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Summary

In this thesis, we have discussed a particular limit (spacetime dimensions D — oo limit) of
Einstein’s equation and demonstrated some of the simplifications it offers. In picturesque
terms, the effect of taking D — oo limit, can be thought of as to concentrate the gravitational
effect of the black hole within a thin region of thickness of the order O (%) outside the
horizon, leaving a hole in an otherwise undistorder background geometry. The surface of
the hole can then be thought of as a membrane in that background geometry with properties
obtained by integrating Einstein’s equation near the horizon. This is what had previously
been done for flat background spacetime in the papers [ 1-3] and known in the literature as
Large-D membrane paradigm.

In chapter 2 and chapter 3 of this thesis, we have generalized the large-D program in
arbitrary background spacetime, in particular to AdS/dS spacetime up to second subleading
order in % expansion.

In chapter 4 of this thesis, we have constructed a stress tensor on the membrane world
volume up to second subleading order in % expansion and demonstrated that the membrane
equation derived in chapter 3 follows from the conservation equation of this stress tensor.
This had previously been done up to first subleading order in % expansion in the paper [4].

There exists another perturbative technique namely Fluid-Gravity Correspondence, which
can be used to generate solutions of Einstein’s equation in presence of negative cosmologi-
cal constant. In chapter 5 of this thesis, we have compared these two perturbative techniques
namely Large-D membrane paradigm and Fluid-Gravity Correspondence, and found that
there is a regime in the parameter space where both these two techniques can be applied
simultaneously, and in this overlap regime, we have found a perfect match between these

two perturbative techniques up to first subleading order on both sides.
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Chapter 1

Introduction
1.1 Large-D Membrane Paradigm

Most of the theories in physics have some parameters - some of them have continuous one,
such as coupling constant, some other have discrete one, such as number of fields - these
parameters can be varied from their actual values maintaining the consistency of the theory.
It often happens in physics that the theories become simplified at the edge of the allowed
values of these parameters. So, it is a fruitful strategy to try to solve the equation at this
limit and then correct the solution order by order in a perturbative expansion.

General Theory of Relativity, in absence of any matter, described by Einstein-Hilbert
action £L = /—¢gR lacks any adjustable parameter. The only natural parameter one can
think of is the dimensions of spacetime D. General Theory of Relativity is well defined in
any dimensions D > 4 and also retains one of its most basic objects namely black hole. One
might hope that the limit D — oo results in a convenient simplification and possibly also a
novel reformulation of the theory, at least for some phenomena. This strategy is somewhat
similar in spirit with that of ’t Hooft [5] who introduced a parameter N in the Yang Mills
theory by replacing SU(3) gauge group by SU(N).

There might be several usefulness of this perturbative technique. Firstly, it is always

good to have a new technique. Secondly, Einstein’s equation in vacuum
Rap =0 (1.1)

look innocuous, but, it is almost impossible to find exact solution of these coupled, non

linear, partial differential equations for any phenomenon of interest unless there is a sub-
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stantial amount of symmetry. Whatever we know about any physical situation, for example,
collision of two black holes and its subsequent merger is due to numerics. However, the nu-
merics involved is very much challenging, “Large-D” technique might give some analytic
handle on the problem.

The first systematic study of the large dimensional limit of General Relativity has been
done by Emparan and collaborators [1, 6—8]. Consider Schwarzschild-Tangherlini black

hole solution [9] with Schwarzschild radius r in D spacetime dimensions.

D-3 2
ds? = — (1 — (@> ) dt? + (1 dr 20, (1.2)

' -

Now, if we take r > r( and keep it fixed then in the limit D — oo the term (%O)ny’ — 0,
so, the solutions (1.2) reduces to flat space solution. But, if we take = r (1 + Diig) and
keep R fixed, then, in the limit D — oo the term (%O)D_3 — e 2 1t follows that the tail
of the black hole extends a distance of order Diig outside the horizon, this will be referred
as membrane region.

Emparan and collaborators have computed quasinormal mode (QNMs) frequencies of
(1.2) in the limit when spacetime dimensions is very large [7, 10]. They have shown that

there are two sets of quasi normal modes(QNMs)

* Fast, non-decoupled QNMs with frequencies of the order O (%) . Most of the QNMs

are in this category.

* Slow, decoupled QNMs with frequencies of the order O ( ) There are only a few

1
To
of them.
These slow, decoupled QNMs have support only in the thin region around the horizon.
This result at the linear level suggests that this might be possible to construct a fully non-
linear theory of the slow decoupled QNMs. This effective theory for black holes at large

dimensions has been worked out in the papers [2,11, 12]

5
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In picturesque terms, the effect of taking D >> 1 can be thought of as to concentrate
the gravitational effect of the black hole within a thin sliver of thickness of the order O (%)
outside the horizon, leaving a hole in an otherwise undistorder background geometry. The
surface of the hole then can be thought of as a membrane in that background with properties
obtained by integrating Einstein’s equation near the horizon. This is what has been done
for flat background spacetime in the papers [2, 3].

In Chapter 2 and Chapter 3 of this thesis, we will generalize the large-D program in
arbitrary background spacetime, in particular to AdS/dS spacetime. In last couple of years,
there have been some interesting developments in Large-D program. It has been gener-
alised for Einstein-Maxwell system in [13—15], for higher curvature gravity in [16-26].
Effective equation for special case of stationary membrane has been worked out in [27,28].
Black hole physics become simplified at large dimensions due to the existence of a para-
metrically separated length scale 2 other than the horizon length scale 7. For Black branes
there is another interesting length scale which is \;—% as has been discussed in [12,29]. The
works that first successfully used % as a perturbation parameter are [30, 31], although, the
systematic study of black hole physics at large dimensions did not begin until the work of
Emparan et al. [1].

Effective theory has been extended in several different directions - see [32, 33] for
deformed boundary metrics, see [34-36] for effective theories at higher orders in %, see
[21,37—-41] for effective theories for finite black holes.

Large-D technique has been used for the analysis of black holes collision in [42—44], for
Greggory-Laflamme instability in [29,35,45] and for turbulence in [22,46,47]. See [48—54]
for further developments. There is a recent review by Emparan and Herzog [55] about

Large-D program, its application and its future prospects.
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1.2 Stress Tensor for the Large-D membrane

It is a very natural question to ask - what is the gravitational radiation for any arbitrary
membrane motion? The computation of radiation is a bit complicated. The explicit result
for the metric corrections (see chapters 2 and 3) are valid for points whose distance from
the horizon S obeys the inequality S << ry, where r( is horizon length scale. So it would
not be possible to read off the radiation by simply putting .S to be very large in the explicit
expressions. But, when S >> 8 the solution reduces to a small fluctuations around the
background spacetime. So, both the linearized approximation and the Large-D approxima-
tion are valid in the regime

.
50 << S <<y (1.3)

We can use Large-D approximation to calculate the effective linearized solution in the over-
lap regime then continue it using linearized approximation till infinity to get the radiation.
There is a elegant way to implement the second step; first, calculate the Brown-York stress
tensor of the linearized solution on the membrane

8aTs” = K" — Kp) (1.4)

=1

Where, K ff;t) and p(ﬂ;t) are respectively extrinsic curvature and the projector on the mem-
brane world volume (see (4.69) for definitions). Then subtract from it TX};) - which can be
determined from the variation of a ‘boundary counterterm’. Final expression of the stress

tensor on the membrane is given by

Tup =T — () (1.5)

Tf{;‘t) and TXE) are both tangential to membrane world volume and therefore, can equally

well be regarded as stress tensor 7,0"” and T\ - which entirely live on the membrane

world volume !.

'Here, {A,B} denote full spacetime index whereas, {u, v} denote membrane world volume index
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It turns out that

. )
Tin) — Stin (1.6)
K /__ znd 59( ind) )

Where,
S =5 [ V=00 [VR+3 (B2 ) w0 ()] a
R2 D
here, g,(ff d), R, and R are respectively intrinsic metric, intrinsic Ricci tensor and Ricci
scalar.

This procedure yields a stress tensor on the membrane 7, [4] which is conserved and
moreover, it satisfies a crucial identity 7),, K*” = 0 order by order. Membrane equations
follows from the conservation of the stress tensor. The stress tensor acts as the effective
source for the radiation. To calculate the radiation, one needs to convolute the source against
a retarded Green’s function. Though the stress tensor is substantial, in fact, it is of the order
O(D), the radition sourced by the membrane is of the order % that is non perturbative
in % expansion. The radiation being non perturbative, follows from the property of the
Green’s function in large dimensions [4].

We have computed the stress tensor at the second subleading order in Chapter 4. Our
main motivation for undertaking this very tedious calculation comes from the paper [56]
where the authors tried to give a ‘finite-D’ completion of the large-D stress tensor. Here,
we very briefly discuss the finite- D program.

The part of the stress tensor [4] that contribute to the leading order membrane equation
is given by

16771, = KPy — 20, + (KW — Kguw) (1.8)

Where, 0, is the shear tensor of the velocity field u, and P, = gmd +u,u, is the projector
orthogonal to the membrane velocity. Now, if we consider (1.8) to be exact stress tensor at

any finite-D then there is an inconsistency. Normal component of the conservation of the
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stress tensor gives the following identity
KT, =0 (1.9)

The stress tensor (1.8) does not satisfy the above condition exactly. This implies the stress
tensor (1.8) does not even give consistent dynamics at finite-D. In [56], the authors have

tried to cure the problem, they have proposed a finite- D completion of large-D stress tensor

1677}, = KPyy — 20, + (K — Kgu) (1.10)

Where,
K — KM K + 2K 0,

k= K+u-K-u

(1.11)

It is not difficult to show that K reduces to K at the large-D limit. So, the improved stress
tensor reduces to large-D stress tensor at large-D limit, nevertheless, (1.10) satisfies the
condition (1.9) at finite-D exactly.

This finite-D stress tensor exhibits some appealing properties. For example, the ther-
modynamics of static spherical membrane in flat as well as in AdS spacetime, obtained via
this finite- D completion agrees exactly with their dual black holes even in finite dimension.

The motion of a probe membrane in Poincare Patch AdS sources linearized gravitational
radiation and so a corresponding boundary stress tensor. The resultant boundary stress ten-
sor, in the long wavelength limit, is a hydrodynamic stress tensor for a boundary conformal
fluid. When expanded in derivative expansion, this boundary stress tensor gives answer
that matches with that of the fluid gravity answer at zero and first derivative order even
at finite-D. But, there is a mismatch in the second derivative order in finite-D. Finite-D
stress tensor has been constructed from the membrane stress tensor which was known up to
first order in % expansion. Membrane stress tensor at the second order in % expansion will
help to write a further improved finite-D stress tensor. Mainly motivated by this, we have

calculated the membrane stress tensor at the second subleading order in Chapter 4.

9



1 Introduction

1.3 Comparison between ‘Fluid-Gravity’ and ‘Membrane-
Gravity’ dualities

Fluid-Gravity correspondence [57—63] is another perturbative technique that can generate
solutions of Einstein’s equation in a perturbative series expansion in number of derivatives
in presence of negative cosmological constant. Solutions generated using derivative ex-
pansion are ‘black-hole’ type solutions (i.e., spacetime with singularity shielded behind the
horizon) that are in one to one correspondence with the solutions of relativistic Navier-
Stokes equations. On the other hand, solutions generated using Large-D technique are also
similar ‘black hole’ type solutions, but dual to the dynamics of a codimension-one mem-
brane embedded in the asymptotic geometry.

It is natural to ask whether it is possible to apply both the perturbation techniques si-
multaneously in any regime(s) of the parameter space of the solutions, and if so, how the
two solutions compare in those regimes. In chapter 5, we have tried to answer these two

questions. In a nutshell, our final result is only what is expected.

* Itis possible to apply both the perturbation techniques simultaneously. Further, in the
regime where both D is large and derivatives are small in an appropriate sense, we
could treat (%) and 0, (with respect to some length scale) as two independent small

parameters, with no constraint on their ratio.

* In other words, if the metric dual to hydrodynamics is further expanded in inverse
powers of dimension, it matches with the metric dual to membrane-dynamics, again

expanded in terms of derivatives.

However, this matching is not at all manifest. We could see it only after some appropriate
gauge or coordinate transformation of one solution to the other. The whole subtlety of our

computation lies in finding the appropriate coordinate transformation.

10
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The ‘large-D’ expansion technique, as described in chapter 2 and 3, generates the dynamical
black brane geometry in a ‘split form” where the full metric could always be written as a
sum of pure AdS metric and something else. In other words, the black brane spacetime,
constructed through ‘large-D’ approximation would always admit a very particular point-
wise map to pure AdS geometry.

On the other hand, the spacetime dual to fluid dynamics does not require any such map for
its perturbative construction and apparently there is no guarantee that the particular map
used in ‘large-D’ technique, would also exist for the dynamical black brane geometries,
constructed in ‘derivative expansion’.

In chapter 5, we have shown that the ‘hydrodynamic metric’? indeed could be ‘split’ as
required through an explicit computation up to first order in derivative expansion. This
map could be constructed in any number of dimension and is independent of the ‘large -D’
approximation. After determining this map, we have matched these two different gravity
solutions up to the first subleading order on both sides.

One interesting outcome of this exercise is the matching of the dual theories of both
sides. It essentially reduces to a rewriting of hydrodynamics in a large number of dimen-
sions, in terms of the dynamics of the membrane. After implementing the correct gauge
transformation, we finally get a field redefinition of the fluid variables (i.e., fluid veloc-
ity and the temperature) in terms of membrane velocity and its shape®. We hope such a
rewriting would lead to some new ways to view fluid and membrane dynamics and more
ambitiously to a new duality between fluid and membrane dynamics in a large number of
dimensions, where gravity has no role to play (See [46], [56] for a similar discussion on such

field redefinition and rewriting of fluid equations though in [46] the authors have taken the

%In this thesis, the black brane solution dual to fluid dynamics would always be referred to as the ‘hydro-
dynamic metric’.

3Truly speaking, what we have actually worked with is the reverse of what we have stated here, i.e.,
we determined the membrane velocity and the shape in terms of fluid variables, up to corrections of order
O (%, 82). This is just for convenience. The relations we found are easily invertible within perturbation.

11
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large D limit in a little different way than ours).

12



Chapter 2

Large-D membrane paradigm in AdS/dS

at leading order
This chapter is based on [65].

As discussed in the introduction 1.1, in the large- D limit the dynamics is confined in the
near horizon region, therefore, it does not care much about the asymptotic spacetime. This
implies that the whole ‘large-D’ programme of solving Einstein’s equation could easily
be extended to situations where the asymptotic spacetime is not exactly flat. Membrane-
Gravity correspondence is expected to hold for such cases, but now the membrane will be
a codimension-one hypersurface in some non flat asymptotic geometry. In particular, this
construction should be applicable in presence of cosmological constant [29].

In [3] and [14], the analysis is strictly applicable for asymptotically flat spacetime,
though the answer has been expressed in ‘background-covariant’ form. In [3], where the au-
thors have calculated membrane equations and metric corrections up to second subleading
order, the covariance has also been implemented in the complicated intermediate steps.

Here we have extended the analysis of [2, 14] in such a way that the background covari-
ance is manifest in every steps. We have also included cosmological constant which might
have any sign.

The main motivation for including cosmological constant is the following. There exists
another perturbative technique namely ‘Fluid-Gravity’ correspondence [58] which can be
used to generate black hole solutions of Einstein’s equation in presence of negative cosmo-

logical constant. Fluid-Gravity correspondence is true in any dimension, in particular, in

13



2 Large-D membrane paradigm in AdS/dS at leading order

large dimensions. We would eventually like to see how these two perturbative techniques
can be compared? We will discuss about this in section 4.

The organization of this chapter is as follows. In section 2.1, we have described the
initial set up of the problem, the main equation that we would like to solve for and the
scheme of our perturbation technique. In section 2.2, we described how in our scheme,
different quantities scale with the dimension D, the perturbation parameter. In section 2.3,
we have described how we could guess the leading ansatz. Next in a small section 2.4, we
described how our approach becomes manifestly covariant with respect to the embedding
geometry of the membrane. In section 2.5, we briefly explained the algorithm we used to
solve for the first subleading correction. In section 2.6, and section 2.7, we have derived and
presented the first subleading correction to the metric and the equation governing the dual
membrane and the velocity field. Then, in section 2.8, we have performed several checks
on our ansatz. We have matched our solution with Schwarzschild AdS/dS black hole/brane
and then with rotating black hole solution up to the required order in an expansion in (%)
Finally, in section 2.9, we have ended with discussions. We have several appendices with

the details of all computation.

2.1 Setup

In this section, we will describe the basic set up of the problem and also the final goal in
terms of equations. We will also present the final solution in schematic form that we will
eventually determine. The two derivative action we will be working with is the Einstein-

Hilbert action with cosmological constant

SZ/M[R—A] (2.1)
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2 Large-D membrane paradigm in AdS/dS at leading order

here A is assumed to scale with dimension D as follows .
A=[(D-1)(D-=2)]A IA~0O(1) (2.2)

The equation of motion we get by varying (2.1) with respect to the metric is

R—A
FEip = Rap — (T) Gap=0 (2.3)

Our goal, as mentioned before, is to find new ‘black hole type’ solutions (i.e. solutions
with event horizon) of equation (2.3) in a power series expansion in %. Schematically, the

solution will have the form

o0 1 k
Gap =gap+ Y <5) G (2.4)
k=0

2 Here, g4p is also a smooth solution to the same equation eq.(2.3). In the previous section,
we have referred gap as the ‘background’ metric. The fo])g’s, on the other hand, are not
smooth and their forms are such that the full metric G 45 would have horizon, and possibly
singularities behind it. The full non linear dynamics of the decoupled QNMs are captured
by fo])g’s. Since, the decoupled QNMs have support only in the membrane region, the
Gg% ’s should vanish exponentially as we go away from the horizon which implies that the
gap 1s the asymptotic metric.

As explained in [2,3, 14], our final solution will be parametrized by a codimension-one
membrane, embedded in the background spacetime, with a velocity field on it. However,
the velocity field and the curvature of this membrane are not independent data. We can

solve for Gfﬁa’S provided the velocity field and the extrinsic curvature of the membrane

!See section (2.5) for motivation of this choice
’In the later sections, we will often use the notation G%B to denote the solution corrected up to order
O (5r)
m=Fk
SR S e
m=0

15



2 Large-D membrane paradigm in AdS/dS at leading order

together satisfy some integrability condition. We would view this integrability condition as
the dynamical equation for the codimension-one membrane. This leads to a ‘membrane-
gravity’ duality in the sense that corresponding to every solution of the membrane equation
we will be able to find a solution of the equation (2.3) in an expansion in (%)

We will determine G(ﬂ; ’s in such a way that if we view the membrane as a codimension-

one hypersurface in the full spacetime G 4, it becomes the event horizon of the metric G 45

and the velocity field on it reduces to its null generators [3, 14].

2.2 Scaling with D

(D+1)
2

Roughly speaking, Einstein’s equation in DD dimension are a set of D equations for

w components of the metric tensor (modulo coordinate redefinition freedom). So, a
naive large D limit would imply that both the number of equations as well as number of
variables are blowing up with the perturbation parameter.

To get rid of this problem, we will implicitly assume that the large part of the metric is

fixed by some symmetry and the metric is dynamical along some finite directions. In other

words, we will assume the following form of the metric.
dS* = Gap dXAdXP = G ({2*}) dzda® + f({z})dQ? (2.5)

Here, Gop({2°}), {a,b} = {0,1,--- ,p} is a finite (p + 1) dimensional dynamical metric,
d$)? is the line element of the infinite (D —p— 1) dimensional symmetric space and f({z"})
is some arbitrary function of {z®}.

Since, the metric is dual to the membrane embedded in the background spacetime g4p
with a velocity field along the membrane, the symmetry of the metric must be there in
the membrane as well as in the velocity field and in the background. This will imply that
the dual membrane is dynamical only along the finite 2 directions and simply wrap the

symmetric space (with metric €245). Similarly, the velocity field will have components

16



2 Large-D membrane paradigm in AdS/dS at leading order

only along the finite z* directions and also the non zero components will not depend on
the coordinates of the (2 space. The same feature (i.e. no component along the symmetry
directions as well as all the non-zero components depend only on {z*}) would be true for
any vector constructed out of membrane data. Similarly for tensors, the components along
the symmetry directions would be proportional to the metric of the symmetric space 24p.

In such cases, we could very easily see that the divergence of any vector or one form
would be D times higher than the order of the quantity itself [2, 3, 14]. In fact such a rule
would be true for any generic tensor with arbitrary number of indices. If T4, 4,..4, 1S a
generic tensor of order O (%)k maintaining the symmetry of (2.5), then its divergence is

of order O (%)k_l.

1

I\ F k-1
Tay Ayt ~ O (5> = gV Tay gty ~ O (5> (2.6)

If the background metric g4 admits a decomposition of the form (2.5), then Riemann
tensor, Ricci tensor and Ricci scalar evaluated on g4p5 will be of order O(1), O(D) and

O(D?) respectively.
RABCD|OH ga ™’ 0(1)’ RABIOH ga ™ O(D)’ R‘On ga ™ O(Dz) (27)

This implies that the Einstein’s tensor evaluated on g4p would be of order O(D?)* and
as we want g4 to solve (2.3), it justifies our choice of the scaling for the cosmological
constant with D as given in (2.2).

However, we would not require any details of the decomposition as given in (2.5) [3].

The only aspect of it that we will use is the scaling law (2.6).

3Such a scaling is true for any generic case. It is always possible to choose special background where
equation (2.7) is not true. A different choice of the D dependence for cosmological constant A would have
led to such a ‘non-generic’ background.
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2 Large-D membrane paradigm in AdS/dS at leading order

2.3 Leading Ansatz

In our calculation, G(ﬁg is the leading ansatz that captures the nonlinear dynamics of the
decoupled QNMs at the leading order. Any perturbation theory works provided we have a
good guess of the leading answer. In this sense, we can carry on with our program provided
we know the correct form of G%)B that solves the equation (2.3) at the leading order in

expansion. Now, we will describe how we can guess the form of the leading ansatz.

2.3.1 The form of the leading ansatz

As mentioned before, our solutions are characterized by two parameters namely the shape
of a codimension-one hypersurface in the background spacetime and a unit normalized ve-
locity field u,, along the membrane®.

We will first construct a smooth function v in the background spacetime such that
(¢ = 1) is the equation of the membrane. Next, we will construct a smooth one form
(O = O4 dX*), defined everywhere in the background, such a way that the projection of
(—O%) on the membrane reduces to u*. We will determine our final solution in terms of
the membrane shape 1) and the one form field O. Note that, at this stage, there is a large
ambiguity in the construction of ¢ and O. The conditions that they have to reduce to some-
thing specific on ¢ = 1 surface is certainly not enough to determine them completely. We
will fix these ambiguity with some convenient choices (see subsection 2.5.2 for a detailed
discussion on this point)

At this point, the simplest structure we could imagine for Gi‘oj)g (without involving any

“Throughout the thesis, we use Greek letters to denote indices along the membrane world volume as

embedded in the background metric g4 5, whereas capital Latin letters denote full spacetime indices. Velocity

field u,, is unit normalized with respect to the induced metric on the membrane (denoted as g,(ffd))

uﬂul,gé';d) =-1
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2 Large-D membrane paradigm in AdS/dS at leading order

derivative of ¢ and O ,) is the following

1
Gy = F 0405 = Gap = gap + F 0405 + O (E) (2.8)

here, F' is any arbitrary scalar function of ¢ and (O - O) 3. The inverse of the metric G 45

AB _ _AB _ F ANB l
GAB = ¢ <1+F<O.O))OO +(9(D) (2.9)

is given by

Here, all raising and lowering are with respect to the metric g4 5.
Now, firstly we want 1) = 1 to be the horizon when embedded in the full metric G 4.
This implies (941)(9pY)GAE = 0 on ¢ = 1. We will impose this condition order by order

% expansion. At leading order, we have

(o) 0 =0 ()

1+F(0-0)|,., |0-n],, (5) (2.10)
where ny = aﬁ‘—w
N

Secondly, we want our velocity vector field to be the null generator of the horizon

Also, by definition the velocity field is given by the projection of (—O4) along the mem-

brane. This in turn, implies

(130" + GABnB}wzl =0, where II% = projector = 0% — nnp
F 1
A_ (.o AL A_afl_E _ _ (L
= [O (O-n)n” +n @) (1+F(O'O)>(O n)L:1 O(D) @11

1 1

- [ o] o (3

SThroughout the thesis *-> denotes contraction with respect to the background metric g4
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2 Large-D membrane paradigm in AdS/dS at leading order

We have used (2.10) to go to the third line from the second line. From equation (2.11) it

follows that

(O n)ly=1=1+0 (%) (2.12)

On the other hand, the velocity field on the membrane (viewed as a hypersurface in the

background spacetime g45) is normalized to minus one which implies
420,05 = -1 (2.13)

From (2.12) and (2.13) it follows that O is a null one-form with respect to g4 at leading

order in (%) expansion

1
9*20.05 =0 <—) (2.14)
D
We will sometimes express O 4 as
OA =TNag—UA
(2.15)
where, uy = —HﬁOB, Hg = 512, —ning

Here u 4, by construction, is always along the membrane and it will be the velocity vector
field u,, when expressed in terms of the intrinsic coordinates of the membrane. From our

analysis so far, we could see that the simplest form of G(AOJ)B is the following.
fo,)g =F 0,0 =F (nga—ua)(npg —ug)

Now, if we do not want any derivative at the zeroth order F' could only be a function of
¥ since (O - O) is zero at the leading order. We also want F' to be vanishing outside the
thin membrane region of thickness of order O (5) around ¢/ = 1 surface. This would be
ensured provided F'(v)) o< ¢~". Now, if we substitute the fact that O is null at leading

order in the equation (2.10), we find

1
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2 Large-D membrane paradigm in AdS/dS at leading order

This fixes the proportionality constant in /' to be one. So, the final expression of the leading

ansatz® we get, is the following
© _ —D
Gap =% 7"040p (2.16)

This ansatz metric will solve equation (2.3) at leading order provided the following
conditions are satisfied [2, 14]

Gy =0 "040p

VI (020) (O50) |yt = % L0 (%) 2.17)

9PV 405 = K + 0O(1)

Here, K is the trace of the extrinsic curvature of the membrane which is a O(D) quantity.
The membrane v» = 1 is viewed as a codimension-one hypersurface embedded in the back-
ground spacetime g4 and V 4 denotes covariant derivative with respect to the background

metric gapg.
2.3.2 When ansatz solves the leading equation

Now we will demonstrate how fo])g as given in equation (2.17) satisfies the equation (2.3)
at leading order. We will simply evaluate the Einstein’s equation on the metric g45 + Gi‘o}g
and will see that the leading order (which turns out to be O(D?)) piece vanishes after using
the conditions mentioned in (2.17)

Before getting into the details, we will first simplify the equation (2.3) by subtracting

the trace of the equation
R D —2)(D—-1)\
Rap — <—> Gap=— {( ><2 ) Gan

= R=D(D - 1)\ (2.18)

:>(€ABERAB_<D_1))\GAB:O

®We would like to emphasize that what we have presented here should not be thought of as a derivation
for the ansatz metric. In the end, this is a ‘guess’ and our perturbation technique is developed around this
starting ansatz. This guess could also be motivated from the fact that the final solution, in a very small region
of size of O (3 ), looks like a D dimensional Schwarzschild black hole solution with a local radius and boost
velocity [3, 14]
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2 Large-D membrane paradigm in AdS/dS at leading order

Now, we will evaluate R 45 on the metric GES}B = gap + G(fj)g. Details of the calculation

are in appendix (A.2). Here we simply quote the final result.

DN

_ .,—D
Raslag, =¥ ( 2

) {[DN — (V- 0)] (n4Op + npO4) + (K — DN)OAOB}

2
+ Rap+ O (D)

N (¢20) {DN [DN — (V- 0)] OAOB}

(2.19)

where,

R p is the Ricci tensor evaluated on the background metric g4
» V4 denotes the covariant derivative with respect to g4p

» K is the trace of the extrinsic curvature of the membrane as embedded in the back-

ground spacetime with metric g4p: K =V4n4

* N is the norm of the one form diy 1 N = /(940)(0p1)) g8

From (2.7), it follows that R4 ~ O(D). So, the leading equation reduces to
[v"(K — DN) + 4 *’(DN — V- 0)] 040p
(2.20)
+ 9 P(DN — V- 0)(naOp +np0,4) = O(1)
As, O 4 and n 4 are two independent vectors in the background spacetime, equation (2.20)
implies
(2.21)
(K — DN) oy = O(1)
Equation (2.20) is simply the conditions mentioned previously in equation (2.17). At lead-

ing order, the RHS of equation (2.3), which contains the effect of cosmological constant,

does not contribute. Note also that the two equations in (2.20) together imply that

(V-u)y, =O(1) (2.22)
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2 Large-D membrane paradigm in AdS/dS at leading order

Where, u is defined in equation (2.15)’

2.4 Covariance w.r.t. ‘background’ metric

We could recast all the calculations in a manifestly covariant form with respect to the back-
ground metric g4p. In fact, this feature is already there in the previous section (see equation
(2.19)). The expression of R 45 involves partial derivatives of the metric. However, the ex-
pression in (2.19) have only covariant derivatives with respect to the background metric
gap. In [3], the authors have argued this point from a physical point of view.

Here, we will see how it follows algebraically. This follows from the fact that though
the Christoffel symbols are not tensors their differences are and therefore, the Christoffel
symbols of the full metric G 45 could always be written as the Christoffel symbols of the
background metric g45 plus some correction which will have a form of a tensor with re-
spect to the background metric. Then this feature could very easily be extended for the
construction of the Riemann tensor and also for the Ricci tensor of the full metric G 4.

The general form of our metric is given by

GaB = gaB + XAaB

Let f‘gc and I'4, denote the Christoffel symbols corresponding to the metric g4 and G 45

respectively

1 )
Ihe = §GAC (60 Gop+ 0 Gore — Ocr GBC’)
2.23
A L ac (2:23)
=I1'gc + §G Ve xes+ Ve xee — Ve XBe

Here, V 4 denotes the covariant derivative with respect to the background metric g45. We

define the Ricci Tensor, R 4, of the full metric by the following expression.

Rap = Ol g — 0%, + T kg — T I

7 as explained in section(2.2), if we naively use the rules for counting order in ( %) expansion, (V - u)

should have been of O(D)

23
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Using equation (2.23), we could very easily rewrite it in the following form.
Rap = Rap + Vi [T 5] = Vi [6T%,] + [6T%,.] [0T4p] — [6T%,, ) [617]  (2.24)

where R4 is the Ricci Tensor of the background and [01'3] is the tensor appearing in the

second term of equation (2.23)
1 ,
[6T50] = §GAC <Vc Xc'B+ Ve xcre — Ve XBC> (2.25)

Equations(2.23) and (2.24) are the main equations that we will use to determine the sub-

leading order corrections to the ansatz metric in a manifestly covariant form.

2.5 General strategy for the first subleading correction

Once the leading ansatz G’(f])g, the function ¢ and the one-form O are well-defined every-
where in the background with metric g4p, we can describe the strategy to determine the
subleading corrections to the metric i.e., the G(:])S for £ > 0. In this chapter, our goal is to
determine GSJ)B. Our method is essentially same as the one described in [3]. The purpose
of this section is to mainly set up the notation and convention. We shall omit any detailed
justification or ‘all order proof”, for the statements. Interested reader should refer to [3] for

a thorough discussion.

2.5.1 Summary of the algorithm

We already know that if we evaluate Ricci tensor on G[X]B =gaB+ Gg%, the leading piece
is of order O(D?). This leading piece vanishes provided O 4 and v satisfy equations (2.21).
Clearly after imposing equation (2.21), the leading non-vanishing piece in R 45 would be
of order O(D). To cancel this piece up to corrections of order O(1) we add the new terms
in the metric - (3) ch111)3 . Therefore, to begin with, () GS])B will have the most general

form that could contribute to the equation of motion (2.18) at order O(D). Also, any term
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2 Large-D membrane paradigm in AdS/dS at leading order

in equation of motion that involves product of two components of G(A% (i.e., non-linear in
GE411)3) will contribute at most at order O(1). Since in this chapter, we are interested only at
order O(D), we have to treat G(Al])g simply as a linear perturbation on G%B. Then at order
O (D), the equation of motion (2.18) will have two pieces. One piece will take the form of
a linear differential operator acting on different (and so far unknown) components of GS}B
and the second piece will involve the O(D) piece coming from Gf]jg. The first piece will
have an universal structure at all orders and we shall call it as ‘homogeneous piece’ or H 4.

The second part will be termed as ‘source’ (S4p) . Schematically,
Eap ~ Hap + San

Our solution procedure will essentially be an ‘inversion’ of the universal differential oper-
ator in H4p.

We shall determine ijj)g completely in terms of the function ¢ and the one-form O,
that are directly related to the basic data of our construction - the membrane and the ve-
locity field. One advantage of our formalism is that we never need to choose any specific

coordinate system on the membrane or for the background g45.
2.5.2 Subsidiary condition

Note that, so far, all the conditions on ) and O are imposed only along the membrane. We
want ¢/ to be one on the membrane hypersurface and the projection of O onto the membrane
to reduce to the velocity field u,. The gravity equation (2.3) at leading order (see equation
(2.21)) imposes some more constraints on ¢» and O, but still they needed to be satisfied only
at (¢» = 1). Therefore, there is a large ambiguity in the construction of the function ¢ and
the one-form O. In this subsection, we shall fix this ambiguity with a certain convenient

choice, which, following [2,3, 14], we shall refer to as ‘subsidiary conditions’.%.

8The subsidiary conditions we have chosen in this thesis are different from what has been used in [2,3,14].
We found this choice most convenient because the metric correction at the first subleading order takes the

25



2 Large-D membrane paradigm in AdS/dS at leading order

Subsidiary condition on %) is chosen as follows.

V2P =0 everywhere (2.26)

It could be shown that equation (2.26) is enough to determine ¢ in an expansion in ()
around the membrane () = 1) [4]. Also we could easily see that (2.26) is consistent with
the second equation (2.21)(See appendix (A.6)).

Now, we shall describe how we fixed the ambiguity in the definition of O 4. Unlike 1,
since O 4 is a vector in the background with D components, we need D equations to fix it
completely. From the construction of G(Xl); we know that on the membrane, O* is a null
vector and O - n = 1, where n 4 in the unit normal to the membrane. Firstly, note that, once
we have imposed equation (2.26), 1 = constant surfaces and therefore the unit normal to
them are well-defined everywhere. Therefore, we could easily lift these two conditions on

O, which are initially imposed only on the membrane, to everywhere in the background. In

terms of equation what we mean is the following
O-0=0and O-n=1 everywhere (2.27)

Equation (2.27) gives two scalar conditions on O. We still need (D — 2) equations through
which we would be able to determine the remaining (D —2) components of O 4, everywhere

in the background . To fix them, we use the following differential equation.

PZ(O-V)O* =0 everywhere
(2.28)
where Pf = (55 —n, 08 —Ooun® + OAOB,

Since, P is the projector to the subspace orthogonal to both n and O, equation (2.28)

is effectively a collection of (D — 2) equations as required’. Equations (2.27) and (2.28)

simplest form. As we shall see, with this subsidiary condition, it simply vanishes and the first non-trivial
correction appears only at the second subleading order.
% Because of equation (2.27) O4(O - V)O# and n (O - V)OA are already determined.

04(0-V)OA =0, na(0-V)OA =—-04(0-V)n?
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together fix the ambiguities in all components of O, everywhere in the background.
It is possible to rewrite the subsidiary condition on O in a more geometric form. From

equations (2.27) and (2.28), it follows that
(0-V)0" = [np(0 - V)OP] O* everywhere (2.29)

Equation (2.29) simply implies that throughout the background geometry, O“s are the tan-
gent vectors to the null geodesics passing through the membrane.

In course of analysis we shall often define a u 4 field everywhere in the background'”.
uy = —I150p where II4 = Projector on constant 1) slices = d5 — n“'ng (2.30)

Note that as a consequence of equation (2.27), u 4 turns out to be a unit normalized time-like

vector, which is orthogonal to n 4 by construction.

AB AB
g ugup = —1, g"uang =0

From equation (2.27), it follows that O - n = O - u = 1 or O4 = n4 — ua everywhere.
Also the projector Pp of equation (2.28) is actually a projector orthogonal to both n 4 and

u 4 and therefore could equivalently be expressed as

Pap = gap —nanp +uaup
2.5.3 Choice of gauge
We shall choose a gauge such that
04G4), =0 (2.31)

Note that our leading ansatz also satisfies this same gauge.

10Equation (2.30) apparently looks very similar to equation (2.15). However the main difference is that
equation (2.30) is true for any constant 1 slices whereas equation (2.15) was specifically applied to the mem-
brane i.e., (¢ = 1).
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After imposing equation (2.31), the most general structure for G(A% is the following

GY) = 810405 + (%) SoPap + [04Vp + OpVa] + Tap
where (2.32)
V=0V =0, uTug =n*Tap =0; gABﬂg =0

Here, the unknown scalar, vector and the tensors, [S;, i = {1,2}], Va, Tap are all of order
O(1) and have explicit dependence on ¢ as well as the derivatives of ¢ and O.
Note the extra factor of () in the term proportional to Py . This is because, by definition,
GS}B is the collection of those terms in the metric that contribute to the gravity equation
at order O(D). As we shall see below, the term proportional to P, will contribute one
extra factor of D in some terms of the gravity equation (the ones that involve a trace of the
metric tensor). In other words, unless we suppress this term by an extra factor of (%), it

will contribute and mess-up the matching and solving of the equations at order O(D?).
2.5.4 The form of explicit 1) dependence

We know that within the region where the metric correction is nontrivial, (¢) — 1) is of order
O (4 ). Therefore we would define a new order O(1) variable R = D(¢)—1) to parametrize
the explicit ¢ dependence of the unknown scalar, vector and the tensor functions in equation

(2.32). In terms of equation, we mean the following.

