. However, tuning via temperatures or by controlling thermal valves means internal
control. External control is always better than internal control since external control does
not lead to any decoherence. Internal control implies tuning system parameters which at

small length scales is always tricky and prone to errors.
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6.2 Theoretical model

The model device, depicted in Fig. 6.1, is formed from a 1D superconducting loop[214]
interrupted by a spin flipper. An external magnetic flux ® controls the superconducting
phase difference across the spin-flipper. The JJ loop is attached, via two thermal valves
vy, and vg, to reservoirs at either end, which in turn are at temperatures 77, and Tg. The
two reservoirs can exchange heat Q; and Qr with the JJ loop. The scattering problem is
solved using BTK approach[9] for superconductor-spin flipper-superconductor junction as
shown in the dashed line box of Fig. 6.1. The two reservoirs control the temperature of
the JJ loop via thermal valves v, and vg. When valve vg is opened and vy, is closed, the
JJ loop is in thermal contact with the right reservoir at temperature 7. Similarly, when
valve vy, is opened and v is closed, the JJ loop is in thermal contact with the left reservoir
at temperature 77. On the other hand, phase difference across the JJ loop is controlled via
magnetic flux @ enclosed by the loop. Thus, the JJ device can be driven from one state
to another by controlling both temperature and phase difference. We discuss this in more
detail for a Stirling cycle in the next section.

In our proposed set-up, a spin-flipper is embedded in the JJ loop of circumference Lg,
see Fig. 6.1. We used BTK approach[9] to solve the scattering problem. In our work
spin-flipper is a delta potential magnetic impurity[13] fixed between two superconductors.
For proper understanding of our system we compare our delta potential magnetic impurity
with a rectangular potential barrier magnetic impurity in Fig. 6.2. In Fig. 6.2(a), a single
magnetic impurity is lying along the solid black color line at x = 0. The magnetic impurity
is designed as a delta potential along the x-direction but is uniform along the y-direction.
We assume magnetic impurity to have a finite width with a translational invariance along the

y-direction. To understand it properly we can compare with a rectangular potential barrier
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Pig. <

o)

Spin flipper

Figure 6.1: 1D Josephson junction (JJ) loop (circumference Lg, in orange) doped with a spin
flipper and attached to two thermal reservoirs at temperatures Ty, and Tr via two thermal valves
vr and vg. A magnetic flux ®© controls phase difference ¢ across spin flipper in JJ loop. Sp and
Sr are the left and right superconductors maintained at phase difference ¢ = g — ¢r. High spin
molecules like Fei9-complex can act as a spin flipper.

placed between two superconductors as shown in Fig. 6.2(c). In Fig. 6.2(c), we show the
setup which has a rectangular potential barrier between x = 0 and x = L with translational
invariance along y direction. The rectangular potential barrier influences the transmission
of incident particles along the x direction but doesn’t influence the transmission along the
y direction because the transmitting particle cannot experience the potential change along
the y direction. When one decreases the length L of the rectangular potential barrier,
it becomes equivalent to a delta potential barrier located at x = 0, see Refs. [14, 215].
Similarly, in Fig. 6.2(b) we show that a magnetic impurity can have a finite width between
x = 0 and x = L with a translational invariance along the y direction. If we reduce the
width L of the impurity, it becomes a delta function like profile influencing the transmission
along the x direction but not along the y direction, as shown in Fig. 6.2(a). In Fig. 6.2(d)

we show that a rectangular potential barrier in Fig. 6.2(c) can be approximated as a delta
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potential barrier. Similar concepts have been used to model magnetic impurity in similar
junctions, for e.g., graphene-magnetic impurity-graphene junction, see Refs. [14, 215].

BdG Hamiltonian for JJ loop is given as,

v e @

x=0 x=0 x=L

(©) (d)
x=0 x=L x=0

Figure 6.2: Two superconductors separated by (a) a delta potential magnetic impurity, (b) a
rectangular barrier magnetic impurity, (¢) a rectangular potential barrier and, (d) a delta potential
barrier.

Hi iA(x)0y
Hpag(x) = L (6.1)
—-iAN*(x)6y —-HI
where H = p?/2m* — Jo6(x)§ .S—Ep, with p?/2m* representing kinetic energy of electron-
like or hole-like quasiparticle of mass m*, and Er is Fermi energy. Superconducting gap
A(x) = A[e'?2O(—-x) + ¢'R@(x)]. For simplicity, we consider superconducting gap to be
independent of temperature, i.e., A(T) ~ A(T = 0) with g—% ~ 0, which is valid if T < T,
T, being superconducting critical temperature. ¢; and ¢g are superconducting phases for
left and right superconductors respectively as shown in dashed line box of Fig. 6.1. We use

m*Jy
kr

dimensionless parameter J = as a measure of strength of exchange interaction[13]
between quasi-particles and spin-flipper. The product Jod(x)S5. .S has dimensions of energy,

thus § which represents spin angular momentum of electron is in units of 72 and S considered
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as spin angular momentum of spin-flipper also in units of 7, 6(x) having dimensions of
1/L, therefore Jy the exchange interaction has dimensions of E — L/#?.

Diagonalizing BAG Hamiltonian, Eq. (6.1) one gets the wavefunctions in superconduct-
ing regions of our system for electron/hole-like quasiparticle incidence. For electronlike
quasiparticle (ELQ) with spin up incident from left superconductor, wave function[27] in

left superconductor is,

S x TTS—lx TiS—th TTSIXS TS x
ws, (x) = YL e ¢S Ao eTt ¢S o TTee@y e TG, @it TGl 0 e e'-*¢S  for x <0,

(6.2)
where gofL, i = 1,2,3,4 are defined in section 4.2 of chapter 4 and rll, lﬁ, rTZ, rT}ll are
normal reflection amplitude without flip, normal reflection amplitude with flip, Andreev

reflection amplitude with flip and Andreev reflection amplitude without flip respectively.

The corresponding wave function in right superconductor is,
SR _iq. s s _x 48 s _x S
Usi (1) = (L@ U g, +1Li R TGN 1R e iR N g, for x> 0, (6.3)

where gol i = 1,2,3,4 are defined in section 4.2 of chapter 4 and tll, lﬁ tTT Tl , being trans-

mission amplitudes, corresponding to reflection processes described above and ¢ = ¢r—¢r.

is phase difference between right and left superconductors. Wavevectors for electron-like

quasiparticles (g;+) and hole-like quasiparticles (¢g-) are g. = 2;’,1”—2*(EF + VE? — A?).
Andreev approximation[25] gives g = q- = kp, with kg being Fermi wavevector, and

Er >> A. Imposing boundary conditions on Eqgs. (6.2), (6.3) at x = 0, gives

dys, dys, — 2m*Jp5.S

Vs, (X) = Ysp(x) and —= = == = ——— 7V, (6.4)

where 5.5 = 5.5, + %(S_S+ + 57§7) represents exchange operator of spin flipper, with

§.§905L(x =0) = §.§¢1L¢ +r s S501L¢ +r s S902L¢m+1 +r s S(,D%LqﬁmJrl +r s 5904 qﬁ,
(6.5)
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s* = sy £ isy and S* = S, +iS, are spin raising and spin lowering operators for electron-
like quasiparticle/holelike quasiparticle and spin-flipper respectively. In our theoretical
treatment, we solve the scattering problem using BTK approach for superconductor-spin
flipper-superconductor junction as shown in dashed line box of Fig. 1. As depicted in Fig. 1,
spin-flipper is placed at x = 0 and there is a phase difference ¢ across the spin flipper.
This phase difference is generated by magnetic flux @ in Josephson junction loop, which
can control it. We solve the scattering problem at x = 0, thus our results do not depend
on x or loop circumference Lg. Action of exchange operator 5.5 on spin up electron-like

quasi-particle spinor is shown below,

hzm 7?
SL¢ + _f¢2L¢m D (66)

sSt,o1 ¢ = >

where, f = V(S —m’)(S + m’ + 1) denotes flip probability[13] for spin-flipper. Similarly,

action of 5.5 on the spin down electron-like quasi-particle spinor is

. CRAm’ + 1) Wf
S S
S L¢m '+ = 2 L¢m "+1 + (101L¢m (67)

Further, action of exchange operator s’ .S on spin-up hole-like quasi-particle spinor is

RGN
m+l = 2 L¢m '+1 =

5.5¢5 3 f oS, (6.8)

action of exchange operator 5.5 on spin down hole-like quasi-particle spinor is

h h?
sSso L3, 2m SL¢ +—fso L (6.9)

In quantum spin flip scattering process, wherein Josephson supercurrent (state of Josephson
supercurrent is given as |s.c)) is denoted by a macroscopic wavefunction ~ |, |e'¥N ~
(u00v)Tel¥N (where N can be L or R) interacts with the spin flipper, the spin flipper can

flip its spin with finite probability, but there is no certainty for flipping its spin. In addition
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to the spin flip process, there is the other process of no flip. Thus, while before interaction,
the supercurrent wavefunction and spin-flipper wavefunction are completely independent

after interaction both are in a entangled and in a superposed state of:

Product state Entangled state
S m’ ,—/‘ p /—/‘
[s.c)® |¢,,) = 5 |No-flip) +§ |[Mutual-flip) .

———
Before interaction

After interaction

The interaction of unpolarized Josephson current with spin-flipper leads to with finite flip
probability an entangled state of spin up Josephson current and spin down spin-flipper &
spin down Josephson current and spin up spin-flipper and may also lead to with a product

state of spin down Josephson current and spin down spin-flipper for no flip case,

Josephson current state  Spin-flipper state Entangled state
. . — — interaction
Spin flip: Tse ®  [ys, —— Dsc ®@Mys, +Msc ® )ys,
m m m
Josephson current state  Spin-flipper state Product state
—~ — interaction ————
No flip: Wse  x Wy, = 1Dee XDy, -

In our case spin-flipper interacts with Josephson current state. The whole macroscopic

wavefunction of supercurrent is entangled with spin flipper wavefunction.

6.2.1 Andreev bound states

To calculate Andreev bound states we neglect contribution from incoming quasiparticle
and insert wavefunctions, Egs. (6.2), (6.3) into boundary conditions (Eq. (6.4)). We get a

homogeneous system of 8 linear equations for the scattering amplitudes,

Ny=0 (6.10)

10

where y is a 8 X 1 column matrix and given as y = [, ¥'ge, pIT P AT AT AT T

el el €€ "ee "ol “eh

17, N being
a 8 X 8 matrix. For nontrivial solution of this system, the determinant of N = 0 and we get

Andreev bound states as a function of phase difference ¢ between two superconductors,
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i.e., Andreev bound state energy spectrum E;, j = {1,...,4}[155]. We find that E;(¢) =

EZ(p) = £E; (), (0 =T, 1),

Ex(g) = iA\/l LA VBolw) 6.11)
Co Co

where, Ag(¢) =J2Q2+ fAIP +2f2(2+ Pm' A +m) + m' (1 + m' )4 + J*m’ (1 + m")))

+28+ J2(1 = 2f% + 2m'(1 + m"))) cos(y),

Bo(@) =2J%(64f*J% +3(J +20m")? + 4216 + J2(5 + 4m' (1 + m'))) + 4T3 (-4 % + 16 f*—
(1+2m")?) cos(@) + ((J +2Jm")? —4F2(16 + (J + 2Jm")?)) cos(2¢)),
Co=(16+J*(f2+m +m™)? + J*(4 + 8f% + 8m/'(1 + m"))),

and py(}) = +1(=1). In absence of spin flip scattering (f = 0), Eq. (6.11) reduces to,

4cos2(¢/2) + J2m?
E ==+A . 6.12
(¢) \/ 11 7272 (6.12)

6.2.2 Superconductor-Spin flipper-Superconductor junction as a ther-

modynamic system

Before analyzing the thermodynamic behavior of setup, Fig. 6.1, we introduce the different
thermodynamic quantities. From Andreev bound state energies we can determine phase-
dependent part of Free energy of JJ[19] (inset of Fig. 6.1) as,

E;(9)

F(p,T) = —%m [ nu +e )] = _% Zln |2 cosh (E”(‘”))], (6.13)
j a

2kpgT

where kp is Boltzmann constant. In Eq. (6.13), we neglect contribution from the quasi-
particle states in continuum with energies above the superconducting gap, whose density

of states is p.. In the case of short Josephson junction (length of the weak link much
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smaller than superconducting coherence length), p. is the same as in a bulk superconduc-
tor and therefore is phase independent. For Superconductor-Spin flipper-Superconductor
junction, across the spin flipper, the junction length is infinitesimally small, and thus p.
is phase independent. Eq. (6.13) is only the phase-dependent part of the Free energy.
Since Josephson current is the derivative of the Free energy to phase difference across the
superconductors, thus phase-independent part of the Free energy does not contribute to
Josephson current in our Superconductor-Spin flipper-Superconductor junction. Further,
in work done and the heat exchanged calculation phase-independent part of the Free energy
cancels out and therefore does not contribute. From Free energy, we can calculate total

Josephson current[166] as
2e 0F (¢, T)
A d¢

where e is charge of electron. Entropy of our device can then be calculated from Free

I(p,T) = (6.14)

energy as,
OF (¢, T)

Qp,T) = ——F7. 6.15

(0.T) = —— (6.15)
From entropy €2 one determines heat capacity of JJ as,
0Q(e,T)

Ce,T)=T—/——. 6.16

(0.T)=T—— (6.16)

6.3 Josephson-Stirling Cycle

The Josephson-Stirling cycle[212, 213] represented in Fig. 6.3, involves two isothermal
and two isophasic processes. States 1,2 involve right reservoir, while states 3,4 involve left

reservoir. Below we summarize these different processes,

* Isothermal process (1 — 2): Thermal valve vg is open while v, is closed, thus
system is in thermal contact with right reservoir at temperature 7. The device or

system goes from state 1 = (¢ = 0,Tg) to state 2 = (¢ = ¢y;, Tr).
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—+ 0

Figure 6.3: Josephson-Stirling cycle in TQ (T is temperature and Q is entropy) plane. Enclosed
area in T — Q plane corresponds to total heat exchanged Q, which is equal to total work done W
during the cycle.

* Isophasic process (2 — 3): Thermal valve v is open while v is closed and system

is driven from state 2 = (¢ = @y;, Tg) to state 3 = (¢ = ¢y;, T7).

* Isothermal process (3 — 4): In this stage valve vg is closed and vy, is open. System

is transferred from state 3 = (¢ = ¢y, T1) to state 4 = (¢ = 0,77).

* Isophasic process (4 — 1): Final stage of cycle involves closing valve v; and
opening valve vg, with system being driven from state 4 = (¢ = 0,77) to state

1=(p=0,Tg).

When the device or system is driven from state ‘in’ to state ‘fi’ (in — fi) during a
quasi-static process, work done and heat released during the process are given as W;, r; =
—% f;?; "1(¢,T)dy and Qiyysi = &E;Z ‘TT)) TdQ respectively, where I(¢,T) is Josephson
current and Q is entropy of setup depicted in Fig. 6.1. In expressions for work done

and heat released below, we have taken sign convention such that W, s; is positive when

work is released to the universe while Q;,¢; is positive when heat is absorbed from the

209



6. JOSEPHSON QUANTUM THERMODYNAMICS AND SPIN FLIP SCATTERING

universe. Work done and heat released for an isothermal process, where phase difference
¢ changes from ¢;, — ¢y; at constant temperature T is given as Wi,p; = —[F (¢, T) —
F(gin,T)] and Q;nri = T[Q(@yi, T) — Q(¢in, T)] respectively. For an isophasic process,
temperature changes from 7, — T; at constant phase difference ¢, Wi,; = 0 and Q;,z; =

i Cp.TdT.

6.3.1 Work done and heat exchanged in Josephson-Stirling Cycle

We can now explicitly calculate total work done and heat exchanged during each stage of
the Josephson-Stirling cycle, shown in Fig. 6.3. We also distinguish between four distinct
modes of operation of the Josephson-Stirling cycle. In heat engine mode: W > 0, Qg > 0
and Oy < 0, where W is the work done, Qg and Q; are heat exchanged with right and left
reservoirs respectively. It implies that when the Josephson-Stirling cycle operates as an
engine, work is done by the system on the universe, the cycle absorbs heat Qg from the hot
reservoir at temperature Tg and releases heat |Q | (< Q) to cold reservoir at temperature
Tr. Thus, for quantum heat engine Tg > Ty. In refrigerator mode: W < 0, Qg > 0 and
Q1 < 0. Thus, when the Stirling cycle acts as a refrigerator, work is done on the system by
the universe, the cycle absorbs heat Qg from a cold reservoir at temperature Tk and releases
heat |Qr| (> Qr) to a hot reservoir at temperature 77. Thus, for refrigerator 7y, > Tkg.
Further in Joule pump mode: W < 0, Qr < 0 and Q; < 0, with T; > Tg. Thus, when the
cycle acts as a Joule pump, it completely converts work into heat released to reservoirs.
Finally, in cold pump mode: W < 0, Qg < 0 and Q; > 0, with Ty > Tg. It implies
that when the cycle operates as a cold pump, it absorbs heat Q; from a hot reservoir at
temperature 77, and releases heat |Qg| to the cold reservoir at temperature 7. We have
taken sign convention such that W is positive (W > 0) when the system releases work to the

universe, while heat Q is positive (Q > 0) when the system absorbs heat from the universe.
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Work done

The total work done per cycle is W = Wiy + Wa4, where Wio = —[F(¢yi, Tr) — F(0,Tg)]
and W34 = —[F(0,T.) — F(¢yi,T1)], F(¢,T) being defined in Eq. (6.13). Since 2 — 3
and 4 — 1 are isophasic processes and in isophasic process phase difference ¢ is constant,

therefore Wp3 = W41 = 0. Thus, work done W, can be calculated as,

w =A{(yR In [4cosh (M) XREini))

I
A TyRIN A

cosh (

—yrln [4cosh (M)]

A

—yrIn [cosh (%ﬁpﬂ))]) - (yR In [cosh (xR)] + yrIn [4cosh (xRC’)] —yrIn [cosh (xL)]

— yLIn [4cosh (xLC’)])},

A 1 1
h ) = B = 5 = =
where, xz ZkBTL R ZkBTR L Xr, IR XR
C
Ci =\/16 +JA PP+ m +m?)? + J2(4F8p? +8m’(1 + m’)), and C’ = C—l
2

(6.17)

In absence of spin flip scattering (f = 0), work done, ‘W’ in Eq. (6.17), reduces to,
E i E i
W = A{ (yL In [cosh (xL)] —yrIn [cosh (xR)] )—(yL In [cosh (xL XDf ))] —yrIn [cosh (XR A(()Df ))])},
(6.18)

2 20,72
where, E(p) = A\/% is Andreev bound state energy for no flip case.

Heat exchanged (with right reservoir)

The heat exchanged with right reservoir at temperature Tg, Qg = Q12 + Qa1, Where
Q12 = TRIQ(¢ i, Tr) = Q0. Tp)] and Qa1 = [ C(0.T)dT, is,

XrE(@5i) I
A

XRE | (¢fi)
A

Or =A(ln [cosh (

4 cosh (—xRElA(‘pfi) )])yR — Eq(¢y;) tanh (—XRETA(‘pfi))

— E|(¢f;) tanh + AC’ tanh (ch’) + Atanh (xL) - A( In [cosh (xR)] +1n [4 cosh (ch’)] )yR.
(6.19)

For no flip process (f = 0), Eq. (6.19) reduces to,

Or = A(—ln [cosh (xR)] +In [cosh (XREA(W") )] )yR+Atanh (XL)—E(gofi) tanh (XREA(W")). (6.20)
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Heat exchanged (with left reservoir)

Finally, heat exchanged with left reservoir at temperature 77, Q; = Q23 + Q34, Where
O3 = [yt Clesi T)dT and Q34 = TLQ0,T1) — Qi T1)]. s,

XRET(‘Pfi))
A

Q1 =E1(¢y;) tanh + E|(¢f;) tanh (%ﬂpﬁ)) + A(ln [cosh (xLC’)] +1n [4 cosh (xL)])yL

XLET(sofi)) cosh (XLEL(‘Pfi))])yL.

+1
n A

— AC’ tanh (xLC’) — Atanh (xL) - A(ln [4cosh(

6.21)

For no flip process (f = 0), Eq. (6.21), reduces to,

oL = A( In [COSh (xL)] —In [cosh (XLEXPﬂ) )] )yL — Atanh (xL) +E(¢f;) tanh (XREXPﬂ)). (6.22)

Upper limit for 77, and Tg is much smaller than the superconducting transition temperature
T.. In this chapter, we consider lead (Pb) superconductor; thus upper limit for Tx, Ty, is
fixed at 3.7K. From the conservation of energy W = Q, with Q = Qg + Q; being total
heat exchanged during the cycle. When the Josephson-Stirling cycle acts as a heat engine,
work done is W, and the efficiency of the heat engine is n = W/Qg. In refrigerator mode,
the work done is W, and the coefficient of performance[213] of the refrigerator is given as
COP = Qr/|W/|. Finally, in Joule pump mode[216] COPis (|Qr|+|Qrl)/IW| withQr < 0
and Q; < 0, as Joule pump converts the work to heat and transfers it to both reservoirs.
A cold pump[216], on the other hand, has COP = |Qg|/|W]|, as in a cold pump, Qg is
negative, implying heat energy is released to the right reservoir, which is a cold reservoir
because of 7; > Tg. A cold pump is used to heat the colder reservoir by transferring heat
from the hotter reservoir, cooling the hotter reservoir. Please also note that the expressions
for COP in case of Joule pump differ slightly from that in Ref. [216] as we have taken
the sign convention of work done or heat energy such that work done is positive when the
system releases work to the universe, while heat energy is positive when the system absorbs

heat from the universe.
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6.3.2 Josephson-Stirling cycle acting as quantum heat engine

In Fig. 6.4 we plot work done W (Eq. (6.17)) and efficiency n of Josephson quantum heat
engine and compare no flip with the spin-flip process. In Figs. 6.4(a) and 6.4(c), W and n
are plotted as function of maximal phase change ¢ ; during the cycle. The reason we plot
work done, efficiency, and COP as a function of phase are because phase lends itself to
external control via magnetic flux enclosed in Josephson junction loop, see Fig. 6.1. We
consider here the right reservoir to be hot and the left reservoir to be cold, i.e., Tg > Ty. In
the inset of Fig. 6.4(a), we show Free energy as function of ¢ ;. In Fig. 6.4(a), we see that
W is maximum at ¢s; = m, irrespective of spin-flip scattering. However, the magnitude
of W4 for no flip process is much smaller than the spin-flip process. In the presence
of spin-flip scattering magnitude of W at ¢¢; = &, i.e., W = 0.735A is maximum work
done by our system. From the inset of Fig. 6.4(a), we notice that Free energy is minimum
at ¢ ¢; = 0, i.e., when the system shows 0-junction behavior. From Fig. 6.4(c), we notice
that at ¢, = m, efficiency n for no flip case is a little bit larger than spin-flip case. Thus,
spin flip process is better for work done, but no flip process is better for efficiency. In
Figs. 6.4(b) and 6.4(d) we show dependence of work done and efficiency on kT (in units
of A) for fixed kpT7, = 0.01A and compare the cycle’s performance for no flip and spin flip
scattering. In addition we plot Carnot efficiency in Fig. 6.4(d). Three important take home
messages from Fig. 6.4 are (i) work done is maximum at ¢y; = 7 (see Fig. 6.4(a)), (ii)
spin-flip scattering enhances work done (see Fig. 6.4(a)) and (iii) at kpTg = 0.32A, work
done is maximum (see Fig. 6.4(b)).

