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Chapter 1

Introduction

Understanding science is a driving force of knowledge about the world we live in. The evo-
lution in realization of the laws governing the physical phenomena happening around us en-
hances technological developments which in return improves our way of living. From the first
ever computer modeled that is nearly the size of a room to a recent one that fits to our pocket
and is even more powerful is an example of such scientific progress. The field of light-atom in-
teraction has also contributed enormously to these developments like all other fields of science.

Invention of laser by Maiman in 1960 was one of the greatest contribution to the field of
non-linear and quantum optics. The relative phase of the applied laser beam does not change
while passing through a linear medium. In non-linear optics, the high optical intensity of the
applied laser could modify the properties of the atomic ensemble through which it passes due
to its strong electric field. Thus, an intensity dependent refractive index is generated inside the
system as a result of the optical Kerr effect. Four wave mixing, self phase modulation, cross
phase modulation, optical parametric oscillation and sum or difference frequency generation
are some of the examples of non-linear phenomena."-? This optical non-linearity has applica-
tions in material science to study the physical properties of matter and also has technological
applications like optical switching and optical signal processing.?

The non-linearity in an ensemble can also be generated when the constituent atoms are

strongly interacting. This interaction leads to the generation of a correlated atomic ensemble
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where the non-linearity can be observed even at a single photon level. Rydberg atoms serve this
purpose of generating the correlated atomic ensemble due to its exaggerated atomic properties.*
Since the outermost electron has a very high probability of being far from the atomic nucleus,
the dipole moment of the Rydberg atom is large. Apart from that these atoms are very sensitive
to external electric field. Thus, a large Kerr non-linearity is generated in the contributing atomic
ensemble due to the strong interactions between Rydberg atoms. A strong self phase modula-
tion and cross phase modulation in the applied photons are observed using the phenomenon of
Rydberg Electromagnetically induced transparency.’

The discovery of ultra-cold atoms which is awarded with the noble prize in physics started
a new era in the field of atomic and molecular physics.**=¢ Ultra-cold temperature are nec-

essary to study quantum degenerate gas like Bose-Einstein condensate 3"~

and degenerate
Fermi gas.*® Several exciting discoveries are emerging with Rydberg atoms at ultra-cold tem-
perature.* Phenomena like Rydberg blockade, Rydberg anti-blockade, RF field sensing and
single photon non-linearity in ultra-cold atom opens up the possibility for quantum entangle-
ment of large number of atoms leading to advanced technological applications like quantum
information processing and quantum communication.*

From the investigator’s point of view thermal atomic ensemble has an advantage due to its
simplified experimental set-up compared to a cold atomic ensemble. Although the Doppler
effect and Maxwell-Boltzmann velocity distribution create a large uncertainty in the system, it
has found a lot of appreciations for its results. Phenomena that leads to enhanced optical non-
linearity at single photon level in thermal atomic vapor open up the possibility of its application
in quantum information processing. The work presented in this thesis focuses on the theoret-
ical study of Rydberg blockade phenomenon as well as theoretical and experimental study of
Rydberg anti-blockade phenomenon in thermal atomic vapor.

In this chapter a brief overview of the on going developments in the field of Rydberg atom

physics is presented.
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1.1 Developments in the study of Rydberg blockade and anti-

blockade in atomic vapor

1.1.1 Rydberg blockade

Due to the large dipole moment of Rydberg atoms, they offer long range repulsive and attrac-
tive interaction with possibility of tunable interaction strength. The interaction between two
Rydberg atoms are several order of magnitude larger as compared to that of the ground state
atoms. This interaction leads to the Rydberg blockade which restricts the simultaneous excita-
tion of multiple atoms to the Rydberg state within a critical length scale known as the blockade
radius. This excitation is coherently distributed within the atoms contributing to the blockade
phenomenon which leads to the generation of a correlated atomic ensemble.*! A significant
suppression in Rydberg excitation within the blockade regime has been observed in ultra-cold

4247 and Bose Einstein condensate.**>3 The blockade phenomena has also

atomic ensemble
been demonstrated between two atoms individually trapped by optical tweezers.*>> Enhance-
ment in Rabi oscillation by a factor of 1/2 due to collective Rydberg excitation of two atoms has
been reported in the experiment.”> It was realized that a fully blockaded ensemble of N atoms
can be represented by a super-atom with dipole moment enhanced by a factor of /N which
leads the system to a many-body entangled state.’®” A precise measurement of Van der Waals
interaction strength between two individually trapped atoms is also reported.’® There have been
experimental demonstration of single Rydberg excitation in a string of trapped ions.’* Rydberg
atoms are also used to describe the Bose-Hubbard model.®® Rydberg blockade was also used
for quantum non-demolition measurements,®'~63

Since the blockade interaction generates a large correlated ensemble, the non-linearity
in the single photon level is also large. Experimentally there are reports on the evidence of
non-linearity at single-photon level.!%46:37:66.67 There have been experimental reports on ob-

servation of attractive photons in the strong blockade regime.!! Single photon mediated optical

non-linearity in the blockade regime is also observed with a phase shift of 7.°® Rydberg block-
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ade in an electromagnetically induced transparency medium results single photon non-linearity
for atoms in a cavity ® as well as for individual atoms trapped by optical tweezers.”’ Opti-
cally driven Rydberg interaction induced many body effect due to the blockade phenomenon

are also studied in a dissipative system theoretically’!~">

as well as experimentally in ultra-cold
ensemble.”® This state dependent non-linearity is essential for technological applications such
as quantum information processing and quantum computation.”’®” It has been demonstrated

that Rydberg blockade can be used to implement C-NOT gate between atom pairs.8%

1.1.2 Rydberg anti-blockade

Interaction induced enhancement in Rydberg excitation or the Rydberg anti-blockade is an op-
posite effect of Rydberg excitation blockade. It was first predicted by Ates et. al. in 2007 who
suggested that far detuned laser can be used to overcome the excitation blockade and atom pairs
can be selectively excited to the Rydberg state within the blockade radius.”® This result was
experimentally observed in ultra cold ensemble of atom by fixing the quantum number of the
Rydberg state and tuning the interaction strength by choosing specific atomic pair with required

91

separation .” The atoms are considered to be attracting via a Van der Waals interaction and

Penning ionization is used to study nearest neighbor distribution without performing a spatially

resolved measurement.’!