S1=Y falR)sn, S2=) hu(R)s,

Va= Zvn(R) [Un]A Tap = Ztn(R) [tn]AB (2.33)
R=D(-1) '
Here f,,(R), vn(R), t,(R) and h, (R) are functions that do not involve any explicit factors
of D. The other expressions, s, [0,,] 4, [t.] 45 are the different scalar, vector and the tensor
structures of order O(1), involving the derivatives of n4 and O 4 that could appear at order

O(1). The upper limit for the sum over n will generically be different in scalar, vector and
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tensor sector. These structures, by construction will not have any explicit dependence on v/,
since all such explicit dependence at this order will be captured by the function f,,, v,, t,
and h,,. However these structures will depend on ¢ implicitly through the derivatives of n 4
and O 4. But note that this will be a ‘slow’ dependence in (%) expansion. More precisely, if
we compute the variations of s,,, v, or t,, in the direction of J4¢ it will always be of O(1),
whereas the variations of f,,(R), h,(R), v,(R) and t,(R), will be of order O(D). This
is the reason, we could treat these structures, s, [0,]4 and [t,| 45 effectively as constants
when we are doing the leading order computation with G(Alj)g. See the next subsection for

details.

2.5.5 Structure of ‘Homogeneous piece’

In this subsection we shall list the detailed form of the homogeneous piece. As mentioned
before, the homogeneous piece could be computed by simply linearizing the gravity equa-
tions (2.18) around GES]B, where the gauge-fixed form of the linear perturbation is given by
G(Alj)g. (See appendix A.1 for the details of the computation)

For convenience, we shall decompose the homogeneous piece into four parts.
HAB — Hjlcglar + ngé:tor + Hilegsor + Hz’gce (234)

where

2
Hig = <D;V ) > s (f1+ £ [nBOA +n40p — (1 —¢7") OBOA:| (2.35)

n

N / -
Hvector — <5> > (Vo) {vn (naOp +np0s) — ¥ DvnOBOA}

n

+ (Dé\ﬂ) Z(UZJrUL){(uB [0, 4 + ua [Dn]B) (2.36)

n

+y P <OB [bn]4 + Oalon]p ) }

29



2 Large-D membrane paradigm in AdS/dS at leading order

DN?
Hg = - (75 ) T [0 4 6] bl

n (2.37)

() >, (ns (Ve )+ 4 B)

DN?
HYE* = — ( 1 ) Zﬁn{%g nang + hy, [P (nang — uaup) + 1?7 0p04] }
(2.38)
- dx
Here X' for any function X (R) denotes .
From the explicit expressions of H 4, it follows that
L\ qas
=) P Hap = O(1) (2.39)

where, 1145 is the projector perpendicular to (¢ = 1) hypersurface as embedded in the
background.
It turns out that we could easily decouple these homogeneous parts of the £ 45 by taking

the following linear combination of the components.

Pecr

PUHApPE — —— (PABHAB)
D
DN? (2.40)
(%) Sttee [t (1= w?) 41
2
W HasPE == (T ) S -0t + o @)
2 -D
uHapu® = — (Dé\[ ) (1=v") sn {f/{ + fn— (1/17) h'n}
N " (2.42)
~(3) ¥ (v )
2
O“OPH  p = —D;V Xn: h's, (2.43)
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Note that given equation (2.39), equations (2.40), (2.41) and (2.42) are simply the dif-

ferent components of (Hﬁ’ﬂg/ H 4 Br) at leading non-trivial order in (1/D) expansion.

2.5.6 Structure of ‘Source’

In general the source S 45 will depend on all the coordinates, through some explicit depen-
dence on v and also through different derivatives of O 4 and n4. As before, we can classify
the v dependence of S 45 as ‘slow’ and ‘fast’. The ‘fast’ pieces are those whose derivatives
in the directions of increasing will have a factor of D, (i.e., the dependence on ¢ is through
R = D(¢ — 1)). These are the parts which have been treated exactly at a given order. All
other variations of the source terms, both along and away from the membrane hypersurface,
are ‘slow’ (i.e., the derivatives are suppressed by a factor of (%) compared to the ‘fast’ de-
pendence) and therefore could effectively be treated as constants while solving for the next
correction to the metric i.e, G(Alj)g. This is why we simply invert the homogeneous piece
H 45 assuming it to be an ordinary differential operator in the ‘fast’ variable R. See [2]
and [14] for a more detailed explanation.

As we have seen in the previous subsection, the projected components of the homoge-
neous piece (I14 T1% H 4/ 5) could be viewed as ordinary second order differential operator
in the ‘fast’ variable R, acting on the unknown functions appearing in the metric correction.
It follows that to determine the unknown functions f(R), v(R) and ¢(R), it is enough to

solve the projected components of the gravity equations (2.18)
A TE Epp =0

The traceless piece of the projected €45 leads to the following set of second order inhomo-
geneous differential equations for three sets of the unknown functions, f,,(R), v,(R) and

to(R).
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S =1 8) ol = (557 ) [678 = 2 (257 )| 50

€R
1Y ] = (G ) [0 P4] (2.44)

GR .
(1—e ™) Zn: %{ {eRf,; — %} 5, = (ézw) (u*Sapu®) = v, (VD;")

n

In equation (2.44), we have also used the fact that [ = e~ 4+ O (3)].
The equation for i(R) is given by the €45 with both indices projected in the direction of
0.

0'0PErp =0=) s, = ( 5 NQ) [0 Sa5 O] (2.45)

Note that the last two equations in (2.44) will admit regular solutions at ¢ = 1 only if

[UBSBCPE} reo = 0

[ ( D?\rz) (A Sanu?) = 3 v, (VD- ]3”) LZO .y (2.46)

n

We shall see that both of these conditions will be true as a consequence of our membrane
equation. In fact in [2] this is the regularity condition that has been used to determine the

membrane equation.
2.5.7 Boundary condition

Since our differential operator (in R) is second order, we need two sets of boundary condi-
tions to fix the integration constants. One of these is the ‘normalizability’. In our construc-
tion it must be true that the metric is non-trivial only in a thin region of thickness O ()
around the membrane ¢y = 1. This defines the normalizability conditions on the metric
functions f,(R), v,(R), t,(R) and h,(R); in R coordinates they must vanish exponen-

tially as R — oo (recall R = D (¢ — 1)), so that outside the ‘membrane region’ the metric
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is that of the background. This ‘normalizability’ fixes one integration constant in each of
the three differential equations in (2.44). It turns out that for equation (2.45) both the zero
modes are non-normalizable or in other words in this case the ‘normalizability’ condition
is enough to fix h,(R).

The other integration constant is fixed by the condition on the horizon. For f,, and v,,, it
is fixed by our definition of the horizon itself. We want ¢) = 1 to be the exact equation for
the horizon of this geometry and u“ to be the null generator of the horizon. This implies

that the following ‘all order’ equation on the horizon
UAGABldJ:l =nNpg (2.47)
Note that by construction at any order the metric will take the form
Gap=9gap+ fOa0p+ (VaOp+ Ve Os) +h Pap+tap

where OA = Ng — Uy, V-O=V-n= 0, OAtAB = TLAtAB = 0, PABtAB =0

Contracting this metric with u* we find
UAGAB = Uup +f OB + VB

Now (2.47) fixes the values of f and V4 on ¢ = 1 or equivalently R = 0.
fly==1= fu(R=0)=0,
(2.48)
Vilp=1=0 = v,(R=0)=0

For the tensor sector i.e., the function ¢, (R), the other integration constant could be fixed

by demanding the solution is regular at the horizon.

2.5.8 Solution in the form of integral

Once the boundary conditions are fixed, we can explicitly invert the differential operators

and could write the solutions for f,,(R), v,(R), t,(R), and h,,(R) in terms of some definite
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integrals of the source. In this subsection, we shall present these formulas explicitly. As
mentioned before in subsection (2.5.6), we could always rewrite source S4p at any given
order as some functions of ‘fast’ variable R multiplied by the ‘slowly’ varying scalar, vector
or tensor structures relevant for that order. In other words the RHS of the three equations

in (2.44) could be expressed as

2ef
RHS of 1st eqn = <W) Z [t”]AB S,tfnsor(R)

n

26R vector
RHS of 2nd eqn = (ﬁ) Z [0,] 4 SYE(R) (2.49)

n
R

RHS of 3rd eqn — (2]\%) S o] SE(R) — (%) ;vn(R) (V- 0,)

Similarly RHS of (2.45) could be written as
2 race
RHS = <_N2) E S'e¢(R) s, (2.50)

n

Now we can explicitly write the solution for GS}B in terms of definite integral of the source.

1
G = 80405 + (5) SoPap + [04V5 + OpVal + Tan

where, (2.51)

w'Vy =n*Vy =0, uTap =n"Tap=0; ¢*PTap =0

%) S [las /R ) (eydﬁ 1) ( /O " e [ ggnsor(x)])
)

o0 Y 2z
Z [Un]A/ dy e |:/ dr ( € ) SxeCtor(:B)} + G_R/C\fcmr
R 0 er —1
2 - > race
52 = (m Zﬁn/R dy{/y dz S, (w)]

S, =— i /ood -y /yd 6296 Sscalar( )

1 — N2 nsn R ye 0 €z et — 1 n z
1 o z dx \YAERY
- —z| _ 2 — R gscalar
) f, e [ () (5r) |+

(2.52)

n
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Here IC; and K, are two constants added so that Si|r—o = Va|r—0 =0

2 00 Y 2x
Icscalar — (ﬁ) Zﬂ:sn/o dy e Y |:/0 dz (exe_ 1> Szcalar<x>1
N */ dw \VARY
—<§>/0 dz e {—82—1-2/0 <1—e—x>(DN)] (2.53)
2 00 Y 2x
Jorgeer — (ﬁ) ; [nn]A/O dy e {/0 dx (ef_ 1) Sxecmr(x)}

2.5.9 Constraint and membrane equation

Consider the following combinations of different components of H 4.

L (n® —¢=POP) Hpe P{ = 5(1—e ™) 3, VE(ta)pat),

2. (nP =y POP) Hpc u® = (BX) Y, (58) [v,(1 — e %) — v, ]

Note that the above combinations have at most one R derivative of the unknown functions.
Clearly the same feature would be true if we take the above combinations on the components
of €45, since the source S, does not involve any of the unknown functions. Hence these
combinations could be viewed as equations that restrict the ‘initial conditions’ (defined on
any constant R slice) for the second order differential equations (see (2.44)) controlling the
‘R-evolution’ of the unknown functions. It follows that the ‘constraint’ equations in our

case has the following form

C=(n? -y POP) Epe u”
(2.54)
Cpr= (n® -y P0OP) Epe PY
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In terms of source S 45 and the unknown metric functions, the above two constraints will

take the following structure !!

C = (n” — ¢ FOP) Spe uC + <D2N) > (v;n> [v,(1 =) — v, "]

n

CA = (nB — G_ROB) SBC Pg —l— 1 —e Z VB BA t (2'55)

Now it is known that if the constraint is satisfied along one slice and the dynamical equations
are satisfied everywhere, then the constraint is automatically satisfied along all hypersur-
faces [68]. In [3], this theorem has been explicitly verified for the constraint equations
listed above in equations (2.55). Because of this theorem, we are allowed to impose the
constraints (2.55) only on ¢ = 1 hypersurface and do not worry about how these equations
are solved away from the membrane. So at order O(D), the final form of the membrane

equations

C|R=o = u” Spe UC|R:0
(2.56)
Ca|lr=0 = u” Spc P |r=0

In deriving equation (2.56) we have used the fact that O4 = n* — u# and v,,(R = 0) = 0
because of our boundary condition. We also used the fact that 7;5}3) is regular at R = 0 due
to choice of integration limits (see equation (2.52)) and thus the term involving unknown
tensor metric correction in C'4 vanishes at R = 0.

Equations (2.56) are the genuine membrane equations that do not involve any of the un-

known functions and therefore only constrain our membrane data. Also note that these

"'We know that given the foliation of the spacetime with ¢ = const hypersurfaces, the equations of gravity
could be decomposed into dynamical and constraint equations [68]. The constraint equations are the ones
where one of the indices of the Einstein’s equation is projected along the normal to the foliating hypersurfaces.
In [3], this theory has been used and explained in detail in the context of our large D expansion. Along with
the two combinations we mentioned in equations (2.54) one more constraint equation appears in [3], whose
abstract form is the following

A=(1-yvP)020P 45 — PAB E4

However, we shall not analyze this combination here since it will not be required to obtain the final gravity
solution and the membrane equations
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are the combinations that appear in the RHS of the first two equations in (2.44) and the
regularity of the solutions also demand the vanishing of these constraints on R = 0.

The fact that given a solution to these constraint equations along the membrane, we
can always solve the other dynamical equations (i.e. the other components of the £45),
by inverting the linear differential operator appearing in H 43, establishes the ‘membrane-

gravity duality’ that we have mentioned in the introduction.

2.6 The first subleading correction: Gfﬁg

In this section we shall describe how we calculate the first subleading correction to the
metric along with the coupled equations of motion for the membrane and the velocity field
along it. As described in the previous section, at this order the source Sp will simply
be determined by evaluating the Ricci Tensor R 45 on the metric G[X}B = gap + G(X,)B =
gap + 120 405. The details of the computation of the Ricci Tensor are presented in the
appendix (A.2). For convenience we quote the final answer for the source at first subleading

order.

K
Sap=¢e " (5)

e "0p04 ((ﬁ ' U) Re0 % (@ ' E> RO)

~ R /-
+ (1405 +np04) <(v : u> o (v : E) RO) (2.57)
V2 VoK X
+ (0OgPY + 04PF) ( ;C — [C( +uPKpe — (u- V)uo> ]
R=0

Where, V is defined as follows, for any general tensor with n indices W4, 4,...4,
VaWiageot, = 1§ TGS - TG (VeWeycyec) (2.58)

Here, K 4p is the extrinsic curvature of the 1) = 1 hypersurface viewed as a submanifold in

the background spacetime g45, defined as

Kup =TI9Veng (2.59)
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2.6.1 Constraint equation

In the previous section we have described how we could determine the constraint equations
on the membrane by taking appropriate combination of the components of the source terms
evaluated at ¢» = 1. In this subsection, we shall first evaluate those combinations on S,
and determine the constraints on the membrane data at the first subleading order. Note that

at leading order there was only one scalar constraint on the membrane data
V-u~O(1)

It turns out that at first subleading order we shall have one scalar and one vector equation.
This matches with the number of free data we have on the membrane: the shape of the

membrane (scalar function) and the unit normalized velocity field on it (the vector function).

Constraint in the vector sector

First we shall describe the constraint equation in the direction perpendicular to u 4. We shall

refer to this as ‘Vector constraint’.

UBSBcpg = 0(1)

K @Zuc @CK ~
= pC — Dron — (u- =01
PS¢ 7o Tu Kpc—(u-V)uc| =0(1) (2.60)
Vu VoK - 1
= P§ Kc_ [C( +uP Kpe — (u- V)ue :O(B>

Note that in equation (2.60), all derivatives and all the indices (both contracted and free) are
projected along the hypersurface (¢ = 1). Now it is easy to rewrite the constraint equation

as an equation intrinsic to the membrane.

Vu, VK _ 1
14 _ o P . ey _— 2.61
P = o tu Ko — (u V)uy] @ ( E) (2.61)
Where, P, = g,(ff ) 4 Uy, gffyn 9 denotes the induced metric on the membrane (1) = 1

hypersurface) and V is the covariant derivative with respect to gfff ) The velocity field u,, is
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the pull back of the bulk velocity field v 4 and K, is the pull back of the extrinsic curvature

of the membrane onto the hypersurface '? and K is the trace of the extrinsic curvature.

Constraint in the scalar sector

Now we shall describe the constraint equation in the scalar sector, i.e.,the constraint in the

direction of 1 4.
K 14
0= u"Spou’ = o V-4l (2.63)

As before, this equation also could be written purely in terms of the intrinsic data of the

membrane.
[v . u] =V (2.64)

where V denotes the covariant derivative with respect to the intrinsic metric of the hyper-
surface (¢ = 1) viewed as a membrane embedded in the background.

We finally find

Veoun O (—) (2.65)

2.6.2 Dynamical equation

In this section we shall give details of the dynamical equations. It turns out that given
our subsidiary condition and after imposing the scalar and vector constraint equations, the

sources for all dynamical equation simply vanish leading to the vanishing of GS}B.

12In terms of equations, u,, and K,,,, is defined as

ox4 OXMN (oXxXN
’U,M = ( 8yl‘ )UA, K:P«V = (81/# ) <8y” ) K]WN (262)

where X denotes the coordinates of the full spacetime and y* denotes coordinates on the membrane.
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Tensor sector
From the first equation of (2.44) we get the relevant differential equation for the ‘tensor-
type’ correction at the first subleading order.

2 , PCC’
DY [(1—e ™) tn+t,] [t]as = (ﬁ) [PEPB — PAB( 5 )} Scer (2.66)

But from equation (2.57) we could simply see that
P§PY Soer =0

In the language of equation(2.49) it implies that S'"*°"( R) vanishes for all (n). Substituting

this in the first equation of (2.52) we find 7;89) is zero.

Vector sector

From the second equation of (2.44) we get the relevant differential equation for the ‘vector-

type’ correction at the first subleading order.

De_R(l — e_R) Z %% [QRU;J [0,]4 = <%) [uBSBCPﬂ (2.67)

Note that the RHS of equation (2.67) implicitly depends on ¢. However the dependence is
‘slow’, in the sense as one goes away from (i) = 1) hypersurface, the variation of the RHS
is suppressed by a factor of (). Thus, at this order, we need to evaluate the RHS only at
(¢ = 1) hypersurface.

Now from equations (2.60) and (2.61) it follows that
[UJBSBCpg} b=1 =0

In the language of equation(2.49) it implies that S”°*°" ( R) vanishes for all (n). Substituting

this in the second equation of (2.52) we find VS) is zero.
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Scalar sector

In the scalar sector there are two unknown functions ~(R) and f(R) and therefore we need
two equations. Clearly equation (2.45) and the last equation of (2.44) are the relevant equa-

tions here.

2
DN?

020P&s3=0= Zhﬁsn = ( ) (0% Sup OF]

and

d I,
De (1 — e Z iR {eRf;L — ?] Sy,

_ (Ni) (uAsAB:B) X (V]'V"n>

Now since PAPS 45 vanishes, the boundary conditions (see section (2.5.7) ensure that

(2.68)

hn(R) is zero for every n. Given that h,,(R) is zero and there is no correction in the vector

sector (implying e (R) is zero for every n) the second equation of (2.68) reduces to

De f(1—e ™)) % [ fr] sn = (%) (u*Sapu®) (2.69)

Now, following the same logic as we have used in ‘Vector sector’ , the RHS of equation
(2.69) is simply the scalar constraint equation and therefore vanishes. Now the boundary

conditions ensures that f,,(R) = 0 for every n.

2.7 Final metric and membrane equation

In this section we shall simply summarize our final result i.e., the metric and the membrane
equation of motion up to the first subleading order. As we have seen in the previous section,

given our subsidiary condition, the next to leading correction to the metric vanishes.

1\ 2
Gap = gap + v 20405+ O (E) (2.70)
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where the scalar function ¢ and O 4 are defined everywhere in the background (with metric

gap) through the following equations

0%cip = /O -0, O-0 =0
Vi P =0 (2.71)
o)

(O-V)O, = KW) (O - V)OC] O

Clearly the asymptotic form of the full spacetime is given by the metric g4 5, which we have
referred to as ‘background’. V is the covariant derivative with respect to g4 .

The equations (2.71) are enough to fix ¢» and O everywhere provided the shape of the
(¢ = 1) hypersurface and the one form field O4 on (¢» = 1) hypersurface are given.
We have referred to these two pieces of information as ‘membrane data’ . It turns out that
(2.70) is a solution of the gravity equation provided the membrane data satisfy the following

equation of motion

P {V?u, = VK + K [uaKS — (ua V¥, ]} = O (1)
_ 1 (2.72)
Vou = 0 (_)

Equation (2.72) is an equation intrinsic to the membrane, in the sense that all raising and
lowering of indices and the covariant derivatives are defined with respect to the induced
metric on the membrane - a hypersurface embedded in the background g 4. All the indices
now can take (D — 1) values. K, is the extrinsic curvature tensor , viewed as a tensor
structure defined on the membrane only. K is the trace of KC,,,,. The velocity field v, is the
projection of the one form O 4 along the hypersurface. And P}, is the projector perpendicular
to the velocity field u,. Like the extrinsic curvature tensor, this projector is also defined
only along the membrane worldvolume.

Equations (2.70), (2.71) and (2.72) together are the final result of this chapter.
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2.8 Checks: matching with known exact solutions

In this section we shall perform several checks on our solution for the metric and the equa-
tion of motion for the membrane. We know of few exact static and stationary black hole /
brane solutions of the equation (2.3) in arbitrary dimension. Now our effective membrane
equation (2.72) and the metric (2.70) are valid as long as the number of dimensions is very
large. Clearly static and stationary exact solutions are special cases which must solve our
equation and must match with our metric in the appropriate limit. In this section we shall
show this matching explicitly for three different exact solutions in Asymptotically AdS

space.

2.8.1 Schwarzschild Black Brane in AdS

In Kerr-Schild form AdS black brane is given by

dr\ 2
45 = e+ 10 (a5 ) 73
r
where dS3 ;. . 1S the line element in Poincare patch AdS space.
2 dr? 2 102 | 232 2.74
dSPoincare = ? —ridt" +r de—Q ( : )

For the black brane geometry (2.73), the hypersurface » = 1 is the horizon and the null

generator of the horizon is given by
lAaA = 3,5

It follows that the dual membrane is given by the same surface » = 1, however viewed as a

hypersurface embedded in the AdS space with metric d.S3 and the velocity field along

oincare

the horizon is simply © = —dt. The induced metric on the membrane

dS?

induced —
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We can easily see that this velocity field u is divergence free along the membrane. It is
very easy to compute the extrinsic curvature tensor for this configuration. The non-zero

components of extrinsic curvature and trace of extrinsic curvature are given by
Kij = 6ij, Ku=—-1, K=D —1 Where {i =1,..., D — 2} (2.75)

All the components of the derivatives of the velocity field on the membrane vanishes

Vo, =0, {p==t,} (2.76)

Substituting equations (2.75) and (2.76) in the membrane equation (2.72) and using the fact
that P/ = P! = 0, we see that it is satisfied up to the required order.
Next we shall match the form of the metric. For this we need to read off ¢) and w4 in

such a way that

1. ¢ = 1 surface is same as the » = 1 surface. In other words if we consider ¢ as a

function of r, then (r = 1) = 1.
2. ulmy =14
3. Both v and the u* satisfy the subsidiary conditions (2.26) and (2.29).
The normalized form of  is easy to guess.
uy det = —r dt (2.77)

Translation symmetry in ¢ and all ¢ directions guarantees that 1) must be a function of r
alone and it follows that the subsidiary condition on w is trivially satisfied (since any vector
in the space perpendicular to n ~ dr and u ~ dt must vanish because of the symmetry).
Now we shall solve for ) in an expansion in (%) Let us start by expanding v around the

horizon r = 1.

3
U(r) =1+ (alo + %) (r—1)+axn(r—17°+0 <%) (2.78)
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Here aqy, a11, agy are constants (to be determined by solving the subsidiary condition

(2.26)) and we have also used the fact that within the ‘membrane region’ (r — 1) ~ O (%)

Substituting (2.78) in (2.26)) and solving order by order we find

w<r>=1+<1‘%)(“1)+0(%)3 (2.79)

(5o (5)

Note that equations (2.79) and (2.77) imply that in the ‘membrane region’

d
@& —rdt = Oadz?
”

(-3 (2.80)

_ =D 1 ’
r? =¥ +(5)

From equations (2.80) it follows that the metric of AdS Schwarzschild black brane is same

r

as the one we determined in equation (2.70) up to correction of order O () 2

2.8.2 Schwarzschild Black Hole in Global AdS

In Kerr-Schild form, the global AdS black hole is given by

—(D-3) dr 2
dS* = dS2, ,  + (T—> (\/1 +r2dt + —) 2.81
Global 1472 r JIi? ( )
where dS%,,,,; 1s given by
2 dr? N 112 L 29002
SCilobal = T2 (14 7r7)dt” +r2dQp_, (2.82)

Horizon of this black hole spacetime (2.81) is located at the zero of the function f(r) =
1+7r2— =P Ifhorizonis atr = ro = f(ro) =0, ro # 1.
The null generator of the horizon is given by

1
V147g

It follows that our membrane is given by the hypersurface » = ry embedded in the AdS

lAaA == 8,5

space with metric as given by dSg,.,,; and the velocity field along the horizon is simply
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u=—+/1+ rg dt. The induced metric on the membrane

ds?

induced —

—(1 4 7d)dt? + r3dQ3

We can easily see that this velocity field u is divergence free along the membrane. It is
very easy to compute the extrinsic curvature tensor for this configuration. The non-zero

component of the extrinsic curvature and the trace of extrinsic curvature are given by

1
,Ctt:_ ,,Ca: Qa7](::— D—2 2
V2 b= V2 Qu \/§+( )\/_ (2.83)

Where (2, is the metric on (D — 2) dimensional unit sphere

All the components of the derivatives of the velocity field on the membrane vanishes
Vo, =0, {p=ta} (2.84)

Substituting equations (2.83) and (2.84) in the membrane equation (2.72) and using the fact
that P/ = P! = 0, we see that it is satisfied up to the required order.
Next we shall match the form of the metric. As in previous subsubsection we have to

read off appropriate ¢ and u 4 defined everywhere in Global AdS space.

* Since the spacetime is static and also maintains spherical symmetry, ¢» must be a

dr

function of r only. This implies nadz” o< dr. After normalization ndz? = —&.

« It follows that the normalized u has the form

dr
UA dl’A - _ \/1+T2 dt or OA d:}jA: (\/1"’7‘2 dt—’—ﬁ) (285)

It is easy to see that this u will satisfy all the subsidiary condition as a consequence

of the symmetry.
» Now 1 has to satisfy the subsidiary condition,

V3P =0 (2.86)
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To solve the equation (2.86) we have to repeat the same procedure as we have done in
the previous subsubsection. Now the only difference is that the background is not AdS-
Poincare but global AdS and the covariant derivatives are also modified accordingly. This

calculation is a bit complicated and the details are given in appendix (A.3)

- () [ (2o

log 2 2 1\ (log2)2 1\° (257)
—r(1 —(r—1)= il —
(1422 -2+ (5) P2 v o0 (5)
Here also (2.87) imply that in the ‘membrane region’
—(D-3) 1 2

r -D
= — 2.88
1+ 72 voro (D) (2.88)

As in the previous subsection from equations (2.80) and (2.85) it follows that the metric of
AdS Schwarzschild black hole is same as the one we determined in equation (2.70) up to

. 2
correction of order O (5)".

2.8.3 Rotating Black Hole in AdS

The explicit form of Kerr de-Sitter metric in D = 2n + 1 dimensions( [69], [70]) in Kerr-

Schild form is given by
2M
dS? = dS% 4 + —— (kadz™)?
U (2.89)
2M '
Gapdrida® = gABd:UAde + TkAdexAde
where,
2 2\ 742 2 —~r’ + ai 27,2
dShes = —W(1+12)dt* + Fdr* + o (dpg} + o)
=1 ' (2.90)

1 i (r? + a?)psdpi\ *
W(l+r?) 1—a?

i=1

n

2 n n 2
H; r u; Z 1 9 9
Zl_a?’ 1472 i=1 r2+a?’ i=1 T’Z—I—a?II(T +a9> (2.91)
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2 Large-D membrane paradigm in AdS/dS at leading order

kade? = Wdt + Fdr — ; 1“1” ; do; (2.92)
gap 1s actually the metric of global AdS, but written in some rotating coordinates. The
coordinate transformation that will bring it back to standard form (the one presented in
equation (2.81)) is given in [69]. However we shall continue to work in the coordinates as
given in equation (2.90). One of the advantage of using these coordinates is that the horizon

of the black hole spacetime in these rotating coordinates is given by constant r slices, where

the value of the constant is determined from the zero of the following function.

U _ o= 2.93
F 0 (2.93)

For convenience of computation we shall scale the parameter M in the following way

M = H (1+ a7
i=1
so that the horizon lies at r = 1, which would be the equation of our membrane. The

induced metric on the membrane

L (N~ (U adpidp
ASfaucet = 2Wdt2+z d 2 4 12dg?) — W(Zw)

1—a:
i=1 i=1 g

(2.94)
It turns out that k4 is null with respect to both the metric G 45 and g4 5. The null generator

of the horizon is given by

1 n Ng - n
lAE)A = — (Z J ) (8,5 + 2
V2 1+ a ; 1

From here it follows that the velocity field along the horizon is given by

NG

_1

n 2 2 n
usdr® = —v2 (Z . ija > (Z - (dt — a; dqﬁz)) (2.96)

j=1

Once we have the explicit form of the equation of the membrane and the velocity field, each

term of (2.72) are computable.
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2 Large-D membrane paradigm in AdS/dS at leading order

Now as we have explained before, our () expansion is valid provided the spacetime sat-
isfies some large symmetry and is dynamical or non-trivial only in a finite number of di-
rections. The metric in (2.89) will belong to this class, if only a finite number of rotation
parameters a;’s are non-zero. But if we turn on arbitrary (though finite) number of a;’s, it
turns out that explicit computation is very tedious for this complicated metric. So we have
used Mathematica (version 9.0) here and to be explicit we have used two non-zero rotation
parameters. We have first checked that this velocity field and the extrinsic curvature of the
membrane do satisfy our membrane equation (2.72) up to the required order.

The next job is to check whether the spacetime metric (2.89) matches with equation
(2.70) up to correction of order O (%)Q. Now we know that k 4 is exactly null with respect
to gap. Clearly k4 is the most natural candidate for the null vector O4 we have in our
metric.

Suppose
ka=AO4

where A is some unknown function of 7 at the moment. Now note that the metric (2.89)

will be precisely of the form (2.70) provided we identify

2M 1)’
2 [ = — —D O s
The above equation along with the fact that A is a function of r , will imply that ¢ also

depends only on r. The unit normal to ¢/ = constant slices is then given by
nade? = VF dr

Now O4 n? = 1 implies kyn?* = A. Therefore once we know the explicit expression of

n4, we can fix A. It turns out

A=VF
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2 Large-D membrane paradigm in AdS/dS at leading order

However just identifying {AQ (25) ] with ¢~ P is not enough for the matching of the two
metrics. We also have to see whether these ¢ and O 4 satisfy our subsidiary conditions. The

above identification will be consistent with our subsidiary condition (2.26) provided

“fo () -on

(k- V)ka o< {k,mt(’)(%)], ntky =1

(2.97)

13 Here V is defined with respect to the background metric g4 5 and all raising and lower-
ing of indices have been done using g4p. In Mathematica we have explicitly verified this

condition for two nonzero rotation parameters.

2.9 Discussions

In this chapter, we have used ‘large D’ techniques to find new dynamical ‘black hole’

solutions of Einstein’s equation in presence of cosmological constant. The solutions are

1

D) and are in ‘one-to-one’ correspondence with a dynamical

determined in an expansion in (
membrane (characterized by its shape and a velocity field on it) embedded in the asymptotic
geometry (which could be AdS or dS).

The method we have used is manifestly covariant with respect to this asymptotic geometry
(which we have referred to as ‘background’). We do not need to choose any coordinate
system for the background geometry at any point of our derivation. The same calculation
works for both global AdS and Poincare patch. The form of the final answer also remains
invariant. However, they are different solutions with different asymptotic geometries and
horizon topologies and this fact is encoded in the various covariant derivatives that appear

in the final solution. These covariant derivatives are always defined with respect to the

background.

BWe already know that k 4k = 0. Now as along as n4k? = 1, we could always express k4 as ks =
na —ua suchthatu - u = —1and n - u = 0 everywhere
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2 Large-D membrane paradigm in AdS/dS at leading order

We have applied this method to calculate the metric and the governing equation for the
dual dynamical membrane up to the first subleading correction. Then we have performed
several checks for our universal coordinate independent answer, by specializing to different

coordinate systems.

* We matched them against the known exact and static solutions - Schwarzschild black

hole/brane and Myers-Perry black holes for both asymptotically AdS and dS spaces.

* We have linearized our membrane equations and matched them against the known
spectrum of black hole/brane QNMs in AdS space and black hole QNM:s in dS space.

This linearized analysis is not included in this thesis, see [65] for details.

» We have taken a special scaling limit of our equations and recovered the dual effective
hydrodynamic equations that was determined in [29] for the AdS black branes in large
number of dimensions. This analysis is also not included in this thesis, see [65] for

details.

This calculation has been extended to Einstein-Maxwell system in presence of cosmological

constant in [15].
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Chapter 3

Large-D membrane paradigm in AdS/dS
at subleading order

This chapter is based on [64].

In this chapter, we would like to extend the calculation of chapter 2 to the second sub-
leading order. The key motivation is two-fold. Firstly, from the result of chapter 2, we
know that at the first subleading order the background curvature does not appear explicitly
in any of the equation or the solution. However, it should appear explicitly at second sub-
leading order (which, very roughly speaking, captures the effect of two derivatives on the
background). Secondly, from the experience of the ‘flat space computation’, it is expected
that at this order, we should see the entropy production from a dynamical black hole.

However, in this chapter, we shall confine ourselves only to the computation of the
membrane equation of motion and the metric correction up to the second subleading order
in (%) expansion. We leave the ‘study of entropy production’ for future.

The organization of this chapter is as follows. In section 3.1, we have described the
basic set-up of our problem in terms of equations and also the final result for the metric
corrections and the membrane equations. Next in section 3.2, we have given a sketch of
the computation, which turns out to be quite tedious in this case. Many of the details we
have collected in the appendices. In section 3.3, we have performed several checks of our

results. Finally in section 3.4, we end with some discussions and future directions.
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3 Large-D membrane paradigm in AdS/dS at subleading order

3.1 Set up and final result

In this section, we shall briefly define the basic set-up of our problem in terms of equations.
It is essentially an extension of section 2.1. So we shall be very brief here.
Our aim is to solve Einstein’s equation (2.18) up to second subleading order in + ex-

D

pansion. Schematically our solution will take the form

Gap ZgAB+GE£])3+ <%) G(Alj)g (%>2Gf])3+... (3.1)
Here g 4p is the background metric and G(X}B is the leading ansatz given by (2.16). We shall
determine the metric corrections in terms of ¢ and O 4 (defined in subsection 2.5.2) and
their derivatives.

As we have discussed in chapter 2, Einstein’s equation could be solved provided the
extrinsic curvature of the ¢ = 1 hypersurface (viewed as a hypersurface embedded in the
background spacetime) and the velocity field u* together satisfy some constraint equations
on the horizon. We have determined the form of the constraint equation at the leading order
in chapter 2. The constraint equation at the leading order is given by eq.(2.61) and eq.(2.65).

Here, we are just rewriting the equation

, [V, V.K N _ 1 _ 1
P K +uaICV—(u-V)uV}—O(E), V-U—O(B> (3.2)

where P, = g,(ff 4

+ Uy

Here g,(f,f 9 denotes the induced metric on the membrane (¢» = 1 hypersurface) and V is the

covariant derivative with respect to gfff ) The velocity field u,, is the pull back of the bulk

velocity field u4 and K, is the pull back of the extrinsic curvature of the membrane onto

the hypersurface (see eq.(2.62) for definitions) and /C is the trace of the extrinsic curvature.
As discussed in chapter 2, for every solution of the above constraint equations we could

determine GS}B. It turns out that G(Algg simply vanishes given our choice of subsidiary con-

ditions.
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3 Large-D membrane paradigm in AdS/dS at subleading order

In this chapter our goal is to find corrections to equation (3.2) to the next order in (%)

expansion and also Gf}g.

But before getting into any details of the computation, we shall first present our final
result i.e., the subleading correction to the membrane equation (3.2) and the second sub-

leading order metric correction Gf}g. The metric correction would take the following form.

2
Gl = [OAOB (Z fa(R) sn) +#(R) tap + v(R) (0405 + 0504)
n=1
where R= D(1) — 1), Pap = gap — nanp + uaup 3.3)

and, nAUA:uAUA:O, nAtAB:uAtAB:O, gABfABZO

where,
_ K \Y \Y
tap = PEP]? {RFCDEOEOF + 5 (KCD _ Vclp ;_ DUC>
— PPP(Kgo — Vigue)(Krp — @FUD)}
K _ K? (VK .
by = P} D (nDuEOFRFBDE) + 22 ( 2 + (u-V)ug — 2 uDKDB)

ViK K .
—PFD< g — B(UEKEF>> (KDB_VDUB>]

. 2 .
E, F._D Cp u-VK VaK

= R,

§p=u"u nn CEFD+< 74 )+ %

4uPK4 -2 [(u -V)u?

— (Vaug)(VAE) — (- K u)? — [(u - @)uA} [(u- V)ud] + 2 [(u - @)uﬂ (WP Kpa)

. . . 2
k[ K (u- VK Vak\ 5.4 [u VK
52—ﬁl—ﬁ< e —u~K~u>—2/\—(u~K~K~u)—|—2< e )u Kg — e

u- VK VPK\ [ VpK _
+2< 7 )(uKu)—( e >( 2 )—(u-K-u)2+anDuEuFRFBDE

(3.4)
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3 Large-D membrane paradigm in AdS/dS at subleading order

Where, Rapcp is the Riemann tensor! of the background metric g4z and V is defined as

follows: for any general tensor with n indices W4, 4,...4,

@AWAlAQ"'An = Hg Hgiﬂii o Hg: (VCW0102...CH> , with Il 5 = gAB — NANB
HR) = 2 D 2/"" y dy
B K r €e—1
D 3 ) T yey " 0 T yey
R e — — e — 3.6
v(R) (K) [/R e d:v/o ey—ldy e /0 e dx/o ey—ldy} (3.6)
D\? [ D\? [
= 2= “Tdr +2e (= —d
fi(R) <K) /R re “dr+2e (K>/o e dr
_(D ® e [T ) = [T /x v(y)
f2(R) = (K) [/R e d:v/o 1_6_ydy—e /0 e “dx i 1_e_ydy
D 4 0 z 2 -y 0 z 2 —y
- = / e“dx/ ye dy—eR/ exdx/ y° dy
K R o 1—e¥ 0 o 1—e¥

As we can see that our solution is parametrized by the shape of the constant 1) hypersurfaces

(3.5)

(3.7)

(encoded in its extrinsic curvature K 4 3) along with the velocity field u*. However, because
of our subsidiary conditions if we know K 45 and u* along one constant 1 hypersurface,
they are determined everywhere else. In this sense, the real data in our class of solutions
are to be provided only along one simple surface; the most natural choice of which is the
horizon or the hypersurface ¢/ = 1.