From Fig. 6.4(d), we notice that for small values of kgTx (in units of A), the efficiency
of a Josephson-Stirling engine is equal to Carnot efficiency n¢ regardless of spin-flip

scattering. In contrast, at large values of kpTg, in the absence of spin-flip scattering, the
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Figure 6.4: Total work done W and efficiency n of a Josephson-Stirling engine as function of ;
(for (a,c)) and as function of right reservoir temperature Tg (for (b,d)). Parameters are: Flip:
S=-m"=1/2, f =1, No Flip: S =m’ =1/2, f = 0. Rest of parameters: J = 0.1, ¢;;, = 0,
¢ri = m (for (b,d)), kgTgr = 0.32A (for (a,c)), kgTp = 0.01A, kgT = 0.01A. The black dotted line

represents Carnot limit, nc = 1 — % in (d).
engine is more efficient, and efficiency is close to the Carnot limit. The reason we take low
values of exchange coupling J (= 0.1) is because for these values of J we get maximum
work output ‘W’ and efficiency ‘n’.

Next, in Fig. 6.5 we plot total work done W and efficiency n of a Josephson-Stirling
engine for different values of spin-flip scattering. In Figs. 6.5(a) and 6.5(c) we plot W and
n as function of ¢;. We see that at ¢, = 7 and for low values of spin-flip scattering,

work done and efficiency attain their maximum. In the inset of Fig. 6.5(a), we notice that
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Figure 6.5: Total work done W and efficiency n of a Josephson-Stirling engine as function of ¢r
(for (a,c)) and as function of kgTr (for (b,d)) in presence of spin-flip scattering. Other parameters
are: J = 0.1, i =0, ¢r; = (for f = 1), ¢r; = 0.92n (for f = 3), pri = 0.857 (for f =5),
kT, = 0.01A, kpTg = 0.32A (for (a,c)), kgT = 0.01A.

the minimum of Free energy occurs at ¢ ¢; = 0, i.e., the system shows O-junction behavior
when it operates as a Josephson quantum heat engine. In Figs. 6.5(b) and 6.5(d) we plot W
and n as function of kT for different values of spin-flip scattering at fixed kg7 = 0.01A.

We choose ¢y; in such a way that W becomes maximum. We see that for low values of

spin-flip scattering, work done and efficiency are larger than for high values.

Condition for optimality

Further, we find in Fig. 6.5 that, at kgTr = 0.32A, both W and n are maximum. Thus,
for spin-flip probability, f = 1, J = 0.1, ¢, = m, kgTr, = 0.01A and kpgTg = 0.32A
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work done and efficiency of our Josephson quantum heat engine are larger and therefore
this regime is an optimal operating range of our Josephson quantum heat engine. This
condition of optimality for our case is contrasted with that in Ref. [212]. In Ref. [212],
parity-conserving heat engine operates in an optimal operating range at ¢; = 27, while

non-parity-conserving heat engine works in an optimal operating range at ¢ 7; = 7.

6.3.3 Josephson-Stirling cycle acting as quantum refrigerator

In the previous subsection we have discussed work done and efficiency when Josephson-
Stirling cycle acts as a quantum heat engine. In Fig. 6.6 we show action of Stirling
cycle as a Josephson quantum refrigerator and calculate work done and coefficient of
performance (COP). In Figs. 6.6(a) and 6.6(b), total work absorbed by refrigerator and
COP are plotted as function of ¢y;, for Tg < Ty, (kgT; = 0.32A and kgTgr = 0.31A).
We see that for low values of spin-flip scattering both |W| and COP are larger and the
product of COP and |W| is maximum at ¢, = m. Thus, Josephson quantum refrigerator
works in an optimal operating range for parameters in Fig. 6.6. For optimal parameters,
[W| = 0.02A and COP = 30.61. Although, our system exhibits maximum |W| of 0.62A at
kp(Ty —Tg) = 0.25A, however maximum COP is same with the optimal value as shown in

Figs. 6.6(c) and 6.6(d) respectively.

6.3.4 Phase diagram of Josephson-Stirling cycle

In Figs. 6.4, 6.5, 6.6 we depict the performance of this device as a quantum heat engine or
quantum refrigerator depending on relative temperatures of reservoirs. In this subsection
we will discuss phase diagram of a Josephson-Stirling cycle as function of phase difference
@i during the cycle. In Fig. 6.7, we plot W, Qg, O, n and COP as functions of ¢; and

Ty for low values of spin-flip scattering (S = 1/2, m’ = —1/2, f = 1) and high values of
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Figure 6.6: (a,c) Total work W absorbed, and (b,d) COP of quantum refrigerator as function of
@i in presence of spin-flip scattering. Other parameters are: J = 0.1, kgTy, = 0.32A (for (a,b)),
kpTr = 0.31A (for (a,b)), S = —m’ = 1/2 (for (¢,d)), ¢in = 0.

exchange coupling (J = 2) of spin flipper. We fix kp7T; = 0.01A and consider Tg > T}.
From Fig. 6.7(a) we notice that with change of ¢; there is a sign change in W. W changes
sign from W > 0 to W < 0 between ¢, = 0 and ¢y; = 7 and again changes sign from
W <0toW > 0between ¢ = m and ¢f; = 2m. The regime where W is positive (W > 0)
in Fig. 6.7(a), O is positive (Fig. 6.7(b)) but Oy is negative (Fig. 6.7(c)), in these regimes
Josephson-Stirling cycle acts as an engine. Similarly, in a regime, wherein both W and
Q| are negative, the cycle acts as a refrigerator if Qg is positive while the cycle acts as
a Joule pump if Qg is negative. A Joule pump transforms work into heat released to the

reservoirs. Thus, there is a transition from engine mode to refrigerator or Joule pump mode
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Figure 6.7: (a) Total work W (b) Qg and (c¢) Qr, (d) n or COP as function of ¢s; and Tg in
presence of spin flip scattering. Other parameters are: S = 1/2, m’ = —1/2, J =2, kgTp, = 0.01A,
QLin = 0.

with the change of ¢ ;. Since, ¢; is controlled by magnetic flux @, therefore by changing

the enclosed flux @ in the Josephson junction loop, we can tune our system from engine

mode to refrigerator/Joule pump mode, which is an attractive feature of our device.
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6.3.5 Why is spin-flip scattering necessary?

In absence of spin-flip scattering (f = 0), we find work done (see Eq. (6.18)) W > 0,

(Y2 In[cosh(Xp)]-Yg In[cosh(Xg)]) > (Y. In[cosh(XLE(¢fi)/A)]=Yr In[cosh(XgE(¢fi)/A)]),
(6.23)

for T > T;, and regardless of ¢y;. Thus, W is always positive (W > 0) in absence of

0.32 0.32
wia Qr/ A
q 010 4 0.25
= 0.16 008 & .. 0.20
i~ 0.06 0.15
0.04 0.10
0.01 0.02 0.01 0.05
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Figure 6.8: (a) Total work done W (b) Qg and (c¢) Q1. (d) efficiency n as function of maximal
phase change ¢y; during Stirling cycle and right reservoir temperature Tg in absence of spin-flip
scattering. Other parameters are: S =m’ =1/2, J =2, kgTp = 0.01A, ¢;,, = 0.

spin-flip scattering irrespective of ¢ r; and the Josephson-Stirling cycle operates solely as a
quantum heat engine. However, in presence of spin-flip scattering (f # 0) and withTg > T},

we find W (see Eq. (6.17)) is not always positive and depending on other parameter values,
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W can be negative (W < 0) in certain range of ¢y;. In the parameter regime wherein W is
negative and Q; is negative with Qr being positive, the Josephson-Stirling cycle operates
as a refrigerator. Similarly, in parameter regime wherein W, Qr and Q are all negative,
Josephson-Stirling cycle acts as a Joule pump. Thus, in presence of spin-flip scattering
when W is negative, the Josephson-Stirling cycle can act as a refrigerator or Joule pump
even when Tg > Ty. This is unique to this proposal since in other proposals[212, 213], W
is always positive and Josephson-Stirling cycle only acts as a heat engine when T > T}.
In Fig. 6.8, W, Ok, Q. and 7 are plotted as function of ¢¢; and T in absence of spin-flip
scattering (S = m’ = 1/2, f = 0). We see that W does not change nature with ¢;, and thus
there is no transition from engine mode to refrigerator or Joule pump mode. Therefore,
we can conclude that spin-flip scattering is responsible for tuning our system from engine

mode to refrigerator/Joule pump mode via magnetic flux ©.

6.3.6 Josephson-Stirling cycle as Joule pump and cold pump

Finally, our device does not only exhibit the engine, refrigerator, and Joule pump phases.
It also exhibits a cold pump phase again in the presence of spin-flip scattering only. The
thin sliver in Fig. 6.9(a) at the bottom right corner shows the cold pump phase. In Fig. 6.9,
we plot W, Or, Oy, efficiency of engine and COP of refrigerator as functions of 7 and
Ty, for low values of spin-flip scattering (S = 1/2, m" = —1/2, f = 1) and high values of
exchange coupling (J = 1) of spin flipper. We choose ¢ ¢; such that |W| will be maximized.
We see that for Tg > T, the Josephson-Stirling cycle acts as an engine. We take high
values of J (J = 1) to see all phases in the phase diagram, however for low values of
J (J =0.1), at kgT;, = 0.01A and kT = 0.32A, the work done and efficiency in the
engine mode attain their maximum values which are W,,,,, = 0.735A and 1,4 = 0.89. For

Tr < Tr, we notice that the machine acts as a refrigerator or as Joule pump or cold pump
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Figure 6.9: (a) Total work done W, (b) heat exchanged Qr and (¢) Qr, and (d) efficiency n or
COP as function of temperatures Tgr and Ty, in presence of spin-flip scattering. Parameters are:
S=1/2,m' ==1/2,J =1, pin =0, o5 = 1.

depending on the sign of Qr and Q. The work done in the refrigerator mode is maximum
at kgT; = 0.32A and kT = 0.07A and the maximum value is |W |, = 0.62A, while the
COP of the refrigerator is maximum at k77, = 0.32A and kpTg = 0.31A and the maximum
value is COP,,,, = 30.61. Further, in the Joule pump mode the work done is maximum
at kgT;, = 0.32A and kgTg = 0.01A and the maximum value is |W ;. = 0.735A, while
the maximum COP of the Joule pump is COP,,,, = 1. If Qg < 0, W < 0 and Q; > 0, the

cycle acts as a cold pump which transfers heat from the hot reservoir to the cold reservoir.
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The work done in the cold pump mode is maximum at kg7 = 0.32A and kpTg = 0.01A
and the maximum value is |W ;4 = 0.23A, while the COP of the cold pump is maximum
at kgT;, = 0.32A and kgTr = 0.01A and the maximum value is COP,,,, = 1.05. Thus,
by tuning the temperature of the reservoirs our system can be tuned from engine mode to

refrigerator or Joule pump or cold pump mode.

6.4 Analysis

In this section, we analyze in detail the expressions for work done (Eqgs. (6.17), (6.18)) and

heat exchanged with left and right reservoirs (Egs. (6.19)-(6.22)).
6.4.1 Work done (W)
In presence of spin flip scattering, from Eq. (6.17) we find that

T; T,
for work done (W) > 0: X7 > X’, and for W < 0: X7 < X, (6.24)

~ F(efi-TR) B FlogiTL)
here X = < 2% X' = ¢ P = 4cosh h(xgC’ = 4cosh h(x,C’
where X = Dr , X' = D—L,DR = 4 cosh(xg) cosh(xgC’),and D; = 4 cosh(x) cosh(x;C’).

From Eq. (6.24), after some algebraic calculations we get,

for W > O: F((pﬂ, TL) — F((pf,', TR) > 2kB(TR ln[DR] - TL ln[DL]), and
(6.25)

for W < 0: F(esi,Tp) — F(@yi, Tr) < 2kp(TrIn[Dg] — Ty In[D.]).
In our figures, the range of 2kp(TrIn[Dg] — Ty In[Dy]) for heat engine, refrigerator,
Joule pump and cold pump modes are 0 to 0.36A, —0.096A to 0, —0.11A to 0, and
—0.11A to —0.10A respectively, i.e., it always positive for heat engine mode, while it
always negative for refrigerator, Joule pump and cold pump modes. Thus, when W > 0,
F(eri,Ty) > F(gyi, Tg) and when W < 0, F(gs;, T1) < F(gri, Tg). When work done is

positive (W > 0), the cycle operates as a heat engine, while when work done is negative
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(W < 0), the cycle operates as a refrigerator or a Joule pump or a cold pump depending on
the sign of Qg and Qy (see section 6.3.1). Thus, Egs. (6.24), (6.25) help us to understand
the operating modes of our device. From Eqgs. (6.24), (6.25), we also see that by changing
the reservoir temperatures Tg and 77, or phase ¢; one can control the sign of W. Since
@i can be controlled via magnetic flux @ enclosed in the Josephson junction loop, thus
by controlling the temperature of reservoirs or magnetic flux ®, we can experimentally
implement the condition for W > 0 or W < 0 in the presence of spin-flip scattering.
Herein, we prove that if spin flip scattering is absent, then there is only phase, the heat
engine phase in our device, if temperatures Tg, 77 are fixed and only flux changes. In

absence of spin flip scattering from Eq. (6.18) we get

Tr Tr
forW>0: Yo >Y’, and for W <0: Y7L <Y/, (6.26)
_Flepi TR) _FlepTy)
where Y = %, and Y’ = % From Eq. (6.26), after some algebraic calcula-

tions we get,

for W > 0: F(efi,Tr) — F(@yfi, Tr) > 2kp(Tg In[2 cosh(xg)] — T In[2 cosh(x7))], and
for W < 0O: F(QDfi, TL) - F(()Dfl‘, TR) < 2kB(TR ln[cosh(xR)] -T17 ln[2 COSh(XL))].

(6.27)

In our figures, the range of 2k (Tg In[2 cosh(xg)] — T In[2 cosh(x)]) for engine mode is

0 - 0.03A.
Tr
T xgE i T x . E i

IfG-= Yle -Y' = (cosh (#) sech(xR)) " (cosh (#) sech(xL)), then

(6.28)

R .

dG XL sin(gofi)( sech(xy) sinh (%ﬂpﬂ)) — (cosh (%ﬂpﬂ)) sech(xR)) L tanh (W))
¢y V4 + sz’z\/Z + J2m’% + 2 cos(gyi)

(6.29)
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When G is maximum or minimum with respect to ¢ ;, then = 0. Thus, from Eq. (6.29)
we get sin(gys;) = 0or ¢y = 0,7, and 2. For, ¢ = 0 or ¢ = 2, we find that

d*G _ xg(tanh(xy) —tanh(xg)) A(tanh (ZkBT ) tanh (ZkBTR))
dy7, 4+ J?m”? 2kpT(4+ J*m '2)

(6.30)

In Eq. (6.30), when Tg > T, tanh (2k i ) > tanh(Zk T ) thus <¢ > 0 at ¢ri = 0or

dg 2
¢ri = 2m. Therefore, at ¢r; = 0 or ¢¢; = 27, G is minimum and from Eq. (6.28) the
minimum value of G is G,;;, = 0. Since, the minimum value of G is zero for T > T;,
thus G is positive or Y% > Y irrespective of ¢y; for Tz > Tr. Thus, we can conclude that
for no flip process, although the magnitude of W depends on both reservoir temperatures
and phase ¢y;, but the sign of W depends only on temperature of the reservoirs in contrast
to spin flip case where the sign of W depends on both reservoir temperatures and ¢y;.
Similarly, for Tg < Ty, %}gj <0Oatgs =0o0r¢s =2n. Thus,at ¢y =0or gy =21, Gis
maximum when T < 77 and from Eq. (6.28) the maximum value of G is G,,,, = 0. Since,
the maximum value of G is zero for T < T, thus G is negative or Y% < Y’ irrespective of
¢yi for Tg < Tp. In the absence of spin-flip scattering, the sign of W can not be tuned via

magnetic flux. Thus, our device can not be tuned from heat engine mode to other operating

modes like refrigerator, Joule pump, or cold pump by changing magnetic flux.

6.4.2 Heat exchanged (with right reservoir)

Similarly, in presence of spin flip scattering from Eq. (6.19) we find that

F(¢fi,TR)+Q(¢fi,TR)
for Qg > 0: Xe *8BTr kB

+xgrC’ tanh(xy, C")+xR tanh(xy.) > 1, and

. , (6.31)
for Qg < 0: Xe F;f-;’;2R>+QW-2’;’;R)+ch' tanh(vy C') g tanh(xe) _
From Eq. (6.31), after some algebraic calculations we get,
for QR > 0: .Q((,Df,‘, TR) > ZkB(ln[DR] - GR), and
‘ (6.32)

for QR <0: .Q((,Df,‘, TR) < ZkB(ln[DR] - GR),

224



6.4. Analysis

where Gg = xgC’ tanh(x;C’) + xp tanh(xy ). In our figures, the range of 2kg(In[Dg] — GR)
for heat engine, refrigerator, Joule pump and cold pump modes are 0 — 1.49kp, 0 — 1.34kp,
0 — 20.62kp, and 3.97kp — 23.84kp respectively, i.e., it always positive. Thus, when
Or > 0, Q(¢fi, Tr) > 0. In Egs. (6.31), (6.32), the sign of O depends on both reservoir
temperatures T, 77, and phase ¢r,. When Qp is positive (Qr > 0) the cycle operates
as a heat engine or refrigerator depending on the sign of W, while when Qp is negative
(Qr < 0) the cycle operates as a Joule pump or cold pump depending on the sign of Q
(see section 6.3.1). Thus, the sign of Qr helps to understand the different operating modes
of our device.

In absence of spin flip scattering from Eq. (6.20) we get,

FlopiTR)  QlgfiTR)
———+ +xg tanh(x
for Qr > 0: Ye %*57r g PREAOL) S and

' ‘ (6.33)
F(erisTR) Qe TR)
for QR < 0: Ye% ‘Z(BR +xg tanh(xy) <1
From Eq. (6.33), after some algebraic calculations we get,
for Qr > 0: Q(¢yi, Tr) > 2kp(In[2 cosh(xg)] — xg tanh(xy)), and
(6.34)

for Qr < 0: Q(¢fi,Tr) < 2kp(In[2 cosh(xg)] — xg tanh(xy)).
In our figures, the range of 2kp(In[2 cosh(xg)] — xg tanh(xy)) for heat engine mode is
0 —0.32kp. Since, in no flip process there is no transition from heat engine mode to other
operating mode like refrigerator or Joule pump or cold pump with change of ¢;, thus the

sign of Qr does not change with ¢ ;.

6.4.3 Heat exchanged (with left reservoir)

Finally, in presence of spin flip scattering from Eq. (6.21) we get,

FlpppTR) | Qepp, TR)TR ,
+ +xp C’ tanh(xy C”)+xp tanh(x
fOI' QL > O: Xle 2kgTr. 2kgTL, L ( L ) L ( L) < 1, and

(6.35)

FloriTR) | Qefi TRITR , ,
for QL <0 X'e FsTL + SKGTL +x7C" tanh(x;,C")+xy, tanh(xp) > 1’
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From Eq. (6.35), after some algebraic calculations we get,
for Qp > 0: (F(gfi, Tr) — F(@ris TL)) + Q(@fi, TR)TR < 2kpTp(In[DL] — G), and

for Qp < 0: (F(¢fi,Tr) — F(@yi T1)) + Q(@fi, TR)Tg > 2kgT (In[Dy] — G1),

(6.36)
where Gy = x; C’ tanh(x;C")+x tanh(x). In our work, the range of 2kgT; (In[D1]-Gp)
for heat engine, refrigerator, Joule pump and cold pump modes are 0 — 3.87kp, 0 —4.05kp,
0 — 4.05kp, and 3.74kp — 4.05kp respectively, it always positive. Thus, when Q; < 0,
(F(efi, TL) — F(@ris Tr)) < Q(¢yi, TR)Tg. In Egs. (6.35), (6.36), the sign of Q; depends
on both reservoir temperatures Tg, 77, and phase ¢, When Q; is positive (Q; > 0) the
cycle operates as a cold pump, while when Q; is negative (Q; < 0) the cycle operates as a
heat engine or refrigerator or Joule pump depending on the sign of W and Qg (see section
6.3.1). Thus, similar to Qg, the sign of Q also helps to understand the different operating
modes of our device.

