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SUMMARY
The goal of the thesis work has been to evolve methodologies for inexpensive com-

putation of self-energy corrected electronic structure of experimentally realizable

nano-systems which typically consist of thousands of atoms.

For calculation of electronic structures of materials Kohn-Sham(KS) density

functional theory (DFT) has been widely used for bulk materials as well as finite

systems with weak to modest correlation. However due to inherent defficiencies

of the local-density based static approximation of exchange-correlation functionals

used in DFT, it underestimate band gaps not only of correlated bulks with elec-

trons in d or higher orbitals, but also of those with s and p valence electrons, and

more importantly of finite systems with reducing system size owing to enhanced

localization. Self-energy correction of KS single-particle levels calculated using the

Green’s function based GW approximation of many-body perturbation theory al-

lows incorporation of explicitly constructed non-local dynamic dielectric function

leading to a self-energy operator which comprehensively accounts for screening due

to correlation, through a quasi-particle description of electrons. However the high

computational cost prohibits GW approximations to be used in realistic systems

beyond few tens of atoms. In my thesis work I find that instead of explicitly com-

puting self-energy correction for large systems it is possible to effectively transfer

self-energy correction from smaller isomorphic reference systems with similar atomic

neighbourhoods through an appropriate tight-binding(TB) framework.

For effective transfer of self-energy correction to reproduce experimental band-

gap through TB parameters we needed a TB basis which can describe bands above

and below the Fermi energy, as done by the pure atomic orbtials and their hybrids.

Recognising that in covlent systems the orientation and constitution of bonds are

governed by the hybrid orbitals, a major part of the thesis is devoted to construction



SUMMARY xv

of hybrid atomic orbitals as Wannier functions constructed from first principles as a

set of localized orthonormal multi-orbital basis directed towards local coordination,

followed by calculation of TB parameters in the proposed basis and incorporation of

self-energy correction. Sections have been devoted to presenting an easy automated

mapping scheme through which we tranfer TB parameters from smaller reference to

larger target systems.

We demonstrated construction of the hybrid atomic orbital basis and transfer-

ability of TB parameters in it, including self-energy correction, in a representative

range of covalent systems with sp2 and sp3 hybridized orbitals, namely, graphene

and hexagonal boron nitride nano-ribbons and carbon, silicon, germanium and their

hybrid nano-diamonds upto thousand atoms, for which TB parameters have been

transferred from reference systems made of few tens of atoms. We also presented

TB and self-energy correction TB parameters in a variety of p-block bulk semicon-

ductors in diamond as well as zinc blende structures and discussed transferability

of self-energy correction of TB parameters within blocks. We have also estimated

the self-energy correction of the Hubbard U for the magnetic systems like ZGNR

and finite graphene chunks. We have tested our scheme in a realistic length-scale

where we calculated self-energy corrected quantum capacitance in a family of planar

hybrid super-lattices made of hexagonal boron-carbide and carbon-nitride segments

embedded in graphene and hexagonal boron nitride. As an ongoing work we are

also working on simple model for the Coulomb-hole to account for screening in an

inexpensive way.
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Chapter 1

Preface

Computing energetics and spatial distribution of electrons in matter to understand

their properties using quantum physics has been an evolving practise for almost over

half a century now hand in hand with our increasing prowess in numerical comput-

ing infrastructure. However, the practice is no more confined within the community

of computational condensed matter physicists and quantum chemists, but is be-

ing used as a tool to interpret results by experimentalists in the wider fraternity

of materials science. Such a wide spread use brings all the efforts put in over the

years to develop the computational framework for calculation of electronic structure

of materials which is primarily based on the Kohn-Sham(KS) density functional

theory(DFT)1,2 close to fulfillment. The framework now evolves in an iteratively

collaborative manner where the methodologies evolved by the computational quan-

tum physicists and chemists are immediately put to test by the experimentalists

making good of the huge strides in high performance computing, leading to further

refinement.

Having established a fairly successful and robust framework for calculation of

electronic structure of materials based on the mean-field and local approximation

of the KS-DFT, a key direction of research, which has been continuously pursued

by theorists in the condensed matter physics community, is to improve our grasp

on the physics of interacting electrons beyond the mean-field approximations. This



2 Preface

is becoming particularly important to complement the huge progress made by the

experimentalists to fabricate or synthesize low dimensional systems at nano-scale

and study their electronic and magnetic properties towards applications.3 The need

to go beyond mean-field arises because the quantum mechanical interactions among

the electrons are essentially non-local and dynamic in nature, which are amplified

by the finiteness of their confinement with reduced size and dimensionality due to

enhanced correlation, whereas the mean-field approximation of exchange-correlation

functionals used in DFT are local and static. Furthermore, even for weak to mod-

erately correlated bulks, due to the inherent lack of discontinuity of derivative of

the local-density based approximation of exchange-correlation functionals used in

DFT upon removal and addition of electron, DFT underestimates the band gaps

estimated experimentally as the difference between the ionization potential and

electron affinity.

To accurately estimate electronic structure from first principles particularly in

systems where correlations are non-nominal, the quasi-particle nature of the elec-

trons encompassing the effective holes due to its self-interaction, needs to be maxi-

mally incorporated beyond the ground state obtained using density-functional the-

ory (DFT).1,2 The non-local Green’s functions are good alternatives to represent the

non-local and dynamic effects of interaction among electrons accurately. Within

the GW approximation4,5,6 self-energy correction is estimated through correction to

the exchange and Coulomb interactions due to dynamical screening incorporated

through an explicitly computed non-local and dynamic dielectric function which

also implicitly accounts for the derivative discontinuity lacking in the exchange-

correlation functional used in DFT. However, due to the huge computational cost

of calculating self-energy correction using GW approximation, its application in re-

alistic scenarios, for example, the experimentally realizable nano-structures, which

typically consists of thousands of atoms, has remained largely impossible. Key way

forwards in this direction has been proposed7,8 in recent years within the density

functional tight-binding framework notwithstanding the difficulty in defining many

electron interactions satisfactorily in terms of integrals covering few orbitals.
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1.1 This thesis

The goal of my doctoral work has been to evolve methodologies for inexpensive

computation of self-energy corrected electronic structure of experimentally realiz-

able nano-systems which typically consists of thousands of atoms. A key finding

of my thesis work is that instead of explicitly computing self-energy correction for

large systems it is possible to effectively transfer self-energy correction from smaller

isomorphic reference systems with similar atomic neighbourhoods through an appro-

priate tight-binding(TB) framework. However, for effective transfer of self-energy

correction to reproduce experimental band-gap through TB parameters we needed

a TB basis which can describe bands above and below the Fermi energy, as done by

the pure atomic orbitals and their hybrids.

Constituting a major part of my thesis work, we have recently developed a

method to numerically construct hybridized atomic orbitals based on as the approx-

imate common eigenstates of finite first moment matrices through a self-consistently

chosen gauge.9,10 Wannier functions11,12 constructed using the templates of hy-

bridized atomic orbitals are directed towards the local atomic nearest neighbour-

hood of each atom in a given system and allow accurate extraction of multi-orbital

tight-binding13,14 parameters with all possible hopping present in the systems of

concern through minimal number of terms. This method facilitate mapping of the

multi-orbital tight-binding parameters calculated within the first principle calcula-

tions of electronic structure from smaller reference systems to much larger target

systems with similar variety of atomic neighbourhood, based on mapping of neigh-

bourhood up to second or third neighbours and projected Wannier charge centres

of learned from reference systems. The mapping not only provides electronic struc-

ture of large systems at the level of Kohn-Sham density functional theory but also

facilitate effective transfer of self-energy correction at the level of DFT+G0W0 from

smaller reference systems to larger target systems for which an explicit computation

of self-energy correction would be prohibitively expensive.



4 Preface

We started with demonstration of transferability in graphene and hexagonal

boron nitride nano-ribbons in the basis of Wannier functions representing 2pz elec-

trons with modest success, and subsequently scaled up to the multi-orbital basis con-

stituted by Wannier functions representing sp3 hybridized orbitals to demonstrate

transferability in finite nano-diamonds15,16,17 made up of carbon, silicon, germa-

nium and their hybrids with up to about a thousand atoms implying about 20 times

escalation of system size. We also presented TB parameters and their self-energy

correction in a representative variety of p-block bulk semiconductors in diamond and

zinc blende structures and discussed transferability of self-energy correction of TB

parameters within blocks. Transferability is tested not only through reproduction

of band-gap at the quasi-particle level but also through match of the valence band

width. For the magnetic systems like ZGNR systems we have also estimated self-

energy correction of the Hubbard U term. Additionally, the proposed transfer of TB

parameters do not require optimized structures of the large target systems. Using

the mapping scheme we are able calculate self-energy corrected quantum capaci-

tance in a family of planar hybrid systems made of boron-carbide or carbon-nitride

embedded in graphene and hexagonal boron nitride we are proposing in my thesis.

On the methodological front, in tune with the central theme of my thesis wh-

cich is to evolve inexpensive method to calculate the self-energy corrected electronic

structure, we are also working on a model for the Coulomb-hole part of self-energy

and derive an easily computable dielectric function which can also be used to screen

the exchange. We hope that the thesis work will contribute towards paving the

way for accurate computation of correlated electronic structure of finite systems in

experimentally realizable length-scales typically consisting of thousands of atoms at

the level of many-body perturbation theory from first principles.



Chapter 2

Theoretical background

2.1 Introduction

In this chapter I will summarily describe the computational methods used in this

thesis to calculate electronic structure of systems dealt with. It is said that the

atomic and molecular perspective of matter has been around from the ancient times.

However, with the advent of the quantum theory of matter around the turn of the

last century, the grand gateway to unravel the physics of matter beyond what could

be seen through a microscope of the day, was opened to us, ushering the onset of

the great journey that is still very much on, and traversing new landscapes which is

growing more and more exotic by the day. The urge to connect physical and chemi-

cal properties of matter down to the valence electrons led us to evolve techniques to

compute their energetics and distribution in matter, paving the way for emergence

and progress of frameworks for computation of electronic structure of materials.

The journey in this direction began with the search of a solution to the ex-

act many-electron Schrodinger equation, and evolves through a series of pragmatic

approximations which made it possible to arrive at reasonable approximate solu-

tions which are increasingly becoming accurate with methodological advancements

and growing computational prowess. The first approximation is that of indepen-
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dent electrons18 wherein many electron wave-function could be written as combi-

nation of products of one electron wave-functions. Solving for these one-electron

wave-functions which satisfies the many-electron Hamiltonian led to the Hartree-

Fock(HF)18,19 approach which led to realization of the Coulomb and exchange inter-

actions, of which the second one being purely quantum in nature and was understood

eventually to be central to ferro-magnetism. However the HF approach implemented

within a fixed set of basis states crucially undermines correlation among electrons

leading to incorrect estimation of energetics beyond atoms and small molecules.

This problem is successfully circumvented by extending HF to the configuration

interaction (CI) approach which however is computationally much more expensive

than HF and almost impossible to perform for systems having few tens of atoms

or so with even few thousands of computing cores. Similarly successful yet another

computationally exorbitant extension of HF is the quantum Monte-Carlo approach.

While these approaches were successful for small systems, their computational com-

plication and cost nevertheless kept the capability of computing electronic structure

confined only within the realm of generously funded research programs which could

afford large computational infrastructure. The fraternity had to wait for the advent

of the Kohn-Sham density functional theory (DFT) to break the ceiling.

As we discuss in this chapter, Kohn-Sham DFT is an exact theory which sim-

plifies the complex N electrons Schrodinger equation to an effective single-particle

equations where all the interaction of the single electron with all the other electrons,

notwithstanding their self-interacting nature, can in principle be incorporated as a

potential which must be derivable from a universal functional of the density of

the ground state, implying essentially a self-consistent route to calculate the exact

ground state. The observables of the many electron system can thus be obtain by

solving the Kohn-Sham (KS) equation without knowledge of the full many-body

wave function. However, since KS-DFT does not give any recipe to construct the

universal functional, the efficacy of KS-DFT primarily depends on the correctness of

formulation of the exchange-correlation functional in describing the many-electron
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interaction in a given system. Formulations primarily in terms of the local den-

sity and their derivatives attempted so far have been widely successful to decribing

electronic structure of systems with s and p valence electrons owing to their delo-

calized nature. However, to account for increased correlation due to localization on

account of either occupation of d or higher orbitals or confinement in finite system,

often the local density based approximations need to be supplemented by further

corrections, either through adhoc model Hamiltonians or through a more elaborate

self-consistent framework, namely, the many-body perturbation theory(MBPT). As

discussed in this chapter, the GW approximation of MBPT has been adopted in

my thesis work to dynamically account for the self-interaction correction. We also

present a brief introduction of Wannier functions before we end this chapter since a

major effort of my thesis work has been to point out the transferability of self-energy

correction in terms of tight-binding parameters computed in the spatially localized

hybrid atomic Wannier orbitals introduced in Chapters 3 and 4.

2.2 The many electron problem

In the most general form, the wave-function of non-relativistic interacting N elec-

trons for a given set of nuclear coordinates is solution of the time-independent

Schrodinger equation,

Ĥψ({RI}, {xi}) = Eψ({RI}, {xi}), (2.1)

where ψ({RI}, {xi}) is the many-body wavefunction with position and spin coor-

dinates of N electrons denoted as {xi} ≡ {ri, σi} for i = 1, 2, 3, · · · , N as well as

the position of M nuclei denoted as {RI} for I = 1, 2, 3, · · · ,M . The many-body
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Hamiltonian in Eq. 2.1 consists of five terms

Ĥ = T̂n(R) + T̂e(r) + V̂nn(R) + V̂ee(r) + V̂ne(r,R)

= −ℏ2

2

M∑
I=1

1

MI

∇2
RI

− ℏ2

2me

N∑
i=1

∇2
ri
+

e2

4πϵ0

M∑
I

M∑
J>I

ZIZJ

|RI −RJ |
(2.2)

− e2

4πϵ0

M∑
I

N∑
i

ZI

|RI − ri|
+

e2

4πϵ0

N∑
i

N∑
j>i

1

|ri − rj|
,

where the first term represents the kinetic energy of the nuclei with atomic numbers

ZI and nuclear masses MI . The second term represents the kinetic energy of elec-

trons with electron mass me and last three terms represent the interaction between

nuclei-nuclei (V̂nn), nuclei-electron (V̂ne) and electron-electron (V̂ee) respectively. In

principle, by solving the above Schrodinger equation exactly one can get all the in-

formation about the system. Born-Oppenheimer approximation20 which takes into

account the fact that nucleus is much much heavier than the electrons and as a

result move much slower compared to the electrons, separate the motion of nuclear

and electronic degrees of freedom. Hence total wavefunction ψ can be written as a

product of a nuclei part ψn and an electronic part ψe as

ψ({RI}, {xi}) = ψn({RI})ψe({RI}; {xi}). (2.3)

With the help of Born-Oppenheimer approximation one can fix the nuclear configu-

ration at some particular value Rc then solve the electronic wavefunction ψe({Rc}; {xi})

which depends parametrically on R as:

Ĥeψe({RI}; {xi}) = Eeψe({RI}; {xi}), (2.4)

where the corresponding Hamiltonian is given as

Ĥe = −
N∑
i=1

1

2
∇2

i +
N∑
i

N∑
j>i

1

|ri − rj|
−

M∑
I

N∑
i

ZI

|RI − ri|
, (2.5)
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with ℏ, e,me, 4πϵ0 all set to 1 as per the atomic unit system used in the thesis unless

otherwise stated categorically.

The next level of approximation involves the fact that if we consider all electrons

to see on the average a same effective potential due to all other electrons as in a

jellium model, the Hamiltoanian becomes separable in the electron coordinates,

implying that many electron wave-function ψe(r1, r2, ...rN) can be written in terms

of products of one electron wave-functions {ϕi(ri), i = 1, 2, ...N} or a combination

of them. and eventually solve for each ϕ.

The first wave function based methods to solve the many-electron Schrodinger

equation is the Hartree-Fock approximation,18,19 which was first introduced by Hartree

in 192818 where the many electron wavefunction is simply product of individual one

electron wavefunctions, and then Fock generalized it by including the antisymmet-

ric nature of wave function of electrons in 193019 to be consistent with the Pauli

exclusion principle. In Hartree-Fock (HF) approximation we seek a solution for

the many-electron wave-function in the form of a Slater determinant21 made of N

electrons in N orbitals ψHF(r1, ..., rN) as:

ψHF(r1, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) . . . ϕ1(rN)

ϕ2(r1) ϕ2(r2) . . . ϕ2(rN)

... ... . . . ...

ϕN(r1) ϕN(r2) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.6)

HF approximation gives reasonably accurate results for atoms and small molecules.

However, not only the increasing computational cost but also the reduced accuracy

due to underestimation of correlation, which restrict applications of HF beyond small

molecules. In fact, with a single Slater determinant wave-function written for fixed

set of basis, HF Hamiltonian incorporates only a static screening which does not have

self-interaction and is exact for one electron. It is not possible to include dynamic

screening in HF since wave-functions are not energy dependent. This problem is

successfully circumvented by considering a combination of Slater determinant wave-
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functions within in a variable configuration of basis sets whose range is a parameter

of convergence. This approach, known as the configuration interaction (CI), still

constitutes the state-of-the-art of accurate computation of electronic structure of

materials but is also computationally extremely expensive and almost impossible

to perform for systems having few tens of atoms or so with even few thousands

of computing cores. The quantum Monte-Carlo approach where the Monte-Carlo

algorithm is used to make choices for the basis sets with an appropriate weight-

factor is another approach on the same footing. We will not go further in discussing

these techniques since we take a different route, namely, the MBPT approach, to

dynamically incorporate effects of correlation in my thesis work.

As a departure from dependency on 3N degrees of freedom, Thomas22 and

Fermi23 independently proposed an approximate model with electron density as

central variable influnce by an external potential. Unlike the 3N coordinates used

in the many-body wave function, the electron density can be expressed with only

a single position vector r⃗. However, the homogeneous approximation of the kinetic

energy term in Thomas-Fermi(TF) model oversimplifies the inherent structure of

the net effective potential and thereby unable to predict electronic properties for in-

homogenous systems correctly. Nevertheless, the TF approach brought to the fore

the possibility to replace wave-function based computation of electronic structure

by a density based computation. About fifty years later, on a far more robust and

exact footing the Kohn-Sham DFT brought the density to the core of computing

electronic structure of materials.

2.3 Density Functional Theory

The theoretical formulation of DFT is based on two theorems given by Hohenberg

and Kohn1 which can be summarized as follows.

1. There exist a one-to-one correspondence between the external potential Vext(r)

and the ground-state electron density n0(r). For any system of N interacting parti-

cles in an external potential Vext(r), the potential Vext(r) can be determined uniquely
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from the ground state electronic density n0(r), except for a constant.

2. An universal functional F [n] of the electronic density n0(r) can be defined,

such that the ground-state energy, as a functional of the external potential Vext(r),

E0[Vext], can be derived with the help of variational principle.

Hohenberg-Kohn (HK) theorems suggest that the ground-state total energy of

a system can be manifested as a functional of density, i.e., Etot = Etot[n]. With

complete knowledge of the functional, Kohn and Sham (KS) DFT reduced a system

of interacting electrons bound by some external potentials to a fictitious system

of non-interacting particles known as the KS system of single particles, wherein a

particle is subjected to a virtual external potential constructed such that the single-

particle density as well as the total energy of the KS system would match those of

the many-body interacting system. All the properties of the gound state can be

derived from the KS single particle states {ϕi=1,N}. However, the two theorems do

not suggest any recipe to analytically construct the exact functional, which is thus

a subject of realistic assumptions.

The universal density functional at the core of the KS framework can be written

as follows

F [n] = Ts[n] + EH[n] + Exc[n], (2.7)

where,

n(r) =
N∑
i=1

|ϕi(r)|2 and Ts[n] = −1

2

N∑
i=1

⟨ϕi|∇2|ϕi⟩. (2.8)

The Hartree term:

EH[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′,

accounts for the total potential energy due to Coulomb repulsion among elctrons con-

tributing to the net charge density n(r). Exc[n], known as the exchange-correlation

energy functional, incorporates all the other interactions, namely, the exchange in-

teraction due to the Pauli exclusion principle and the effects of correlation, and is

exclusively a matter of pragmatic speculative formulation.
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Finally the KS total energy functional becomes:

EKS[n] = Ts[n] +

∫
n(r)vext(r)dr+ EH[n] + Exc[n]. (2.9)

EKS[n] ≡ EKS[ϕ1, ϕ2, ..., ϕN ] is variationally minimized with respect to ϕi with the

N2 orthonormality constraint:

⟨ϕi|ϕj⟩ = δi,j

following the Euler Lagrange’s equation through introduction of {εi} as the unde-

termined multiplier as:

δ

δϕ∗
i

{
EKS[n]−

∑
j

εj⟨ϕj|ϕj⟩

}
= 0, (2.10)

leading to Schrodinger like single-particle KS equation:

ĤKSϕi(r) = εiϕi(r), (2.11)

where

ĤKS =
N∑
i=1

[
−1

2
∇2

i + vKS(ri)

]
. (2.12)

where the effective potential vKS(r) consists of three terms:

vKS(r) = vext(r) + vH(r) + vxc(r), (2.13)

where, vH(r) =
∫ n(r′)

|r−r′|dr
′ is the Hartree potential and vxc(r) = δExc

δn(r)
is the exchange-

correlation (XC) potential. The KS equation implies a self-consistent solution for

{ϕi=1,N} as presented in Fig.2.2.

To compute {ϕi=1,N}, they are expanded in a basis of either a set of linearly

independent spatially localized orbitals like the atomic orbitals, or a set of plane

waves eiG⃗.r⃗ whose number is set by a kinetic energy cutoff ℏ2|G⃗|2/2 ≤ Ecutoff . Since

the core electrons confined within the core region defined by Rc, remain effectively
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Figure 2.1: Flowchart for the iterative solution of the KS equation.

unaltered irrespective of chemical environment, they have negligible contribution in

low energy properties such as chemical bonding, conductivity, optical excitation etc.

The valence wave functions have complex nature in the core region |r| < Rc due

to the presence of nodes which demands a large set of plane wave basis and hence

a large kinetic energy cutoff. In a standard DFT calculation, valence electrons are

considered to be subjected to a pseudo-potential, so that the valence wave functions

becomes smooth enough within the core region to be described by a reasonably

small set of plane waves. These pseudopotentials are generated from all electron

calculations of atoms such that the pseudo wave functions satisfy the properties of

valence electrons outside the cutoff radius Rc. The accuracy of the pseudopotentials
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depends on their ‘transferability’, which implies that the same pseudopotential of a

given element can be used in various chemical environments to reproduce the differ-

ent physical and chemical properties specific to the environments. Norm-conserving

ones24 are the most commonly used pseudopotential which, as the name suggests

conserve the normalization of the pseudo wave function inside the core region so

that the total charge remain preserved. Ultrasoft25 pseudopotentials constitute the

other set of commonly used variant of pseudopotentials, which maximally smoothen

(delocalize) the pseudo wave functions inside the core region at the cost of deviation

from conservation of total charge which can nevertheless be easily corrected.

The KS single particle energy eigenstates and their eigenvalues not only provide

description of energetics and spatial distribution of electrons at the ground state

within the approximation adopted for Exc, but also scope for estimation of mini-

mum energy configuration of materials. Hellmann-Feynman theorem enables com-

putation of forces on atoms from the electronic structure of ground state. Atoms can

be moved under the action of this forces to minimize total energy as per the Broyden-

Fletcher-Goldfarb-Shanno(BFGS) scheme26,27,28,29 Through successive computation

of electronic structure and evolution of atomic configurations, structure of mate-

rials can be optimized towards the minimum energy configuration starting from a

reasonable guess. For crystalline solids, total energy as a parameter of unit cell vol-

ume is further fit to Murnaghan30 equation of state to estimate the size of the unit

cell which minimizes the total energy. Notably, with all other contributions to the

total energy described exclusively from first-principles, an initial set of coordinates

of atoms and a formulation of the Exc functional are thus the only input to the

entire computational framework of KS DFT leading to determination of structure,

energetics and thereby a wide range of physical and chemical properties at or near

the ground state of a given material.
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2.3.1 Exchange correlation

Among the several approximations of the exchange-correlation functional Exc[n] de-

veloped over the years, the oldest, simplest and also the most commonly used is

the local density approximation (LDA), which was suggested by Kohn and Sham2

The exchange-correlation functional Exc[n] of an inhomogeneous system of inter-

acting electrons is approximated as that of a homogeneous electron gas with the

same charge-density n(r) at any point r. The exchange-correlation term in LDA

approximation can be written as

ELDA
xc =

∫
n(r)ϵxc(n(r))dr, (2.14)

where ϵxc(n(r)) is the XC energy density for the interacting electron gas of den-

sity n(r). The LDA approximation reasonably reproduces experimentally observed

structural and vibrational properties of weakly correlated systems. However, since

LDA is rooted at the uniform electron gas, it inherently favours uniformity in dis-

tribution of charge density typical of metals, leading to delocalization charge away

from atoms to interstitials which should strengthen covalent interactions in general.