As we have mentioned before, we cannot choose any arbitrary shape of the membrane
and velocity field as our initial data. The metric, presented above, would solve Einstein’s

equation (2.18) only if the data satisfy some constraint - the equation (3.2) with subleading

! Riemann tensor is defined by the relation

[Va,Vplwe = Rpdwp
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3 Large-D membrane paradigm in AdS/dS at subleading order

corrections.
Vu, VK _ N WPk VNV?%u, (VoK) (u-VK)
T K —i—uﬁnga—u-Vua] P+ | - i + I i3
(VK (VPus)  2K%V;Veu, Vi VK N Vo (KssKPK) N 3(u K u)(u - V)
K? K K3 K3 K
(u- K -u)(u’Kga) (u-VE)(u- Vug) (u- VK) (v’ Ksa) u - Vg,
3 e 6 2 +6 2 +3 D3
WKgo (D=1 (VoK , _ . 1\°
_3D—3_ e ( i —2ulCaa+2(u-V)ua> PV_O(E)
_ 1 - _ 1)°
Vou— oo (Viaug Vus PPP*?) = O (5)

(3.8)

Where V is the covariant derivative with respect to g,(ff d), the induced metric on ¢y = 1

hypersurface. K, and u,, are defined in (2.62). V 4ug is defined as

V(QUg) = ?au/g + ?5ua
3.2 Sketch of the computation

It turns out that though the computation to determine the second order metric correction
is tedious, conceptually it is a straightforward extension of what has been done in chapter
2. Therefore in this section, we shall omit most of the derivations and mention only those
where there are some differences from 2.

We shall follow the same convention as in chapter 2. In particular our choice of gauge

is also the same, namely

0FGG, =0
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3 Large-D membrane paradigm in AdS/dS at subleading order

With this gauge choice the second order correction could be parametrized as

GG = (OAOB Z fu(R) 5, + %PAB D hn(R) sp+ > ta(R

+ Zvn 0,]40p + [b ]BOA)> (3.9)

where, R= D(¢) — 1), Pap = gap —nanp + uaupg

and, nA[tJ la= uA[ v,]a =0, nA[tn]AB = uA[tn]AB =0, gAB[tn]AB =0
Here s, [0,]4, [t.]ap are different independent scalar, vector and tensor structures, con-
structed out of the membrane data.
Evaluating Einstein’s equation (2.18) on [Gap = gap + G + (5) GY4h + (5)°G5L + O (3) }
up to order O(1), we get a set of coupled, ordinary but inhomogeneous differential equa-

tion for the unknown functions in equation (3.9). Boundary conditions for these differential

equations are set by the following physical conditions.

1. The surface (1) = 1) or (R = 0) is the event horizon and therefore a null hypersurface

to all orders.
2. u? is the null generator of this event horizon to all orders.

3. Bulk metric G 4 to all orders approaches g5 as R — oo.

These conditions translate to the following constraints on the unknown functions.

fn(R=0)=v,(R=0)=0, h,(R=0)=t,(R=0)= finite,
3.10
lim f,(R) = lim h,(R) = lim v,(R) = lim t,(R) =0 (10

R—o0 R—o0 R—o0 R—o0
The homogeneous part H 45 (i.e., the part that acts like a differential operator on the
space of unknown functions appearing in Gf}g) is universal. It will have the same form as

in the ‘first order’ calculation and we do not need to recalculate it. For convenience, here

we shall quote the results for the homogeneous part as derived in chapter 2.

Hup = HY0,0p5 + H® J(naO0p +np0,) + H®nunpg + H" Pyp
3.11)
+ (0aP§ +0pPS) HSY + (naP§ + npP§) HY? + H)
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3 Large-D membrane paradigm in AdS/dS at subleading order

where
N? V v, N?
H(l):—— 1—e® an (f+ 1) *RZ Un +—me” Bl —eF anh/
" ! (V ) Un) / —-R /
T;sn(fn+fn)+5; D vn—je gsnhn
2
H® = N s, h!
2 ~ "
H") =0
(V1) N? —-R "
B =~ S (1= e ) S (0l + 0 [oule
Hév2)— 9 Z(v;{—i—v C+_Zt VD
N2
Hip === > [l —e™) + 1] [tu)as
(3.12)
Here for any R dependent function, X'(R) denotes dg{R).

The ‘source’ parts of these equations are determined by evaluating the Einstein’s equa-
tion on the first order corrected metric. By construction the order O(D?) and order O(D)
pieces of these equations will vanish and first non-zero contribution, relevant for the com-
putation of this chapter , will be of O(1).

From the above discussion it follows that the key part of the computation is to determine
the source term, which we denote here by S45. Since GS}B vanishes, just like in chapter
2, here also the source will be given by F4p calculated on (g AB + G(j])g), however the
complication lies in the fact that the calculation has to be carried out up to order O(1).

Here we are presenting the final result for the source. See appendix B.1 for the details. For
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3 Large-D membrane paradigm in AdS/dS at subleading order

convenience, we shall decompose S4p into its different components.

SAB = S(l)OAOB + S(Z)(TLAOB + nBOA) + 5(3)nAnB + S(tT)PAB
+ (04PS + 0pPS) SEY + (naP§ +npP§) S5 + S

where OASI(Q = nAng =0, SQJB)PAB =0 and Pap = gap + usup — nang
(3.13)

The explicit expression for the different components are the following.

K R2\ [/ D\? e 2R\ /.
(1) — —2R scalar -R 2R —2R o . Jyvector
S =e (—2)E + (e e )8 +e (—2><—K) 59 R( 5 >(v E >R:O

K e it . R? D?
(2) _ R _ o scalar . R . -R [ " -
o ‘ [ 51+<2)E :|R=0 R( 2 )(V E>R:0+e <2)[(K2)52]R:0

v _ " D () _ R
S¢t = N KEF™ -2 R (g) 001 , Sap=¢€ "tap
§® =gt =0, sY¥ =0
(3.14)
Where
A 1 A A
pealar — (v : u> ’ ~ 3% [V(AUB)V(CuD)PBCPAD} (3.15)
P=1
.y S )
Eger = [ ]?A - V;} +uPKpy—u- VUA:| P4
~ uPKppKR N V2V, (VaEK)(u-VEK)  (VBK)(VPu,)
K K3 K3 K2
_2KPEVpVgus  VaVEK N Va(KppKPPK) N NURLSSOICE Vuy)
K2 K3 K3 K
B 3(u K -u)(u®Kpa) 6(u -VEK)(u-Vuy) N 6(u -VK)(uPKpa)
K K? K?
u-@uA uPKpy (D—1)) @AK D N N
— — —2u” K 2(u - P
+3D—3 3D—3 K2 K u DA+ (U V)UA C
(3.16)
See equation (3.4) for the definitions of 51, 59, V¢, t4B.
V is defined as follows: for any general tensor with n indices Wiy, 4,...4,,
VaWaaya, = G TG - TG (VeWeye,-0,) (3.17)
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3 Large-D membrane paradigm in AdS/dS at subleading order

The final set of coupled differential equations that we have to solve is simply
Hap+ Sag =0 (3.18)

As explained in chapter 2, the homogeneous part H,p5 could be decoupled after taking
its appropriate projection on different directions. Similar projections applied on S,5 will
generate the sources for the scalar, vector, tensor and the trace sectors.

However, just as in the first order calculation, there is an ‘integrability’ condition. Note
that H(") and H, évl) vanish at R = 0? . Hence consistency demands that S(!) and S(Cvl)
should also vanish on R = 0. In other words, these set of equations could be consistently
solved only if on the horizon the velocity field u 4 and the extrinsic curvature of the ) = 1
membrane (viewed as a hypersurface embedded in the background) together satisfy the

following equations.

K
S<1)|R:O _ (3) Elscalarle0 =0
P (3.19)
S(CW)‘R:O _ (3) Egctor‘Rzo —0

By appropriate pull-back these equations could be recast as an intrinsic equation on the
hypersurface and they generate the next order correction to the constraint equation (3.2).
We have described them in equations (3.8).

Once the constraint equations are satisfied, we could see that in the source S4p5 only
two scalar structures (s; and s5), one vector structure (v) and one tensor structure (t43)
appear. So altogether we have 6 unknown functions (2 functions for the scalar sector, 2 in
the trace sector, 1 in the vector sector and 1 in the tensor sector).

The decoupled ODE:s for different unknown metric functions:

» Scalar sector:

For h,(R): H® +8® =0  for f,(R): HY +5M =0, n=1,2

2To see the vanishing of H(!) at R = 0 we have to use the fact that v,,(R) vanishes at R = 0 as a
consequence of our boundary condition. See equation (3.10)
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3 Large-D membrane paradigm in AdS/dS at subleading order

¢ Vector sector:

For v(R): H(Cvl) + S(Cvl) =0

e Tensor sector:

For t(R): Hg‘g + Sg"g =0

Now we shall give the explicit form of the equations sector by sector.

Tensor sector:

Here the explicit form of the equation is as follows

2 D\?
t"1—e )+t = Nz e =2 (—) e (3.20)

We can integrate this equation. After imposing

t(R=0) = finite and lim ¢*(R) =0

R—o0

we find the result as presented in the first equation of (3.6).

Vector sector:

Here the explicit form of the equation is as follows

3
(1— 63)%(&%’) +2 (%) R=0 (3.21)

After imposing
v(R=0)=0 and lim v(R) =0
R—o0

we find the result as presented in the second equation of (3.6).

Trace sector:

The equations for A, (R) is simply given by
N2
— > Hsn =0 (3.22)
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3 Large-D membrane paradigm in AdS/dS at subleading order

Integrating this differential equation with the boundary condition (3.10), we found correc-

tion in the trace sector vanishes i.e., h,,(R) =0

Scalar sector:

The equations for fi(R) and f»(R) are given by

A4

dR

p . Y (3.23)
e B(1 — e IR e f3] = — (?) e B u(R) + (E) R? e72R

To derive the second equation we have used the fact (see appendix B.2.2 for derivation)

V.o
- = 3.24

D 52 ( )
After imposing

fa(R=0)=0 and lim f,(R)=0, n=12
R—oo

we find the result as presented in the third and the fourth equation of (3.6).

3.3 Checks

In this section we shall perform several checks on our calculation. Roughly the checks could
be of two types. The first is the internal consistency of our solutions and the systems of
equations, i.e, to verify that if we simply substitute our solution in the system of equations
(3.18), each and every component of it vanishes up to corrections of order O (%) The
details of it would be presented in subsection 3.3.1.

The second type of checks are the ones where we shall take several limits and match
our results with some answers, known previously. One trivial check in this category that

we have tried on every stage of our computation is to match with the known results in
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3 Large-D membrane paradigm in AdS/dS at subleading order

asymptotically flat case [3], by setting the cosmological constant A to zero. The corrected
constraint equation (3.8) manifestly matches with equation no (4.5) and (4.12) respectively
of [3], if we set A to zero. At this stage it is difficult to match the two metrics even after
setting A to zero, since our subsidiary conditions are different from that of [3] and we leave
it for future.

The other significant check that we have performed is the matching of the spectrum of
linearized fluctuation derived from our constraint equations to that of the Quasi-Normal
modes already calculated in [10]. This linearized calculation is not included in this thesis,

see [64] for details.

3.3.1 Check for internal consistency

In this subsection, we shall explicitly verify that our solution for the metric along with the
membrane equations constraining the membrane data, does satisfy equation (3.18) i.e., each
of its components vanishes up to corrections of order O (%)

Let £45 denote the LHS of equation (3.18).
5,43 = Hup+ SAB

From the list of the decoupled ODEs (see the discussion below equation (3.18)) it is clear
that the 4 of the 7 independent components of £, 5 must be satisfied since we have solved

for the metric functions by integrating them. These components are

/ E
UAUBEAB, OAOBEAB, UAngAC, ngg |:(€CC/ — <m) PC'C’:|

where £ denotes the projected trace of E45 i.e., £ = PABE,p
From the explicit expressions of H 4 it is clear that uAH pgu? = HY and v H Ach =
H g/l) vanish at ¢ = 1 and membrane equations ensure that the same is true for the source.

As explained in chapter 2, if we consider ‘the variation of the metric as we go away from
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3 Large-D membrane paradigm in AdS/dS at subleading order

the horizon’ as ‘dynamics’, then the membrane equations play the role of ‘constraint equa-
tions’, whereas the equations we solved to determine the metric corrections are like the
‘dynamical’ ones. Now in any theory of gravity, it is enough to solve the ‘dynamical equa-
tions’ everywhere and the constraint equation only along one constant ‘time slice’ (in our
case which would be a constant v slice); gauge invariance will ensure that the full set of
equations are solved everywhere [68]. This theorem guarantees that the rest of the three
independent components of €45 must vanish provided we have solved the equations cor-

rectly. These components are
urOBE = H® 1 5@ = g@
%PABEAB — g 4 gn) = g(r)
OAPSEsc = HY? + S5 = &5
Therefore the fact that these components do vanish on our solution is an important consis-

tency check of our whole procedure and the final answer. Computationally it turns out to

be quite non-trivial. In fact we have to take help from Mathematica to prove them.
Vanishing of £?)
From eq (3.12) it follows that
(2) 1 K 2 2 eiR K V * U
H B el " = h/ o v v /
(5) X (en ) < (5) (55

1 (K\? 1 (K
3 () e () w e+ m+v)

rg L (KN, e (D 3R%—R+,
=e —| = - v — v
YTo\D)P| 1—ekR K) 1—¢R

(3.25)

Here we have used the fact that metric correction in the trace sector (i.e., h,(R)) vanishes.

Also we have used equation (3.24) for the divergence of v and the last three equations
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3 Large-D membrane paradigm in AdS/dS at subleading order

from (3.6) for the expressions of f,,(R) and v(R).

From equation (3.14) we could see that H®) is exactly the minus of S as required.
Vanishing of £(")

This follows trivially from (3.14) and (3.12), as both S®") and H ") vanish at this order.
Vanishing of £ ](3V2)

From equation (3.14) we see that S(CVZ) = 0, therefore HéVZ) should also vanish on our

solution. The equation below checks that this is true.

(5) 2 (V" +v") v + E (5) t (Votc)

Hév2)

D 2\ D D
K KN o on v (3.26)
<5) |:<5) ('U +'U)+t:|bc

In the second line we have used the identity (see Appendix B.2.1 for the derivation),

S Nl N

Vp (t&) = Dvc (3.27)

In the last line we have used the first and the second equation of (3.6) for the expressions

of v(R) and t(R).
3.4 Discussions

In this chapter, we have found new dynamical ‘black hole’ type solutions of the Einstein’s
equation in presence of cosmological constant in an expansion in the inverse powers of
dimension. We have done the calculation up to second subleading order. The spacetime,
determined here, will necessarily possess an event horizon. The dynamics of the horizon
could be mapped to the dynamics of a velocity field on a dynamical membrane, embedded
in the asymptotic background. We have determined the equation for this dual dynamics of

the membrane and the velocity field also in an expansion in (%) .
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3 Large-D membrane paradigm in AdS/dS at subleading order

As a check we have matched the spectrum of the Quasi-Normal modes. This matching
is not included in this thesis, see [64] for details. Another important check would be to
match the metric with the large dimension limit of known black hole solutions. Apart from
just a check on our results, this exercise could also give hints to some exact but non-trivial
solutions of our membrane equations. This might lead to some techniques to solve the
membrane equation analytically.

As we have mentioned in the introduction, one of our key motivation for this second
subleading calculation is to have some insight in entropy production, which is expected to
take place only at this order. Calculation of this entropy production could be one interesting

project.
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Chapter 4

Stress tensor for large-/) membrane at sub-
leading order

This chapter is based on [71].

4.1 Introduction

As mentioned in the introduction 1.2, here our main goal is to compute membrane stress
tensor up to second subleading order in % expansion. In our case, the membrane, which is a
codimension-one hypersurface, is embedded in AdS/ dS space. More precisely, the metric

of the embedding space satisfies the following equation

R—A
Rap — (T) Gap =0

Where, dimension(D) dependence of A is parametrized as follows
A=[(D—-1)(D-2)Jx A~O(1)

The membrane is characterized by its shape (encoded in its extrinsic curvature k)
and a velocity field (u,), unit normalized with respect to the induced metric of the mem-
brane. Before going into any details of the computation, we will first give the final answer.
The membrane stress tensor, that we report below, is a symmetric two-indexed tensor, con-

structed out of this velocity field, extrinsic curvature and its derivatives.

4.1.1 Final Result

In this subsection, we shall write our final result - the expression of the membrane stress

tensor up to order O (%) Conservation of this stress tensor would give the membrane
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4 Stress tensor for large-D membrane at subleading order

equation derived in Chapter 3. For convenience, we shall decompose the stress tensor in

the following way

87T, = Sy uutt, +So gD 1V, wy, +V, w, + W, 4.1)

uv

Where,

2 "2\ k2 7K K K
/3 . . _ _
+2u”lCag<vTK>+14 (u ,CWC)(u-IC-u)—E(u VK)JF%(u-IC-u)JriV?(V%)

K 1<v2/c D—1

2
Si=%+ A —%lca/s/caﬂ)+1{—u./c.zc-u—13(“'v’c>

D K K3

A v wAe 2
—4(u-l€~u)2—8)\% (u ]CVIC)+4/\%(U'IC~U)—2(VI%K><VKK)+A—A2%}
V.K

—l—%(?Zeta[S]—l)[—&(% i >U5K§

D

B (u'le}C)z—l_Q(u.lCV’C) (0 K ) (v;m)(vg) —(u-lC-u)Z]

1 1 1 (u-VK 1 K
e Kw) — — ket K.
Sz = =5 (- Kou) = 52 K Kag IC( K 2 2D

1 2 1V3K  V2u
= ko _Z ap( 2 VBNV UB
+ i KCP(V qup) e UK (2 i e )

—u-lC~u>—)\—u-lC~lC-u—|—2(

K K K3
u- VK D IC) 1 (vulc

1/V,.K & 1 1 -, = 1- VK
Vu:§(vu )_(V u“)—i——/Cz/Ca@uﬂ——VQ(VQUu)-l— vu(u \Y, )

—2u-K-u)+4 +2A—= — =

K K D

N
<}
S| L
=
N——
7N

= 1 1 - _
iy + Vyuy,) — © K (uw-K-u)+ K (Vauu, + Vou,) (u-K - u)

1
5 (
1 [o (Viu, _ (Vu, - - - (V.K
+R|:V'LL< K >+Vl,< K >+V“(u ICCW)—FVV(U ICW)—QVM< K )}
1. _ 1 (V3u,\ [ V3u,
_E(v UM)(VQUV)_E( K#)( K >

Here, g/

4.4)
is the induced metric on the membrane, ?u is the covariant derivative with

respect to gfff 9 Membrane velocity u,, can also be viewed as a vector field u4 in the full
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4 Stress tensor for large-D membrane at subleading order

background spacetime. u,, is related to u4 through the following equation

0x4
U, = ( yr > Uy 4.5)

Where, X* are the coordinates in the full spacetime and y* are the coordinates on the
membrane world volume.

The extrinsic curvature of the membrane K, is defined as follows

OXA\ [(0X5B
L= = K Where, K p =119 4.6
Ky (ay“ ) ( oy ) AB» ere, Kap =13Veng (4.6)

Here, n 4 is the normal to the membrane and 11,5 is the projector orthogonal to the mem-

brane defined as [I4p = gap — nang.

4.1.2 Strategy

The two key principles that fix this stress tensor are the following

 Conservation of the stress tensor should reproduce the membrane equation up to the

relevant order.

* This stress tensor should be the source of the gravitational radiation, generated from

the massive fluctuating membrane.

In fact, it is the second principle that finally determines the algorithm to be used to derive
the stress tensor. The algorithm is such that the first principle is automatically ensured and
we have used it in the end as a consistency check for our long calculation.

Below, we shall just write down the steps to be used so that the final construction is
consistent with the second principle. However, we shall not write the justification for any
ofthese steps as they are explained in detail in [4] and explanation is completely independent

of the order in terms of % expansion.
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4 Stress tensor for large-D membrane at subleading order

+ Step-1: Codimension-one membrane is given by a single scalar equation ¢ = 1.
Define ¢ > 1 region as ‘ outside of the membrane’ and ¢y < 1 as ‘ inside of the
membrane’. ‘Outside region’ is the one that extends towards asymptotic infinity and

contains the gravitational radiation.

 Step-2: Next, we would like to write a spacetime metric for both outside and inside

region, with the following properties.
1. The metric would solve Einstein’s equation (in presence of cosmological con-
stant) linearized around pure AdS/dS metric.

2. The metric would fall off as ¢y~ % in the outside region and would be regular in

the inside region.
3. The metric should be continuous across the membrane though its first normal

derivative need not be.

It turns out that in % expansion, the above two conditions uniquely fix the metric on
both sides, in terms of the induced metric on the membrane, which we read off from

the large-D metric determined in Chapter 3.

* Step-3: Once we have determined the metric on both sides, the discontinuity of its
normal derivative across the membrane is also fixed unambiguously. The conserved
stress tensor associated with the membrane is computed from this discontinuity. More
precisely, it is the difference between the two Brown York stress tensors on the mem-

brane evaluated with respect to the inside and outside metric.
Tap =TSy — Ti3" (4.7)
Here,
8nTiy = Ky — K™y and, 8nTi5" = K" — KOpl) @.8)
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4 Stress tensor for large-D membrane at subleading order

are respectively the Brown York stress tensors of internal solution and external solu-

tion evaluated on the membrane. K Xg) and p(j? are respectively extrinsic curvature

and projector on to the membrane viewed as a submanifold of the background space-

time perturbed by the internal solution. Similarly, Kf:;t) and pfgt) are respectively

extrinsic curvature and projector on to the membrane viewed as a submanifold of the

background spacetime perturbed by the external solution. T and T both satis-
plout/in)

fies n47T, = 0. So, T'ap can equally well be regarded as a tensor 7, that lives

on the membrane world volume.

Calculationally, this is very lengthy. In the main text, we have just written the final re-
sults, most of the lengthy derivations are in the appendices. The organization of this chapter
is as follows: In section 4.2 we have linearized the Large - D solution known up to sublead-
ing order and have changed the gauge and subsidiary condition (as discussed just below
€q.(4.9)). In section 4.3 we have constructed a linearized solution of Einstein’s equation in
the inside region of the membrane. In section 4.4 we have calculated the membrane stress
tensor and in the section 4.5 we have shown that the subleading order membrane equation

follows from the conservation of this stress tensor.

4.2 Linearized Solution : Outside(y > 1)

In this section, we shall work out the metric in the outside region. However, what we
are finally interested in is just the difference between Brown York stress tensor across the
membrane. To compute it, we need to know the metric only very near the membrane.
The large D solution as described in Chapter 3, already determined the metric in this near
membrane region even at non-linear order. For our purpose, we shall simply read off the
‘outside metric’ from Chapter 3. In fact, we have to pick out only the part that is enough to

solve the linearized equations. In other words, we need only that part of the metric which
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4 Stress tensor for large-D membrane at subleading order

could be recast as

Gy = gap + ¥ Phap = gap + v "> (& — )"hTY (4.9)

m=0

In the first subsection, we have described the large-D solution and read off the piece needed.
The main calculation of this section involves a change of gauge and ‘subsidiary condi-
tions’ (conventions that fix how the basic fields would evolve away from the membrane,
see Chapter 2 for more details). In the next two subsections, we have described the new set
of conventions, that are more useful for our purpose and performed the required changes
on the metric, read off in the first subsection. Needless to say, all steps are worked out in

1
L

an expansion in

4.2.1 Large-D Metric up to sub-subleading order : Linearized

In this subsection, we will just quote the solution of Einstein’s equation up to second sub-
leading order in % expansion as derived in chapter 3 and we will linearize the solution in

1)~P. The solution is given by

1 2
Gan :gAB+¢_DOAOB—|— (5) ij)g-i- (4.10)

Here, g4p is the background metric and O 4 = ng4 — u 4.

GE42)B = OAOB (fl(R) 51+ fg(R) 52) + t(R) tAB + ’U(R) ( UAOB + DBOA>
where R = D(¢ — 1), Pap = gap — nanp + uaug (4.11)

and, nAUA:quA:O, nAtAB:uAtAB:O, gABfABZO
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Where,
Ry = —2(2 2/00 y dy
B K r e/—1
D3 oo_w xyey n oo_w a:yey
v(R) = (?) {/R e d:c/o 6y_1dy —e /0 e d:v/o ey—ldy}
D 2 roo . - D 2 oo .
fi(R) = =2 (E) /R re dr+2e " (E) /0 xe “dx (4.12)
_(D I () R/OO - /x v(y)
f2(R) = <K> /R e d:z:/o 1_€_ydy e i e “dx i 1_€_ydy
0 x 2 -y 0 x 2 -y
/ e_’”dx/ J e dy—e_R/ e_’”dx/ y e dy]
R o 1—e¥ 0 0 1—e™¥

And,

~

_ K Vcou +@ U
tAB:PEPéD[RFCDEOEOF+5(KCD_ St 5 D C)

— PPE(Kpe — ﬁEuCXKFD — @FUDﬂ

2D? K

K _ K% (VK )
by =P} [5 (n"u”OF Rpppr) + = <L + (u-V)ug —2 uDKDB>
VK K )
_PFD (%_E(UEKEF)> <KDB_VDUB>:|

. 2 .
_ VK K . AK
61 = uPufnPn® Reprp + (u ; > + A {4 uBKﬁ -2 [(u . V)UA] — Vv }

— (Vaup)(VAuP) = (u- K -u)? = [(u- V)ua] [(u- V)ul] +2 [(u : @)uﬂ (WP Kpa)

~ o 2
(“';K—u-z{-u) —2A—(u-K-K-u)+2(v2K>uBKg‘—(“'VK)

“h .
> (u-K-u)— (VKK) (V;K) —(u- K- u)2 +7”LBTLDUEUFRFBDE:|

(4.13)

73



4 Stress tensor for large-D membrane at subleading order

Here, Rapcp is the Riemann tensor of the background metric g4 and V is defined through

the following equation - for a generic n-index tensor W4, 4,...4,
o C177C Ch
VaWaagea, = DGOGTE - TV We, 0,0 (4.14)

We want the sub-subleading order metric in linearized order in ¥~". So, we need to
calculate the above integration (4.12) in linearized order in ¢»~". The answers are the fol-

lowing. See C.1 for details.

) (4.15)
fi(R) = —2 <E) Re 40 (e7?)
4

f2(R) = (—) e (2 Zeta[3] — 1) + O(e?H)

Using (4.15), we can write the full metric G 45 as

Gap = +17"0,40 +w_DL -2 2 2(R+1)t -2 2 2R 040
AB = JAB AUB D2 K AB I% 51 UaUp

D\* D\* R?
+2 (E) (2 Zeta[3] — 1) 52 040p + 2 (E) (1 + R+ 7) (0405 + UBOA)]

1 D? D
= gup + w_D |:OAOB + E{QE (2 Zeta[3] — 1)520,403 —2tap + 2?(0,403 + UBOA) }:|

1 D
+ Ry P— [—2 tap — 25, 040p +2 (?) (0405 + UBOA)}

K2
5 1 D 1 _
+ R? w Dﬁ (g) ( v40p + UBOA) +0 <ﬁ,’¢ 2D)
(4.16)
Now, if we write G 45 as
Gap = gap + ¥ PMag = gap + 00y (¥ — 1)" M) (4.17)

n=0
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We will get

MY = 0,405 + % |~ tan+ (%)2 (2 Zeta[3] — 1) $:0405 + %(UAOB Fos0.)] + (9(%)3
MS}; = _%[tAB + 5, 0405 — %( 0,05 +UBOA)] n O(%)z

M = (%) (0405 +0504) + (9(%)

(4.18)

4.2.2 Change of Gauge Condition

Large-D solution (Chapter 2 and Chapter 3) has been derived in the gauge condition O4h 45 =
0. But it turns out that, for the calculation of the stress tensor, it is more convenient to use
the gauge condition n*h 45 = 0. In this subsection, we will implement this gauge transfor-

mation.

Gap = gaB + wiDMAB (4.19)

We do the following infinitesimal coordinate transformation
gt = 2/ =g — P Y (4.20)
Under the above coordinate transformation, metric transforms as follows

up(@") = Gap(r') + Vi [V €p(2)] + Vi [077€a ()] (4.21)

Now, using (4.17), we get

Mg = Map + 9PV [0 8] + 4"V [9774] (4.22)

We choose the coordinate transformation in a way such that n*M’, ; = 0. Now using the

expansion §4 =y~ (¢ — 1)”51(4") we get

—n* Z DM =P (V) [P > (- 1)mel”
m=0

=0

+PnVy [wD > (@

=0
(4.23)
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Now, using the following decomposition

© _ .00 , L, 01 1 02) T (03 1\*
B =¢&p +_53 +—253 D3€ '+ 0 D

3
m §§°)+ 5(11) 5(12) (%) (424)

2
2 2,0 2,1

from (4.23), we can determine fﬁlm’") order by order in % expansion in terms of Mgg. See

Appendix C.2 for details. Different components of §g) become

&5 =0
ey 1T 4@ . a1 NB o " (4.25)
£y =% [n Mz +n MAB—7(n-M “n+n-M n)]
Different components of §](31) become
& =0
1
§g’1) =~ [nAMS;: + nAMgg - 7173 (n- MY 4 MO n)]
1 1 (4.26)
&% = [0V + (- VIR | + - [ Vel + 0t VY]
+2 5533’1) + fg’l) — 7}\7_3 [nA(n V)£(1 Dyn (n V)€ ©0.1) ]
Different components of 5](_3) become
5" =0
{9 = L [ =2 o100
N L 2
1 n (4.27)
65 = < [0 Ve + 0 el + e = 22 [nt - el
1
&Y = < [ V)ER? + Vel + 5P - B2 [t (n - W)El?|

Using (4.25), (4.26) and (4.27) we can calculate M, 5 from (4.22). We expect the final

answer to be fully projected and that is what we get. See Appendix C.2 for details.

M, =1sné {Mgg, + (= 1)MEL, + (v — 1)2Mé2();,} + VAW 4 Ve
(4.28)

3
+ (6= 1) (Vagh + Viel)) +0 (%)

76



4 Stress tensor for large-D membrane at subleading order

Using (4.18), (C.53) and (C.54) we can finally write M, ; as

My = (& —1)" M (4.29)
Where,
1 VK VK . .
M,EL&);:UAUB"'Q/JK[UA [B; up ;} —i—KAB—VBUA—VAUB}
2 D? D
+ ﬁ [ —tup + ﬁ (2 Zeta[S] — 1)52 UAUB — E(UAUB + UBUA)]
1 (n-V)K VsK . . /n-VK
+ﬁ[_—[( <4’LLA K —{—KAB—QVB’LLA>+2’LLAVB< K >
- E VpK E C
—|—VB{u KAE—(n-V)uA}—2 7 {u KAE—HA(n-V)uC}
1 n-VK VK . . /n-VK
+ﬁ|:_ K <4u3 % +KAB—2VAUB>+QUBVA( )
R VK 1\3
+Va {uEKBE—(n-V)uB}—Z ;} {uEKBE—Hg(n-V)uc}} +O<E>
(4.30)
2D D
M’S)B:__2|:tAB + 5 UAUB+—(UAUB+UBUA)]
K K 431)
1 Vi K VA K . . 2 '
+E[UAV_Z UBV;} "‘KAB_VBUA_VAUB} +@<5)

4.2.3 Change of Subsidiary Condition

M’ (Xg can not yet be identified with hg’g - we have used in the calculation of the stress
tensor. Because, we have imposed the condition IISII% (n.V)h(C”g/ = 0 on hg’g,. We
will expand M’ %3) in a power series expansion in (¢ — 1) and will determine different
coefficients by satisfying T1GT1¢ (n.V)h(CmC)/ = 0.

We define 'Y, in the following way such that TISTIS (n. V)R ), = 0

Wil = My — (¥ = 1)Clip — (¥ = D’y + Oy = 1)° (432)

Acting on the above equation by I1GT1% (n.V) and them equating the coefficient of () —1)°
we get
1

c®) = Nngngm.vw@g, (4.33)
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Equating the coefficient of () — 1) we get

1
Egen = =537 12118 (n. V) Ol (4.34)

The final form form of h(ﬂ; on 1) = 1 takes the following form. See Appendix C.2.1 for

details

R = 8O wyup + uaHY + upHY + W) (4.35)
Where
2 (u-V)K\’ VPK (u-V)K
O 1~ |y K-K-u—sg[ V) _o,B DK (VR
S 1 KQ[U K-K-u—3 % > 2u KBD< % +2u-K-u I
K((u-V)K\ K
2 K ((u-V)K VAK\ 5.4
+ﬁ(226ta[3]—1){—5<T—U-K-u)—)\—u-K-K-u—i—Q( 7 )u Kp
(- V)EN? (u- VK _ (VPK\ (VpK\ )
( % +2 7 (u- K -u) 7 7 (u- K -u)
(4.36)
© 1 (VaK\ 2. (VPK\ 2 . (VeK\ 2 /op VeK
HA—K(K)+ Vil ) e () e (Vi) (TR

e P\ K K K 2D
(4.37)
1 N .
WIE}O;} e [KAB — Vup — VBUA]

2 (u-V)K 2 % (u- VK
_EKAB[—K —u-K-u} K2<VAUB+VBUA> {ﬁ_2T+u'K'u
+ﬁK§KFB e (KAVFUB+KBVFUA>+ (V )(VFUB)‘Fﬁ( KA)( KB)

2 ﬁAK VBK 2 VAK E V K\ g
+ﬁ< K )( K >_ﬁ{( K ) Kgp + % )u KEA}

V2u
+ﬁ [VA (u KEB)"’VB (u KEA — |i ) ( A):|
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Now, h(Al}_; on the surface ) = 1 becomes
iy = M), + ) (4.39)

The final form form of h!{), on 1) = 1 takes the following form. See Appendix C.2.1 for

details
hill)B = S( ) Usupg + UAHB + UBHA) + WAB (440)
Where
D
S _ g (ﬁ) (4.41)
D (Vu D (ViK (u-V)K D
(1) A A
_ Y Rl 5 T oK o — )\ =
o K(K)H@(Kﬂ 5 DR gk AK}
D (V2uy, (u-V)K D K
- —-12—— K u—2\N—+2—
+K2< e >[ % +6u U K+ D
D VBK VoK
et () o) o () 1)
(4.42)
D K D [V2K D7 /- A D
W/(“%:?{u - “_5] Rap + 5 {K? _AE] (Vaun+Via) + 555 KK
D D

e <KA Vrug + K& VFuA> +2 % (VFUA> (@FUB>

D (Vun\ [ Viug D 1 VaK\ g VeK\
+2ﬁ< - >( - )+K2KVA(VBK) KQK 2 )u KEB+( e

2 [V () + Vs (V)] + 2 Kv}f{) (@?3> i (ﬁchK) (v;Aﬂ

So, finally, we have brought the large-D solution in the following form

— AMlap —

Gy = gap + U bap = gap + 1~ Z — 1)"hly (4.44)

Where, hfﬂ;,) satisfies nAhX'g =0 and IIAIZ, (n - V)hffg =0
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4.3 Linearized Solution : Inside(y) < 1)

In this section, we shall construct the ‘inside solution’ i.e, the metric for region ¢ < 1. As
we have mentioned before, we want this metric to be regular throughout the ‘inside region’
in order to make sure that the membrane is the sole source of the gravitational radiation in
this system.

Note that the solution presented in Chapter 3 continued to be a solution even when
1 < 1. However, this solution diverges at the location of the black hole, the point where v
approaches zero and also it does not have any discontinuity across the event horizon - the
location of the membrane. Therefore, unlike the ‘outside solution’ we have to construct the
inside solution from scratch maintaining the regularity and the fact that on the membrane it

reduces to the same induced metric as the one read off from the ‘outside solution’.

We shall write the inside metric in the following form
G4y = gap +bap =gap+ > (¥ —1)"hYy (4.45)
m=0
Where, gap 1s background metric. fz(ﬁg) satisfies the gauge condition nAlNz(A"g = 0. At

linearized order, Christoffel symbol for (4.45) is given by

— 1 y ~ - - N2
oo =180+ 59“ [Vchga + Vgbeer — vC’bBC} +0 (h) (4.46)

e

T4,
Where, fgc is Christoffel symbol of g4p and V4 is covariant derivative with respect to

gan. Now, Ricci tensor is given by
RYY = Rap +Vp [0T5,] — Vi [677))] (4.47)
Where, R 45 is Ricci tensor for g45.
5 A 1 AC’ - % - 1 % 4.48
Pia= 50" [Vabse + Vabac: = Vabser| = 5 Vb (4:48)
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Where, b = ¢"“hacr. So, Ricci tensor for inside region (i) < 1)
(in) _ 7 1 ip_ 1 in_ Loz 1 -
Ryy = Rap + §VDVAhB + §VDVB[JA - §V Has — §VBVAU
Einstein’s equation in the inside region
Ry — (D —=1AGY =0
1 ~n 1 ~n 1 _o- 1 ~ ~
= EVDVA[)B + EVDVBUA - §V bap — §VBVA[) —(D—=1)Abap =0
Projecting the above equation perpendicular to n 4 and ng we get
A, | VAV s + VVehE — V2hap — VEVab + 2RpapchC

+ RachS + RpebhG — 2(D — 1)Abap| =0

Using the following decomposition for E%

(4.49)

(4.50)

(4.51)

(4.52)

We can solve for BS; h Al 32 ) B an by solving (4.51) order by order in 5 expansion. The

final form form of ﬁfj}; ) on 1 = 1 takes the following form. See Appendix C.2.2 for details

il(clvg/) == S(l ) uouc/ _'_ uC%C/ + UC HC Wélé«l/)

where,

e _K<K>+K2[K2 K D K Kv(v

(4.53)
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<
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(4.56)

_l’_
3

The final form form of /~1(Al§) on ¢ = 1 takes the following form. See Appendix C.2.2 for

details
hoo! = SU ucuer +ucHE? +ucHE™ + Wae (4.57)
Where,
N D\?2
SW =2 (= 4.58
K (4.58)

~a2) D D V2K D_2 V2ue
Hy _K{ 1+K(K2 +A =5
D? V2V2u¢ VEKY /e - ((u-V)K
i~ () () (Fme) w29 (B0

- D? (V? V2 D? /. A VK
02— 2= (V “C> (V e ) Lo (chcf n Vc/uc> (u-V)K }? (4.60)

(4.59)

K2\ K K K?