In absence of spin flip scattering from Eq. (6.22) we find that

FopiTR) | Qeyi TRITR
+ +x7, tanh(x
for Q; > 0: Y'e %s87TL 2kpTL L tanh(xz) 1, and

(6.37)

FlopiTR)  QefinTRITR
+ +x, tanh(x
for Q; < 0: Y'e %s7L 2kpTL L tanh(xp) > 1,

From Eq. (6.37), after some algebraic calculations we get,

for Qr > 0: (F(@si,Tr) — F(@fi, T1)) + Q(@ri, TR)Tr < 2kpT1(In[2 cosh(xz)] — x; tanh(xz)), and

for Qr < 0: (F(esi,Tr) — F(@fi, T1)) + Q(@ri, TR)Tr > 2kpTy (In[2 cosh(xz)] — x7 tanh(xp)).
(6.38)

In our work, the range of 2kpTy (In[2 cosh(xy)] — xr tanh(x)) for heat engine mode is

0 — 1.17kp. Since, in no flip process there is no transition between different operating

modes of the Josephson-Stirling cycle with change of ¢y;, thus the sign of Q; does not

change with ¢ ;.
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6.5 Experimental realization

Our proposed Josephson quantum spin thermodynamic device acts as a heat engine or
refrigerator or Joule pump, or as a cold pump via spin-flip scattering and is experimentally
realizable. Doping a magnetic adatom or spin-flipper in a one-dimensional superconduct-
ing loop should not be difficult, especially with a s-wave superconductor like Lead or
Aluminum. It should be perfectly possible. Our proposed experimental scheme is suitable
for measuring the work done and exchanged heat in a single realization of the thermody-
namic cycle. Work done per cycle during each isothermal process can be experimentally

determined via the current-phase relation. For a Josephson Stirling cycle, work done dur-

B reri

ing each isothermal process is given as W, = —5; ¢
m

I(p, T)dp, where ¢;;, and ¢y;
are initial and final phases respectively. In the isophasic process, since phase difference ¢
is constant, no work is done. Thus, to experimentally measure work done, one needs to
control phase difference ¢ across the junction, regulated by flux ®, and know about the
Josephson current I flowing through the loop. It can be done using a scanning supercon-
ducting quantum interference device (SQUID) microscope to perform the measurements
of the current-phase relation of the junction[212, 217, 218]. By applying a current through
the field coil of the SQUID sensor, the magnetic flux through the Josephson junction loop
can be tuned. This magnetic flux controls the phase difference across JJ and induces a

supercurrent in the Josephson junction loop. The supercurrent leads to a signal which is

measured by pickup loop of SQUID sensor[217, 219].

6.6 Conclusion

This chapter shows that a 1D Josephson junction loop doped with a spin flipper attached to

two thermal reservoirs at unequal temperatures via thermal valves can act as a Josephson
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6. JOSEPHSON QUANTUM THERMODYNAMICS AND SPIN FLIP SCATTERING

quantum heat engine, quantum refrigerator, or Joule pump, or even as a cold pump. The
proposed device can be tuned from engine mode to other operating modes like refrigerator
or Joule pump/cold pump not only via changing the temperatures of the reservoirs but
also via the enclosed flux in the Josephson junction loop, which is the most lucrative
aspect of work since this fact alone implies a much greater possibility of our proposal is
experimentally realized.

We have compared our proposal with other Josephson quantum heat engines and re-
frigerators in Table 6.1. While, Refs. [212], [213] are significant works that laid down the
principle of Josephson quantum heat engine and refrigerator, efficiency and coefficient of
performance (COP) of these can none-the-less be still enhanced, and the tunability of the

device improved as we show in this chapter. In both Refs. [212] and [213], the Josephson

Table 6.1: Comparative analysis of Josephson junction based quantum heat engines and
refrigerators

Heat engine mode Refrigerator mode
Wmax Nmax | Wmax | COPmax
The JJ device (Fig. 6.1) | 0.735A 0.94 0.62A 30.61
(A = 1meV) | (Fig. 6.4(c)) (Fig. 6.6(c))| (Fig.6.6(d))
(Fig. 6.4(a))
Topological Josephson | 2A 0.8 (Figs. 4(b,d) — 20
heat engine (Ref. [212]) | (A = 150ueV) | of Ref. [212]) (Figs.4(b,d)
(Fig. 4(c) of of
Ref. [212]) Ref. [212])
Josephson heat engine | 0.38A 0.5 (Fig. 15(a) - 10
(Ref. [213]) (A = 180eV) | of Ref. [213]) (Fig. 15(a)
(Fig. 14(a) of of
Ref. [213]) Ref. [213])

quantum heat engine and refrigerator can be tuned from engine mode to refrigerator mode
via changing the temperatures of left and right reservoirs only. This proposal shows that

heat engine to refrigeration mode transition or, for that matter, to Joule or cold pump can
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6.6. Conclusion

be affected by either the magnetic flux enclosed or by tuning the temperature of reservoirs.
It makes the spin flipper doped Josephson junction loop much more versatile as regards
possible applications. As a quantum heat engine, the proposed device is much more effi-
cient than previously proposed Josephson quantum heat engines[212, 213]. Further, when
operating as a quantum refrigerator, the COP of the proposed device is higher than that
seen in Refs. [212, 213]. In Table 6.1, we see that although work done by Josephson heat
engine proposed in Ref. [213] is more than ours. However, the efficiency of the Josephson
quantum heat engine discussed in this chapter is much larger than those of Josephson heat
engines of Refs. [212, 213]. Further, as a Josephson quantum refrigerator, the COP of the

proposed device is enormous compared to other Josephson quantum refrigerator proposals.
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Chapter 7

Conclusion

“A conclusion is the place where you get tired of thinking.”

— Arthur Bloch

This thesis deals with studying the effects of spin-flip scattering on Andreev reflection me-
diated transport in the vicinity of a superconductor. We have investigated the consequences
of spin-flip scattering in the vicinity of a metal superconductor junction and Josephson
junction.

In chapter 1, we have presented a brief introduction to the three critical phenomena
in this thesis: Andreev reflection, spin-flip scattering, and Josephson effect. We have
introduced BTK formalism and probed the interplay between Andreev reflection and spin-
flip scattering. We have also discussed Andreev bound states, the total Josephson current,
and its separation into bound and continuum contributions for a superconductor-normal
metal-superconductor junction.

Chapter 2 has studied the formation and properties of Yu-Shiba-Rusinov (YSR) bound
states using BTK formalism. We have computed the differential conductance for a normal
metal-normal metal-superconductor junction with a spin flipper at the interface between

two normal metals and a J-like potential barrier between normal metal and superconductor.
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7. CONCLUSION

A zero-bias conductance peak is seen due to the merger of two YSR bound state energies
in the presence of spin-flip scattering. In the same chapter, we have examined the stability
of Majorana bound states induced zero-bias conductance peak (ZBCP) seen in a metal-
topological superconductor junction to the effects of spin-flip scattering. We see that
quantized ZBCP remains stable in the presence of spin-flip scattering for metal-p-wave
superconductor junction. However, the quantized ZBCP loses stability when a spin-orbit
coupled superconducting wire (SOCSW) replaces the p-wave superconductor.

In chapter 3, we have studied the emergence of odd frequency equal spin-triplet corre-
lations in a normal metal-spin flipper-superconductor junction due to spin-flip scattering.
Using Green’s function method, we have analytically computed the even and odd frequency
spin-singlet and triplet correlations in both metallic and superconducting regions. We find
that due to spin-flip scattering, mixed spin-triplet pairing vanishes, and only spin-singlet
and equal-spin-triplet pairings are finite in this setup. The existence of odd frequency
equal-spin-triplet correlation tallies well with the characteristic local magnetization den-
sity of states and spin-polarized local density of states at the interface. We also compare the
obtained results for normal metal-spin flipper-superconductor junction with results from
other hybrid junctions, when only spin mixing or both spin mixing and spin-flip scattering
are present. When only spin mixing is present, odd frequency equal spin-triplet correlations
vanish but odd frequency mixed spin-triplet correlations are finite. When spin mixing and
spin-flip scattering occur together, both odd frequency equal spin-triplet correlations and
odd frequency mixed spin-triplet correlations are finite. However, only in a Normal metal-
Spin flipper-Superconductor setup, finite odd frequency equal spin-triplet correlations are
seen along with vanishing odd frequency mixed spin-triplet correlations.

In chapter 4, we have studied the nature of the O to m Josephson junction transition

due to spin-flip scattering. We see that a setup with a spin flipper embedded between two
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s-wave superconductors can transit from a O to 7 Josephson junction by tuning any system
parameter like the strength of tunnel contact, the spin or magnetic moment of the spin flipper,
or exchange coupling. In the same chapter, we have also studied the anomalous Josephson
effect, and the direction-dependent critical current in the ferromagnetic Josephson junction
wherein a spin flipper is embedded between two ferromagnetic layers. We show that
time reversal and chiral symmetries are broken due to spin-flip scattering and because
ferromagnets are misaligned. As a result, an anomalous Josephson current flows in the
junction. Further, this setup acts as a phase battery wherein one can store quantized
amounts of anomalous phase in the ground state of the junction.

In chapter 5, we have examined the origin of quantum spin torque in a ferromagnetic
Josephson junction when magnetization vectors of ferromagnetic layers are aligned parallel
or anti-parallel, and a spin flipper is sandwiched between the two ferromagnetic layers.
Generally, in the ferromagnetic Josephson junction, an equilibrium spin-transfer torque is
seen when magnetization vectors of ferromagnetic layers are misaligned. However, we see
that when a spin flipper is embedded between two ferromagnetic layers, a novel quantum
spin torque is induced even when magnetization vectors of ferromagnetic layers are aligned
parallel or anti-parallel due to spin-flip scattering.

In chapter 6, we have examined the application of a spin-flipper doped Josephson
junction in quantum thermodynamics. We see that a 1D Josephson junction loop doped
with a spin flipper attached to two thermal reservoirs can operate as a quantum heat engine
or quantum refrigerator, a Joule pump, or even as a cold pump with high efficiency and
coeflicient of performance. Further, we have found that the proposed device can be tuned
from engine mode to other operating modes like refrigerator or Joule pump/cold pump via
tuning the temperatures of the reservoirs or via the enclosed magnetic flux in the Josephson

junction loop.

233



7. CONCLUSION

The results of this thesis will hopefully lead to more studies on setups involving spin
flippers and other exotic superconductors such as High 7, Iron pnictide, etc. These
superconductors have nodes in their pairing gap, and the aim would be to exploit these for
spintronics applications. Further, studies on odd frequency equal spin-triplet correlations in
ferromagnetic Josephson junctions in the presence of spin-flip scattering can be attempted.
We have already noticed that a ferromagnetic Josephson junction, with a spin flipper
sandwiched in between, generates anomalous Josephson current, which is accompanied by
a quantized anomalous phase. One may extend this to find possible relationships between
odd frequency equal spin-triplet correlations and quantized anomalous phase. Asnoticed in
chapter 6, spin-flip scattering and Josephson physics have been utilized to design quantum
thermodynamic devices; these studies can be extended to ferromagnetic Josephson junction

to design spin-based Josephson thermodynamic devices.

234



Appendix A

Analytical expression for Green’s

functions

In this appendix we present analytical expressions for Green’s functions in both normal

metal and superconducting regions. These Green’s functions are used to calculate induced

pairing correlations, LMDOS and SPLDOS in chapter 3.

A.1 Green’s function in normal metal region

Green’s function in normal metal is obtained by plugging the wavefunctions from Eq. (3.2)

for x < 0 into Eq. (3.4) with b;; and q;; found from Eq. (3.3). For electron-electron and

electron-hole components of Green’s function we get
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A. ANALYTICAL EXPRESSION FOR GREEN’S FUNCTIONS

We find that by; = by, bip = by, a31 = —a4qn = a1, as1 = —azy = ajz. Therefore, we
have
n = ’ . i n . ’
[Gleltr = [GUlyy = =5 [bne e 4 e WX GE 1y =[Gl 1y = - emthelxrx,
2k, 2k,
in —i(kex—knx' in —i(kex—kpx'
(Gl = =Gy = - 170X and (G, = =[G, 11y = =5 —ane e TR,
2k, 2k,

where, by = (—f* 7 u? = v)? = (3@ =v?) + T2 (1 +m)2u? = v?) + yysu® + yyov> —iJ (1 +m") @ = v (32 - y3

+y = y1) + au® + V(3 = ¥) + @2Y)y)(PmP WP =) = y3uty + y3vPy — il yy + Vi yyy —idm’ (u? - v?)
(3 + 3+ y1) + y2(33® = v?) +idm' (0 = v?) = vZy +uPy1) = 215+ 277m (1 + m')@? = v*)? + y3
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+y1y3v? + 1@ = v?) + y2 (3 = v?) + vy + u*y1))/Ds,
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(A.2)

Spin singlet and spin triplet pairing amplitudes are then calculated using Eq. (3.10) in the

main text, resulting in

fo (x, x,w) =

k . —i(kex— khx) fl (x, X’ ,w) = 2;{7 1 —i(kex—k;,x')’ fg(x’xr’a)) =0, and f;(x,x',w) =0
e

(A.3)
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A.2. Green’s function in superconducting region

In absence of spin flip scattering b12 = aj; = 0, therefore from Eq. (A.2) we get

i e e
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e
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2k,

(A4)
wherein amplitudes b1 and a;, for no flip process can be obtained by putting f = 0 in
Eq. (A.2). Spin singlet and spin triplet pairing amplitudes in absence of spin flip scattering

are obtained from Eq. (3.10) in main text, resulting in

fr(x, X, w) = —%alze_i(kex_khx'), I x,w) =0, fi(xx,w)=0, and f;(x,x,w) =0,
e

(A.5)

A.2 Green’s function in superconducting region

In superconducting region we use same procedure as for normal metal region and finally

get electron-electron and electron-hole components in presence of spin flip scattering as-
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A. ANALYTICAL EXPRESSION FOR GREEN’S FUNCTIONS

where, bsy = (=474 @? —v)2 = F2I2 (03 +20%m (1 + m") ? = v)? = 33 + 2yysu?v? = 2yy3v* + y2 (u? - v?)?
+ 2y y3ut u? = v2) + (W =3Py = iJ WP = vD) (3o + y3 + 2om =y + y1) — (ay3(u? = vP)
+ 21+ m' )2 @? = v2) + yysu? + yyav? —id(L+m" )@ = v (32 = y3 +y = y1) + i +v2 (33 - )
+ )y (Pm2 WP = v?) + yysu? + y1y392 + vy @ = v —idm’ @ = v (3 =y + 1) = v (3 = v
+iJm’ @* = v?) +v2y + u?y1)))/Ds,
ber = 2if Ty, (u =v2)(y3 + f20% + 2/ (m = 1) = 2yy3v? +v2y% + 2ypyzu? + il y] —id (y3 = vZy + u?y)))/ Dy,
agy = =2if INyayzuv (W —v2) 2207 = 2yay3 + 202m" (m’ = 1) + yys — yy3 + y> +iJ(2y3(m’ = 1) + 2yom’
+y=y1) = yay1 +y1y3 + yD/ Dy,
byy = =2if Jy3u? —vA)(v3 + f2I7 + TPm (m = 1) + 2yyou® +uPy? = 2y1yov% +v2yT + i (2 + uty = v2y1)) /D5,
agy = =2vy2y3uv((y + y) (23 = v3) + J2(1+m' ) ? =) + yysu? + yyov? —iJ (1 +m")u* = v?) (32 - y3
+y = y1) + yiyvau? + y1y3v? + vy = v3) + £202Qyr + 2y3 + @ = v2)(y + y1)))/ Ds,
bgy = (—f*I4@? = v = ay3? =) + T2+ m1)2 @ = v?) + yysu® + yyav? —id(1+m' ) (@® = v (2 - y3
+y =y + (ou? + V2 (3 = y) +@? )y (PPm 2 @? = v2) = yysid +idm’ @ =) (y3 + y - y1) = yiy3v?
+ yyl(u2 - vz) + yz(iJm'(u2 - vz) + y3(—u2 + v2) + sz + uzyl)) - fsz(—yg + 2J2m'(1 + m')(u2 - v2)2
+ 3+ 2P = v+ i = vD) P (yy + y3 + 293m +y = yp) + (F = vDyT + 290 ® —vD) WPy + v 1))/ Ds.
DY = AU = v + oy =) + Pm P = v3) + yysud + yyov? —idm’ u* = v (y2 - v3
+y = y1) + Gou? +v3(y3 = y) + 1Y)y m" = 1D ? = v?) + yyzu® + yryz3v? + yy v —id(m’ - 1)
W =) (y3 =y +y0) + 2 (r3® = v +id(m’ = D(? =v) + vy +uPy) + IR0 + 207 (m” - 1)
W? = v + 3 + 2yyzutv? = 2yt +uty? — 2wviy? vty 4 i1 - v (G - y3 +y - 31)
+ 2y y3u” u? = v2) + (W = v2)?yT + 2y, (Aysutv? + (0 = v WPy +v2y)).
(A.6)

From the anomalous electron-hole component of retarded Green’s function we get spin

singlet and spin triplet pairing amplitudes using Eq. (3.10) as-
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A.2. Green’s function in superconducting region

In absence of spin flip scattering bg; = b72 = agr = 0, therefore from Eq. (A.6) we obtain
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(A.8)
expressions for bsy, bgy and ag; in absence of spin flip scattering can be found by putting
f =0in Eq. (A.6). Finally, the spin singlet and spin triplet pairing amplitudes for no flip

process are given as from Eq. (3.10) in main text
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Appendix B

Analytical expressions for Andreev
bound states and anomalous Josephson

current

In this appendix we give the explicit form of 8 X 8 matrix M and Andreev bound states.
Further, we supply spin flip probability (f) values of the spin flipper for different spin
flipper spin (S) and magnetic moment (m’) in a tabular format. In addition, we provide
explicit form of expression of anomalous Josephson current and show that for no flip case
or absence of spin flipper or when magnetizations of Ferromagnet’s are aligned, anomalous

Josephson current vanishes.
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B. ANALYTICAL EXPRESSIONS FOR ANDREEV BOUND STATES AND ANOMALOUS JOSEPHSON
CURRENT

B.1 Explicit form of Matrix M used in chapter 4

To calculate the bound state contribution of total Josephson current we introduce a 8 X 8

matrix M in Eq. (4.10) in subsection 4.2.1 of chapter 4 which is given by-

My My Mz My Mis Mie Mz Mg
My My My My Mys My My Mog
Mz Mz Mzz Mz Mszs Mze Mz Msg
My My Myz My Mys My My, Mg
Msy Msy Msz Msa Mss Msqe Ms; Msg
Me1 Mer Moz Mes Mes Mes Me1 Mes

M7y M7, M7z M7y Mis Mze Mz7 Mg

Mgy Mgy Mgz Mss Mss Mgs Mgy Mss
where,
— (5 ikFa ikpa _ 2ikpa — — — _ . ikFa _ ikFa
My = (—ie'™"u+ e uzZ — e uz), Mo =0, Mi3 =0, M4 = —-v(ie Z+ ey,
M15 — (l'eikpa+i<pu _ eikFa+i<puZ + eZikFa+i<puZ)’ M16 — 0’ M]7 — O,
Mg = (ie*F@ti9y 4 okFatiey 7 _ o, 7Y Moy = 0, May = (ie*F%u — e*F*uz + ¥*ry7),
Moy = —v(ie'*r® — Z + &*79Z) Moy = 0, Mys = 0, Mag = (—ie'*F@ti¢y 4 glkrativy 7z _ orikratiey 7y
Moy = (ie'*Fatiey 4 ofhratiey 7. _ iy 7) Mog = 0, M3y = 0, M3y = (ie'*F%y — &k Fay 7 4 o2ikray 7)),
— . ikpa ikpa _ _ — . ikFa ikFa 2ikF(l
Mz = —u(ie —Z+e"Z), M3y =0, M35 =0, M3g = (—ie'""v + "FvZ — e vZ),
_ s dkrpa ikpa _ _ . ikpa ikpa 2ikpa _
Mz = (ie'" "y —u”Z + e'""**u”z), Mzg =0, My = (—ie'"Fv + " FvZ — e vZ), My =0,
_ _ . ikpa ikpa _ s ikpa ikpa 2ikrpa _
Myz =0, Myy = —ulie —Z+e"F7), Mys = (ie'""%v — " FvZ + e vZ), Myg =0,
My7 =0, Myg = (ie"*r%u —uZ + *ruz),
Msy = (2% F Jm/u(i = 2Z) + %74 (=2i + Im"YuZ + *F9 (2 + Im"u(=i + Z)),

Msy = (X5 f Ju(i = 2Z) + 3579 f JuZ + X7 f Ju(—i + Z)),
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B.1. Explicit form of Matrix M used in chapter 4

Msz = (—fIvZ — % f Ju(i + Z) + €*FO f Iv(i + 22)),
Msy = 2 *r0y(1 —iZ) + Qi + Jm'WZ + ¥* 9 Jm/'v(i + Z) — &5 Tm'v(i + 22)),

Mss = —2e** 7979y, Msg = 0, Ms7 = 0, Msg = —2¢'*r4+9)y,

Me1 = (¥*F0 f Ju(i = 2Z) + 379 f JuZ + %7 f Ju(~i + Z)),

Mgy = e*Fu@2 + (1 = % I + m) G + (=1 + ¥ Z) + 4579 Z sin(kpa)),

Mgz =v((=2i + J(L + ') Z + %7425 + JA + M) + Z) — €541 + m') (i + 22)),

Mgy = (fIVZ + 2K Jv(i + Z) — 59 f Jv(i + 22)), Mgs = 0, Mgg = —2¢ratithrate)y,

Mgy = 26/ *Fra0)y Meg = 0, My, = e kFa(2*ra £ y(i = 22Z) + 3579 f v Z + €579 F Jv(—i + Z)),

=v((=1 4 N TA +m)G + (=1 + ¥ Z) + 2i(i + (=1 + ¥FF D) 7)),

=
|

Myz = e (i = J(m' + 1))uZ + 2 4 (=2i — J(m' + D)u(i + Z) + X4 T(m’" + Du(i + 22)),
Mqy = e *FO(FJuZ + &2 *Fa £ Ju(i + Z) — €74 f Ju(i + 22)), Mys = 0,

M6 = 2eikray,

M77 = —2u,

M7g =0,

Mg) = e *ra2e*ray (1 +iZ) + (=20 + Im'WZ + ¥ P4 Im'v(—i + Z) — 27 Jm'v(—i +227)),
Mgy = e kra(_¥kra g 1y, (i —27) — &£ vz — %P4 f Ty (=i + Z)),

Mgz = e O FJuZ + ¥*F9f Ju(i + Z) — €*F Fu(i + 22)),

Mgy = e (20 + JmuZ + 2 F4(=2i + Imu(i + Z) — e*F Im'u(i + 22)),

Mgs = — 26'%Fay,
Mse = 0,

Mg7 =0,

Mgg = —2u
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B. ANALYTICAL EXPRESSIONS FOR ANDREEV BOUND STATES AND ANOMALOUS JOSEPHSON
CURRENT

B.2 Explicit form of Andreev bound states in chapter 4

In Eq. (4.11) Andreev bound state expression, we introduce the terms A(¢), B(¢) and C
in subsection 4.2.1 of chapter 4. The explicit form of A(¢), B(¢) and C is given by