This results into over-binding of atoms, leading to overestimates the binding ener-

gies of molecules31 as well as the cohesive energies of solids32 and underestimates the

bond lengths.33 Most importantly, delocalization favored by LDA causes dispersion

of bands which leads to underestimates the band-gap of semiconductors and insu-

lators. To improve the accuracy, the gradient ∇n(r) of density is further included

in formulating the approximation for exchange-corelation for systems having sub-

stantial inhomogeneities in density distribution. Introduced by Perdew and Wang,34

this is known as generalized gradient approximation (GGA) whose functional form

is adopted such that it can incorporate the correction over the LDA XC energy while

following the exact sum rules. The exchange energy functional within GGA takes

the form

EGGA
x =

∫
n(r)ϵx(n(r))F

GGA
x (s)dr, (2.15)
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where FGGA
x (s) is the exchange enhancement factor which determines the enhanced

exchange energy over the LDA for a given density and ’s’ is the dimensionless reduced

density gradient

s =
|∇n(r)|

2 (3π2)1/3 n(r)4/3
. (2.16)

These approximate XC functionals (LDA, GGAs) are remarkably accurate in re-

producing and predicting lattice constants, phonon structures, and a host of ground-

state properties of wide band gap semiconductors of the p-block, as well as structure

of molecules with covalent and ionic bonding primarily with s and p valence elec-

trons. However, with increased correlation due to occupation of the d or higher

orbitals which have sharper localization than the s and p electrons due to higher

number of nodal plane and cones, the inadequacy of representation of correlation in

LDA and GGA functionals which inherently borough from node-less charge distribu-

tion, show up as deviation of predicted properties from experimental observations.

The LDA+U approach is reasonably successful in this regard but largely heuristic

in nature. Hybrid functionals which partially incorporates exact exchange at the

HF level has also been modestly successful.

However, in terms of matching the experimental band gap which is estimated

as the difference between the ionization potential(IP) and the electron affinity(EA),

both LDA and GGA fails even for the 2p block diamond and zinc-blende structures

of bulk C, Si, BN etc. Fundamentally, these failures of LDA and GGA can be

attributed to the inherent lack of discontinuity of the derivative of the local and static

mean-field approximation of the exchange-correlation functional, upon addition or

removal of electron. In reality, a new states starts getting filled or emptied once

the electron number changes by one starting from some other integer value. As a

result, the overall behaviour of the system is expected to change depending on the

effect of the state with growing or depleted occupation on the interaction among

electrons. However, the static nature of the XC functional used in LDA or GGA

does not support any such change in the nature of many-electron interactions they

represent. In principle, inclusion of dynamic correlation in the form of dynamic
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screening should largely address this issue since it would in effect allow the inherent

collective oscillatory (plasmonic) response of electrons to any evolution of charge

density, much like ripples on the surface of water when we disturb it. In the next

section I will discuss the GW approximation of many-body perturbation theory

(MBPT), which naturally incorporates dynamical screening in the quasi-particle

description of electron.

2.4 GW approximation of Many-body perturba-

tion theory

In this section I aim to present a schematic overview of the GW approximation of

the many-body perturbation theory based approach to dynamically account for self-

energy correction. We will begin with general introduction of one particle Green’s

function and then derive the Dyson series for a generic one particle perturbation.

We will then go over to the space-time Green’s function as propagator and motivate

the Lehman representation. Finally we will treat the two particle interaction term

with a two particle Green’s function and then express it in terms of the one particle

Green’s functions to obtain a self-energy operator which will account for the quasi-

particle nature of electron due to self-interaction correction.

2.4.1 Prelude to Green’s function

Let us start with time independent Schrodinger equation:

[H0(r)− E]ψ0(r) = 0 (2.17)

The Green’s function corresponding to Schrodinger equation(2.17) is defined as:35

[H0(r)− E]G0(r, r
′, E) = −δ(r− r′) (2.18)
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where G0(r, r
′, E) satisfies the same boundary conditions as ψ0(r).

The primary reason for introduction of Green’s function is to be able to solve in-

homogeneous equation from the known solutions of the corresponding homogeneous

equation. If we have a inhomogeneous equation of the form:

[H0(r)− E]ψ(r) = f(r) (2.19)

where f(r) is a known function, then ψ(r) can be shown to be obtained as36

ψ(r) = −
∫
f(r′)G0(r, r

′, E)dr′ (2.20)

Thus, knowing the Green’s function we can have solution of the entire class of

inhomogeneous differential equations whose homogeneous counterparts are same.

Returning back to the definition of Green’s function Eqn.(2.18) we note that it is

the representation of the operator equation:

(E − Ĥ0)Ĝ0(E) = 1 (2.21)

in the {|r⟩} basis. Using the completeness of the {ψ0} we can derive the Ĝ0(E) as:

Ĝ0(E) =
∑
n

|ψ0n⟩⟨ψ0n|
E − En

(2.22)

which, in the {|r⟩} basis leads to:

Ĝ0(E, r, r
′) =

∑
n

ψ0n(r)ψ0n(r
′)

E − En

(2.23)

where, ψ0n(r)’s and En’s are the eigenfunctions and eigenvalues of H0 respectively.

Eqn.(2.23) allow us to represent Ĝ0(E) in any other complete orthonormal basis.

Now if:

f(r) = −V (r)ψ(r) (2.24)
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The solution[Eqn.(2.20)] using Green’s function is given as:

ψ(r) = ψ0(r) +

∫
G0(r, r

′, E)V (r′)ψ(r′)dr′ (2.25)

which points to a recursive approach which results into an expansion in the order

of V upon successive recursion(substitution of ψ on RHS by that of the LHS).

Terminating the expansion at the linear order of V , as done in most cases,

ψ(r) = ψ0(r) +

∫
G0 (r, r

′, E)V (r′)ψ0 (r
′) dr′ +O

(
V 2
)

(2.26)

In a compact notation successive recursion implies:

ψ = ψ0 +G0V ψ0 +G0V G0V ψ0 +G0V G0V G0V ψ0 + · · ·

= ψ0 + (G0 +G0V G0 +G0V G0V G0 + · · · )V ψ0

(2.27)

which further allows us write a net G as:

G = G0 +G0V G0 +G0V G0V G0 + · · ·

= G0 +G0V (G0 +G0V G0 + · · · )
(2.28)

implying:

G = G0 +G0V G (2.29)

using which we can obtain:

ψ(r) = ψ0(r) +

∫
G(r, r′, E)V (r′)ψ0(r

′)dr′. (2.30)

In the sense of Taylor expansion, G(r, r′, E) can thus be understood as a linear

response of V (r′) to ψ at (r).

Straight forward expansion of the above framework in the case of time dependent
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Schrodinger equations:37

[i∂t −H0(r)]ψ0(r, t) = 0 (2.31)

[i∂t −H0(r)− V (r)]ψ(r, t) = 0 (2.32)

which lead to the definition of space-time Green’s function as:

[i∂t −H0(r)]G0(r, r
′, E) = δ(r− r′)δ(t− t′), (2.33)

[i∂t −H0(r)− V (r)]G(r, r′, E) = δ(r− r′)δ(t− t′), (2.34)

which are used to obtain:

ψ(r, t) = ψ0(r, t) +

∫
G0 (r, r

′; t, t′)V (r′)ψ (r′, t′) dr′dt′, (2.35)

ψ(r, t) = ψ0(r, t) +

∫
G (r, r′; t, t′)V (r′)ψ0 (r

′, t′) dr′dt′. (2.36)

following Eqn.(2.30).

In case of time-dependent Schrodinger equation, where the Hamiltonian H does

not depend on time (see Eqn.(2.32)), the Green’s function does not depend individ-

ually on time t and t′, but only on the difference (t − t′). Therefore, the Green’s

function which depends on (t − t′) can be defined as a Fourier transform of the

energy-dependent Green’s function as:

G (r, r′, t− t′) =
1

2π

∫
G (r, r′, E) e−iE(t−t)/ℏdE (2.37)

which is a solution of Eqn.(2.34). We can use a Green’s function in | r⟩-representation

similar to Eqn.(2.23) in the above equation:

G (r, r′, t− t′) =
1

2π

∫ {∑
n

ψn(r)ψ
∗
n (r

′)

E − En

}
e−iE(t−t′)/ℏdE (2.38)

which is an undefined integral unless the nature of the wavefunctions at the numer-
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ator are known at the poles where the denominator vanishes. As a way forward, the

integral is performed as a contour integral and the poles are shifted infinitesimally

away from the real axis. Depending on how we shift the poles we define two new

types of Green’s functions: The so-called retarded Green’s function:

(i) GR (r, r′, E) =
∑
n

ψn(r)ψ
∗
n (r

′)

E − En + iϵ
(2.39)

and the advanced Green’s function:

(ii) GA (r, r′, E) =
∑
n

ψn(r)ψ
∗
n (r

′)

E − En − iϵ
(2.40)

whose physical interpretation becomes evident upon their Fourier transformation:

GR (r, r′, t− t′) =
∑
n

ψn(r)ψ
∗
n (r

′) e−iEn(t−t′)/ℏ (t > t′)

= 0 (t < t′)

(2.41)

and
GA (r, r′, t− t′) = −

∑
n

ψn(r)ψ
∗
n (r

′) eiEn(t−t)/ℏ (t < t′)

= 0 (t > t′)

(2.42)

respectively, as we note that in Eqn.(2.41) t is later than t′ while in Eqn.(2.42) t is

ahead of t′.

Interpretation of Green’s function becomes clearer as we note that:

ψ(r, t) =

∫
G (r, r′; t, t′)ψ (r′, t′) dr′dt′. (2.43)

which we can verify through Eqn.(2.32) and Eqn.(2.34). This property of Green’s

function interprets it also as a propagator, since it facilitates description of the state

of a particle at r at time t if we knew its description at r′ at prior time t′. It is

therefore obvious that the retarded Green’s function is causal since t > t′ while the
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advanced Green’s function is anti-causal since t′ > t.

2.4.2 Time ordered Green’s function for N electrons

Generalizing the propagator interpretation of Green’s function in the realm of N

electrons systems, the generic one particle Green’s function (describing propagation

of one particle) is defined as:5,36

Gαβ(r, t, r
′, t′) = −i⟨N, 0 | T̂ [ψ̂α(r, t)ψ̂

†
β(r

′, t′)] | N, 0⟩ (2.44)

where | N, 0⟩ is an N electron ground state, ψ†
α(r, t) and ψα(r, t) are respectively the

creation and annihilation field operator and T̂ is time ordering operator to ensure

that the sequence of operation of the operators from right to left are causal in time:

T̂
[
ψ̂α(r, t)ψ̂

†
β (r

′, t′)
]
= ψ̂α(r, t)ψ̂

†
β (r

′, t′) , t > t′

= ±ψ̂†
α (r

′, t′) ψ̂β(r, t), t < t′
(2.45)

”+” sign is for bosons and ”-” sign is for fermions which take care of the commutators

and anticommutators conditions. Implying:

iG(x, t, x′, t′) = ⟨N, 0 | ψ̂(x, t)ψ̂†(x′, t′)) | N, 0⟩θ(t− t′)

±⟨N, 0 | ψ̂†(x′, t′)ψ̂(x, t)) | N, 0⟩θ(t′ − t) (2.46)

where, θ(t − t′) is a step function. We have denoted r, α ⇒ x; r′, β′ ⇒ x′ and∑
spin α

∫
dr ⇒

∫
dx.

2.4.3 Lehman representation

Adopting the Heisenberg picture38 for field operator ψ̂(x, t):

ψ̂(x, t) = e
iĤt
ℏ ψ̂(x)e−

iĤt
ℏ (2.47)
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and using the completeness condition:

∑
j

|M, j⟩⟨M, j |= 1 (2.48)

along with

Ĥ|N, 0⟩ = E0
N |N, 0⟩ and Ĥ |M, j⟩ = Ej

M |M, j⟩ (2.49)

where j ≥ 0 being the order of the M electron state, we take the Fourier transform

of G(x, x′, t, t′) as in Eqn.(2.46) to obtain the energy dependent Green’s function as

G(x, x′, E) =
∑
j

{
⟨N, 0 | ψ̂(x) | N + 1, j⟩⟨N + 1, j | ψ̂†(x′) | N, 0⟩

E − (Ej
N+1 − E0

N) + iδ

±⟨N, 0 | ψ̂†(x′) | N − 1, j⟩⟨N − 1, j | ψ̂(x) | N, 0⟩
E + (Ej

N−1 − E0
N)− iδ

}
(2.50)

where the denominators can be interpreted as:36

E − (Ej
N+1 − E0

N) = E − (Ej
N+1 − E0

N+1)− (E0
N+1 − E0

N)

= E − ϵN+1(j)− µ (2.51)

E + (Ej
N−1 − E0

N) = E + (Ej
N−1 − E0

N−1) + (E0
N−1 − E0

N)

= E + ϵN−1(j)− µ (2.52)

ϵN±1(j) being the excitation energy to the j-th excited N ± 1 particle state and µ

is chemical potential defined here as (E0
N+1 − E0

N) or (E0
N−1 − E0

N).
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In the basis of plane waves:

ψ̂(x) =
∑
k

eikxb̂k

ψ̂†(x) =
∑
k

e−ikxb̂†k

p̂ =
∑
k

ℏkb̂†kbk

(2.53)

where (k, α) is denoted as k. In a analogy with the Heisenberg transformation we

can rewrite the field operator in terms of the momentum operator as:

ψ̂(x) = e−ipx/ℏψ̂(0)eipx/ℏ (2.54)

Substituting above equation into Eqn.(2.50) we get

G(x− x′, E) =
∑
j

{
eipj(x−x′)/ℏ|⟨N, 0|ψ̂(0)|N + 1, j⟩|2

E − ϵN+1(j)− µ+ iδ

±e
−ipj(x−x′)/ℏ|⟨N, 0|ψ̂†(0)|N − 1, j⟩|2

E + ϵN−1(j)− µ− iδ

}
(2.55)

with momentum pj correspond to the N ± 1 particle system at jth excited state.

Using Fourier transformation from real space to momentum space

G(k,E) =

∫
G(x− x′, E)e−ik(x−x′)/ℏd(x− x′) (2.56)

we can write Eqn.(2.55) in k-space as:

G(k,E) =
∑
j

{
|⟨N, 0|ψ̂(0)|N + 1, j, k⟩|2

E − ϵN+1(j, k)− µ+ iδ
± |⟨N, 0|ψ̂†(0)|N − 1, j,−k⟩|2

E + ϵN−1(j,−k)− µ− iδ

}
(2.57)

where ±k in |N ± 1, j,±k⟩ is introduced for momentum ±k⃗ of a particle in the

jth excited level of |N ± 1⟩ system. This expression of Green’s function is known

as the Lehman’s representation which facilitates an easy description of interact-
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ing electrons. This is understood by noting that in the non-interacting regime

creation(annihilation) of an electron at any unoccupied(occupied) level, will not im-

pact the levels themselves, implying that ⟨N, 0|ψ̂(0) will have non-zero overlap with

|N + 1, j = n(k) + 1, k⟩, n(k) being the order of the highest occupied level at k in

|N, 0⟩. This will simple render poles at the E = E(j = n(k)+1, k). However, in the

interacting regime, ⟨N, 0|ψ̂(0) will have non-negligible overlap with a wide range of

values of j simply because the states calculated with N interacting electrons con-

stitute a different subspace from that constituted by states calculated with N + 1

interacting electrons.

For interacting electrons the momentum will spread among the other electrons,

so the state label j will be more of a continuous variable(E) than a discrete set of

states. therefore, it is meaningful to convert the discrete sum over j to integration

over E as follow

∑
j

|⟨N + 1, j,k|ψ̂†(0)|N, 0⟩|2

E − ϵN+1(j,k)− µ+ iδ
⇒
∫ ∞

0

A(k,E ′)

E − E ′ − µ+ iδ
dE ′ (2.58)

therefore, we can rewrite Eqn.(2.57) as:

G(k,E) =

∫ ∞

0

[
A(k,E ′)

E − E ′ − µ+ iδ
± B(k,E ′)

E + E ′ − µ− iδ

]
dE ′ (2.59)

where, A and B in the above equation are called the spectral weight functions.

The spectral weight function can be defined as6 A(k,E) = 1
π
|ImG(k,E)|. This

expression of Green’s function in terms of the spectral weight functions is also a

popular form of Lehman representation, which facilitates an easy interpretation of

interacting electrons as quasi-particles marked by a spatially localized structure of

the weight functions. Note that for the non-interacting electrons the weight functions

are perfect delta functions at the poles.
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2.4.4 Two body interaction

Let us consider a generic two body interaction as the perturbation. The Hamiltonian

is given as38

Ĥ(x1, t1) = Ĥ0(x1) + v(x1, x2)δ(t1 − t2) (2.60)

where Ĥ0(x1) is the one-particle part of the Hamiltonian and v(x1, x2) can be the

coulomb interaction i.e., e2

|r⃗1−r⃗2| .

In Heisenberg picture the field operator ψ̂(x1, t1) has the equation of motion

iℏ
∂

∂t
ψ̂(x1, t1) = [ψ̂(x1, t1), Ĥ] (2.61)

Using field operators the above Hamiltonian can be rewritten as:

Ĥ =

∫
ψ̂†(x, t)Ĥ0(x)ψ̂(x, t)dx+

∫
ψ̂†(x, t)ψ̂†(x′, t′)×

v(x, x′)δ(t− t′)ψ̂(x′, t′)ψ̂(x, t)dxdx′ (2.62)

With this representation of Ĥ the equation of motion becomes:

iℏ
∂

∂t1
ψ̂(x1, t1) =

{
Ĥ0(x1) +

∫
v(x1, x3)ψ̂

†(x3, x1)ψ̂(x3, t1)dx3

}
ψ̂(x1, t1) (2.63)

multiplying the above equation by field operator ψ̂†(x2, t2) from right with proper

introduction of time ordering operator T̂ and then taking expectation values with

respect to ground state, we get

[iℏ
∂

∂t
− Ĥ0(x1)]G(x1, t1, x2, t2)

+ i

∫
v(x1, x3)⟨N |T̂ [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂

†(x2, t2)]|N⟩dx3

= ℏδ(x1 − x2)δ(t1 − t2) (2.64)



2.4 GW approximation of Many-body perturbation theory 27

Above equation can be interpreted as:36

Non-interacting one-particle term + interaction term = ℏδ(x1 − x2)δ(t1 − t2)

If we have exactly soluble non-interacting Hamiltonian, namely:

[iℏ
∂

∂t
− Ĥ0(x1)]G0(x1, t1, x2, t2) = ℏδ(x1 − x2)δ(t1 − t2) (2.65)

whereG0(x1, t1, x2, t2) is the non-interacting Green’s function corresponding to Ĥ0(x1),

as in our case where we use DFT to represent the non-interacting regime, we can

then focus on the interaction term, which, on account of the two particle interaction

term naturally involve a two particle Green’s function:

⟨N |T̂ [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂
†(x2, t2)]|N⟩ (2.66)

defined as

G2(x1, t1, x2, t2, x3, t3, x4, t4)

=

(i)2⟨N |T̂ [ψ̂(x1, t1)ψ̂(x3, t3)ψ̂†(x4, t4)ψ̂
†(x2, t2)|N⟩

Thus, equation of motion for the single-particle Green’s function contains the two-

particle Green’s function on account of the two body interaction term. We can

similarly write equation of motion for a two particle Green’s function which will

contain a three particle Green’s function and so on. However, even the two particle

Green’s function is considerably difficult to compute numerically and it is desirable

to limit our means of description of interacting electrons to one particle Green’s

function without any substantial loss of information.

It is obvious that one of the t1 must be t+1 = t1 + η in the two-particle Green’s
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function in Eqn.(2.66), where η is an infinitesimal positive number. Therefore, we

have G2

(
x1, t1, x2, t2, x3, t1, x3, t

+
1

)
which gives two different possible time orderings

and can be interpreted as:36

(1) t1 > t2: a particle propagates from (x2, t2) to (x1, t1) or (x3, t
+
1 ) and a hole

propagates from (x1, t1) or (x3, t
+
1 ) to (x3, t1) and

(2) t1 < t2: two holes propagate from (x1, t1), (x3, t1) to (x2, t2), (x3, t+1 ) or (x3, t+1 ),

(x2, t2)

Assuming the propagation of the two particles (or holes) to be independent of each

other, which is the simplest approach at this stage to treat the interactions term,

we can write:

G2(x1, t1, x2,t2, x3, t1, x3, t
+
1 )

=

G(x1, t1, x2, t2)G(x3, t1, x3, t
+
1 ) +G(x1, t1, x3, t

+
1 )G(x3, t1, x2, t2)

(2.67)

which upon substituting into Eqn.(2.64), leads to

[
iℏ

∂

∂t1
− Ĥ0(x1)− VH(x1, t1)

]
G(x1, t1, x2, t2) + i

∫
v(x1, x3)×

G(x1, t1, x3, t
+
1 )G(x3, t1, x2, t2)dx3 = ℏδ(x1 − x2)δ(t1 − t2)

(2.68)

where VH can be derived from the first term of Eqn.(2.67) as:

V (x1, t1) = −i
∫
v(x1, x3)G(x3, t1, x3, t

+
1 )dx3

=

∫
v(x1, x3)⟨N |ψ̂†(x3, t1)ψ̂(x3, t1)|N⟩dx3

=

∫
v(x1, x3)n(x3, t1)dx3

= VH(x1, t1)

(2.69)

Reverting to the independent particle Green’s function the second term can be un-

derstood as the exchange term of the Hartree-Fock equation which we know does not
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involve self-interaction correction. It is therefore clear that the simple assumption of

independent propagation is not capable of incorporating the dynamical correlation

that we started of aiming at.

We will next aim to go beyond the independent propagation but as minimally

possible to factor in self-interaction correction dynamically. Introducing an external

field ϕ in the basic equation of motion (Eqn.(2.64)) as:

[iℏ
∂

∂t
− Ĥ0(x1)− ϕ(x1, t1)]G(x1, t1, x2, t2)

+ i

∫
v(x1, x3)⟨N |T̂ [ψ̂†(x3, t1)ψ̂(x3, t1)ψ̂(x1, t1)ψ̂

†(x2, t2)]|N⟩dx3

= ℏδ(x1 − x2)δ(t1 − t2) (2.70)

it is possible to derive an exact expression of the two particle Green’s function as:

ℏ
δG(1, 2)

δϕ(3)
= G2(1, 2, 3, 3

+)−G(1, 2)G(3, 3+) (2.71)

using Gellmann-Low theorem39 in the interaction representation. As obvious, we

denote the labels “1,2,...,N” as “(x1, t1),(x2, t2),...,(xN , tN)”.

Using the above expression of two particle Green’s function in Eqn.(2.64), we obtain:

[i
∂

∂t
−H0(x1)− VH ]G(1, 2) + i

∫
v(1, 3)

δG(1, 2)

δϕ(3)
d(3) = δ(1− 2) (2.72)

Note that δG(1,2)
δϕ(3)

above is notional at this stage and we need to find way to calculate

it which we defer to the next section.

Rather, at this point, instead of solving above equation as is we revert to Egn.(2.70),

and we notionally introduce the “self-energy operator” which contain all the inter-

action terms in it as:

[i
∂

∂t
−H0(x1)− V (1)]G(1, 2)−

∫
Σ(1, 2)G(3, 2)d(3) = δ(1− 2). (2.73)

where V (1) = ϕ(1) + VH(1).
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Note that Σ is inherently non-local, dynamic and non-hermitian in nature.

Fourier transform of above equation yields an energy dependent self-energy operator

as in:

[E −H0(x1)− V (x1, E)]G(x1, x2, E)−
∫

Σ(x1, x3, E)G(x3, x2, E)dx3 = δ(x1 − x2)

(2.74)

Writing the above equation in matrix form:

(Ẽ − H̃0 − Ṽ )G̃− Σ̃G̃ = 1 (2.75)

⇒ G̃−1 = (Ẽ − H̃0 − Ṽ − Σ̃) (2.76)

The non-interacting (i.e. without Σ) equation has a solution

G̃0
−1

= Ẽ − H̃0 − Ṽ (2.77)

therefore,

G̃−1 = G̃0
−1 − Σ̃ (2.78)

or

G = G0 +G0ΣG (2.79)

The poles of the Green’s function G are shifted in energy by Σ from those of the

non-interacting Green’s function G0. Thus, the self-energy may be considered as

the correction to the total energy of the system. In the next section our task is to

find way to construct Σ and calculate the self-energy correction.

2.4.5 Hedin’s Equations and Approximations

This section contains the derivations of equations leading to construct of Σ follow-

ing the two landmark papers published by Hedin in 1965 and 1969.4,5 Comparing
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equations (2.72) and (2.73), we get

∫
Σ(1, 3)G(3, 2)d(3) = iℏ

∫
v(1, 3)

δG(1, 2)

δϕ(3)
d(3) (2.80)

Noting G−1G = 1 which lead to

δG

δϕ
= −GδG

−1

δϕ
G (2.81)

we find:

Σ(1, 2) = −i
∫
v(1, 3)G(1, 4)

δG−1(4, 2)

δϕ(3)
d(3)d(4) (2.82)

consistent with Eqn.(2.73).

To interpret the Σ in terms of physically observable and measurable quantities

we define few quantities.