The final form form of ﬁfg on ¢ = 1 takes the following form. See Appendix C.2.2 for

details
ot = 8P ucucr + ucHE) +ucHE + W, (4.61)
Where,
. 1
@=0(= 4.62
S (@) (D> ( )
- D[ 1 D/VK D27 /Vu D? [V2V2u VEK\ /.
O T, - C c
e _K{ 2 QK( K? )HK?K K >+2K2[ K> 2( K ><VE“C>]
(4.63)
2 /72 =72
~ (2) . D V uc V Ucr
Weer = ﬁ( I% ) ( K > (4.64)
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Adding (4.53) and (4.57) we get

h8, = 8W ucuc + ucHY) + ueHE + W, (4.65)
Where,
SW =2 % (4.66)
He = —%(ﬁiﬁc) + % {2 @;f —2 %} (62‘0) - %% (@21() . %K@(ﬁf()
+ %KgKFDuD - % (@;K) (Vruc) + % (@[C(K) [2 @;( + 2 ';K - A%
LD (T g Do (D)
(4.67)

D[V:K D _(u-V)K] e .
k2| K2 K K }(VC“C’+VC’“C>

_2—2 @2UC @QU(]/ @2UC @C”K + @QUC/ @CK
K?| K K K K K K

D [(VeK Vo K D D 1. (-
v = ( ¢ )uFKFc/—I—< ¢ >uFKFC]——K£KEC,———vc (VC/K>

_|_

K2 K K K2 K?2K
+ % [Kg <@DUC/> + ng (@DUC>} + %% [@C (@QUC/) + @o/ (@Qucﬂ

(4.68)

4.4 Stress Tensor

In this section, we will derive the expression for membrane stress tensor. The membrane
stress tensor is given by the discontinuity of the Brown-York stress tensor across the mem-

brane.!

I'See subsection 3.3 of [4] for detailed discussion on this
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4 Stress tensor for large-D membrane at subleading order

4.4.1 Outside(y) > 1) Stress Tensor

The outside stress tensor is given by

8T = Kig — Kply) (4.69)
p=1
ou ou ou ou ou ou 8
Where, pyy” = G55 —n§"n§"; GUE) = gap+vPhap; n§" = AL
\GiE 0 O
ou ou ¢ ou ou
K = [pe0] ] [ple]', (Vc t)>¢:1 (4.70)

Where, p{7) = GUw) — plow0p (9" and, V is covariant derivative with respect to G'7
4.71)

The final expression for K I(L{’;t) and K (°“) are the followings. See Appendix C.3 for details.

ou ND N 1
K,(ath) Kap — _hAB + 5 hAB ) (hg))DKE + h(f?z))Kg) 472)
golou) _ g N D S2HO N h<1) '
2

Putting the expression for K, (Out) and K©" from (4.72) in (4.69) we get the final expression

of T'HY.
ou ND N 1
4.73)
ND N (
- (HAB + h%) K — =2p0 4 20
2 2
4.4.2 Inside(y) < 1) Stress Tensor
The inside stress tensor is given by
8aT\m = k() — Kl (4.74)
P=1
in in in) (in ! in a
Where, p(AB = G( ) ( ( ); GAB = gas + bap; n(A ) = Ay (4.75)

\/Géf)aA@D oY
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Now,
in in)1C¢ in)1C" (& n
K =[] ] (Vends >)w:1 (4.76)
Where, p'i7) = G — ni™nli™ and, V is covariant derivative with respect to G/

(4.77)

The final expression for K Xg) and K™ are the followings. See Appendix C.3 for details.

in 1 ; :
K = Kap + 5 (RSRKE + ROLKE + N )
N (4.78)
Ko — i 4+ N0

2
Putting the expression for Kﬁfg) and K™ from (4.78) in (4.74) and using the fact that

h0) = hQ) we get the final expression of T

in 1 ~ N -
87T = Kap + 5 (WSeKE + AQLKE + NRY) = (TLas + ) ) ( K4 h<1>)
(4.79)

4.4.3 Membrane Stress Tensor

Membrane stress tensor is given by

nmTyp = & [TSHB) — Tﬁ{’;ﬂ

ND N ~ -
- [0k = TLaph®)] - s [tk = 03 = Tap (B = RO)] + O (h)?
(4.80)
We can simplify the calculation of stress tensor by using a trick. We define
ND N ~
8rTis ) = ohh — 3 Atk — RG] (4.81)

Then from (4.80) we can very easily see that Txp — Tf%T) o II45. Let’s call this propor-

tionality factor A. With this notation membrane stress tensor becomes

81Tap = 87 [TXET’ + AHAB] (4.82)
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4 Stress tensor for large-D membrane at subleading order

Now, from the condition K487,z = 0 we get
1
87 A = —— 8 (kBT (4.83)

Using (4.35), (4.40), (4.65) and identity (C.161) in (4.81) and after some simplification we

get the final form of TXET) S
8rT\y" = 81 uaup + Va up + Vs us + Wag (4.84)
Where,
+%|:—u-K-K-u—13<u.;K)2+2UBKBD<@2K> + 14 <U;K>(u.[(.u)
_%(u}jK) +%(U-K-u)+%@2 (@2K> —4(u-K-u)2—8)\% (u;K)

D VsK\ (VEK 2D2
+4)\?(U'K'U)—2( e )( K> +A-A

+ 2 (2Zeta[3]—1){—E(M—ui{-u)—)\—u-K-K-u—I—Q(

VaK'\ pra
D % )u Kg

(u VK> (u VK) (0 K ) (@;K) (@;K) B (U‘K‘U)Q]

(4.85)

1 V2, 1 o (<o ~ (u-VK
5( > ( ) EKAKFDU —ﬁv (V uA>—|—KVA 7
1 u-VK D K 1 [ViK
+E( )( 2(u-K-u)+4 % +2/\E_5)+ﬁ( e >(u~K~u)
(4.86)
And,
WAB %KAB—E<VAUB+VBUA> AB u K u)—i—%(@AuB—F@BuA) (UKU)
1 /. R 204\ [ V2u
K(V ) VFUB _E( K )( )+—HAB
1 V2y . . (VpK
e [T (TR ) 90 294 ()
(4.87)
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Now, we can calculate A

STA = —% sm (KAPT)
:—%(u K -u) — — KB AB—%(%?—?—A%—%)(U-K-U) (4.88)
_ % u KAP <%VZK B VZLB) % KAB(VAUB)
So, the full stress tensor becomes
87Tap = 81 uaup + Va up + Vi s+ Wap + Sy lap (4.89)

Where, Sy, Va4, WA p are given respectively by (4.85), (4.86), (4.87) and S, is given by

= 1 1 g 1 (V2K D K
82——2(uKu)—2KK KAB—2K(K2 —)\K—D (uKU) (490)
2 1VsK Viug 1 '
= KAB - o —KAB
K (2 K K )+K (Vaus)

4.5 Conservation of the Membrane Stress Tensor

The final expression of membrane stress tensor (4.1) is very large. It would be quite difficult
to calculate the divergence of stress tensor by hand. We have written a Mathematica
code to calculate the divergence of the stress tensor, and verified that the divergence of
the membrane stress tensor indeed gives the membrane equation. Specifically, we have

checked the followings
« uVBTyp gives scalar membrane equation ( eq.(3.8) of Chapter 3 )
. Pg‘@B Ty gives vector membrane equation ( eq.(3.8) of Chapter 3 )

Here, we want to make some comments about how we have done the large-D calculation

in Mathematica. We choose the following background metric

ds? = —e¥dt? + dr® + e* dx,dz® + € dx;dx’ (4.91)
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4 Stress tensor for large-D membrane at subleading order

which is pure AdS metric written in a slightly different coordinates than usual Poincare
patch coordinates( r — logr will give usual Poincare patch metric ) Here, ‘a’ runs over
some finite p dimension and ¢ runs over large D — p — 2 dimension. @ and u 4 are only
functions of (¢, r, x,) and does not depend on ;. We can effectively do our calculation in
finite p + 2 dimension. We will calculate the contribution that will come from the large
D — p — 2 dimension by hand and will accordingly take into account. For example, if we
want to calculate VBV gu 4 (where A, B runs over full D dimension), the first thing to note
is that it has non zero component only along ‘a’ direction and it is given by

o ID—p—2,2, o e D—p-2
4647“

(Vae®) [(u- 0)e?]
(4.92)
Where V,, is projected covariant derivative with respect to finite p + 2 dimensional metric.

Similarly, we can calculate all the quantities appearing in the expression of the stress tensor.

4.6 Discussions

In this Chapter, we have calculated the membrane stress tensor up to order O (%) and
showed that the conservation of this stress tensor gives the subleading order membrane
equation.

Very briefly, our procedure is as follows : given the large-D solution outside the mem-
brane - linearize the solution - search for a regular solution inside the membrane region
with the condition that the induced metric is continuous on both sides of the membrane -
construct the Brown York stress tensor for inside and outside region - the difference of the
Brown York stress tensor across the membrane is the membrane stress tensor.

As it turns out, the computation leading to the stress tensor at subsubleading orders is
extremely tedious, though the final result is relatively compact and simple (presented in

Section 4.1.1). Still one might wonder what is the point of taking up such a calculation.
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4 Stress tensor for large-D membrane at subleading order

The key motivation we have already mentioned in the introduction 1.2. It is about the finite
D completion of membrane stress tensor [56].

Though this second order membrane stress tensor is just a small step towards this final
goal. We think, the following would be the next few steps, which might help to construct a

finite D completion of the membrane stress tensor (if it exists), by generating more data

* A detailed matching with the hydrodynamic stress tensor dual to the same gravity
system in the regime of overlap for these two perturbation techniques ( namely % ex-
pansion and derivative expansion (see [66,72])). Now after computing the membrane
stress tensor, we could extend this matching to include the effect of the gravitational

radiation as well.

 Recasting known rotating black hole solutions in arbitrary D, in the language of large
D expansion, capturing few terms that could contribute in a stationary situation, to

all orders.

* Finally, evaluating the second order membrane stress tensor on the rotating black
holes, hoping some novel pattern or truncation would emerge out of this exercise, that

will tell us in general how stationarity is encoded in this large- D expansion technique.

We find all of the above projects are interesting, themselves. They will teach us a lot
about how perturbation works in gravity and how they could be used to have analytic control
over the otherwise difficult to handle dynamics of gravitating systems. We leave all these

for future work.
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Chapter 5

Comparison between ‘Fluid-Gravity’ and
‘Membrane-Gravity’ dualities

This chapter is based on [72].

As discussed in the introduction 1.3, here we will describe a comparison between ‘Fluid-
Gravity’” and ‘Membrane-Gravity’ dualities up to first subleading order on both sides.

The organization of this chapter is as follows.

In section 5.1 we first discussed the overlap regime of these two perturbation schemes.
Next in the section 5.2 we discussed the map between the bulk of the ‘black-hole’ spacetime
and the pure AdS mentioned above, and described an algorithm to construct the map, when-
ever it exists. In section 5.3 we compared the two metrics and the two sets of dual equations
(controlling the fluid-dynamics and the membrane dynamics respectively) within the over-
lap regime, up to the first subleading order on both sides. This section contains the main
calculation of this chapter. We worked out the map between these two sets of dual variables,
leading to a map between large D relativistic hydrodynamics and the membrane dynamics.

Finally, in the section 5.5 we concluded and discussed the future directions.

5.1 The overlap regime

In this section, we shall discuss whether we could apply both ‘derivative expansion’ and
(%) expansion simultaneously. We shall first define the perturbation parameters for both
these two techniques in a precise way and also fix the range of their validity. We shall see

that these two parameters are completely independent of each other and therefore their ratio
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5 Comparison between ‘Fluid-Gravity’ and ‘Membrane-Gravity’ dualities

could be tuned to any value, large or small.
Next, we shall compare the forms of the two metrics, determined using these two tech-
niques, assuming the ratio (between the two perturbation parameters) to have any arbitrary

value.

5.1.1 Perturbation parameter in ‘derivative expansion’

Here we shall very briefly describe the method of ‘derivative expansion’. See [63] for a
more elaborate discussion.

The technique of ‘derivative expansion’ could be applied to construct a certain class
of solutions to Einstein’s equation in the presence of negative cosmological constant in

arbitrary dimension D.

The key gravity equation:

.1)
Eap = Rap+ (D —1)N\°gap =0

A 1s the inverse of AdS radius. From now on, we shall choose units such that ) is set to one.
These gravity solutions are of ‘black hole’ type, meaning they would necessarily have a
singularity shielded by some horizon [59]. They are in one-to-one correspondence with
the solutions of relativistic Navier-Stokes equations in (D — 1) dimensional flat spacetime
(without any restriction on the value of D). In fact, we could use the hydrodynamic vari-
ables themselves to label the different gravity solutions, constructed using this technique of
‘derivative expansion’. The labeling hydrodynamic variables are

1. Unit normalized velocity: u*(z)

2. Local temperature: T'(z) = (222) ry ()

A7

At the moment r is just some arbitrary length scale, which would eventually be related to

the horizon scale of the dual black brane metric.
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{z"}, w={0,1,---,D — 2} are the coordinates on the flat spacetime whose metric is
simply given by the Minkowski metric, 7, = Diag{—1,1,1,1---}.

‘Derivative expansion’ enters right into the definition of the hydrodynamic limit. The
velocity and the temperature of fluid are functions of spacetime but the functional depen-
dence must be slow with respect to the length scale 7y (z). For a generic fluid flow at a
generic point, it implies the following.

Choose an arbitrary point zf; scale the coordinates (or set the units) such that in the

transformed coordinate 75 (xo) = 1. Now the technique of derivative expansion would be

applicable provided in this scaled coordinate system

Qi

Doy TH |20 << 10010y *+* Oy 1Tz <<+ << |0y TH|zo << 1 V0410

0115042 :
Oy Oy 12y << 10010y + Oy U |2g << -0 << Oy U |2g << U] V', v, 20
(5.2)

|Oa

In other words, the number of J,, derivatives in a given term determines how suppressed
the term is'. In terms of original * coordinates, each derivative 0, corresponds to 750,,.
Therefore if we work in x* (which, unlike z*, are not defined around any given point)
coordinates, the parameter that controls the perturbation is schematically ~ 7' Oy 2.

The starting point of this perturbation is a boosted black brane in asymptotically AdS

space. The metric has the following form

(in coordinates denoted as {r,z*}, u = {0,1,---,D — 2}. Units are chosen so that

'The conditions as described in (5.2) are for a generic situation. For a particular fluid profile, it could
happen that at a given point in spacetime some nth order term is comparable to or even smaller than some
(n + 1)th order term. One might have to rearrange the fluid expansion around such anomalous points if
they exist, but they do not imply a ‘breakdown’ of hydrodynamic approximation. As long as all derivatives
in appropriate dimensionless coordinates are suppressed compared to one, ‘derivative expansion’ could be
applied.

2For a conformal fluid in finite dimension, there is only one length scale, set by the local temperature
which also sets the scale of derivative expansion. But if we take D — oo, T'(z) and rg ~ % are two
parametrically separated scales and it becomes important to know which one among these two scales controls
the derivative expansion. In the condition (5.2) we have chosen 7 to be the relevant scale and set it to order
O(1). Indeed the results in [61] seem to indicate that terms of different derivative orders in hydrodynamic
stress tensor, dual to gravity are weighted by factors of rg ~ M, and not 7" alone.

Note that here the temperature of the fluid would scale as D, which is different from the D scaling of the

temperature, imposed in [46].
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dimensionful constant, \, appearing in equation (5.1) is set to one)>.

ds® = —2u, dxtdr — 2 f(r/ry) w,u, detdz” + TQPde“dx”

where f(z) =1-— %, P = 0w + uuu, G3)

z

Equation (5.3) is an exact solution to equation (5.1) provided u, and ry are constants.
Now the algorithm for ‘derivative expansion’ runs as follows. Suppose, u* and r are not
constants but are functions of {x*} . Equation (5.3) will no longer be a solution. If we
evaluate the gravity equation €45 on (5.3), the RHS will certainly be proportional to the
derivatives of u,, and 5. But v, and r i being the hydrodynamic variables, their derivatives
are ‘small’ at every point in the sense described in (5.2). Therefore a ‘small’ correction in
the leading ansatz could solve the equation.
The r dependence of these ‘small corrections * could be determined exactly while the {z*}
dependence would be treated in perturbation in terms of the labeling data v*(z) and r g (z)
and their derivatives. u/(x) and rg () themselves would be constrained to satisfy the hy-
drodynamic equation, order by order in derivative expansion. While dealing with the full
set of gravity equations (5.1), these equations on the hydrodynamic variables or the labeling

data would emerge as the ‘constraint equations’ of the theory of classical gravity.

1

D) expansion

5.1.2 Perturbation parameter in (

This is a perturbation technique, which is applicable only in a large number of spacetime
dimension (denoted as D), as a series expansion in powers of (). Clearly (5) is the

perturbation parameter (a dimensionless number to begin with) here, which must satisfy

()=

1

D) expansion does not necessarily need the presence

Unlike the derivative expansion, the (

of cosmological constant, but we could also apply it if the cosmological constant is present

3Note that the scaling of A with D is up to us. At finite D it is of no relevance, but it matters while taking
the large D limit. Here A would be fixed to one as we would take D to co.
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provided we keep A, the AdS radius (see equation (5.1) in subsection - 5.1.1) fixed as we
take D large. Note that the choice A = 1, as we have done in previous subsection, is
consistent with this ‘D- scaling’.

The starting point here is the following metric.
dS? = Gup dX*dX®P = gup dXAdXP 497 P(04 dX4)? (5.4)

where, g, 1 and O 4 are defined as follows.

1. gap isasmooth metric of pure AdS geometry which we shall refer to as ‘background’.
We could choose any coordinate as long as the metric is smooth and all components
of the Riemann curvature tensors are of order O(1) or smaller in terms of large D -

order counting.
2. (w*D ) is a harmonic function with respect to the metric g45.

3. Oy is the one-form dual to the tangent vector to a null geodesic in the background sat-
isfying Oanp g8 = 1. Where, n 4 is the unit normal on the constant +/ hypersurfaces

(viewed as hypersurfaces embedded in the background).

The metric (5.4) would solve the Einstein’s equation (5.1) at leading order (which turns
out to be of order O(D?)) provided the divergence of the O(1) vector field, U4 = n4 — O4

with respect to the background metric is also of order O(1).

V-UE(V~TL—V'O) =0(1)
o (5.5)

where V = covariant derivative w.r.t. g4p
Naively equation (5.5) does not seem to constrain the vector field U since each of its com-
ponents along with their derivatives in every direction are of order O(1) (this is what we
mean by an ‘order O(1) vector field”). However, it is indeed a constraint within the validity-

regime of (%) expansion. We could apply large D techniques provided for a generic O(1)
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vector field V49, its divergence is of order O(D)*.
One easy way to ensure such scaling would be to assume that the dynamics is confined
within a finite number of dimensions and the rest of the geometry is protected by some
large symmetry [65].
From now on, we shall assume such symmetry to be present in all the dynamics we discuss,
including the dual hydrodynamics, labeling the different geometries constructed in ‘deriva-
tive expansion’. For example, we shall assume that the divergence of the fluid velocity u*,
which we shall denote by ©(= 0,,u*), is always of order O(D), whereas the velocity vector
itself is of order O(1).

Now we shall briefly describe some general features of this leading geometry in (5.9).
See [65] for a detailed discussion.
Firstly note that with the above conditions, the hypersurface ¢» = 1 becomes null and we
could identify this surface with the event horizon of the full spacetime.
Also, if one is finitely away from the 1) = 1 hypersurface, the factor ¢~ vanishes for large
D and the metric reduces to its asymptotic form gp.
Next, consider the region of thickness of the order of O (%) around ¢ = 1 hypersurface.

This is the region®, where (%) expansion would lead to a nontrivial correction to the leading

4This requirement certainly restricts the allowed dynamics that could be handled using this method. But
it is not as restrictive as it might seem to begin with. To see it explicitly, let us choose a coordinate system
{z, y*"} for the background.

1 _
9zz = ;7 uv = 2277;“/ Det[g] = _Z(D 2)

V.V =2 P2y, [z(D_Q)VZ} +0,V* (5.6)

=0.V*+0,VF + (D —2) (Z)

Here clearly the first term is of order O(1). The second term could potentially be of order O(D) since a large
number of indices are summed over. Still to precisely cancel against the last term, which certainly is of order
O(D) as long as (%) is not very small, it requires some fine tuning. Equation (5.5) says that U430 4 is such
a fine-tuned vector field.

SFollowing [65] , we shall refer to this region as ‘membrane region’
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geometry. To see why, let us do the following coordinate transformation.

XA—XA+E Oa=D0
- 0 D A — A

where { X'} is an arbitrary point on the ¢ = 1 hypersurface. In these new coordinates

dS? = D?Gap didz®, where Gup = Gap (XO + %) (5.7)

Now, if 4 is not as large as D, it is possible to expand ¢, O 4 and g4 around XOA.

P (XA) = e~™'Na 4 0 (%) , where Ny = [8A¢]X6*

, (5.8)

1
OA(X>:OA|X64—|—+O (5) s gAB(X) :gAB’X64+O(5)

Note that from the second condition (see the discussion below equation (5.4)) it follows that
Extrinsic curvature of (¢) = 1) surface = K|y—; = D/ NaNpGAB + O(1)

Substituting equation (5.8) in equation (5.7) we find
Gap = Oa(Xo) np(Xo) + Op(Xo) na(Xo) + Pap(Xo)

_ (1 —e—iANA> Ou(Xo) Op(Xy) + O (l)

D
59
where P,5(X°) = projector perpendicular to n.4(Xo) and O 4 (X)) (5:9)
. Oatp
V(040)(09)g*"

Clearly, at the very leading order, the metric will have non-trivial variation only along the
direction of N4 - the normal to the 1) = 1 hypersurface at point X'. Variations along all
other directions are suppressed by factors of (%) . This is very similar to the metric in equa-
tion (5.3) where at leading order the non-trivial variation is only along a single direction - .
Therefore, within this ‘membrane region’, (%) expansion would almost reduce to deriva-
tive expansion along directions other than NV 4 provided the metric (5.9) solves equation(5.1)

at very leading order. The conditions, listed below equation (5.4) along with equation (5.5)
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ensure that this is the case.

Once the leading solution is found, the same algorithm, described in the previous subsec-
tion, would work and we could find the subleading corrections handling the variations of
N4 and O 4 along the constant ¢ hypersurface. All such variations would be suppressed as
long as none of the components of N4, O 4 and their derivatives (in the unscaled X“ coor-
dinates) are as large as D. In other words, we should be able choose a coordinate system,

along the horizon (or the hypersurface ¢ = 1) such that

(97 (94477 (95 ¢7)] 7 0 lnorison << 1 (5.10)

It is enough to impose this inequality only on the 1) = 1 hypersurface; the conditions listed
below equation (5.4) will ensure that they are true on all constant v/ surfaces.

These conditions also specify the defining data (analogue of fluid-velocity and tempera-
ture in case of ‘derivative expansion’) for the class of metrics, generated by (%) expansion.
Here, the gravity solutions are expressed in terms of the auxiliary function v and the one-
form O 4 dX*. These two auxiliary fields satisfy the second and the third conditions, listed
below equation (5.4). However, the above-mentioned conditions, being differential equa-
tions, could not fix the fields completely unless some boundary conditions are specified
along any fixed surface. The most natural choice for this hypersurface is the surface given
by ©» = 1, which, by construction, is the horizon of the full spacetime geometry. Differ-
ent metric solutions are classified by the shape of this surface and the components of O 4
projected along the surface. Just as in ‘derivative expansion’, we could solve for the metric
correction only if these defining data (the projected O 4 field and the shape of the surface,
encoded in its extrinsic curvature) satisfy the constraint equation, which we shall refer to as

the ‘membrane equation’.
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5.1.3 Comparison between two perturbation schemes

In subsection-(5.1.2), we have seen that within the membrane region, O (%) expansion is
almost like ‘derivative expansion’ as described in subsection-(5.1.1). Still, it is also clear
that they are not quite the same. The leading ansatz itself looks quite different for the two
schemes, and there is no question of overlap if these two techniques compute perturbations
around two entirely different geometries. So, to find an ‘overlap regime’, the first step
would be to see where in the parameter-space and in what sense, equation (5.3) and (5.7)
describe the same leading geometry.

Note that though the leading geometries look different algebraically, they both have similar
geometric properties - namely the existence of a curvature singularity. In metric (5.3) it is
located at » = 0 and the metric (5.7) is singular at ¢ = 0. Also, the singularity is shielded
by some event-horizon®.

To see the similarities more explicitly, let us first choose a coordinate system X4 = {p, X*},

such that the background metric- g 45 in equation (5.8) takes the form

d 2
gap AXA dXE = p_02 + P d XM X, (5.11)

In this coordinate system, the following metric is an exact solution of equation (5.1)

dp2 p —(D-1) d,O 2
ds® = — + PN d X" dX" + (—) (— —p dt> (5.12)
p T p

This is simply the Schwarzschild black brane solution, written in Kerr-Schild form. Now

let us note the following features of this metric [65].

. —(D-1) L .
* The function (%) is harmonic with respect to the background up to correction

—(D-1) 2
2 P _on(L
v (TH) _O(D>

%S0 far, the way both the techniques of ‘large-D expansion’ and ‘derivative expansion’ are developed, the
existence of a horizon is a must. It would be interesting to know whether we could depart from this condition
and still apply either of these two techniques to construct ‘horizon free’ or non-singular smooth geometries.

of order O (%)2.
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~(D-1)
Hence the function (%) could be identified with ¢~ appearing in the metric

(5.4) up to corrections of order O (%)2.

* The one form (% —p dt) is null and satisfies the geodesic equation. Further, con-
traction of this one-form with the unit normal to constant p hypersurfaces is one.

Hence this one form could be identified with the null one form O 4d X%

Hence it follows that the metric in (5.12), which is an exact solution of (5.1), could be cast
in the form of our leading ansatz up to corrections subleading in () expansion. We could
also expand the metric in equation (5.12) around a given point on the horizon p = rpy, the
same way we have done (see equation (5.9)) in the previous subsection with the following

set of identifications.

d d
NadXA o =L 04dX?|,o =L — vyt
TH TH

NadXA dp (5.13)

\/NANA B TH

The very leading term in this expansion, once written in terms of N4 and O 4 would have

na dXA =

exactly the same form as that of the metric in equation (5.7). The main difference between
our leading ansatz, equation (5.4) and equation (5.12) is that in the later N4 and O 4 satisfy
equation (5.13) everywhere along the horizon, in the same {p,y*} coordinates. For our
leading ansatz (5.4) also, it is true that we could always choose a local {p, ¢} coordinates by
reversing the equations in (5.13). But for a generic 1 and O 4, this could not be done glob-
ally and this is the reason why our leading ansatz is not an exact solution of (5.1). However,
the deviation from the exact solution would clearly be proportional to the derivatives of N4
and O4 and therefore subleading. So finally we conclude that locally around a point on
the horizon, the leading ansatz for (%) expansion looks like a Schwarzschild black brane
written in a Kerr-Schild form with the local p and ¢ coordinates, respectively oriented along

the direction of the normal N4 and the direction O 4 projected along the membrane ¢ = 1.
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Now let us come to the leading ansatz for the metric in derivative expansion. As it
is explained in detail in [58], the leading ansatz in derivative expansion, equation (5.3) ,
reduces to Schwarzschild black brane in Eddington-Finkelstein coordinates if we choose
ry = constant and u* = {1,0,0,---}. Also locally at any point {z, }, we could always
choose a coordinate system such that u*(xy) = {1,0,0, - -- }, or in other words by appro-
priate choice of coordinates locally the metric described in (5.3) could always be made to
look like a Schwarzschild black brane, though in a different gauge than in equation (5.4).
Clearly, the starting point of these different expansions are ‘locally same and it is possible
to have an overlap regime.

But the difference lies in the concept of ‘locality’ and also in the space of defining data.
In case of ‘large-D’ expansion, the classifying data of the metric is specified on the horizon
whereas for ‘derivative expansion’ it is defined on the boundary of AdS space.
The range of validity for ‘large-D’ expansion is given in equation (5.10). If we replace
940~ Phorizon by (—D N 4) the condition (5.10) reduces to the existence of coordinate system
such that

aA ’horizon << D (514)

which looks very similar to the validity regime for ‘derivative expansion’ , as already men-
tioned in subsection (5.1.1)

rgt0, << 1 (5.15)

If we could somehow map each point on the boundary to a point on the horizon (viewed as
a hypersurface embedded in the background), the same {z*} coordinates could be used as
coordinates along the horizon. In that case, whenever r is of order O(1) in terms of ‘large-
D’ order counting, the inequality (5.15) would imply equation (5.14). In other words, as
D — o0, all solutions of ‘derivative expansion’ could be legitimately expanded further in

(%), though the reverse may not be true.
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Now we know that 04 and 0,, are simply related (without any extra factor of D) for the
case of exact Schwarzschild black brane solutions. This is just the well-known coordinate
transformation one should use to go from Kerr-Schild to Eddington-Finkelstein form of the
black brane metric. This transformation also gives the required map from the horizon to
boundary coordinates. Once perturbations are introduced on both sides, we expect the rela-
tion between these two sets of coordinate systems would get corrected, but in a controlled
and perturbative manner, thus maintaining the above argument for the existence of overlap.

So in summary, there does exist a region of overlap between these two perturbative
techniques. In this chapter, our goal is to match them in the regime of overlap. As it is clear
from the above discussion, the key step involves determining the map between J4 and 0,

which we are going to elaborate in the next section.

5.2 Transforming to ‘large-D’ gauge

From the discussion of section - (5.1) it follows that if the spacetime dimension D is very

large, we could always apply ° (%) expansion’ whenever ‘derivative expansion’ is appli-
cable. Therefore a metric, corrected in derivative expansion in arbitrary dimension, when
further expanded in (%), should reproduce the metric generated independently using the
method of ¢ (%) expansion’. More precisely if we take the metric of equation (4.1) from [61]
and expand it in (%) , it should match with the metric given in equation (8.1) of [65] after
appropriate transformation.

In this section, our goal is to understand what these ‘appropriate transformations’ are.

Let us explain it in little more detail.

As we have mentioned before, both of these two perturbative techniques generate black
brane geometries, in terms of a set of ‘dynamical data’, confined to a codimension one hy-

persurface. In the first case, it is the boundary of the Asymptotic AdS space and in the

second case, it is the event horizon viewed as a hypersurface embedded in pure AdS. So
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both the techniques require a map from the full spacetime geometry to a codimension one
membrane.

The details of this map are quite clear for the case of ‘derivative expansion’.

The data-set that distinguishes between different dynamical geometries, here is the profile
of a relativistic conformal fluid (its velocity and temperature). In other words, given a unit
normalized velocity field and temperature, defined on a (D — 1) dimensional flat spacetime
and satisfying the relativistic Navier-Stokes equation, we should be able to uniquely con-
struct a D dimensional spacetime with a dynamical event horizon such that its metric is a
solution to (5.1). The (D — 1) dimensional space is identified with the conformal boundary
of this D dimensional black brane geometry, which we shall refer to as bulk. This construc-
tion [61] uses a very specific coordinate system, that encodes how a point in the bulk could
be associated with a point in the boundary. In [73], the authors have also explained how
to reverse the construction of [58], [61]. They have given an algorithm to read off the dual
fluid variables starting from any black brane geometry that admits derivative expansion but
written in arbitrary coordinates. This explicitly proves the claim of one-to-one correspon-
dence between the dynamical black brane geometry, admitting derivative expansion and
the fluid profile, satisfying relativistic Navier-Stokes equation. This algorithm has been
heavily used to cast the rotating black-holes in the ‘hydrodynamic form’ [61].

Similarly, according to [65], there exists a one-to-one correspondence between dynami-
cal black brane geometries in (%) expansion and a codimension-one ‘membrane dynamics’
in pure AdS space, though [65] shows the correspondence in only one direction. It starts
from valid membrane data and integrates it outward towards infinity to construct the cor-
responding black brane geometry. But to explicitly show this correspondence, we also
need to know the reverse. In other words, we should know how to associate a point on
the membrane to a point on the bulk and how to read off the membrane data, starting from

a dynamical black brane geometry that admits an expansion in (%) , but written in some
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arbitrary coordinates.
In the next subsection, we shall formulate an algorithm to determine this ‘membrane-
bulk map’, analogous to the discussion of [73] in the context of transforming the rotating

black holes to the hydrodynamic form.

5.2.1 Bulk-Membrane map

7

The ‘large-D expansion’ technique, as developed in [65], would always generate the dy-
namical black brane metric G4 in a ‘split’ form. This ‘split’ is specified in terms of an

auxiliary function 1/ and an auxiliary vector field O40,. In terms of equation,

Gap = gap + GOV (5.16)

where g4p 1s the background and GgeBs,t) is such that there exists a null geodesic vector field

049, in the background, satisfying
OrGap=0%gap = OAGEY =0 (5.17)

The normalization of this null geodesic vector is determined in terms of the function 1),

defined as follows.
1. (¢¥7P) is a harmonic function with respect to the metric g4p.

2. ¢ = 1 hypersurface, when viewed as an embedded surface in full spacetime, becomes

the dynamical event horizon. This is how the boundary condition on ) is specified.

After fixing 1, the normalization of O4 is fixed through the following condition.

OAnA =1.

"This subsection has been worked out by Shiraz Minwalla in a different context. We sincerely thank
him for explaining it in detail to us. This ‘bulk-membrane’ map is the key concept needed for the required
‘matching’ of the two perturbative gravity solutions.
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where n,4 is the unit normal on the constant 1) hypersurfaces (viewed as hypersurfaces
embedded in the background).

The equations (5.16) and (5.17) together specify a map between two entirely different
geometries, with metric g4p and G 4 respectively, both satisfying equation (5.1). So if we
want to recast an arbitrary dynamical black brane metric, which admits (%) expansion, in
the form as described in (5.16), the first step would be to figure out this map or the ‘split’
of the spacetime between ‘background’ and the ‘rest’, so that the equation (5.17) is obeyed.

Now from the discussion of the previous subsection, we see that this ‘map’ is crucially

dependent on the vector field 0“0, and the function ). But both of them are defined using
the ‘background’ geometry and we immediately face a problem, since given an arbitrary
black brane metric, it is the ‘background’ that we are after.
For example, given a black brane metric, we could always determine the location of the
event horizon, but we would never know its embedding in the background, unless we know
the ‘split” and therefore we would not be able to construct the ) function, by exploiting
the harmonicity condition on 1 ~?. If we do not know 1) we would not be able to orient or
normalize O*, as required.

So, we must have some equivalent formulation of this ‘split’ just in terms of the full
spacetime metric. The following observation allows us to do it. We could show that if G 45
admits a split between g5 and G satisfying OAGUSY = 0, then the vector - 0494,

which is a null geodesic with respect to g4z, is also a null geodesic with respect to G 4.

Proof:
We know that
(O - V)OA =k O4

where V denotes the covariant derivative with respect to g4 and « is the proportionality
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factor. We would like to show that
(O -V)O* < O?, where V is covariant derivative w.r.t. G4

Suppose ', denotes the Christoffel symbol corresponding to V4 and '3, denotes the

Christoffel symbol corresponding to V 4. These two would be related as follows [65].

B

Fgc — Féc 4= (VB [G rest)]g + VC [G(reSt)}A . VA [G(rest)} Bc>

(5.18)

e

A
M5a

Here all raising and lowering of indices have been done using g45. Note that

OBOC 5FBC — OB<O . V) [G rest)} OBOCvA [G (rest) ]BC
e 0 w0 Lo el 0r G
— K (OC [G(rest)]2> =0

What we want to show simply follows from equation (5.19)
(0-V)O* = (0-V)O* =k O4 (5.20)

So we could determine O“ by solving the null geodesic equation with respect to the
full spacetime metric G 4 5. But to determine it fully, we also need to know «, fixed by the
normalization of O“. As mentioned before, the normalization used previously in the appli-
cation of ‘large-D’ technique is not suitable for our purpose, since it requires the knowledge
of the ‘background’ beforehand. But luckily the form of the ‘split’, which is defined by the
condition {OAG (o) — O] is independent of the normalization of O“.

So we shall first determine another null geodesic field (let us denote it by O4 to remind
ourselves of the difference in normalization) which is affinely parametrized and whose
inner-product with the normal to event horizon (which, up to normalization, could again
be determined without any knowledge of the ‘split’) is one.

Now we are at a stage to define the map between the ‘background’ and the full spacetime

geometry.
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Suppose {Y“} denote the coordinates in the background geometry (in our case pure
AdS, the metric is denoted by g4) and {X“} are the coordinates of the full spacetime (the
dynamical black brane, the metric is denoted by G 45). Let us denote the invertible func-

tions that give a one to one correspondence between these two spaces as { f“}.

Y4 = fA{XY (5.21)

The equations that will determine f4 s are the following

B B ofC ) c’
0" Gaplixy = 0" (a:}f(A) (3‘)];—3) goorlixy (5.22)

§ Here O“ are affinely parametrized the null geodesics in the full spacetime geometries i.e.,

0-VO*=0 (5.23)

Equation (5.23) would fix O, completely once we specify the angles it would make with
the tangents of the horizons, which is effectively a set of (D — 1) numbers. Now what we
are actually interested in is not O4 but O, which is related to O4 with a normalization.
Therefore we are free to choose the normalization of O, since anyway, we have to re-
normalize it again. This will fix one of the (D — 1) initial conditions. Rest we shall keep
arbitrary.

We shall assume

OANAlhorizon =1
_ (5.24)
OAZX) lhorizon = some arbitrary functions of horizon cordinates

where N4 is the null normal to the event horizon (with some arbitrary normalization) and
lé) 04 s are the unit normalized space-like tangent vectors to the horizon.

It turns out that the hydrodynamic metric could be split for a very specific choice of these

8The subscript {X} in equation (5.22) denotes that both LHS and RHS of equation (5.22) have to be
evaluated in terms { X} coordinates.
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spatial initial conditions and we shall fix them order by order in derivative expansion by
matching the hydrodynamic and the ‘large-D’ metric. Once O is fixed (in terms of these
arbitrary angles), we could determine f“ s up to some integration constants by solving
equation (5.22).