Alp) = =23 KF (1 +2Z5)B(1 +2Z2)2 + T*(F2 +m’ + m™)2(1 +10(Z% + Z*) + T2 B + 6m' (1 + m’) + 8Z>
202 =82 +m +mDZ* —a(=1+2f2 + 2 (L + M NZH) + 2221 +2Z2) 16 + 1613 (2 + m' + M) Z
—16Z2 +3J4(F2+m + m™) (1 + Z2) + 412 (=1 + 22 + 2m' (1 + m"))(~1 + Z*)) cos(Rkp a) — 2Z3(16Z (-3 + Z?)
+ TP m M) Z(=3+ Z2) + 4T3 (=14 2f2 4 2m' (1 + M) Z(=3 + Z%) + 160 (=1 + 3Z%) + 4> (f> + m’
+m?) (=1 +3Z%) cos(Bkpa) + 8cos(p) + (1622 — J> (=1 + 2% = 2m’ (1 + m"))(1 + 2Z%)) cos(p) + 2Z cos(kr a)(8Z
F12J(1 42202 + J2Z(-3=2f2 —6m' (1 + m') —=4Z% + 8(f> + m' + M) Z% + 4(=1 + 2f2 + 2m’ (1 + m' ) Z*)
+16(Z3+Z22) -4 (2 +m' + M)A +5Z*+ ZY) =372+ +m™)?ZA +5(Z2 + Z) + BZ + T (4
FT(=142F2 = 2m' (1 + M) Z)) cos(p)) + 2Z(-8 + 12T Z(1 + 2Z>)* = 16(Z% + Z*) + J>(3 + 2% + 6m’ (1 + ')
+4Z7 —8(f2 +m’ + M ZF —a(=1+2f2 + 2m’ (L + M) ZH) + 3T (F2 + m’ + m™)2 (1 +5(Z% + Z%)
—AP (P +m +mZA+5(Z% + ZH) + (-8 + J2(1 = 2f% +2m’ (1 + m")) + 4T Z) cos(p)) sin(kF a)
—AZ2(1+2Z)(—16Z + J2(—AZ + (f> +m + m>)YBZ + T4 + 3 (f2 + m’ + m™)Z — 4Z?%)))) sin(2kr a)
—273(16 = 48Z% + 160 Z(=3+ ZY) + 413 (2 + m’ + M) Z(=3+ Z®) = J*(F2 + m’ + m®)? (-1 +3Z%)

— 477 (=1 +2f%2 +2m’ (1 + m"))(~1 + 3Z?%)) sin(3kFr a))

B(p) = — 22 KFa(—6af* 2 (1 + 6(Z% + Z*) = 3(1 +2m")2(32(Z2 + Z*) + T2 (1 + 6(Z% + Z*)) + 4F2(=T> (5
4’ (1 + )1+ 6(Z% + Z*) = 16(1 + 8(Z2 + ZH)) + 4J% cos(¢) + 16F2J% cos(g) — 64f*J? cos(p)
+167%m’ cos(@) + 16J2m'? cos(p) + 128Z2 cos(p) + 51212 Z2 cos(p) + 24J° Z> cos(@) + 9612 I Z? cos(p)
— 384141277 cos(p) + 512m' Z? cos() + 96J2m’ Z2 cos(¢) + 512m">Z? cos(p) + 96J>m’> Z* cos(¢)
+128Z% cos(p) + 512£2Z% cos(¢) + 2472 Z* cos() + 96£2T*Z* cos(p) — 384f* T2 Z* cos(¢p)
+512m' Z* cos(p) + 96J%m’ Z* cos(p) + 512m’2 Z* cos() + 96J°m’>Z* cos(p) — 8J Z(1 + 2Z%) cos(kp a)
(=8f% = (1+2m")? + (1 + 2m")? cos(@)) (4 + JZ + Af2 T Z + (4 + (=1 + 4f2)T Z) cos(p)) + 4Z% cos(2kp a)
(=8f2 — (1 +2m)? + (1 + 2m’)? cos(9))(16 — 16J Z = 16Z% + (1 + 4f2)J* (=1 + Z%) + (16J Z + 16(—1 + Z?)
+ (=1 + 4T3 (=1 + Z%)) cos(p)) + 6412 cos(2¢)J % cos(2p) + 4f2J% cos(2¢p) — 4J%>m’ cos(2¢)
+16F20%m’ cos(2p) — 4J2m'? cos(2p) + 16207 m’* cos(2¢) — 3222 cos(2¢p) — 6J2Z2 cos(2p)

+ 24127272 cos(2¢) — 128m’ Z? cos(2¢p) — 24J%m’ Z% cos(2p) + 96 2J%2m’ Z? cos(2p) — 128m'* Z? cos(2¢p)
—2472m" Z% cos(2¢) + 962 T2 m"? Z?% cos(2¢) — 32Z* cos(2¢p) — 6J2Z* cos(2p) + 24F2T*Z* cos(2¢)

— 128m' Z* cos(2p) — 24J*m’ Z* cos(2p) + 96217 m’ Z* cos(2¢) — 128m">Z* cos(2¢) — 24J>m">Z* cos(2¢)
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B.3. Table for different values of spin flip probability of spin flipper for different S and m’

+96f272m"2Z* cos2p) + 8JZ(1 +2Z2)(-8f% — (1 + 2m’)* + (1 + 2m’)? cos(p))(J + 42T +4Z + (-]
+4f%] - 47) cos(p)) sintkp a) — 8Z2(=8f2 — (1 + 2m")? + (1 + 2m’)? cos(@))(=16Z + J (=4 + Z(J + 4f%J +4Z))

+(16Z +J (4 + (=1 +4fH)JZ - 4Z%)) cos(¢)) sin(RkF a))

C =e3kra—1 =272 +27% cos(kpa) - 2Z sin(kp a)) (A2 (1 + 22 +2m' (1 + m') + 2Z2 —4(f2 +m’ + m™>)Z? = 2(~1 + 22
+2m' (1 +m')NZY +16(1 + 6(Z2 + ZH) + T2+ m’ + m™)2(1 + 6(Z2 + ZH) + 2Z(=2(=4 + J2(F*> + m’ + m'?))
A +2Z@Z+TQ+J(Fr+m +m)Z))costkpa) + ZG(-1+ Z) + JU(f2 +m’ + m™) (-1 + Z) +2(1 + Z)))
GA+Z)+TQ=-2Z+ T2 +m +m™)(A + Z))) coskra) + 2(=4 + J>(f2 + m’ + m™) @+ J T (f2 + m’ + m'?)

—2Z2)(1 +2Z%) sin(kpa) + 2Z(~4 + J (=T (f2 + m’ + m'?) + 2Z)AZ + T2 + J(f? + m’ + m*)Z)) sin(RkF a)))

B.3 Table for different values of spin flip probability of
spin flipper for different S and m’

To study the effect of high spin states of spin flipper on the Josephson supercurrent
(Eq. (4.14)) in subsection 4.2.6 of chapter 4, we provide spin flip probability (f) val-
ues of the spin flipper for different S and m’ in a tabular format.

Table B.1: Spin flip probability (/) values of the spin flipper for different S and m’

S m’ S m’ f
I 1 7 7
b ~2 ! 3 —2 Vi
i 0 -3 2V3
: v -4 vis
1 1
-1 2 -1 4
3 V3 3 Vis
3 0 3 2V3
v v
-3 2V2 I 0
_% 3
) 2v2
3 V5
3 0
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CURRENT
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B.4. Explicit form of anomalous Josephson current

B.4 Explicit form of anomalous Josephson current

The explicit form of Ay, Aj, A3, A4, A’l, A’z’ A’3, A:‘ in Eq. (4.38) is

1 1 2N
Al :AO(T)JK — EVL + M + 5\/2L - M -

VL+M
’ r , N(L'+M") 2N’
Al ——;(—K’— L'+M + 2L -M"+ (L+M)32 — (L+M))
2 241 ANL+M 4\/2L — M 2N
L+M
1 1 2N
Az =Ag(T)A|K + =VL+ M + = [2L — M + ,
N 2 2 VL+M
NL'+M') 2N’
and A, = ;( K L'+M | 2L - M7 = M) (L+M))
W 2434 ANL+M 4\/2L ~ M 2 ’
VL+M
2 213, (X2 + X2 —4x)!3
where L = 4T12 — §T2, M = +

1/3 ’
3(Xa + A[X2 - 4X3) 203

2
N =8T} -2, +T5, K =Ty, L' = -8T1U; — S Us,

3
v 21°X] 215X1¥,
3(Xp + /X2 —4X)1B 9(Xy + \[X2 - 4X3)43
N’ = - 192T}U; + 161U, — 16T U, + 8U3, K’ = Uy,

where X| =T; — 127175 — 1274,
Xo = 2T; — 36T\ ToTs — 43217 Ty + 27TF + 12To Ty,

Xi =2T,U, + 12T3U, — 12T, U3,
XoY' - 6X7X!

b

2 3
X5 —4X;

Y1=Y1/+

Yl, = 6T22U2 - 36T1T3U2 + 36T2T3U1 + 86411 T,Up + 54T3U3 + 72T,U,,
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B. ANALYTICAL EXPRESSIONS FOR ANDREEV BOUND STATES AND ANOMALOUS JOSEPHSON
CURRENT

Ty = (Py(S,m', f.h ] kpa) + Py(S.m’, £, h, J, kpa) cos(8) + P3(S,m’, f, h, J, kpa) cos(20) + Py(S,m’, f, h, ], kpa)
cos(30) + Ps(S,m’, f. h, . kpa) cos(40))/(Q1(S.m’, f.h. J. kpa) + Qo (S, m’, f, h, J, kpa) cos(6)+
Q3(S,m’, £, h, J, kpa)cos(20) + Qu(S,m’, . h, J, kpa) cos(30) + Qs(S,m’, £, h, J, kp a) cos(40)),

Ty = (Pe(S.m’, £, h, Jkpa) + Py(S,m’, £, h, ], kpa) cos(9) + Pg(S,m’, f, h, J, kpa) cos(20) + Po(S,m’, f, h, J. kpa)
cos(30) + Pio(S,m/, f. h, J. kpa) cos(40))/(Q1 (S, m’, f. h, J.kpa) + Q2(S,m’, f, h, J. kpa) cos(6)+
Q3(S.m’, f.h, J. kpa)cos(20) + Qu(S.m’., f. h, J. kpa) cos(30) + Qs(S.m’, f. h. J. kpa) cos(40)),

Ty = (P11(S,m/, f. h 1 kpa) + Pia(S,m’, . h, J, kpa) cos(8) + Pi3(S,m’, £, h, J, kpa) cos(20) + Pi4(S,m’, f, h, J.kpa)
cos(30) + Py5(S.m’, f. h, . kpa) cos(40))/(Q1(S.m’, f. b, J. kpa) + Qo (S, m’, f, h, J, kpa) cos(6)+
Q3(S,m’, £, h, J, kpa)cos(20) + Qu(S,m’, . h, J, kpa)cos(30) + Qs(S,m’, £, h, J, kp a) cos(46)),

Ty = (Pro(S,m', £, h, J.kpa) + Py7(S,m’, f, h, ], kpa) cos(8) + Pig(S,m’, £, h, J, kpa) cos(20) + Pio(S,m’, £, h, J, kpa)
cos(30) + Pyo(S,m’, f, h, J. kpa) cos(40))/(Q1 (S, m’, f. h. J.kpa) + Q2(S,m’, f, h, J. kpa) cos(6)+
Q3(S.m’, f.h, J. kpa)cos(20) + Qu(S.m’, f. h, J. kpa) cos(30) + Qs(S.m’, . h. J. kpa) cos(46)),

Uy = (I sin(0) (Pay (S.m’, £, b J, kpa) + Py (S,m', £, h, J, kpa) cos(8) + Py3(S,m’, f, h, J, kpa) cos(26)))/
(Q6(S.m’, f. . J.kpa) + Q7(S,m’, f, h, ], kpa) cos(®) + Qg(S,m’, f, h, J, kpa) cos(20) + Qo(S, m’, . h, J. kg a)
cos(30) + Q10(S.m’, f. h, ], kpa) cos(49)),

Uy = (£ sin(0) (Poa(S,m’, f, h, ] kpa) + Pys(S,m’, £, h, J, kpa) cos(9) + Pa(S,m’, f, h, J, kpa) cos(26)))/
(Q1(S.m/, £, 1 J.kpa) + Qa(S.m’, f, h, J,kpa) cos(8) + Q3(S.m’, £, h, J, kpa) cos(20) + Q4 (S, m’, £, h, J, ka)
cos(30) + Qs(S,m’, f. h, J. kpa) cos(40)),

Us = (J£sin(0)(Py7(S.m', f. h, J.kpa) + Pyg(S.m’, f. h, J. kpa) cos(9) + Poo(S.m’, f.h. J. kpa) cos(26)))/
(Q1(S.m’, £, J.kpa) + Qa(S,m', f, h, J,kpa) cos(®) + Q3(S,m’, f, h, J, kpa) cos(20) + Qu4(S.m’, £, h, J. kpa)
cos(30) + Qs(S,m’, f, h, J, kpa) cos(49)).

Here, P; (i = 1,2...29) and Q; (i = 1, 2,...10) are functions of all parameters like exchange

interaction (J), magnetization of the Ferromagnets (), spin ($) and magnetic moment (m")

of spin flipper, phase (kra) accumulated in ferromagnetic region and spin flip probability

of spin flipper (f). Since these are large expressions we do not explicitly write them here.

From the above expressions for no flip (f = 0) or absence of spin flipper (/ =0)or 8 =0

(magnetizations of the Ferromagnets are aligned), U;, U,, Us and also L', M’, N’ and K’

vanish. Thus, from Eq. (4.38), A] Q) = Oand A @ = 0, implying for no flip case or absence

of spin flipper or # = 0 anomalous Josephson current vanishes (1,, = 0).

248



Appendix C

Analytical expression for equilibrium

quantum spin torque

In this appendix we provide explicit form of expression of equilibrium quantum spin torque

used in subsection 5.3.2 of chapter 5 and show that for no flip case torque vanishes.

C.1 Explicit form of equilibrium quantum spin torque

The explicit form of My, M>, M3, My, Ml’, Mé, Mé, Mé’t in Eq. (5.11) is

1 1 2C
Ml(2): AQJDEVA-FBiE\/ZAB

VA+B
C(A’+B’) 20’
Mo = _ 1 (_ , A+ B +2A/_B/+(A+B)3/2_(A+B))
'@ 2Mi2) ANA+B 4\/2A—B— 2C ’
VA+B
1 1 2C
M3y = Aopy|D+=VA+B+—-,[2A-B+
@ OJ 2 2\/ VA+B
’ r _ C(A’+B) 20"
and M; __ ! (—D’+ A+ B + 2A -8 - arB" " (A+B))
@ 2M3(4) 4VA + B B 4\/2A—B+ 2C ’
VA+B
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C. ANALYTICAL EXPRESSION FOR EQUILIBRIUM QUANTUM SPIN TORQUE

2

where A = 4L% - §L2,

. 2153, . (X2 + X2 - 4x)H)'/
= 13 )
3(Xp + X2 - 4X3) 273

C =8L} - 2L Ly + L3,

D =L,
, 2
A'= —-8L1K; — §K2,
. 21/3X{ B 21/3X1Y1

3(Xa + (X2 -4XD)HIB 9(Xp + (X3 - 4X13)4/3’
C’' = —192L3K; + 16L,K| — 16LK; + 8K,
D' =K,
where X; = L — 12L,L; — 12L4,
X» =2L3 —36L1LoLy — 43217 Ly + 27L3 + 72Ls Ly,

Xi = 2L2K2 +1215K, — 12L1K3,
XoY) — 6X7X!

2 3 ’
VX3 -4X;

Yl, = 6L%K2 - 36L1L3K2 + 36L2L3K1 + 864L1L4K1 + 54L3K3 + 72L4K2,

h=Y+

Ly =P(S,m, f,h, J, kpa) + P2(S,m’, f, h, J, kpa) cos(p),

Ly = P3(S,m’, f, h, J, kpa) cos(2e) + P4(S,m’, f, h, J, kra)
cos(y) + Ps(S,m’, f, h, J, kpa),

Ly = Pe(S,m’, f,h, J,kra) + P7(S,m’, f, h, J, krpa) cos(¢)
+ Pg(S,m’, f, h, J, kra) cos(2¢) + Py(S,m’, f, h, J, kpa)

cos(p) cos(2¢),
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C.1. Explicit form of equilibrium quantum spin torque

Ly = P1o(S,m’, f, h, J, kpa) + Py (S, m’, f, h, J, kpa) cos(¢)
+ P1o(S,m’, f, h, J, kpa) cos(2p) + P13(S,m’, f, h, J, kra)
cos(p) cos(2p) + P14(S,m’, f, h, J, kpa) cos(4¢),
Ky = f(P1s(S,m', f, h, J, kra) sin(p) + Pis(S,m’, f, h, J, kra)),
K> = f(Py7(S,m, f, h, J, kpa) + Pig(S,m’, f, h, J, kpa) cos(p)
+ P1o(S,m’, f, h, J, kpa) sin(p) + Py (S, m’, f, h, J, kpa) sin(2¢)),
K3 = f(Py(S,m’, f, h,J, kpa) + Py (S,m’, f, h, J, kpa) cos(¢)
+ Py3(S,m’, f, h, J, kpa) sin(@) + Py (S, m’, f, h, J, kra)
sin(2¢) + Pas(S, m’, f, h, J, kra) sin(gp) cos(2¢)).
Here, P; (i = 1,2...25) are functions of all parameters like exchange interaction (J),
magnetization of the ferromagnets (%), spin (S) and magnetic moment (m” ) of spin flipper,
phase (kra) accumulated in ferromagnetic region and spin flip probability of spin flipper
(f). Since these are large expressions we do not explicitly write them here. For no flip case-

the spin flip probability of spin flipper is f = 0. Thus, from above expressions: Ki, K>, K3

and also A’, B’, C’ and D’ vanish. Therefore, from Eq. (5.11), M ,. = 0 and M;

12) 34 =0,

implying for no flip case equilibrium quantum spin torque vanishes (77 |g_0= 0).
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Appendix D

Mathematica code to calculate pairing

amplitudes in metallic region

The Mathematica code described below calculates pairing correlations (Egs. (3.10)) in
normal metal region of a Normal metal-Spin flipper-Superconductor junction as shown in
Fig. 3.1 of chapter 3. The time required to run this Mathematica code is less than 5 minutes.

Herein, Figs. 3.2 and 3.3 of chapter 3 are generated using the Mathematica program below.

J=1g=0.1y = (1+q/EP)"(1/2);y1 = (1 +q/EP) (1/2);y3 = (1 - g/ EH)"(1/2); y4 = (1 - g/ D) (1/2);
S=1/2;ml =-1/2;F2 = Sqrt[(S —m1) * (S+ml + 1)];7 = ;kF = ;EF = 10; £ = 2;

w=4(52) /2 + 5+ (52) Aa2yv = § (H2)a/2) - 5« (52) Aar2y

qul = kF(1 + ¢/(2EF)); qu2 = kF(1 - ¢/(2EF)); qd1 = kF(1 + ¢/(2EF)); qd2 = kF(1 - g/ CEF));

k= (1-¢"2)"(1/2) + (KF/(2 + EF));keS = kKF + I + k;khS = kKF — I + k;

KES = (1+1+ ST PR A2y, kHS = (1 - 1+ SLPRAD) 712,

Clearle11, @12, a3, @14, a2, a22, @23, a24, a31, @32, a33, a34, a4l, ad2, a43, ad4, B11, B12, B13, B14, B21, B22, B23, B24,
B31, 832, B33, B34, B41, B42, B43, BA4];

x1 =0;

A=({{1,0,0,0,-%,0,0,-v}, {0, 1,0,0,0, -1, v, 0}, {0,0, 1,0,0,v, —, 0}, {0,0,0, 1, —v, 0,0, ~u},
{y-I+J+xml),—I*J*F2,0,0,u+kES, 0,0, —v «kHS)}, {-I *J *F2, (yl + I *J * (ml + 1)), 0, 0, 0, u * kES, v * kHS, 0},
{0,0,(1 +J * (ml + 1) —y3), —I + J * F2,0, -v + KES, —u +kHS, 0}, {0,0, —I + J + F2, ~(y4 + I + J +m1), v + kES, 0, 0, —u + kHS}});
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D. MATHEMATICA CODE TO CALCULATE PAIRING AMPLITUDES IN METALLIC REGION

-1 0 0 0
0 -1 0 0
0 0 -1 0
B= 0 ;B1 0 ;B2 0 ;B3 = -
y+1I+J*ml I+J*F2 0 0
I+xJ+F2 yl—I%J*(ml+1) 0 0
0 0 -y3-I%J*(ml+1) I+J+F2
0 0 I+JxF2 -y4+1*J+ml

Sol = LinearSolve[ A, B]; Sol3 = LinearSolve[ A, B3]; Soll = LinearSolve[ A, B1]; Sol2 = LinearSolve[ A, B2];

bl1 = Sol[[1, 1]];b12 = Sol[[2, 1]];al1 = (‘;—3) A(1/2) * Sol[[3, 1]];a12 = (Yy—3) A(1/2) * Sol[[4, 1]];

b21 = Soll[[1, 1]];b22 = Sol1[[2, 1]];a21 = (Yy—3) A(1/2) = Sol1[[3, 1]];a22 = (y73) A(1/2) * Sol1[[4, 1]];

b31 = (35) ~(1/2) * Sol2([1, 111;b32 = (35) ~(1/2) * Sol2([2, 1]];a31 = Sol2([3, 11}; 232 = Sol2([4, 11};

b41 = (35) A(1/2) * So3([1, 111;b42 = (35) A(1/2) * SoI3([2, 11];241 = SoI3[[3, 11}; 242 = SoI3[[4, 11};

b111 = b11;b121 = b12;al11 = all;a121 = a12;b211 = b21;b221 = b22;a211 = a21;a221 = a22;b311 = b31;

b321 = b32;a311 = a31;a321 = a32;b411 = b41;b421 = bd2; 2411 = adl;a421 = ad2;

Al = ({{,0,0,v, -1,0,0,0), {0, u, -, 0,0, -1, 0,0}, {0, —v, u, 0,0,0, -1, 0}, {v,0,0,1,0,0,0, -1},