Resonant dipole dipole interaction is observed with non-additive
character due to anti-blockade in an ensemble having more than two atoms in the blockade
sphere.”? In addition to this, the existence of anti-blockade between two Rydberg atoms, in-
teracting with a zero area phase jump pulse is also reported.”® The anti-blockade condition is
also achieved by adjusting the laser detuning for a fixed interaction strength.”*% Theoretical
study of the anti-blockade effect in a periodically driven array of Rydberg atoms has also been
reported.”® Due to the co-operative effect anti-blockade phenomenon creates a steady entan-
gled state in the participating atomic ensemble as studied in some recent results.”’~'% Since
the anti-blockade phenomenon also creates a correlated atomic ensemble which leads to a large
non-linearity within the system, it can have application in quantum information processing as

proposed by some theoretical studies.'?'~1%
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1.2 Developments in the study of coherent Rydberg excita-
tion in thermal atomic vapor

Atomic vapor are also widely used to study optical non-linearity. There are early experiments
in thermal atomic vapor using alkaline materials to study ionization using Rydberg excita-
tion.!!% "1 Since the first Rydberg EIT observed in thermal atomic vapor cell '® and atomic

12 study started in generation of many-body entangled state using interaction.!'®> This

beam,
results signifies that Rydberg atoms are coherently excited to the Rydberg state and are also
probed in order to study many optical phenomena. Coherent dynamics faster than a nano-
second time scale is achieved with a nanosecond pulsed excitation with Rabi coupling strength
in GHz regime.!'* Rydberg excitations are used to study multi-wave mixing process in thermal
atomic vapor.!'!> 116

Experimentally, it has been observed that Rydberg excitation in thermal vapor in the mean
field regime shows non-equilibrium phase transition.!'”~12° However, there is a controversy in
the mechanism behind this observation as the charged particles in hot atomic vapor as well
as the Rydberg long range interaction both can lead to the bistability in the system. Non-
equilibrium phase transition finds application in tera-hertz detection methods.!?>"'?* Experi-
mental observation of the stark shift in Rb lines are reported due to the presence of ions.!?’ A
recent result also reports the study of non-equilibrium dynamics in a driven dissipative ther-
mal ensemble of interacting Rydberg atoms.'?! Rydberg EIT is combined with the detection
of ion using an electrode for thermal Rb vapor.'> High optical non-linearity in thermal ru-
bidium vapor has been reported using optical heterodyne detection technique (OHDT) by our
group.!?® Using the OHDT our group has also reported the observation of Rydberg block-
ade phenomenon in thermal Rubidium vapor using a two-photon excitation scheme.!?” High
sensitive measurement of Rydberg population due to two photon excitation in thermal vapor

using the OHDT has been studied by our group.'?® A single photon source based on strongly

interacting Rydberg atoms in room temperature is also reported recently.'?
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1.3 Contribution of the thesis in the field of coherent Ryd-
berg excitation in atomic vapor

Using OHDT the dispersion of the probe beam is measured due to two-photon excitation to
the Rydberg state. Enhancement in Rydberg excitation is observed experimentally for higher
density of the atomic vapor where the interaction becomes significant.'*! The experimental
observations are explained theoretically using a two-atom model with the dressed state picture
of a three-level system. A good qualitative agreement is observed between the theory and the
experiment indicating the existence of the anti-blockade phenomena in thermal atomic vapor.
We also report a modified OHDT, where the output signal is found to be independent of the
phase offset variation due to change in density.'*® The technique is established by measuring
the dispersion peak height which is found to be constant with the variation of phase offset.

A theoretical modeling of Rydberg blockade for N atoms inside a blockade sphere in ther-
mal as well as cold atomic ensemble is also presented in this thesis.'*> The model is useful
to explain the blockade phenomenon for atomic ensemble having large dephasing due to rel-
ative motion of the atoms as well as dephasing due to laser frequency noise. The theoretical
study also clearly indicates the existence of Rydberg blockade phenomenon in thermal atomic
vapor where the dephasing due to relative motion of the atoms is very large. In addition to
this, a theoretical model for Rydberg blockade in thermal atomic vapor is presented using four-
photon excitation where the Doppler broadening due to the residual wave vector mismatch is
very small.

The work presented in this thesis opens up the possibility of application of thermal atomic
vapor in quantum information processing. The phenomena of Rydberg blockade and anti-
blockade can be observed in thermal atomic vapor as predicted in this thesis. The optical non-
linearity observed in the experiment is small as the observed spetrum is Doppler broadened
due wave vector mismatch of the applied laser in a two-photon excitation process. However,
using a four-photon excitation process, the residual wave vector can be reduced to zero with

suitable beam geometry. Thus, the system in thermal vapor can produce similar result as the
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cold atomic ensemble. This will be useful to generate a correlated atomic ensemble leading to
strong optical non-linearity even at single-photon level. This wil be helpful to generate CNOT

gate using thermal atmoic ensemble.

1.4 Layout of the thesis

The work presented in this thesis are organized as follows.