Equation (5.22) further says that if we apply the map (5.21) as a coordinate transfor-
mation on the ‘background’, then in the new {X“} coordinates the map would just be an
‘identity’ map and the full spacetime metric G 4 would admit the split as given in equation
(5.16) satisfying (5.17) °.

Once we have figured out how to split the full spacetime metric into ‘background’ and the
‘rest’, we know how to view the event horizon as a surface embedded in the ‘background’
and therefore the auxiliary function 1 (by solving the harmonicity of ¢~ w.r.t the back-
ground) everywhere. Now we can normalize O* as it has been done in [65]. Using these
1 and O (appropriately normalized) one should be able to recast any arbitrary metric, that

admits large-D expansion, exactly in the form of [65].

5.3 Bulk-Membrane map in metric dual to Hydrodynam-
ics

In this subsection, we shall implement the above algorithm, described in the previous sub-
section, for the metric dual to hydrodynamics. For convenience, we are summarizing the

steps again.
* Determine the equation for the event horizon.

* Determine the null normal to the horizon.

9We would also like to emphasize that what we are describing here is not just a gauge or coordinate
transformation. The ‘split’ mentioned in equation (5.16) is a genuine point-wise map between two entirely
different geometries. Once we have figured out the ‘map’, we are free to transform the coordinates further;
both G 4 and g4 would change, but the ‘map’ will still be there.
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« Solve equation (5.23) to determine O“ everywhere. We need the normal, derived in

the previous step, to impose the boundary condition.

« Choose any arbitrary coordinate system {Y 4}, where the ‘background’ has a smooth

metric g4p.
+ Now solve the equation (5.22) to determine the mapping functions f“ ’s.

For a generic dynamical metric, it is not easy to implement all these steps. But in this case
what would help us is the “derivative expansion’ and the fact that f4 ’s are exactly known
at zero derivative order; it is simply the coordinate transformation between Eddington-
Finkelstein and Kerr-Schild form of a static black brane metric.

Though the zeroth order transformation is already known, as a ‘warm-up’ exercise we
shall re-derive it using the above algorithm. The condition of ‘staticity’ and translational

symmetry of the metric allow us to solve relevant equations exactly in this case.

5.3.1 Zeroth order in ‘derivative expansion’:

At zeroth order in derivative expansion, the metric dual to hydrodynamics has the following

form
ds® = —2u,datdr — v f (r/ry) wou,dz"dz” + r* P, dx"dz”
(5.25)
where P, =, +uuu,, f(z)= [1 _ Z—(D—l)] L = —1
We could read off the components of the metric and its inverse.
Gy =0, Gy =—u,, G, = —r2f (r/ru) wu, + 7’2P,“,
1 (5.26)
G =rf(r/ry), G' =ut G" = — P
r

At zero derivative order, both 5 and u* could be treated as constants, The event horizon

and the null normal to it are given by

Event Horizon : S =7 —ryy =0, N4 dX* = dX20,8 = dr (5.27)
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Now we shall figure out the ‘map’ that will lead to the desired ‘split” between ‘background’
and ‘rest’.
We have already determined the event horizon. Next, we have to solve for O4, satisfying

the conditions
OB?BOA =0, @AOBGAB =0, OANA|T‘:7‘H = OT|T:7”H =1

At zero derivative order, GG 4 has translational symmetry in all the z*. The conditions

on O does not break this symmetry. Hence O* must have the form
0204 = hy(r) O, + ha(r) utd, (5.28)
Now we shall process the condition that O4 is a null vector field.
O0'0PGap =0

= 2hy(r)hy ()G + ho(r)*uu’ G, = 0
(5.29)
= ho(r) [2ha(r) = 72 f (r/rg) ha(r)] = 0

= hQ(T) =0
So finally 049, = hy(r)9,'°.
Substituting this form of O in the geodesic equation we could see that i (7) has to be a

constant and then boundary condition simply says that a;(r) = 1
010, = 070, = 0, (5.30)

Now let us choose a coordinate system Y4 = {p, y*} for the ‘background’ where the

metric takes the following form

dp? v
dszackgmund = F + p2nuu dy“ dy (531)

10 Actually, there is two solutions to (5.29). If we assume hy(r) # 0 and finite everywhere, then

2

h(r) = S f (/i) ha(r)

This implies that i () will vanish at the horizon r = 7 (which is a zero of the function f (r/7fr)), contra-
dicting the boundary condition on O".
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Again the symmetries motivate us to take the following form for the mapping, which gives
the one to one correspondence between the background coordinates {Y 4} = {p, y*} and

black brane coordinates { X4} = {r, 2}
y' =at +g(rju”, p=h(r) (5.32)

Let us apply the map (5.32) as a coordinate transformation on the background. In the new
coordinates (where the map is just an ‘identity’) the background metric takes the following

form

h\’
Grr = <E> - (g/h)2> Gur = g/hZU,ua G = h2 Nuv (533)

Here we have suppressed the r dependence and derivative w.r.t r is denoted by prime ().

In this coordinates equation (5.22) takes the form

I\ 2
(%) —(gh) =0, ¢ =1 (5.34)

These two equation could be solved very simply. The general solution

h(r) = £ 1), glr) = - j te (5.39)

where c; and ¢, are two arbitrary constants.
We shall choose the plus sign in h(r) to make sure that whenever r increases, p also in-
creases.

Now we have to fix the integration constants. Note that once we know the map, we
know the form of G(fg), satisfying equation (5.17) by construction.

G = G = 0
(5.36)
G’Eﬁ“) = [(r+ c1)? — rzf(r/rH)} Uy, + [7"2 —(r+ 01)2} P
Now we further want that if D — oo, the metric should reduce to its asymptotic form at

any finite distance from the event horizon or in other words, Gg,eft) must vanish outside the
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‘membrane region’ (a region with ‘thickness’ of the order of O (%) around the ‘membrane’,
see section (5.1.2)). This condition will force us to set ¢; = 0. The other constant ¢, is not
appearing in the final form of the metric at all, so this ambiguity will remain here at this
order and it is simply a consequence of the translational symmetry in x* and y* directions.

For simplicity, we shall also choose c; = 0. So the final form of the map at zeroth order

m
p=r y'=ax"+ “ (5.37)
r

5.3.2 First order in derivative expansion

In this subsection, we shall extend the computation of the previous subsection up to the first
order in derivative expansion. Here u* and ry depends on z* but any term that has more
than one derivatives of u* and ry has been neglected. All calculations presented in this
subsection generically will have corrections at order O(9?).

At first order in derivative expansion the metric dual to hydrodynamics has the following

form [61]
ds?> = — 2u,, dztdr — 2 f (r/ry) wuu, detde” + TQPWd:c“dx”
20 L (639)
+r| — (uua, +uya,) + DUty + 2F (r)ry) o |datdx

Where,

o0 D—-2 1

F(r) :r/r dxa:(xD —
And
O Oplig, S)
a, = (*Puadp)u, . © =n*ous, o =pPrepP Galls ¥ Ogtla ) _ (D) pu
2 D -2
(5.39)

We shall often refer to this metric, described in equation (5.38), as ‘hydrodynamic metric’.
Here both r; and u,, are functions of 2#; but they are not completely arbitrary. the hydrody-

namic metric will solve the Einstein’s equation (up to corrections of order O(9?)) provided
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the derivatives of ry and u,, satisfies the following equations'!.

ap
" uals)rn O g (T g (5.40)

We read off the components of the metric and its inverse

G,ur = — Uy, Grr =0

Gy = = 1f (r/ra) uut, +1* Py (5.41)

20
+ 7| — (upa, +uya,) + (ﬂ) uty +2F (1/ry) 0

20 at
GTTITQf(T'/TH>_T(D_2)7 G“r:u“—7
o PP 2P

712 T3

(5.42)

The horizon is still given by the surface (no correction at first order in derivative, though

the normal gets corrected since J,,7y is not negligible now.)
Event Horizon : S =7 —ry =0, NjdX* =dX*0,8 =dr —da" O,ry (5.43)

We need the Christoffel symbols to compute the geodesic equation.
F:r =0, Fﬁr =0

. 2 O
o= |rf(r/ru) + éf’(r/rH) -

D -2

Uq

- 1
'ty = 52 [2rP{' — Osut — usa” + O us + utas — 2F (r/ry)ol + 2 (r/rg) F'(r/rg)of]
(5.44)

At first order in derivative expansion, the most general correction that could be added to

O*, maintaining it as a null vector with respect to the first order corrected metric:

0404 = 0, +wi(r) © 0, + wy(r) a"o, (5.45)

"UThese two equations are just the stress tensor conservation equation for a (D — 1) dimensional ideal
conformal fluid.
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We shall fix wy (r) and ws(r) using the geodesic equation.

The r component of the geodesic equation gives the following.

(O-V)O" =0
=0"V,0" + 0"V, 0" =0
=0"9,0" +17,.0"0" +20"0°T", =0
= (1 + wi(r))w; (1O + 2(1 + wi(r)8) (wy(r)a™)Iy, = 0

=w)(r) =0

=wi(r) = A;, where A; is a constant

From the 1« component of the geodesic equation we find

(O-V)O" =0
= 0"V, 0" + O*V,0" =0
= 0"0,0" + O"O'T* +2070°T" =0
2w2(r)] a* =0

r

= [w’z(r) +

A : . .
= wy(r) = (—22 ) , where A is another integration constant
r

At this stage
_ A
040, = 0, + A1© 0, + <—j> atd, (5.46)
T
We could partially fix the integration constants using the boundary conditions.
At horizon
OANA|T:7,H =1 = (1 +A1@) =1= Al =0

B (5.47)
O"oyry =0 (82) = No constraint on A,
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Hence it follows that .

As

OA8A - ar + <T_2

> a" 0, + terms 2nd order in derivative expansion
(5.48)

= 04 dX* = —u, dz" + Ay a, dx" + terms 2nd order in derivative expansion
Next, we have to solve for the ‘mapping functions’. Let us choose the same coordinates
{Y4}, as in the previous subsection so that the background takes the form of equation
(5.31). We expect that the mapping functions (5.37) will get corrected by first order terms

in derivative expansion.

ut(x)

r

yt =zt + + fi(r)© v (z) + fo(r) a*(x), p=r+ f3(r) O (5.49)

As before, we shall apply the map (5.49) as a coordinate transformation on the background.
In the new coordinates (where the map is just an ‘identity’) the background metric takes the

following form

a =2 (51004
%F—@—@mm—

G = 2 (1 n 2f3(r) @) Nuw + 7 (B, + Oy,

r

A 20)

r2 r3

2f3(7“)

r

) @] u, + 12 f3(r) a, (5.50)

Substituting equation (5.50) in equation (5.22) we find

A
Jur + <7‘_22> a"Gup = —up + Az ay + O (62) G =0

) (5.51)
=220 o gm0, g+ B0 B0
The general solution for equation (5.51):
F) = Co far)=Co ) =C1— 55

where (', C5 and (' are arbitray constants

In the new X# = {r,2#} coordinates the metric of the background takes the following
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form
dsgackground = gABdXAdXB
= — 2u,dz" dr + r’n,,dz" dz¥

+ 1 [2C30 1, + (0,uy + Oyuy,)| datdx”

= — 2u,dz" dr + 7’277de“ dxz”

a, Uy + ayy,

1
+ 2r [—C’g@ Uy Uy + <C’3 + —) © P, — ( > + UW] dxtdz”

D —2 2
(5.53)
In the last step we have rewritten (0, u, + 0,u,,) using the following identity
20
Oy + 0wy, = 20, + D3 P, — (apu, + ayuy,) (5.54)
Once we know the background, we could determine Ggegt).
G(rest) =0 G(rest) =0
rr ) ur
(rest) 2 (TH b-1 ~
Gl =r <7> uty — 2r C3© 0y + 2r [F(r/ry) — 1 oy (5.55)
- 1
h = —
where (4 C’3+D_2
o o 4 1 L3
5.4 Hydrodynamic metric in (5) expansion

In this section, we would like to expand the ‘hydrodynamic metric’ (already split into ‘back-
ground’ and ‘rest’ in the previous section) in an expansion in (%) and compare it against
the metric described in [65].

This comparison involves two steps. The first one is, of course, an exact match of the
two metrics up to the required order. The second step involves the mapping of the evolution
of the data. Let us explain it in a little more detail.

As we have mentioned before, both ‘hydrodynamic metric’ and ‘large - D’ metric is deter-

mined in terms of data, defined on a codimension one hypersurfaces - in the first case it is

115



5 Comparison between ‘Fluid-Gravity’ and ‘Membrane-Gravity’ dualities

the velocity and temperature of a relativistic fluid living on the boundary of asymptotic AdS
and in the second case it is the horizon viewed as a membrane embedded in the background
with fluctuating shape and velocity. However, we cannot choose the data arbitrarily. The
hydrodynamic metric or the large D metric will solve Einstein’s equation only if the cor-
responding data satisfy certain evolution equation. For matching of these two metrics, the
evolution of the data also should match. More precisely, we should be able to re-express
the membrane velocity and shape in terms of fluid velocity and temperature and further,
we have to show that once hydrodynamic equations are satisfied, the membrane equation
is also true up to the required order.

Below we shall first compare the two metrics and in the next subsection, we shall prove

the equivalence of the evolution of these two sets of defining data.

5.4.1 Comparison between the two metrics

If the hydrodynamic metric has to match with the final metric described in [65], the first
requirement is that Ggﬁsﬂ must vanish as one goes finitely away from the horizon. This
is possible provided Cj is zero and also the function [F'(r/ry) — 1] has a certain type of
fall-off behavior at large . Now C} being an integration constant we could easily set it
to zero. In appendix (D.1) we have analyzed the integral (5.39) and therefore the function
[F(r/rg) — 1]. It turns out that at large D this integral could be approximated as follows.

F(z)=F (1 n %) —1- (%)2 3 (1 tnTZ) e 4 O (%)3 (5.56)

m=1

Hence [F(r/ry) — 1] vanishes'2 up to corrections of order O (%),

After substituting equation (5.56) and the value for the integration constant Cj, the black

12 Also, note that the vanishing has appropriate fall-off behavior (exponential decay in the scaled Z variable)
as required by large D corrections
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brane metric dual to hydrodynamics takes the following form

D-1 1\?
dS2 = dSl?ackground + 7“2 (T_H> (u,u dxlt)? +0O (5) (557)

r

where ngackground is given by equation (5.53)
As we have mentioned before, the metric in [65] is described in terms of one auxiliary
function 1/ and one auxiliary null one-form O,dX*. For convenience we are quoting the

metric here again.

1 2
dS? = dS2egoma + ¥ (04 dX*)* + O <5) (5.58)

Here 1)~ is harmonic with respect to the background with 1) = 1 being the event horizon
of the full spacetime and O 4 is simply proportional to O 4 determined in the previous sub-
section. The proportionality factor (let us denote it by the scalar function (X)) is fixed
using the condition that the component of O 4 along the unit normal of ¢/ = constant hyper-
surfaces is one everywhere. In terms of equations, the above conditions could be expressed

as

_ O 49

04 =o(X) 04, (X)= OGED where 04y = ¢4 dgy (5.59)

Rewriting (5.58) in terms of O 4,

dS* = dS? + (ﬂ) (04 dX*)* +0O <1)2
- background P2 A D

77Z)fD

2 (5:60)
= dst?ackground + (?) (u,u - AZ au) (ul/ - A2 (ll,) dxtdz” + O <5)

The metric in (5.60) will match exactly with the metric in (5.57) provided we set A, to zero
and identify [@27“2 (TTH)D_l} with the harmonic function 1)~ up to corrections of order

(i)Q. Hence in terms of equation, what we finally have to verify is the following

D
B 2
D — 2y <T7H>D o (%) (5.61)
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where 1) satisfies

VP =0 (5.62)

with the boundary condition that ¢» = 1 should reduce to the horizon, i.e., the hypersurface
given by r = ry, in an expansion in (%)

Now we shall first determine 1) and then . Note that both ) and the norm of J4v are
scalar functions and it is much easier to compute them in a coordinate system where the
background metric has a simple form. Therefore we shall solve the equation in the {p, y*}
coordinate system and then transform the answer to the {r, 2*} coordinates for final match-
ing. First, we need to know the position of the horizon in {Y4} coordinates since that will
provide the required boundary condition for 1). We know that in { X4} = {r, 2*} coordi-

nates the horizon is at r = rg(z) + O(9?). Now {X*} and {Y*} coordinates are related

as follows.

p:T_%-FO(aQ),

D=2 (5.63)
ut(z) O(z) \ (u"(z) '
Yyt =t + " + (D—Q = + C, O(z) ut(x) + Cy a*(x) + O(0?)
The inverse transformation:
_ O(y) 2
7‘—,0+D_2+(’)(0)
o L u“(a:) o 2
ot =yt — — C1 O(x) ut(x) — Cy a(x) + O(07) (5.64)
o I
=L W6 ) - Cat) + O
Therefore in terms of {Y“} coordinates the horizon is at
)
p=r ) - (525) +0 @)
D -2
(5.65)

=)= BT = (525) +0.(@) =rute) +0 @)

g -2
Here, for any term that is of first order in derivative to begin with, this coordinate transfor-

mation will generate change of order O(9?) and therefore negligible in our computation.
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In the last line, we have used equation (5.40).
Once we know the position of the horizon, we could solve for ¢. In {p, y*} coordinates the

expressions for ¢ and its norm are as follows (see appendix (D.2 for derivation).

=i (5) () 0 o)
< o= (1-5) (c85) -+ (1-5) (i) o

2 2
1
= MO = <L> (1——> +0()’
vow=\nw) U7p) 100
Clearly this solution satisfies the boundary condition that ) = 1 = p = rg(y) + O(9?).

Now we have to transform these quantities in {X“} coordinates. We shall first transform

the quantity lT—L} )

1 ()
p r— o2 ;
- 0
ra(y)  ry(n) + U ueOe)n (%)
_ 1 e (1*Puads)r i <o
- (T’H(x)) (T - m) (1 N T) +0(0?) (5.67)
1

- (m(x)> (r N D(i 2 (ﬂa’g?ﬁfﬁ)“{) +Oh = #(95) +oE)

From equation (5.67) it follows that

Y(r,a”) =1+ (1 - %) (TH ) (% 82)
- a4 () 5) () 0 (3.7
- o= (2) (-4) o (3.9

Substituting this solution in equation (5.59) we find ®(X) = 1.

(5.68)

Now we have all the ingredients to verify equation (5.61). Let us introduce a new O(1)

variable R such that
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In terms of R we find

»P — o2 (T_H>D_1 — D (L>_(D_1)

B B O I R

This is exactly what is required to have a match between the ‘hydrodynamic metric’ and

the ‘large- D’ metric up to the expected order.

5.4.2 Comparison between the evolution of two sets of data

As mentioned before, the ‘hydrodynamic metric’ is defined in terms of the velocity and
the temperature ' of the relativistic conformal fluid moving in a flat Minkowski spacetime
of dimension (D — 1). In case of large - D expansion, the metric is given in terms of a
(D —1) dimensional time-like fluctuating membrane embedded in pure AdS spacetime with
a dynamical velocity field on it. Both of these two sets of data are controlled by separate
equations. For ‘derivative expansion’ , the governing equation of data is given in (5.40). In
‘large-D’ technique, the relevant equation is the following [65]

VU, VK

V-U=0
v ’ K K

+ UKo —U - VU, | PS =0 (5.70)

Here the equation is written as an intrinsic equation on the membrane world-volume. All
raising, lowering and contraction of the indices are done with respect to the induced metric

on the dynamical membrane. U, is the velocity of the membrane, expressed in terms of

13The temperature and the horizon radius are related by the following relation

_ ArT

"D 0)

In our choice of units
rg ~0(1) = T ~0O(D)
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its intrinsic coordinates. Kg, is the extrinsic curvature of the membrane, expressed as a
symmetric tensor on the membrane world-volume. K denotes its trace. Py is the projector
perpendicular to U“.
In this subsection, our goal is to show that equation (5.40) implies equation (5.70) up to
corrections of order O (%)2.

Our first job would be to express the U and K, 5 in terms of velocity u/ and temperature
(or ) of the relativistic fluid. Remember that though both v* and U® are unit normalized
velocity vector, they are defined on completely different spaces, one being a flat Minkowski
metric and the other is the curved (both intrinsic and extrinsic curvature, being nonzero)
membrane world volume.
For convenience, we shall work in {Y4} = {p,y*} coordinates where the background
metric is simple. We shall first compute the unit normal to the membrane and different
components of its extrinsic curvature, to begin with in terms of background coordinates
and then we shall re-express it as an intrinsic symmetric tensor on the membrane.

The unit normal to the membrane is given by

na dYA|membrane = dYA [m—w]
membrane

VO Oa1)

(5.71)
_ dp—dy" Ouru(y)
T H(y>
The extrinsic curvature is defined as follows.
Kap =19 Veng =109 (dcng — Tognp)
(5.72)

B

where 15 = 6% — n, n® and V is the covariant derivative w.r.t background

Now let us choose {y*} as the intrinsic coordinate on the membrane world volume. In this

choice of coordinates, the extrinsic curvature K,z will have the following structure.
Kap = Kpp (Oar) (0arn) + [Kpa (0sr1) + Kpg (Oarn)] + Kag (5.73)

Note that the first term in the RHS of equation (5.73) does not contribute at first order

derivative expansion.

121



5 Comparison between ‘Fluid-Gravity’ and ‘Membrane-Gravity’ dualities

After using equation (5.72) and (5.73), at this order the final expression for KC,,, turns out

to be very simple (see appendix (D.3) for the details of the computation).
Kag =15 Nag + 0(0%), K= (D-1) (5.74)
The induced metric on the membrane is given by
Gap = Tt Tlap + O(0?) (5.75)

Now we shall determine the velocity U. The velocity is defined as the projection of O“ on
the membrane which, by construction, would be unit normalized with respect to the induced
metric of the membrane. In {Y“} coordinates, O 4 dY# takes the following form

OA dX A|membrane = - [T Uy, (.CL’ ) dxu]membrane

(- ()]
s o e
(ol g [ g ]

O

- (THl(y) " (D —@2)@,) dp + {—TH(y) wu(y ( )} dy*

In the last line, we have used equation (5.40), which is the governing equation for the data

(5.76)

in the hydrodynamic side of the duality.

From equations (5.76) and (5.71) it follows that

1 S)
UA dYA = — dYA [OA — nA]membrane = — (T'_2> (m) dp +rg Uy, dy“ (577)
H

Now U, is just rewriting of U4 in terms of the intrinsic coordinates of the membrane. Fol-

lowing the same method as in equation (5.73) we find

Uy dy* = [ry ue + 0(0%)] dy” (5.78)
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Once we know K3, U and the induced metric on the membrane, we could compute

each term in the equation (5.70).

v.U-— (D—Q) {D@ eI o 02y = 0 (07)

TH -2 Ty
VU, = 0 (9%
— PﬁaaarH 2 2 579
(U-V)Us = a5+ ——+0(9) =0 () (5.79)
H

U* Kog P = 0(0%)

V.K = 0(9%)
As it is clear from the notation, in the LHS of each equation the relevant metric is the in-
duced metric on the membrane whereas in RHS it is the flat Minkowski metric 7,3.
Substituting equations (5.79) in equation (5.70) we could easily show that membrane equa-
tion follows as a consequence of fluid equation.

In this context let us mention the work in [56]. Here the authors have computed the

boundary stress tensor dual to a slowly varying membrane embedded in AdS. They have
found the dual fluid velocity in terms of the membrane velocity. It could be easily checked

that equation (5.78) is indeed the inverse of what they have found up to correction of order

O(9?).
5.5 Discussions

In this chapter, we have compared dynamical black brane solutions of Einstein’s equation
(in presence of negative cosmological constant) generated by two different perturbative
schemes, namely ‘derivative expansion’ and Large-dimension expansion. In both the cases,
the spacetime necessarily has an event horizon. We have shown that in a large number of
dimensions whenever ‘derivative expansion’ is applicable, we can expand the metric further
in (%) , (though the reverse may not be true always). We have found a perfect match in this

overlap regime of these two perturbative techniques up to first subleading order on both
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sides.

This calculation has been extended to the next order on both sides in [66]. This has also
been extended to Einstein-Maxwell system in presence of negative cosmological constant
in [67].

In some sense, our analysis serves as a consistency test for these two methods. But this
comparison could teach us something more. This is about the dual systems of these two
gravity solutions.

The dynamical black brane metric generated by ‘derivative expansion’ in D dimension is
dual to the relativistic conformal hydrodynamics living in (D — 1) dimensional flat space-
time. The variables of hydrodynamics are fluid velocity and temperature, which are the
data that label different black brane solutions in derivative expansion.

On the other hand, the metric generated in ‘large D expansion’ is dual to a co-dimension
one dynamical membrane embedded in pure AdS and coupled with a velocity field. Here
also the labeling data of the metric live on a (D — 1) dimensional hypersurface and they
consist of a scalar function - the shape of the membrane and a unit normalized velocity field.
This is very similar to hydrodynamics in terms of counting, though the governing equations
and the physical significance of the variables are entirely different.

However, we have already seen that these two systems of equations are approximately
equivalent after an appropriate field redefinition. In this chapter, we have verified it at the
very leading order and we expect that the project of comparing the two metrics up to second
subleading order would extend this equivalence to the next order on both sides.

In fact, it is expected that this equivalence is valid to all orders [56]. In other words,
in the overlap regime, these two equations must be exactly equivalent to each other if we
consider all orders on both sides [56], though to see this equivalence we need to re-express
the variables of one side in terms of the other [32,46,56].

This equivalence actually involves some interesting resummation of one series into the
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other. Even the leading term in derivative expansion can encode many terms of (%) ex-
pansion and on the other hand, the leading membrane equation might have information
about many higher order transport coefficients. At linearized level, this has been nicely
captured in the analysis in [29]. The frequencies of Quasi-normal modes do exhibit such
resummation. In [56], the authors have proposed a resummed stress tensor that could ex-
actly reproduce the fluid stress tensor exactly up to the first order in derivative expansion.
It would be very interesting to understand this structure in full detail, at a non-linear level.
This might lead to a fluid-membrane duality in large number of dimensions where gravity

does not have any role to play.
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Appendix A

Appendices for Chapter 2

A.1 Calculation of the homogeneous part - H .5

In this section we shall give details of the computation for (2.35), (2.36), (2.37), (2.38)
and their decoupled form as described in equations (2.40), (2.41), (2.42) and (2.43). As
mentioned before, we can determine the metric up to O () by solving the gravity equation
(2.18) up to order O (D). At this order G(All)g contributes simply as a linear fluctuation over
the zeroth order metric GES]B = gaB + G(X])S. So here we shall first compute the form of the
gravity equation (2.18), linearized about G[S}B.

Let us denote the perturbed metric as
R 20, 0n + LW
gAaB = AB+B AB_gAB+7/) A B+E AB

Also, as it is clear from our discussion, in this linearized calculation we need to compute
only the leading D piece.

The linearized variation of the Christoffel symbols and the Ricci Tensor take the form

1 gAM _ w—DoAOM 1 1 1
The = 5 ( 5 (DB G+ Do GL)y — Dy GSEJC)

§Rap = (Do 6T'G 5 — Dg 0T'G¢)

(A.1)

In equation (A.1), D4 denotes the covariant derivative w.r.t G[X]B. Now we can eas-
ily convert D4 to V4 (i.e. the covariant derivative w.r.t g45) by introducing some new

terms to account for the correction to Christoffel symbols generated from the extra piece

(vP040p) .
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ORap = Vo 015 = Vi 05 — (TH0TS 5 + 50T ) + FipoT G
—_— Y ——

Term1 Term2 > Te\rrrn3 d Term4
where
1 gAM _ w—DOAoM
Tpe = D ( 5 Vi Gl + Ve Gy (A.2)
— Vo GG — oM, GE&}M,)
=4 p (DN A A —DAA
FBC’ = w 2w [O (TLBOC + ncOB> n OBOC + ?ﬂ @) OBOC}

A.1.1 Scalar sector

In this subsection we shall compute H33%". The relevant part of 6G 45 has the following

form.

GE&}l)B|scalar = OAOB Z fn(R) Sn (A 3)

R=D(¥ 1)

To compute H:%" we have to substitute equation (A.2) in (A.3) and compute only the

leading D piece.
N
5FgB - (5) Z |: (OCnAOB + OCTLBOA — TLCOAOB) f;
A4
+ ("P0O%0,038) (f. — f.) |5n + Subleading terms A4
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Now we shall substitute equation (A.4) in each of the four terms in equation (A.2).

Terml = V¢ 6155

2
_ (D;V ) an[u:; £ 1) (0504 + 1403 — 050,)

+o P (f) = fh) OBOA] + Subleading terms

Term2 = V5 0T, = 0

(A.5)
= — (DN?*) 9P Z {f; OBOA} s, + Subleading terms
Termd = I'36T, = 0
So finally
HSe8™ = Terml — Term3
(A.6)

_ (DN?
- 2

A.1.2 Vector sector

) Zﬁn (f;l/ + f,/l) |:7”LBOA —I—TLAOB - (1 - 1/J_D) OBOA

In this subsection we shall compute H4%'". The relevant part of dG 45 has the following

form.
GEAI)B|’UBCtOT‘ = Zvn(R) ([Un]AOB + [UTL]BOA)7 R= D<¢ - 1) (A7)

Now we shall substitute equation (A.8) in each of the four terms in equation (A.2).

STA. = (g) > {oA (nglon)c + nelva)s) v,
_ (n* —~P0%") (Oplo,)c + Oclo,]p) V),
[ n0 +nc0p) — 1 (520500)] Bt} A
+ Subleading terms
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Terml = V¢ 60 5

- (Dé\ﬂ)z(u}g[ 0] 4 + 14 [04] )(v;;+v;>
(DN2>Z¢ ( ]+ Oalvn]s )vZ

N (g) S (V-0 [v; (naOp +npOy4) — wD”nOBOA]

n

+ Subleading terms

(A9)
Term2 = Vp TG, =0

Term3 = <fM oTS, 5 + THL0TS, )

:_< ) DZ < J4+O0alv,]g >—|—Subleadingterms

Term4 = T'36T5, = 0
So finally

HYS" = Term1 — Term3

_ (g) Z (V- 0,) [U; (1405 +np0.4) — vanoBoA]

#(2) S e { (uslonl+ waol ) D

n

+P <OB [02]4 + Oafon] > }
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A.1.3 Tensor sector

In this subsection we shall compute H'%°". The relevant part of 0G 45 has the following

form.
GS)B|tensor - Ztn(R) [tn]ABa R= D(qu) - 1) (A]l)
Fo = ( ) 2t { enp + g ne — (0" = 97P0%) [t o }
+ Subleadmg terms (A.12)
6T =0

Now we shall substitute equation (A.12) in each of the four terms in equation (A.2).

Terml = V¢ 6T,
DN?
- - ( 5 ) D[ = o) + 6] falas

n

n <g) zn:t; <nB (Ve [t)5) +na (Ve [tn]g))

+ Subleading terms

(A.13)
Term2 =V 615, =0
Term3 = (f%AcSFAC}B + f%B6FACJA> = Subleading terms
Term4 = T3L0T, . =
So finally
Htensor Term1
DN 2)
t” 1-— + ] [t.
-- (5 ) +t,] ol At

+(3 )Z ( IS+ (Ve J5))
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A.1.4 Trace sector

trace

In this subsection we shall compute H'{°. The relevant part of G 45 has the following

form.
1
Gbline = () Pan R, 7= Dl = 1) (A.15)

As explained in section (2.5), we have an extra factor of (%) compared to the expressions

of 0G 4 in tensor, vector and the scalar sector.

N
515 = (35 ) S| (a5 +00PS — € Pas) + (6720 i) |,

+ Subleading terms (A.16)

N

c / .
N G0 = (3) na zﬂ: h,, s, + Subleading terms

Now we shall substitute equation (A.16) in each of the four terms in equation (A.2).

Terml = V¢ M‘gB
2
= _ <N7) an{ [(1 — w’D) Rl + h;l] Pap + 2h;, nAnB}

+ Subleading terms

Term2 = Vg 0T

DN?
= ( ) Z S, {h;{b nan B} + Subleading terms

2 (A.17)

Term3 = <fAC/[A5FAC43 + fng5F]\C4A> = Subleading terms

Term4 = 1:%9511?40
l)j\[2 -D ! -D
+ Subleading terms
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So finally

HYf¢ = Terml — Term2 + Term4

DN2 " l -D —-D
= - > 8,9 200 nanp + k), [np04 + naOp — (1 —97P) 004l ¢

4

— <N72) zn:gn{zh; nang + [k, + (1=~ P) 1] PAB} +0 (%)
(A.18)

Note that in the above equation, the second line is of order O(1). Since in our calculation

we are only interested up to order O(D), we could ignore the second line. For our purpose

HYf¢ = Terml — Term2 + Term4

DN2 " / -D —-D
= — > 8,9 200 nanp + k), [np04 + naOp — (1 —97P) 004l ¢

4
(A.19)

A.2 Calculation of the sources - Sy

In this section we shall give details of calculation of S45. As mentioned in subsection
(2.5.6) we have to evaluate £45 on G[X}B.

_ _ _ [0]

Eap = RAB|G[£]B (D = 1)AGyp
= RAB + 0Rap — (D — 1))\6’[2]3
(A.20)

— (D= 1)Agap +6Rap — (D = DA (gan + G

— 6Rap — DA G, + Subleading Terms
Where R 4 is the Ricci tensor evaluated on the background metric g4 and § R 4 is simply
the difference between the Ricci tensor evaluated on G[X]B and Ricci tensor evaluated on
JAB-
Using this notation

Sup = 6Rap — DAGY), (A21)
Now for our case,
GEEX)]B = gap + ¢ 20405, Gfé = P0,0p (A.22)
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As the one form field ‘O’ is null, the inverse of the above metric (A.22) becomes very

simple.
G[O]AB _ gAB . w—DoAOB (A23)

Substituting lead ansatz in equation (2.25) we find

AM —DOAOM
e = g ¢2 } [VB (v""0cOn) + Ve (¥"050u)
(A.24)
— Vu (v"0c0p)
Here V is covariant derivative with respect to the background metric g4 3.
For the convenience of computation we shall decompose T4, in two parts
ST %c = 0B in. + 6T 56 |nonin (A.25)
where
1
OT %o l1in, = 3 {Vs() 00 + Ve (P00 — VA P0500)}
1 (A.26)
5Fgc‘non-linear = §w_DOA(O : V)(iﬂ_DOBOc)
From (2.24) we know that Ricci tensor can be written as
Rap = Rap + Ve [0T5p] — Vi [07¢4] + [0TCg] [0T%5] — [6T5p] [6T5c] (A27)
51{4}3 .
From equation (A.24) it follows
1
0TS, = 3 {Ve(P040%) + VA "0c0%) = VE () ""0c04)}
1
+ 597700 - V)(¥™0c04) (A.28)
=0
The expression for d R 45 simplifies once we substitute equation (A.24)
0Rap = Ve [6T55] — [0T5p] [00%4c]
= \VC’ [5F§B‘linearl+\vc [5FiB|n0n-linear] \_ [5FgE} [5F§cl (A29)

' e

§R A p|linear 5RE41}>3 [non-linear 6Rfl)3 |non-linear
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At first we present the calculation of § Rf])g | non-tinear

5R,(42])3‘n0n-1in. = \_ [(ﬂ—‘gE’hn} [5F§C’linl\_ [5FgE‘hn} [5F£C‘non-linl

Te;r:1—1 Te:rrn—Z
(A.30)
- [6F§E’non-lin.] [6F,L4?C|1in.]1_ [6FgE’non-lin.] [6F,£4?C|non-lin.]l
TerTn-S Ter‘r,n-4

Term-4 = — [5Fg]_«7’non-lin.} [érﬁclnon-lin.]
=~ {50770°(0- 9w 20505) | {50050 - V) (w7000, |
=0
(A.31)

Term-3 = — [5FgE|non—lin.] [5F§c|lin.}

S {%w—DoC(o : V)(w—DOBOE)}

%{Vc(wDOAOE) —+ VA(wiDOCOE> — VE(QﬂDOcOA)}

= {0 VW50 (0 V) P0.407))
= (0 V)ORH(0 - V)0"} 050,
=0
(A.32)
In the last step we have used (2.29).
Similarly,
Term-2 =0 (A.33)
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Now we shall compute Term-1, which is non-zero and a bit complicated.
5RE421)3 non-lin. — — [6FgE|hn} [5F§C|lin.}
1
=— Q{VB(#)_DOEOC) + Ve 050%) — VC(¢_DOBOE)}

%{Vc(@/J—DOAOE) + V(" POc0F) — VE(z/J_DOCOA)}

=— }L{w_QD(VBOE)(vCOE)OCOA —97*P0p(V509)04(V"Oc)

+ Ve 050V (vPOL,0F) + ¢ *POg(VE09)OF (V 40¢)
— P 0p(VEOY)(VEOL)O4 — ™ ?POp(VEOE)O4(VOF)
—2POR(VCOR)0c(V 4,0F) + v0(¢—DOBoE)vE(¢—DOCOA)}
_ %WD(VEOC)(vEOC)oBoA _ %vaDOBOC)vC(z/;DvoE)
1
=—5 [(0-V) (4770p)] [(0-V) (¥~"04)]

+y?P (%) 2 [n"(0 - V)Og] 0504

+ (w;D) [(VEOc) (VFOC = VEO0P)] 0504+ O(1)

(A.34)

Now using the fact that
2

(VEOc) (VPOC) = (VEOe) (VEOF) = % +0(1)

we finally find

6RE42)B non-lin.
1 D -D _op ( DN
:—§(O-V)[@/J OB} (OV)[¢ OA]-F@/J <7
- % (0-V) [v7208] (0-V) [47704] +v7*P K [u7(O - V)nc] 004 +0O(1)

(A.35)

In the last line we have used the fact that

(%) _ K +0(1)
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Now we proceed to the calculation of (5RE41J)9 | non-lin.

5Rf41)3‘n0n—11n = [5FAB|non hnear} vC’ { 1711 DOC(O : V) (¢_DOBOA)}
- (%) [(9:0)©-9) (5720501 + 040 %) [0 9620
% (0-V) (¥7"04)] [(0-V) (¥7705)] + %(O V) [072705(0 - V)04]

_ ( : ) (% V. o) K%) 0504 — (O~V)(OBOA)1

1 10-9) (@70.)] [(0-9) (+70,)]

_ (w_;D) (0-V) H}—NOAOB] (1)

(A.36)

We can use identity(A.75) to simplify (A.36)

o ,(4])3 |non lin.