{u *KES, 0,0, —v +kHS, (y — I *J +m1), I * J *F2, 0,0}, {0, u *kES, v *kHS, 0, -1 * J * F2, (y1 + I  J * (m1 + 1)), 0, 0},
{0, —v * KES, —u xkHS, 0,0,0, —(y3 — I *J * (m1 + 1)), =1 * J x F2}, {v xKES, 0,0, —u xkHS, 0,0, I » J * F2, —(y4 + I » J xm1)}});
B4 = ({{-u}, {0}, {0}, {—v}, {u +KES}, {0}, {0}, {v *KES}}); B5 = ({{0}, {-u}, {v}, {0}, {0}, {u = KES}, {—v = kES}, {0}});

B6 = ({{0}, {v}, {—u}, {0}, {0}, {v «kHS}, {—u = KkHS}, {0}});B7 = ({{-v}, {0}, {0}, {—u}, {-v *kHS}, {0}, {0}, {—u »KkHS}});
Sol4 = LinearSolve[A1, B4]; Sol5 = LinearSolve[A1, B5]; Sol6 = LinearSolve[A1, B6]; Sol7 = LinearSolve[Al, B7];

151 = (g ) (1/2) * SoMI[5, 111;152 = (%5 ) *(1/2) * Sold[[6, 111;¢51 = (g ) “(1/2) » Sol4[[7, 11];
c52 = (g5s) (1/2) * SoM[[8, 111;t61 = () (1/2) * SoI5[[5, 111162 = () *(1/2) * Sol5[[6, 11};

) Yy
c61 = (g8 ) (1/2) * SoI5[[7, 111; ¢62 = (s ) (1/2) * SoI5[[8, 111 t71 = (s ) *(1/2) = Sol6[[5, 111;
) A(1/2) * Sol6[16, 111;¢71 = (s ) (1/2) * Sol6[[7, 111;¢72 = (s ) (1/2) = Sol6[[8, 11];

7= (ds
181 = (ggfs) “(1/2) * Sol7[[5, 111; 182 = (s ) " (1/2) * Sol7[[6, 111; ¢81 = (s ) (1/2) * Sol7[[7, 11};
c82 = (Ks) A (1/2) = SolT[[8, 1]];t511 = t51;1521 = 152;.¢511 = c51;¢521 = c52;t611 = t61;t621 = t62; c611 = c61;

c621 = ¢62;t711 = t71;t721 = t72;c711 = c71;c721 = c¢72;t811 = t81;t821 = t82;
c811 = c81;c821 = c82;

1 0 0 0 1 0 0 0
0 0
¢1F = ;@2F = ;@3F = ;@4F = ;@11F = ;§22F = ;$33F = s @44F = 5
0 1 0
0 0 0 1 0 0 0 1

Y1[x_]:=¢1F = Exp[I * qul * x] + bl1 * ¢1F = Exp[—I * qul * x] + b12 * ¢2F * Exp[—I * qd1 * x] + all * ¢3F = Exp[] * qu2 * x] +
al2 = ¢p4F = Exp[] * qd2 * x];

Y2[x_]:=¢2F * Exp[I * qd1 * x] + b21 * ¢1F = Exp[—I * qul * x] + b22 * ¢2F * Exp[—I * qd1 * x] + a21 * ¢3F = Exp[] * qu2 * x] +
a22 = ¢p4F = Exp[] * qd2 * x];

Y3[x_]:=¢3F = Exp[—I * qu2 * x] + b31 * ¢1F % Exp[—1I * qul * x] + b32 % ¢2F % Exp[-I * qd1 * x] + a31 * ¢3F * Exp[] * qu2 * x]+
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a32 * ¢p4F * Exp[I * qd2 * x];
Y4[x_]:=¢4F = Exp[—1I * qd2 * x] + b41 * ¢1F = Exp[—1I * qul * x] + b42 % ¢2F = Exp[—I * qd1 * x] + a41 * ¢3F = Exp[] * qu2 * x]+

a42 * ¢p4F = Exp[I * qd2 * x];

Y5[x_]:=t51 * @1F = Exp[—I * qul * x] + t52 * ¢2F = Exp[—1I * qd1 * x] + c51 * ¢3F = Exp[] * qu2 * x] + c52 * ¢4F » Exp[] * qd2 * x];
Y6[x_]:=t61 * ¢1F = Exp[—I * qul * x] + t62 * ¢2F * Exp[—I * qd1 * x] + c61 * ¢3F = Exp[] * qu2 * x] + c62 * ¢p4F = Exp[] * qd2 * x];
YT[x_]:=t71 = ¢1F = Exp[—I * qul * x] + t72 * ¢2F = Exp[—I * qd1 * x] + c71 = ¢3F = Exp[] * qu2 * x] + c72 * ¢4F = Exp[/ * qd2 * x];
Y8[x_]:=t81 » ¢1F » Exp[—I * qul * x] + t82 % ¢2F * Exp[—I * qd1 * x] + c81 * ¢3F = Exp[] * qu2 * x] + c82 * ¢4F * Exp[/ * qd2 * x];
Y L=y 1[x]; ¢ 22[x_1:=yp2(x]; ¢ 33[x_]:=y3[x]; 44 [x_]:=yp4[x]; S5[x_1:=p5[x]; p66[x_]:=yp6[x];

YTTx_1:=¢7[x]; Y88[x_]:=¢8[x];

Grg[x_, x1_]:=y1[x].(Transpose[y55[x1]] * @11 + Transpose[y66[x1]] * @12 + Transpose[yy77[x1]] * a’13 + Transpose[ys88[x1]] * @14)+

Y2[x].(Transpose[yy55[x1]] * @21 + Transpose[y66[x1]] * @22 + Transpose[yy77[x1]] * @23 + Transpose[y88[x1]] * @24)+

¥ 3[x].(Transpose[y55[x1]] * @31 + Transpose[y66[x1]] * @32 + Transpose[yy77[x1]] * @33 + Transpose[y88[x1]] * @34)+
Y4[x].(Transpose[yy55[x1]] * @41 + Transpose[y66[x1]] * @42 + Transpose[yy77[x1]] * @43 + Transpose[y88[x1]] * @44);

Grl[x_, x1_]:=¢/5[x].(Transpose[y11[x1]] * B11 + Transpose[yy22[x1]] * B12 + Transpose[yy33[x1]] * B13 + Transpose[y44[x1]] * B14)+

Y6[x].(Transpose[y11[x1]] * B21 + Transpose[y22[x1]] * S22 + Transpose[y33[x1]] * 823 + Transpose[y44[x1]] * B24)+
Y7[x].(Transpose[y11[x1]] * B31 + Transpose[122[x1]] * 832 + Transpose[y33[x1]] * B33 + Transpose[y44[x1]] * B34)+
¥ 8[x].(Transpose[y11[x1]] * B41 + Transpose[122[x1]] * S42 + Transpose[y33[x1]] * 43 + Transpose[y44[x1]] * B44);
GG = Grg[x1, x1] - Grl[x1, x1];

GGl = D[Grg[x, x1], x}/.x — x1;

GG2 = DI[Grl[x, x1], x)/.x — x1;

GG3 = GG1 - GG2;

G=

({{Coefficient[Collect[Expand[GG[[1, 1]]], @11], a11], Coefficient[Collect[Expand[GGI[1, 1]]], @12], @12],
Coefficient[Collect[Expand[GGI[1, 1]]], @13], @13], Coefflicient[Collect[Expand[GGI[1, 11]], @14], @14],
Coefficient[Collect[Expand[GGI[1, 11]], @21], @21], Coefficient[Collect[Expand[GGI[1, 1]]], @22], @22],
Coefficient[Collect[Expand[GGI[1, 1]]], @23], @23], Coefficient[Collect[Expand[GGI[1, 11]], @24], @24],
Coefficient[Collect[Expand[GGI[1, 1]]], @31], @31], Coefficient[Collect[Expand[GGI[1, 11]], @32], @32],
Coefficient[Collect[Expand[GGI[1, 1]]], @33], @33], Coefficient[Collect[Expand[GGI[1, 1]]], @34], @34],
Coefficient[Collect[Expand[GGI[1, 111}, @41], a41], Coefficient[Collect[Expand[GGI[1, 111}, @42], @42},
Coefficient[Collect[Expand[GGI[1, 1]]], @43], @43], Coefficient[Collect[Expand[GGI[1, 1]]], @44], a44],
Coefficient[Collect[Expand[GG[[1, 1]1], B11], B11], Coeflicient[Collect[Expand[GG[[1, 1111, B12], B12],
Coefficient[Collect[Expand[GGI[1, 1]]], 813], B13], Coefficient[Collect[Expand[GGI[1, 1]1], B14], B14],
Coefficient[Collect[Expand[GGI[1, 1111, 821], 821], Coefficient[Collect[Expand[GGI[1, 1111, 822], 822],
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Coeflicient[Collect[Expand[GG[[1, 1]]], 823], B23], Coeflicient[Collect[Expand[GG[[1, 1]]], B24], B24],
Coefficient[Collect[Expand[GGI[1, 11]], B831], B31], Coefficient[Collect[Expand[GGI[1, 1111, 832}, B32],
Coefficient[Collect[Expand[GG[[1, 1111, 833], 833], Coefficient[Collect[Expand[GG[[1, 1111, 834], B34],
Coefficient[Collect[Expand[GGI[1, 1]1]], B41], B41], Coefficient[Collect[Expand[GGI[1, 1111, B42], B42],
Coefficient[Collect[Expand[GG[[1, 111, B43], B43], Coefficient[Collect[Expand[GG[[1, 1]1], B44], 441},
{Coefficient[Collect[Expand[GG[[1, 2]]], @11], @11], Coefficient[Collect[Expand[GGI[[1, 2]1], @12], @12],
Coefficient[Collect[Expand[GG[[1, 2]]], @13], @13], Coefficient[Collect[Expand[GGI[1, 2]]], @14], @14],
Coefficient[Collect[Expand[GGI[1, 2]]], @21], a21], Coefficient[Collect[Expand[GG[[1, 2]]], @22}, a22],
Coefficient[Collect[Expand[GGI[1, 2]]], @23], 23], Coefficient[Collect[Expand[GG[[1, 2]]], a24], a24],
Coefficient[Collect[Expand[GG[[1, 2]1], @31], a31], Coefficient[Collect[Expand[GGI[1, 2]]], @32], @32],
Coefficient[Collect[Expand[GGI[1, 2]]], @33], @33], Coefficient[Collect[Expand[GG[[1, 2]]], a34], a34],
Coefficient[Collect[Expand[GGI[1, 2]]], @41], a@41], Coefficient[Collect[Expand[GG[[1, 2]]], 42}, a42],
Coefficient[Collect[Expand[GGI[1, 2]]], @43], @43], Coefficient[Collect[Expand[GG[[1, 2]]], @44}, a44],
Coefficient[Collect[Expand[GG[[1, 2]]], 811], B11], Coefficient[Collect[Expand[GG[[1, 2]]], 812], B12],
Coefficient[Collect[Expand[GGI[1, 2]]], B13], B13], Coeflicient[Collect[Expand[GGI[1, 2]1], B14], B14],
Coefficient[Collect[Expand[GG[[1, 2111, B21], B21], Coefficient[Collect[Expand[GG[[1, 2111, 822], B22],
Coefficient[Collect[Expand[GGI[1, 2]]], 23], 23], Coeflicient[Collect[Expand[GGI[1, 2]]], B24], B24],
Coefficient[Collect[Expand[GG[[1, 2]1], 831], 831], Coefficient[Collect[Expand[GG[[1, 2]1], 832], B32],
Coefficient[Collect[Expand[GGI[1, 2]]], 8331, B33], Coeflicient[Collect[Expand[GGI[1, 2]]1], B34], B34],
Coefficient[Collect[Expand[GGI[1, 2]]], B41], B41], Coefficient[Collect[Expand[GGI[1, 2]1], B42], B42],
Coefficient[Collect[Expand[GG[[1, 2]]], B43], B43], Coefficient[Collect[Expand[GGI[1, 2]]], B44], B44]},
{Coefficient[Collect[Expand[GG[[1, 3111, @11], a11], Coefficient[Collect[Expand[GG[[1, 3111, @12}, @12],
Coefficient[Collect[Expand[GGI[1, 3]]], @13], 13], Coefficient[Collect[Expand[GG[[1, 311], @14], a14],
Coefficient[Collect[Expand[GGI[1, 3]]], @21], a21], Coefficient[Collect[Expand[GG[[1, 3]1], @22}, a22],
Coefficient[Collect[Expand[GGI[1, 3]]], @23], 23], Coefficient[Collect[Expand[GG[[1, 3]]], a24], a24],
Coefficient[Collect[Expand[GG[[1, 3111, @31], a31], Coefficient[Collect[Expand[GGI[1, 3]1], @32}, @32],
Coefficient[Collect[Expand[GGI[1, 3]]], @33], @33], Coefficient[Collect[Expand[GG[[1, 3]11], a34], a34],
Coefficient[Collect[Expand[GGI[1, 3]]], @41], @41], Coefficient[Collect[Expand[GG[[1, 311], @42}, a42],
Coefficient[Collect[Expand[GGI[1, 3]]], @43], @43], Coefficient[Collect[Expand[GG[[1, 311], a44], a44],
Coefficient[Collect[Expand[GGI[1, 31]], B11], B11], Coefficient[Collect[Expand[GGI[1, 3]1], B12], B12],
Coefficient[Collect[Expand[GG[[1, 311, B13], B13], Coefficient[Collect[Expand[GGI[1, 3111, B14], B14],
Coefficient[Collect[Expand[GG[[1, 3]]], 821], B21], Coefficient[Collect[Expand[GG[[1, 3111, 822], B22],
Coefficient[Collect[Expand[GG[[1, 3111, 823], 823], Coefficient[Collect[Expand[GG[[1, 3111, 524], B24],
Coefficient[Collect[Expand[GGI[1, 31]], B831], B31], Coefficient[Collect[Expand[GGI[1, 3111, B32], B32],
Coefficient[Collect[Expand[GGI[[1, 3111, B33], 8331, Coefficient[Collect[Expand[GGI[1, 3111, B34], B34],
Coefficient[Collect[Expand[GG[[1, 3]1], B41], B41], Coeflicient[Collect[Expand[GGI[1, 3111, B42], B42],
Coefficient[Collect[Expand[GG[[1, 3111, B43], 843], Coeflicient[Collect[Expand[GG[[1, 3111, B44], 8441},