In chapter 2, the basic concepts which are useful for understanding of the thesis work are
presented. The basic properties of Rydberg atoms are presented and the scaling of these prop-
erties with the principal quantum number of the Rydberg state are explained along with the in-
teractions between the Rydberg atoms. In addition to this, the phenomena of Rydberg blockade
and anti-blockade are explained using two interacting atoms. Thereafter, some basic atom-light
interaction using two-level system, three-level system and the effective two-level system using
adiabatic elimination are described using the optical Bloch equations. In addition, the experi-
mental techniques such as saturated absorption spectroscopy and frequency locking of the laser
is presented. The different atomic transition lines of Rubidium atoms are also described here.

A modified optical heterodyne detection technique (OHDT) is described in chapter 3. OHDT
is established to study Rydberg excitation in thermal atomic vapor by our group, which will be
discussed briefly. Thereafter, the modified OHDT is explained with the experimental set-up. In
order to verify the technique, the experimental data are collected for the anti-blockade peak in
the dispersion spectrum of the probe beam due to the two photon excitation.

In chapter 4, the theoretical and experimental observation of the Rydberg anti-blockade
phenomenon is described. The dressed state picture of the three level system is used to explain
the observation. Using a model of two interacting atoms, the anti-blockade phenomenon is
explained for a cold atomic ensemble. In order to extend the theory for thermal vapor ensemble,
the the physical quantities are Doppler averaged over the whole velocity class of the atom. The
experimental set-up to observe the anti-blockade phenomenon due to two-photon excitation to

the Rydberg state using OHDT is described. The analysis is presented where a comparison of
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the theoretical results and the experimental observations is explained.

In chapter 5, the theoretical model of Rydberg blockade for N atoms inside the blockade
sphere for cold atom and thermal atomic vapor is presented. The exact calculation for two-
atoms inside the blockade sphere is formulated for cold atomic ensemble. The calculation is
extended for thermal atomic vapor, and the effect of velocity in the model is also discussed.
The exact calculation of the two-atom model are simplified using the symmetry in the system
which gives rise to an approximate model. An empirical formula is also formulated for the
system considering the atoms within the blockade sphere which are contributing to the Rydberg
blockade phenomena behaves as a super-atom. The effect of different dephasing mechanisms
arising due to the thermal motion of the atom in the blockade phenomenon are described. The
exact numerical calculation, the approximate model and the empirical formula is extended for
three and four-atom system. An approximate model for N-atoms inside the blockade sphere
is presented using the simplified OBEs of two, three and four-atom system. The super-atom
dephasing arising due to the velocity of the atoms and its effect on the blockade phenomenon
is also described in details.

In chapter 6, the blockade phenomenon using a four-photon excitation process is described.
The advantage of the four-photon process over the usual two-photon scheme is explained. The
five-level atomic system is described using the OBEs in steady state. An effective two-level
system is described here which is formulated using the adiabatic elimination of the intermediate
states of a five level system. The blockade process is explained for the system using a two-atom
model and the effect of different dephasing mechanisms are also studied.

In chapter 7, the summary and possible future experimental proposals using the cold atomic

ensemble and the thermal atomic vapor are presented.
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Chapter 2

Basic atom-light interactions and Rydberg

atoms

In this chapter, the basic atom light interactions are explained along with the properties of Ryd-
berg atoms. Starting from a two-level system, the three-level system and the effective two-level
system are discussed here. Then, the dressed state picture of the two-level system is explained
in details. The energy level diagram of the rubidium atom as well as the saturated absorption
spectroscopy (SAS) along with the frequency locking of the LASER using the digilock module
is explained. Thereafter, the properties of Rydberg atoms and the scaling of different physi-
cal quantities such as dipole moment, lifetime, polarizability etc. with the principal quantum
number of the Rydberg state are discussed. Also, the co-operative phenomena like Rydberg
blockade and Rydberg anti-blockade arising due to the strong inter-atomic interactions are ex-

plained.

2.1 'Two-level system

Let us consider a two-level atomic system as shown in figure 2.1 with ground state |¢g) and
excited state |¢) with resonant frequency wy. A laser with frequency wy, is applied to the system

which is detuned by an amount A = w; — w, from the atomic resonance. Using the dipole
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Figure 2.1: Energy level diagram of two-level atomic system. |g) and |e) represents the ground
and the excited energy levels. ) is the Rabi frequency, L., is the population decay rate from |e)
to |g) and A is the laser detuning.

160

approximations and the rotating wave approximation ,'*” the time independent Hamiltonian of

the system is given by

0 0 0 O 0 0
HeH 4+ H " _h __h . @.1)

210 2A Q0 2 1o 2A

Here, H) is the bare atom Hamiltonian and H; is the Hamiltonian due to the atom-light inter-

20| E . , . .
action. () = %H is defined as the Rabi frequency of the system. Here, ji., is the dipole
moment due to the coupling between the states |g) — |e¢) and |E| represents the amplitude of

electric field of the applied laser. The density matrix of the 2 level system is given by

Pgg  Pge
p et
Peg  Pee
Pgq and p.. represent the population of the ground and the excited states. For a closed system,
Pgg + Pee = 1, which represents the total population of the system is conserved. pge = p, (x
represents the complex conjugate) represents the coherence between both the states introduced
due to the applied laser field. Due to the process of spontaneous emission the atom decays

from excited state to the ground state after a certain interval of time. This time is known as

the lifetime of the excited state ¢4. The population decay rate (I';,) of the atom is related to ¢4
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1 . . . . .
as I'gy = et This introduces a decoherence in the system which can be incorporated using a
d

Lindblad operator'¢! given by

Pge
Pee - %

LD Feg Peg ) (22)
- 7 —Pee

The dynamics of the system can be studied using the optical Bloch equations (OBEs) given
i
h
the equations for the population of the excited state (p..) and the coherence (p.,) is found to be

by p = —[p, H]+ Lp. The system is studied using the steady state condition p = 0. On solving,

: Q e

(1= 2p)5 + Apye) =Tyt = 0 2.3)
L Pee
Z(ﬁeg 9 Tpge) - Feg? = 0. (2.4)