;D) (n-V)K + K(V - )] 0504 — (

[(0-V) (¥=P04)] [(0-V) (¥~"05)] +0O(1) (A37)

77beD
2

) (0 - V) [K 0405]

2

_|_

1

5 —

= (‘D ) [(u-V)K + K(V-u)] 004 — P K [u®(O - V)ne] O4O0p
S [0-9) (¥7°04)] [(0-9) (57705)] + O(1)

In the last step we have used the subsidiary condition on O 4.
(0-V)04 = [u(0-V)nc] Oa (A.38)

Adding (A.35) and (A.37) we get the desired expression for d R 43 |non-iin.

O R AB|non-tin. = (¢22D> [(u-V)K + K(V -u)]OgO4+ O(1) (A.39)
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Finally, 6 R A5 |non-lin. beCcomes

5RAB |non—lin.

_ (WQQD) {%(v )+ (u- V) (%)} 040 (A.40)

() (B o) oo

Where, V is defined as follows, for any general tensor with n indices W4, 4,...4,,

VaWa, e, = NGOG - TG (VeWey 0,0, (A41)

Now, we shall calculate the linear terms in Ricci tensor
5RAB‘1in. = VC‘ [5FgA|lin.}

= %vc {Vs (v 040} + %vc {Va(y 050} —%vc {V (y"0405)}

7\
~~ ~~ ~~

Ty T T3
(A.42)
1
T = Ve {Vis (47°0,40°))
1 1
= 5[V, Vil (v=P040%) + 5ViVo (v="0.40°)
-D
= (1/’7) RppO¥0, — %VB {wD { (% -V O> O,r—(0-V) OAH +O(1)
DX DN DN
= (7> l/JiDOAOB + (%) 2/17D |:7 —V-0 - UC(O . V)n0:| nBOA
-D
- wTOAvB (v : u) +O(1)
(A.43)
In the last step we have used subsidiary condition on O and also the fact that
DN DN
— -V O|=|—-K|]4+0(1)~0(1
(5 -v0)= (57 -x) row~en
Similarly,
D DN DN
T, = (—A) v 20,05 + (—) PP [— —V-0—-u%0-V)ne| naOp
2 2 Y
PP S
— 508V (v : u) +O(1)
(A.44)
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1
Ty = —§vcv0(¢—DoBoA)

D
= —% (V*¢P) 0405 — (Ve ") (VC0405) — TV2<OAOB) (A.45)
DN

_ D [ (7) (n- V) (0405) - %VQ(OAOB)]

Adding (A.43),(A.44),(A.45) we get the expression for [R] .5

5RAB‘lin.
= ’lbe [ (Dw—N> (n . V) (OAOB> + DN 040 — %(OAVB -+ OBVA) (@ . u)
— %VQ(OAOB) + (%) (% -V -0 — UC(O . V)nc> (nBOA + TLAOB)} + O(l)

1 1 y
=" {K (1Y) (0405) = 5V*(0405) + DX 0105 = 5(0aV5 + 05V.4) (V- u)

+ g (% +V-u—u’0- V)nc) (nOa + nAOB):| +0(1)

(A.46)

Using, the following identities

(n-V)(0405) = 2[u”(n- V)nclOaOp + (OaPF + OpPY) [(u-V)Oc]  (AA47)
OpV?04+ 04V?0p =2 [K[u”(n - V)np| + (u- V)K] O40p + (OpP§ + O4P5)V?Oc

— {(VCOD) (VcoD)HTLAOB -+ nBOA]
(A.48)

We have used the identity (A.76) for the derivation of the above equation.

04V + OpV.4) (ﬁ - u> — (PEOg + PEO4) Vi (ﬁ : u) +20408(u-V)(V -u)

A

+ (nAOB + TLBOA)(O . V)(V . u)

~

= (TZAOB + nBOA)(n . V)(V . u) + O(l)
(A.49)
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The expression of 0 R 45|, becomes

R AB|iin,
1
=P |D X (0405) + (OpP{ + O4PF) (K(u -V)O¢ — 5vQOC)
K (n-VK 1 1 .
+ (HAOB + NBOA){E (n ; + v U — UC(O . V)nc> + EKCDKCD — E(n . V) (V . U) }]

(A.50)

Substituting (A.50) and (A.40) in (A.21) we get the source term SX‘;)

Sap = 0Rap — DAG(X}B = §RaBlin. + ORAB|nontin. — DAY "040p

K\ /- 1
=y P lyP (;) (v - u) OpO4 + (OpP§ + 04PF) (K(u -V)O¢ — 5V2OC)
K -VK 1 1 .
+ (naOp + NBOA){3 (” ; +V-u—u(0- V)nc) + §KCDKCD — 5(n V)V - u)}]

@2’&0 o VCK

7 e +uP Kpe — (u- V)uc

1 1 A VK - -VK
‘|‘(7’LAOB+TLBOA)|:?KCDKCD—?<TLV)(VU)+HK +VUJ—2uK +uKU:|}

(A.51)

In the last line we have used the following identity (see appendix A.6 for derivation)

PEV?Oc = PS [VCK — Ve + K (uPKpe — (u-V)ue) | +0(1) (A.52)
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Now,
K - V2 VoK
Sap = @Z)_D (3) {¢_D<V‘U)OBOA+ (OBPE+OAP5) [?C - [C{ +uPKpe —u- Vue
1 V2K  _u-VK 1 .- n-V)K
+(nAOB+nBOA){EKCDKCD— 702 +2 e —u-K-u—EuDRDEuE—i—%
. VK
+V-u—2%+(u-[(-u)}}

(A.53)

In the last line we have used the following identity

(n-V) (@ : u> - (V;K - V)K + K (u- K ) —i—uDRDEuE) (A.54)

Where (@ : u> is given in appendix A.4.

We will use the following two identity to further simplify S4p

UCRDC UD = —nCRDC nD (ASS)

V2K

and, (n-VK)=-n"Rpn® + — KopK4P8 (A.56)

The first one (A.55) of the above two identities follows from the fact that R (Ricci tensor
evaluated on the background) is proportional to the background metric gpc and both v and
n are normalized time-like and space-like vectors respectively. For the derivation of the
second one (A.56) see A.6.4.

Using (A.55) and (A.56), we get Sap

Sap =P (%) [wD (@ : u) 0504 + (405 +150,4) (@ - u)

R (A.57)
Vzuc _ VCK
K K

+uP Kpe — (uV)uc>]

Let us note the presence of ‘K (@ -u)’ term in Syp. From the leading order calculation

it follows that it is of order O(D) on ¢ = 1 hypersurface(see eq (2.22)). This is sort of
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‘anomalous’, since naive order counting suggests that this term should be of order O(D?)
and this may not be the case once we are away from the membrane.

Now for any generic term, which is of order O(1) when evaluated on (¢ = 1) hypersur-
face, will have corrections of order O ( ) (or further suppressed) as one goes away from
¢ = 1. But, for ‘anomalous’ term like K (V - u) that is not the case. Below, we shall

examine this term in more detail. We can expand (V - u) in [¢) — 1 = £] as follows
V-u (V u) dj_ (n - V)(V-u)
~ R /.
(V >Rzo % (V >R:0

We don’t need to expand any other term since V - u is the only ‘anomalous’ term in this

P=1

(u-V)K—l—K(u-K-u)—l—uDRDEuE)

R=0

(A.58)

order. Substituting (A.58) in (A.57) we get the final expression for Ssp

Sap=e " (%) h ((ﬁ ' u) R=0 % (@ ' E) R:O) Op0a

+ 00 41500 (V) =72 (V-£)) (A.59)

R=0

@QUC B VcK
K K

+(OBPS+OAP§) ( —f-uDKDc—(U'V)qu)
R=0

A.3 Intermediate steps for matching with AdS Black Hole

Since we know that the horizon is not at » = 1, this implies ¢(r = 1) # 1.

We shall assume the following expansion of ¢ around r = 1.

X1 X a1 1 3
P(r) =1+ =+ =2+ (a0 + — (r—1)+a20(r—1)2+0(—>
D D? ( D) D (A.60)

1
where X7, Xy, ajo, ai1, ag are constantsand (r —1) ~ O (5)
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Substituting equation (A.60) in equation (2.86) and solving it order by order in (%) we

find the following solutions for the coefficients.
apo=1, an=X1—2, ax=0 (A.61)

To fix X; and X, we have to use the fact that ¢/ = 1 correspond to horizon. We can

determine the horizon of Schwarzschild-AdS black hole 7 order by order in ().

log 2 1)\? log 2)2 1\*
ro=1— Olg) +<5) [—210g2+(0g2)]+(’)<5) (A.62)

Noe setting 1(r9) = 1 we find

(log 2)

X1:10g2, X2: 9

So finally we found
B log 2 1\7? [(log2)?
o =1+ (5) |5
3
+ {1 + (—logz_ 2)} (r—1)+0 (%)

A.4 The derivation of (V - u)

(A.63)

Note that to compute the full spacetime divergence of u“ we also need to know the normal

derivative of u* away from the membrane.

V-u =PV ug +n"(n-Vug

= PPV qup —uP(n-V)ng (A.64)
u-V)K
— PABVAUB o ( K)
In the last line we have used the identity |(n - V)n, = HgvTcK

We know that the first term in equation (A.64) is of order O(1) on the membrane. It follows

from the equation of motion at zeroth order. However, to determine the source term we
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need to know this expression even away from the () = 1) hypersurface. Below we shall
determine this term in an expansion in (¢» — 1) and we shall see that the coefficient of the
linear term is also of order O(1).

Consider the expansion of u* from () = 1) hypersurface.

-1
N

A

ut = utfymr + [(n - V) |yt + - (A.65)

Substituting this expansion in first term of the equation (A.64) we find

(PAPV ausp)
= P9 (unloms + 0 Duslloms + )
— PAPY quplyes + PPV, (¢ - Ln - V)] fyor + - )
= P sl (L) PV sl = P (L) (94000 Dl
= PPV quply=1 + (%) PABY 4[(n - V)up]|p=1 + o(%)

(A.66)
Now we shall process the coefficient of (¢ — 1).

AB _ pAB (u-V)K
PABY 4[(n - V)up] = PAPV 4 [—nBT
= —(u-V)K + K[n”(u-V)Op] + PAPV [(n-V)np — (u- V)Op]

2
_ K
:—uDRDEnE+K(u-K-u)—2(u-V)K+v

+ PR[(n-V)np — (u- V)OD]}

~

—I—UDRDEUE
=2
K _
= VK —2(u- VK + K (u-K -u) +u’Rppu®

(A.67)

Note that (¢) — 1) is also of order O (%) Therefore combining equations (A.66) and (A.67)

we find

B (u- VYK ¢ —1|V2K FU.
V-u-(V-u)LZl TN e 2(u-VK+K (u-K-u)+u”Rpgu

+0(5)
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A.5 Thedivergence of the vector constraint equation at 1st
order

The membrane equation at 1st order is given in equation (2.60). For convenience we are

quoting the equation here again.

@21@4 . VAK
K K

Pg‘ +ucK§— (u-V)ua

1
-0 (B) (A.68)

We could compute the divergence of each of the term separately.

72
Divergence = V7 (PAV uA) - V5 (PA VAK) + VB (P]é1 uch) v (Pj§1 (u-V)uga)

B B
K K , vV vV
N -~ _ ~~ Term—3 Term—4
Term—1 Term—2
(A.69)

@21@4
Term-1 = VP | Ph
erm \Y (B I )

= Vi — K(n-V)ud) + %PJQVB [Viuy — K(n - V)uu)

= (- V)K + P [~ Ron(V7u) + Rppan(VPuP) + V2 (Ropan u”) + V*(Vus)]
— PPV p[(n - V)ua]

= (u- VK + £ VAV -u) ~ PPVp{(n - V)us

=(u-V)K
(A.70)

In the last line we have used (A.66) for the expression of (V - u)

Term-2 = V8 (PA VAK)

VK
K

VK
K

—(n-V)K (A.71)
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Term-3 = V5 (Pg‘ ung)

= P u“VE(MIEVpne)

(A.72)
= —Kuc(n -V)ne + u“Vne
=(u-V)K
Term-4 = VZ (Pf (u- V)ua)
= —K nu-V)us + PP (VuP)(Vgua) + PAPuf (VpVgua)
(A.73)

=K (u- K -u) + P*®u? Rgpapu®
=K (u- K -u)+u”Rgpu®
Adding equations (A.70), (A.71), (A.72) and (A.73) we get the divergence of the vector

constraint equation as

~

2
_ K
Divergence = —u® Rpcu® — = T 2u- VK — K(u*Kpu®?) =0 (A.74)

A.6 Identities

In this appendix we shall prove some identities that we have used for our computation.

A.6.1 Proofof (2.21) from (2.26)

V2(P) = 0
#%—K:W—%
(n-V)¥ K) N 1 (A.75)
- o ()
(n-V)K 1
:T+O(E)
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A.6.2 Proof of equations (A.48)

We have used the following identity for derivation of (A.48)
u'Vna =u'Ve [n9(n-V)na + KS|
= K [ut(n-V)na] + u'VeK§ + O(1)
=K [ut(n-V)na] + u'VeK§ + O(1)
=K [u*(n-V)na] + (u- V)K + O(1)
=2(u-V)K +0O(1)

In deriving equation (A.76) we have used the following identity

(n-V)ny =109 {V;K} +0 (%)

Proof of (A.77)
VaN? = Va[(Vpe) (VE)]
= 2NVAN = 2(VP)(VaV )
= NVAN = (VP)(VEV.a0)
= NV,N = NnPVg(Nny)
= VaN = (n-V)(Nny)

N
= (n-V)ny =105 (V]C\} )

-5 [ Yo o (3)

A.6.3 Proof of (A.52)

PEV?0¢ = PS (Vne — Vuc)
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PSVPne = PS VPV pne

\
= P§ VPVp ( szw>
= P5 V" (VDTW - %(VDN)(VCW)
D
= P§ <%CVD¢ - %(VDN)(VDVCW)

= %Pg([vD,VC]VD@D + VCVDVD@/)) +0(1)
(A.80)

1 _

1
— Npgvc (anDN + NanD> +O(1)
NVeVPnp  (VeN)(VPnp)
_ pC
= Py ( N + N +0(1)
VK
K

=2P5VcK + O(1)

= P (VCK + K) +O(1)

Pg (Vuc) = P§ VPV pug
= PEVD <Hg Vpug + nanVDuE)
= ngD <Hg VDUE) + O(l)
= PSVvP (Hg 15 Vpug + & np(n - V)uE> +O(1)
(A.81)
= P5vP <H£ 1% vpuE> + PSK(n-V)uc + O(1)
= PSTIRVY (Hg 14 vFuE) + PEnP(n-V) (Hg 1% vFuE)
+ P§K(n-V)uc + O(1)
= PSTIRVY (Hg I VFUE) + PSK(n-V)ug + O(1)

Adding(A.80) and (A.81) we get the expression for P§V2O¢
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PEV?0O¢ = PS 2V K — TIRVY (Hg I vFuE) — K(n-V)uc]+0(1) (A.82)

Now from our subsidiary condition,

PS(O-V)O¢ =0
(A.83)
=PS(n-V)uc = P§ [(n-V)ne — (u-V)ne + (u- V)uc]

Substituting (A.83) in (A.82) we get,
PSV?0¢ = PS { 2VeK — IV (IE ) Vrug)
- K [0+ Ve~ (u+ Ve + - Vhuc] b+ 01
= P§ {VCK — g (Hg I VFUE) + K [u"Kpc — (u- V)uc] } +O(1)

= Pg {VCK— Viue + K [uP Kpe — (u- V)uc] }+O(1)

(A.84)
Where V is defined in eq (A.41).
A.6.4 Proof of (A.56)
(n-V)K = (n*V4)(Vpn®)
= TLA [VA, VB} nB -+ TZAVB(VATLB)
= —TLARABDB ’IY,D—FVB[(TLV)TLB} —KABKAB (A85)
B HBA K
= —nRapn® + V3 {%} — KapK"4B
=72
= —nARAD TZD + VK - KABKAB
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Appendices for Chapter 3

B.1 Calculation of the sources - S5

In this section we shall give the details of the calculation of S 5. As mentioned before, the

source will be given by F 45 calculated on GE]B = gap + 1V P0,405.

We shall follow Appendix A.2 for computation. The first step would be to decompose
the source in the following way.
Sap = Eaplgo,
_ (D _ [0]
= RAB’GE;)JB (D = 1)AGyp

= —(D—-1DAy 0,05 +Yc [5F§B|11nl+Yc [5FgB‘non-linl: [(Tg];] [5F§c]

5Raslin 5 R%\‘;m_lin s Rf};‘;m_hn
(B.1)
where
1
0T golin = 5 {V(¥~"0c0%) + Ve (¥™"050%) = VA(u™"0500) }
1
OT 5o monin = 50700 - V) (7P 050¢) (B.2)
5FéC = 5Fgc|lin. + 5F§C|non-lin.
At first we present the calculation of & Rfé | non-linear
5RE42)B|HOH-11H~ = : [6FgE|lln} [5F§C|linl: [5FgE|lm} [5F§C|non—linl
Te%-l Te;r,n-z
(B.3)
- [5FgE‘n0n-lin.] [5F£C‘Iin.] - [5FgE|non-lin.] [5F£C‘n0n-lin.]
Term-3 Term-4

As previously, in this case also, Term-2=Term-3=Term-4=0;
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Now we need to calculate Term-1.
2
5R(Aé non-lin. — — [5FgE|lm} [5F£C|lin.}

= %@b‘QD(VEOC)(VEOC)OBOA — %VE(@FDOBOC)VC(Q/)_DOAOE)

= 50 D) 0RO Vw0 + v (21) Q0105
+ W;D (V50c)(VEOC = VCOP)0504 — 2P Q* 0504
(B.4)
Where, Q = u”(O - V)ng
SR hhonin. = ~51(0 - V)@ P00 V) PON)] + ¥ K Q 0,105
+ ‘D;D (VEOe)(VFOY —VCOF) —2Q* +2 Q% Op04
(B.5)
In deriving (B.5) we have used,
DN (n-V)K

Now we proceed to the calculation of (5R(A1j)9 | non-lin.
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o RS)B ’non-lin.

= Vo Bw’)oc(o V) ("20,40p)

- (w_;) [(v -0) (0-V) (¢7"0504) + 04(0 - V) [(0- V)4~ 0Op)]

210 9) (5720.)] [(0-9) (47705)] + 50 V) [5*°05(0- V)0

= (000 - V)P 05)] ~ L5(0- V)IK 0105]
2D /DN DN
2 () (B sc)on
+ 1/}2 {3@2—1—2 (O-V)Q —(0-V) ((n;)K) - (n~;)K2 Q} 040p
(B.7)
Now.
D DN
(WT_V‘O(TT;QQ> 2
[ TR TR L g (DK
(u- VK 1 (n-V)K(u-V)K (n-V)K
K K K K HKJ“ K _QQ}
:K<Vu +(O-V)K+—(n'z)2K —2 {—W;)K} NG 'IS)K(”;)K
(B.8)
Where, V is defined in (2.58)
In deriving (B.8) we have used (see B.2.3 for derivation),
- (u-V)K 1 (n-V)K 1 (n-V)K (u-V)K
V-u:V-u—T—?(u-V)( I >+§ % I (B.9)
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Using, (B.8) we get the final expression of §Rf41])3 | non-tin.»

6RE41)B ‘non-lin.

1/)—2D
T2

K(V-u) 0405 — PK Q 0,05 + % [(O-V) (vP04)] [(O-V)(¥"0p)]

+¢2 3Q2+2(O-V)Q—2Q((n';)K+ (0'5)K> + (V- u) <%—2Q”0A03
(B.10)

Adding (B.5) and (B.10) we get
0 R AB |non-tin.
= 6RE41)B|non-lin. + 53542,)3 non-lin.
= 07 K(T 0 0.10u+ 3072 (Va0°) (V00 = Ve0") + @7+ 2(0- 9)Q

IS (AL )((n-V)K

e (Veu = —QQHOAOB

(B.11)
Let us note the presence of ‘ K’ (@ -u) ” term in 0 R AB|non1in.- From the membrane equation
at first subleading order, it follows that this term is of order O(1) on ¢ = 1 hypersurface.
This is sort of ‘anomalous’, since naive order counting suggests that this term should be or
order O(D?) and this may not be the case once we are away from the membrane.
Now for any generic term, which is of order O(1) when evaluated on (¢» = 1) hypersurface,
will have corrections of order O (%) (or further suppressed) as one goes away from 1) = 1.
While integrating the ODE:s, this is the reason we could ignore all the implicit v dependence
in the source. However from the above discussion we could see that such reasoning does
not work for ‘K (@ -u) * (or in fact any such ‘anomalous’ term). Below we shall examine

this term in more detail.

152



B Appendices for Chapter 3

We can expand (V - u) in [¢) — 1 = £] as follows

R R W — . 0¢__ )2 n - A
V-u=(V-u) ¢=1+ Nl(n-V)(V-u) ¢=1+ 2N21 [( ;)N} — [(n V)(Vu)]’
+%[(n-vxn-v> vu)} ¢_1+O(¢_1)3

o], -5, A )
#[(E) ], (3

-], ol () o), e (5)

Where F 4 is given in equation (3.16).

R=0

(B.12)

In the second line we have used the following two identities (to prove them we have used

Mathematica Version-11),

(n-V)(V-u)

R=0 (B.13)

(n-V)(n-V)(V-u) :2D2<%)

Clearly the second and the third term in the last line of equation (B.12) (which encode the

R=0 R=0

value of (@ - ) off the membrane) could contribute in 6 R 4 g |non.tin. at order O(1).
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Substituting (B.12) in equation (B.11) we find
5RAB |non-lin.
K - V-E 1
— oy—2D ( T . . PFCPED
4 ( 2 ) [(V “> b1 R( K >¢=1 ok [Vwun Vieun) ]

—2D 2
+ LR2 (D ) (52) OAOB

040p

2 K?

VeK
K

— (Veua)(Vout) = (u- K- K -u) +3 (M)

—2D C

D K D ( K 040p

o (K [ (¢ V-E 1
e (5) [(V-u)w 1—3( - )w = o5 [Viwun Vicun PFOPEY]

u-VK
K

K -V)K K -V)K _

040p

VK

2~ (Vaug) (V)

n 1/1_2DR2 (D2) (85) 040 — - 2D

2
ApB
5 e ) +4u Ky

VAK . .
—(u-K-u)*—2 [(u-V)ua] — [(u : V)uA] [(u : V)uA] +2 [(u-V)u'] (uPKpa)
VuKVAK K VK
—3(u-K-K-u)— 2 e D(UK —u-K-u)—}—uunDnCRCEFD 040p

2 2K

o—2R . , [ D?
+( 2 ) —R<V.E>R:0+R (ﬁsz)Ro

K - 1
= B_QR (—) |:(v . u)R 0 — — (VE’LLF + VFUE) (VCUD + VDUC) PFCPED:| O OB

OAOB — 6_2R (51) OAOB

(B.14)

154



B Appendices for Chapter 3

where
51 = uPul'n nCRCEFD+<“';K)2 VQK [4 PKg —2[(u- V)ual v;K]
(Vaug) (VAuP) = (- K ) = (- Vyua | (- V)ut] + 2 (- V)] (0P Kipa)
~3(u-K-K u)—%(“';K—u K u)

D K K

. /\D v _
+2 (u ;K) (u-K-u)— <V K> (VDK> — (u- K -u)? + nPnPuFu’ Rpppe

2 . . 2
BQZEI_E(U VK—u-K-u>—2)\—(u-K-K-u)+2<V?(K)uBKS—(u VK)

K K

(B.15)
Now we shall calculate those terms in Ricci tensor that are linear in 1)~
SR ag|in. = Ve [00G 41 ]

= %vo {Ve (v 7040} + %vo {Va(p~P0Op0O°)} —%vo {V° (¥ "0405)}

g g g

7 7 T
(B.16)
T = Lo (Vs (677040°)}
1[Vc, Vil (77040 + vac (v~"040°)
— g (RepOP04 + RepapOPO%) — —VB [ {(— ~-V- 0) O4—Q OAH
_ % (REpOP 04 + RopapOPO%) + (1;1;) P {% -V-0-— Q} npO4

e (5 v e-a)o

= ? (RepOP04 + RepapOPO%) + ? [(n VK + K(V-u— Q)] npOa
[ () B (o (B s
(u-V)K

K K

npOa + ——

* 2

+u-K-u—|—@-u}
(B.17)
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Similarly, we will get 75 by interchanging A and B indices

Ty = —%vcvc(wDOBOA)
-D
= 5 (V09) 0405 — (Vv ™) (V00.08) — U ov2(0405)  (BI8)

=P { (%—N> (n-V)(040p) — %V2<OAOB)

Adding 7', T3, T we get the expression for 0 R4z |jin,
O R ABliin
=" (D =1) X005 + ¥ " ReappO 0 + ¢ PK (n-V)(040p)

v _on - 0% 2

s {("'Z—) K, {%} _g%}(%wm

! wD{ {WTV)K} (n-V)(0a0p) - (VCOA)(VCOB)} + %% VO + VAOg]
L (n-V)K (u-V)K A

_T(OAVB+OBVA)[ K -2 K +U'K'U+V-u:|

(B.19)
Now, we shall decompose the source in the way as mentioned in (3.13). Note that the
decomposition of a general 2-index symmetric tensor (C'4p) is the following
Cap = PYPECpp + (PY¥Op + PEOL)Crpu® + (P¥np + PEn,)CppOP

+ (TLAOB + TLBOA)(OECEDUD) + OAOB(UEOEDUD) + TZATLB(OECEDOD)
(B.20)

Using (B.20) we shall first decompose each of the tensor structure appearing in (B.19)
(TL . V)(OAOB) =2 [uc(n . V)nc} OAOB + (OAP]_? + OBPE)(H . V)OC

(B.21)
=2 {uc(n . V)nc} 040p + (OAPg + OBPE)(U . V)OC
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OBV2OA + OszOB

VoK
K

— [(VCOD) (VcOD)HnAOB + nBOA] + (OBPE + OAPg)VzOC

=2 |K[uP(n-V)np] + (u-V)K —uP K¢ ( ) +uP(n-V)?np + (Voup)(Vu) | 0405

(B.22)

(Ve04)(VEOg) = (uPVenp)(uPVong)0405 + (VpOc) (VPO ) PS PS'
(B.23)
+ (05PY + O4P5)[(VrOe)(uPVinp)]

V044 V405 =2 (u-K-u)0405+ Q (naOp +np0,4)+ P{PS (VeOer 4+ Ve Og)

+ (0P + 04PF)[(u- V)O¢ + uP Kep)

(B.24)
. K . K ~
(OaVE +0pVy) [(n V) -2 (u-V) +u-K-u+V~u}
K K
VK K
_ % 0405 — (04P5 +05P5) V2 (B.25)
. K . K ~
+<OAnB+OBTlA)(O'V>|:(n V) —Q(U V) +u~K~u—|—V~u]
K K
RCABDODOC = prg RCEFDODOC + OAOB UEUFRCEFDODOC
(B.26)

+ (PEOB + P;EOA)RCEFDODO%F

Using (B.21), (B.22), (B.23), (B.24), (B.25) we can decompose 6 R 4p|i, in the following

way

ORABin = SRV040p + 53(52)(%403 +np0a) + SR nang + ORI Py

lin lin lin lin

+ (0P +OpPS) [SRLY| -+ (maPf +nsP) |0RLY] + 0B

:| AB
(B.27)
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Where

_ VK K
5R(Sl) = Q/J_D(D - 1) A + Q/J_D {UEUFRCEFDHDHC — (U . V) <M> + UAKE VC

K K
(n-V)K (u-V)K (n-V)K
K K TR

—ut(n-V)*na — (Voua)(VOu?) +

[ (n - Vng] — (uPVenp)(wVong)

K K(u-V)K
D(u K -u)+ ' }

=y P(D-1D)A+y P [W‘Kf VIC{K — (Veun)(VOu) — (u- K - K -u) — D%
2
s (%) * %W K -u) =2 w ;)K(u K -u) + UEUFRCEFDHDTZC]
= P(D-1)A+¢ "5
(B.28)
Where,
. 2 g A A A
51 = (u ;K) + V[A;,K [4 uPKE —2[(u- Vuy] — VKK] — (Vaup)(VAP)

—(u- K -u)?— [(u@)u/x} [(u- V)u] + 2 [(u- V)ut] (WP Kpa) =3 (u- K - K - u)

K - VK _
- —= (U v —UKU) +UEUFRCEFD nDnC

D\ K
(B.29)
-b . -V)K V)K 1( -V)K
6R(52)—¢T K{v-u—%—%(u-v( )+ K (“K) }
(n-V)?2K (n-VYK\> K (n- VK K
O G IR
+(VCOA)(VCOA)—(O~V)<(n.;>K—2(u';)K—l—u-K-u—l—@m)

(B.30)
We shall massage the above expression for § R(*2) a little more.
Let us note the presence of ‘K (@ -u) * term in 0 R*2), From the discussion just below the

equation (B.11) it is clear that we need to take the expansion of V-uiny — 1. Theyp — 1
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expansion of (V - u) is given by (B.12)

~

Vo= (You) - R V-E

K

2
+ RQK%) 521 + 0 (%) (B.31)
R=0

Substituting equation (B.31) in equation (B.30) we find

e (), n(en), (2],

R=0

SR =
2

b [_K{(U-V)K 1(u_v)((n~V)K> 1(n-V)K(u-V)K}

+ +—

2 K K K K K K
+(n.v)K—KQ+—(”'}V(>2K—2 (—(”';)K> —%—(”'Z)K+%Q
+<vCoA><vcoA>—<o.v>(““?K-zW;WM.K.UW.U)]

(B.32)
Now it turns out that it is possible to rewrite the last three lines of equation (B.32) in terms
of the already defined scalar structures s; plus few extra terms which could be expressed
as functions of membrane equation.

We have used Mathematica Version 11 for this purpose'

[ K [ « 1
IR = e~ =5 + = (W ‘) — —V(AUB>V<CUD)PACPBD)
—R B

2 9K
e o[ (D* 1\
+ R(v E)R:0+R Km)@hzo +O(D)

"More precisely Mathematica has been used to rearrange  R(52) on R = 0 hypersurface . Away from the
membrane the calculation is relatively less tedious and could be done by hand. On ¢ = 1 i.e., on R=0, SR(52)
becomes

R=0 (B.34)

1

K [ -
SR(D| =R [—sl +5 ((V ) - V(AUB)V<0“D>PACPBD)] (B.33)
- 2 2K

R=0
Where, V(AUB) =Vaup +Vpuy

For Mathematica computation we do have to choose a specific background and coordinate system. Since we
have an independent proof that the final answer is ‘background-covariant’, such a choice does not imply any
loss of generality. However, we need to do an appropriate ‘geometrization’ of the answer that we get from
Mathematica, so that we could write it in a ‘background covariant form’ as desired. See [14], [3] for details
of this procedure.
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This type of rewriting helps to see the consistency of the set of coupled ODEs manifestly
(see section - 3.3.1).

Let us continue with derivation for the rest of the components of the source.

SR =0 (B.35)

) w—D PC’C’ b K
ORVY = 5 D9 —Q(VDOC)(V OC/) + B(VCOU + VclOc)
-b / K / 1
= %m |:—2 PCC (VD’I”LCXVD’QC/) -+ EPCC (Vcncf + chnc)} + O (5>
B | K? K? 1
=2 p2\"*D "D +0 D
=0
(B.36)
(V1)
|:6Rlin i|A
-D -D -
— TPE 2 K(u-V)Oc — V*Oc] + TPE 2 Rpcrp OPOFu”
VK VK K K
+ 2%[@ -V)Oc¢] + f) 2(VrOe)(uPVinp) + E(U -V)O¢ + B(uDKCD)]

e e 2 e (-1 c 2
= —P7 [2K(u-V)Oc — VO] + — (—) (n-V)[P] (2K(u-V)Oc — V*Oc)] ‘

2 2 N

=1 =1
(n-V)K

K

VoK
D

-R
+ %PE 2 Rpcrp OPOPUF + 2 [(u- V)Oc] +

K K
— 2<VF00)(UDVFTID) + B(U : V)OC + —UDKCD

D
e ! D
— R KEvector_2 _
() [re-an (@)

In the last line we have used the following two identities (see appendix B.2.4 and B.2.5 for

=1

(B.37)
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derivation)

(n-V)[P§(2K(u-V)Oc—V?Oc)],_,=—2D b4 (B.38)

P{|2 K(u-V)Oc — V?Oc + 2 Rpcrp OPOPu” + 2—(n : V)K[(U -V)Oc] + VZCDK
D F K K D vector
—2(VrOe)(uw"Vinp)+ =(u-V)O¢c + —=u” Kcp = K E}
D D =1
(B.39)

Where EY " is the subleading (see equation (3.16) ) membrane equation, and v 4 is given

by

VpK
K

vy = P} + (u-Vup —2uPKpp

K _ K
5 (TLDUEOFRFBDE) + W (
(B.40)

VK K
— PFD (% — E(UEKEF)) (KDB — VDUB)]

Note that the simplification of [5Rl(i‘f)} involves the same issues as in 0 R(52). The first
line of the RHS of equation (B.37) is of order O(D) by naive order counting. However,
because of the membrane equation at first subleading order, this is of O(1) on ¢y = 1
hypersurface. Away from the hypersurface this may not be the case and we have to expand
the first line around ¢» = 1 and take into account at least the first term in the expansion.
This is what has been done in the second line of equation (B.37). In the final step we have
re-written [(5 Rl(i‘f)] in terms of already-defined vector structure v 4 plus terms proportional
to membrane equation.

The rest of the components of S 4p are easy to compute without any further subtlety.

lin

[5R(V2>] =0 (B.41)
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ORGY

lin

—-D ) ~ K
N wTPE P {2 RrecpOP0" = 2(VpOc)(VPOcr) + 5 (VoOor + vc,oc)}

|

K
2 D—2 D

-b L K
= ‘DTPE P [2 RrccrpOPOF —2(VpOe)(VPOer) + B(VCOCI + VC/OC)]

-0 p y
_ LiPCC {—Q(VDOCxVDOC/) + (VcOcl + VclOc)}

_ ’ K V Ucr + V U
=P PPy {5 (KCC, SRRACES 5 < C) — PE(Kpe — Veue) (KT, — vFuC,)}
+ ¢ PPYPS RpccpOPO"

=" tup
(B.42)

Where,

_ K Veup + Vpu
tAB == PEPBD + RFCDEOEOF + 5 (KCD — ) 5 D C)
(B.43)
- PEF(KEC - VEUC)(KFD - VFUD)
In deriving (B.42) we have used the following identity
P{(VpOc) = PP (VEOc) — Op[PS (u-V)Oc] (B.44)

Which follows from the subsidiary condition.

B.2 Some identities

In this appendix we shall prove some of the identities that we have used to compute the

metric correction.

B.2.1 The derivation of the Identity (3.27)

Vaug + Veuy
2

K
ti]cer = PGP {5 (KAB - ) — PP (Kpa — Vpua) (K" — VPup)

(B.45)
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VOIt]oer
K
— 5vC (PEPEK ap) —lvc {PAPP(Kpa—Vpua)}] [PEPPF (Kpp — VEuB)l
Te;r,n-l Term-2
K Vaup + Vpu
_ 5v0 (pgpg, A8 . B A) — [PEPR(Kpa — Vpua)] [VO{PEPP (Kpp — Viup)}]
(. ~~ - T€7"T:L—4
Term—3
(B.46)
After a bit of straight forward calculation the each of the above terms become
K p
Term-1 = BPC,VEK (B.47)
Term-2 = PPAPE (VK — K(uPKpp)|(Kap — V.aug) (B.48)
K
Term-3 = ﬁp({?, [VeK + K(u- V)ug] (B.49)
K r D
Term-4 = EPC/ [K u”Kpp — K(u-V)ug| (B.50)

Adding (B.47), (B.48), (B.49) and (B.50) we get

K
Voo = ﬁpg (VK + K(u-V)upg — 2K (u* K 4p)] B51)

— PPPPA (VK — K(uPKgp)) [Kpa — Vpua]
B.2.2 The derivation of scalar structure s, (3.24)

The scalar structure s5 is defined as

V.o
K _ K? (VK
by = Py D (nPuFO" Reppr) + D2 ( 2 + (u-V)ug —2 UDKDB)
(B.53)

oo (KK

D D (UEKEF)) (KDB — VDUB)]
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Now,

K? -V)K K K
VA4, = _K[2D2 ((n Z> —|—nB(u-V)uB> — pFpP (vL — —uEKEF) (—nBVDuB)

K _
+ BnDuEOFnBRFBDE —+ Pf

K? (VAVBK

2D2 K + VA[(U -V)upg] —2 UDVAKDB>

VrK VAVRK K

K K K _
_pro (ViR K (WP Ker) | (VAKpp — VAV pup) + = (K4P) uPOF Rpppr
D D D
K? K ((n-V)K VK
=Dl ap (% —u-K- U) + pFP (—;( — uEKEF) (UBVDTLB)
1 (V?K A1 K ((n-V)K
+n uEan RFBDE + ﬁ ( K ) - § - 5 (UDVAKDA) + 5 (%)
VAV K VK VAK
(B.54)
Now using
’K ’K
\% \% (n-V)K Lo 1
K? K? K D
V2K VK A(D —1) (B:33)
u - _
-9 —u-K
and, 70 ( % ) u u+ e
We get the final expression
K? K (u-VK
VAtJA = D [anD UFRFBDE — 5 ( K —u- K- u) — 2\
u- VK
—(u-K-K-u +2< > ( ) (B.56)
. K K
+2<u; (u- K -u) ( ><VD )—(U-K-uf]

:.D52
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B.2.3 The derivation of the Identity (B.9)

(u-V)K 1 n‘V)K)+i(n~V)K(u-V)K

V-u:@-u————(u-V)(( 7 % K I

- = (B.57)

V-u=V-u+np(n- Vb
(n-V)N

(n-V)N N (B.58)

-1
=V -u—u® (YK + 1 —N] @B[@Z)Ker

In the last line we have used the following relation

ND:¢K+¢(”'§)N—N (B.59)
Vou=v B[¢K+w(”' } [z/zK AU —N]
=9 [ e e [ ww o]
. (- V %(u'v){(n-;)N_%}Jr[(nj-vz()N_wJ\H (u-;)K
P o] () (e9)
In the last line we have used
(n ]X)N _ (n ';)K +% (B.61)

B.2.4 The derivation of the identity (B.38)
(n-V)[P5 {2 K(u-V)Oc — V*Oc}]

(n-V) [PDC {—2 K(n-V)uc + VQuCH

= l(n V)PF] [-2 K(n- V)uc + V2ucl+ Pi(n-V)[-2 K(n- V)ue + Vuc]

1 st Term 2 nd Term

(B.62)
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1 st Term = [(n - V)Pg] [—2 K(n - V)uc + Vuc]
= —np[(n-V)n°] [-2 K(n - V)uc + V?uc] + up[(n- V)u®] [-2 K(n - V)uc + Vuc]

= [(n- V)np] [~2 Kn(n - V)ue +n°Vuc]

=0
(B.63)
Where, we have used
(n-V)np = —up [uP(n-V)ng] + P5(n-V)ng
(n-V)up =np [n®(n-V)ug| + Pf(n- V)ug (B.64)
And, —2 K(n-V)uc + Vuc = nc [2 Kup(n - V)n” —upV>n”]
The third one follows from the fact that,
Py [-2 K(n- V)uc + Vuc]
= P§ [@%c — K(n- V)uc}
(B.65)

— pS [Wuc VoK — K(u-Vue + KuPKpe
—0

Where, [E])5" is the leading order membrane equation.