256



{Coefficient[Collect[Expand[GGI[1, 4111, @11], a11], Coeflicient[Collect[Expand[GGI[1, 4111, @12], a12],
Coefficient[Collect[Expand[GGI[1, 4]]], @13], @13], Coefficient[Collect[Expand[GGI[1, 4]]], @14], @14],
Coefficient[Collect[Expand[GGI[1, 4]]], a21], @21], Coefficient[Collect[Expand[GGI[1, 4]]], 22], @22],
Coefficient[Collect[Expand[GGI[1, 4]]], @23], @23], Coefficient[Collect[Expand[GGI[1, 4]]], @24], a24],
Coefficient[Collect[Expand[GGI[1, 4]]], @31], @31], Coefficient[Collect[Expand[GGI[1, 4]]], @32], @32],
Coefficient[Collect[Expand[GGI[1, 4]]], @33], @33], Coefficient[Collect[Expand[GGI[1, 41]], @34], a34],
Coefficient[Collect[Expand[GGI[1, 4111, @41], a41], Coefficient[Collect[Expand[GGI[1, 4]1], a42], @42],
Coefficient[Collect[Expand[GGI[1, 4]]], @43], @43], Coefficient[Collect[Expand[GGI[1, 4]]], @44], a44],
Coefficient[Collect[Expand[GGI[1, 4]]], B11], B11], Coefficient[Collect[Expand[GGI[1, 4]1], 812], B12],
Coefficient[Collect[Expand[GGI[1, 4]]], B13], B13], Coefficient[Collect[Expand[GG[[1, 411, B14], B14],
Coeflicient[Collect[Expand[GGI[1, 4]]], B21], B21], Coefficient[Collect[Expand[GG[[1, 4111, B22], B22],
Coefficient[Collect[Expand[GGI[1, 4]]], B23], B23], Coefficient[Collect[Expand[GG[[1, 4111, B24], 24],
Coefficient[Collect[Expand[GG{[1, 4111, 831], B31], Coeflicient[Collect[Expand[GG{[1, 4111, 832], 532],
Coefficient[Collect[Expand[GGI[1, 411], 833], B33], Coefficient[Collect[Expand[GGI[[1, 4]]], B34], B34],
Coeflicient[Collect[Expand[GGI[1, 4]]], B41], B41], Coefficient[Collect[Expand[GG[[1, 4111, B42], B42],
Coefficient[Collect[Expand[GGI[1, 4111, 8431, B43], Coefficient[Collect[Expand[GGI[1, 4111, B44], 8441},
{Coefficient[Collect[Expand[GG[[2, 1]]], @11], @11], Coeflicient[Collect[Expand[GG[[2, 1]]], @12], @12],
Coefficient[Collect[Expand[GGI[2, 1]]], @13], @13], Coefficient[Collect[Expand[GGI[2, 1]]1], @14], a14],
Coefficient[Collect[Expand[GGI[[2, 1]]], @21], @21], Coefficient[Collect[Expand[GGI[2, 1]]], @22], a22],
Coefficient[Collect[Expand[GGI[2, 1111, @23], 23], Coefficient[Collect[Expand[GGI[2, 1]]1], @24], a24],
Coefficient[Collect[Expand[GGI[2, 1]]], @31], @31], Coefficient[Collect[Expand[GGI[[2, 1]]], @32}, @32],
Coefficient[Collect[Expand[GGI[2, 1]]], @33], @33], Coefficient[Collect[Expand[GGI[2, 1]1], @34], a34],
Coefficient[Collect[Expand[GGI[[2, 1]]], @41], @41], Coefficient[Collect[Expand[GGI[2, 1]]], @42], @42],
Coefficient[Collect[Expand[GGI[[2, 1]]], @43], @43], Coefficient[Collect[Expand[GGI[2, 1]]], @44], a44],
Coefficient[Collect[Expand[GGI[[2, 1]]], B11], B11], Coefficient[Collect[Expand[GGI[[2, 1]]1], 812], B12],
Coefficient[Collect[Expand[GG[[2, 1]1], B13], B13], Coeficient[Collect[Expand[GG[[2, 1]1], B14], B14],
Coefficient[Collect[Expand[GG[[2, 1]1], 8211, B21], Coeflicient[Collect[Expand[GG[[2, 1111, B22], B22],
Coefficient[Collect[Expand[GGI[[2, 1]]], 23], B23], Coefficient[Collect[Expand[GG[[2, 1]11], B24], B24],
Coefficient[Collect[Expand[GGI[2, 111], 831], B31], Coefficient[Collect[Expand[GG[[2, 1]1], 832}, B32],
Coefficient[Collect[Expand[GG[[2, 1]1], B33], B33], Coeficient[Collect[Expand[GG[[2, 1]1], 8341, B34],
Coefficient[Collect[Expand[GGI[2, 1111, 8411, B41], Coefficient[Collect[Expand[GGI[2, 1111, 842], B42],
Coefficient[Collect[Expand[GGI[[2, 1]]], B43], B43], Coeflicient[Collect[Expand[GG[[2, 1]1], B44], B44]},
{Coefficient[Collect[Expand[GG[[2, 2]]], @11], a’11], Coefficient[Collect[Expand[GGI[2, 2]]], @12], @12],
Coefficient[Collect[Expand[GGI[2, 2]]], @13], @13], Coefficient[Collect[Expand[GGI[2, 2]]], @14], @14],
Coefficient[Collect[Expand[GGI[2, 2]]], @21], a21], Coefficient[Collect{Expand[GG[[2, 2]1], 22], @22],
Coefficient[Collect[Expand[GGI[2, 2]]], 23], @23], Coefficient[Collect[Expand[GGI[[2, 2]1], @24], a24],
Coefficient[Collect[Expand[GGI[2, 2]]], a31], @31], Coefficient[Collect[Expand[GGI[2, 2]]], @32], @32],
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Coefficient[Collect[Expand[GG[[2, 2]11], @33], a33], Coefficient[Collect[Expand[GGI[[2, 2]]], a34], @'34],
Coefficient[Collect[Expand[GGI[2, 2]]], @41], @41], Coefficient[Collect[Expand[GG[[2, 2]]], @42}, a42],
Coefficient[Collect[Expand[GG[[2, 2]]], @43], a@43], Coefficient[Collect[Expand[GGI[2, 2]]], a44], a44],
Coefficient[Collect[Expand[GG[[2, 2]]], B11], B11], Coefficient[Collect[Expand[GGI[[2, 2]]], B12], B12],
Coefficient[Collect[Expand[GG[[2, 2111, 813], B13], Coefficient[Collect[Expand[GG[[2, 2]1], 814], B14],
Coefficient[Collect[Expand[GGI[2, 2]]], 521], B21], Coefficient[Collect[Expand[GG[[2, 2]]1], B22], B22],
Coefficient[Collect[Expand[GG[[2, 2]]], 823], 823], Coefficient[Collect[Expand[GG[[2, 2]]], 524], B24],
Coefficient[Collect[Expand[GG[[2, 2]]], B31], B31], Coefficient[Collect[Expand[GGI[[2, 2]]], 832], B32],
Coefficient[Collect[Expand[GGI[2, 2]]], 8331, B33], Coeflicient[Collect[Expand[GGI[[2, 2]]1], B34], B34],
Coefficient[Collect[Expand[GGI[2, 2]]], B41], B41], Coefficient[Collect[Expand[GG[[2, 2]]1], B42], B42],
Coeflicient[Collect[Expand[GG[[2, 2111, B43], B43], Coefficient[Collect[Expand[GG[[2, 2111, B44], B441},
{Coefficient[Collect[Expand[GG[[2, 3]]], @11], a11], Coefficient[Collect[Expand[GG[[2, 3]1], @12], a12],
Coefficient[Collect[Expand[GGI[2, 3]]], @13], 13], Coefficient[Collect[Expand[GG[[2, 3]]], @14], a14],
Coefficient[Collect[Expand[GG[[2, 3]11], @21], a21], Coefficient[Collect[Expand[GGI[[2, 3]]], @22], @22],
Coefficient[Collect[Expand[GGI[2, 3]]], @23], 23], Coefficient[Collect[Expand[GG[[2, 3]]], a24], a24],
Coefficient[Collect[Expand[GG[[2, 3]]], @31], @31], Coefficient[Collect[Expand[GG[[2, 3]]], @32], @32],
Coefficient[Collect[Expand[GGI[2, 3]]], @33], @33], Coefficient[Collect[Expand[GG[[2, 3]]], @34}, a34],
Coefficient[Collect[Expand[GG[[2, 3]]], @41], a41], Coefficient[Collect[Expand[GGI[2, 3]]], a42], @42],
Coefficient[Collect[Expand[GGI[2, 3]]], @43], @43], Coefficient[Collect[Expand[GG[[2, 3]]], a44], a44],
Coefficient[Collect[Expand[GG[[2, 3111, B11], B11], Coefficient[Collect[Expand[GG[[2, 3111, 812], B12],
Coeflicient[Collect[Expand[GG[[2, 3111, B13], B13], Coeflicient[Collect[Expand[GG[[2, 31]], B14], B14],
Coefficient[Collect[Expand[GG[[2, 3]]], 821], B21], Coefficient[Collect[Expand[GG[[2, 3]]], 822], B22],
Coefficient[Collect[Expand[GG[[2, 3]1], B23], B23], Coefficient[Collect[Expand[GG[[2, 3]]], B24], B24],
Coefficient[Collect[Expand[GG[[2, 3111, B31], B31], Coefficient[Collect[Expand[GGI[[2, 3111, B32], B32],
Coeflicient[Collect[Expand[GG[[2, 3111, B33], B33], Coeflicient[Collect[Expand[GG[[2, 3111, B34], B34],
Coeflicient[Collect[Expand[GG[[2, 3111, B41], B41], Coefficient[Collect[Expand[GG[[2, 3111, B42], B42],
Coefficient[Collect[Expand[GG[[2, 3]1], B43], B43], Coefficient[Collect[Expand[GG[[2, 3]]1], B44], 441},
{Coeflicient[Collect[Expand[GGI[[2, 4]]], @11], @11], Coefficient[Collect[Expand[GGI[2, 4]]], @12], @12],
Coefficient[Collect[Expand[GGI[2, 4]]], @13], a13], Coefficient[Collect[Expand[GG[[2, 4]]], a14], a'14],
Coefficient[Collect[Expand[GGI[2, 4]]], @21], a21], Coefficient[Collect[Expand[GG[[2, 4]]], a22], a22],
Coefficient[Collect[Expand[GG[[2, 4]]], 23], @23], Coefficient[Collect[Expand[GG[[2, 4]]1], @24], a24],
Coefficient[Collect[Expand[GGI[2, 4]]], @31], @31], Coefficient[Collect[Expand[GG[[2, 4]]], @32}, a32],
Coefficient[Collect[Expand[GG[[2, 4]]], @33], a33], Coefficient[Collect[Expand[GGI[2, 4]]], a@34], a34],
Coefficient[Collect[Expand[GGI[2, 4]]], @41], a@41], Coefficient[Collect[Expand[GG[[2, 4]]], a42], a42],
Coefficient[Collect[Expand[GG[[2, 411], @43], a43], Coefficient[Collect[Expand[GGI[[2, 4111, a44], a:44],
Coefficient[Collect[Expand[GG[[2, 4]]], B11], B11], Coeflicient[Collect[Expand[GG[[2, 4]]], 812}, B12],
Coefficient[Collect[Expand[GG[[2, 41]], 813], B13], Coefficient[Collect[Expand[GG[[2, 4]]], B14], B14],
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Coefficient[Collect[Expand[GG[[2, 4111, 8211, B21], Coefficient[Collect[Expand[GGI[2, 4111, £22], 822],
Coefficient[Collect[Expand[GGI[[2, 4]]], 23], B23], Coeflicient[Collect[Expand[GG[[2, 4]1], B24], 524],
Coefficient[Collect[Expand[GG[[2, 4]1], 831], 831], Coefficient[Collect[Expand[GGI[2, 4]]], 832], 832],
Coefficient[Collect[Expand[GG[[2, 4111, 8331, B33], Coeflicient[Collect[Expand[GG[[2, 4111, 8341, B34],
Coefficient[Collect[Expand[GG[[2, 4111, B41], B41], Coefficient[Collect[Expand[GG[[2, 4111, B42], B42],
Coefficient[Collect[Expand[GGI[[2, 4]]], B43], B43], Coefficient[Collect[Expand[GG[[2, 4]1], B44], B44]},
{Coefficient[Collect[Expand[GG[[3, 11]], a11], a11], Coefficient[Collect[Expand[GGI[3, 111}, @12], @12],
Coefficient[Collect[Expand[GGI[3, 1]]], @13], @13], Coefficient[Collect[Expand[GGI[3, 1]]], @14], @14],
Coefficient[Collect[Expand[GGI[3, 1]]], @21], @21], Coefficient[Collect[Expand[GGI[3, 11]], @22], 22],
Coefficient[Collect[Expand[GGI[3, 1]]], @23], @23], Coefficient[Collect[Expand[GGI[3, 11]], @24], a24],
Coeflicient[Collect[Expand[GGI[3, 1]]], @31], @31], Coefficient[Collect[Expand[GGI[3, 11]], @32], @32],
Coefficient[Collect[Expand[GGI[3, 1]]], @33], @33], Coefficient[Collect[Expand[GGI[3, 11]], @34], @34],
Coefficient[Collect[Expand[GGI[3, 1]]], @41], @41], Coeflicient[Collect[Expand[GGI[3, 1]]], @42], @42],
Coefficient[Collect[Expand[GGI[3, 1]]], @43], @43], Coefficient[Collect[Expand[GGI[3, 11]], a44], a44],
Coeflicient[Collect[Expand[GGI[3, 1]]], B11], B11], Coefficient[Collect[Expand[GG[[3, 1]11], B12], B12],
Coefficient[Collect[Expand[GG[[3, 1111, 8131, 813], Coefficient[Collect[Expand[GGI[3, 1111, 8141, B14],
Coefficient[Collect[Expand[GGI[3, 1]]], 821], B21], Coefficient[Collect[Expand[GG[[3, 1111, B22], 522],
Coefficient[Collect[Expand[GG[[3, 1111, 23], 823], Coefficient[Collect[Expand[GGI[3, 1111, 824], 524],
Coefficient[Collect[Expand[GGI[3, 1]]], B31], B31], Coefficient[Collect[Expand[GG[[3, 1111, 832], B32],
Coefficient[Collect[Expand[GG[[3, 1111, 8331, B33], Coeflicient[Collect[Expand[GG[[3, 1111, 8341, B34],
Coefficient[Collect[Expand[GGI[3, 1]]], 841], B41], Coefficient[Collect[Expand[GGI[3, 1]1], B42], B42],
Coefficient[Collect[Expand[GGI[3, 1111, 843], 843), Coefficient[Collect[Expand[GGI[3, 1111, B44], 441},
{Coeflicient[Collect[Expand[GGI[3, 2]]], @11], a11], Coefficient[Collect[Expand[GGI[3, 2]]], @12}, a12],
Coefficient[Collect[Expand[GGI[3, 2]]], @13], @13], Coefflicient[Collect[Expand[GGI[3, 2]]], @14], 14],
Coefficient[Collect[Expand[GGI[3, 2]]], @21], @21], Coefficient[Collect[Expand[GGI[3, 2]]], @22], a22],
Coefficient[Collect[Expand[GGI[3, 2]1], 23], 23], Coefficient[Collect[Expand[GGI[3, 2], @24, @24],
Coefficient[Collect[Expand[GGI[3, 2]]], @31], @31], Coefficient[Collect[Expand[GGI[3, 2]]], @32], a32],
Coefficient[Collect[Expand[GGI[3, 2]]], @33], @33], Coefficient[Collect[Expand[GGI[3, 2]]1], @34], @34],
Coefficient[Collect[Expand[GGI[3, 2]]], @41], @41], Coefficient[Collect[Expand[GGI[3, 2]]], @42], a42],
Coeflicient[Collect[Expand[GGI[3, 2]]], @43], @43], Coefficient[Collect[Expand[GGI[3, 2]]], @44], a44],
Coefficient[Collect[Expand[GG[[3, 2]1], 8111, B11], Coeflicient[Collect[Expand[GG[[3, 2111, B12], B12],
Coefficient[Collect[Expand[GGI[3, 2]]], B13], B13], Coeflicient[Collect[Expand[GG[[3, 2]1], B14], B14],
Coefficient[Collect[Expand[GG[[3, 2]1], 821], 821], Coefficient[Collect[Expand[GGI[3, 2]1], 22], 822],
Coefficient[Collect[Expand[GGI[3, 2]]], 823], B23], Coefficient[Collect[Expand[GG[[3, 2]1], B24], 24],
Coefficient[Collect[Expand[GG[[3, 2111, 8311, B31], Coeflicient[Collect[Expand[GG[[3, 2111, 8321, 832],
Coefficient[Collect[Expand[GGI[3, 211], 833], 833], Coefficient[Collect[Expand[GGI[[3, 2]1], 834], B34],
Coefficient[Collect[Expand[GGI[3, 2]1], 841], B41], Coefficient[Collect[Expand[GGI[3, 2]1], B42], B42],
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Coefficient[Collect[Expand[GG[[3, 2]1], B43], B43], Coefficient[Collect[Expand[GG[[3, 2]]1], B44], 441},
{Coeflicient[Collect[Expand[GGI[3, 3]]], @11], @11], Coefficient[Collect[Expand[GGI[3, 31]], @12], @12],
Coefficient[Collect[Expand[GG[[3, 31]], a@13], @13], Coefficient[Collect[Expand[GG[[3, 3]1], @14], @14],
Coefficient[Collect[Expand[GGI[3, 3]]], @21], a21], Coefficient[Collect[Expand[GG[[3, 311], a22], a22],
Coefficient[Collect[Expand[GGI[3, 3]]], @23], 23], Coefficient[Collect[Expand[GG[[3, 311], a24], a24],
Coefficient[Collect[Expand[GGI[3, 3]]], @31], a31], Coefficient[Collect[Expand[GG[[3, 3]11], a32], a32],
Coefficient[Collect[Expand[GG[[3, 3111, @33], a33], Coefficient[Collect[Expand[GG[[3, 3]1], @34], @34],
Coefficient[Collect[Expand[GGI[3, 3]]], @41], @41], Coefficient[Collect[Expand[GG[[3, 3]1], @42}, a42],
Coefficient[Collect[Expand[GGI[3, 3]]1], @43], @43], Coefficient[Collect[Expand[GG[[3, 311], @44], a44],
Coefficient[Collect[Expand[GGI[3, 31]], B11], B11], Coefficient[Collect[Expand[GGI[[3, 3111, B12], B12],
Coefficient[Collect[Expand[GGI[3, 31]], 813], B13], Coeflicient[Collect[Expand[GGI[3, 3]1], B14], B14],
Coefficient[Collect[Expand[GGI[3, 31]], 821], B21], Coefficient[Collect[Expand[GGI[3, 3111, 822}, B22],
Coefficient[Collect[Expand[GG[[3, 3]1], B23], 823], Coefficient[Collect[Expand[GGI[[3, 3]]], B24], B24],
Coefficient[Collect[Expand[GG[[3, 3111, 31], B31], Coefficient[Collect[Expand[GGI[3, 311], 832], B32],
Coefficient[Collect[Expand[GGI[3, 3111, 8331, B33], Coeflicient[Collect[Expand[GGI[3, 3111, B34], B34],
Coefficient[Collect[Expand[GG[[3, 3111, B41], B41], Coefficient[Collect[Expand[GG[[3, 3111, 842], B42],
Coefficient[Collect[Expand[GG[[3, 3]]], B43], B43], Coefficient[Collect[Expand[GGI[3, 3]1], B44], B44]},
{Coefficient[Collect[Expand[GG[[3, 4111, @11], a11], Coefficient[Collect[Expand[GG[[3, 4111, @12}, 12],
Coefficient[Collect[Expand[GGI[3, 4]]], @13], a13], Coefficient[Collect[Expand[GG[[3, 4]]], 14], a'14],
Coefficient[Collect[Expand[GGI[3, 4]]], @21], a21], Coefficient[Collect[Expand[GG[[3, 411], @22}, a22],
Coefficient[Collect[Expand[GG[[3, 4]]], @23], 23], Coefficient[Collect[Expand[GGI[3, 4]]], a24], @24],
Coefficient[Collect[Expand[GG[[3, 4]]], a31], a31], Coefficient[Collect[Expand[GG[[3, 4111, @32}, @32],
Coefficient[Collect[Expand[GGI[3, 4]]], @33], @33], Coefficient[Collect[Expand[GG[[3, 411], a34], a34],
Coefficient[Collect[Expand[GGI[3, 4]]1], @41], @41], Coefficient[Collect[Expand[GG[[3, 4]1], @42}, a42],
Coefficient[Collect[Expand[GGI[3, 4]]], @43], @43], Coefficient[Collect[Expand[GG[[3, 4]]], a44], a44],
Coefficient[Collect[Expand[GG[[3, 4111, 811], B11], Coefficient[Collect[Expand[GG[[3, 4111, 812], B12],
Coefficient[Collect[Expand[GGI[3, 411, B813], B13], Coefficient[Collect[Expand[GGI[3, 4111, B14], B14],
Coefficient[Collect[Expand[GG[[3, 41]], 821], B21], Coeflicient[Collect[Expand[GG[[3, 41]], 822}, B22],
Coefficient[Collect[Expand[GGI[3, 4]]], 523], B23], Coefficient[Collect[Expand[GGI[[3, 4111, B24], 524],
Coefficient[Collect[Expand[GGI[3, 4]]], B31], B31], Coefficient[Collect[Expand[GGI[3, 4111, B32], B32],
Coefficient[Collect[Expand[GG[[3, 4111, 8331, B33], Coefficient[Collect[Expand[GG[[3, 4111, 8341, B34],
Coefficient[Collect[Expand[GGI[3, 4]]], B41], B41], Coefficient[Collect[Expand[GGI[[3, 4111, B42], B42],
Coefficient[Collect[Expand[GG[[3, 4111, B43], B43], Coeflicient[Collect[Expand[GG[[3, 4111, B44], B441},
{Coeflicient[Collect[Expand[GGI[4, 1]]], @11], @11], Coefficient[Collect[Expand[GGI[4, 1]]], @12], @12],
Coefficient[Collect[Expand[GG[[4, 1]]], @13], @13], Coefficient[Collect[Expand[GG[[4, 1]]1], a14], a14],
Coefficient[Collect[Expand[GG[[4, 1]]], @21], @21], Coefficient[Collect[Expand[GG[[4, 1]]], a22], @22],
Coeflicient[Collect[Expand[GG[[4, 11]], 23], a23], Coefficient[Collect[Expand[GG[[4, 1111, a24], a:24],
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Coefficient[Collect[Expand[GG[[4, 1]1], @31], a31], Coefficient[Collect[Expand[GG[[4, 1111, a32], a32],
Coefficient[Collect[Expand[GGI[[4, 1]]], @33], @33], Coefficient[Collect[Expand[GGI[[4, 1]]], @34], @34],
Coefficient[Collect[Expand[GG[[4, 1]]], @41], a41], Coefficient[Collect[Expand[GGI[4, 1]1], a42], @42],
Coefficient[Collect[Expand[GGI[4, 1]]], @43], @43], Coefficient[Collect[Expand[GGI[4, 1]]], @44], a44],
Coefficient[Collect[Expand[GG[[4, 1]1], B11], B11], Coefficient[Collect[Expand[GG[[4, 1111, B12], B12],
Coefficient[Collect[Expand[GGI[4, 111], 813], 813], Coefficient[Collect[Expand[GG[[4, 1111, 814], B14],
Coefficient[Collect[Expand[GG[[4, 1111, 821], 821], Coefficient[Collect[Expand[GGI[4, 1111, 822], B22],
Coefficient[Collect[Expand[GGI[4, 1]]], B23], B23], Coefficient[Collect[Expand[GG[[4, 1]11], B24], 24],
Coefficient[Collect[Expand[GGI[4, 1]]], 831], B31], Coefficient[Collect[Expand[GGI[4, 1111, 832], B32],
Coefficient[Collect[Expand[GGI[4, 111], 833], B33], Coefficient[Collect[Expand[GG[[4, 1111, B34], B34],
Coeflicient[Collect[Expand[GGI[[4, 1]]], B41], B41], Coefficient[Collect[Expand[GG[[4, 1]11], B42], B42],
Coefficient[Collect[Expand[GGI[4, 1]]], B43], B43], Coefficient[Collect[Expand[GG[[4, 1]1], B44], B44]},
{Coefficient[Collect[Expand[GG[[4, 2]]], @11], a11], Coeflicient[Collect[Expand[GGI[[4, 2]]], @12], @12],
Coefficient[Collect[Expand[GGI[[4, 2]]], @13], @13], Coefficient[Collect[Expand[GGI[[4, 2]]], @14], 14],
Coeflicient[Collect[Expand[GGI[[4, 2]]], @21], @21], Coefficient[Collect[Expand[GGI[4, 2]]], @22], a22],
Coefficient[Collect[Expand[GG[[4, 2]]], 23], a23], Coefficient[Collect[Expand[GGI[4, 2]1], a24], a24],
Coefficient[Collect[Expand[GGI[[4, 2]]], @31], @31], Coefficient[Collect[Expand[GGI[[4, 2]]], @32], @32],
Coefficient[Collect[Expand[GG[[4, 2]]], @33], @33], Coefficient[Collect[Expand[GGI[4, 2]1], @34], a34],
Coefficient[Collect[Expand[GGI[4, 2]]], @41], @41], Coefficient[Collect[Expand[GGI[4, 2]]], @42], @42],
Coefficient[Collect[Expand[GG[[4, 2]1], @43], a@43], Coefficient[Collect[Expand[GGI[4, 2111, a44], a44],
Coefficient[Collect[Expand[GG{[4, 2]1], B11], B11], Coefficient[Collect[Expand[GG[[4, 2]1], 812], B12],
Coefficient[Collect[Expand[GG[[4, 2]]], 813], 813], Coefficient[Collect[Expand[GGI[4, 2]]], B14], B14],
Coefficient[Collect[Expand[GGI[4, 2]]], B21], B21], Coefficient[Collect[Expand[GG[[4, 2]1], B22], B22],
Coefficient[Collect[Expand[GGI[4, 2]1], 23], 823], Coefficient[Collect[Expand[GGI[4, 2]1], 524], 524],
Coefficient[Collect[Expand[GGI[4, 2]1], 831], B31], Coefficient[Collect[Expand[GG[[4, 2]1], 832}, B32],
Coefficient[Collect[Expand[GG[[4, 2]1], 833], 833], Coefficient[Collect[Expand[GGI[4, 2]1], 834], B34],
Coefficient[Collect[Expand[GGI[4, 2]]], B41], B41], Coefficient[Collect[Expand[GG[[4, 2]1], B42], B42],
Coefficient[Collect[Expand[GGI[4, 2]]], B43], B43], Coeflicient[Collect[Expand[GG[[4, 2]1], B44], B44]},
{Coefficient[Collect[Expand[GG[[4, 3]]], @11], a11], Coefficient[Collect[Expand[GGI[[4, 3]]], @12], @12],
Coeflicient[Collect[Expand[GGI[[4, 3]]], @13], @13], Coefficient[Collect[Expand[GGI[4, 3]]], @14], @14],
Coefficient[Collect[Expand[GGI[4, 3]]], @21], @21], Coefficient[Collect[Expand[GGI[4, 31]], @22], 22],
Coefficient[Collect[Expand[GGI[[4, 3]]], @23], @23], Coefficient[Collect[Expand[GGI[[4, 3]]], @24], @24],
Coefficient[Collect[Expand[GG[[4, 3]]], @31], @31], Coefficient[Collect[Expand[GGI[4, 3]1], @32], @32],
Coefficient[Collect[Expand[GGI[4, 3]]], @33], @33], Coefficient[Collect[Expand[GGI[4, 31]], @34], @34],
Coefficient[Collect[Expand[GG[[4, 3]1], @41], a41], Coefficient[Collect[Expand[GGI[4, 3111, @42], a42],
Coefficient[Collect[Expand[GGI[4, 3]]], @43], @43], Coefficient[Collect[Expand[GGI[[4, 3111, a44], a44],
Coefficient[Collect[Expand[GG[[4, 3111, B11], B11], Coefficient[Collect[Expand[GGI[4, 3]1], 12], B12],

261



D. MATHEMATICA CODE TO CALCULATE PAIRING AMPLITUDES IN METALLIC REGION

Coeflicient[Collect[Expand[GG[[4, 3]]], B13], B13], Coeflicient[Collect[Expand[GG[[4, 3]]], B14], B14],

Coefficient[Collect[Expand[GG[[4, 3111, B21], B21], Coefficient[Collect[Expand[GG[[4, 3111, 822], B22],

Coefficient[Collect[Expand[GG[[4, 3111, 823], 823], Coeflicient[Collect[Expand[GG[[4, 3111, 524], B24],

Coefficient[Collect[Expand[GGI[4, 31]], B831], B31], Coefficient[Collect[Expand[GGI[[4, 3111, B32], B32],

Coefficient[Collect[Expand[GG[[4, 3111, B33], B33], Coefficient[Collect[Expand[GG[[4, 3111, 834], B34],

Coefficient[Collect[Expand[GGI[4, 3]]], 41], B41], Coefficient[Collect[Expand[GG[[4, 3]]1], B42], B42],

Coefficient[Collect[Expand[GG[[4, 3111, B43], B43], Coeflicient[Collect[Expand[GG[[4, 3111, B44], B441},
{Coeflicient[Collect[Expand[GGI[[4, 4]]], @11], @11], Coefficient[Collect[Expand[GGI[4, 4]]], @12], a12],
Coefficient[Collect[Expand[GGI[4, 4]]], @13], a13], Coefficient[Collect[Expand[GG[[4, 4]1], @14], a14],
Coefficient[Collect[Expand[GG[[4, 4]]], a21], a21], Coefficient[Collect[Expand[GGI[4, 4]]], a22], @22],
Coefficient[Collect[Expand[GGI[4, 4]]], @23], 23], Coefficient[Collect[Expand[GG[[4, 4]]], a24], a24],
Coefficient[Collect[Expand[GGI[4, 4]]], @31], a31], Coefficient[Collect[Expand[GG[[4, 4]1], @32}, a32],
Coefficient[Collect[Expand[GGI[[4, 4]]], @33], @33], Coefficient[Collect[Expand[GG[[4, 4]]], a34], a34],
Coefficient[Collect[Expand[GG[[4, 4]]], a@41], a41], Coefficient[Collect[Expand[GGI[4, 4]]], a42], a42],
Coefficient[Collect[Expand[GGI[4, 4]]], @43], @43], Coefficient[Collect[Expand[GG[[4, 4]]1], a44], a44],
Coefficient[Collect[Expand[GG[[4, 4111, B11], B11], Coefficient[Collect[Expand[GGI[[4, 41]], B12], B12],