Recalling:

V (x1, t1) = ϕ(x1, t1)− i

∫
v(x1, x2)G(x2, t1, x2, t1

+)dx2

= ϕ(x1, t1) +

∫
v(x1, x2)n(x2, t1)dx2 (2.83)

dielectric response function can be obtained as:

ϵ−1(x1, t1, x2, t2) =
δV (x1, t1)

δϕ(x2, t2)
(2.84)

implying:

ϵ−1(1, 2) = δ(1− 2) +

∫
v(1, 3)

δn(3)

δϕ(2)
d(3) (2.85)

which can be written as:

ϵ(1, 2) = δ(1− 2)−
∫
v(1, 3)P (3, 2)d(3) (2.86)
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where the polarization function is defined as

P (1, 2) =
δn(1)

δV (2)

= −i
∫
G(1, 3)Γ(3, 4, 2)G(4, 1+)d(3) (2.87)

where,

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
(2.88)

is known as vertex function.

With Γ defined above and the screened potential defined as:

W (1, 2) =

∫
ϵ−1(1, 3)v(3, 2)d(3) (2.89)

we can rewrite the self-energy operator as:

Σ(1, 2) = i

∫
W (1, 4)G(1, 3)Γ(3, 2, 4)d(3)d(4). (2.90)

In principle, we now have the complete recipe to calculate the self-energy oper-

ator which we summarize below

V (1) = ϕ(1)− i

∫
v(1, 3)G(3, 3+)d(3) (2.91)

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
(2.92)

P (1, 2) = −i
∫
G(1, 3)Γ(3, 4, 2)G(4, 1+)d(3) (2.93)

ϵ(1, 2) = δ(1− 2)−
∫
v(1, 3)P (3, 2)d(3) (2.94)

W (1, 2) =

∫
ϵ−1(1, 3)v(3, 2)d(3) (2.95)

Σ(1, 2) = i

∫
W (1, 4)G(1, 3)Γ(3, 2, 4)d(3)d(4) (2.96)

These equations are known as Hedin’s equations and are solved self-consistently.
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However, in most cases it is sufficient to calculate the self-energy operator only up to

Figure 2.2: Flowchart for the iterative solution of the Hedin’s equations.

the first iteration. As the first approximation, it is found reasonable to approximate

the vertex function Γ as

Γ(1, 2, 3) = −δG
−1(1, 2)

δV (3)
≃ δG−1

0 (1, 2)

δV (3)
= δ(1− 2)δ(1− 3) (2.97)

Using above approximation into expression of P , we get

P0(1, 2) = −iG0(1, 2)G0(2, 1
+) (2.98)

and the self-energy operator takes a simple form as

Σ(1, 2) = iG0(1, 2)W (1, 2) (2.99)



34 Theoretical background

Fourier transform of all the Hedin’s equations with the first approximation yields:

P0(r1, r2, E) = − i

2π

∫
G0(r1, r2, E − E ′)G0(r1, r2, E

′)dE ′ (2.100)

ϵ(r1, r2, E) = δ(r1 − r2)−
∫
v(r1, r3)P0(r3, r2, E)dr3 (2.101)

W (r1, r2, E) =

∫
ϵ−1(r1, r3, E)v(r3, r2)dr3 (2.102)

Σ(r1, r2, E) =
i

2π

∫
G0(r1, r2, E − E ′)W (r1, r2, E

′)dE ′ (2.103)

We now recall Eqn.(2.73) and write the corresponding homogeneous equation as:

(
− 1

2
∇2 + Vext + VH

)
ψnk(r) +

∫
Σ(r, r′, Enk)ψnk(r

′)dr′ = Enkψnk(r) (2.104)

This is a Dyson equation for single-particle levels, upon solving we can obtain quasi-

particle eigen functions and quasi-particle energies.

In the standard implementation of GW approximation it is assumed that the

system is periodic in all directions and all the properties should therefore be invariant

under translation with an arbitrary lattice vector R. For a correlation functions like

the dielectric function we can write: ϵ (r+R, r′ +R;ω) = ϵ (r, r′;ω) For extended

systems it is easy to work in the reciprocal space. Therefore, the dielectric function

takes the form in the the reciprocal space

ϵGG′(q;ω) = δGG′ −
∑
G1

vGG1(q)PG1G′(q;ω) (2.105)

where q is wave vector in the first Brillouin zone. In the usual 3D implementation

the Coulomb potential in reciprocal space we can rewrite in Fourier space as:

vGG′(q) =
4πδGG′

|q+G|2
(2.106)

so that the sum over G-vectors could have been left out in Eqn.(2.105). The screened

interaction [Eqn.(2.102)] can be written in terms of the energy and wave-vector using
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the Fourier transformation as:

W (r, r′;E) =
∑

q,G,G′

ei(q+G)−rWGG′(q, ω)e−i(q+G′)−r′ (2.107)

which after Fourier transformation takes the form:

WGG′(q, ω) = vG(q)ϵ
−1
GG′(q, ω) =

√
vG(q)ϵ̄

−1
GG′(q, ω)

√
vG′(q) (2.108)

An expression for the dielectric function can directly be found from Eqn.(2.105)

which however depends on the irreducible polarizability PGG′(q, ω) matrix which in

the G0W0 approximation is given within the random-phase approximation(RPA) by

expression as given in Eqn.(2.98). Now with the help of the Lehmann representa-

tion we can obtain an expression for the irreducible polarizability in real space and

frequency given by40,41

P (r, r′;ω) =
∑
i

∑
j

fi (1− fj)

[
ψi(r)ψ

∗
j (r)ψ

∗
i (r

′)ψj (r
′) + c.c

ω + εi − εj

]
(2.109)

where fi is 0 if εi > µ and 1 if εi < µ.

If we use DFT wave functions as an approximation for the quasiparticle wave

functions the Green’s functions are approximated by the DFT non-interacting Green’s

functions G(12) ≡ GKS
0 (12) and the RPA irreducible polarization P (12) turns out

to be equivalent to the non-interacting polarizability χ0(12). In terms of KS wave

functions this takes the form

χ0 (r, r′;ω = 0) =
∑
k,n

∑
k′,n′

fnk (1− fn′k′)

[
ϕnk(r)ϕ

∗
n′k′(r)ϕ∗

nk (r
′)ϕ′

n′k (r
′) + c.c

εnk − εn′k′

]
(2.110)

where fnk is the occupation number of the single-particle KS state |nk⟩. Fourier
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transformation of above Eqn.(2.110) gives6,40,41

χ0
GG′(q) =

2

V

∑
n,n′,k

fn,k (1− fn′,k+q)

εn,k − εn′,k+q

×

[⟨
n,k

∣∣e−i(q+G)·r∣∣n′,k+ q
⟩ ⟨
n′,k+ q

∣∣∣ei(q+G′)·r′
∣∣∣n,k⟩+ c · c.

] (2.111)

the factor 2 before the summation accounts for spin degeneracy and symbol V rep-

resents the volume of the cell.

Now the static dielectric matrix ϵGG′(q;ω = 0) is calculated using Eqn.(2.111) in

Eqn.(2.105) and then it extends to the finite frequencies with the help of generalized

plasmon-pole (GPP) model proposed by the Hybertsen-Louie6 where, the effective

bare plasma frequency ΩGG′(q) is estimated (within the GPP model) as:

Ω2
GG′(q) = ω2

p

(q+G) · (q+G′)

|q+G|2
ρ (G−G′)

ρ(0)
(2.112)

where, ρ is the crystalline charge density.

We can expand the quasiparticle wave function in terms of the DFT wave func-

tions

ψnk(r) =
∑
n′

αnn′(k)ϕn′k(r) (2.113)

in order to solve the quasi-particle eigenvalue equation(2.104). In above equation

wave functions ϕnk are obtained from solving the effective one-particle KS equations

of DFT.

Now with help of sprectal weight functions A and B of Green’s function and

screened ineraction respectively, the real part of the self-energy operator splits into

two terms screened-exchange(SEX) and Coulomb-hole(COH) for whcih a more de-

tailed description is included in Chapter 7. The screened interaction can be ex-

panded in plane waves and the dielectric function can be expressed by the GPP

model then we can calculate the screened-exchange term and the Coulomb-hole
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term of COHSEX seperately. The screened-exchange term is computed as:

⟨nk |ΣSEX (r, r′;E)|n′k⟩ =−
occ∑
n1

∑
q,G,G′

⟨
nk
∣∣ei(q+G|·r∣∣n1,k− q

⟩
⟨
n1,k− q

∣∣∣e−i(q+G′)·r′
∣∣∣n′k

⟩
×[

1 +
Ω2

GG′(q)

(E − εn1k−q)
2 − ω̃2

GG′(q)

]
v (q+G′) ,

(2.114)

and the Coulomb-hole term is computed as:

⟨nk |ΣCOH (r, r′;E)|n′k⟩ =
∑
n1

∑
q,G,G′

⟨
nk
∣∣ei(q+G)·r∣∣n1,k− q

⟩
⟨
n1,k− q

∣∣∣e−i(q+G′)·r′
∣∣∣n′k

⟩
×

1

2

Ω2
GG′(q)

ω̃GG′(q) [E − εn1k−q − ω̃GG′(q)]
v (q+G′)

(2.115)

to which αnn′ ≈ δnn′ . We stop here the technical aspects of GW approximation

but one can find a detail information of the implementation and evaluation of GW

approximation in Ref..6,41,42 Finally, assuming the quasi-particle wavefunctions are

same as that of the Kohn-Sham orbitals, the quasi-particle energies can be calculated

as:

EQP

k⃗,n
= EKS

k⃗,n
+ ⟨ψKS

k⃗,n
| Σ− V KS

xc | ψKS
k⃗,n

⟩ (2.116)

GW is an accurate technique for computing correlated electronic structure of

materials which inherently requires a faithful representation of excitation of each

electron in response to perturbation due to motion of other electrons. However, in

a typical GW implementation, the computational cost is O(N4), with each Green’s

function accounting for O(N2) for a system of size N , which is the number of states

considered for their construction. For example in Fig.[2.3] reproduced from Ref.,42

the computational cost in terms of wall time and required memory is ploted as a

function of number of CPUs used for calculation of ϵ and Σ with 800 unoccupied

bands in a 1x1x256 finner k-mesh for a unit cell of (20,20) single-walled carbon



38 Theoretical background

nanotube of 80 carbon atoms implying 160 occupied bands.
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Figure 2.3: Computational cost of GW calculation of a (20,20) single-walled carbon
nanotube. These data are taken from Ref.42

2.5 Electron in periodic potential: Tight-binding

framework

In this section I will briefly introduce the Bloch formalism and the conceptual basis

of Wannier function and the tight-binding framework based on it.

A periodic system is characterized by an effective periodic potential that a non-

interacting electron in it is subjected to. Such a potential satisfies:

V (r) = V (r+R), (2.117)

where

R = n1a1 + n2a2 + n3a3 (2.118)

is any real space lattice vector with {ni} →Z, ai(i=1,2,3) being three primitive

lattice vectors enclosing a finite volume which is defined as the primitive unit-cell

which defines the periodicity of the system. For a given system, although the volume

of the primitive unit-cell is uniquely defined, the primitive unit-cell itself is not.

The potential defines a non-interacting Hamiltonian which satisfies:

H(r) = H(r+R), (2.119)
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Within the Born-von Karman(BVK) periodic boundary condition(PBC), which

is central to the Bloch formalism that we resort in order to describe non-interacting

electrons in such a periodic systems, the infinitely extended perfect crystal is divided

into chunks of crystals containing, say, N1 × N2 × N3 number of unit-cells which

may or may not be primitive but rather a convenient choice. Analytic description,

namely, the Bloch formalism, is derived for finite {Ni}, which are then notionally

set to ∞ to represent a perfect crystal.

For such a chunk of crystal, wave functions describing non-interacting electrons

within the BVK PBC satisfy:

ψ(r) = ψ(r+N1a1 +N2a2 +N3a3). (2.120)

which allows expansion in the Fourier basis {eif .r} defined by wave-vectors:

f =
3∑

i=1

mi

Ni

bi, (2.121)

with mi →Z and bi(i=1,2,3) are primitive reciprocal lattice vectors which satisfy

bi.aj = 2πδij.

However, such a solution to the periodic Hamiltonian defined in Eqn.(2.119)

becomes possible if the Fourier coefficients {Cf} seperates out into N1 × N2 × N3

linearly indipendent sets each idenified by a unique f defined by {mi = 0, 1, 2, ..., Ni−

1}i=1,2,3.

Denoting the unique set of wave-vectors {f} as {k}, referred as the allowed values

of crystal momentum, we therefore have for each unique k:

ψk(r) =
1√
Ω

∑
G

Ck−Ge
i(k−G).r (2.122)

where Ω = NkΩcell, withNk = N1N2N3, and k =
∑3

i=1
mi

Ni
bi withmi = 0, 1, 2, ..., Ni−

1 and G = l1b1 + l2b2 + l3b3 is a reciprocal lattice vector with li →Z
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Eqn.(2.122) implies

ψk(r) =
1√
Nk

uk(r)e
ik.r, (2.123)

where uk(r) has the same periodicity as the Hamiltonian, and obtained as:

uk(r) =
1√
Ωcell

∑
G

Ck−Ge
i−G.r. (2.124)

The cell periodic functions uk(r) can be obtained as eigen function of the Bloch

Hamiltonian:

H(k) = −(p̂+ ℏk)2

2me

+ V (r). (2.125)

The eigenvalues and eigenstates of H(k) provides the description of energy levels

and charge density of non-interacting electrons in a periodic potential. In the Kohn-

Sham analogue to Bloch Hamiltonian V = VH + VXC + Vext.

The cell periodic function and the Bloch functions satify the following orthoron-

mality conditions:

∫
Ωcell

u∗nk(r)un′k(r)dr = δnn′ (2.126)∫
Ω

ψ∗
nk(r)un′k′ (r)dr = δnn′δ

kk
′ (2.127)

Following Eqn.(2.122) we note that

ψk+G′ (r) = ψk(r) (2.128)

This periodicity of Bloch function in the reciprocal space suggests that Bloch func-

tion must have a Fourier expansion in plane waves with wave-vectors in the reciprocal

of the reciprocal lattice, that is, the lattice in real space, namely, {R}. ψnk(r) can

therefore be expanded in the basis of {ek.R} as:

ψnk(r) =
1√
Nk

∑
R

eik.RWn(r−R). (2.129)
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where Wn(r−R) are known as the Wannier functions11,12 . The sum over R in

Eqn.(2.129) goes over all the N1 × N2 × N3 unit-cells. Notably, often it is also

conversely stated that ψnk(r) is expanded in terms of the Wannier functions in

Eqn.(2.129). Wannier functions can therefore be obtained inverse Fourier transform

of ψnk(r) as:

Wn(r−R) =
1√
Nk

∑
k

e−ik.Rψnk(r). (2.130)

or more generally:

Wn(r−R) =
1√
Nk

∑
k

e−ik.R
∑
m

Unmψmk(r). (2.131)

With proper choice of gauge U , Wannier functions can be constructed to be localized

within a desired unit-cell. Orthonormality condition satisfied by Wannier functions:

⟨Wn(r,R) | Wn′ (r,R
′
)⟩ = δnn′δRR′ (2.132)

Localized set of orthonormal Wannier functions thus constitute an ideal set of lo-

calized orthogonal basis.

2.5.1 Tight-Binding model

Tight-binding(TB) model is the simplest single particle approach for calculation of

electronic structure of a system of atoms. A representation of a given Hamiltonian

is constructed in the basis of a chosen set of N number of orthonormal localized

functions {ϕi(r)} . For isolated(periodic) systems the wave functions (Wannier

functions) are considered as a linear combinations of the chosen basis functions.

Wn(r,R) =
N∑
m

Cnmϕm(r,R). (2.133)

where R is a lattice vector spanning the entire crystal and {ϕn(r,R)} are consid-

ered translated to the unit-cell defined by R. For isolated systems only R = 0 is
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considered.

Depending on the range of the basis functions used, a TB model can be chosen

to represent either only few bands about the Fermi energy, or a wide subspace of

bands covering not only the entire occupied subspace but also an equal number of

bands from the unoccupied subspace, as is the case in this thesis.

Traditionally, {ϕi(r)} are chosen to be atomic orbitals obtained as:

Hatϕj(r) = Ejϕj(r). (2.134)

Hat being the atomic Hamiltonian and Ej being the energy levels of a single atom.

Referring to the Bloch functions introduced in the previous section, Schrödinger

equation for the crystal can be written as,

Hψmk(r) = (
∑
atom

Hat +∆V )ψmk(r) = εm(k)ψmk(r), (2.135)

where, H is the crystal Hamiltonian and ∆V contains the corrections to reproduce

the full periodic potential of the crystal in terms of the ionic potentials.

Taking inner product of both sides of Eq.2.135 with ϕ∗
n(r) at R = 0:

∫
ϕ∗
n(r)(

∑
atom

Hat +∆V )ψmk(r)d
3r = εm(k)

∫
ϕ∗
n(r)ψmk(r)d

3r. (2.136)

using Eqn.2.130 and (2.133):

εm(k)
∑
l

Cml

∑
R

∫
d3rϕ∗

n(r)ϕl(r−R)eik.R =

∑
j

Cmj

∑
R

∫
d3rϕ∗

n(r)(Hat +∆V )ϕj(r−R)eik.R

which simplifies to:

(εm(k)− En)
∑
l

Cml

∑
R

αnl(R)eik.R =
∑
j

Cmj

∑
R

γnj(R)eik.R (2.137)
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with

αmn(R) =

∫
d3r ϕ∗

m(r)ϕn(r−R) (2.138)

γmn(R) = −
∫
d3r ϕ∗

m(r)∆V ϕn(r−R). (2.139)

Notably, there will be N number of equations like (2.137) for n = 1, 2, 3, ..., N .

Noting that αmn(R = 0) = δmn we can rearrange (2.137) as a eigenvalue problem.

αmn(R ̸= 0) is the overlap of m-th and n-th atomic orbitals located at different unit-

cells, and is often considered negligible. The most important parameter is γm,n(R),

is also known as ‘hopping’ parameter, which is often considered negligible beyond

neighbouring unit-cells due to localized nature of the basis.





Chapter 3

Transferability of self-energy

correction in localized orbital basis

In this chapter we first present a scheme for construction of atomic Wannier orbitals

from first principles spanning a subspace of valence and conduction bands and cal-

culations of tight-binding parameters in the basis of the constructed orbitals. The

primary result of the chapter is the demonstration of transferability of self-energy

correction in the atomic Wannier orbital basis. In this chapter we have only consider

a single 2pz orbital per atom.

3.1 Introduction

Designing new materials at nanoscale, typically consisting of few tens of atoms, ne-

cessitates increase in accuracy of estimation of electronic structure preferably with-

out a commensurate increase in computational cost. Particularly with increasing

spatio-temporal resolution of synthesis,43 spectroscopic,44 and transport45 measure-

ments of nanostructures, it has become imperative to match measured values to

computed results in order to precisely determine atomic constitution of samples.

Accordingly, computational methodologies have been evolved46 over the years for

estimation of electronic structure of systems typically with a few hundreds of elec-
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trons, large enough to be within the experimentally accessible length-scales, pri-

marily at the level of Kohn-Sham (KS) density-functional theory (DFT).1,2 As a

possible approach to compute self-energy corrected energetics of electrons in such

large systems, in this work we demonstrate bottom-up transferability of self-energy

correction when incorporated in a suitable tight-binding basis constituted from first

principles.

Mean-field approximation of the Kohn-Sham (“KS”) density-functional theory

(“DFT”),1,2 has established itself as a powerful tool for calculation of electronic

structures of materials from first principles, to study ground state properties with

reasonable accuracy, primarily in systems with weak localization of electrons in the

valence sub-shells. Wannier functions,11,47,48 constructed from KS single particle

states, have been used as TB basis49,50,51,52,53,54 to derive model Hamiltonians to fo-

cus only on the relevant group of orbitals. However, DFT being essentially a ground

state theory, the inherent lack of discontinuity55 of the derivative of the static and

local56 or semi-local57 mean-field approximations of exchange-correlation function-

als, upon addition or removal of electrons, leads to underestimation of band-gap

compared to their experimentally measured values as the difference between the

ionization potential (“IP”) and electron affinity (“EA”). As a result, TB parameters

computed from DFT often need further tuning parameters to match experimental

data, such as band-gap, particularly in systems with increased correlation mainly

due to localized electrons58 Multitude of efforts to address these inadequacies have

been pursued over last few decades, within and beyond the framework of DFT. Im-

provement of the exchange-correlation functionals either by correcting for derivative

discontinuity explicitly59,60 , or more popularly through incorporation of the inher-

ently non-local nature of many-electron interactions by deriving non-local function-

als61 and partial inclusion of Hartree-Fock exact exchange in hybrid functionals62,63

have been reasonably successful in addressing particularly the issue of underestima-

tion of band-gap by DFT, with appropriate choice of relevant parameters.

A more general parameter free approach beyond the framework of DFT, is the

many-body perturbation theory(“MBPT”)64,65 wherein, many-electron effects are
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treated as perturbation, resulting in description of interacting electrons as quasi-

particles(QP) whose energies include corrections to the KS single-particle levels due

to effective holes associated with electrons in lieu of their interaction with other elec-

trons. These corrections, thereby known as self-energy (“SE”) corrections(“SEC”),

computed up to the first order, have been shown66 to be sufficient in accounting

for the experimentally accessible SE corrected band-gap (IP-EA). However, since

both the approaches - hybrid functionals and MBPT, are computationally expen-

sive, MBPT being more so, scaling typically as N4 with system size, it poses a

formidable computational challenge to compute SE corrected band-gap till date

even for nanostructures with dimensions in single digits of nanometers, using stan-

dard computational platforms. Notably though, considerable amount of effort and

progress has been made in recent years in reducing the computational cost by using

specialized basis sets.67,68,69,70

In this work our approach has been to first incorporate the SEC of KS single

particle levels as corrections to TB parameters in a suitable basis and subsequently

see if such corrections derived from a smaller reference systems can be reasonably ap-

plied to TB parameters derived for larger systems for realistic representation of SEC

in such systems without needing to explicitly compute SEC for KS states which can

be computationally prohibitively expensive with growing system size. Estimation of

QP band-gap within a TB framework has been attempted in recent years,71,72,73,74

largely based on tuning TB parameters to match the relevant QP structure. In

the following we first discuss construction of the atomic orbital basis from the KS

single-particle states, in which SEC is mapped, followed by brief description of the

GW approximation of MBPT used in this work for calculation of SEC. We demon-

strate our approach in graphene nano-ribbons(GNR), where GW approximation of

SEC has been reported in details,75 and also in hexagonal boron-nitride ribbons

(hBNNR) as example of wide band-gap insulator.
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3.2 Construction of atomic Wannier orbitals

The TB basis used in this work are orthonormal Wannier11,47,48 orbitals constructed

as linear combination of KS energy eigen-states with a specific choice of gauge that

maximally retains their character as individual atomic orbtial. Since in this work we

consider only 2pz orbitals, we limit our discussion here on generation of one orbital

per atom. We begin with a template consisting of one of the 2p orbitals each of B,

C, N calculated using norm-conserving pseudo-potentials. The 2p orbital is chosen

to be arbitrarily one of the lowest three degenerate set of KS states of an isolated

B, C or N atom. The full system is then decorated with such orbitals to associate

one single 2pz orbital with each atom, aligned perpendicularly to the local plane

defined by the nearest neighbourhood. These orbitals constitute a non-orthogonal

set of localized basis from which a set of quasi-Bloch states are constructed as:

ψ̃k⃗,j(r⃗) =
1√
N

∑
R⃗

eik⃗·R⃗ϕR⃗,j(r⃗), (3.1)

where ϕR⃗,j(r⃗) is the j-th member of the non-orthogonal basis localized in the unit-

cell denoted by the lattice vector R⃗ which spans over N unit-cells that define

the periodicity of the Bloch states. Next we calculate the projection of the non-

orthogonal quasi-Bloch states on the orthonormal Bloch states constructed from

the cell-periodic KS-single particle states at all allowed k⃗, as:

Ok⃗,m,j = ⟨ψKS
k⃗,m

| ψ̃k⃗,j⟩. (3.2)

Subsequently the overlaps between the representation of the non-orthogonal quasi-

Bloch states within the manifold of of the KS single-particle states, are calculated

as:

Sk⃗,m,n =
∑
l

O∗
k⃗,m,l

Ok⃗,n,l. (3.3)
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Finally, we use the Löwdin symmetric orthogonalization76 scheme to construct a

new set of orthonormal Bloch states from the KS single particle states as:

Ψk⃗,n(r⃗) =
∑
m

S
− 1

2

k⃗,m,n

∑
l

Ok⃗,l,mψ
KS
k⃗,l

(r⃗), (3.4)

using which, a set of localized orthonormal Wannier functions are constructed as:

ΦR⃗′,j(r⃗) =
1√
N

∑
k⃗

e−ik⃗·R⃗′
Ψk⃗,j(r⃗). (3.5)

Löwdin symmetric orthogonalization thus provides a choice of gauge for linear com-

bination of KS states such that the resultant Wannier functions
{
ΦR⃗′,j(r⃗)

}
would

have minimal deviation from the non-orthogonal orbtials
{
ϕR⃗,j(r⃗)

}
. Hence we here

onwards refer these Wannier functions as atomic Wannier orbtials (”AWO”). TB

parameters are computed in the AWO basis as:

tR⃗′,R⃗,i,j = ⟨ΦR⃗′,i | H
KS | ΦR⃗,j⟩ =

∑
k⃗

eik⃗.(R⃗
′−R⃗)

∑
l

(OS− 1
2 )∗li(OS

− 1
2 )ljE

KS
k⃗,l

(3.6)

As obvious, the AWOs used here can in principle be substituted by any localized

atomic orbitals constructed as linear combination of KS single particle states. To

estimate self-energy(”SE”) correction(”SEC”) of the KS single particle levels we fol-

lowed the GW approximation6,41 of Hedin’s formulation4,5 of the many-body pertur-

bation theory (”MBPT”)64,65 to describe single-particle excitations, wherein, many

electron interactions are represented beyond mean-field by an energy dependent,

non-local and non-Hermitian SE operator Σ, derived by considering the many-

electron effects as perturbation treated within a self-consistent framework of Dyson’s

equation in terms of the one-particle non-local Green’s functions G, as:

Σ(r⃗, r⃗′, E) =
i

2π

∫
dE ′e−iδE′

G(r⃗, r⃗′, E − E ′)W (r⃗, r⃗′, E ′) (3.7)
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where δ = 0+ and W is the Coulomb interaction screened by a non-local dynamic

dielectric screening function computed approximately within the random phase ap-

proximation as extension of its static counterpart to finite frequencies following a

generalized plasmon pole model.6 With the underlying assumption that correction

to the KS single particle states are negligible, the quasiparticle energies are approx-

imated as:

EQP

k⃗,n
= EKS

k⃗,n
+ ⟨ψKS

k⃗,n
| Σ− V KS

xc | ψKS
k⃗,n

⟩ (3.8)

where V KS
xc is the mean-field exchange-correlation potential derived from the exchange-

correlation functionals used in DFT. Estimation of quasi-particle energies within GW

approximation is computationally expensive primarily due to the slow convergence

of ϵ−1 and G, and therefore of Σ, with respect to unoccupied single particle KS

states. Substituting EKS
k⃗,n

in Eqn.(3.6) by quasiparticle energies EQP

k⃗,n
we calculate

the SE corrected TB parameters
{
tQP

R⃗′,R⃗,i,j

}
. SEC of the TB parameters is thus
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estimated as:

∆tR⃗′,R⃗,i,j = tQP

R⃗′,R⃗,i,j
− tKS

R⃗′,R⃗,i,j
, (3.9)

3.3 Computational Details

There are two main steps in the proposed approach: (1) computation of the ground

state electronic structure followed by construction of AWOs as per Eqn.(3.5) using

the KS single particle states transformed as shown in Eqn.(3.4) followed further by

calculation of TB parameters as per Eqn.(3.6), (2) calculation of SEC of KS single

particle states using GW approximation and subsequent estimation of SEC of TB

parameters [∆t] from QP energies.