2nd Term = Pf(n- V) [-2 K(n - V)uc + Vuc]

= P {=2[(n-V)K][(n- V)uc] =2 K (n-V)[(n-V)uc] + (n-V)(V?uc)}
(B.66)

166



B Appendices for Chapter 3

Now,
Py (n-V)(Vue)
= P nPVpVeViue
= P5 n¥[Vg, V| Viue + PS nEVpVeViue
=Pj [-A (D =1)(n-V)uc + n”Rprep (VIUP) +nPVH Vi, Viluc + 0"V ViV puc]

== Pg |: - A (D — 1)(7’L . V)UC + nEREFCB (VF’LLB) + nEuB (VFREFCB) + HEREFCB (VFUB)
+ V2 [(n - Vuc] — (V2P (Vgue) — 2 (Ven®)(VIVgue) + K (n- V)[(n - V)uc]
= P§ [@ﬂ(n Vue] — (V2P (Veue) — 2 (Ven®)(VEVgue) + K (n-V)[(n - V)uc]

A (D= 1D)(n- V)uc]

@Q@QUC_L . )u-VK_

— Pg{ - = (WK) Viue — <V2nc (V2E)(V suc)

—2(Ven®)(VEVpue) + K (n-V)[(n-Vuc] — A (D —1)(n - V)ue

(B.67)
In the last line we have used,
. . V2 VK
PSV2[(n - V)uc] = PSV? | PE ;E — 2 =
V22 1 VK (565
_ pC uc ) ) =) u-
= =% _F<VK>V”C_<V”C> K

Using (B.67) in (B.66) we get,
2-nd Term
§2@2UC
K

— PEA(D — 1)(n- V)ue + PS [ 9l VK- Vyue] — K (n-9)[(n- Vyue] +

B 1 u- VK

(V2nP)(Vgue) — 2 (Vpn®) (VP Vgue)
(B.69)

(@2}() @2uc — (@2n0>

Using the following identity whose derivation is a bit lengthy, and we are skipping the
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derivation
Pg(n-V)[(n-V)uc]
u-VK u- VK VoK N V2V2uo

= P5| —4 [(u-V)ue] + [(u-V)ue] (u- K -u) =7 T e
+3(u-K- u)vf(K — %uDKDC +4 (uDKDC) u- VK —UDKDC(U K -u) — ngV[D(K
—2(up K*P)(Vpue) + 2 KA K youp — 2>\(DK_ D @;?C —2u"nPOARproa
(B.70)

Now,

2-nd Term

= P [—%2 ((u Vue — uP Kpe + VIC(KH + PSK {2 uW'nPO*Rprea

42 K@% + 2(up K*P)(Vpue) — 2 KA Kycup — 2 @ZK (Vieue)

_ ol -;K(u V)ue + NG VKuDKDC +2(u- K -u)|(u- Vue] — 2(u- K - u)(uPKpe)
=—-2Dvp

(B.71)

Finally, we get

(n-V)[P5{2K(u-V)Oc —V?Oc}] = —2Dvp (B.72)
B.2.5 The derivation of the identity (B.39)

We can divide the L.H.S. of (B.39) as follows

(n-V)K VoK

PF12 K(u-V)Oc — V?Oc + 2 n”OFu* Rpcpp +2 K

[(u-V)Oc] +

K K
— 2(VrOe)(uPVinp) + 5(u -V)O¢ + BUDKCD = P{ V?uc — P{V?ne + W
(B.73)

where W is what we get by subtracting off P{ VZuc — P{V?nc from the LHS of equation
(B.73).
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First we shall simplify W/

(n-V)K
K

VeK
D

W:Pg[QKu V)O¢ +2nPOFur Rpepp +2 [(u-V)O¢] +

—2(VpOe)(uPVinp) + K (u-V)OC+5uDKCD]

D D

VK

—2[(u-V)u ](%—U'K'U)+ng—2UDKF0KFD

+2(Vrue) (upK™) + %[(u -Vuc] + 2 nDOEuFRECFD}
(B.74)
Now, we shall simplify P{ V?n¢
PEV*ne = PSVP (Vpne)
= PEVP [Kpc +np(n - V)nc] (B.75)
= PEVPKpo+ Py K(n-V)ng + Pg(n- V) [(n- V)ne]

Vo Vo Vo
iA P T35

T, = PSVPKpe

= PSVPKep

= PEVP (IIEVEnp)

= Pg [(VPLIIE)(VEnp) + 1IE (VP VEnp)] (B.76)
= Pg{=(VPnc)[(n-V)np] + UEVEVPnp} + PE[Vp, Vin”

VoK
:—PgKg( ; ) + PSVeK — PER, pPn®

VoK
:—PgKg( e )+P§V0K
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T, = PSK|(n- V)nc]

_ pngKw@ — e (v PN )
. (1 - (n]'vz()N + w]\[[() Vo (K L VN ;)N —~ %) (.77
= PS Ve (K+w - g) + PS (—<”]'VZ()N + Qﬁ() VoK
— PSVCK + PSV6 <—(" 'E)K) .y <<n ';)K> (V;K>
In the first line we have used
ND:¢K+¢W—N (B.78)
And, in the last line we have used
("';)Nz("';)[(+% (B.79)
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VeK\ ((n-V)K K VoK
o1 () (M 5) e ()

K K K? K K

+P§ <v0K> (2—(“'V)K —u-K-u) AL

. =9 B
_ _opC (M) <2M _U.K.u> + POV, (V K) 4 poVeKAD 1)

K K K
(B.80)

In the last line we have used

(n-V)K V2K (D-1)\ K
K K2 K D (B-81)

And, divergence of leading order vector membrane equation

V2K _u-VK D —1)
=9 —u- K- AT
e % U U+ K

(B.82)

Adding (B.76) (B.77) and (B.80) we get

VoK 2 . VoK MD —1)
Co2,  _ pC oD (VD oz 2.\ c
PSV2ne = PS [QVCK 2KC< >+ Ve (v K) 2

—6(V[C(K) <2<“‘§>K_U.K.u)}
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Now, we shall simplify P§V2uc
PSV3ue
= PSVZ (IENAVY pup)
= Py, VY (HEIIEV pup)
= Py, (VMY (Vrue) + PEIL, (VML) (Vrup) + PEIY, VYV puc

= P§ { — I3 n" (VYny) (Veue) — Iyn” (VYne) (Veup) + Viue — n'ny VY Vipue
= P§ { —n" K(Vruc) —n” (V¥Mne) (Varup) +nP[(n- Vnel((n - V)up)
+ Vuc — ny VM (0" Vpue) + na (VV0") (vpuc)}
= P§ { — K[(n-V)uc] — (VMne) (n®Vayup) + [(n - V)ne][n” (n - V)up)
+ Viuc — (n-V)[(n- V)uc] + [(n- V)n"] (vFuc)]
= PSVue = PS {@%C + K[(n- V)uc] + (VMne) (n"PVaup)

—[(n-V)nc][n®(n - Vup] + (n- V)[(n- V)uc] — [(n . V)nF] (Vruc)
(B.84)
Now, PBC (VMnC) (nDVMuD)
= —P§ [KY +nM(n-V)ne] [upK§) +upna(n - V)n®]

— —PSKY KDup — PS[(n- Vne] [uP(n- V)np) (B.85)

K (u-VK
— PSKMKDup — P (“ v )

B K K
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Putting (B.85) in (B.84) we get

. K (u-VK
PEV?uc = PSV?*ue + PS K[(n - V)ue] — PF KN K jup — peYe (“ v )

5B K K
VeK (u-VEK VFK
+ P~ ( - ) + P§ (n- V)[(n- V)uc] = P§~—(Vruc)
= PSV*ue = PSV2ue + PS K[(n - V)ue] — PS KM KDup + PS (n-V)[(n - V)uc]
—PCwK(v uc)
B K Fruc

(B.86)
As we have mentioned before derivation of P (n - V)[(n - V)uc] is lengthy, we shall use

the result mentioned in eq(B.70)
Using (B.70) for P§(n - V)[(n - V)uc| we get the final expression for P§ Vuc

(u-V)K

PSV?ue = PS | Vue + K[(n - Vug] — 4 (- Vue] + [(w- V)ue] (u- K - u)

(VPuc) +3 (u- K - u)

. u-VK VCK_%K
K K K

u- VK VpK

+4 (u"Kpc) —uPKpo(u- K -u)—2 KL

D -1\ (VeK _
+ K K qcup — 2( I ) ( [C( —uPKge + (u- V)uo) —2nPu"O*Rppea

— Q(UEKED)(VDUC)

(B.87)
Adding (B.74) (B.83) and (B.87) we get the final expression

1
= (P§ V’uc — P5Vne + W)

@QUC @CK E 2 C @262160 uEKEDKCD (@CK)(U : @K)
o +u KEC—u-Vuc]PB+ < I% - i
(VEK)(VPug)  2KPEVpVpue  VeVAK . Vel KppKEPK) N ol K u)(u Vue)

K? K? K3 K3 K
(u-K-u)(u"Kgo) 6(u -VK)(u - Vug) N 6(u -VK)(uFPKge) LS Vue
K K? K? D—3

B D —1)\ (VK .

“D - ( = ) ( = — 20" Kpe +2(u- V)ucﬂPg

— vector
= B}

A

-3

-3

(B.88)
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Where, in the last step we have used the following identity

P§(n-V)uc =P5

VoK 1 VK (D-1)\ K
%—i-ch( ( ) ——)—uDKDC—l—(u-V)uC

K2 K D
_&(vgc) (Q(U’IY)K—U.K.U—%)]

(B.89)
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Appendix C

Appendices for Chapter 4

C.1 Calculation of integrals (4.12) at linear order

{R) = —2 (%)2 /: y fyl

D\ 2 (C.1)
= -2 <E) l— R Log [1 — e*R] + PolyLog [2, e’R} }
Where PolyLog|n, z| is defined as
PolyLog[n, z| = Li,(z Z s
We just want e~ term of the integration. Expand in e~ we get.
D\ 2
t(R) = -2 (E) [Re "+ e ]+ 0 (e?F)
R¢ (C.2)
=2 (E) e IR+ 1]
D\ ?
t(R) = -2 (E) e "[R+1]+ 0O (e?F) (C.3)
Ry =2 (2 3/00 g /y d /OO g /xy dy|  (C4)
v(R)=2( 4 Re xoey_ly Oe xoey_ly :
Now.
/m Ve =T T e Log [l — ] — PolyLog [2,¢~] (C.5)
Oey_ly—G 5 +wlogll—e yLog [2,e :
= / Id:c/ Je dy
o e¥—1
/ e i —|—I—+xL0 [1—e7"] — PolyLog [2,¢"] | dx
. 6 " g yLog |4,
71-2 RQ
—e B (E> +e R <7) —(1—e™RLog[l—e ] + (1 —e ") PolyLog [2,e "]
(C.6)
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ooi :ryey T
= *d dy = —
/0 ¢ I/O ey—ly 6

Substituting (C.6) and (C.7) in (C.4) we get the final expression

K

v(R) =2 (2)3 {eR (g) —(I—e™RLog[l—e ] 4+ (1—e ) PolyLog [2,¢ "]

Expanding as before in e~ # we get

2

v(R) =2 (%)3 (1 + R+ %) e+ 0 (e

The f;(R) integration is very straightforward

fi(R) =2 (%) 2 [— /OO ze "dr+e /OOO T e‘xd:ﬂ}

) e
hi(R) = —2 <%>R O ()

Calculation of f»(R) is a bit complicated

)= (%> _/OO ¢ /0 1v_(ye)ydy—€’R /Ooo ¢rdz /O

R

D 4 _/oo /x y2 e~ Y R /oo - /:c
- = e “dx dy — e e “dx
(K> 0o L—e 0 0

R

First we will calculate the second line of f5(R)

x 2 —y
/ Y € gy =22 Log[l — ¢=*] — 2z PolyLog[2, e~] — 2 PolyLog[3, e~%] + 2 Zetal3]
0

1—e¥
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Where Zeta|n| is the ‘Riemann Zeta function’ given by

Zetaln| = ([n] = Z %

Now, we need to do the following integration

] x 2 -y
/ e_zdx/ ye dy
0 0o 1—e¥

= / e {:cQ Log[l — e™*] — 2 z PolyLog[2, e™*] — 2 PolyLog[3, e~ "] + 2 Zeta[S]} dx
0

= 2(—1+ Zeta[3])

Now, we want to calculate the following integration

o] x 2 -y
/ e_mdx/ ye dy
R 0 ]_ - e_y
= / e " {12 Log[l — e™] — 2 2 PolyLog[2, e™*] — 2 PolyLog[3, e™*] + 2 Zeta[S]} dx
R

We can expand the integrand in e~* and then can do the integration term by term. Doing

the integration term by term, we get

o) x y2 67y
/ e dx / dy =2 e ! Zeta[3] + O (e ) (C.13)
0

R 1—e¥

So, finally the second line of f»(R) becomes
D 4 L) z 2 —y ) z 2 —y
—(—) / exdx/ ye_dy—eR/ e‘”dx/ ye_d
D\4
(i)

Now we will calculate the first line of f5(R)

D o0 x oo x
<—) [/ e_mdx/ v(y) dy—e_R/ e_"”dx/ v(y) dy] (C.15)
K R o 1—e¥ 0 o 1—e¥
Using eq (C.8) we get
" ) D\’ / y e _ .
——dy =2 — dy | —— —yLog |1 —e Y| + PolyLog 2,7
/0 1—e*yy (K) 0 y 2(1 —ev) Y Og[ € }_{— oyog[,e }

D\’ [2?
=2 (K) [% Log[l — e™*] — 2zPolyLog[2, e *] — 3 PolyLog|[3,e ] + 3 Zeta[3]1
(C.16)
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Now we need to do the following integration

/ e_xdx/ —v(y) dy
0 0 1—e¥

D\? [= 2
=2 (?) / e “dx {% Log[l — e~*] — 2 x PolyLog[2, e~*] — 3 PolyLog|3, e~"] + 3 Zetal[3]
0

9 (%)3 Zeta[3)

Now, we will calculate the following integration. Expanding the integrand in e~* and doing

the integration term by term we get

o) x 3
/ e *dx / W) g (%) 3¢ F Zeta[3] + O(e2F) (C.17)
0

R 1—e¥

So, finally the first line of f5(R) becomes

D 0o . x ?J(y) - 00 . x v(y)
<E) [/R e d:(:/o —1—e—ydy_€ R/O e dx/o —l—e_ydy]
' (C.18)
D _ _
=4 <?) e~ Zeta[3] + O(eH)
f2(R) becomes
D\ 4
f2(R) =2 (E) e (2 Zeta[3] — 1) + O(e™2H) (C.19)

178



C Appendices for Chapter 4

C.2 Some Details of Linearized Calculation
C.2.1 Outside () > 1)

From (4.23)

> { — 22— 1)+l — 1) INE 4+ (6 — 1) (- V)R

m=0

= T2 =10 (€ 4 N = )" g (- 60) 4 (0= 1) 0T
=2 { — ND( = 1)"ef 1+ (¥ — D]+ m(y — )" INEY 4 (1 — 1) (n - V)l

m=0

|
=

D = 1) np(n- "1+ (@ = D7 + Nm(p — )" np(n - ™) + (¢ — 1)mnAVBé‘m)1
Comparing coefficient of (¢» — 1)° we get

MY, = ND (¢ +np (n-€9)] = (0 V) + 0495l | = N [ + s (n - €0) |
(C.20)

Comparing coefficient of (¢» — 1) we get
nAMI(;E); =ND [ g) — 51(5?)} +ND [nB (n . 5(1)) —ng (n . 5(0))} B [<n . V)gg) + nAVBf,(LxI)}

(C.21)

Comparing coefficient of (¢ — 1)? we get
nAME‘QE); =ND [ 53?) — ,(3” + 5530) +np (n . 5(2)) —npg (n . f(l)) +npg (n . 5(0))}

_ [(n V)P 4 nAVBff)} — 3N [ig’) +ng (n- 5(3))]
(C.22)

M 45 is correct up to order O (%)2. So, we want £ 4 to be correct up to order O (%)3. This

(1)
A

implies we want £ to be correct up to order O (5) ? €W 0 be correct up to order O (5) ?
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and £ to be correct up to order O (%)- Now, using the following expansion

1 1 1 1)
B =" 56+ et + et + 0 (—)

D
1 1 1,1 1 s
& — e+ Legn 4 Lea (5) (C.23)
@) _ ((20) (2.1) 1y’
2) (2,0 1 e 4
oy Lg w(D)
From (C.20) we get

ND €80 +np (n-€00)| =0

= ND [(n . 5(070)> + (n ) 5(0,0))} —0

(C.24)
= (n . 5(0’0)) =0
= &5 =0
From (C.21), at leading order
ND[ (L0) _ (00 4y (- €19) iy (n.5<o,0>)] —0
—~ ND [ 0O 4 ng (n - §<170>)] —0 (C.25)
= 5(1 -
Similarly, from (C.22)
20 =g (C.26)

Now, we will calculate 5}5’”. From (C.22) at O(1)

nAMIEﬁ%:N[S(;J) WD 4 0D 4y (0 €2D) —ng (n- €09 1 ny (n.g(o,n)]

(C.27)
From (C.21) at O(1)
nM{l) = N [é R o CRR L) R (nf(‘“))} (C.28)
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Adding (C.28) and (C.27) we get

MG, + M) = N 687+ np (n- €2Y)]

=n-M® . nt+n- MY.n=2N (n- &) (C.29)
1
=n - @D :ﬁ(n-M(z)-n—l—n-M(l)-n)
Finally we get,
1
532’1) =¥ [nAMfE), + nAMIEl% - %9 (n- M® .n4n. MO . n)] (C.30)

Adding (C.20) and (C.21) we get,
n M)+ MY
= ND [&) + 15 (n-€D)] = [0 V)Y + (0 V)| = [V 5D + 0V el

= N (& +n5 (n-€W)| = 2N &+ (n-€@) ]

(C31)
From (C.31), at order O(1) we get
M+ M = N (e +np (n-€00)]

=n-MY.ntn. MO -nz?N(n-f(l’l))
(C.32)

=n- &0 2N(n M. n—l—n-M(O)-n)

1
= ¢l = v [ A, Al - n2B (n-MY-n+n- MO n)]

From (C.31) at order O (5),

N (€8 +np (n-€12)] = [ VIER" + (- V)R | = [ Vel + nAvpe]
N [ Ly t g (n _ 5(1’1))] ON [ 21) tngp (n ) 5(2,1))] —0

= (n . 5(1’2)) = % [ (n-V)&y (1) +nP(n- V)fg’l)} + 2 (n . 5(2’1)) + (n . 5(1’1))

= €89 = = [0 V)EED + (0 VERY] + 1 [0 + Ve

+2600 + i = T2 It V) + (- V)Y

(C.33)
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Now, we will calculate 55;)). From (C.20), at order O(1)
N 68 o0
=n-M-n=2N (n-£O) (C.34)

1
= 5530’” =% [nAMgg — 7%3 (n MO n)}

From (C.20) at order O (%)
N [ (0,2) tng ( .5(0,2))] _ [(n V)§ O1) 4 Ay { } N [51(3171) +npg (n . {(1,1))} =0
= 2N (n-£0?) = 2nP(n- V)ePY + 2N (n- €M)

1
=& = = [0 VERY +ntVsed] + 65 - 22 [nhn - el

(C.35)
From (C.20) at order O ()

N[5 4 (n-€0)] = [0 D)5 4 029 5607] - N[ 4 ns (- €12)] =0
:,nf(o,s):%[ B(n. V) (02] n-é(”)
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Using, (C.30) (C.32), (C.33), (C.34), (C.35) and (C.36) in (4.22) we get
Mg = Map + 9PV [ €] + 0PV [ PE4]
ND 1

3
= MO+ (W= 1)MY + W —1)2ME + Vs — (7) naép +Lpa+ O (5)

g

Lap

= M)+ (= DM + (¥ = 1M+ a6 + (0 - Dl + (v - 1%

S NDL 4 (@ D [ + 0 - DR + (6 - %62 + Lo

= M)+ (= DML + (0 = 1)2M G+ Vacy) + Nnacy) + (v — 1)V acyy
+ (0 —1°VAED 42N (¢ — Dnae? — NDnacd) — ND(y — 1)nael)

— ND(¥) — 1’042 + ND(¢p — 1)nalW) + ND(pp — 1’5 — ND(yp — 1?0460 + Lp4

= M)+ V40 4 Nnacl)) — ND nel?

+(—1) {M/gg + VAW 4 2N P — NDnpe + ND nAgg))}

+ (P — 1) [Mjfg + VatS) — NDnac? + NDnyel)) — ND nAgg”} +Lpa
(C.37)

Now writing the expression for Lz 4 we finally get

My = {Mﬁﬁ% + VAl + Nnacy) — NDnagy) + Ve + Nnpe) = ND ntﬁ”]
+ -1 [Mff; +Vay +2Nnady) = ND nagy’ + ND nagy)
+ Ve 4 2Nnpe® — NDngel) + ND ntf)}
+ (- 1) {Mﬁfg + VA = NDnse® + NDnpcld) — ND npeld

+ V5D — NDnpe? + ND npel) — ND npel )}
(C.38)
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Now, we will simplify (C.38). First, we will simplify the first square bracketed terms.

N | a1 (1,2) 1\°
) o ()

D
1
= VaeW) —ny [nDMg% ~ 2B (. MO n)] —na 3 [(n W)EWD 4 Py el ]

VAW — ND nye 4 Nn el

1 1
= V465 — Nny [51(3071) + 5592) + ﬁfgg)} +na

2
N 0,1 na 0,2) (0,2 N 1,2
— Snagfy +nang = |n D(n-V)gg | =28 [ V)ER? + 0PV el — Snagh?
1 N
+ Sanans |n [ (n- V)& 2)] nagy™ + DQHAES’2)

(C.39)
Using, (C.39) and it’s symmetric part the first square bracketed terms become
M+ Ve + Nnald — ND nse® + V560 + Nnpeld) = ND npe?

/ L 1 1 1 (C.40)
= 1411, [Mé?&,+vc (D <01>+ﬁ (oz) Ve (5 g),%rﬁ gm))}

Now, we will simplify the second square bracketed term of (C.38)
Vald +2Nn e — ND nald + ND nagld

1 2
= VW 4 2Nne? — [fBll—l— 512)}+Nm{(01+ —l }+O(E)

= Va4 —nA[DMg;+M——nM n—i-m]
8 [ ] 4 [ e

—%—EME“/JrnAnB n Din-W)eLY 4 nP )

2 [n2AEE - 2 (nM ) | + 22 | (el + v +E%g/
‘W
) iy )] 1

2
_ ”5‘ [ Dy el 1)} n nAnB% [nD(n . V)ﬁg’l)]
(C.41)
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Adding M/&%, (C.41) and it’s symmetric part we get
0+ Vaeh) + 2Nnacy) — ND naél) + ND nagly)

1 2
+ V0 4 2Nnpe?® — NDnpe® + ND npe® + 0 (5>

: 1)’
= 11g1¢, {Mgg, +5 (Vcécll) + VeredY )} +0 (5>

Finally, we will try to simplify the third square bracketed term of (4.22)

Vil — NDnacl) + ND nacly) — ND nyely)
1
= N a8 4 N eV — Nnpe 40 (5)

=-n [DMSJZ;—I—M nB . TL"‘W)]
+ny [W%+M§—§(m+w@-/n)}

—nA[W—W

= —na [P My = 22 (n- M@ )]

(C.43)

Using, (C.43) and it’s symmetric part the third square bracketed terms become
MG+ V42 — NDnye? + NDnyell) — NDnyeld
+ VY — NDnpeQ + NDnpe)) = NDnpe) + 0 (%) (C.44)
= GG M&), + o (%)
Finally, adding (C.40), (C.42) and (C.44) we get the final expression of M/, 5(4.28)
M)p = 511 {Mé%/ + (= D)Mol + (4~ 1>2M<5g,] + Vgl + Vel

N (C.45)
+ (0= 1) (Vagh! + Vaed) +0 (5)
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Now we will calculate different terms in (4.28). First we will calculate gﬁ{””

1
oD _ [nB MO — A (. MO .n)}

_ g [ { 2(_>2 (2 Zeta[3] — 1) 5,04 + %A}
_ %‘{1 + = (—) (2 Zeta[3] — 1)52” 4
3o ofz)

Next, we will calculate 5510’2)

02 _ L 00, Bo cO0D] _ NA B (0,1)
( —N[(n V)EOD 4 Py el } N[ (n- V)l }

C.47
L By Bys0) _ A (1) (0) ( )
+N n" Mgy +n MBA_T(TL'M ‘n+n-M n)
Now, we need to calculate different terms of (C.47)
Lr gy, B0  Na 1) ©) 1 [ny 1)°
& [P+ M = S (e MO et MO )| = S [S -] O (55
1 [ Van VaN [n
Vagy = I [ A2 2 VAUB:| — NgD [73 - UB}
, 1 [(n-V)ng (n-V)N [ng
e = [P D] - [ ]
1 1 V4N
B B
\Y \Y - —
abs = gy [0V ans] 2ND< N )
1 1 (n-V)N
(0 D _
(C.48)

Using (C.48) in (C.47) we get

1 1 -V V)N
5,(40’2):N[%A—UA]+ﬁ[w_(n'v>“"‘_%(%_m>

TP Y .70 B T L4

5 -] [ T
[nA ] _i{lnA(n-V)N (n-V)N
N2[2 N N

—(n-V)us +ua

1
+(n-V)us —us D

(C.49)
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Adding (C.46) and (C.49) we get the expression of 59
1 |n 1 |n
©) _ A A
5A—ND{2 UA}+ND2{2 “A}
1 [na(/n-VN n-VN 5 1)°
_—NZDQ[T( N )+(n~V)UA—uA< N )—u KAB}A—(’)(E)

Next, we will calculate 5511:1)

1 1\?
541’1) =¥ [nBM](;f)l —I—nBMgB1 - %4 (n- MY .n4n-MO. n)} +0 (5)
o N\ (C.50)
= |A_ —
_N[Q “A}JFO(D)
So, expression of 51(41) we get
(1) 1 na 1 2
§a =~D [7—%] + O ) (C.51)
Now, we will calculate TIAI15, (V Bé“?)
0 1 VBN 1 anA
nang (vsel) = e < = S HRIE (<2 — Vi,
1 1 (n-V)N g
ATz, - - Vi (o)
+Helle {(VB”A) <2ND2 ON2D2 N ) Ve N2

3
# 9o { g (0 D+ P it ) | 0 ()
(C.52)

Using the identity (C.159) and (C.160) we can write the above equation as
nang, (Vsel)

1 -V)N N K 1
(1 - (TL V) + ) Héﬂg, [UA (VB ) + §VBTLA - VBUA:|

T UK NK ' oK K
1 VK VeK\ (n-V)K
g v (1525 ) - (F5) B2
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1

1 1 (n-V)N 1
+ R lIAIeE, {—KBA <1 - —u) + yza(VeN) — 5 (Vaua)

1
IN N N N2 N

2 n-V)N
— m(VBN) (UEKAE — (TL V)UA —I—UA%)
1 n-V)N 1\*
+ WVB (UEKAE — (n V)UA +uA<T)>1 + 0O <5)
1 Vo K 1 ) 1 (n-VK Vo K 1 )
:w_K UC( i( >+§K00f—vc”uc _ﬁ( % ) UC( i( >+§KCC’_V(J’UC
1 . ((n-V)K VoK \ (n-V)K
+ ﬁ ucVer (—K ) — Uo ( % ) i%

1[ 1 n-V)K Vo K n-V)K
+ — |: - _KCC’ (%) -2 C['( (uEKCE - Hg(n . V)UE + Uc%>

K D
(C.53)
Now,
. 1 Vo K 1 . 1\?

ETIE, <VB§,(4)> % [UC ( % + §ch' —Veouc| +0 D (C.54)
. (0)
Calculation of /.,
From (4.32) we get

0 0
Wl oy = MAR],_, (C.55)

First we will write t45 and v 4 in a convenient way. From (4.13), t45 can be written as

tap = Vap +uaXp + upXs + Zuup (C.56)
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Where,
K /. N N N ~ ~
(Vaus + Vipua) = K Kpp + K5 Vpup + K Vs = (Vua) (Vrup)

K
VYap = EKAB ~ 3D
V2u,\ [ Viug N V2u,\ (VeK N V2ug\ (VaK\ (VK (V5K
K K K K K K K K
K 1 - . w-VVK [V2uy VaK
XA = 5 |iuCKCA — §(u . V)UA‘| — UCKCEKE +UCKEC (VEUA) + ( K) |: K - ;; :|
K u-VEK\?
ZZEU-K~U—UCK5KFDUD— < % )
(C.57)
From (4.13), v 4 can be written as
o4 =Ns+Tus (C.58)

Where,
K? [Vua VriK K VrK K
NA W|: K —UDKDA:| — g _BUEKEF:|K£ {T—EUEKEF <V UA>
(u-V)K K Vg, [(u-V)K K VaK
- — - ——u-K
{ D pU TR D D" YTk
K? VPK K 5 5\ u-VK(u-VK K
- u-K-u-— = _ 2w K-
J 2D2uKu uKBD(D DuKE I D o U u
(C.59)
Using (C.56) and (C.58) we can write hfl); ‘ p—138
(C.60)

hf])g = §(0) usup + UA,}:Z(BP) + UB,}:Z,(S) + WI(L‘O;
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Where,

= 2 [K VK
S(O)zl—ﬁ— -u—u-K~K~u—(u; )}

2 K (u VK VAK\ 5o
+K2(2Zeta[3] 1)[ D< % u- K u) 2 — (u- K- K u)—|—2( e >u Ky

u-VEK\? u- VK VPK\ (VpK )
—( % >+2( e )(uKu)—( e )( e )—(u-K-u)+)\

2 [ K 5 VPK L u-VK (u-VK
——K2{;?Tm-2u KBD( o U Kg)—2 I 7 —u-K-u

. 2 AD .
:1—i[u-K-K-u—3(M> —QUBKBD<VKK)+QU-K-U<U ;K)}

K? K

2 K (UV)K VaK B1-A
+K2(226ta[3] 1)[ D< e u Ku) A—u-K Ku—I—Q( % )U Kp
u-VK\* _(u-V)K VPK\ (VpK )
—( e ) +2T(u-K-u)—( 7 )( 7 )—(u-K-u)
(C.61)
- 1 VuK 2 [K 1, - 2
R R {5 (“CKCA “al WA) ~ W KopKE +uKpe (V7ua)

VK (V2 VA K 2 D[ K2 [V? VK K
+u \V4 (VuA_VA )} { (VuA_uDKDA>_(VF ——uEKEF>Kf[

K K K KK 2D\ K D D
VeK K . u-VK K V2u,
+( D DU KEF)V UA+( D —BU-K-U) %
_(u-VE K e ViK 4 (n-VK ViK +i@ n-VK
D D" YT K2\ K K K2V A\ T K
(C.62)
Using the following two identity
. VK . (V2K D (ViK ViK
L) =) k() S
(C.63)

. /2 VK VK
(u-V)uA:v;A—V;} +UDKDA+UA<—%+U'K~U>
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~o) 1 VaK ol [2 K 2K 2 K 2. V2K
Hy = +u Kca 5D 2D—|— 5D +K2VA

K
. 2 2 D VrK 2 D /- ViK
C E N 4 Yy VER Y o 2 Y F F
+uKee (Voua) | o7+ 75 +K2f<’KA< 5 ) er (v “A>< D )
+WuA 2 2 (u-VK % 2 (uVE
K oD K2\ K oD K2\ g A

@AK[ 2 K 2 (u-V)K Q(u-VK )+ 2D 2K

22D Tk K Re

K
1 (VK 2 o (V’K 2 o (VrK 2 fep VeK
- ( K )+_ZVA( K2)+WKA< K _ﬁ<v “A> K

K
2 (Viuy (u-V)K 2 (VaK (u-VYK D K
= Koy —9 T 2 K ou— T N
+K2<K>[u " x | Trelr ) k"K'
n 2 K u- VK i
K22D" K en
(C.64)
1 3 2 [K K /. . .
Wg); = — [KAB — VAUB — VBU,A] — E[BKAB — E <VAUB+VBUA> — KEKFB ‘I—KI{ZVF’LLB
~ o ~ @21@4 @2113 @%LM @QUB AA @AK @BK
KEVria = (Vi) (Vrus) - -
T ApVrua ua) (Veus K K | K K K K K K
2 [n-VK . .
e ® <KAB_VAUB_VBUA>:|
1 [ V2u . V2u u-VK
+ﬁ_vA(UEKBE_ KB)+VB<UEKAE— KA>+2KAB % }

2 [/VK VK Y VA K VK'Y
(S ST (), T
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1 . .
- % [KAB — Vaup — VBUA}

2 (u-V)K 2 /- A K (u-V)K
_FKAB [_K__UKU} _F<VAUB+VBUA> [E_QT—FU'K'U

2 2 v v 2 (e S 2 @21@1 @2?13
+ EKEKFB e (KEVFUB + ngFuA> T K2 <VFUA> (VFUB> * K2 K K

~

2 (VuK\ (VpK 2 [(VaK\ g VsK\ g
() () | G ) (55 e

1 IS E S E ]. 2 @2UB 2 @2UA
+ﬁ[v,4(u KEB)+VB(U KEA)}_F[VA( K +VB K
(C.65)
Calculation of h(c%,
From (4.39) h(A% on ¢y = 1 is given by
1 1 0
1 = M0+ 0,
2D D
=0 — 22 |t —(v (V
AB ~ 7z |taB + 51 usup + K( AUB + BUA> (C.66)
1 VK VK . . 1\?
+E UA ;;, + up 2, + Ksp —Vuy —Vaug| + O (5)
From (4.33)
1
Con = ~TIATE (n.V) M,
1
1 (n-V)N[ VoK VeK . .
- NK( N) [uc ?{ Uucy fC( + KCC’ - (VcUCl + Vcluc> :|
1 VK VK
+ anng,(n V) {uEnﬁ% + ang% + Kgp — ITAITE (V qup + VBuA)} + (9(

(C.67)
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To simplify the above expression we will use the following identity. We will not give the

derivations of these identities. The derivations are quite straightforward

VoK Vo K . (VoK
Hgﬂg/(n-V)KEFZ— [C( ?{ —)\HCC/+VC( © ) —KgKEC/
VeK] V?uc VoK n-VK\ Vo K 1o e
Vo K 2®2K N T Vo K oo (VoK
K K2 K D D\ K “\ K
(C.68)
@CK @QU,C/ @C”K u- VK
Hgﬂg,(n . V) [Hgﬂ?VAuB} = — K K + K UBKBC — KCC’ K
. (V2 .
+ Vc( I?C ) — Ké) (vDUC’)
(C.69)
Using (C.68) and (C.69) we can write C(Coé/ as
Cg)c):/ = uc Ter + Ucr Te + Eccr (C.70)
Where,
1 1 VeK (. (n-V)K _V?K D 1o /-
— ~1E(n - . 2 2 a2 = ( 2K>
o = pileln V)“EJFNK{ K ( ¥ PR x)TrevelV
K (VoK (VoK
55 ) (%)
1 (TL : V)N IS 2 1 @2'&0 @C”K @2’&0/ @CK
S = — Y e ' — Ve } 2 2
CCTTNK N [CC Vetc vcuC+NK[ K K K K
VoK Vo K - (VoK VoK VoK
- K K —AHCC/—FVC'( > —KgKEC/— K UBKBc— K UBKBC/
(u-V)K . . - (Viue - Vue
+ 2 KCC/T + Kg (V[ﬂbg/) + Kg/ <VDUC> — VC K — Vcl K
(C.71)
Using (C.56), (C.58) and (C.70) we can write h(Al])g as
WL = @ wgup 4+ ua Qp + up 04+ W (C.72)
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Where,

s s ntnme - (5] e (52
4 Yk (10 =2 [t 93] - V;K) ~ (Vaus)(V?) — [(u- V(- V)
—(u~K~u)2+2[( } WPKpa) — 3w K- K- u)—5<“ VK—u'K-u)}

K
D[  K? VPK K o\ uwVK(uVE K

— (Vaug)(V*u?)