Solving these two equations p.. and pg. is calculated. The real and imaginary part of p,.
gives the information about the dispersion and the absorption of the applied laser field respec-

tively. On solving the above equations, these two quantities are found to be

QQ
= : 2.5
oA — o))
2 (2.6)

Poe = "o AN + T2,
The susceptibility () is a physical quantity of interest which is observed during the exper-
iment. It is related to p,. as

X = —Nuegp
col B

Where, N is the density of the atomic ensemble, ¢, is the permittivity of vacuum and A is
the Planck’s constant. The real part of susceptibility (XRE) gives information about the phase
change of the applied laser. The imaginary part (XI m) explains the absorption or transmission

of the laser due to the excitation process. Using the above expression x* and x!™ is found to
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The system described above has a dephasing only due to the population decay by the pro-
cess of spontaneous emission. However, the laser applied for the excitation has a linewidth or
frequency noise. This frequency noise of the applied laser also introduces a dephasing in the
system. For a stable external cavity diode laser (ECDL) used in the experiment presented here,
this noise is 300 KHz. For the two-level system this is included as a decoherence term in the

L p matrix which is written as

(Feg + P)/Tel)pge

I = Fegpee - 92
b= _ (Feg + 'Yrel)peg T
9 egPee

Here, ,; is the dephasing rate arising due to the laser frequency noise. The population of the
Rydberg state is calculated for this system by solving the OBEs in the steady state condition as

described previously in this section and is given by

QQ(FGQ + %el)
2QZ(F69 + ’Yrel) + 4A2Feg + Feg(reg + ’Yrel)2.

Pee = (29)

For a Rydberg state, the population decay rate is ~ 100 KHz. Thus, the laser frequency
noise is significant compared to I" in this system. Therefore, the Rydberg population calculated
for the system in presence of 7, is significantly different than a case where it is not included.

The calculations presented in this thesis include 7,.; in the Lp matrix.

2.2 Dressed state picture of two-level system

Consider an atomic system with ground state |g) and excited state |e) coupled by an applied

laser having rabi frequency {2p and detuning Ap as shown in figure 2.2(a). The most general
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Figure 2.2: (a) The dressed state picture of two-level system. |g,) and |go) represents the two
dressed states. (b) Energy of bare levels ( black and cyan) and the dressed states (red and blue)

with laser detuning showing anti-crossing due to the dressed states.

state of a two-level system is given by |¥) = ¢, |g) + c. |e). In presence of a driving field the
. 1
Schrodinger equation |¥) = %H |W) for the system is given by
i

0 Op/2 c
L SNl (2.10)
Qp/2 AP Ce

Ce
The Hamiltonian can be diagonized using the eigenvalue equation in order to change the
basis vectors.
0 Qp/2 c c
PRV ) [ @.11)

g
1 _
g2

QP/Q AP Ce Ce

For the two-level system, the diagonalization of the Hamiltonian is given by

0—X Qp/2 .
Qp/2 Ap— A\
2 2 _

Here, Q) = +/ A%D + Q%. This values of A can be substituted in equation 2.11, which give
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the eigenvector of the states as

|g1) = cos @ |e) —sind |g) . (2.13)
|g2) = cos @ |g) +sinf |e) . (2.14)
Q .
Here tanf = T AL These states are called the dressed states of the atomic system
—Ap

consisting of superposition of bare atomic states. Due to the presence of a coupling laser even
if at 6 = 0 the two dressed states will have different energy unlike the uncoupled bare states
which will have zero energy at Ap = 0. This leads to an anti-crossing at resonance which is
arising due to the applied laser field as shown in figure 2.2(b)."'* The energy difference of the
two dressed states at resonance is given by the rabi frequency €2 which is calculated to be

~ 0?2
Q=X\, -\ =2,
+ 2Ap

(2.15)

2.2.1 Energy level spacing between the dressed states

As calculated in the two-level dressed state picture the eigenvalues for a system is given by

N, = Ap+ /AL + Q3
L =
2

the resonant case. Here the two dressed states will be equally separated from the unpurturbed

. There are two possible conditions. One is when Ap = 0, i.e.

atomic energy level and in opposite direction with energy 7]3 of each state. The second con-

QQ
dition is Ap > Q) p such that A_}; < 1. Therefore, A\ can be expanded using the Taylor series
P
expansion which gives
0p
AL~ A —
Ao~ — 2%
- TIA,

The difference between these two energy eigen values gives the separation between the dressed

states. This depends on the laser parameters i.e. the detuning from the atomic resonance and
2

C_ s called the light shift that arises due to the presence of the
P

the rabi frequency. The term

29



strong probe laser. We can always tune the separation between the dressed states by changing

the laser parameters depending on the requirement of the experiment. The separation is given
0

A=A )
by P+2AP

2.2.2 Steady state population of the dressed states

The energy of the dressed state are in the diagonal basis of the bare atomic levels, the density
matrix of the bare atom system is diagonalized in order to calculate the populations of each
of the dressed states. The system reaches a steady state after a time greater than 1/T".,. The

eigenvalue equation for the two-level density matrix in steady-state is given by

— A .
Pgg Pg —0, (2.16)

peg Pee — A

= (ng - A)(pee - A) - |pg€|2 = 0.