Ground state electronic structures are calculated using a plane-wave based im-

plementation of DFT.77 Unit cells are structurally optimized with variable cell size

using the BFGS scheme. Ground state energies are calculated using norm conserv-

ing pseudo-potentials with Perdew-Zunger (LDA) exchange-correlation56 functional

and plane wave energy cutoff of 60 Ry. Grid of k⃗-points 1x1x15 and 1x1x29 are used
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for AGNRs and ZGNRs respectively. Separation of more than 10 Angstrom is used

between periodic images of nano-ribbons. We restricted to the non-self-consistent

(G0W0) level for estimation of quasi-particle energies using the BerkeleyGW (BGW)

implementation.42 Parameters for calculation of SEC have been chosen as per Ref.-.75

Band-gaps have been further converged with respects finer k⃗ grid through interpo-

lation based on the AWOs. Construction of AWO, calculation of TB parameters

in AWO basis, and estimation of SEC of TB parameters are performed using our

implementation interfaced with the Quantun Espresso code.

3.4 Results and Discussion

In the following we primarily demonstrate our approach by accounting for SEC of

KS band-gap in wider ribbons through correction to their TB band-gap calculated

using SEC of TB parameters (∆t) obtained in a narrower ribbon. We chose AGNRs,

ZGNRs and hBNNRs in order to span a wide range of band-gaps and magnetism

with only 2pz electrons.
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3.4.1 Armchair Graphene Nanoribbons

We consider H-passivated AGNRs and ZGNRs of varying width wherein AGNRs

are specified by a number of the dimer lines and ZGNRs by the number of zigzag

chains. AGNRs are categorized in three different families as per the number(n)

of dimer lines: n = 3p + 0, n = 3p + 1 and n = 3p + 2, p being an integer. In

this work we consider only the 2pz orbitals since they are well known to adequately

describe the edge of the valence and conduction bands in GNRs. To maximize

the 2pz character of the corresponding AWOs, sufficient participation of the anti-

bonding orbitals are required in order to match the weightage of bonding orbitals,

which in GNRs are represented increasingly by bands closer to the conduction and

valence band edges respectively. Fig.3.1(b-f) accordingly shows convergence of tij
for all inequivalent atoms with respect to the total number of KS bands considered

for construction of the AWOs. The fluctuation of hopping parameters from nearest

to next-nearest and beyond, represent the favorable(unfavorable) nature of hopping
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between dissimilar(similar) sub-lattices, as generic in bipartite systems. As per

Fig.3.1(d), we consider on the average about extra 40 unoccupied states from the

valence band for construction of AWOs.

Fig.3.1(g-l) shows SEC of TB parameters {∆tij} for all the inequivalent atoms

to their neighbours, for a representative set of AGNRs from all the three families,

arranged in increasing order of width. Fig.3.1(g,j,k,l) suggests that correction to

nearest neighbor(n-n) hopping reduced marginally after p=1 and convergence be-

yond p=2. However, Fig.3.1(g-i or h-j) indicates that corrections for 3p+1 and 3p+0

are lower than that of 3p+2 for same p, consistent with the fact that AGNRs with

n=3p+2 are inherently metallic in nature with a small gap arising exclusively due

to variation in TB parameters from the edge to the bulk due to relaxation of bond

lengths. Notably, the n-n hopping term, which is between dissimilar sub-lattices,

has the most significant negative correction implying consolidation of the n-n π-

bond leading to enhanced localization of the π-bonding orbitals between atoms due

to SEC. Positive correction of further hopping term between dissimilar sub-lattices

also imply the same. Such localization all across the system, as implied by similar

correction to hopping between nearest sites for all inequivalent atoms, would in ef-

fect result into withdrawal of charge from edge towards bulk, as evident Fig.3.1(f),

due to consolidation of π bonds in the bulk. The resultant overall increase in unifor-

mity of charge distribution effectively reduces mutual Couloumb repulsion between

electrons of opposite spins, leading to lowering of the on-site term due to SEC.

Consistent lowering of correction to the on-site term with increasing width indi-

cates reduced levels of SEC in general with increasing value of p. Correction to the

hopping between sites within the same sub-lattice, like the hopping between next

nearest sites, is negligible since it is weak in the DFT level itself.

TB Band-gap with TB parameters in AWO basis derived from KS eigen-states of

a given system, would match the KS band-gap of the same system by construction.

Similarly, with SEC of TB parameters, referred here onwards as ∆t, the correction

to TB band-gap (SEC(TB)), would match the SEC of KS band-gap (SEC(KS)) of a

given system, if ∆t is obtained from SEC of KS single particle levels of the same sys-
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tem, as evident in Fig.3.2(c-e) for p=1 and p=2. Motivated by the overall similarity

in SEC of TB parameters within each families of AGNRs shown in Fig.3.1(g,j,k,l),

we next test if SEC(KS) of a wider AGNR with p > 1 can be matched by SEC(TB)

estimated with TB parameters calculated from KS states of the same system (p

> 1), but using ∆t obtained for p=1 (∆t(p = 1)) of the same family. As evident

in Fig.3.2(c-e), within each family, using ∆t(p = 1) and ∆t(p = 2), it is possible

to account for more than 80% of SEC(KS) in wider AGNRs (p = 3, 4), with no

appreciable increase in computational cost beyond computation of TB parameters

for wider ribbons. Owing to the convergence of ∆t beyond p=2 [Fig.3.1(g,j,k,l)],

the match between SEC(TB) and SEC(KS) is more accurate with ∆t(p = 2) than

with ∆t(p = 1). The scheme for assignment of ∆t from narrower to wider AGNRs

is shown in Fig.3.2(a-b) where the atoms of matching colors are assigned same cor-

rections. Correction data is collected for each single atom of the reference system

for all its neighbouring pairs within a cutoff radius chosen to include typically up to

4th or 5th nearest neighbour beyond which the corrections are practically negligible.

The transfer is done on the basis of two considerations: (1) matching atoms between

the reference and the target systems in terms of their neighbourhood not limited to

nearest neighbours, and (2) by maximally matching distance between pair of atoms

in the reference system to that the target system. In mapping atoms for the criteria

(1) the similarity of average nearest-neighbour bond-lengths around atoms can be

used as a reasonable criteria.

3.4.2 hBN nanoribbons

Next we demonstrate the scheme in hBNNR, chosen as an example of wide band gap

insulator where the SEC(KS) is substantial. The difference of electro-negativities of

B and N are reflected in the difference in on-site terms in Fig.3.3(b,c). ∆t plotted in

Fig.3.3(d,e) show mild positive and strong negative SEC for on-site terms for B and

N respectively, implying enhanced polarity of the B-N π-bond and consolidation of

the lone pair of N. Noticeably, unlike in GNRs, ∆t in all B and N atoms are very
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similar among their own kind irrespective of their proximity to edges, except the

ones exactly at the edges. This is expected to enhance the degree of transferability

of ∆t across hBN ribbons systems. Fig.3.3(f) indeed suggests SEC(TB) to cover

more than 90% of SEC(KS) in wider ZBNNRs with ∆t calculated in the narrowest

of the hBNNRs considered.

3.4.3 Zigzag edged graphene nano-ribbon

We next demonstrate the scheme in ZGNRs as an example of narrow band-gap

magnetic materials where Coulomb correlation plays a central role in determining

the electronic structure. The difference in on-site energies [Fig.3.4(b-i)] of the two

spins at the zigzag edges, owes to spin separation between the two sub-lattices, which

leads to localization of 2pz electrons of opposite spins at the two edges characteristic

of ZGNRs. Accordingly, although the C atoms in AGNRs and ZGNRs have the

same local neighbourhood, their TB parameters and their SEC are expected to

be fundamentally different since such spin-separation is completely absent in the

former. Notably, for the C atoms at the ZGNR edges, the SEC of the on-site terms

Fig.3.4(j-m) shows higher negative correction for the local majority spins, compared

to those of the C atoms at the interior. This implies enhanced presence of 2pz
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electron of one of the spins at an edge and removal of electron of the other spin from

that edge, as a result of SEC. This enhancement in spin separation across the width

of ZGNRs is evident in Fig.3.5(c), while Fig.3.5(b) implies withdrawal of charge

from edge to bulk, as seen in AGNRs as well, due to SEC. Notably, while variation

in n-n hopping itself [Fig.3.4(b-i)] is small among all inequivalent C atoms in each

ZGNR and similar for all ZGNRs, the magnitude of ∆t for n-n hopping reduces

from Z12 to Z16 and converged thereafter[Fig.3.4(j-q)] for both spins. Accordingly,

Fig.3.5(b) suggests a better accounting of SEC(KS) of wider ZGNRs(Z20,Z24) using

∆t of Z16 than that using ∆t of Z12.

Pertinently, transfer of charge from edge to bulk as seen in Fig.3.5(b), accom-

panied by enhancement of localization of opposite spins near the edges seen in

Fig.3.5(c), is also observed within the Hubbard model with increasing strength

of the on-site Coulomb repulsion U, although it is clear from the contribution of

off-diagonal terms of ∆t in reproducing SEC(KS), that DFT+U alone will not be

sufficient to account for SEC. However, unlike AGNRs, ZGNRs being magnetic sys-

tems, it is reasonable to anticipate that SEC of KS single particle states will also

have impact on the on-site Coulomb repulsion term U in addition to TB parameters.
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Figure 3.7: Spin density of (a) C13H9; (b) C22H12; (c) C33H15. (d) Calculated
Hubbard U DFT as well as G0W0 and (e) HOMO-LUMO gap reproduction using
Hubbard U .

Therefore while substituting ∆t of wider ZGNRs by that of Z12 or Z16, we need to

account for a possible underestimation of U. We therefore take recourse to the mean

field approximation of the Hubbard model and self-consistently introduce ∆U along

with ∆t, as

H =
∑
i,j,σ

(tij +∆tij)c
†
iσcjσ +

∑
i,σ

∆Uniσ⟨niσ′⟩, (3.10)

where {tij} are computed from KS eigen-states of the wider ZGNRs(Z20,Z24), and

{∆tij} from Z16. ∆U is tuned to match SEC(TB) to SEC(KS) in Z20 and Z24.

As evident in Fig.3.5(a), indeed with application of a small U in addition to the
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∆t(Z16), it is possible to match the SE corrected KS band-gap of the wider rib-

bons with modest increase in spin density near the edges, implying enhanced inter-

sublattice spin separation due to SEC, which is already hinted in Fig.3.5(c) which

is with U=0. Indeed the ground state charge density does not change due the self-

energy corrections within the diagonal approximation of GW. However, when we

use the self-energy corrected hopping parameters within the mean field Hubbard

model(MFHM) with an appropriate U needed to match the band-gap, we see the

reported change in the charge density which appears to transfer charge from edge

towards bulk, leading to marginal reduction in the inhomogeneity of charge dis-

tribution. We can possibly attribute it to the near uniform strengthening of the

hopping parameter across the width of the ribbons due to self-energy correction,

which should thus reduce the degree of relative variation of hopping parameters

from bulk to edge, besides undermining the impact of Coulomb correlation.

3.4.4 Self-energy corrected Hubbard U

As mentioned above that ZGNRs are magnetic in nature and to reproduce the

band-gaps for such systems accurately we additionally need Hubbard U along with

the SEC-TB paramters which can be seen in Fig.3.5(a). Therefore, We exemplify

and calculate the Hubbard U for magnetic ZGNR systems and also for hydrogen

passivated finite graphene segments. We consider segments with unequal sub-lattice

coverage, which is essential to have net magnetic moment given the bipartite nature

of graphene. Hubbard U is calculated for both KS and GW levels within the mean-

field approximation of Hubbard model78 using the formula

Ui =
Eiσ − Eiσ′

niσ − niσ′
(3.11)

where, i is the site index, σ’s are the spins, E is the onsite energy and n is the spin

density. We calculated the Hubbard U for ZGNRs as shown for Z12 nano-ribbon

in Fig.3.6(a), where red and blue plots represent the DFT and GW Hubbard U
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respectively for each site across the witdh of the ribbon and green plot represents

difference of them (GW-DFT).

Applying the calculated Hubbard U of Z12 in Eqn.3.10 we tried to reproduce the

band-gaps of all the ZGNRs. Band-gaps as well as the gaps at Brillouin zone edge

are shown in Fig.3.6(b-e). Spin polarized DFT band-gaps are expectedly reproduced

using the DFT Hubbard U with the spin un-polarized TB parameters. Next we used

the GW Hubbard U of Z12 and spin polarized DFT-TB parameters along with the

self-energy correction ∆t of TB parameters taken from AGNR 3p + 1 family with

p = 3 to reproduce the GW band-gaps of ZGNRs, as shown by down triangle

of each plots in Fig.3.6(b-e). We can see from the plots that the band-gaps are

underestimated by a margin of 40% . Next we tried to reproduce the band-gaps

with spin un-polarized TB parameters and DFT Hubbard U of the respective ZGNR

along with the GW Hubbard U of Z12 and the SEC-TB parameters of the mentioned

AGNR system. Reproduced band-gaps are shown by right triangle for each ZGNR

in Fig.3.6(b-e). We can clearly see the improvement of band-gaps matching and

particularly as we go from narrower to wider ZNGRs. We note that if we reproduce

the band-gaps with only with Hubbard U then we need a higher U value which will

thus not represent the correct scenario.

Next we consider three finite graphene chunks as described above. Spin densities

along with the unit cells of all the three systems C13H9, (b) C22H12 and (c) C33H15

are shown in Fig.3.7(a-c) respectively. To calculate the Hubbard U we only consider

the inequivalent majority spin sites as shown in Fig.3.7(a-c) with red color. C13H9

has two inequivalent majority spin site but the intensity of the majority spin is weak

at the interior site which is hence not considered. C22H12 and C33H15 have three and

four majority spin sites respectively, which are are marked as 1, 2, .. in Fig.3.7(a-c) for

each systems. We calculated the DFT and GW Hubbard U for inequivalent majority

spin sites using Eqn.(3.11) and then took the average within each set of inequivalent

sites, as shown in Fig.3.7(d). We see that the DFT Hubbard U ’s are almost same for

similar inequivalent site of all the systems but deviate substantially at the GW level.

Next we first reproduced the HOMO-LUMO gaps for spin polarized DFT from spin
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un-polarized TB parameters with DFT Hubbard U , and then reproduced HOMO-

LUMO gaps in GW level using spin un-polarized TB parameters with combined

DFT and GW Hubbard U , as shown in Fig.3.7(e). We also see here same trend of

better matching of HOMO-LUMO gaps as systems size increases like we saw in case

of ZGNRs. The range of values of the GW corrected Hubbard U stresses the need

of correlation corrected computational frameworks beyond mean-field for estimation

of electronic structures of the finite magnetics system even with p electrons.

3.5 Conclusions

In conclusion, we have presented a computationally inexpensive scheme for estima-

tion of self-energy correction(SEC) of band-gap within a tight-binding(TB) frame-

work in the basis of atomic Wannier orbitals (AWO) constructed from KS energy

eigen-states. Within the scheme, SEC of TB parameters are first computed for a

smaller reference system from SEC of KS single particle levels estimated using the

GW approximation of MBPT, and then applied to TB parameters derived for a

larger system of similar morphology, in order to estimate SEC of KS band-gap of

the larger system, without needing to explicitly compute it. The efficacy of the

approach, demonstrated in semiconducting and insulating as well as magnetic and

non-magnetic nano-ribbons of graphene and hexagonal boron-nitride, is found to

account for about 90% or more of the SE corrected band-gap for 50% to 100%

increase in system size as assessed in this work, with nominal increase in compu-

tational cost. Notably, the degree of agreement[Fig.(3.2)(c-e),Fig.(3.3)(f)] between

band-gaps estimated with mapped SEC in TB basis, and those directly computed

(DFT+G0W0), clearly suggests that the scope of transferability should easily cover

further increase in system size compared to that of the reference systems, particu-

larly with increasing band gap, whereas, the only major computation beyond DFT

for the larger systems in our approach is the computation of overlap matrices re-

quired for Löwding symmetrization and calculation of TB parameters, which should

scale as O(N2), compared to overall O(N4) scaling of GW approximation. In gen-
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eral, the SEC corrected TB framework opens the scope for in-depth analysis of SEC

without having to explicitly generate SE corrected KS states. The results presented

here pave the way for building up a repository of self-energy corrected TB param-

eters of different atoms at different chemical environment for their seamless use in

estimation of SEC within a multi-orbital TB framework. The high values the GW

corrected Hubbard U found in the magnetic graphene segments point to the need of

strongly correlated description of electronic structures of such systems even though

it is the p electrons which drive magnetism in such systems.



Chapter 4

Hybrid atomic orbital basis from

first principles: Bottom-up

mapping of self-energy correction

to large covalent systems

In this chapter the key outcome is a numerical scheme to construct hybrid atomic

Wannier orbital basis from first principles which are naturally oriented towards direc-

tion of coordination, and strategies to transfer of tight-binding parameters calculated

in basis of the constructed orbitals in reference systems to larger isomorphic target

systems through mapping of neighborhoods and projected Wannier charge centres.

The proposed Wannier orbitals constitute a directed multi-orbital orthonormal ba-

sis which is demonstrated here to be promising of facilitating transfer of self-energy

correction from smaller covalent systems to their larger variants with thousands of

atoms.
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4.0.1 Introduction

Setting a minimal TB basis for a given systems of atoms calls for appropriate ori-

entation of orbitals at each atomic site in accordance with their immediate atomic

neighbourhood, so that the nearest neighbour interactions can be represented by the

least number of orbitals. In this direction, hybrid atomic orbitals have been used

by quantum chemists since their introduction79,80 almost a century ago. Rational

approaches for their construction9,81,82,83,84 over the last several decades have been

primarily focussed on partitioning systems into substructures which are spanned

by groups of hybrid orbitals, leading to unambiguous partitioning of electrons into

bonding orbitals and lone-pairs, and further into atomic orbitals. For such partition-

ing, notionally similar several approaches9,83,85,86,87,88 have been proposed grossly

based on the maximum overlap condition which in effect leads to localization of

orbitals within the chosen subspace of molecular orbitals. In these approaches, ei-

ther the overlap matrix9,83 or the first-order density matrices,87,89 both of which

are calculated typically in the basis of either the Slater type orbitals(STO)90 or

the Gaussian type orbitals(GTO),91,92 are generally transformed into block diagonal

forms each spanned by orbitals centered on nearest neighbour atoms. The resul-

tant hybrid orbitals involving atomic orbitals centred on more than one atoms84,93

render unambiguous bonding orbitals and bond-orders, while the ones like the nat-

ural hybrid orbitals(NHO)89 or the effective atomic orbital(EAO),88 which involve

atomic orbitals of a single atom, describe the state of the orbitals of the atoms as

they participate in bonds. Hybird orbitals in the line of NHOs have been popularly

constructed ab-initio at the HF level.94,95

A more explicit approach96,97 has been to construct the generalized hybrid or-

bitals(GHO) as combinations of STO with common Slater exponent and fixed posi-

tion of nodes along bonds to assign their orientation. Expedient to clarify that in

this paper we refer to bonds simply as the linear connectivity between atoms which

are primarily nearest neighbours if not mentioned specifically. Much of these efforts

were undertaken in aid to molecular mechanics calculation98,99 where the description
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of interactions between sub-structures eases with use of orbitals which are directed

along bonds. Effective analytical models for such interactions have also been de-

veloped100 recently for inexpensive deductive computation of properties of bulk as

well as clusters of spx hybridized covalent systems. Notably unlike the GHOs, the

NHOs or the EAOs by construction may not be oriented exactly along the bonds.

In general for all such hybrid orbitals, their directed nature, maximal localization

and orthonormality are not guaranteed simultaneously by construction. In a part

of this work we explore simultaneity of these conditions in construction of hybrid

atomic orbitals from first-principles proposed in this work.

Instead of overlap or density matrices, in this work we take recourse to the first

moment matrices (FMM) due to their direct correspondence to localization. FMMs

are known not to commute among each other in more than one dimension if projected

on to a finite subspace of orthonormal states. We propose construction of hybrid

atomic orbitals(HAO) as approximate eigen states of the FMMs within a finite sub-

space of Kohn-Sham (KS) states of isolated atoms. Orientation and hybridization of

the proposed orbitals can be a-priori naturalized as per their anticipated neighbour-

hood. This substantially eases the effort of orientating them appropriately while

transferring them from isolated atoms to the real systems, which eventually eases

the interpretation of elements of the Hamiltonian. An orthonormal set of localized

Wannier orbitals resembling the HAOs is further constructed in the basis of KS

single particle states of the given system. These Wannier orbitals, which we refer

in this paper as the hybrid atomic Wannier orbitals (HAWO), constitute a multi-

orbital tight-binding (TB) basis locked to their immediate atomic neighbourhood by

construction, and render hopping parameters involving effectively only two orbitals

per bond. HAWOs thus offer easy transfer of the corresponding TB parameters

to other iso-structural systems exclusively through mapping of neighbourhoods and

projection of charge centres learned from HAOs. Effective transfer of TB parame-

ters is demonstrated in nano-ribbons of graphene and hexagonal boron-nitride, C60,

and nano-diamonds and their silicon based counterparts. In particular, we show

in the HAWO basis that it is possible to effectively transfer self-energy(SE) correc-
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tion(SEC) of single particle levels from smaller reference systems to much larger iso-

structural systems through TB parameters with minimal additional computational

expense through the proposed mapping of multi-orbital TB parameters beyond the

nearest neighbourhood.

4.1 Methodological details

4.1.1 Construction of hybrid orbitals

In a given direction, for example along x̂, the most localized orbtials {ϕ} would

diagonalize the corresponding FMM:

Xij = ⟨ϕi | x | ϕj⟩. (4.1)

This becomes clear by noting that the total spread of a finite set of N number of

orbitals along x̂ is given by:

Ωx =
∑
i=1,N

[
⟨ϕi|x2|ϕi⟩ − |⟨ϕi|x|ϕi⟩|2

]
, (4.2)

which can be expressed as:

Ωx =
∑
i=1,N

(
∞∑
j=1

XijXji −XiiXii

)

=
∑
i=1,N

∞∑
j ̸=i

|Xij|2

=
∑
i=1,N

(
N∑
j ̸=i

|Xij|2 +
∞∑

j=N+1

|Xij|2
)
. (4.3)

Diagonalization of X in the N × N subspace would therefore sets the first term

in Eqn.(4.3) to zero, leading to minimization of total spread. Notably, X can be

calculated directly as in Eqn.(4.1) only for isolated systems well separated from
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their periodic images. For periodic system with non-zero crystal momentum, com-

putation of X would essentially involve evaluation of geometric phases101 of Bloch

electrons evolved across the Brillouin Zone.102,103 Nevertheless, there exists there-

fore a unique set of orbitals which completely diagonalize X, and would also thereby

have maximum localization along x̂. Similar unique sets exist for ŷ and ẑ directions

as well. However, the matrices X, Y and Z, when projected into a finite subspace of

orthonormal states, do not commute with each other in general unless mandated by

symmetries. This implies that a unique set of orbitals with maximum localization

simultaneously in all three orthogonal directions would not exist in general. The

same is true for Wannier functions (WF) in case of periodic systems with non-zero

wave-vectors. Numerically localized Wannier functions47,104 therefore are not be

unique and the choice of gauge used for their construction depends on the chosen

criteria of localization.