Coefficient[Collect[Expand[GGI[4, 4]]], B813], B13], Coeflicient[Collect[Expand[GG[[4, 4111, B14], B14],

Coefficient[Collect[Expand[GG[[4, 4111, 821], B21], Coefficient[Collect[Expand[GG[[4, 4111, 822], B22],

Coefficient[Collect[Expand[GGI[4, 4]]], 23], B23], Coefficient[Collect[Expand[GGI[[4, 4111, B24], B24],

Coefficient[Collect[Expand[GG[[4, 4111, B31], B31], Coefficient[Collect[Expand[GG[[4, 4111, 832], B32],

Coefficient[Collect[Expand[GG[[4, 4111, 833), B33], Coefficient[Collect[Expand[GGI[[4, 4111, B34], B34],

Coefficient[Collect[Expand[GG[[4, 4111, B41], B41], Coeflicient[Collect[Expand[GG[[4, 4111, B42], B42],

Coefficient[Collect[Expand[GGI[4, 4]]], B43], B43], Coeflicient[Collect[Expand[GG[[4, 4111, B44], B441},
{Expand[Coefficient[Collect[Expand[GG3[[1, 1]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 11]], @12], @12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 11]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 11]], @14], @14] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[1, 11]], @21], a21] = (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 11]], @22], a22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 1]]], 23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[1, 11]], @24], a24] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 11]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 11]], @32], @32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 11]], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 11]], @34], @34] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 1]]], @41], @41] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 11]], @42], @42] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 1]]], @43], @43] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 1]]], @44], a44] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 1]]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 111}, B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 11]], 813], B13] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[1, 1]11], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 11]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 1]11], 822], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 11]], 23], B23] * (-I)], Expand[Coeflicient[Collect[Expand[GG3[[1, 1111, B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 1]]], 831}, B31] * (-I)], Expand[Coefficient[Collect[Expand[GG3|[[1, 1111, B32], B32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 11]], 8331, B33] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[1, 1]11], B34], B34] * (-I)],

262



Expand[Coefficient[Collect[Expand[GG3[[1, 1]]], 841], B41] * (1)), Expand[Coefficient[Collect[Expand[GG3I[[1, 1111, B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 11]], 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 1]1], B44], B44] « (-I)1},
{Expand[Coefficient[Collect[Expand[GG3|[[1, 2]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @12], @12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @14], @14] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @21], @21] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @22], @22] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 2]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @24], @24] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @32], @32] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @34], @34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 2]]], @43], @43] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 2]1], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 2111, 813, 813] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 2111, 8141, B14] * (—I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 2]]], 821], B21] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 2]1], B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], 23], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 2]1], 824], B24] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], 831], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 2]1], B32], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 2]]], 833], B33] * (1)), Expand[Coefficient[Collect[Expand[GG3I[[1, 2111, B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 2]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 2]1], B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 2]]], 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 2]1], B44], B44] * (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[1, 3]]], @11], @11] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]], @12], @12] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[1, 3]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[1, 3111, @14], @14] = (-D)],
Expand[Coefficient[Collect[Expand[GG3[[1, 31]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]], @22], @22] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 3]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]], @24], @24] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[1, 3]]], @31], @31] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]], @32], @32] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 3]]], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]1], @34], @34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 31]], @41], @41] = (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 31]], @42], @42] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 3]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 31]], @44], @44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[1, 3111, 8111, B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 3111, 8121, B12] * (—-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 3111, 8131, B13] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[1, 3111, B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 3111, 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 3]11], 822], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 3111, 23], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 311], B24], B24] *+ (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 31]], 8311], B31] * (-1I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 3111, B32], 832] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 3111, B33], B33] * (1)), Expand[Coefficient[Collect[Expand[GG3[[1, 3111, B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 3111, B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 3]1], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 3111, 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 311], B44], B44] + (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[1, 4111, a@11], a11] * (-1I)], Expand[Coefficient[Collect[Expand[GG3[[1, 4111, @12], @12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 4]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[1, 41]], @14], a14] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 4]]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 41]], @22], @22] * (-1I)],
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Expand[Coefficient[Collect[Expand[GG3I[[1, 41]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 41]], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 4]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 4]]], @32], @32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 4111, @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[1, 41]], @34], @34] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 4]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 41]], @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 4111, @43], @43] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[[1, 41]], @44], a44] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 4]]], 811], B11] * (—I)], Expand[Coefficient[Collect{[Expand[GG3[[1, 411], 812], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 4]]], 813], B13] * (—1I)], Expand[Coefficient[Collect[Expand[GG3[[1, 411], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 41]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 411}, B22], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 4111, 8231, B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 411], B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[1, 4]]], 8311, B31] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[1, 411], 832], B32] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[1, 4111, 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 411], B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[1, 41]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[1, 411], B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[1, 4]]], B43], B43] * (—1)], Expand[Coefficient[Collect[Expand[GG3[[1, 41]], B44], B44] = (1)1},
{Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @12], @12] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]1], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]]1], @14], a14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 11]], @22], a22] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @32], @32] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]1], @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, @34], a34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]1], @41], a41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @43], @43] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1111, 8111, B11] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, B12], B12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1111, 8131, 13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], 821], B21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[2, 11]], 23], B23] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[2, 1]11], 524], B24] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 1]]], B31], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1]1], B32], B32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 11]], B33], B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 1111, B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[2, 1]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 111], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[2, 11]], 843], B43] * (—I)], Expand[Coefficient[Collect{[Expand[GG3[[2, 11]], B44], B44] * (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @11], @11] * (~I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @12], @12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[2, 2]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @22], @22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @24], @24] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], @31], @31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]1], @32], @32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @34], a34] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @41], @41] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @42], a42] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], @43], @43] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[2, 2]]], @44], a44] * (-1)],
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Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], 811], B11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], 8131, B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], 821], B21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], 8231, 23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], B31], B31] * (—~I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2111, B32], B32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], 8331, B33] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[2, 2]1], B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], B41], B41] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 2]1], 843], B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 2]]], B44], B44] = (-I)]1},
{Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @12], @12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @14], @14] = (-I)],
Expand[Coeficient[Collect[Expand[GG3[[2, 3]1], @21], @21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3]]1], @22}, @22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 31]], @24], a24] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 31]], @32], @32] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @33], @33] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[2, 311}, @34], a34] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]1], @41], @41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 311], @44], a44] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]1], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 311], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], B13], B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3]1], B14], B14] = (-I)],
Expand[Coeficient[Collect[Expand[GG3[[2, 311, 8211, B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3111, 823], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]]1], B31], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3]]], B32], B32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3111, 8331, B33] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, 8341, B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3111, B41], B41] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 3]1], B43], B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 3111, B44], B44] = (-I)]1},
{Expand[Coeflicient[Collect[Expand[GG3[[2, 4]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @12], @12] * (-I)],
Expand[Coeficient[Collect[Expand[GG3[[2, 4]1], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]1], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @22], a22] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]1], @23], @23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 41]], @24], @24] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @32], @32] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4111, @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 41]1], @34], a34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @41], @41] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @42], a42] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]1], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]1], B12], B12] = (-I)],
Expand[Coeficient[Collect[Expand[GG3[[2, 4111, 8131, B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4111, B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 41]], 821], B21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4111, B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 41]], 823], B23] * (1)), Expand[Coefficient[Collect[Expand[GG3[[2, 4111, B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4111, 8311, B31] * (=I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4111, 832], B32] * (-I)],
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Expand[Coefficient[Collect[Expand[GG3[[2, 411, 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 411), B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]1], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[2, 4]]], 843], B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[2, 4]]], B44], B44] = (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[3, 1]]], @11], @11] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @12], @12] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 1]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @21], @21] * (-1I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @22], @22] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 1]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @24], @24] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3|[3, 1]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @32], @32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 11]1], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @34], @34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @41], @41] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @42], @42] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 1]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 11]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 111], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 11]], 8131, B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 111], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 11]], 821], B21] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 111], 822], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 11]], 823], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 111], 824], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 11]], 831], B31] * (-1I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 1111, B32], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 1111, 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 111], B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 11]], 841], B41] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 111], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 11]], 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 111], B44], B44] = (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[3, 2]]], @11], @11] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 2]1], @12], @12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @14], @14] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @21], @21] * (-1I)], Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], @22], @22] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]], @32], @32] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]]1], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], @34], @34] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 2]1], @41], @41] = (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 2]1], @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], @44], a44] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 211], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], 813], B13] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 2]1], B14], B14] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 211}, 822], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 2]]], 823], B23] * (-1)], Expand[Coefficient[Collect[Expand[GG3[[3, 2111, 8241, B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 2]]], 8311, B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 211}, B32], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], 8331, B33] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 2]1], B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 2]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 211], B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 2]1], 843], B43] * (-1)], Expand[Coefficient[Collect[Expand[GG3[[3, 211], B44], B44] = (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[3, 31]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[3, 311, @12], @12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 3]]], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 3]]], @14], @14] = (-1)],
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Expand[Coefficient[Collect[Expand[GG3[[3, 3]]1], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[3, 311], @22], a22] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[3, 3]]1], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 311], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 31]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[3, 31]], @32], @32] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 3]]], @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[3, 31]], @34], @34] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 31]1], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[3, 31]1], @42], @42] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 31]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 31]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 31]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 3111, B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 3111, 813], B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 311], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 3111, 821], B21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[3, 3111, £22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 3111, 23], B23] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 3111, 524], B24] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 3111, 831], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 311], 832], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 311, 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 311], B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 3]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 3111, B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 3111, 8431, B43] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 3111, 844], B44] * (-1)1},
{Expand[Coefficient[Collect[Expand[GG3[[3, 4]]], @11], a11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 4]]1], @12], @12] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 4]]1], @13], @13] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 41]], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 4]]1], @21], @21] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 41]1], @22], @22] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 4]]1], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 41]], @24], @24] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[3, 4]]], @31], @31] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[3, 41]], @32], @32] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 4]]1], @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[3, 41]1], @34], @34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 4]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 41]], @42], @42] = (-1)],
Expand[Coefficient[Collect[Expand[GG3|[[3, 4]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[3, 41]], @44], @44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 41]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 411], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 4]1], 8131, B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 411], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 411, 521], B21] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 4111, 822], B22] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 411, 23], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 411], 824], B24] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 4111, 8311, B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 4111, 832], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[3, 411, 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 4111, B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[3, 4111, 841], B41] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[3, 4111, B42], B42] * (-1)],
Expand[Coefficient[Collect[Expand[GG3I[3, 4111, 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[3, 411], B44], B44] + (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[4, 1]1], @11], a11] * (-1)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]11], @12], @12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @13], @13] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @21], @21] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 11]], @22], @22] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @23], @23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 11]], @24], @24] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 11]], @32], a32] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 11]], @34], a34] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 11]], @42], @42] = (-1I)],
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D. MATHEMATICA CODE TO CALCULATE PAIRING AMPLITUDES IN METALLIC REGION

Expand[Coefficient[Collect[Expand[GG3I[[4, 1]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], @44], a44] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 1]]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 111], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 11]], 813], B13] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[4, 1]11], B14], B14] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 11]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]11], 822], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 11]], 23], B23] * (-I)], Expand[Coeflicient[Collect[Expand[GG3[[4, 1111, B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 11]], 831], B31] * (—I)], Expand[Coefficient[Collect{[Expand[GG3[[4, 1]11], 832], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 11]], 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]11], B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 1]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 1]11], B42], B42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 11]], 8431, B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 111], B44], B44] + (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @11], @11] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @12], @12] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @14], @14] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 2]]], @21], @21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @22], @22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @23], @23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @31], @31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @32], @32] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @33], @33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @34], @34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 2]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @43], @43] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], @44], a44] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], B11], B11] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[4, 2]11], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 2]]], B13], B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]11], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2111, B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], 23], B23] * (—I)], Expand[Coefficient[Collect{[Expand[GG3[[4, 2]1], 524], B24] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], 831], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]11], 832], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 2]]], 8331, B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]11], B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]11], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 2]]], 843], B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 2]1], 844], B44] * (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[4, 3], a11], a11] * (—I)), Expand[Coefficient[Collect[Expand[GG3[[4, 311], @12}, a12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 31]], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3I[[4, 3]]], @14], @14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3]]1], @21], @21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 31]], @22], @22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @23], @23] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @24], @24] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 31]], @31], @31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @32], @32] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 31]1], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @34], @34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @42], @42] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @43], @43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 31]], B11], B11] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 311], B12], B12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 31]], 8131, B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 311], B14], B14] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3]1], B21], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3]]], B22], B22] = (-I)],
Expand[Coefficient[Collect[Expand[GG3I[[4, 31]], 23], B23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 311], B24], B24] * (-I)],
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Expand[Coefficient[Collect[Expand[GG3[[4, 31]], 831], B31] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3111, B32], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 3111, B33], B33] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 3111, B34], B34] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 31]], B41], B41] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[4, 3]11], B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 311], 843], B43] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 311], B44], B44] + (-I)1},
{Expand[Coefficient[Collect[Expand[GG3[[4, 4]11], a@11], a11] * (-1I)], Expand[Coefficient[Collect[Expand[GG3[[4, 411], @12], @12] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @13], @13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @14], @14] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @21], @21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 41]], @22], @22] * (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @23], @23] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @24], @24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]1], @31], @31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 41]1], @32], @32] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @33], @33] * (-I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @34], @34] * (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @41], @41] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 41]], @42], @42] = (-1I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @43], @43] = (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], @44], a44] = (-1)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], B11], B11] * (-1I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B12], B12] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], 813], B13] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4]1], B14], B14] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], 821], B21] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B22], B22] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 411, 823], B23] * (-1I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B24], B24] = (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]1], B831], B31] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B32], B32] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 411, 8331, B33] * (—I)], Expand[Coefficient[Collect{Expand[GG3[[4, 4111, B34], B34] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4]]], B41], B41] * (—I)], Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B42], B42] * (-I)],
Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B43], B43] = (-I)],

Expand[Coefficient[Collect[Expand[GG3[[4, 4111, B44], B44] * (=1)]1}});

H = ({{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {n/I}, {0}, {0}, {0}, {0}, {n/1}, {0}, {0},

{0}, {0}, {-n/I}, {0}, {0}, {0}, {0}, {-n/1}});

SOL = LinearSolve[G, H];

all = SOL[[1, 1]]; @12 = SOL[[2, 1]]; @13 = SOLI[3, 1]]; @14 = SOL[[4, 1]]; @21 = SOL([[S, 11]; @22 = SOL[[6, 11];

a23 = SOL[[7, 1]]; @24 = SOL([[8, 1]]; @31 = SOLI[[9, 1]}; @32 = SOLI[[10, 1]]; @33 = SOL[[11, 1]]; @34 = SOL[[12, 1]];

a4l = SOL[[13, 11]; @42 = SOL[[14, 1]]; @43 = SOL[[15, 1]]; @44 = SOLI[[16, 11]; 811 = SOL[[17, 11]1; 812 = SOL[[18, 1]];

B13 = SOL[[19, 1]]; 814 = SOL[[20, 1]]; 821 = SOL[[21, 1]]; 822 = SOL[[22, 1]]; 823 = SOL[[23, 1]]; 824 = SOL[[24, 11];

B31 = SOL[[25, 1]]; B32 = SOL[[26, 1]]; 833 = SOL[[27, 1]]; 834 = SOL[[28, 1]]; 841 = SOL[[29, 1]]; 842 = SOL[[30, 1]];

P43 = SOL[[31, 1]]; 844 = SOL[[32, 1]];

fO[x_, x1_]:=Piecewise[ { { (Grl[x, x1][[1, 4]] — Grl[x, x1][[2, 3]11)/2, x < x1}, {(Grg[x, x1][[1, 4]] — Grg[x, x1][[2, 3]1)/2, x > x1}}];

f1[x_, x1_]:=Piecewise[{ {(Grl[x, x1][[2, 4]] - Grl[x, x1][[1, 311)/2, x < x1}, {(Grglx, x1][[2, 4]] - Grglx, x1][[1, 31D)/2, x > x1}}];

f2[x_, x1_]:=Piecewise[{ { (Grl[x, x1][[2, 4]] + Grl[x, x1][[1, 311)/(2I), x < x1}, {(Grg[x, x1][[2, 4]] + Grg[x, x1][[1, 311)/(2I), x > x1}}];
3[x_, x1_J]:=Piecewise[{ {(Grl[x, x1][[1, 41] + Grl[x, x11[[2, 311)/2, x < x1}, {(Grg[x, x1][[L, 411 + Grg[x, x1][[2, 311)/2, x > x1}}];

f11[x_, x1_]:=I * f2[x, x1] — f1[x, x1];

22[x_, x1_]:=I * f2[x, x1] + f1[x, x1];

269






Appendix E

Mathematica code to calculate
anomalous Josephson current and

anomalous phase

E.1 Anomalous Josephson current

The Mathematica code mentioned below calculates anomalous Josephson current flowing
through the ferromagnetic Josephson junction in the presence of a spin-flipper as shown
in Fig. 4.13 of chapter 4. The time required to run this Mathematica code is less than 5
minutes. Herein, Fig. 4.15(a) of chapter 4 is generated using the Mathematica program

below.

Clear[u, v];
Z=0;p=05y=>0+p)"(1/2):;yl=1-p)*(1/2);s =1/2;m =1/2;S = 1/2;ml = —1/2;kFa = Pij;

SetShared Variable[list]

271



E. MATHEMATICA CODE TO CALCULATE ANOMALOUS JOSEPHSON CURRENT AND
ANOMALOUS PHASE

list = {};

ParallelDo[ {

61 = Pi/2;62 = 0;F1 = Sqrt[(s + m) * (s — m + 1)]; F2 = Sqrt[(S — m1) * (S + m1 + 1)];

A=

Det[({{u * Exp[I = kFa/2],0, 0, v * Exp[—I * kFa/2], —Cos[61/2], —Exp[I * kFa = y /2] * Cos[01/2], —I * Sin[61/2],

—1I = Sin[61/2] « Exp[I *kFa*y1/2},0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, u = Exp[I % kFa/2], —v = Exp[—I = kFa/2], 0, —I * Sin[61/2], —I * Sin[01/2] = Exp[I * kFa = y /2], —Cos[01/2],

—Expl[I = kFa % y1/2] * Cos[01/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, —v = Exp[/ * kFa/2), u * Exp[-I % kFa/2],0,0, 0, 0, 0, —Cos[81/2], —Exp[—I * kFa x y /2] * Cos[01/2], I = Sin[61/2],

I % Sin[61/2] = Exp[-I *kFa*y1/2],0,0,0,0,0,0,0,0,0,0,0,0},

{v = Exp[I = kFa/2], 0, 0, u * Exp[—I * kFa/2],0,0,0, 0, I * Sin[61/2], I * Sin[61/2] = Exp[-I = kFa % y/2], —Cos[61/2],

—Exp[-1 * kFa * y1/2] * Cos[01/2],0,0,0,0,0,0,0,0, 0,0, 0, 0},

{u * Exp[I *kFa/2],0,0, —v = Exp[-I «kFa/2], (y + I *2 % Z) * Cos[01/2], (I 2 * Z —y) * Cos[01/2] x Exp[I = kFa = y/2],

(I *2%Z+yl)*I*Sin[01/2], (I *2* Z —yl) = I = Sin[01/2] = Exp[I *kFa=y1/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, u * Exp[I = kFa/2), v * Exp[—I *kFa/2],0, (y + I *2* Z) * I % Sin[01/2], (I *2% Z —y) * I = Sin[01/2] = Exp[] * kFa  y/2],
(I %2+ Z+yl)*Cos[01/2], (I *2+ Z — y1) * Cos[61/2] * Exp[I *kFa*y1/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, —v = Exp[I * kFa/2], —u = Exp[-I *kFa/2],0,0,0,0,0, (I *2 * Z — y) * Cos[01/2], (I *2 * Z + y) * Exp[—I * kFa % y /2] x Cos[01/2],
(Y1 -1 2% Z)*1I%Sin[01/2), —(y1 + I 2+ Z) « Exp[-I *kFa*y1/2] * I % Sin[61/2],0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0},

{v = Exp[I *kFa/2],0, 0, —u * Exp[-I *kFa/2],0,0,0,0, —(I *2+ Z —y) * I * Sin[61/2],

—(I *2%Z +y)*Exp[-I *kFaxy/2] I = Sin[01/2], (I *2* Z —yl) * Cos[01/2], (I *2 * Z + y1) = Exp[—I * kFa * y1/2] * Cos[61/2],

0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0, 0, Exp[ » kFa * y/2] * Cos[61/2], Cos[601/2], Exp[] * kFa % y1/2] % I * Sin[61/2],
I *Sin[61/2], 0, 0, 0, 0, —Cos[62/2], —Exp[I * kFa % y /2] * Cos[02/2], —I * Sin[62/2], —Exp[I * kFa * y1/2] * I * Sin[62/2],
0,0,0,0,0,0,0,0}, {0,0,0, 0, Exp[ + kFa * y/2] + I + Sin[61/2], I * Sin[61/2], Exp[I * kFa * y1/2] + Cos[61/2],

Cos[61/2],0,0,0, 0, —I = Sin[02/2], —Exp[I * kFa * y /2] * I * Sin[02/2], —Cos[62/2], —Exp[I * kFa * y1/2] * Cos[62/2],

272



E.1. Anomalous Josephson current

0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0, Exp[—I * kFa * y/2] * Cos[61/2], Cos[61/2], —Exp[—I * kFa x y1/2] = I % Sin[61/2],

—I % Sin[601/2], 0, 0, 0, 0, —Cos[62/2], —Exp[—1I = kFa * y/2] + Cos[62/2], I * Sin[02/2], Exp[—I * kFa % y1/2] * I * Sin[62/2], 0, 0, 0, 0},

{0,0,0,0,0,0,0,0, —Exp[—I * kFa = y/2] * I » Sin[01/2], —I = Sin[01/2], Exp[—I * kFa % y1/2] * Cos[61/2], Cos[61/2],
0,0,0,0, I *Sin[02/2], Exp[—I * kFa *y/2] * I % Sin[02/2], —Cos[62/2], —Exp[—I * kFa % y1/2] « Cos[62/2], 0, 0, 0, 0},
{0,0,0,0, (I 2+ J * m * ml x Cos[01/2] — J * F1 «* F2 x Sin[01/2] + y * Cos[01/2]) * Exp[I = kFa * y/2],