Since, it is a closed atomic system we know p,, + p.. = 1. The eigenvalue equation or the

diagonalization of the density matrix gives

_ 1+ \/1 + 4<1 - pee)pee_ ’ pge ’2

Ay 5

(2.17)

Equation 2.5 and 2.6 represents the population of the excited state and the coherence term.
The system is considered such that it satisfies the condition Ap > Qp > I'.;. These two

expressions are simplified under these condition to

QQ
_ P (1

Pec = %
1AZ,

— )
272,

2_ Q% 2
’pge| —4A2 <2pee_1) .
P

On substitution of the density matrix expression on equation 2.17, the eigen value equation
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simplifies to
Qp
CAAL

Ay ==+ —4/1

1
2

N —

Since the second term inside the square root is much smaller than 1, then it is expanded using

the binomial expansion and neglecting the higher order terms except the first order we get

Ay ~1 (2.18)
and
Q}
o~ 16A‘}3' (2.19)

A, and A_ represents the population of the state |g2) and |g1) respectively. Hence, the popu-
lation of the upper dressed state is nearly one while the lower one is much more smaller than
one. This is due to the high value of laser detuning that we are using here. However, if Ap = 0

then the population of both the states are equal.

2.3 Three-level system

Al i e ).
e iDLy | ¢
. le)
o A S
reg QP
S |g)

Figure 2.3: Energy level diagram for a three-level system. |g), |e) and |r) represents the three

QMTGEC

energy levels. Qp = ZHegZp and Q¢ = represents the probe and coupling rabi

frequency respectively. The laser detuning of the probe and coupling laser is given by Ap and
A respectively.

31



The atoms can be excited to the desired level using a single photon as explained in the
previous section. However, it is difficult to get the laser source in some frequency range. For
example consider rubidium atom, where the excitation to the Rydberg state required laser in
the ultraviolet region. It is very difficult to have a laser in this frequency range. Therefore,
the excitation can be performed using multi-photon process e.g. a 780 nm and a 480 nm laser
is used for the excitation. Consider an atomic system with three-levels with ground state |g),
excited state |e) and second excited state |r) coupled by two lasers. The first laser excites the
atom from |g) — |e) known as the probe laser and the second laser excites the atom |e) — |)
known as the coupling laser. The rabi frequency (Laser detuning) of the probe is 2p (Ap) and
for the coupling beam it is (¢ (A¢). The energy level diagram is shown in figure 2.3.

Using the similar approach as the two-level system, the time independent Hamiltonian for
the three-level system can be written using the rotating wave approximation and dipole approx-

imation which is given by

0 Qp 0

H=—10; 20p Q¢ : (2.20)

2
0 & 2(Ap+Ae)

The atom will decay from the excited state to the ground state by the process of spontaneous
emission. There are three possible population decay channels. Two direct decays from |e) —
|g) and |r) — |e) which are dipole allowed. An indirect decay arises due to the finite transit
time of the atoms across the laser beam profile. When a Rydberg excited atom moves out of the
beam profile and a ground state atom comes in, it is considered as a decay from the Rydberg

state to the ground state. Thus, an indirect decay which is dipole forbidden considered from

|r) — |g). These decay processes introduces a decoherence in the system and it is incorporated
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using the Lindblad operator which is given by

Fegpee + Frgprr _(Feg/Q)pge _(Frg _I' Fre)pgr/2
LD = _(Feg/2)peg _Fegpee + Freprr _(Feg + Frg + Fre)ﬂer/Q : (221)
_(Frg + Fre)pgr/2 _(Feg + Frg + Fre)pre/z _(Frg + Fre)prr

I';; represents the decay rate from excited state i to lower state j. The system can be solved
using the OBEs and different physical quantities can be studied. In a steady state the indepen-

dent set of OBEs for the system are given by

[m(pge) + Fegpee/QP + Frgprr/QP =0 (2.22)
QP(QPee + prr - 1) - (2AP - Zreg)pge - pgTQC - O (2.23)
pgeQC - QPper + Pgr [2<AP + AC) - ZPQ] =0 (224)
per(QAC - ZFS) + QC(pee - prr) - QPpgT =0 (225)
Im(per) + F2p7“r/QC' =0 (2.26)

Frg + e Feg + Frg + e

Here we have used — 5 = I'; and = I'3. The real and imaginary part

2
of pye gives the information about the dispersion and absorption of the probe laser respectively.

For a low probe approximations (£2p < €)¢) these quantities are calculated to be

QCLQPAQ - 2QPF2b
a? + 4b?

Re(pge) =

_4bQPA2 + GQPFQ
a? + 4b?

Im(pge) =

Where, a = Fegrg — 4APA2 + Q% and b = FegAQ — APFQ with AQ = AP + AC and
| S
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Depending on the laser detuning and the rabi frequency the three-level system can show
Electromagnetically induced transparency (EIT).!®? EIT is an interesting phenomenon that in-
troduces strong non-linearity in the system. This equations can be solved analytically for the
single atom picture. However, when we consider multi-atom system, the mathematical com-
plexity enhances using the three-level system. Therefore, the system can further be simplified
to an effective two-level system by using a technique called adiabatic elimination which is

explained in the next section.

2.4 Effective two-level system using adiabatic elimination

(a) (b)

ACI---T:'::'---{,_"““““l'r)- Aeffl |r)
e mmmmm e m i mm -
Ie l“r g Qe .'

Apl” T T T T T T T T T e) :

P] E | ) -~ Feff Q off
Lg: & | @p {
L J )

Figure 2.4: Energy level diagram for a three-level system. |g), |e) and |r) represents the three

€. 2 7"€E
energy levels. Qp = “Hea™P nd Qe = Hrel2C

represents the probe and coupling Rabi

frequencies respectively. Here Ap > Qp,I'.,. (b) Energy level diagram for an effective two-
level system. Q).¢r and A s represents the effective Rabi frequency and effective laser detuning
respectively.