We chose to look for the possibility to construct a set of localized orbitals which

will be a reasonable compromise between the three unique sets of orbitals having

maximum localization along the three orthogonal directions. We thus resorted to the

condition of simultaneous approximate joint diagonalization105 of the three FMMs:

X, Y and Z. To compute such an approximate eigen sub-space of the three FMMs,

we adopted an iterative scheme based on generalization of the Jacobi method of

matrix diagonalization,106 wherein, off-diagonal elements are iteratively minimized

by applying rotation of coordinates by an optimally chosen angle. The extension

of the method to more than one square matrices irrespective of whether they are

commuting or not, is based on a proposed105 choice of angle of rotation leading to

complex rotation matrix U which has been proven105 to minimize the composite

objective function defined as :

off(UXU †) + off(UY U †) + off(UZU †) (4.4)

where off(A) =
∑

1≤i ̸=j≥N |Aij|2 for an N × N matrix A. N being the number

of orthonormal states used to compute X, Y and Z. U is a product of all the
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N(N − 1)/2 complex plane rotations, one each for each pairs of (ij) for i ̸= j. For

a given (ij) the plane rotation R(i, j) is an N ×N identity matrix except for:

 rii rij

rji rjj

 =

 c s

−s c

 (4.5)

where c, s ∈ C, |c|2 + |s|2 = 1.

It has been shown105 that the objective function defined in Eqn.(4.4) is minimized

if U is a product of R(i, j) matrices as shown in Eqn.(4.5) whose elements are given

as:

c =

√
x+ r

2r
; s =

y − iz√
2r(x+ r)

(4.6)

where

r =
√
x2 + y2 + z2

and [x, y, z]† being the eigen-vector corresponding to the highest eigen-value of a

3×3 matrix:

G(i, j) = Real
(
h†(X, i, j)h(X, i, j)

)
+ Real

(
h†(Y, i, j)h(Y, i, j)

)
+ Real

(
h†(Z, i, j)h(Z, i, j)

)
with:

h(A, i, j) = [aii − ajj, aij + aji, i(aji − aij)]. (4.7)

Notably, given the form of R(i, j), for a rotated matrix A′ = R(i, j)AR†(i, j)

corresponding to plane rotation for the (ij)-th pair of elements of A, it is easily seen

that a′kk = akk for k ̸= i and k ̸= j, leading to the invariance:

off(A′) + |a′ii|2 + |a′jj|2 = off(A) + |aii|2 + |ajj|2.

owing to preservation of norm in similarity transformation. Therefore, minimiz-
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ing off(A′) would naturally imply maximising |a′ii|2 + |a′jj|2, which further implies

maximising |a′ii − a′jj|2 since:

2
(
|a′ii|2 + |a′jj|2

)
= |a′ii + a′jj|2 + |a′ii − a′jj|2 (4.8)

and

a′ii + a′jj = aii + ajj (4.9)

owing to invariance of trace under similarity transformation. Therefore in our case

the minimization of the objective function[Eqn.(4.4)] implies maximizing the sepa-

ration between the charge centres of the i-th and the j-th orbitals, which is thus

similar to the principle of the Foster and Boys107 scheme of orbital localization. This

becomes clear by rewriting the total spread [Eqn.(4.3)] for N orbital {ϕi, i = 1, N}

as:

Ω =
∑
k=1,3

∑
i=1,N

(
N∑
j ̸=i

|akij|2 +
∞∑

j=N+1

|akij|2
)

(4.10)

where Ak=1,2,3 = X,Y, Z. Eqn.(4.10) clearly suggests that minimization of the

objective function in Eqn.(4.4) would minimizes the first term in Eqn.(4.10), leading

to minimization of the total spread. Eqn.4.10 also suggests that the total spread will

reduce with increasing number of states (N) in the basis of which the first moment

matrices are constructed.

We test the proposed approach first with FMMs computed in the basis of GTOs

constructed for Ti with parameters from Ref..108 In Fig.4.1 we plot the charge

centres(⟨ϕ|r⃗|ϕ⟩) of the approximate eigen states of the first moment matrices. Evi-

dently, the charge centres constitute coordination polyhedra around isolated atoms

which are consistent in shape with those tabulated in Figs.6-8 in Ref..109 This agree-

ment confirms the identity of the resultant orbitals as the hybrid orbitals and numer-

ically establishes the connection between maximal localization and hybridization.

Such a connection between sp3 hybridization and minimization of total quadratic

spread of s and the three p orbitals has been analytically proven.110 In this work how-

ever we do not use GTOs further and rather resort to KS states of isolated atoms.
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Figure 4.1: Plots of charge centres (shown in gray) of the hybrid orbitals formed
by the group of GTOs representing 3s, 3p and 3d orbitals of Ti (shown in yellow)
constructed as per Ref..108

For example, for atoms of the p block, such as boron, carbon, nitrogen and silicon

dealt with in this work, if the first moment matrices are constructed in the basis of

three(four) KS states with lowest energies, namely, the one s like non-degenerate

having the lowest energy and two (three) of the three p like degenerate states above

the s like state, the approximate eigen subspace would render three(four) 2sp2(2sp3)

hybridized orbitals. Notably, for isolated systems like molecules, clusters and nanos-

tructures, the approximate common eigen spectrum of the FMMs computed within

the manifold of occupied KS states results into partitioning111,112,113 of the ground

state charge density into bonding and localized orbitals.

4.1.1.1 Orientation and transfer of orbitals

Although as evident above that construction of HAOs for an isolated atom as such do

not require any pre-defined directionality, the orientation of the HAOs associated

with an atom can be nevertheless locked to their anticipated neighbourhood by
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placing the isolated atom within an external potential which represents the generic

or exact atomic neighbourhood of the given atom in the actual system in which the

HAOs are to be used. We construct such externals potentials by placing weakly

confining spheres with small constant negative potentials inside the spheres in place

of exact or generic locations of neighbouring atoms as present in the actual system.

For example, to lock sp3 HAOs to a four coordinated tetrahedral neighbourhood,

a tetrahedra of confining spheres is placed around the host C atom, leading to

orientation of the sp3 orbitals maximally in the direction of the confining spheres

as seen in Fig.4.5(a). Typically we find confining potential amplitudes in the order

of 0.01 eV and radius 0.5Å to be sufficient for the purpose. Such weak confinement

in the vicinity causes change of KS energy eigen-values of isolated atoms in the

order of 0.001 eV, and retains the shape of the lowest KS states which are used for

construction of the HAOs, effectively unaltered. For sp3 HAOs, the tetrahedra of

the confining spheres can be an exact tetrahedra, as in case of bulk Si, or a strained

tetrahedra, as in case of cyclopropane. As evident in Fig.4.2(a) for cyclopropane, and

in Fig.4.2(b-e) for planar molecules CnHn, the projected charge center of the HAOs

(shown in gray) symmetrically deviate away from the C-C bonds with decreasing

C-C-C angle as we go from C6H6 to C3H3. For all of these molecules the HAOs

were constructed with the weakly confining spheres placed around the host C atom

exactly as per their nearest neighbours in the molecules, resulting into HAOs largely

retaining their pure sp3 nature but oriented symmetrically about the directions of

the confining spheres from the host atoms. The placement of confining potential

spheres thus provide a gross directional reference for orientation of the full set of

(c)(b) (d) (e)(a)

Figure 4.2: Projected charge centres of HAOs are shown by gray spheres depicting
their orientations around their host C atom shown in yellow.
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(a)                    (b)                    (c)                    (d)                    

Figure 4.3: (a-d): Evolution of a pure 2pz orbital[(a)] from sp2 hybridization back-
ground, to an sp3 hybridized orbital due to increased deviation of the centres (cyan
spheres) of the three confining potential spheres from co-planarity with the host
atom (yellow sphere). Centres of HAOs are shown by gray spheres.

the HAOs.

Position of charge centres of the HAOs are learned in terms of the directions of the

confining spheres from the isolated host atom. Such learnings are subsequently used

in projecting centres of HAOs around the corresponding atom in a given system, as

seen for the molecules in Fig.4.2, and nano-diamonds in Fig.4.4. While transferring

HAOs from their nursery of isolated host atoms, to their matching host atoms in

a given system, HAOs are rotated such that their actual charge centres align along

the direction of their projected centers from the matching host atoms.

In addition to providing reference for orientation, the confining spheres can have

an important role in deciding the level of hybridization of the HAOs. This becomes

evident by noting that if we use four KS states and three confining sphere coplanar

with the host atom, then instead of forming four sp3 orbitals, the HAOs separate into

three 2sp2 orbitals and one 2pz orbital, as evident from the unhybridized shape of the

2pz orbital in Fig.4.3(a). Fig.4.3(a-d) shows evolution of the 2pz HAO from a pure

orbital perpendicular to the plane of sp2 hybridization, towards a 2sp3 hybridized

orbital, with increasing non-coplanarity of the confining spheres with the host atom.

HAOs with such intermediate hybridization (2sp2+ + 2p+z ) has been used for C60.

However, stronger confining potentials are found necessary to influence hybridization

of KS states, typically in the order of 1eV for C atoms, such that the orbitals align

along the confining spheres. The confining potentials in this case therefore does lead
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Figure 4.4: CnHm systems with projected charge centre of HAOs shown as gray
spheres, used in this work as example of sp3 hybridized covalent systems.

to minor modification of shape of the KS states, and thereby of the HAOs as well,

although not quite obvious at the iso-surfaces plotted in Fig.4.3(a-d). However the

values of TB parameters calculated in the basis of their Wannierized counterparts

in C60 suggests that the overall shape of those orbitals are largely retained close

to the sp2 orbitals. Notably, we could have used stronger confinement to align

the HAOs in C3H6, C3H3 or C4H4 as well like we did for C60, but the degree of

confinement would have to be much high than that used for C60, which would have

substantially altered the shape of the HAOs themselves, since it is obvious that with

pure s, px, py, pz orbitals it is impossible to form any set of hybrid orbitals in which

two orbitals can have relative orientation less than 90◦.

The next step is to construct orthonormalized Wannier functions from the KS

states following the HAOs transferred to a given system. The transferred HAOs con-

stitute a non-orthogonal basis of hybridized atomic orbitals. In the general frame-

work of periodic systems with non-zero wave-vectors (k⃗) we begin with constructing

a non-orthogonal set of quasi-Bloch states from the non-orthogonal basis of trans-

ferred HAOs from the isolated atoms. In the method described in Section 3.2 we

obtain the orthonormal Wannier function counterparts of the transfered HAOs.

Notably the elements of O in Eqn.(3.2) record the representation of the HAOs
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(a)                    (b)                    (c)                    

Figure 4.5: (a): HAO representing a sp3 orbital of an isolated C atom (yellow
sphere) used in this work. Charge centre of the orbital is shown in gray. Centres
of the confining spheres used to determine gross orientation are shown in cyan. (b):
HAO shown in (a) transfered to a C atom an adamantane(C10H16) molecule, (c):
the corresponding HAWO.

within the manifold of KS bands considered. Overlaps between the non-orthogonal

quasi-Bloch states within the manifold of the considered KS states are recorded in

S as in Eqn.(3.3). The degree of representability of HAO ϕn, within the set of KS

states considered, is guaranteed by setting a lower cutoff on individual Sk⃗,n,n val-

ues to be typically more than 0.85. For all the system studied in this work, the

above criteria is found to be satisfied by the lower bound on the number KS states,

which is set by the total number of valence orbitals of all atoms of a given system.

A new set of orthonormal Bloch states from the KS single particle states are sub-

sequently constructed using the Löwdin symmetric orthogonalization76 scheme as

shown in Eqn.(3.4). Subsequently, a localized set of orthonormal Wannier functions

are constructed as given in Eqn.(3.5). In this process the Löwdin symmetric orthog-

onalization clearly provides a choice of gauge for linear combination of KS states

such that the resultant Wannier functions [Eqn.(3.5)] resemble the corresponding

HAOs as much possible within the manifold of KS states considered. Hence we

refer to these Wannier functions as the hybrid atomic Wannier orbitals (“HAWO”).

In Fig.4.5 we show an HAO before and after transfer to adamantane and the cor-

responding HAWO constructed from the KS states of adamantane. HAWOs can

thus be considered as analogue of NHOs constructed from a given set of KS states
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Figure 4.6: (a): TB parameter calculated for cyclopropane; (b): Nearest neighbour
TB parameters between in-plane and out of plane orbitals in C3H3, C4H4, C5H5

and C6H6 molecules (shown in Fig.4.2) arranged as a function of C-C bond lengths
available in the molecules. (c) DOS calcaulated from 50 lowest KS eigen-values,
compared with DOS from eigen-values of TB hamiltonian constructed from 18 lowest
KS states, 18 being the total number of valence orbitals of cyclopropane.

with acceptable representability. TB parameters in the HAWO basis are computed

from energetics of KS single particle states as given in Eqn.(3.6). Notably, similar

TB parameters have been derived in the last two decade from first principles based

on the either the maximally localized Wannier function50,52,53,54,114,115 or atomic or-

bitals49,116 constructed from KS states. Much effort has been reported in deriving

TB parameters through projection of KS states on pseudo-atomic orbitals117,118 as

well. However, attempts to calculate TB parameters in hybrid atomic orbital basis

constructed from first-principles, as proposed in this work, has been limited so far

primarily to analytical models.119,120
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Figure 4.7: For C10H16, (a-d): Evolution of density of states(DOS) with increase in
range of hopping starting from (a): the nearest neighbour (nn) to (d): all avaliable
hopping graduating through hopping between second (2n) and third (3n) nearest
neighbours and beyond. Convergence of (e): TB parameters and (f): spatial local-
ization of 2sp3 orbitals, and (g): TB DOS, in terms of the number of KS states used
in construction of HAWOs as mentioned in the legend of (f). KS DOS is shown
below (g). Similar convergence of TB parameters for (h): 2pz and (i): 2sp2 orbitals
in AGNR (3p+1, p=2).

In principle to construct hybridized atomic orbitals as the tight-binding basis

for a given system, we can indeed start with a template of pure analytic atomic

orbitals and then Wannierize them in the basis of the KS states of the given system.

To construct the basis directed towards coordination, we then need to hybridize the

Wannierized atomic orbitals for every atom individually as per the orientation of the

local neighbourhood. In principle, we can start with a standard hybridization matrix

and add extra rotation to orient the hybridized orbitals according to the orientation

of the local neighbourhood. However, with higher orbitals like d beyond s and p, the

hybridization matrices for different combination of orbitals (as considered in Fig.4.1)

are not readily available.

Alternately, in our work we construct the Wannier orbitals starting from a tem-

plate which is already hybridized and oriented as per the local neighbourhood of

each atom. Instead of hybridizing analytic atomic orbitals explicitly for each atom

to build the template, we populate the template by numerically computed hybrid

orbitals which are directly obtained from the KS states of the isolated atoms as the

approximate eigenstates which maximally joint diagonalize the non-commuting first
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moment matrices calculated in the basis of KS states. The KS states of the isolated

atoms are obtained using the same pseudo-potential which is used in the real system

where the orbitals are to be used. This step ensures good representability(typically

more than 90%) of the template in the basis of KS states, which is crucial for local-

ization. To populate the template, the resultant hybrid orbitals are re-oriented as

per the orientation of the neighbourhood of each atom. In the thesis work we used

weak confining potential spheres around the isolated atoms to mimic its local neigh-

bourhood in the real system. With confining potentials weak enough to impacted

the KS eigenvalues of the isolated atom below the second place of decimal in eV, the

resultant KS states render hybrid orbitals which align symmetrically with respect to

the location of the confining potentials, if not exactly along them, as is the case for

sp3 orbitals with tetrahedrally oriented confining spheres for example. In general

for bonding as well as non-bonding orbitals, the angle made by the direction of the

hybrid orbitals and the direction of the confining spheres are recorded and used in

the real system to align the orbitals as per the neighbourhood of each atoms. The

rigour in this part is equivalent to that of finding the correct rotation matrix if we

had to do with the Wannierized atomic orbitals. In the thesis work, ad-hoc confin-

ing potentials with modest potential have been also used to influence hybridization

itself. For example in C60, where the relative directions of coordinations deviate

substantially from that of the sp3 orbitals, we used a stronger confining potential

than that mentioned above, to alter hybridization in order to align the orbitals along

the exact direction of coordinations.

However, in a work completed post submission the thesis we have discarded the

use of confining potential to alter hybridization, and have rather used hybridization

matrices of appropriate symmetries to allowed customization of hybridization to

orient the hybrid orbitals in relative directions which deviate from that of the fully

degenerate hybrid orbitals (such as sp2, sp3, sp3d5), and have shown that the optimal

set of hybrid orbitals for a given neighbourhood may not be the exactly aligned along

the direction of coordination.

Finally, the reason why we prefer the direct construction of the fully degenerate
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orbitals over the explicit hybridization of the Wannierized pure atomic orbitals is

that the former are obtained through a mathematically exact framework of maximal

joint diagonalization which ensures maximal localization, whereas the Wannieriza-

tion procedure is not unique and the process of numerical minimization of spread is

known to be sensitive to the shape of orbitals in the template. Furthermore, with

d and higher orbitals along with s and p orbitals, the direct construction of the

degenerate sets of hybrid orbitals from KS states of isolated atoms, as demonstrated

in Fig.4.1, can be accomplished without needing to derive the exact hybridization

matrix.

In Fig.4.6(a) for cyclopropane, we plot the TB parameters calculated as per

Eqn.(3.6) for two HAOs participating dominantly in a C-C bond and a C-H bond.

The tsp3,sp3 is comparable to the that in adamantane (C10H16)[Fig.4.12] despite the

substantial misalignment[Fig.4.2] of HAO and the C-C bond in cyclopropane while

perfect alignment of the two in C10H16. The hopping parameters are obtained with

18 KS states which is same as the total number of valence orbitals of all the atoms,

resulting thereby into density of states in exact agreement with that obtained from

DFT [Fig.4.6(c)] as discussed above in the next paragraph. In Fig.4.6(b) we plot

hopping parameters for π and σ bonds as a function of C-C bond lengths available

in planar C3H3 to C6H6 molecules. As evident in Fig.4.2, the best alignment of the

HAOs along the C-C bond is possible for C6H6 and the worst is obviously for the

shorter bond of C3H3 and similarly for C3H6. Yet, the highest in-plane hopping

parameter in terms of magnitude is found for the shorter bond of C3H3, which is

about 20 % more than that of the C-C in-plane bond of benzene, whereas the C-

C bond length in benzene only about 2.2 % more than the shorter bond of C3H3.

Similarly, the C-C nearest neighbour hoping parameter as well as the bond length in

C3H8, both are within 1 % of those of C3H6, whereas in C3H8 the HAOs are almost

perfectly aligned along the C-C bond [Fig.4.4] while in C3H6 they are misaligned

by more than 20◦. These results can possibly be explained by the inherent bent

nature the bonds121 in C3H6 and C3H3, reflected by the symmetric misalignment of

the HAOs along the two C-C bonds while maintaining perfect alignment along the
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C-H bonds. We plan to examine this aspect for bent bonds in details in future.

As evident in Fig.4.7(a) for C10H16 the edge of the valence band is already

well described if we consider only the nearest neighbour hopping in the HAWO

basis. However, as shown in Fig.4.7(b) onwards, the match of DOS from TB and

DFT improves drastically with increasing extent of hopping considered up to the

second nearest neigbour. This is immediately understood by noting the non-nominal

positive valued of the second nearest hopping element plotted in figure Fig.4.7(e),

arising due to proximity of lobes of different signs of the two HAOs. In Fig.4.7(e-

g), we demonstrate evolution of the TB parameters, HAWOs, and DOS from TB,

as function of number of KS states considered for construction of HAWOs. The

rationale for this analysis is the possibility that the anti-bonding subspace may

not be adequately represented by the unoccupied KS states if we restrict the total

number of KS states to be same as the total number of HAOs associated with

all the atoms, which is same as the total number of valence orbitals of all the

atoms. Indeed we see clear convergence of shape of HAWO [Fig.4.7(f) ] as well

as the corresponding TB parameters[Fig.4.7(e)] if we consider KS states in excess

of the total number of HAOs. Fig.4.7(h,i) suggests that the convergence can be

much quicker for un-hybridized orbitals like 2pz, compared to hybridized orbitals

like sp2 and sp3, since the un-hybridized orbitals primarily constitutes the edges

of the valence and conduction bands. However, the TB DOS expectedly starts

deviating from the DFT DOS more in the conduction band [Fig.Fig.4.7(g)] if we

include more KS states beyond the total number of HAOs, owing to the semi-

unitary nature of the net transformation matrix (OS
1
2 ) implied in Eqn.(3.4) which

will be rectangular in such scenarios. It is thus important to decide on the number

of KS states to be considered depending on the purpose. If the aim is to represent

only the valence bands through well localized HAWOs, then it may be prudent to

look for convergence of HAWOs in terms of KS states. But if band-gap needs to be

represented accurately by the TB parameters then the number of KS states should

be kept same as the total number of valence orbitals.
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4.1.2 Bottom-up mapping of TB parameters

The HAWO basis derived from the KS states offer a multi-orbital TB basis which

are by construction locked to the local coordination as per the atomic neighbour-

hood of each atom. The TB parameters derive in such a basis should therefore

be transferable from one system to another with matching atomic environment. A

key aim of this work is to demonstrate such transferability for effective transfer of

multi-orbital TB parameters in the HAWO basis from smaller reference systems to

larger target systems. The mapping of TB parameters is done in two steps.

(1) Pairs of atoms of the target system, not limited to nearest neighbours, are

mapped on to pairs of atoms in the reference system based on a collection of crite-

ria.

(2) Among the mapped pair of atoms, pair of system orbitals are mapped to pair of

reference orbitals through mapping of their respective projected charge centres. In

step (1) the criteria to map pairs of atoms include matching structural parameters

such as their spatial separation and their individual nearest neighbourhoods char-

acterised in terms of the type of neighbouring atoms and angles made by nearest

neighbours on the atoms. In particular, we use a parameter calculated as:

ζi =

Ni∑
j

Zjw(ri,j) (4.11)

where Ni is the number of neighbours of the i-th atom within a suitably chosen

cutoff radius, w being a weight factor which is a function of the distance ri,j of the

j-th neighbour of the i-th atom, and Zi a characteristic number to be associated

with each type of atom. Zi can be chosen to be the atomic weight, as we mostly

used in this work, or a similar number which can facilitate identification of a type

of neighbourhood or a region of the system through values of ζ. In this work we

chose the weight factor w to be 1.0 within half of the cutoff radius beyond which

the factor is smoothly reduced to zero using a cosine function. The choice of cutoff

radius depends on the size of the reference system. It should neither be too large
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for variations to average out, nor should it be too small to become insensitive to

morphological variations in the reference system itself. ζ allows us to map atom pairs

effectively through prudent choice of values of {Zi} since it would allow assessment

of proximity of atoms to edges, interfaces or any kind of structural inhomogeneity

without any exhaustive structural relaxation.

In step 1, the minimum of the deviation:

|ζtarget
1 − ζreference

1 |+ |ζtarget
2 − ζreference

2 |

obtained within a range of allowed deviation of structural parameters, is used as the

criteria to choose matching pairs of atoms between target and reference systems.

Like in step 1, in step 2 as well, the mapping of one or a pair of HAOs from

the reference to target systems is done based on matching structural parameters, as

well as a parameter calculated as:

ξi =

Ni∑
j

ζjw
WC(ri,j) (4.12)

where ζj corresponds of the j-th atom in the neighbourhood defined by wWC around

of the projected charge centre of the i-the HAO. Angle made by the directions of

the projected charge centres of the HAOs from their respective host atoms is a

key matching parameter in step 2. Additionally, if the HAOs belong to different

atoms then the dihedral angle made by the centres of the HAOs through the axis

connecting their host atoms, is also a key parameter. Thus in step 2, the minimum

of the deviation

|ξtarget
1 − ξreference

1 |+ |ξtarget
2 − ξreference

2 |

within acceptable deviations of structural parameters, defines matching pairs of

HAOs.

As an example we show mapping from a small curved finite patch[Fig.4.8(a)]
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to C60. Since C60 constitutes a curved surface without any edge, mapping should

be done from the inner most neighbourhood of the chunk. Since in C60, the angles

made by nearest neighbours at a given atom differ distinctly depending on whether

an angle opens inside a pentagon or a hexagon, the matching parameters for mapping

are mostly structural, primarily the direct and dihedral angles. The reference patch

is cropped from C60 and passivated by H. We fix ζ tolerance to zero which implies

that C60 is getting mapped from only six C atoms of the patch [Fig.4.8(a)] having

all C neighbours. Given the curvature of C60, we chose to use confining spheres

to influence the hybridization of sp2 HAOs in order to break their coplanarity and

align them along nearest neighbour C-C bonds, as shown in Fig.4.3(c) where the

placement of confining potential spheres are as per the nearest neighbourhood in C60.