K VAK R
A (QUBKQ—V )

D
TR
. . VAK K
—(u-K-u)2—[(u-V)uA]<(u-V)uA+2VK —2uBKBA)—I—5u-K-u

—u.VK(E+2u.VK—2u-K-u)]

K D K

Using 2nd identity of (C.63) we can write the above equation as

D V4K VAK . .
@z—?—{—Qu.K.K.u%—/\jLVIA} <2uBK§—v )—(VAUB)(VAUB)

K? K
V2u VK V2ud  VAK K

—(u-K-u)2—( KA_ 2 —I—uEKEA)( 7 + e —uDKDA>—|—Bu-K-u

u- VK u- VK uw-VK (K u-VK

o K- - K- _ el —ou-K -

+( % U Ku>( I U Ku) % (D+2 % U u)}
B D . a e Viuy Vi u-VK\*
——QE{)\—U-K-K-u—(VAuB)(Vu)— T Rk e

K u-VK K
_ 2 K-

D K D" “}

(C.74)
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D | K 1 A .
QA = -2 |:— (UCKCA — —(U : V)UA) — UCKCEKE + ’LLCKEC (VEUA>

"K?|D

2

K K

ViK

1 ViK1
K K N

) (u.v)K(WUA - ?;;K)} . %{%(@?A —uDKDA> - (?}F(K _UEKEF>KA
@me (u.;K_u_K_u)ﬁng - (u-;K_u,K.u>@;;K
+_H§(n.v)w+%{_ @2K<2 (n.;)K iy izf _A%>
o () 2 5 () e ()
(C.75)

To simplify the above expression we will use the following identity

1, D /NV?us\ D 5 5
NHA("'V)“E:?( K >+ﬁ{_u Koola+ =5
V2u, u- VK D _K
+ <—8 R —I—4u-K-u—2)\E+2—)]
D \Y VPP K- -K
+UAF —(Vpug)(V7u™) —u- K- K -u—

@2@21@4 @BK ~
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y _u.VK@AK
K B4 K

@%E V2ulf fu- VK
K K K
(C.76)
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To prove the above identity we have used subsidiary condition P4 (O - V)O, = 0 and the

second order membrane equation( 2.17 in [64] ). Using (C.76) we get

Q4 BUA

KQ
u- VK VK  V2uyu u-VK D K
— _ du-K-u—2)N=+2—
176 1% + I7a 8 % +4u U K+ D

. . - o .
EVAK<_2nVK V2K D) D 1 (v%) DK(VAK>

D V?u, D K(V4K\ D 5 P U \A
K K +ﬁ5( K )T re| T R Rt VIV -

—9 N )+ =—V 9~ =
K2 K K 2 MK TR K2 D\ K

D VpK D K K (Viu, VAK
—ﬁKf,?(%)Jrﬁ{—%Jrﬁ( KA— 2 +%)+2UCKCEK§

S : V)K ﬁQUA @AK K @QUA
-9 CK —Z(U o o ., D
W K ( K Kk ) DU®R e

VK . VK :
Ve —uEKEF)—Z(VFuA)(vF —1%)—2 uA( —u-K~u>

2 K
* A( K K

VuK (u- VK D . e
+2 e < e —u-K-u)}%—uAﬁ[—(VDuE)(Vu)—u-K-K-u

_@%E @QUE_ u-VK 2_}_5 —U.VK—i—u Kou
K K K D K

(@%LA)+2(@AK>[—5M+QU-K-U—)\B]

K K

V2u, (u-V)K D K

1 -6 /2 VBK\ - 1 - - @DK
+—[—uBKBDK£+ﬁV2 (VQUA>_3( % )VBuAﬂLﬁVA <V2K>+K£< K )}
Viup V2uFf B <u-VK>2

K? K K K

—l—K(—u.;K%—u-K-u)}

2{—(@Du3)(@DuE)—u~K'K'u—

]

(C.77)
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K K N . . . .
W) = —2— {EKAB — 55 (Vaus + Viua) = KiKpp + K Veug + Ki Veua — VuaVeug

1 VK . . D[ Vu,\ V2
__{NjLu] Kap = Vaup = Viua| + {2 s Nt | o Voup Vake

NK K K2 K K K K
ViK VK . (VgK VeK VK
_ ;;_ [B;_ —)\HAB‘l‘VA( B )_KEKEB_ B UEKEA— }4( UEKEB

(u-V)K A R . (VZu .~ (Vuy
+2 KABT) + KD (vDuB> + KD (VDUA> — Va2 )~ V(2

D K D [V2K D] /- . D
:ﬁ [UKU—B] KAB+E|: K2 —)\§:| <VAUB+VBUA> +ﬁK§KFB
D D . . D /- .
- S L -5 (Kf; Veug + KE VFuA> +25 (vFuA> (vFuB)
D (V?uu\ (Viug D 1. /- D [(ViK\ g VeK\ 5
2 (V) () i (961) g | (53 Yot + (S s
D1rs (o s (e D [(VaK\ [ Viug VK [ Vu,
_FK[VA<VUB>+VB<V“AH+EK K )( K >+< K )( K
(C.78)
C.2.2 Inside(y) < 1)
From (4.51)
= Héﬂg/ VAVEEE + VBVE?);? —VQEAB _VBVAE
~ — N —
Part-1 Part-2 Part-3 (C79)
+2 Rpapch” + Rachf + RpchS —2(D — 1)Abag | =0

~
Part-4
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Now, we will simplify the above equation
Part-1 = [IATIZ, [vAvEr}g + VBVEBE}

_ mATIE, i [VA <(¢ . 1)mvE[7z<m>]§) + Vg ((1/} - l)mVE[ﬁ(m)]ﬁﬂ

= TANE, ST (0 = 1) [ VAVl + Vi)
m=0

(C.80)

Part-2 = —ITAIIZ, V2h 4
= —IAIE VP S [m(w — 1) Nuphly + (¢ = 1)Vl
m=0

A S [m<m S — NG 4 m( — 1) (- V)NJRG

m=0
+m(p — )" INKRT + 2m(yp — 1)™ "N (n - V)R + (1 — 1)mv2ﬁg’gl
(C.81)
Part-3 = —Héng/ [VBVAG]
_ _TT1ATTB _1\ym—1 7 (m) _1\m 7 (m)
R IRIEA Y [m(@b D)™ Nngh™ + (1 — 1)™V 4h ] )

m=0
00

— sy [m(¢ — 1) IN(V pna) R+ (3 — 1)mvaAiL<m>]

m=0

Part-4 = Héﬂg, [2 REAgcf]EC + ﬁAcF)g + RBci)g — 2<D — 1))\6AB]
= 3G [2/\ (9e89ac — gpcgag) BEC + 20D — 1)hap — 2)\(D — 1))\6,43]
A 2 3 1) [ K]
m=0

(C.83)
Collecting the coefficient of (¢» — 1)° of (C.79)

- FE - E - - -
TATIZ, [vm [h@} A+ ViVs [h@} 2N — (0 V)NIRG ) — NERG

—2N(n- V)Y, — V2RD) — N K5 B — ViV Ah@ + 2 XA —2 AR ©@ g5] =0
(C.84)
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Using (4.52), the leading order(O(D)) terms of (C.84)

ATz, {vAvE (O], + VeV [RO]] = NKREE) — V2R, — NKaph®D| =0
(C.85)

In the last equation, we have used the fact that 2(%) can nowhere be O(D). Taking trace of

(C.85)

48 [2 VaVe[hO]7 - v%%] —2NKh" =0

, (C.86)

= ht =
2NK

B | [2 WS thAB]
Now, from (C.85)

- ] L
hee! = TENE <= {VAVE (O], + VeV [RO]] - v%%} — = Kooh™Y

NK
(C.87)
From, subleading order(O(1)) of (C.84)
7 NK - - N -
ATIZ, { —2N2R%)L — [(n- V)N]RY ) — 5 b 2 _oN(n- V)R, — S Kapht?
- - ~ 1

— VEVah©® +2 200, —2 )\h(0>gAB] =0 <5)

(C.88)

Taking trace,

- D - - -
A2 = N [—2N2h(2)—[(n - V)N]AED —20h 0 (D—2)— HAB{QN(n VA +V 5V 4RO H+0(1)

(C.89)
Now, from (C.88)
~ D 5 _ N R
hog) = ~ Knéng, [ IN?RZ), — [(n- V)NALY — 2N (n - V)R — K j(12)
; - . 1
— VuVah©® +2 M), —2 /\h(o)gAB} +0 (5>
(C.90)
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Collecting coefficients of (¢ — 1) of (C.79) at order(O(D))

Az, {VAVE (RO S+ ViV [AOD]] — 2N KRS, — V2R — 2N K4 ph®

— VpV ARt — 2)\?1(1’1)9143] = 0(1)
(C.91)

Taking trace,

1 ~
[N | (i p— N [2 VaVe[ht 1>} — V2R — VAR — AR g, s | + O(1)
(C.92)
From (C.91)

h(CQ)C/ = elE onge [VAVE [h . 1)} +VsVE [h ] - VQ;LS};) —2NKgh® — VpV b

- 1
— 2)\h(1’1)gAB:| + O (5)

2NK

(C.93)

Calculation of ﬁ(clg,)

From, (C.87)
K 7 1
hgg’ HAHg’ NK {VAVE [h ] +VgVg [h(o)}i} —Héﬂg/WV%AB KKCC’h(Ll)
(C%’C};"Paﬂ-l CC/ |parl-2 CCI/) ‘part-3
(C.94)
2
R lpant = TATIE ~— NE {VAVE (O] + VpVe[h©] } +0 ( ) (C.95)

We want to calculate the above expression on ¢» = 1. But to calculate hC’C, |part-1 ON P =1
we need the (1) — 1) dependent terms of A%, From (4.32)
E E
(W] = (M), — (= 1)[CO]; + O — 1)2

(C.96)
= Ve[h?]) = Vg [M'O]] + O — 1)
Now,
1 VoK VoK , 142
(MO = uPupt {uﬁiﬁ( f( >+uBHCE( IC{ )+K§—HCEHg (chc/+vc'uC)1 +O(5)

(C.97)
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After a bit of simplification divergence of the above equation becomes

1 VK o AC &2 c 1
+ —|up +VBK—7”LBK KAc—VuB—KU KCB—)\DUB —|—O —
K K D
(C.98)
In the derivation of the above equation we have used the following identities
V2K = V2K + K(n-V)K + O(D)
Viuy =118 [V2up — K(n - V)up] + O(1) (C.99)
VAKAB = @BK — TLBKACKAC + O(l)
Now,
V2K K D
VE[h(O)}i = up (V U) +UBW —Np 5 - A ?UB - nB(u K U)
V2 VK - 1
+ | - KB + ;} —uEKEB—F(u-V)uB] +O(E)
VK V2K K D
= 2ups ; —i—uBVK2 —ngp 5—>\KUB—nB(u-K-u)—l—uB(wK-u)
:—nBE—nB(u-K-u)
(C.100)
In the last line we have used the divergence of leading order membrane equation
V2K u-VK D 1
=2 —u- K- A=+0|—= C.101
e e u ut Aot (D> ( )
From (C.100)
HAHB,LVAV [hO]7 = LR K| Koo (C.102)
CUONK TATE B~ NK |D ce ‘
So, finally we get
- (1) 2 [K 1)°
Now, we will calculate )
F (1,1 1 0 1
RO loana = —ITAILZ, 7 szh;; +0 (5) (C.104)
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We want to calculate the above expression on ¢» = 1. But to calculate ﬁg’ol,) |part2 on Y =1

we need the (1) — 1) and (¢» — 1)? dependent terms of h(ﬂ;

~ 1 1
Bl = TN VA MG + NG 2V (0 = DO} + IEME v [0 - DPES)

J/

Term- 1 Ter‘r;-Z Te%-ii
(C.105)
1
Term-3 = 2118, ~— V" [w - 1)2E§{’g]
(C.106)
& oo
From (4.34)
0 1 0
Egl = —ﬁHAHB (n.V)C}
1 (n V) U VQUC/ Ty VQ’LLC _ 1 9 VQUC V2UC/ T VC/K (u . V)K
T2N N2 | YK K oN? | K K YUK K
VoK -V)K 1
+ue [ £ (u-V) +ucllZ (n-V)(n-Vug +ucIlE(n-V)(n-V)ug| + O | —
K K D
(C.107)
Using (C.107) we can write Term-3 as
Term-3 = A%, + ucBY + ueBY (C.108)

@ DI[VPK  D|V%ue D [VeK(u-V)K g
Be 7[ 7 KR Rk kel Ve Vs
(C.109)
Now,
1 1)°
Term-2 = Héﬂg,ﬁvz [(1/1 — 1)01510])3] +0 (5)
(n. V)N (C.110)
1 (n- 2
(© (© 0
Using (C.70) and (C.107) we can write Term-2 as
Term-2 = A5, + ucBY + ueBY (C.111)
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@ 1op 1 [ VeK( (n-V)K VK D\ 1. (o,
B = e V)uE+NK[ 2t A +K2vc<v1{>

() ) P

D\ K K NK N

2 1 (n-VN\ V2ue 1 (VeK\u-VK 1_,
+E{—N( N ) K +N( K K +NHC(’/LV)(NV)UB
2) 1 (nV)N |:K 2~ a i| 1 @QUC @C/K @ZUC/ @CK
) = ’ — ’r — ! 2 2
Ao = “NET N cor = Veue = Vee| + g |2 —p=—— T2 = —p
VoK Vo K . (VoK Vo K VoK
_ [C( ;{ _)\HCC’+VC’( i{ )_KgKEC/_ ?( UBKBC_ [C( UBKBC’
u-V)K . . - (V2ue . [V
2 @2UC @2UC/
2
+NK{ K K }
(C.112)
Term-1 = —TAITE,—L_v2 0@ 4 o (2 : (C.113)
erm- — C CINK AB D .
Here,
1 VK VieK 1\?
Mi‘(%) :UAUB—FW |:UAH5<%)+UBH§( [E( )+KAB—H§H§(VEUF+VF1LE)} +0 (E)

é g/VQ [‘/2 /q(B)

= ucllZ V?up + uc BV up + 2 HATIS, (VPu,) (Vpup)

1 (V2N VK VK
_ﬁ( N )|:UCHE/ K +UC/H5 K +KCC/—H5H5/(VEUF+VFUE)

1 ViekK
) {Hé(v% A)Hg,% + ucllg, V2 (HE

VK
>+HA/(VZUA)H5 [E(

1
) + TIATIE V2 K o — Hg‘Hg,W{HﬁHg(vEuF + vFuE)}] +0 (—)

D
(C.115)

B K

+ uc 1IEV? <H
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We will use the following identities to simplify (C.115). we are just stating the identities

without proof, proofs are quite straightforward.

L _D[ _1(V’K D K Lo 1\?
N K K\ K2 K D D

I5V2up = Viug + K12 (n - V)up — KEuP Kpp + T2 (n - V)(n - V)up

VEK . 1
- K (VFUB) + O (5)
A1TB 2 = @C’K
LETIE (V2K ap) = =2 (VeK) — 2 AKTlger + MDD — 1)Keer
N K2
+ QVC(VC/K) - KCC” D
VK . V2K D 2. .
IIFAvS (Hg e ) = — (VoK) {4 o 3Aﬂ + Ve (V’K)

V2UC/

MATIE, VA IETEY pup] = —2 (VoK) ( ) +2 (Ve K)u" Kpe + A(D — 1) (Voue)
+ 2 @C(@ZUC‘/) -2 KCC’ (U : V>K

R R 72 720/
TATIE, (VPua) (Vpua) = (VPuo) (Vpue) + (v - ) (V c )

K K
(C.116)
Using (C.116), we can write Term-1 as
Term-1 = AS), + ueBY) + ueBY (C.117)
Where,
D 1 (V2K D K .
1) _ 2 D
D VIK . D. .
_ﬁ{—KgKFDuD—i—Hg(n-V)(n-V)uD— % (VFUC)}_QEV(J(VQK)
1 D (. V2K D K\|VeK D[ V2K D\ VcK
—1+=2— A== || =+ =4 — -3 )=
+K[+K< K? K D)] K +K2{ K| TR

(C.118)
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D - - D V2uc Viue
ALl = =2 15 (VPuc) (Viuer) =2 55—

1 D(. V2K D K 3 .
+ — |:1 + — (2 — A= — —):| |:KC'C” —Veouer — VC/UC:|

K K K? K D

@Z’LLC @C/K @QUC/ @CK @cK @C/K D
- — 4 —2 —2 Ml + A =Ko
K? { K K K K K K cor A ghee
2o e K Vo K VeK D /. .
+ ?Vc (VC/K) — BKCC/ -2 ¢ UFKFC -2 ¢ UFKFC/ - E (vCUC’ —+ VC’/UC)
2 - - 2 - - - VK
_ KVC (V2UC/) — EV@/ (VZUC) +4 KCC/U 1

(C.119)
Adding, (C.117), (C.111) and (C.108) we get final expression of ES’C}? |part-2

C’Cl |part 2 — (A(Clvé/ + A(CQvéw + A@é') +UC <Bg/) ‘I’ B(CQ/) + B(C?/))_’_U/Cl (Bg) + Bg) + Bg«”)

(C.120)
1 1) 1 (1,1) 1)’
CC/ |part3 - _gKCC/h + O D
1 LB [7(11)
= _?KCC/ﬁn |:hA |part1 + hAB ‘part2 +0
1 2 (K -
et _ﬁchl |: - N <5 + (I K * u> ‘| - —KCC/ |:HABhE41§)|part_2:|
D K 1
FKCC’ <5 +u- K- U) - ﬁKCC’ [HAB (-A(Alg? + Afé)}
D K 1\°
(C.121)
In the derivation of (C.121) we have used the following identity
1 - (Vup u-VK 1
— 145 = o= C.122
A0 () - o (5) 122

Adding (C.103),(C.120) and (C.121) we get the final expression of fzg’(},) as given in (4.53).
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Calculation of 132)0,

From (C.93), the non-vanishing terms of h(cof are the following

he), = HéHC'2NK VaVi[RD]T + VeV [h® ]A] _Héng'QNK [vzh(u ] L0 (D)

N /

7(2)
cc!

(2>
hcc’

Part-1 Part-2

(C.123)

For the calculation of il(cz)a we need (¢ — 1) dependent terms of ES’C}). The expression of

ﬁg’cl,) up to the relevant order is given by

- 1
h(cl’g,) = _ﬁ [UCHC/ (V UB> +UC’HC (V UB)} + — [UCHC' mn- V)UB +UC/HC(7’L V)UB]
1 D (VK V2
e () - o) e (5
2

1 @2u @QU/ @Q@QU
e (59 ( Kc)ﬂc(—m ) e ()

—uo( F)(55e) e () (7).

D -VK A -VK A -VK
— —1 —|: VcUc/—I—VC/uC) (UZ )—i-uCVC/ (u; >—|—UC/VC(U v )1

NK K

(C.124)
. 1 2 1
el = =i [ (T [+ 5 v O
K n°V%ue K

=N T T yus [nc(n . V)uc] (C.125)

B _K u- VK

- NPk

From, (C.123)

h(2 | _
CClparcl = 9N K K K

(C.126)

D A A -VK A -VK A -VK
— { (VCUC’ + VCIUC) 4 174 +ucVer (u >+UC/VC (u ) ]
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From, (C.123)

1 A1TB 2
|Part2_ 2NKH HC’ [Vh ]
1

2NK

7(2)
hCC’

HAHg,VQ[ UAHBV UE+UBHAV UE):|

/

1
NK (
Term—l

1 1
“INE AlIE, V2 [ﬁ {uallf(n - V)ug +upllf(n - V)uE}}

/

TerTn—Z
1 D V2K (n-V)N V2uer Vue
— 1= _ ,
2N{ K K e H“C K TR

+

1 2@2710 @ZUCI @2@2160/ 4 @Q@QUC @QK @QUC/ @QK @QUC
U U —— — — U
oN? | K K e e ¢

D - A u- VK - u-VK - u- VK
+ —2NK { (Vclbc/ +VC/UC> <—K ) 4+ ucVer ( % ) +uC/Vc( % )]

1
Term-1 = — ———TIATIE, V2
e ONK CV[ NK

1 1+2D ViK
2NK K K?
1 D

o o [P TE(V e U () + uctTE P (U)o MV (155
(C.128)

! (”LLAH AV uE+uBHAV2uE)}

:| [UCHE/VZU/E + UC/HEVQUE}

Using the identity,

) ' -
EV? (5 Vuc) =2 V? <V2uF> + K? (VFK) (“ VK) —A(D - 1)}((V “F)

K K K
@QUF

K
(C.129)
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we get,

4D @ZUC @QUC/ 1 2D @QK n-VK @ZUC/ @ZUC
Term-1 — I s 2 Qe
=Nk K K oN| T k\®r T K ue\ g )T\ T

+ D )\D ﬁQUC’ +3 626211,0/ . @2K ﬁQUCl i ﬁchu -VK
INK'C| KK K2 K* K K K
@EK ~ K@Q'LL ’
+HE/(7”LV)(RV)U,E—2 K (VEUC/) —35 KC :|
D D V2ug V2V2ue V2K V2uez VeKu- VK
A= _
+2NK“C{ K Kk 0T 2 K K K
VEPK K V2
Y IE(n - V(0 Vug — 2 (Vgue) — 3 =~2¢
D K
(C.130)
1 A11B 2 1 E E
Term-2 = —QNKHCHC,V ¥ {uallZ(n - V)ug + uplli(n - V)ug}
1 V2N

1

+ucllZ, VHIE(n - Vug}t + uc TIEV{II5(n - V)uE}}

B 1 1+D VQK @QUC/ 1 @2UC _162’&0@27101
TN K\ k2 )|\ K Yo\ 7k N KK

1 ﬁZ@ZUC‘/ @QK @QUC/ @C’K u- VK
— 2N2uc{ = R K + I I +TIE (n - V)(n - V)ug
1 V22 VIK V2 VoK u- VK
~ St {V [V@uC . VK2 V;C n V[C( “ Z +H5(n.v)(n.v)u4 (C.131)

Adding (C.126) and (C.127) we get the final expression of ﬁgé, as given in (4.61) after
using (C.130) and (C.131)
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Calculation of 138’02?

From (C.90), the non-vanishing terms of h C, are the followings

7(1,2 D iy D ~(1,1 =0 1
hos) = =2 2o V)L — e HANE: (2R3 + {(n- VINYGE - 2000 0 ( 5
hgc?/) Part-1 hgc?l) Part-2
(C.132)

1,2) D = (1,1

h(C’C” Part-1 -2 Eﬂéﬂg/(n ’ V>hf43)
D 1
—2 2ngng n - v) [ﬁ{u,ﬂlg (V2up) + upllE (Vup) }}

[ /

~~
term-1

D 1
—2 EHéHB, (n-V) {N{uAﬂg(n -V)ug +upllf(n - V)uE}}

/

~
term-2

o1& () -] o () oo (55
2NDK{2( féf)(vi?“)”c( o) e ()
() () e () ()]

D? - A u- VK - u- VK A u- VK
+2 ﬁ { (VCUC’ + ch’dc) ( K ) + ucVer ( 74 ) +UC/VC( )]

terme1 = 221411 (- ) [ﬁ{umg (V2up) + upll? (V2up) }}

2D -V)N VK
{(n V) +(n V) }[ucﬂg,V%E—l—ucfﬂgVQuE}

NK? N K
2D
+ N7 [{Hg‘(n V) ua HIE V?up + {118 (n - V)ua JIEVup + uclly, (n - V) (IIEVug)

+ue 18 (n - V)(H%VQUE)}
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2D (n-V)K VU V20
2D ﬁZUC @QUCI 1 ,
TNK { K K KUCHB/{(H - V)ng pn”Viug + Eucﬂg/(n - V) (Viug)

- %uczﬂg{(n V)ng In”Vup + %uc/ﬂg(n : V)(VQUE):|

(C.134)
Using the identity
@2’&}7 @2@QUF @QK @2’&}7 @FK (u . V)K
%(n - uc) = -\ D - K - K
r(nV)(Viuo) = =AD—=+ — K K K K
R R K2 @2
+ K (n- V)(n- V)ug - 2(VPK) (Vpur) =3 = ;F
(C.135)
we get
ermt = — 22 [y o VKT |y Voo Viue
~NK ¢ “TK
2D [ V?ue Vuer VoK (u-V)K VekK (u-V)K
4 2 2 ucr
+NK[KK+UCK K TPNTR K}
I 2D u )\ B@QUC/ i @2@QUC/ _ @2K @%LC/ _ @C/K (u . V)K
NK ¢ K K K? K> K K K
@EK ~ K@ZU/ ’
2D D @2110 @2@21%' @2[{ @QUC @cK (u : V)K
+—up | - A= + - -
NK K K K2 K? K K K
@EK S K@QILC
nE(n - . -9 — 3=
+1A(n-V)(n-V)ug ( e >(VEUC) 3 e }
(C.136)
2D A B 1 E E
term-2 = —YHOHC,(n -V) N{UAHB(TL Vug +uplli{(n-V)ug}
2D n-VN
= —fﬂéﬂg, (—T) [uall5(n - V)ug +upllf(n - V)ug|
2D B E E
— WHCH {0 V)uaHIG(n - V)ug —ua{(n-V)ng}n®(n- Vug

+us 5 (n - V) (n - Vug + {(n- V)ug 5 (n- V)ug —up{(n- V)na}n"(n- V)ug

+up 5 (n - V) (n - V)uE]
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2D N n-VK . V2ucr . V2ue 2D 2@22@@%0/ . VoK (u-V)K
T NK K K “TK NK|° K K K K
VoK (u-V)K
+ ucr V;;( C K) +ucll& (n-V)(n - Vug +uc5(n - V)(n - V)uE]
(C.137)
- D . - .
BEE pa = — TS 2N + {0 VINIRGE — 22000
- D [n-VK . D\?
—2)\D—2u w _2D_2@2UC @QUC/ +D_2 @QK _ 2 w @2UC/ 1w @Quc
TR T ke kK K?| K2 K| K K
D 1 D V2K D2 Vuer  D? (VN2uo  VEK
Coue |2 202 il —2 ,
UC{K{ 2 “K K? +)\K2} K +2K2{ K2 K (VE“C)H
D 1 D V2K D2 Viue  D? (V*N%uo _VFPK .
Coue |2 202 il 9
te [K{ 2 K K? +>\K2} K +2K2{ K2 K WE“C)H
(C.138)

Adding (C.133) and (C.138) we get the final expression of 71(015) as given in (4.57) after
using (C.134) and (C.137)

C.3 Some Details of Stress Tensor Calculation

Outside(y) > 1)

G = gap + 0 hap (C.139)

Inverse of (C.139) at linear order is
Géﬁ) — gAB . w—DbAB + (’)(h)2 here, hAB — gACgBDbCD (C140)
Using, the gauge condition n*h 45 = 0, we get

n = ny (C.141)
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Now,

(out) __ ~v(out) (out) (out)
pap = Gup —ny ng

= gap + ¥ Phap — nanp

=g+ Phap
ou A
] = 8 — g = 113

Now, from (4.70)

K = ) ) (Vener)

= 151G (dener — Do)

Y=1
Where,

[éor =Téer + 0o
Here, I'5, is Christoffel symbol with respect to g5 and 5fgc, is defined as
. 1 3 _ _
TG0 = Q[G(Out)]EF (Ve berp) + Ve (v ber) = Ve hee))
Here, V¢ is covariant derivative with respect to g4

K§E = Kap — ISIG npdl e

=1

Now,

— ST npdTE,,
=1

B _%HgﬂgnF [Ve(@™"bcr) + Vo (0™ ber) = Ve bee)]

=1

(C.142)

(C.143)

(C.144)

(C.145)

(C.146)

(C.147)

1 /
= —§H3Hg n" [0 PVebor + 0 PVeobor + NDY P 'nphoer — v PVipboo]

- _%Hgﬂg [~berr(Ven™) = ber(Ven'™) + NDbeer — (n- V)hoe|

1

= — TG | =0y (Ton®) = b (Vom®) + NDRSL, = NaGL = (n- V)AL |

2

Lo
= g [_hg))FKg — hO KE + NDRY, — Nhgg/}
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Finally, we get

ou ND N 1
Ky = Kap — Th% + 5h(A11)9 t3 (h%KE + hfﬁ?)DK§>
Trace ong’g)
K(out) _ (gAB _ wahAB) KEAO;)
P=1

ND N 1
= K = == h + Th0 + 2g*8 (hG, KR + hQLKE) — hihKA”
_k NPy Ny

2 2

Inside(y) < 1)
As, in the previous subsection
in in o in1A4
TLE4) =MNa, p;g = HAB + hAB and) [p( ):|B = Hg
Now, from (4.76)
in in)1¢ in)1C" (& m
KGE = [p] ] (vcng/ )>w1
= Hgﬂg/ (acnc/ — fgc,nE> ‘
=1
Where,
fgcl - ]._‘gcl + 6fgcl
Here, T'Z,., is Christoffel symbol with respect to g4 and 0T'E,, is defined as
N 1 . . . -
e = §[G(m)]EF (VCUC'F + Veber — vaCC’)

Here, V¢ is covariant derivative with respect to g5 Now,

K = Kap — IS ngol'E,,

P=1
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Now,

/ A~ 1 , ~ - -
—IISIEG npdl Ee = —§H2H§ n” <VCbC’F + Veober — VFhCC’)

p=1
= 0G0 [ (T + e (Vo) + (0 9) 306 - 112
m=0
= TSNS (RS KE + R KE + NA)
= SHSRIE + SHSHICE + VI
(C.156)
So, we get
K= K+ 5 (RSLKE + BSLKE + NAGY) (C.157)
Stress of extrinsic curvature is given by
Fom — <gAB - 6AB> Kgrg
=1
= (o - BOP) s (C.158)

1 /- . . .
= K+ 5 (WK™ RO 4+ NRO ) — RO K

— k1 Mo
2

C.4 Important Identities

In this appendix we will mention the identities we have used in chapter 4. The identities
have been calculated on ¢ = 1 hypersurface. We are not giving the derivations simply due
to the fact that the derivations are very lengthy but nevertheless the derivations are quite

straightforward.

Identity-1:

VeN VgK 1. [(n-VK 1 (VK (n-VK 1)?
_ 1 2 - 1
N K +KVB( K ) K(K)( K )+O(D) (C.159)
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Identity-2:
(n-V)N K (n-V)K 1(n-V)K (n-V)(n-V)K 2 (n-VK)? 1)
N D K b K K? ®Ur ) 9D
(C.160)

Identity-3:

2 2

ND:K+<"';)K+(”'V);{Z'V)K—%(”';K) +O(%> (C.161)

Identity-4:

(n-V)K V2K 1 AD—=1) 1 oy 2 (V2K (V2K
T S e A N d ey A (e
LD VKN 1 (VPK\ 1 @2K_AQ_§ V2K
K2\ K? D\ K? K\ K2 K D)\ K2

2 (VEK\ (VK 1\’
(7)) o ()
(C.162)
Identity-5:
(n-V)(n-V)K 1[ 3(V?K\ (VK D (V2K 1 ey,ey
o k| A\ )\ )P R ) eV (V)
VEK\ (VeK K (V2K K2 1\°
(%) (%) 25 () = 5] o (5)
(C.163)
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Appendix D

Appendices for Chapter 5
D.1 Analysis of F(r/ry)

In this section, we shall evaluate the integral (5.39) in large D limit. For convenience we
are quoting the equation here.
[e'9) .CL'D_2 -1
F(y) = dr———— D.1
We would like to evaluate this integral systematically for large D. Let us first evaluate the
integral for y > 2. In this case, since D is very large, 2 >> 1 throughout the range of

integration. So we shall expand the integrand in the following way.

S
—~~ &
8
SN
RS
H
|
="
I
VR
&le
~~_
—
[—
&\
S
©
SN—"
—
—_
&\
S
=
SN—"
L

Il
VRS
le —_

) (1 . :L,—(D—2)) (1 + Zx—m(D—1)> (D2)
m=1

[l,—m(D—l) o x—m(D—l)—&—l} )

N——
RS
—
_|_
(]

%Ewl —_

Il
VR

m=1

Integrating (D.2) we find

P et T 1 —(D-1)m 1 —(D-1)m
y/y>2d%<xD—1—1>‘”;Km—nmﬂ)y 1 ‘((D—1>m)y 1 ]
(D.3)

Clearly, the sums in the RHS of (D.3) are convergent for y > 2. Let us denote the RHS as
k(y). However, the expansion in (D.2) is not valid inside the ‘membrane region’, i.e., when

y — 1 ~ O (+) and naively k(y) is not the answer for the integral.
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But consider the function k(y) = F(y) — k(y). This function vanishes for all y > 2
and also by construction, it is a smooth function at y = 2 (none of the derivatives diverge).

Hence l%(y) must vanish for every y. So we conclude, for every allowed y (i.e., y > 1)

Fly)=1+ mZ:l { (m) y~(Pmhm (ﬁ) y(D”m“} (D.4)

Note that F'(y) reduces to 1 as y — oo as required in section (5.3.2).

Now we would like to expand F'(y) in a series in (), where y is in the membrane regime.

Y
—14+— Y~O(1
y=1+5 O(1)

In this regime F'(y) takes the following form

F(y)—F<1+%> —1- (%)22 (1;?/) e”““d?(%) (D.5)

m=1

In chapter 5, we consider only the first subleading correction in (%) expansion. Therefore

F(y) could be set to 1 for our purpose.

D.2 Derivation of ¢ in {Y} = {p, y*} coordinates

In this section, we shall give the derivation of ) as mentioned in eq (5.62). We want to
solve v such that V?)~” = 0. Where V is the covariant derivative with respect to the

background metric
dp* 5
dsgackground = F + p277u1/ dyﬂ dy (D6)

we can expand v as follows

A1+ € By

1/1:1+<A10+€B10+ D

) (p—ru) + (Azo + € Ba)(p — 7u)* + O (%)

(D.7)
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Here € denotes that B;;’s are O(0) terms.

v2 (Q/J_D) =0
= (V) — (D +1)(VA)(Vay) =0
, " (D.8)
= 1 p° |0,0,0 — T ,(9,0) — ng(ﬁﬂqp)} + ? n { —I0,(0,0) — 1,009
—(D+1) p* (9,0)* + 0(9)> =0
The required Christoftel symbols are
AL A S I
pp _57 pp T w = P Muws pry (D9)
Using the above Christoffel symbol we get
W [p2 02 + Dp ew} —(D+1) p* (9,4)* =0 (D.10)
Now,
A +e Bn)
Y= A+ eByy+ ————)+2(Ap+€eB —r
Y ( 10 T € D1g D (Az 20) (P — T'1r) (D.11)
82'(# =2 (A20 + € Bgo)
Solving, (D.10) order by order in derivative expansion we get the following solution
by =1+ (1= ) (—2— 1)+ 0 1y’ (D.12)
p? y - _D ry (y'u) D .

D.3 Computing different terms in membrane equation

In this section we shall give the details of calculations of different terms that appear in the

membrane equation. The different components of the projector defined in (5.72) are given

by

=0, 18 =0ry; 1=—7(ry); =0 (D.13)

2 0 v v
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The different components of the Christoffel symbol of the background metric in Y4 =

{p, y*} co-ordinates are given by
reo—-Lore 00 Te = _pn.: D=l T —0; % =0
PP p’ 77 pr = TP s up*pu’ py T pp D
(D.14)

From (5.73) it is clear that we need only K ,, and K3 component of extrinsic curvature
c D
Ky =11, <8Cnu — FCN“D)

=1 <aynﬂ - rgun,)

_ Ourn

2
Tu

(D.15)

K =105 (807% — ngnD)

=115 <8pny - Ffwnp> + 105 (&Xny - Fgwnp>
= —35 T4,
=P N
Now, as mentioned in (5.73) in terms of the intrinsic coordinates on the membrane the

extrinsic curvature will have the structure

Kag = Kpp (Oarm) (9srm) + [Kpa (9srm) + Kpp (arn)] + Kag
(D.16)
= 1% Nap + O(0)?

The trace of the extrinsic curvature
K=(D-1)+0(d% (D.17)

For the calculation of the extrinsic curvature we need background metric, where for the rest
of the calculation we require induced metric on the horizon. The induced metric on the
horizon is given by

g5 =12 g + O(?) (D.18)
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The Christoffel symbol of the induced metric

13
i, = (5 0arm  gpOoru  Ora (D.19)
rg g rg

Now we shall calculate all the terms mentioned in (5.79). First, we shall calculate

VU =gy VaUs

afs _
= L [0.Us — T3,U5) + 0()?
T
o 0 dgr »r
_n _ 50aTH | 508TH H 5
=7 {80[ (ra ug) = (ri us) (55 o T 0 e )} +0(9)
af .
—(D-2) ((’7 uéaﬁ)rH) + 2 o
T TH
(D.20)
Now we shall calculate V2U,, and (U - V) U,
vQUM = gaﬁva?ﬁUM
= 9°7 [0a(V5U,) — T5(VsU,) — T3, (VsUs)] (D21)
= 0(0)?

(U - V) Uy = U?(95U,) — U° T',Us
ub u? OuTH

= (ru@hu) + v @) ) = (o ) (8 Oprar _

+ 62

TH TH g

86
Mg TH) + O
TH

v
= ("1, 0, )uq + uq ((77 uu&,)rH> + OaTt + 0(0?)

TH TH
(D.22)
Now,
U* Kag P = (07 + U U,) (U 13 o) + O(0%)
= (07 + U U,)Us + O(8) (D.23)

= O(?)
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Appendix E

Notations

In this appendix, we shall summarize the notations we have used in this thesis.

Table E.1: Notations

Background spacetime indices Capital Latin (A, B, C, D)

Indices on the membrane Small Greek (o, 3, 1, V)

Induced metric on the membrane as embedded in g4p g,(f;l 9

Gagp

Full non-linear metric outside the membrane

Linearized metric outside the membrane Gﬁf};” =gap + v Phag

Linearized metric inside the membrane G(ng) — gap + bas

Projector on the membrane as embedded in g4 Hap = gap —nangp

Projector perpendicular to both the normal of the Pip = gap —nanpg+ uasup

membrane as embedded in g4 p and the velocity

Projector on the membrane as embedded in G(ﬂ;t) p%;t) = G(ﬁ;t) - n(jm)ng"t)
Projector on the membrane as embedded in G%%) p(jg) = G(j%) — n(j”)ng”)
Covariant derivative w.r.t. gap Va
Covariant derivative w.r.t. g,(fy 9 V4
V 4

Covariant derivative w.r.t. G 45

Covariant derivative w.r.t. G'7%) Va

Covariant derivative w.r.t. G(j%)
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Covariant derivative w.r.t. g4 projected Va
along the membrane see (2.58) for definition
Extrinsic curvature of the membrane K Efgt)
when embedded in G'7%
Extrinsic curvature of the membrane K ﬁfg)
when embedded in Gxg
Extrinsic curvature of the membrane Kag
when embedded in g4 5
Pull back of K 45 Ko
on ¢ = 1 hypersurface see (2.62) for definition
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