(I *2+J *m=+ml = Cos[@1/2] — J * F1 « F2 x Sin[01/2] — y * Cos[81/2]),

(2% J *(m—1) = (ml + 1) * Sin[61/2] + I * J *F1 x F2 * Cos[61/2] + y1 * I * Sin[01/2]) * Exp[[ * kFa * y1/2],
(2% J * (m—1) = (ml + 1) * Sin[01/2] + I + J x F1 x F2 * Cos[01/2] — y1 = I * Sin[81/2]), 0, 0, 0, 0, —y = Cos[62/2],
y * Exp[I * kFa x y /2] * Cos[62/2], —y1 = I = Sin[62/2], y1 = Exp[I * kFa = y1/2] = I * Sin[62/2],0,0,0,0, 0,0, 0, 0},
{0,0,0,0, (-2 J * m *ml = Sin[01/2] + I * J * F1 * F2 x Cos[01/2] + y = I = Sin[01/2]) * Exp[I = kFa * y/2],

(=2*J *m+ml *Sin[01/2] + I * J * F1 * F2 * Cos[01/2] —y * I * Sin[01/2]),
(I*2%J%*(@m—1)*(ml+1)=*Cos[01/2] — J *F1 * F2 % Sin[01/2] + y1 * Cos[61/2]) * Exp[I * kFa = y1/2],

(I *2%J*(m—1)*(@ml+ 1) «Cos[01/2] — J xF1 x F2 x Sin[01/2] — y1 * Cos[81/2]), 0, 0, 0, 0, —y * I * Sin[62/2],

y * Exp[ *kFa *y/2] * I * Sin[62/2], —y1 * Cos[02/2], y1 = Exp[I * kFa = y1/2] * Cos[62/2],0,0,0, 0, 0, 0, 0, 0},
{0,0,0,0,0,0,0,0, (I *2%J * (m —1) * (ml + 1) * Cos[01/2] + J = F1 * F2 = Sin[01/2] — y * Cos[01/2]) * Exp[—I * kFa x y /2],
(I *2%J*(@m—-1)*(ml+1)*Cos[61/2] + J *F1 * F2 x Sin[01/2] + y * Cos[01/2]),

(2*J *m=+ml *Sin[01/2] + I * J *F1 * F2 * Cos[01/2] + y1 * I % Sin[01/2]) * Exp[—I * kFa  y1/2],

(2*J *m=+ml *Sin[01/2] + I +J *F1 x F2 + Cos[61/2] — y1 = I % Sin[01/2]), 0,0, 0, 0, y * Cos[62/2],

—y * Exp[—1I *kFa * y/2] * Cos[62/2], -yl * I » Sin[62/2], y1 * Exp[—I * kFa % y1/2] = I * Sin[62/2], 0, 0, 0, 0},
{0,0,0,0,0,0,0,0, (2% J * (m — 1) * (m1 + 1) = Sin[01/2] + I * J * F1 * F2 * Cos[01/2] + y = I = Sin[01/2]) * Exp[—I * kFa x y /2],
(2*J*(m—1)*(ml + 1) = Sin[61/2] + I = J *F1 *F2 « Cos[61/2] — y * I * Sin[61/2]),

(I *2%J *m*ml = Cos[01/2] + J = F1 = F2 = Sin[61/2] — y1 * Cos[61/2]) = Exp[—I * kFa = y1/2],

(I #*2%J *m=+ml = Cos[01/2] + J * F1 * F2 x Sin[01/2] + y1 * Cos[01/2]), 0, 0, 0, 0, —y * I * Sin[62/2],

y * Exp[—1I = kFa % y/2] * I * Sin[02/2], y1 * Cos[62/2], —y1 * Exp[—I * kFa * y1/2] * Cos[62/2], 0, 0, 0, 0},
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{0,0,0,0,0,0,0,0,0,0,0,0, Exp[ * kFa * y/2] * Cos[02/2], Cos[62/2], Exp[] * kFa * y1/2] = I = Sin[02/2],

I % Sin[62/2],0,0, 0, 0, —u * Exp[I * ¢] = Exp[I = kFa/2], 0, 0, —v = Exp[I = ¢] * Exp[—I * kFa/2]},
{0,0,0,0,0,0,0,0,0,0,0,0, Exp[I = kFa *y/2] I * Sin[62/2], I * Sin[62/2], Exp[] * kFa % y1/2] * Cos[62/2],
Cos[602/2],0,0,0, 0, 0, —u = Exp[I * ¢] * Exp[I = kFa/2], v « Exp[I * ¢] * Exp[—I % kFa/2], 0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, Exp[—I * kFa = y/2] * Cos[62/2], Cos[62/2], —Exp[—I * kFa % y1/2] = I * Sin[62/2],

—I = Sin[02/2], 0, v * Exp[I = kFa/2], —u * Exp[-I * kFa/2], 0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —~Exp[—I = kFa xy/2] = I Sin[62/2], —I * Sin[62/2], Exp[—I = kFa * y1/2] * Cos[82/2],
Cos[602/2], —v = Exp[I * kFa/2], 0, 0, —u = Exp[—I = kFa/2]},

{0,0,0,0,0,0,0,0,0,0,0,0, (I 2 x Z —y) * Exp[I «kFa xy/2] « Cos[02/2], (I *2 * Z + y) * Cos[62/2],

(I %2+ Z —yl)*Exp[l «kFa*yl/2]* I =Sin[02/2], (I *2*Z +yl) = I *Sin[62/2],0,0,0, 0, u * Exp[I = ¢] * Exp[I * kFa/2],
0,0, —v = Exp[] * ¢] * Exp[-I = kFa/2]}, {0,0,0,0,0,0,0,0,0,0,0,0, (I *2 * Z —y) * Exp[I * kFa *y/2] « I + Sin[62/2],
(I+2+Z+y)=I=*Sin[02/2]), (I *2+ Z —yl) * Exp[I * kFa x y1/2] * Cos[02/2], (I 2+ Z + y1) * Cos[62/2],0,0,0,0, 0,

u * Exp[I * ¢] * Exp[I = kFa/2), v * Exp[I * ¢] * Exp[—I % kFa/2], 0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, (I *2* Z +y) » Exp[-I » kFa % y/2] * Cos[02/2], (I *2 * Z — y) * Cos[62/2],

—(I *2%Z +yl) «Exp[-I «kFa*yl/2] « I = Sin[02/2], —(I *2 * Z — y1) = I * Sin[62/2], 0, —v = Exp[I * kFa/2], —u * Exp[-I * kFa/2], 0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, (I *2 * Z +y) » Exp[—I xkFa * y/2] * I * Sin[2/2], —(I 2 * Z — y) = I = Sin[62/2],
(I *2 % Z +y1) x Bxp[—I *kFa x y1/2] x Cos[62/2), (I 2 = Z — y1)  Cos[62/2], v » Exp[I * kFa/2], 0, 0, —u » Exp[I  kFa/2]})];
B = Simplify[A];

Bl = Blu— ((x+(x>=1)*1/2))[ @*x)) "1/2)/v > ((x - (x* - 1) *(1/2)) [ @ *x)) (1/2);

B2 = Numerator[Chop[Together[B1], 10" (=5)]];

B3 = Numerator[B2];

Al = x/.Solve[B3 == 0, x][[2]];

A2 = x/.Solve[B3 == 0, x][[4]];

a=All.¢ - 0;
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b =A2l.¢ > 0;

c = D[AL, ¢).¢ — 0;

d=D[A2 ¢).¢ - 0;

T =17.19+0.01;

Tc =17.19;

k =1.38 % 10" (-23);

B=1/(k+T);

A =107M(=3) * 1.6 * 10" (~19) * Tanh[1.74 * (Tc/T - 1) (1/2)];

I =-2*Tanh[B xa * A/2] *c —2 + Tanh[B * b x A/2] * d;

list = AppendTo(list, {J, II}]}, {J, —4, 4, 0.05}];

list = Sort[list];

ListLinePlot [list, AxesLabel — {Style[J, 25, Bold], Style [ Ln/Io", 25, Bold]}, PlotStyle — {Blue, Thickness[0.006]},
BaseStyle — {FontSize — 20}, AxesStyle — {Thickness[0.002], Thickness[0.002]}, LabelStyle — Directive[Black],

TicksStyle — Directive[Black, Bold]]

E.2 Anomalous phase

The Mathematica program described below computes anomalous phase which is stored in a
ferromagnetic Josephson junction in the presence of a spin-flipper as shown in Fig. 4.13 of
chapter 4. The time required to run this Mathematica code is less than 5 minutes. Herein,

Fig. 4.18(a) of chapter 4 is generated using the Mathematica code below.

Clear[u, v, Z, J, y,y1, pl;
Z=0;

p=0.5;
y=Q0+p)*/2);

yl =(1-p)"(1/2);
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s=1/2;

m=1/2;

S=1/2

ml =-1/2;

kFa = Pi;

SetShared Variable[list]

list = {};

ParallelDol {

01 =Pi/2;

62=0;

F1 = Sqrt[(s + m) * (s —m + 1)];

F2 = Sqrt[(S —ml) = (S + ml1 + 1)];

A=

Det[({{u * Exp[I *kFa/2],0, 0, v * Exp[—I * kFa/2], —Cos[61/2], —Exp[I * kFa = y /2] « Cos[01/2], —I * Sin[61/2],

—1I % Sin[61/2] * Exp[I *kFa*y1/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, u * Exp[I * kFa/2], —v * Exp[-I % kFa/2), 0, —I * Sin[01/2], —I * Sin[01/2] + Exp[I * kFa * y /2], —Cos[61/2],

—Exp[I *kFa * y1/2] * Cos[01/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},

{0, —v = Exp[I * kFa/2], u * Exp[-I * kFa/2], 0,0, 0, 0, 0, —Cos[01/2], —Exp[—I * kFa *y/2] * Cos[601/2], I * Sin[61/2],

I +Sin[61/2] = Exp[-I *kFay1/2],0,0,0,0,0,0,0,0,0,0,0,0},

{v * Exp[/ * kFa/2], 0, 0, u * Exp[-I * kFa/2],0,0,0, 0, I = Sin[601/2], I * Sin[01/2] =« Exp[—I * kFa * y/2], —Cos[01/2],

—Exp[-1 * kFa * y1/2] * Cos[61/2],0,0,0,0,0,0,0,0,0,0,0,0},

{u = Exp[I * kFa/2], 0,0, —v * Exp[-I *kFa/2], (y + I *2 * Z) * Cos[01/2], (I *2 * Z —y) = Cos[01/2] * Exp[I = kFa * y/2],

(I *2%Z+yl)*I*Sin[01/2], (I *2*Z —yl) = I =Sin[01/2] = Exp[I *kFaxy1/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, u * Exp[/ * kFa/2), v * Exp[—I *kFa/2],0, (y + I *2* Z) = I *Sin[01/2], (I *2* Z —y) * I = Sin[01/2] * Exp[] * kFa * y/2],
(I*2%Z+yl)*Cos[01/2], (I *2+ Z — y1) * Cos[61/2] = Exp[I *kFax*y1/2],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0, —v = Exp[I * kFa/2], —u = Exp[—I *kFa/2],0,0,0,0,0, (I *2 * Z — y) * Cos[01/2], (I *2 * Z + y) * Exp[—I * kFa % y/2] * Cos[01/2],
(y1-1%2xZ)=*1I*Sin[01/2], —(yl + I 2 * Z) = Exp[-I = kFa xy1/2] * I »Sin[01/2},0,0,0,0,0,0,0,0,0, 0,0, 0},

{v * Exp[I = kFa/2], 0, 0, —u * Exp[-I *kFa/2],0,0,0,0, —(I *2 % Z — y) * I * Sin[61/2],

- *2+Z +y)*Exp[-I *kFaxy/2] « I xSin[601/2], (I *2* Z —y1) * Cos[01/2], (I *2 * Z + y1) = Exp[—I * kFa * y1/2] * Cos[61/2],

0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0, Exp[ * kFa * y/2] * Cos[01/2], Cos[61/2], Exp[I = kFa % y1/2] = I * Sin[01/2],

I+ Sin[601/2], 0, 0, 0, 0, —Cos[62/2], —Exp[] * kFa * y /2] * Cos[02/2], —I * Sin[62/2], —Exp[I * kFa * y1/2] * I * Sin[62/2],
0,0,0,0,0,0,0,0}, {0,0,0,0, Exp[1 * kFa * y/2] = I * Sin[01/2], I * Sin[01/2], Exp[I * kFa * y1/2] * Cos[61/2],

Cos[61/2],0,0,0, 0, —I = Sin[62/2], —Exp[I * kFa * y /2] * I * Sin[02/2], —Cos[62/2], —Exp[I * kFa * y1/2] * Cos[62/2],
0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0, 0, Exp[—] * kFa * y/2] * Cos[61/2], Cos[61/2], —Exp[—1I * kFa x y1/2] = I % Sin[61/2],

-1 * Sin[601/2], 0, 0, 0, 0, —Cos[62/2], —Exp[—I * kFa * y /2] + Cos[62/2], I * Sin[62/2], Exp[—I * kFa * y1/2] * I » Sin[62/2], 0, 0, 0, 0},
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{0,0,0,0,0,0,0,0, —Exp[—I * kFa % y/2] = I *Sin[01/2], —I * Sin[61/2], Exp[—I = kFa * y1/2] * Cos[01/2], Cos[61/2],
0,0,0,0, I *Sin[02/2), Exp[—I * kFa*y/2] = I * Sin[62/2], —Cos[62/2], —Exp[—I * kFa * y1/2] « Cos[62/2], 0, 0, 0, 0},
{0,0,0,0, ( *2 *J * m*ml = Cos[61/2] — J = F1 x F2 % Sin[61/2] + y * Cos[61/2]) * Exp[I * kFa * y/2],

(I #*2*J *m=ml = Cos[01/2] — J *F1 * F2 x Sin[#1/2] — y * Cos[01/2]),

(-2%J x(m—1)x (ml + 1) * Sin[01/2] + I * J = F1 * F2 « Cos[01/2] + y1 * I » Sin[01/2]) * Exp[I * kFa x y1/2],

(=2*J *(m—1) = (ml + 1) * Sin[01/2] + I * J xF1 «x F2 * Cos[01/2] — y1 = I * Sin[81/2]), 0, 0, 0, 0, —y = Cos[62/2],

y * Exp[I * kFa % y/2] * Cos[62/2], —y1 = I * Sin[02/2], y1 = Exp[I * kFa = y1/2] = I = Sin[62/2],0,0,0,0,0,0, 0, 0},

{0,0,0,0, (-2 *J * m »m1 * Sin[01/2] + I * J * F1 x F2 * Cos[01/2] + y * I = Sin[01/2]) * Exp[I = kFa * y/2],

(-2 *J *m+ml % Sin[61/2] + I » J * F1 x F2 * Cos[61/2] — y * I * Sin[61/2]),

(I*2+J*(@m—1)*(ml+1)=*Cos[01/2] — J *F1 * F2 % Sin[01/2] + y1 = Cos[61/2]) * Exp[I * kFa = y1/2],

(I *2+J*(m—1)*(ml + 1) = Cos[01/2] — J = F1 = F2 * Sin[@1/2] — y1 * Cos[1/2]), 0, 0, 0, 0, —y = I = Sin[62/2],

y = Exp[I * kFa xy/2] * I = Sin[62/2], —y1 * Cos[62/2], y1 * Exp[] * kFa = y1/2] * Cos[62/2],0,0, 0,0, 0, 0, 0, 0},
{0,0,0,0,0,0,0,0, (I *2%J * (m — 1) * (m1 + 1) * Cos[61/2] + J = F1 * F2 = Sin[01/2] — y * Cos[01/2]) * Exp[—I % kFa x y /2],
(I#2%J*(@m—1)*(ml+1)=*Cos[01/2] + J *F1 * F2 « Sin[01/2] + y * Cos[01/2]),

(2*J *m*ml = Sin[01/2] + I = J *F1 * F2 « Cos[01/2] + y1 = I * Sin[61/2]) * Exp[—I * kFa % y1/2],

(2*J *m*ml = Sin[61/2] + I = J *F1 * F2 « Cos[61/2] — y1 * I * Sin[61/2]), 0, 0, 0, O, y * Cos[62/2],

—y * Exp[—1I = kFa = y/2] * Cos[62/2], -yl * I = Sin[62/2], y1 * Exp[—I * kFa % y1/2] = I % Sin[62/2], 0, 0, 0, 0},
{0,0,0,0,0,0,0,0, (2% J * (m — 1) * (m1 + 1) = Sin[01/2] + I * J * F1 * F2 * Cos[01/2] + y = I = Sin[01/2]) * Exp[—I * kFa = y /2],
2xJ*(m—1)*(ml +1) *Sin[01/2] + I * J * F1 * F2 * Cos[01/2] — y * I = Sin[01/2]),

(I *2 % J *m*ml = Cos[61/2] + J = F1 « F2 = Sin[61/2] — y1 * Cos[01/2]) * Exp[—I * kFa x y1/2],

(I #*2%J *m=+ml = Cos[01/2] + J * F1 * F2 = Sin[01/2] + y1 = Cos[01/2]), 0, 0, 0, 0, —y * I * Sin[62/2],

y * Exp[—1I = kFa  y/2] = I * Sin[02/2], y1 * Cos[62/2], —y1 * Exp[—I * kFa * y1/2] = Cos[62/2], 0, 0, 0, 0},
{0,0,0,0,0,0,0,0,0,0,0,0, Exp[ * kFa % y/2] *+ Cos[62/2], Cos[62/2], Exp[] * kFa * y1/2] = I * Sin[02/2],

I = Sin[62/2], 0,0, 0, 0, —u = Exp[] * ¢] x Exp[I * kFa/2], 0, 0, —v * Exp[/ * ¢] = Exp[—I * kFa/2]},

{0,0,0,0,0,0,0,0,0,0,0,0, Exp[I * kFa * y/2] + I % Sin[62/2], I * Sin[62/2], Exp[] * kFa * y1/2] * Cos[62/2],
Cos[62/2],0,0,0,0, 0, —u = Exp[1 * ¢] * Exp[I = kFa/2], v * Exp[I * ¢] x Exp[—I = kFa/2], 0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, Exp[-I = kFa * y/2] * Cos[62/2], Cos[62/2], —Exp[—1 * kFa * y1/2] = I = Sin[62/2],

—I % Sin[62/2], 0, v * Exp[I * kFa/2], —u = Exp[-I = kFa/2], 0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —Exp[—I * kFa % y/2] * I * Sin[62/2], —I * Sin[02/2], Exp[—I * kFa % y1/2] * Cos[62/2],
Cos[62/2], —v = Exp[I * kFa/2], 0, 0, —u = Exp[—I % kFa/2]},

{0,0,0,0,0,0,0,0,0,0,0,0, (I 2 * Z —y) * Exp[I * kFa * y/2] *+ Cos[02/2], (I *2 * Z +y) * Cos[62/2],

(I *2%Z —yl) »Exp[l »kFaxyl1/2] = I »Sin[62/2], (I *2+ Z + y1) * I * Sin[62/2),0, 0, 0, O, u * Exp[I * ¢] * Exp[I * kFa/2],
0, 0, —v * Exp[[ * ¢] « Exp[-I *kFa/2]}, {0,0,0,0,0,0,0,0,0,0,0,0, ( *2 * Z —y) *+ Exp[/ « kFa * y/2] * I * Sin[62/2],
(I*x2*%xZ+y)*I*Sin[02/2), (I x2* Z —y1) x Exp[I * kFa = y1/2] « Cos[62/2], (I *2 * Z + y1) * Cos[62/2], 0,0, 0, 0, 0,

u * Exp[I * ¢] * Exp[I = kFa/2), v * Exp[I * ¢] * Exp[—I * kFa/2], 0},

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, (I *x2+ Z +y) = Exp[—I = kFa = y/2] «+ Cos[62/2], (I *2 * Z — y) * Cos[62/2],

—(I *2+Z +yl) « Exp[-I *kFa*y1/2] I * Sin[62/2], —(I *2 % Z —y1) = I * Sin[02/2], 0, —v = Exp[I * kFa/2], —u * Exp[—I * kFa/2], 0},

277



E. MATHEMATICA CODE TO CALCULATE ANOMALOUS JOSEPHSON CURRENT AND
ANOMALOUS PHASE

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —(I *2 * Z +y) » Exp[—I * kFa x y/2] * I = Sin[02/2], —(I * 2+ Z — y) = I * Sin[62/2],
(I *2 % Z +y1) * Exp[—1 * kFa » y1/2] = Cos[62/2], (I 2 * Z — y1) x Cos[62/2], v  Exp[I * kFa/2], 0, 0, —u * Exp[—I = kFa/2]} )];
B = Simplify[A];

Bl = Blu — ((x + (x*2 = DM1/2))/ 2 * ) (1/2)/.v = ((x = (x2 = DA (1/2))/(2 * x) (1/2);

B2 = Numerator[Chop[Together[B1]]];

B3 = Numerator[B2];

Al = x/.Solve[B3 == 0, x][[2]];

A2 = x/.Solve[B3 == 0, x][[4]];

a=Al

b =A2;

T =17.19%0.01;

Tc =7.19;

k =1.38 % 10" (=23);

B=1/(k+T);

A =10MN(=3) * 1.6 * 10°(~19) * Tanh[1.74 * (Tc/T — 1) (1/2)];

FF1 = ((-2)/(B * A)) * Log[2Cosh[B * A * a/2]] — (2/(B * A)) * Log[2Cosh[B * A * b/2]];

dd1 = Table[Flatten[ {¢, Re[FF1]}], {¢, —1.8Pi, 1.8Pi, 0.01Pi}];

ppl = Sort[dd1, #1[[2]] < #2[[21]1&I([1, 11};

list = AppendTol[list, {J, pp1}1}, {J, -1, 1,0.01}];

list = Sort[list];

ListLinePlot[list, AxesOrigin — {0, 0}, AxesLabel — {J, ¢¢}, PlotStyle — Blue,

TicksStyle — Directive[Black], BaseStyle — {FontSize — 13}, AxesStyle — {Thickness[0.002], Thickness[0.002]},
LabelStyle — Directive[Black]]
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