The projected charge centres of HAOs with intermediate hybridization (2sp2++2p+z )

between (sp2+pz) and sp3 shown in Fig.4.8(c), is used to map from that of the

reference shown in Fig.4.8(b). TB parameters t2sp2+,2sp2+ for the shorter and longer

C-C bonds are about -6.9 eV and -6.5 eV, whereas t2p+z ,2p+z
are about -2.36 eV and

-2.0eV. The match of the DFT DOS with the DOS from TB parameters mapped

from the reference system is shown in Fig.4.8(d), which can be further improved

beyond the valence bond by considering HAOs for exautocited states, which will be

taken up in a subsequent work on optical properties.

4.1.3 Self-energy correction of TB parameters

Self-energy corrected TB parameters
{
tQP

R⃗′,R⃗,i,j

}
in the HAWO basis are calculated

by substituting EKS
k⃗,n

in Eqn.(3.6) by quasiparticle energies EQP

k⃗,n
obtained at the

G0W0 level which is the first order non-self-consistent GW approximation6,41 of

MBPT.4,5,122,123,124 Within the GW approximation, the quasi-particle energies are

approximated as[Eqn.(3.8)]:

EQP

k⃗,n
= EKS

k⃗,n
+ ⟨ψKS

k⃗,n
| Σ− V KS

xc | ψKS
k⃗,n

⟩, (4.13)
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Figure 4.8: (a): Structure of reference system, and (b): the corresponding charge
centres of HAOs with intermediate hybridization (2sp2++2p+z ) between sp2 and sp3.
(c): Projected charge centre with similar hybridization for C60. (d): Corresponding
matches of DFT DOS with TB DOS with parameters mapped from the reference
system.

where V KS
xc is the mean-field exchange-correlation potential and Σ6 is the self-energy

operator derived by considering the many-electron effects as perturbation treated

within a self-consistent framework of Dyson’s equation formulated in terms of the

one-particle dynamic non-local Green’s function constructed from the KS states.

Similar efforts have been reported in recent years on incorporating SEC in TB

parameters computed in terms of the MLWFs.72,73,125 Incorporation of SEC in TB

parameters has also been attempted through matching specific bands of the QP

structure.71,74,126

4.2 Computational Details

Electronic structures of the ground states of all the systems considered in this work

are calculated using the Quantum Espresso (QE) code77 which is a plane wave based

implementation of DFT. We have used norm conserving pseudo-potentials with the
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Figure 4.9: (a,b) Hexagonal zigzag boron nitride nanoribbons(hZBNNR: hBN),
hBN12 and hBN24 respectively. (c,f,i) Plot of ζ and ξ values “ref”(reference hBN12)
and “sys”(target hBN24) for different spatial ranges of neighbourhood considered for
mapping. (d,g,j) Matching of DFT band-structure and mapped TB band-structure
for increasing rmap. (e,h,k) Matching of DFT+G0W0 band-structure and mapped
self-energy corrected TB band-structure for increasing rmap.

Perdew-Zunger (LDA) exchange-correlation56 functional and a plane wave cutoff of

60 Rydberg for wave-functions and commensurately more for charge density and

potential. Variable cell structural relaxation has been carried out for all periodic

systems using the BFGS scheme. To avoid the spurious interactions between the

periodic images we used more than 10 Å separation as a vaccum. We used a 1x1x15

Monkhorst-Pack grid of k-point for AGNRs and 1x1x29 for ZGNRs as well as for

ZBNNRs. Self-energy correction to single particle levels have been estimated at

the non-self-consistent G0W0 level of GW approximation implemented in the Berke-

leyGW code.42 To calculate the static dielectric matrix required for computation

of the self-energy operator, the generalized plasmon-pole model6 is used to extend



4.2 Computational Details 85

0 40 80
0

5

10

ζ 
/ ξ

ζ
sys

ζ
ref

ξ
sys

ξ
ref

0 40 80

-3

0

3

E
(k

) 
(e

V
)

p=4 (DFT)
p=1 to p=4

p=4 (DFT)
p=1 to p=4

0 0.5

-3

0

3
p=4 (GW)
p=1 to p=4

0 0.5
k

p=4 (GW)
p=1 to p=4

rmap=1.6Å rmap=5.0Å(d)

(e)

(g)

(h)

(f) (i)

0 40 80 0 40 80

p=4 (DFT)
p=1 to p=4

p=4 (DFT)
p=2 to p=4

0 0.3 0.6

p=4 (GW)
p=1 to p=4

0 0.3 0.6

p=4 (GW)
p=2 to p=4

rmap=10.0Å rmap=10.0Å(j)

(k)

(m)

(n)

(l) (o)

3p
+1

, p
=1

3p
+1

, p
=2

3p
+1

, p
=4

(a)

(b)

(c)

Figure 4.10: (a,b,c) Armchair graphene nanoribbons (AGNR) of family n=3p+1
with p=1, p=2 and p=4 respectively. (d,g,j,m) Plot of ζ and ξ values “ref”(reference
p=1 (in d,g,j) and p=2 (in m)) and “sys”(target p=4) for different spatial ranges
(rmap) of neighbourhood considered for mapping. (e,h,k,n) Matching of DFT band-
structure and mapped TB band-structure for increasing rmap. (f,i,l,o) Matching of
DFT+G0W0 band-structure and mapped self-energy corrected TB band-structure
for increasing rmap.

the static dielectric matrix in the finite frequencies. Energy cutoff of 10 Rydberg is

used for the dielectric matrix and Coulomb truncation is according to the systems

dimension. To convergence the dielectric function and the self-energy term we used

250(5000) bands for extended(nano-diamonds) systems. For all the nanoribbons pa-

rameters are chosen from Ref..75 In house implementation interfaced with the QE

code is used for generation of HAOs, HAWOs from KS states, calculation of TB

parameters in the HAWO basis, and mapping of TB parameters from reference to

target systems.
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Figure 4.11: (a,b) Zigzag graphene nanoribbons (ZGNR: Z), Z12 and Z24 respec-
tively. (c,f,i) Plot of ζ and ξ values “ref”(reference Z12) and “sys”(target Z24) for
different spatial ranges of neighbourhood considered for mapping. (d,g,j) Match-
ing of DFT band-structure and mapped TB band-structure for increasing rmap.
(e,h,k) Matching of DFT+G0W0 band-structure and mapped self-energy corrected
TB band-structure for increasing rmap.

4.2.1 Mapping self-energy corrected TB parameters in HAWO

basis

4.2.1.1 Nanoribbons

In previous Chapter 3 we shown estimation of quasi-particle(QP) band-gap for

graphene and hBN nano-ribbons based on SE correction to TB parameters mapped

from narrower ribbons in the basis of a single 2pz electron per atom. The trans-

fer was made explicitly by identifying equivalent atoms based on proximity to the

ribbon edges as shown in Fig.[3.2](c-e), Fig.[3.3](f) and Fig.[3.5](a) in Chapter 3.

In this section we begin by systematizing the process of identifying the equivalent



4.2 Computational Details 87

0 1 2 3
r (Å)

-10

-8

-6

-4

-2

0

2

t i,j
(r

)

TB from DFT
TB from DFT+G0W0

Figure 4.12: TB parameters involving a C atom in C10H16 with three C neighbours,
computed using 56 KS states with and without SEC at the G0W0 level, and plotted
as a function of distance from the atom. TB parameters from DFT are same as
those plotted in Fig.4.7(e).

atoms through the mapping mechanism proposed in Sec.4.1.2. The identification is

primarily based on ζ values for atoms and ξ values for HAO charge centres wherever

sufficient variations of ζ and ξ are available in the reference systems, as demonstrated

in Fig.4.9(c,f,i) and Fig.4.11(c,f,i) for hBN and ZGNR respectively. Whereas, map-

ping of AGNR from p=1 to p=4, as shown in Fig.4.10(d,g,j,m), calls for matching of

structural parameters as the key strategy for mapping, since the width of reference

AGNR with p=1 of the 3p+1 family, is narrow enough and have only two types of

C atoms per unit-cell.

For hBN, acceptable match[Fig.4.9(g,j and h,k)] between explicitly computed

band-structure, and the same computed from TB parameters with only 2pz orbitals

mapped from a narrower ribbon [Fig.4.9(a)], is achieved simultaneously at the DFT

and DFT+G0W0 levels, with hopping considered within the range no less than 5Å.

Whereas a higher spatial range of mapping of self-energy corrected TB parame-

ters is required for matching of band-structure at the DFT+G0W0 level for AGNR

[Fig.4.10(l)], and more so for ZGNRs [Fig.4.11(k)] with smaller band-gaps. Notable
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Figure 4.13: Distribution of distance between pairs of atoms in (a): reference (C3H8)
and (b): target (C10H16) systems. (c-d) Match between DFT DOS and mapped TB
DOS as demonstrated of efficacy of mapping of TB parameters from C3H8 to C10H16

with increasing spatial range of neighbourhood considered for mapping. (e) Match
between DFT+G0W0 DOS and mapped self-energy corrected TB DOS.

for AGNR, the match of self-energy corrected band edges for p=4 naturally improve

with mapping from p=2 [Fig.4.10(o)]. These trends simply relate to the degree of

localization of the states at the band edges - the more they are delocalized the larger

is the spatial range within which the self-energy correction to TB parameters are to

be considered.

4.2.1.2 Nano-diamonds

Fig.4.12 suggests that the extent of SEC to TB parameters are spatially limited

mostly within the third nearest neighbourhood, implying possible transferability of

SE corrected TB parameters to large covalent systems from smaller reference systems

of which are large enough to accommodate the full spatial range of non-nominal

SEC to TB parameters. Accordingly, mapping in nano-diamonds is demonstrated

with C3H8 and C10H16 (adamatane) as reference systems to map to nano-diamonds

C26H32 (pentamantane) and C84H64.
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Figure 4.14: Distribution of distance between pairs of atoms in (a): reference (C3H8)
and (b): target (C26H32) systems. (c-d): Match between DFT DOS and mapped TB
DOS as with an increasing spatial range of neighbourhood considered for mapping.
(e): Match between DFT+G0W0 DOS and mapped self-energy corrected TB DOS.

We start with attempts to map C10H16, C26H32 and C84H64 targets from C3H8

reference in sp3 HAO basis. The mapping process starts with plotting the distance of

atom pairs (C-H, C-C, H-H) for target and reference systems. As seen in Fig.4.13(a)

there is one-to-one correspondence of C-C bonds between C3H8 and all targets up

to approximately 2.5Å, which is the second nearest C-C distance. For C-H and H-H

pairs, such correspondence exists up to about 3Å and 3.75Å respectively. These

correspondences decide the range of hopping parameters to be mapped. Notably,

C3H8 has two varieties of C atoms - one with two(two) C(H) neighbours, and the

other with one(three) C(H) nearest neighbours, whereas, C10H16 has C atoms with

three(one) C(H) neighbours and two(two) C(H) neighbours. Additionally, C26H32

and C84H64 have C atoms with all C nearest neighbours(nn). Exact match of ζ

between all atoms of reference and target systems is thus impossible in these exam-

ples. Matching ζ and ξ will therefore be less effective in mapping from C3H8. Also,

since there is only one C atom with two(two) C(H) neighbours in C3H8, matching

ζ can be restrictive in terms the variety of orientations. We thus opt for matching

structural parameters within a tolerance for ζ set to the minimum difference of ζ
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values between similar type of atoms in reference and target systems to ensure max-

imal matching of ζ besides finer matching of structural parameters. As obvious, a

better choice of reference system than C3H8 with C atoms having all varieties of

neighbourhood can be easily made. However, we deliberately chose to test mapping

from C3H8 which is the smallest possible reference system with just one C atom

with two(two) C(H) neighbours, since such C atoms dominates the surfaces of the

nano diamonds and are thereby expected to host the states at the edges of the va-

lence and conduction bands. Surprisingly, as evident in Fig.4.13(c), with mapping

of only the nn-hopping terms from C3H8 to C10H16, the mapped TB DOS already

matches reasonable well with DFT DOS of C10H16 in terms of the band-gap and DOS

around band edges. With increase in range of hopping to 2.7Å(nn,2n), 3Å(nn,2n,3n)

and 4Å(2n,3n,4n)) for C-C, C-H and H-H pairs based on availability of one-to-one

mapping[Fig.4.13(a,b)] the match of mapped TB DOS and DFT DOS[Fig.4.13(d)]

extends deeper into the valence band. The quality of match improves further with

additional mapping of C-H and H-H atom pairs up to 4.5Å [Fig.4.13(e)] without

compromising on tolerance factors. Notably, the range of hopping of C-H and H-

H, although are more than that of C-C, are actually consistent with the range of

C-C hopping, since the farthest H atoms considered are associated with two second

nearest C atoms. The same mapping parameters are then used to map self-energy

corrected TB (SEC-TB) parameters of C3H8 to C10H16 leading to a good match of

not only the SEC-TB mapped band-gap and the QP band-gap calculated at the

G0W0 level, but also the SE corrected DOS of the valence band[Fig.4.13(f)].

Next we attempt mapping C26H32 from smaller references, starting with mapping

from C3H8 to C26H32, which is about five times increase in system size.Mapping of

only nearest neighbour C-C and C-H hopping underestimates band-gap by about

15%[Fig.4.14(c)]. Mapping all hopping parameters up to upto 4.5Å which is the

maximum range of hopping available in the reference, drastically improves overall

match of not only mapped TB DOS and DFT DOS[Fig.4.14(d,e)] but also mapped

SEC-TB DOS and DFT+G0W0 DOS[Fig.4.14(f)], as is seen in case of mapping

C10H16 from C3H8.
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Finally we demonstrate mapping to C84H64 from C10H16, which is about six time

enhancement in system size. Mapping of only the nearest neighbour C-C and C-H

bonds results into good match of the mapped TB band-gap[Fig.4.15(c)] with the

DFT band-gap. With further mapping of hopping parameters upto 2.75Å(nn,2n),

4Å (nn,2n+) and 4Å (2n,3n+)[Fig.4.15(a,b)] for C-C, C-H and H-H pairs, satisfac-

tory match of the entire valence band and a good match[Fig.4.15(d)] of the band-gap

is achieved. Mapping of SEC of TB parameters from C10H16 to C84H64 results into

a QP band-gap of about 7.2 eV which is within 5% deviation from the QP band-gap

implied in literature.15,127,128,129

In Fig.4.16 we show similar mapping of TB parameters at the DFT and DFT+G0W0

levels for Si based nano-diamonds. Like in case of nano-diamonds, mapping of hop-

ping up to second nearest Si neighbours and H atoms associated with them from

Si3H8, renders good match of the SEC-TB band-gap with the explicitly estimated

DFT+G0W0 band-gap almost up to six times escalation of system size. These results

imply consistency in transferability of SEC corrected TB parameters with increasing
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mapped self-energy corrected TB parameters from Si3H8.

principal quantum number of valence orbitals.

4.3 Conclusion

In conclusion, construction of naturalized hybrid atomic orbitals(HAO) is proposed

as the common eigen-states of the non-commuting set of finite first-moment ma-

trices corresponding to the orthogonal directions. Hybridization and orientations

of HAOs are numerically naturalized as per their anticipated immediate atomic

neighbourhood. Choice of gauge based on the HAOs leads to the construction of

the hybrid atomic Wannier orbitals (HAWO) from Kohn-Sham(KS) single particle

states, rendering a multi-orbital orthonormal tight-binding(TB) basis locked to the

nearest neighbourhood. HAWO basis allows calculation of single TB parameters

per bond from first principles, and facilitate their easy transfer across iso-structural

systems through mapping of immediate atomic neighbourhoods and projection of

charge centres learned in the process of naturalization of the HAOs. The mapping
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allow effective bottom-up transfer of self-energy corrected TB parameters estimated

within the GW approximation of many-body perturbation theory in HAWO basis,

from smaller reference systems to much larger target systems having similar cova-

lent atomic neighbourhoods, suggesting a possible route towards computationally

inexpensive estimation of quasi-particle structures of large covalent systems within

acceptable range of accuracy, with extra computational cost scaling as N2, beyond

the explicit computation of self-energy correction for smaller reference systems which

typically scale as N4. Demonstrated in nano-ribbons and nano-diamond systems,

the transferability of self-energy corrected multi-orbital TB parameters in HAWO

basis, is rooted at the spatial localization of the extent of self-energy correction pre-

dominantly within the third nearest neighbourhood, which appears to be robust for

σ bonds but lesser so with π bonds and unpaired electrons.





Chapter 5

Self-energy corrected tight binding

parameters for few p-block

semiconductors in the hybridized

atomic orbital basis constructed

from first principles

In this chapter we use our proposed methodologies to construct the self-energy cor-

rected TB framework in the hybrid atomic Wannier orbital (HAWO) basis proposed

in Chapter 4 to acces transferability of self-energy correction among the bulk struc-

tures as well as between bulk and finite structures made by elements within and

across the 2p, 3p and 4p blocks of the periodic table in group 13, 14 and 15.

5.1 Introduction

Starting with the advent of the quantum theory of solids,130 tight-binding(TB)

frameworks in the basis of spatially localized Wannier functions (WF),12 have been
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envisioned as a generic approach to compute electronic structure of materials. Slater-

Koster (SK) parametrization13,14 of elements of a TB Hamiltonian marked the be-

ginning of reasonable band structure calculations of solids. With the advent of the

Kohn-Sham(KS) density functional theory(DFT),1,2 the mean field approximation

of KS-DFT56,57 and tight-binding parameters46,131,132 determined by fitting the en-

ergy bands at the DFT level, have been the work horse for studies of ground states

properties of materials with weak to modest localization of valence electrons for

about three decades now.

With our increasing capability to fabricate devices with ever shrinking size -

now well within double digits in nanometers, interest in accurate computation of

physical and electronic structure of such systems, which typically consist of thou-

sands of atoms, led to the evolution of tight-binding frameworks for finite systems

with structural inhomogeneities. Efforts to derive TB parameters for large finite

systems, particularly with sp3hybridization of orbitals, have been reported not only

in the orthogonal sp3basis133,134,135,136,137,138 but also more generalizably in the non-

orthogonal basis as well139,140,141 and used extensively in molecular dynamics sim-

ulation136,142 and calculation of optical properties.16,143,144,145,146 Evolution of com-

putational techniques to construct spatially localized Wannier functions (WF),47,48

opened up the scope for construction of realistic localized orbitals from KS single

particle states,147,148 leading to explicit computation of realistic TB parameters from

first principles.

With improved spectroscopic measurements enhanced correlation due to spatial

confinement near surfaces and interfaces of nano-structures became apparent which

made it imperative to take the frameworks of computation of electronic structure

beyond the mean field regime leading to formidable increase in computational com-

plexity and cost. While much effort in this direction has been underway in terms of

improving the exchange-correlation functionals63 to include effects of many-electron

interactions within the KS energy eigen-spectrum, the GW approximation6 of the

many body perturbation theory (MBPT)4,5,122,123,124 is so far the most general abi-

nitio framework to unmissably account for correlations starting from the KS single
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particle states. However, both the approaches are computationally expensive and al-

most prohibitive for systems with thousands of atoms. These limitations have led to

attempts to incorporate effects of correlations within the tight-binding(TB) frame-

works. Efforts reported in recent years mostly improve TB parameters71,72,73,74,126

by matching QP structure in specific systems and orbital subspaces.

In this work we calculate self-energy correction(SEC) to TB parameters from the

SEC of the KS energy eigenstates at the DFT+G0W0 level. With tetrahedrally co-

ordinated atoms exclusively considered in this work except the passivating H atoms

at the surface of the nano-diamonds, TB parameters are calculated in the orthonor-

mal basis of Wannier functions(WF) constructed following a realistic template of

sp3hybridized atomic orbitals(HAO) obtained from KS single particle states of iso-

lated atoms. The resultant WFs resemble hybrid atomic orbitals and orient towards

directions of coordination by construction, and thereby locked to the immediate

neighbourhoods of atoms. The aim of this work is to present a comparative analysis

of TB parameters and their SEC in such directed hybrid orbital basis beyond the

nearest neighbourhood for bulk and finite structures made of a representative vari-

ety of 2p, 3p and 4p block elements which exists in diamond or zinc-blend structures

in three dimensions. We also demonstrate that such TB parameters can be trans-

ferred from smaller nano-diamonds to their much larger iso-structural counterparts

exclusively through mapping of neighbourhoods typically up to 2nd or third nearest

neighbours, to render HOMO-LUMO gaps of the larger systems in good agreement

with their explicitly calculated values at the DFT and DFT+G0W0 level.

5.2 Methodological details

5.2.1 Construction of hybrid atomic orbitals(HAO) and their

transfer to system of atoms

Hybrid orbital basis (HAO) are constructed for isolated atoms as the approximate

eigenstates of the non-commuting set of three first moment matrices (FMM) X,Y



98
Self-energy corrected tight binding parameters for few p-block semiconductors in the

hybridized atomic orbital basis constructed from first principles

(a)

(b)

(c)

Figure 5.1: Nano-diamonds with projected charge centres of HAOs (pink spheres):
(a) C26H32, (b) C281H172 and (c) C322H156. Charge centres of H coincides with H.

and Z projected in a finite subspace of orthonormal basis states. FMMs calculated

as:

(X,Y, Z)ij = ⟨ϕi | (x, y, z) | ϕj⟩. (5.1)

are maximally joint diagonalized using an iterative scheme based on the Jacobi

method of matrix diagonalization where off-diagonal elements are minimized through

rotation of coordinates by a specific analytic choice of angles as detailed in Chapter 3

HAOs are naturally oriented towards direction of coordinations around atom as per

the set of basis states considered for construction of the HAOs. The charge centres of

HAOs thus render coordination polyhedra around an atom for a given sub-shell. For

construction of the sp3HAOs used in this work, the lowest four KS states of a single

atom are used as basis. Although in principle, any localized atomic orbitals like the

pseudo-atomic orbitals or the Slater or Gaussian type orbitals parametrized for the

given atoms can also be used for the purpose, it is important to have appropriate

length-scale of localization of the HAOs for their correct representation within the
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(a) (b) (c)

Figure 5.2: HAWOs in bulk (a)C (b)Si and (c)Ge.

KS states of the given system of atoms where the HAOs are to be used as template

to construct WFs. Same pseudo-potential thus preferably be used for generation of

HAOs and also for calculation of electronic structure of the given system.

Separate sets of HAOs are constructed for each types of atoms, and transfered to

the corresponding atoms in the given system through mapping of directions of coor-

dination from the atoms to their nearest neighbours on to the directions of charge

centres of HAOs from the isolated atom for which they are explicitly constructed.

Through such mapping a distribution of projected charge centres of HAOs are gen-

erated for the entire system prior to the transfer of HAOs, as seen in Fig.5.1. For

perfect tetrahedral coordination, as seen in the bulk diamond and zinc blende struc-

tures, the transfered HAOs would thus retain intra-atomic orthonormality, whereas

for the nano-diamonds such intra-atomic orthogonality will be marginally compro-

mised owing to deviations of perfect tetrahedral coordination more towards the

surface. However this is not a problem as such not only because the deviations are

minimal but because all transfered HAOs are symmetrically orthonormalized during

the construction of the WFs.

Orthonormalized Wannier functions from the KS states following the HAOs

transferred from the isolated atoms are constructed as decribed in section-3.2 in

Chapter 4. Representability of HAO ϕn within the set of KS states considered, is

ensured by setting a cutoff on each individual Sk⃗,n,n values to be more than 0.85,

which is found to be satisfied by the lower bound of the number of KS states as per
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Figure 5.3: TB and self-energy correction to TB parameters in (a) carbon, (b)
silicon and (c) germanium nano-diamonds from adamantane to pentamantane (black
dashed curve for guide to the eye).

the total number of orbitals considered.

Using the Löwdin symmetric orthogonalization76 a new set of orthonormal Bloch

states from the KS single particle states are subsequently constructed as per Eqn.(3.2)

to Eqn.(3.4). Finally, a localized set of orthonormal hybrid atomic Wannier orbitals

(HAWO) similar to their corresponding HAOs are constructed as per Eqn.(3.5).

TB parameters at the DFT level and DFT+G0W0 level are computed in the HAWO

basis from energetics of KS single particle states and their self-energy correction as

per Eqn.(3.6).

5.2.2 Bottom-up mapping of TB parameters

As already discussed in Chapter 4 the orientation of HAWOs being locked to the

local atomic neighbourhood of each atom, the multi-orbital TB parameters derive in

HAWO basis are easily mappable from one system to another with matching atomic

neighbourhoods. Transferability of the TB parameters in terms of reproducibility of

band-gaps and band-width within acceptable ranges of deviation from their direct

estimates from first principles, is demonstrate by transferring TB parameters from

smaller reference systems to structurally similar larger target systems. Transfer of

TB parameters is done in two steps.

First all individual pairs of atoms of the target system beyond the nearest neighbour-

hood, are mapped on to matching pairs of atoms in the reference system through

comparison of a collection of structural parameters like spatial separation, angles and
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Figure 5.4: TB and self-energy correction to TB parameters of hybrid SiC and
SiGe nano-diamonds(pentamantane) along with those of C, Si and Ge nano-
diamonds(pentamantane).

dihedral angles subtended by the nearest neighbours and a measure (ζ) of proximity

of atoms with respect to surfaces, interfaces and inhomogeneities defined as:

ζi =

Ni∑
j

Zjw(ri,j) (5.2)

Ni being the number of neighbours of the i-th atom within a chosen cutoff radius,

and w being a weight factor which is a function of the distance ri,j of the j-th

neighbour of the i-th atom, and Zi being a characteristic number to be associated

with each type of atom, for example, the atomic weight.