Adiabatic elimination is a technique used to simplify a complex system. In order to simplify
the three-level system the laser parameters can be adjusted. As presented in figure 2.4(a), the
probe laser is detuned from the atomic resonance such that Ap > p, I'5;. Therefore, the
population p.. =~ 0. In presence of the couping laser with Rabi frequency (¢, the population is
transfered to the state |7). Using these conditions the Hamiltonian of the system can be reduced

to an effective two-level Hamiltonian given by'6?
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i, 9 QpQ0
2 202Ap—0)  2(2Ap —0)
QpQe 02, 5
202Ap —0)  202Ap—0) 2

H.pp=—h (2.27)

Here, § = Ap + Ac is the total detuning of the system which satisfies the condition § <

Ap. Thus the above Hamiltonian simplifies to

0 QpQe
__h 2Ap
Hepyp = 5 | QpQc Q% s (2.28)
2Ap  2Ap

This is equivalent to a two-level Hamiltonian. The rabi frequency for the effective system

QpQ2 02
Pe = Qcss. Similarly the effective detuning is given by A ¢y = ¢ _
4A 2Ap

26. Therefore, the system can be represented by an effective two-level system as shown in

is given by

figure 2.4(b). The density matrix and the Lindblad operator for the system is found to be

Pgg  Pgr
p= 99 ar (2.29)
prg Prr
-T .
I L3100 leg 530
D= —Frgp13 T ’ ( . )
2 31Prr
Now putting all this terms in the OBE we have
. { ’Q|2_|Qc|2 1—131pr
r = —=|por (20 P Qo200 — 1)] — 2, 2.31
) (AP
Prr = §<Qeffpgr - prngff> - FSlprr~ (232)
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The equations can be solved for a steady state and the population of the second excited state
as well as the coherence can be calculated. As we can see this two equations are similar to the
two level equations with the rabi frequency replaced by the €).;; and the detuning by A.;;.

Details regarding the effective two-level system can be found in .!%

2.5 Rubidium energy levels

Rubidium atomic vapor is used for all the experiments reported in the thesis. It is a suitable
candidate for the Rydberg excitation as it has a single valence electron. Natural Rubidium has
a combination of two isotopes. ¥ Rb with natural abundance of 28% and % Rb with 72%. The
ground state of Rubidium is 525, /2 and the first excited state have two fine structure levels
52Py 2 and 52 P3/. The hyperfine levels of both the isotopes will depend on the total electron
angular momentum (J) and nuclear angular momentum (I) which is 3/2 for 8" Rb and 5/2 for
85 Rb. The total angular momentum is given by F = J+I and it varies from J+I to J-I by one

unit. The F for ground state and first excited state of Rb is tabulated in table 2.1.'6% 167

SL. no. | Rb Isotope | Energy level | J 1 F
1 85Rb 5512 172 | 5/2 2,3
2 8Rb 5P /5 172 | 5/2 2,3
3 85Rb 5P3/5 3/2 1521234
4 8"Rb 5512 172 | 3/2 1,2
5 8"Rb 5P /o 172 | 3/2 1,2
6 8"Rb 5P3/5 3/213/210,1,2,3

Table 2.1: Hyperfine levels of Rubidium 85 and 87 for the ground state 55 » and excited states
5P1/2 and 5P3/2.

85Rb has two hyperfine ground state with F=2 and F=3. Similarly 8"Rb has two hyperfine
ground state with F=1 and F=2. The transitions from 55/ to both 5P, /, and 5P3, are dipole
allowed and are known as D1 and D2 transitions respectively. The energy level diagram for
both D1 and D2 transitions are shown in figure 2.5. The transitions that satisfy the conditions

AF = 0,41 are only allowed, where AF' = | F,— F}|. The possible transitions can be observed
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Figure 2.5: Energy level diagram of rubidium atoms. a) 8" Rb with hyperfine states and showing
the excitation from 5515 to 5Ps5 and 5P, 5. b) 8 Rb with hyperfine states and showing the
excitation from 551 5 to 5Pz and 5Py .

when the atom is excited to the excited state using a coherent laser beam.

2.6 Doppler broadening

The broadening of spectral lines arising due to Doppler effect as a result of the motion of atoms
are known as Doppler broadening. Due to difference in velocities of the atoms, the frequency
shift will be different for each atom. The collective effect due to all these atoms is observed as
the line broadening. When the particle move towards the light source, the radiation will be blue
shifted and when it is moving away from the particle it will be red shifted. Mathematically it

can be written as w = wg * k.., where w is the frequency of the light observed by the atom and
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Figure 2.6: The optical set-up for the saturated absorption spectroscopy. \/4: quarter wave-
plate, ND: Neutral density filter, PBS: Polarizing beam splitter and PD: Photo-detector.

wp 1s the frequency when the atom is at rest. k is the wave vector of the laser and & represents
the velocity of the atom.
In a thermal atomic ensemble, the velocities of the atoms follow a Maxwell-Boltzmann

distribution. This distribution function for an atom moving in one dimension is given by

1
VT

Flv)dv = e~V du. (2.33)

Here, v, = \/(2k,T")/m represents the most probable velocity of the atom. T is the average
temperature of the atomic sample, m is the mass of the atom and k;, is the Boltzmann constant.
In order to calculate a physical quantity for a thermal ensemble of atom, it is Doppler averaged

by integrating over the whole velocity class using equation 2.33.

2.7 Saturation absorption spectroscopy and frequency lock-
ing of laser

Saturation absorption spectroscopy (SAS) is a useful tool to precisely determine atomic tran-
sition frequencies. This technique is also known as Doppler free spectroscopy and is used for

precise determination of the frequency of atomic transitions without cooling the sample. With
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Figure 2.7: Saturated absorption spectroscopy signal for of rubidium for D1 transitions.
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Figure 2.8: Saturated absorption spectroscopy signal for of rubidium for D2 transitions. The
inset shows the hyperfine lines and the cross-over line of F=3 to F’ transition of 8°Rb.
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a single laser beam resonating to the atomic excitation in a vapor cell at room temperature the
absorption line-width is nearly 500 MHz. This is due to the atom’s velocity distribution that
satisfies the Maxwell-Boltzmann statistics. Hence, a single beam cannot be used to observe the
hyperfine transitions. Therefore, SAS technique uses two counter propagating beams satisfying
the excitation frequency. As shown in figure 2.6, the laser beam is passed through a polarizing
beam splitter (PBS) and then the vapor cell. The power of the beam is ~ 1004W and is known
as the pump beam. It is passed through a neutral density filter (ND) to reduce the power. It is
then retro-reflected using a mirror through a A /4 plate in order to filter it out through the PBS.
This is known as the probe beam and is observed at the photo-detector (PD). The pump beam
excites atoms such that the system goes to a saturated state with half of the atoms in the excited
state and the other half in the ground state. When the probe beam is applied it sees both the
atoms and will be absorbed by the ground state atoms. This intensity profile is observed in the
photo-detector.

The sas signal for rubidium D1 and D2 transitions are shown in figure 2.7 and figure 2.8
respectively. The atomic sample has both " Rb and % Rb, and hence, there are 4 transitions
lines in D2 spectroscopy and similarly there are 6 transition lines in D1. Inside each transitions
there are hyperfine levels depending on the atomic states. Along with that there are cross-over
lines which arises due the atoms having velocity such that the Doppler shift due to the probe
and pump will be equal and opposite. This hyperfine transitions and the cross-over lines are
used to precisely frequency lock the laser at the required point.

In order to perform the experiment, the frequency of the laser is stabilized. The LASER is
frequency locked using the SAS signal via a digilock-110 module from Toptica. The digilock
module uses the SAS and depending on the lock point it supplies a feedback voltage to the
piezo that drives the cavity length of the laser.!®® This also supplies a fixed current to the laser
diode which is connected internally via a jumper. When the piezo voltage is kept fixed the
laser cavity length remains constant and the frequency stabilizes. A screenshot of the software
controlling the digilock module is shown in figure 2.9. A lock point is shown in the figure

where the laser frequency is locked.
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Figure 2.9: A screenshot of digilockl10 software. The yellow dot shows the lock point where
the laser is frequency locked.

The stabilization of the lock-point depends on the signal strength. When the signal is good
enough the lock point remains stable. However, some experiments requires frequency locking
using some peaks having very small signal strength. Also, the frequency locking not stable at
the top of a peak. In those cases the signal strenght is improved using the PDH technique where
a derivative of the absorption signal is generated.'®” Thus, the stability of the lock point at the

top of the absorption signal increases in this case.

2.8 Rydberg atoms

Atoms with one or more electrons excited to a state with very high principal quantum number
are known as Rydberg atoms. The first indication of Rydberg excitations came from the spectral
lines studied by Balmer in 1885. J. R. Rydberg in 1890 began to classify the different spec-
tral transitions and he grouped them into different series.'** The significance of Rydberg state
became clear after the model of H-atom was proposed by Bohr on 1913.13> Since the electron
in Rydberg atoms are excited to a very high principal quantum number state, for [ # 0, they

remains very far from the atomic nucleus. Thus, these atoms exhibit some exaggerated proper-
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ties as compared to the ground state atoms. With gradual development in scientific equipments
and theoretical understandings, these properties were uncovered one by one which is explained

in details in the next section,!36-137,139-143

2.8.1 Properties of Rydberg atoms

Heavy alkali metal atoms are most suitable for many experiments as they have a single va-
lence electron in the outermost cell. This electron when excited to a high principal quantum
number (n) state known as the Rydberg state, their atomic structure becomes similar to a Hy-
drogen atom with the nucleus and the surrounding electron shield behaving as a positive charge
due to the screening effect. The energy of the excited state for Hydrogen atom is proportional
to 1/n?. The difference arises for heavy alkali atoms when the Rydberg state electron orbits in
a state with low orbital angular momentum quantum number (), where the electron’s orbit is
highly elliptical. There it has a significant probability to penetrate the electron cloud and inter-
act with the nucleus. Hence, the binding energy of the system increases and thus decreasing the
total energy. To accommodate this action of the core at small distances, the quantum defect §
is included in the system. The quantum defect is a dimensionless state-dependent quantity that
depends on n and [ of the atomic state. So the binding energy of the Rydberg atom is given by

R?J Ry

E=— = — . Here R, is the Rydberg constant which is 109736.605 ¢! and
(n—0)?  (n)?

n* = (n—9).1%

Some of the properties of Rydberg atoms and their scaling with n is tabulated in table 2.2.
These atoms are huge in size as the radius r varies with n%. So, the dipole moment ;1 = e(r)
varies as n? and is large in magnitude. These atoms are long lived and the radiative decay

lifetime goes as n?

. For a state with n = 100 the size of the atom is of the order of 1 um
i.e. the typical size of a bacteria and the lifetime is around 200 ps. The energy difference
between two adjacent Rydberg states goes as A, = n . Thus, the separation between the
states keeps on decreasing for higher Rydberg states. Since the electron is very loosely bound to

the atomic nucleus, Rydberg atoms are very sensitive to external electric fields. The dependence

of ionization energy due to externally applied electric field (£) for Rydberg atoms is of the order
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2
of n=*. So the polarizability of the system is given by o = Z— which varies as n”,'*1%” where,

¥ E
1 is the dipole moment between the coupling states. Similarly the Rabi frequency (€2 o %‘

of the Rydberg state varies as n~>/2.17 Here, I is the electric field due to the applied laser.

SL. No. Atomic properties Scaling with 'n’ | Typical Values for n = 60D of Rb

1 Binding Energy n=* 3.96 meV

2 Energy Level Spacing n=3 33.5 GHz

3 Dipole Moment n? 138.3 eaq

4 Orbital Radius n? 5156ag

5 Radiative Lifetime n’ 215 pus

6 Electric field n—* 44V /em

7 Polarizability n’ 191 MHz/(V/cm)?

Table 2.2: Scaling of atomic properties with *n’ for Rydberg state.