For mapping of orbital pairs from reference to target, a projected map [Fig.5.1(b-

c)] of locations of charge centres of HAOs for the target system is generated first and

then among the mapped pair of atoms, pair of HAOs of system are mapped to pair of

HAOs of the reference through mapping of their respective charge centres much like

the mapping of atom pairs. The weight factor w is typically chosen to be 1.0 within

half of the cutoff radius and smoothly reduced to zero at the cutoff radius using a



102
Self-energy corrected tight binding parameters for few p-block semiconductors in the

hybridized atomic orbital basis constructed from first principles

200 400 600 800 1000

pyramidal structure

0

2

4

6

8

H
O

M
O

-L
U

M
O

 g
ap

 (
eV

)

DFT

GW

TB
mapped

SEC-TB
mapped

200 400 600 800 1000

bipyramidal structure

DFT

GW

TB
mapped

SEC-TB
mapped

No. of atoms

(a) (b) bipyramidal nanodiamond (C
68

H
56

)

0

0.3

0.6

0.9
KS

TB
mapped

-20 -15 -10 -5 0 5 10
E (eV)

0

0.3

0.6

0.9

D
O

S
 (

ar
b
. 
u
.)

GW

SEC-TB
mapped

(c)

(d)

Figure 5.5: Variation of HOMO-LUMO gap computed with TB and SEC-TB param-
eters mapped to un-relaxed structures from relaxed pentamantane structure, and the
same computed from first principles at the DFT and DFT+G0W0 level with relaxed
structure, as function of size of carbon nano-diamonds increasing in (a) pyramidal
and (b) bi-pyramidal structures. Comparison of DOS of C68H56 calculated from (c)
TB mapped to un-relaxed structures and DFT of relaxed structure, and (d) SEC-TB
mapped to un-relaxed structure and DFT+G0W0 of relaxed structure .

cosine function. Cutoff radius is chosen based on the size of the reference system,

since it should neither be too large for variations in Zi to average out, nor should

it be too small such that ζ varies abruptly only at the structural inhomogeneities.

Cutoff radius and Zi values should thus be so chosen that ζ values can effectively

differentiate between atoms at the interior of a finite system from those at the

surfaces in both reference and target systems such that relaxed structures of target

systems are not required to adequately transfer effects of variation in bond lengths

near the surfaces from reference to target systems.

5.3 Computational details

All the ground state geometries as well as ground state electronic structures are

calculated using the QUANTUM ESPRESSO (QE) code77 which is a plane wave

based implementation of density functional theory (DFT). BFGS scheme has been

used to obtain the relaxed structures. For bulk systems variable cell relaxation has

been performed to optimize lattice parameters and ionic positions. A separation of

at least 10 Å between periodic images has been ensured for all the finite systems. The

KS ground state properties are calculated within the Perdew-Zunger approximation
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Figure 5.6: Variation of HOMO-LUMO gap of nanodiamonds from adamantane to
pentamantane made of (a) carbon, (b) silicon and (c) germanium. Bulk band gaps
are shown in dotted lines.

of the exchange-correlation functional implemented in a norm-conserving pseudo-

potential. Plane wave basis with kinetic energy cutoff in excess of 60 Rydberg along

with a 15x15x15 Monkhorst-Pack grid of k-points have been used for all the bulk

systems. The self-energy correction to KS energy eigenvalues are calculated at the

G0W0 level of GW approximation of the many-body perturbation theory (MBPT)

implemented in the BerkeleyGW (BGW) code.42 To calculate the static dielectric

matrix and extend to the finite frequencies the generalized plasmon-pole model6

is used. We have used a energy cutoff of 10 Rydberg for the dielectric matrix

and Coulomb truncation is according to the systems dimension. For convergence

of dielectric function as well as the self-energy term we used 250(5000) bands for

bulks(nano-diamonds). To get a well converged band-gap for bulk structures we

used a finner k-mesh of 30x30x30 grid through the interpolation based on the AWOs.

Finally, in-house implementation interfaced with the QE code is used for generation

of HAOs, HAWOs from KS states, calculation of TB parameters in the HAWO

basis, and mapping of TB parameters from smaller reference systems to larger target

systems.
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Figure 5.7: (a-p) TB parameters and their self-energy corrections, and (q) summary
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diamond and zinc blende structures.

5.4 Results and discussion

Nano-diamonds starting with adamantane followed by diamantane, triamantane,

tetramantane with increasing number of atoms up to pentamantane have been con-

sidered for explicit calculation of TB parameters at the DFT level and their further

refinement due to SEC of KS energy eigenvalues at the G0W0 level. As evident in

Fig.5.3 the dominant nearest neighbour(nn) TB parameters as well as those beyond

the nearest neighbourhood, remains effectively invariant with respect to system size,

implying transferability of TB parameters across length-scales of nano-diamonds at

the DFT level as we demonstrate in this paper. Magnitudes of TB parameters in

Si and Ge are similar but vary significantly from that of C, which is consistent

with variation in their inter-atomic separations. Notably however, the SEC to the

dominant TB parameters reduces slowly with increasing system size in a similar

rate for C, Si and Ge based nano-diamonds, although the magnitude of correction

itself reduces significantly with increasing principal quantum number owing to in-

creased de-localization. The slow variation of SEC across system size also suggests

possibility of SEC corrected TB parameters to be transferable as well to a workable

degree.

Fig.5.4 clearly suggests that TB parameters of either Si or Ge can be used for
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Figure 5.8: (a) TB and (b) Self-energy corrected nearest neighbor TB parameters
(bonding and anti-bonding) for 2p, 3p and 4p block elements.

SiGe nano-diamond as well, whereas for the SiC nano-diamonds the dominant in-

teratomic TB parameters are effectively the average of that of the C and Si based

nano-diamonds. These observations hint at increased transferability of SEC across

elements in a block with increasing quantum number of frontier orbitals. The reor-

ganization of the on-site terms of SiC nano-diamond compared to those made of Si

or C can be attributed to the hetero-polarity of the Si-C nn bond due to difference of

electro-negativities of Si and C, whereas electro-negativities of Si and Ge are similar

and less than that of C.

To study transferability of TB parameters from smaller nano-diamonds to their

larger counterparts we have mapped TB parameters from pentamentane to larger

pyramidal and bi-pyramidal carbon based nano-diamonds with close to 1000 atoms.

We have considered un-relaxed coordinates of the larger nano-diamonds and mapped

the TB parameters calculated for relaxed structure of pentamentane, using ζ values

calculated with a cutoff radius considered up to the next nearest neighbour. As evi-

dent in Fig.5.5(a,b), the match of the DFT HOMO-LUMO gap with that calculated

from the transferred TB parameters from pentamentane is found to be quite exact

for both pyramidal as well as bi-pyramidal nano-diamonds up to about 500 atoms,

which is almost about ten times escalation of size of the target system compared to

that of the reference system. Notably, for all the larger nano-diamonds the DFT

HOMO-LUMO gaps were calculated explicitly with well relaxed structures, whereas
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Figure 5.9: Comparison of band-structures computed from first principles with that
obtained with TB parameters derived from first principles at the DFT (upper panel)
and DFT+G0W0(lower panel) levels for 2p, 3p and 4p block elements.

the structures used to transfer TB parameters from pentamentane were completely

un-relaxed. Therefore the match of the exact DFT HOMO-LUMO gaps with that

evaluated with TB parameters transferred to an un-relaxed structure point to the

efficacy of ζ in differentiating atoms as per their proximity to the surface in both

reference and target systems so that the transferred TB parameters have the correct

variation from surface to interior. The match of the quasi-particle (QP) HOMO-

LUMO gap is also found quite satisfactory up to more than two time escalation of

system size beyond pentamentane, till which G0W0 calculations could be reliably

performed with computational facilities at our end. QP HOMO-LUMO gap data

available in the literature15,127,128,129 allows us to compare for a bit further. These

results thus confirms transferability of TB parameters with and without SEC over

substantial escalation of system size.

Interatomic TB parameters for bulk Si and Ge in diamond structures are consis-

tent with those in nano-diamonds notwithstanding the substantial drop of band-gap

in bulk to about 0.5 eV(1 eV) from HOMO-LUMO gap around 4 eV(7 eV) in nano-

diamonds at the DFT(DFT+G0W0 ) level as shown in Fig.5.6(b,c). However for
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bulk C in diamond structure the dominant nn hopping term strengthens substan-

tially to -10 eV (Fig.5.7(a)) from -6.5 eV (Fig.5.3(a) red plots) in nano-diamonds,

although the band-gap in bulk is comparable to that of HOMO-LUMO gap of nano-

diamonds, which are about 4.2 eV and 5 eV respectively at the DFT level. The

reason of this contrasting trend for C compared to those for Si and Ge can be traced

to one obvious fact that sp3HAWOs in Si and Ge are more de-localized than that

of C owing to increase in principal quantum number, but in addition to that, the

C-C nn separation clearly decreases in bulk from nano-diamonds by about 2% to 3

%, as has also been reported149 earlier, whereas the Si-Si and Ge-Ge nn separations

remain largely same in bulk and nano-diamonds. Furthermore, as evident in Fig.5.2,

the major lobe (positive one in this case) of the sp3HAWOs of C is stretched towards

the nearest C compared to the HAWOs of Si and Ge. Overlap of such sp3HAWOs of

C would thus increase appreciably with reduction in C-C nn separation from nano-

diamonds to bulk, leading to the increase in magnitude of nn hopping term. Thus

the TB parameters are not transferable from bulk to nano-diamond for C even at

the DFT level. However it may still be feasible for Si and Ge.

Consistent with the localized nature of HAWOs, SEC is higher for C based bulk

and nano-diamonds compared to their Si and Ge based counterparts. However the

relative variation of localization of HAWOs of C, Si and Ge are much dominated

over by the localization imposed by the finiteness of nano-diamonds, leading to

comparable values of SEC of band-gap of C, Si and Ge based nano-diamonds ranging

from about 4 eV to 3 eV leading to comparable SEC correction to nn hopping term

ranging from -1.75 eV to -1.3 eV. From nano-diamonds to bulk the SEC to band

gap and thereby to the nn hopping term reduces consistently on account of de-

localization. Thus the self-energy corrected TB parameters are not transferable

from bulk to nano-diamonds even for Si and Ge.

As evident in Fig.5.7(a,c,e,g,i,k), the nn hopping parameter is almost exactly

same for diamond structures of group 14 (C,Si,Ge) and zinc blende structures made

of groups 13 and 15 (BN,AlP,GaAs) within each block, whereas the SEC to the nn

(Fig.5.7(b,d,f,h,j,l)) hopping are consistently more for zinc blend structures than the
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diamond structures in each block owing likely to the enhanced localization of the

bonding orbitals in the heteropolar B-N, Al-P and Ga-As nn bonds than in the C-C,

Si-Si, and Ge-Ge bonds. Fig.5.7(q) summarizes the variation of the onsite terms and

the major inter-atomic hopping parameters at the DFT and DFT+G0W0 level. As

evident in Fig.5.7(m,o,n,p,q), for zinc blend structure of SiC(SiGe) the nn hopping

and it’s SEC both are average of their counterparts in diamond structures of Si and

C(Ge). Fig.5.7(q) clearly suggests the stepped evolution of TB parameters and SEC

from 2p to 3p and 4p blocks and the similarity in the later two. In Fig.5.8(a) and

(b) we ploted the dominant TB parameters(t) and their self-energy correction(∆t)

respectively. Fig.5.8 shows a slow but systematic reduction of both t and ∆t as a

function of bond-length which can be particularly useful in determining self-energy

correction to bulk covalent systems with sp3 hybridized orbitals. Band structures

obtained with TB parameters shown in Fig.5.9 are plotted along with DFT band

structure. Notably, for the exact reproduction of band structure the TB parameters

have to be obtained not only in a dense enough grid of k⃗ but also using a KS band

subspace of size exactly same as the number of HAOs transfered for the entire unit-

cell in order to maintain the unitary nature of the matrix (OS− 1
2 ). If we use a larger

KS subspace then the reproduction energy bands will become increasingly inexact

with increasing energy.

5.5 Conclusions

For a representative variety of p block elements, we have presented TB parame-

ters calculated at the level of DFT and DFT+G0W0 in the orthonormal hybridized

atomic Wannier orbitals(HAWO) basis constituted of the KS single particles and are

directed towards coordination by construction. We present TB parameters for nano-

diamonds made of C, Si, Ge, SiC and SiGe and their bulks in diamond or zinc blende

structures, and also of bulk BN, AlP and GaAs in the three consecutive p blocks.

Transferability of inter-atomic TB parameters between bulk structures to nano-

diamonds is generally poor and worsens with self-energy correction(SEC). However



5.5 Conclusions 109

among nano-diamonds, the inter-atomic TB parameters at the DFT level are found

to remains effectively unaltered with increasing size, implying robust transferabil-

ity of the TB parameters from smaller to larger nano-diamonds as demonstrated.

Slow reduction of SEC to TB parameters with increasing system size also implies

good transferability of self-energy corrected TB parameters across nano-diamonds.

Transfer of TB parameters are performed exclusively by mapping up to second or

third nearest neighbourhoods between the reference and the target systems, and

thus does not necessitates relaxed geometries of the target systems as long as all

neighbourhoods could be mapped. Similarity of TB parameters and their self-energy

corrections across 3p and 4p blocks compared to that in the 2p block hints at the

possible transferability of SEC across blocks with increasing principal quantum num-

ber.





Chapter 6

Planar heterostructure of BC and

CN embedded in graphene and

hexagonal BN for super-capacitor

electrode applications

In this chapter we describe our effort to propose new materials for electrodes of

capacitors partly as an application of the tight-binding framework in the basis of the

hybrid atomic Wannier orbitals and their bottom up transfer described in Chapters

3 and 4.

6.1 Introduction

Developing new materials for efficient and inexpensive energy storage devices150 has

become a key direction of research in the materials science community. While the

primary focus is still on batteries, a significant amount of interest has shifted in

recent years to supercapacitors as well, owing to their quick charging, long life cycle

and good reversibility151,152,153,154,155 .But supercapacitors lag behind the conven-
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tional batteries in terms of energy density which restrain their applications in con-

temporary power infrastructures,156 leading to increased efforts towards improving

their capacitance value156,157

Two dimensional graphene and graphene based materials have received much

attention as supercapacitor electrodes due to their robust yet light weight structure,

high specific surface area and good electrical conductivity158,159,160,161,162,163,164,165

However, the specific capacitance of graphene based materials is low compared to

popular capacitor electrodes due to low density of states near the Fermi energy

rooted at the semi-metallic nature of graphene166,167,168,169,170,171,172 . Much effort

has been undertaken in last few years towards improvement of the specific capaci-

tance for graphene based materials through chemical functionalizations, adsorption

of metal atoms, creation of vacancies, dopings and tailoring of shapes and sizes of

segments166,173,174,175,176,177 .While these results suggests that it is possible to in-

duce appreciable capacitance at low bias through appropriate micro-engineering of

layered assemblies of 2p-block elements, it is imperative to build on these results

new proposals for robust layered structures made of p-block elements which can be

synthesised at a large scale for mass use.

As a possible candidates, in this work we consider super-cells of planar two di-

mensional hybrid structures of graphene and hexagonal boron nitride, boron-carbide

and carbon-nitride. From the computational point of view, the key challenge in ex-

ploring new materials for electrodes, is to get the DOS near the Fermi energy realisti-

cally correct. First principles calculations performed at the density functional theory

(DFT) level are known to underestimate band-gap and can potentially lead to wrong

prediction unless the overlap of the valence and conduction bands are substantial.

We therefore performed first principle calculations to estimate the quantum capaci-

tance both at the DFT level as well as at the G0W0 level of the GW approximation

of self-energy correction beyond DFT, using the transfer of self-energy corrected TB

parameters described in Chapters 3, 4 and 5.
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Figure 6.1: Variable cell relaxed structures of carbon-nitride (a) 1x1, (b) 2x2, (c)
3x3, (d) 4x4 and (e) 5x5 supercells. Boron-carbide variable cell relaxed structures
(f) 1x1, (g) 2x2, (h) 3x3, (i) 4x4 and (j) 5x5 supercells.

6.2 Quantum Capacitance

In a generic capacitor there are primarily two types of capacitive contributions, one

from the electrodes themselves and the other is from the electric double layers (EDL)

which are the layers of electrolyte with induced charges adjacent to the electrodes.

With these two contributions in series the total capacitance is found as:

1

Ctot

=
1

CQ

+
1

CEDL

(6.1)

where CQ is the capacitance of the electrode and CEDL is that of the electric double-

layer. In our work we focus on possibilities of improving CQ of layered network of

three coordinated boron, carbon and nitrogen.

The capacitance CQ is essentially the quantum capacitance, also known as the

chemical capacitance, which is defined as the ratio of the variation of charge density

dq due to variation in applied potential dVG, as:

CQ =
δq

δVG
. (6.2)
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Figure 6.2: Bond-lengths distribution of hBC and hCN systems of VC relaxed struc-
tures from 1x1 to 5x5.

where “G” stands for gate implying VG to be an applied gate bias. Number of

electrons at the electrode at bias VG can be computed as:

q0 = (−e)
∫ ∞

−∞
D(E)f(E, µ(T )− eVG)dE. (6.3)

where D(E) is the density of states (DOS) of the electrode and f(E, µ(T )) is the

Fermi-Dirac distribution function:

f(E, µ(T )) =
1

e(E−µ(T ))/kBT + 1
(6.4)

corresponding to chemical potential µ(T ) at a given temperature T .

Change in number electron due to change in bias by δVG can therefore be calcu-

lated as:
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δq = (−e)
∫ ∞

−∞
D(E)[f(E, µ(T )− e(VG + δVG))− f(E, µ(T )− eVG)]dE (6.5)

which yields quantum capacitance CQ, as:

CQ =
δq

δVG
= e2

∫ ∞

−∞
D(E)

∂f(E, T, µ)

∂µ
|µ=µ(T )−eVG

dE (6.6)

where:
∂f(E, T, µ)

∂µ
=

1

4kBT
Sech2

(
E − µ

2kBT

)
= FT (E − µ) (6.7)

FT (E − E0) being the thermal broadening function peaked at E0.

More generally therefore we have:

CQ(VG, T ) = e2
∫ ∞

−∞
D(E)FT (E − µ(T ) + eVG)dE (6.8)

6.3 Computational Details

Density functional theory (DFT)1,2 is used to calculate all the ground state elec-

tronic properties along with the ground state geometry optimizations. All the DFT

based calculations are carried out using the QUANTUM ESPRESSO (QE) pack-

age77 which is a plane wave based implementation of DFT. All the structures pre-

sented in this work are well optimized with the variable cell(VC) relaxation which

optimizes the lattice parameters as well as ionic positions using the BFGS scheme.

A separation of at least 10 Å vaccum is used between periodic images of planar

structures. We used LDA as well as GGA pseudo-potentials implemented using

the Perdew-Zunger (PZ)56 and the Perdew−Burke−Ernzerhof (PBE)57 approxima-

tions of the exchange-correlation functional respectively for optimization of struc-

tures. To calculate the DFT ground state properties we used primarily the Perdew-

Zunger (PZ) approximation of the exchange-correlation functional implementation

in a norm-conserving pseudo-potential. A plane wave basis with kinetic energy cut-

off of 80 Rydberg is used for all the calculations. We used 64x64, 32x32, 21x21,
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Figure 6.3: Density of states (DOS) of z ̸= 0 and z = 0 of 2x2 (a) hBC supercell
with corresponding (b) quantum capacitance and (c) DOS of z ̸= 0 and z = 0 of 2x2
hCN supercell with corresponding (d) quantum capacitance. Vertical dotted lines
in the DOS plots represent the Fermi level.

16x16... Monkhorst-Pack grid of k-points for 1x1, 2x2, 3x3, 4x4... two dimensional

super-cells.

For large planar unit-cells we have used our in-house implementation based on

methods introduced in Chapter 3 to transfer tight-binding parameters from smaller

reference systems where they are calculated in the basis of the hybrid atomic Wan-

nier orbitals introduced in Chapter 4. It is known that Wannierization fails in metals

in general due to truncation and entanglement of bands at the Fermi level, leading

to lack of localization. However in our work we construct Wannier function over

a larger subspace, which is typically double of that of the occupied subspace, and

includes both the bonding and the anti-bonding subspaces, in order to construct

Wannier function counterparts of atomic orbitals with intra-atomic hybridization.

Thus the problem of truncation and entanglement of bands does persist in gen-

eral at the edge of the subspace considered. However in all the covalent systems

considered in my thesis, the near complete (more than 90%) representation of the

template of hybrid orbitals within the subspace of Kohn-Sham states considered,

appears to ensure substantial localization of the resultant orbitals. leading to al-
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most exact reproduction of the DFT band-structure and density of states by the

tight-binding Hamiltoian derived from the resultant orbtials. We therefore have not

considered implementing any disentanglement or down-folding procedure so far in

our work, although it is true that such an implementation may further improve the

localization of the Wannierized orbitals, which may further improve transferrability.

Self-energy corrected TB parameters are obtained from self-energy correction of the

KS single particle levels calculated using the BerkeleyGW (BGW) code42 which is

a implementation of the GW approximation4,5,6,41 of the many-body perturbation

theory (MBPT).122,123,124 We calculate the quasi-particle electronic properties only

upto the G0W0 level which is a one shot GW approximation. To calculate the static

dielectric matrix and extend to the finite frequencies the generalized plasmon-pole

model6 is used. To calculate the screened Coulomb interaction a kinetic energy cut-

off of 60 Rydberg is used for all the reference systems. For convergence of dielectric

function and the self-energy operator we used in excess of 1200 bands.

6.4 Results and Discussions

Pristine graphene being a semi-metal, the DOS around the Fermi level is low, leading

to weak quantum capacitance at low bias voltages. High DOS near Fermi energy is

a result of localization of unpaired electrons. Electrons in graphene based materials

can be localized either by hindering π-conjugation of 2pz electrons which can happen

at an edge, vacancy or substitution by an atom which does not have or can not spare

a pz electron to form π bonds with those of the neighbouring C atoms which thus

tends to localize.

Structurally similar hexagonal boron nitride(hBN) is wide band-gap semicon-

ductor owing to the large electronegativity difference of B and N, N being more

electronegative due to higher nuclear charge. Due to the same reason, substitu-

ing an N(B) atoms by a C atom renders DOS of unpaired 2pz electrons within the

band-gap but near valence(conduction) band edge178,179 , leading to reduction band-

gap with increasing concentration of C atoms178,180,181,182 . In fact, it is simple to
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Figure 6.4: Supercells of AC interfaced (a) hBN-hBC, (b) hBN-hCN, (c) Gr-hBC
and (d) Gr-hCN. ZZ interfaced supercells (e) hBN-hBC, (f) hBN-hCN, (g) Gr-hBC
and (h) Gr-hCN. Interconnected triangular (i) hBN-hBC, (j) Gr-hBC, (k) hBN-hCN
and (l) Gr-hCN supercells.
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Figure 6.5: Bond-lengths distribution of armchair (left panels) and zigzag (right
panels) interfaced hetero-structures.

understand that with increasing substitution by C at B(N) sites the DOS peak of

the 2pz electrons of C near the conduction(valence) band edge of hBN will broaden

with the Fermi level located in the middle of the broadened DOS peaks. Finally,

with substitution of all B(N) in hBN the broadened DOS peaks of the 2pz electrons

of C merges with the conduction(valence) bands of hBN, thus rendering both as

metals. Understandably thus, planer unit-cells of hexagonal boron-carbide(hBC)

and carbon-nitride(hCN) are both metallic, and should in principle be ideal for elec-

trodes. However, planar structure of neither hCB nor hCN are stable, which at the

outset can be ascribed to the lack of sub-shell filling of C atoms in both the systems.
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Figure 6.6: DOS of AC interfaced structures (a) hBN-hBC (b) Gr-hBC, (c) hBN-
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Instability should be more in hCN, since in attempt to complete sub-shell filling of

C atoms using lone pair of N atoms, the sub-shell of N atoms will tend to become

overcomplete. On the other hand in hBC, B atoms have no spare electron using

which the C atoms could attempt to complete their sub-shell filling.

We have performed VC optimization in two modes: (1) unrestricted VC where

we giving freedom to move in all the components of coordinates which we will call as

z ̸= 0, and (2) restricted VC where we fix z = 0 for structures where we freeze the Z-

component. In Fig.6.1(a-e) we show unrestricted VC relaxed structures of hCN with

forces on atoms below 10−5 Ry/Bohr in 1x1 to 5x5 supercells. Distribution of bond-

lengths in the corresponding 1x1 to 5x5 supercell is shown in Fig.6.2(f-j). Both

the figures clearly suggest inherent structural instability in hCN which will grow

further with size of super-cell considered. Similarly Fig.6.1(f-j) and Fig6.2(a-e) for

hBC suggests structural instability, although of lesser degree than the hCN, which is

evident from the fact that unlike in case of hCN the bond-length distribution in case

of hBC tends to separate out in two groups of narrower width hinting at a somewhat

systematic distortion. In fact, a recent report183,184 claims planar structure of hBC

to be stable based on only the two atom unitcell, which is indeed planar, but as we

just discussed, does not represent the actual scenario. Our results thus indicate that

hBC and hCN do not have planar stable structures, and stresses the need to look

for reproducibility of structural stability of supercells to allow detection of unstable
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equilibriums, as also can be done through calculation of phonon modes for smaller

unit-cells.

In Fig.6.3(a) we show the DOS of 2x2 hBC supercell optimised with unrestricted

and restricted VC relaxation using LDA pseudo-potentials. As argued above we find

hBC to be metallic with a gap within the conduction band. We next plot quantum

capacitance as a function of VG in Fig.6.3(b), implying reasonably high values. Like

hBC, hCN is also metallic [Fig.6.3(c)] as argued above but with a gap within the

valence band. In Fig.6.3(d) we ploted the quantum capacitance which has relatively

low value comparision to hCB. However as discussed above, hBC and hCN unit-cells

with equal number of B(or N) and C atoms, do not have stable planar structure.

Aiming at enforcing planarity, we considered hBC and hCN segments embedded

in graphene and hBN. We consider two geometries: (1) Gr/hBN - hBC/hCN parallel

stripes, and (2) triangular islands of hBC/hCN embedded in Gr/hBN, as shown in
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Figure 6.8: DFT and G0W0 quantum capacitance of planar z = 0 configurations
of ZZ interfaced (a) hBN-hBC, (b) Gr-hBC, (c) hBN-hCN and (d) Gr-hCN hetero-
structures.

Fig.6.4(a-h) and Fig.6.4(i-l) respectively.

In type 1, we consider armchair(AC) [Fig.6.4(a-d)] and zigzag (ZZ) [Fig.6.4(e-h)]

interface between the two regions. We find that stripes with hBC/hBN embedded

in Gr tends to be more planar than those embedded in hBN. This is likely due

to more effective accommodation of strain propagated from the hCB/hCN regions

by Gr than by a more rigid hBN, as evident in the narrower distribution of bond-

length for Gr/hBN-hBC in Fig.6.5. In particular, Gr-hBC as well as hBN-hBC are

almost completely planar with ZZ interface, as shown in Fig.6.4(e,g). The bond-

length distribution in these two stripes mentioned in Fig.6.5 marked as zBNCB and

zGrCB suggest possibility of stable planar structure.

We calculated DOS [Fig.6.6(a-d)] and quantum capacitance [Fig.6.6(e-h)] for

all AC interfaced systems and found that hBC embedded systems have higher ca-

pacitance value than hCN embedded systems. Additionally we also found that the

hBN-hCB system is magnetic with AC interface, as can be seen clearly from the spin

separation of capacitance across Fermi energy in Fig.6.6(e). Next in Fig.6.7(a-d) we

calculate DOS for ZZ interfaced stripes for both z ̸= 0 as well as z = 0 configurations

and expectedly find them similar owing to inherent planarity of the stripes with ZZ
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interface as seen in Fig.6.4(e,g). Quantum capacitance is computed for z ̸= 0 con-

figurations and shown in Fig.6.7(e-h). With ZZ interface, we found that Gr-hBC

and Gr-hCN both are magnetic in nature but hBN-hCB and hBN-hCN are not. We

also calculated the quantum capacitance for z = 0 configurations which are shown

in Fig.6.8(a-d) for both DFT and G0W0 levels and as expected hBC embedded sys-

tems have higher capacitance value than hCN embedded systems. As evident from

Fig.6.8(a,b) the self-energy correction for the inherently planar Gr-hBC and hBN-

hBC superlattices leads to increased variation in values of capacitance but retains

the overall high value.

We next calculated TB parameters at the DFT as well as DEF+G0W0 level for

the smallest planar (z = 0) unitcells considered as shown in Fig.6.4(e-h). We subse-

quently mapped TB and SEC-TB parameters from ZGNR reference systems to larger

ZGNR target systems. We consider two different types of ZZ interfaced target sys-

tems (i) wider stripes with equal hBC/hCN and hBN/Gr width and (ii) stripes with

fixed total width with increasing hBC/hCN width and decreasing BN/Gr width.

We calculted quantum capacitance for both types of systems in TB as well as in

SEC-TB levels which are shown in Fig.6.9(a-d). We note that for former category
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after a critical width the quantum capacitance value does not increase with increas-

ing width which can be seen in Fig.6.9(a,b), but the quantum capacitance value

increases for later case where we increase hBC/hCN width and decrease hBN/Gr

width shown in Fig.6.9(c,d). These results suggests that the qunatum capacitance

of the stripes are simply proportional to the width of the hBC/hCN region. To

understand the source of quantum capacitance we perform PDOS calculations for

GrCB system as an example. We see in Fig.6.9(e) that the major contribution to

DOS at Fermi energy is rendered from the 2pz electrons of the C atom in the hCB

region. These results suggests that stripe super-lattices can indeed be viable lay-

ered structures for effective utilization of the metallic paradigm offered by hBC in

particular.

Among type 2 systems, we consider interconnected triangular hCB/hCN islands

embedded in Gr/hBC forming honeycomb super-lattice as evident in Fig.6.4(i-l).

The distribution of bond-length ploted in Fig.6.10 indicates that the Gr-hBC super-

lattice is likely to be structurally the most stable among the super-lattices consid-
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ered. We calculated the DOS of such systems for both z ̸= 0 as well as z = 0

and found that the nature of DOS largely remains unaltered for both the cases, as

seen in Fig.6.11(a-d). Quantum capacitance for z ̸= 0 case for all the super-lattices

are shown in Fig.6.11(e-h). We consistently found that the capacitance values are

higher for super-lattices embedding hBC triangles than those embedding hCN tri-

angles. We also found that all the systems are magnetic in nature and a clear spin

separation exists for quantum capacitance across the Fermi energy.

Having calculated quantum capacitance at the DFT level it was computationally

impossibly expensive to calculate self-energy correction to KS single particle levels of

the super-lattices within the GW approximation. Motivated by the similarity in the

DOS with z ̸= 0 as well as z = 0, we considered planar (i.e., z = 0 configurations)

9x9 supercell hBC and hCN embedded in hBN/Gr like shown in Fig.6.4(i-l) and used

our WC based mapping scheme described in Chapters 4 and 5 to transfer self-energy

corrected TB parameters computed in the HAWO basis (described in Chapters 3
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and 4) in the planar stripe super-lattices (type 1) where the unitcell is considerably

smaller to allow explicit computation of self-energy correction at the G0W0 level.

We also explicitely calculate the DFT DOS for the same and found that the DOS

match with transfered TB parameters at the DFT level to be reasonable as shown

in Fig.6.12. In Fig.6.13(a,b) we ploted DOS and quantum capacitance calculated

from the electronic structure computed with the transferred self-energy corrected

TB parameters respectively. Following the reasonable match of DFT DOS and

DOS calculated from transfer the TB parameters to the 9x9 super-cells we further

considered a 19x19 supercell and calculated DOS and quantum capacitance using

the transfered TB parameters, rendering an effectively gap-less regime of constant

quantum capacitance across Fermi energy for super-lattices with embedded hCB, as

shown in Fig.6.13(c,d).
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Figure 6.13: (a) DOS and corresponding (b) quantum capacitance of 9x9 planar
z = 0 hybrids by transferring the SEC-TB parameters from ZZ interfaced systems.
Similar (c) DOS and corresponding (d) quantum capacitance of 19x19 planar z = 0
hybrids.

6.5 Conclusions

In this chapter we have presented a survey of the prospect of Gr/hBN-hBC/hCN

hybrids super-lattices as possible candidates for capacitor electrodes. Specifically

we find the Gr-hBC super-lattices to be the most promissing candidate which offer

quantum capacitance values above 100 µF/cm2 at room temperature. Results pre-

sented in this chapter also indicates the general possibility of stable planar hetero-

structures incorporating hBC for electrode applications in devices. This chapter

also demonstrate the efficacy of the proposed scheme of bottom up transfer of TB

parameters to systems of experimentally realizable length-scales.



Chapter 7

Self-energy correction through

model the Coulomb hole term

7.1 Introduction

In this concluding chapter I present a work in progress. The content of the work

presented here merits a separate chapter because the approach to computionally

ease computation of self-energy correction proposed here is thematically different

than that presented in earlier chapters.

From the results presented in previous chapters, it is clear that for covalent sys-

tems the sptatial range of self-energy correction to tight-binding(TB) parameters

largely spans upto the third nearest neighbour. This prompts us to think whether

we can spatially account for self-energy correction in a localized basis which can be

computationally less expensive than that in terms of periodic wave-functions. In

this direction we have started with deriving a simple model for the Coulomb hole

term based on analytics wave-functions. We have accomplished the objective par-

tially so far only in one dimension. However we feel that our limited findings bear

the promise of feasibility of our approach in real system of atoms in three dimensions.
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The GW approximation describe in Chapter 2 naturally incorporates the compli-

cated many-electron effects through a self-energy operator. The GW approximation

is systematically formulated from the MBPT122,123,124 first by Hedin in 19654 then

a detailed review is done by Hedin along with Lundqvist in 1969.5 However, due to

the computational difficulties it took almost two decades for numerical simulations

to be done following their prescription for real materials by Hybertsen and Louie in

their two remarkable papers.6,41 Almost at the same time, during the mid eighties,

Godby et al.185 also published similar results. However, the calculation of the ma-

trices/kernels of the GW formalism is a computationally challenging task in terms

of implementation as well as computation. As a result, prediction of the self-energy

corrected electronic structures for real systems took a long time to come in general

practise and a still a far cry for systems beyond few tens of atoms unless we have

access to one of the largest super-computers of the day.

7.2 Methodological details

As described in Chapter 2, wave functions and energies of a quasi-particle in a

inhomogeneous many-particle system can be obtained by solving the Dyson equation

(−1

2
∇2 + Vext + VH)ψn(x)+

∫
Σ(x, x′, En)ψn(x

′)dx′

= Enψn(x)

(7.1)

where the first term is the kinetic energy operator, Vext is the external potential to

the system due to ions, VH is the electron-electron repulsive Coulomb potential and

Σ is the non-local, non-Harmitian and energy dependent self-energy operator which

dynamically incorporate many-electron interactions beyond VH .

To solve the quasi-particle equation(7.1) we need to first calculate the self-energy

operator Σ and for that a set of equations (which are derived in Chapter 2) was
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formulated by Hedin as:

χ(1, 2) = −i
∫
G(1, 3)Γ(3, 4, 2)G(4, 1+)d(34) (7.2)

ϵ(1, 2) = δ(1, 2)−
∫
v(1, 3)χ(3, 2)d(3) (7.3)

W (1, 2) =

∫
ϵ−1(1, 3)v(3, 2)d(3) (7.4)

Σ(1, 2) = i

∫
G(1, 3)Γ(3, 2, 4)W (4, 1+)d(34) (7.5)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)

G(4, 6)G(7, 5)Γ(6, 7, 3)d(4567) (7.6)

where, 1 ≡ (x1, σ1, t1) and 1+ indicates that t1 → t1 + η.

As apparent, for interacting electrons where the bare Coulomb repulsion v is

non-zero, these equations are in principle to be solved in a self-consistently, starting

with the construction of single-particle Green’s function G as:

G(x, x′, E) =
∑
n

ϕn(x)ϕ
∗
n(x

′)

E − En − iη
(7.7)

where η = 0+ for En < µ and η = 0− for En > µ, µ being the chemical potential.

Followed successively by calculation of the irreducible polarizability χ, the dielectric

function ϵ, and the screened interaction W , leading finally to the self-energy operator

Σ and the vertex function Γ. The self-energy operator Σ can be used again to

construct the new Green’s function as G = G0 + G0ΣG which can start a new

iteration. In GW approximation we use the zeroth order of W due to the truncation

of the vertex function Γ up to its first term[equation(7.6)] implying:

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (7.8)



130 Self-energy correction through model the Coulomb hole term

With this approximation, Fourier transfrom of Hedin’s equations simplify as:

χ(x, x′, E) = − i

2π

∫
G(x, x′, E − E ′)G(x, x′, E ′)dE ′ (7.9)

ϵ(x, x′, E) = δ(x− x′)−
∫
v(x, x′′)χ(x′′, x′, E)dx′′ (7.10)

W (x, x′, E) =

∫
ϵ−1(x, x′′, E)v(x′′, x′)dx′′ (7.11)

Σ(x, x′, E) =
i

2π

∫
G(x, x′, E − E ′)W (x, x′, E ′)e−iηE′

dE ′ (7.12)

where, η = 0+.

Referring to Lehman representation reviewed in Chapter 2, we recall spectral

weight function A(x, x′, E) as

A (x, x′, E) =
1

π
|ImG (x, x′;E)| (7.13)

implying:

G(x, x′, E) =

∫
C

A(x, x′, E ′)

E − E ′ + iη
dE ′ (7.14)

In a many-electron system, a pole at a complex energy in the Green’s function

gives a quasi-particle excitation which is equivalent to a peak in the spectral weight

function A(x, x′, E). Solution of the quasi-particle equation(7.1) gives complex Enk

whose real and imaginary parts render energy and lifetime of the quasiparticle.

Similar to Green’s function, another spectral weight function B(x, x′, E) can be

defined for the screened interaction W as well:

W (x, x′, E) = v (x, x′) +

∫ ∞

0

2E ′B (x, x′, E ′)

E2 − (E ′ − iη)2
dE ′ (7.15)

The spectral weight functions A(x, x′, E) and B(x, x′, E) defined in equations

(7.13) and (7.15) help to split the real part of the self-energy operator Σ so called

the static COHSEX term into two different terms which can be interpreted as: (1)

screened exchange ΣSEX term dominated by the poles of the Green’s function G

and (2) Coulomb hole term ΣCOH term dominated by the screened interaction W ,
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given by:6

ΣSEX (x, x′, E) = −
∫ µ

−∞
A (x, x′, E ′)×

ReW (x, x′, E − E ′) dE ′
(7.16)

ΣCOH (x, x′E) = −
∫ ∞

−∞
A (x, x′, E ′) dE ′×

P

∫ ∞

0

B (x, x′, , E ′′)

E − E ′−E ′′ dE
′′

(7.17)

where µ is the chemical potential of the system.

In the first iteration, it is justified to assume that the self-energy operator Σ is

represented by an energy independent potential VE=0, for example the VXC in DFT.

With one-particle Green’s function [Eqn.(7.14)] constructed using single particle

states obtained within such approximation, we can write:

A (x, x′, E) =
∑
n

ϕn(x)ϕ
∗
n (x

′) δ (E − En) (7.18)

which further simplifies both the screened exchange and the Coulomb hole parts as

ΣSEX (x, x′, E) = −
occ∑
n

ϕn(x)ϕ
∗
n (x

′)×W (x, x′, E − En) (7.19)

ΣCOH (x, x′, E) =
∑
n

ϕn(x)ϕ
∗
n (x

′)×P

∫ ∞

0

dE ′ B (x, x′, E ′)

E − En − E ′ (7.20)

If the peak frequency of collective oscillations (plasmons) leading to screening is

large compared to the E −En then we can approximate E −En → 0 which further

simplifies the screened interaction to it’s static limit and screened exchange becomes:

ΣSEX (x, x′) = −
∞∑
n

ϕn(x)ϕ
∗
n (x

′)W (x, x′, E = 0) (7.21)
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and Coulomb hole part reduces to:

ΣCOH (x, x′) =
1

2
δ (x− x′) [W (x, x′, E = 0)− v (x, x′)] (7.22)

using Eqn(7.15) and completeness condition of single particle states.

Withing such a static limit, the screened interaction W can be calculated by

approximating the non-local energy dependent dielectric screening up to it’s static

limit ϵ(x, x′, E = 0) within the random phase approximation.

To calculate ϵ(x, x′, E = 0) we consider a small perturbation to the external

potential Vext inducing a small variation in the local density n. The two are related

by the polarizability χ as:

δn(x) =

∫
χ(x, x′)δVext(x

′)dx′ (7.23)

Similarly we can define independent particle polarizability χ0 as

δn(x) =

∫
χ0(x, x

′)δVtot(x
′)dx′ (7.24)

where, δVtot(x) = δVext(x) + δVscr(x) in the interacting regime. The screening of

δVext(x) by δVscr(x) is a result of correlation, of which, only the static version is

being considered here.

The screening potential vscr has two components:

Vscr(x) = VH + Vxc = e2
∫

n(x′)

|x− x′|
dx′ +

δExc

δn(x)
(7.25)

implying:

δVscr(x) = e2
∫

δn(x′)

|x− x′|
dx′ +

δ2Exc

δn(x)δn(x′)
δn(x′) (7.26)

Substituting δVscr(x)+ δVext(x) for δVtot(x) in (7.24) using (7.26) and (7.23) we can
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write the χ in terms of χ0 as:

χ = (1− χ0Vc − χ0Kxc)
−1χ0 (7.27)

In random-phase approximation (RPA)41 the exchange-correlation kernel Kxc is set

to zero.

The inverse of dielectric function within the RPA defined as:

ϵ−1
RPA =

δVtot
δVext

=
δVext + δVscr

δVext
= 1 + Vcχ (7.28)

or

ϵ−1
RPA = 1 + Vc(1− χ0Vc)χ0 ⇐⇒ ϵRPA = 1− Vcχ0 (7.29)

With the one-particle Green’s function constructed from single particle states

[see Eqn.(7.7)] we can calculate the independent particle polarizability following the

Eqn.(7.9) as:

χ0(x, x
′, E) = − i

2π

∫ {∑
n

ϕn(x)ϕ
∗
n(x

′)

E ′ − En − iη
×

∑
n′

ϕn′(x)ϕ∗
n′(x′)

E − E ′ − En′ − iη

}
dE ′

(7.30)

using contour integration and introducing the Fermi factor fn, the above equation

simplifies as:

χ0(x, x
′, E) =

∑
n,n′

fn(1− fn′)

En − En′ − E

[
ϕ∗
n(x)ϕn′(x)ϕ∗

n′(x′)ϕn(x
′) + c.c

]
(7.31)

In practice however mostly it is the static ϵ(x, x′, E = 0) which is calculated

explicitly extended to finite energies using a generalized plasmon-pole (GPP) model

based on generic analytic properties of dielectric matrices.
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7.2.1 Our approach

Our aim till now has been to see if a simple explicit construction of the COH can

be worked out at the static limit, and check the effectiveness of such construction.

We consider an inverted Gaussian potential for our model Vext in one dimension.

Vext(x) = −A0e
−α(x−β)2

2γ2 (7.32)

where, A0 is depth of the potential, β is the peak position and γ defines the width

of the potential.
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Figure 7.1: Inverted Gaussian potential

For simplicity we consider spinless Fermions in this work. We also consider

k = 0 case only for this work. First we calculate the independent particle polar-

izability matrix in static lilimt (i.e., by setting E = 0 in equation(7.31)) using the

single-particle eigenvalues and eigen functions obtained by solving the Schrodinger
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Figure 7.2: Convergence of χ0 with respect to the bands (n). The dotted line in
Fig.7.3(a) indicates the elements of χ0 which are ploted here.

equation self-consistently for one electron with a Coulomb repulsion term.

Convergence of different elements of χ0 matrix at the static limit is shown in

Fig.[7.2]. We have ploted the elements of χ0 for 3 electrons in well and as evident

from the plot that a lot of empty states required to converge χ0.

Contour plots of χ0 shown in Fig.[7.3](a) and (c) for 2 and 3 electrons respectively,

which indicate a rather complicated structure with systematic fluctuation about

the centre of external potential with few nodes. Total polarizability χ is computed

from equation(7.27) within the RPA approximation and a contour plot is shown in

Fig.[7.3](b,d) for 2 and 3 electrons.

As evident from Fig.[7.3], the structure of χ0 and χ are similar owing to the magni-

tude of χ0 being much less than 1.

We calculate the RPA dielectric function at static limit using equation(7.29) and

then compute the screened interaction W . Subsequently, screened exchange and the

COH parts of Σ are calculated using equation(7.21) and equation(7.22) respectively.
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Figure 7.3: Contour plot of (a) χ0 and (b) χ for 2 electrons in a well. Contour plot
of (c) χ0 and (d) χ for 3 electrons in a well.

In Fig.[7.4](a) and (b) contour plots of COH is shown for 2 and 3 electrons respec-

tively. To understand the structure of the COH we ploted ΣCOH(x, x
′) for different

x values with by varying x′ which is shown in Fig.[7.5] for 2 and 3 electrons. As

evident in Fig.[7.5](a,b), the inherent structure of the COH has systematic variation

with deviation of x from the centre of the potential. Such a systematic structure

of the COH appears to suggest that the basic nature of COH may be reproducible

using any analytic bound state corresponding to potential of same symmetry as that

of the original Vext.

To test the idea we considered simple harmonic oscillator potential and derived
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Figure 7.4: Contour plot of core region of the COH part of self-energy operator for
(a) 2 and (b) 3 electrons in a single well.
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Figure 7.5: Structure of the Coulomb hole part of self-energy operator for (a) 2 and
(b) 3 electrons in a single well.

analytical expressions for the Coulomb hole term using the analytic eigen functions.

We start with writing the wave functions of the simple harmonic oscillator:

ϕHO
n (x) =

(
ζ2

π

)1/4
1√
2nn!

Hn(ζx)e
− ζ2x2

2 (7.33)

with n = 0, 1, 2, ..., where Hn is the Hermite polynomials.

To calculate χ0 at first we approximated the summation from HOMO-1 to

LUMO+1 states in Eqn.(7.31) since the states near Fermi level are expected to
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Figure 7.6: Fitted (analytical) along with numerical Coulomb hole term (ΣCOH) for
(a) 2 and (b) 3 electrons in a well.

contribute the most to the summation over {n, n′} owing to the lowering of the de-

nominator as we approach the Fermi energy from the occupied and the unoccupied

manifolds. Using the χ0 the screened interaction within RPA is written as:

W = ϵ−1Vc = (1 + Vcχ0)Vc = Vc + Vcχ0Vc (7.34)

which renders COH as:

ΣCOH ≃ W − Vc = Vcχ0Vc. (7.35)

We compute theΣCOH using the wave functions of the simple harmonic oscillator

[Eqn.(7.33)] in χ0 [equation(7.31)] leading to an analytical form for COH as:

ΣCOH (x, x′) =
1

2
δ (x− x′) v (x, x′)

2×

Ae−ζ2(x2+x′2)
2N∑
i=0

(
Bix

i
) (
B′

ix
′i) (7.36)

where, N is the number of electrons present in the system. The coefficients A, B

and B′ contain all the constants which accumulate as we derive the above equation
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Figure 7.7: Variation of the fitted coefficients of the COH for 2 eletrons in a well
using the Eqn.7.37.

from Eqn.(7.33).

For each x′ of the ΣCOH(x, x
′) we get a function from the above equation as

fCOH(x) =
e−a0x2

a1 + |x|2
2N∑
i=0

a2+ix
i (7.37)

which represents the inherent structure of the Coulomb hole term.

We have now analytical function(7.37) to try if we can fit the ΣCOH for the given

Vext. In Fig.[7.6](a) and (b) we have plotted the numerical and fitted ΣCOH with

2 and 3 electrons respectively confined by the chosen Vext and we can see that the

fitting is reasonable. The ability to fit ΣCOH obtained using eigenstates HOMO-1

to LUMO+1 of the harmonic oscillator, to that of the converged ΣCOH of the given

Vext, implies the possibility to arrive at simple analytical models for the COH which

can be incorporated in an appropriate localized basis. The variation of the fitting
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parameters as a function of x plotted in Fig.7.7 for the Vext considered also implies

a systematic dependence which can be parametrised and adopted in a multiple well

scenario representing a system of atoms.

7.3 Future direction

Motivated by the reproducibility[Fig.(7.6)] of the Coulomb-hole by fitting the an-

alytic expression[Eqn.(7.37)] based on COH calculated with states from HOMO-1

to LUMO+1 of a harmonic oscillator and the systematic variation of fitting coeffi-

cients we next plan to constrct analytic approximations for the fitting parameteers

and check for their generality over a representative set of Vext. The next step will be

to extend the construction of the model COH for multiple wells and then to three

dimensions. Our ultimate objective in this direction is to involve the hybrid atomic

Wannier orbitals (HAWO) proposed in Chapter 4 in construction of model COH.

Our intution is based on our findings that the self-energy correction to the tight-

binding parameters are rather local and might predominantly determined by the

immidiate neighborhood. HAWOs being naturally directed towards coordinations

should be appropriate for the purpose. Further it will be imperative to build in the

construction of COH within a pseudopotential constructed with the hybrid atomic

orbitals (HAO) of isolated atoms.

7.4 Conclusions

In conclusion, we present an inexpensive method to model the Coulomb hole (COH)

part of the self-energy operator Σ in one dimension. We have used an inverted

Gaussian potential and explicitly calculated the screened exchange and COH parts

of Σ within the random phase approximation. We have demonstrated that the COH

of the chosen Vext can be fitted to a model COH constructed with few eigenfunctions

of a simple harmonic oscillator about the Fermi energy. The fitting parameters have
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systematic dependence on the chosen parameters of the chosen Vext. The accuracy

of the fitting suggests the possibility to construct model COH for the real system

of atoms in some appropriate localized basis, which can possible be incorporated

either as a route towards computationally inexpensive construction of χ within the

GW framework, or perhaps at the same footing as the pseudo-potentials.
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