2.8.2 Interaction of Rydberg atoms

Figure 2.10: A system of two Rydberg atoms with inter nuclear separation R. a and b are the
most probable radius of the electron from the atomic nucleus.

Rydberg electrons being far from atomic nucleus and having large dipole moments are
considered to be a good candidate to study inter-atomic interaction. Rydberg atoms interact
strongly with each other depending on their inter-particle separation. For two Rydberg atoms

separated by a distance R > nZag, where ag is the Bohr’s radius, the leading electrostatic
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interaction is the dipole-dipole interaction. The overlap between the atoms can be neglected at

such large separation. For a two-atom system shown in figure 2.10 this interaction is given by*

V(R):;—Z<a.b—3(a'R)1§2(R'b)). (2.34)

Where a and b are the positions of the two Rydberg electrons from their respective nuclei
and e represents the charge of the electron. In absence of externally applied electric field,
the atomic state has a degeneracy of 2J+1, where J is the total angular momentum quantum
number. Long range interaction between the Rydberg atoms are considered to be arising from
two predominantly coupled channels. The contribution of the nearest energy level will be the
dominating in this case. Contribution of interaction of atoms in the same Rydberg state |rr)
or in a nearby Rydberg state |r'r”) with energy defect 6 = E(r') + E(r") — 2E(r) arises
due to the fluctuation in energy. This energy defect arises as the electron is far from the atomic
nucleus and is fluctuating with large dipole moment.* From the time independent Schrodinger’s

equation we have
|rr) |rr)
(HO + H]) , = A ,
lr'r") 77"
Here A is the energy eigenvalue for the dipole-dipole interaction. Hy and H; are the unper-
turbed Hamiltonian and the interaction Hamiltonian respectively.

0 V(R
EN ) ) (2.35)

V(R)T ) |7‘/r”) ]r,r”>

The LHS of the above equations is diagonalized in order to calculate the eigenvalues which

gives

5+ 1/02 + 4V (R)?
A = ( >. (2.36)

N 2

Depending on the interaction strength as compared to the energy defect there are two kinds
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of interactions arise between the atoms, Van der Waals interaction and dipole-dipole interaction.

Van der Waals interaction

Consider the case of fluctuating dipoles. Here, interaction strength is small compared to quan-

tum defect i.e. V' < 9, equation 2.36 can be expanded using Taylor’s expansion to have

A~ — 5~ Re (2.37)

1
This kind of interaction is called the Van der Waals interaction and it has a 6 dependence.

The sign of the interaction depends on 9. For Rydberg atoms, Cy = M defines the
strength of interaction. Using the scaling presented in table 2.2, Cs o< n'!. Thus, it can take a
very large value depending on the principal quantum number state to which the atom is excited.
In the case of two rubidium atoms the Van der Waals coefficient for Rydberg state (50s) is nearly
11 order of magnitude greater than that of the ground state (5s).!** The contribution of the
nearest neighbor is significantly large as compared to other atoms for this kind of interaction.

The results presented in this thesis are in thermal atomic vapor where the interaction between

the atoms is of Van der Waals kind.

Dipole-dipole interaction

The other kind of interaction is the Dipole-Dipole interaction which arises for permanent
dipoles. To study this interaction, the dipoles are aligned using an external electric field. Here
the interaction strength is much larger than the quantum defect i.e. V' > § where,

Cs

Am £V(R) ~ £ (2.38)

The quantity C3 = € (a) (b) defines the interaction coefficient and it depends on the prin-
cipal quantum number as C5 oc n*. This interaction occurs at short range where the interaction
strength is very high. The contribution of the other surrounding atoms along with the nearest

neighbor is also significant for this kind of interaction.'*8
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2.8.3 Interaction induced Rydberg blockade
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Figure 2.11: The phenomena of Rydberg blockade a)Two-level system driven with a laser field
of Rabi frequency () to the Rydberg state, b) a two-atom system where the interaction is zero
and c) Two-atom system satisfying the blockade condition where a defines the blockade radius.

Rydberg blockade is one of the most interesting effect that arises between two interacting
Rydberg atoms.*77-81:149-154 [t creates a correlated ensemble of atoms that are observed in
various systems and have a variety of applications. Consider a two-level system as shown
in figure 2.11(a) with ground state |g) and excited state |r) coupled by an applied laser with
Rabi frequency ). If we consider two such atoms, the energy level diagram for the composite
system can be presented as given in figure 2.11(b). When both the atoms are in ground state it

1
is represented by |gg), when one of them is excited it is represented by |+) = ﬁ(| gr)+1rg))

or |—) = %(! gry — |rg)) and when both are in Rydberg it is |rr) state. The rabi frequency
of the coupling of the transition |gg) — |+) is v/2Q and for the transition |gg) — |—) it is
0. Similarly, the rabi frequency of the coupling of the transition |+) — |rr) is v/2Q and for
the transition |—) — |rr) it is 0. The atoms are considered to be non-interacting in this case
with V., = 0 and hence both the atoms are excited to the Rydberg state. However, when the

system is considered to be interacting following the Van der Waals interaction, the inter-atomic

interaction strength will change depending on their separation. As shown in figure 2.11(c), for
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two atoms within the length scale a, the interaction energy shift will be larger than the line
width of the Rydberg state. Therefore, the probability of simultaneous excitation of both the
atoms to the Rydberg state is significantly small. In other words, the excitation of the other
atoms present within a separation of a from the Rydberg excited atom is blockaded. This
phenomenon is known as Rydberg blockade and a is known as blockade radius.

The interaction Hamiltonian for the energy level diagram shown in figure 2.11(c) is given

by
H = Q(|gg) (gr| + gg) (rg| + |rg) (rr| + |gr) (rr| + H.C.) £ 2V, rr) (rr|.  (2.39)

Here + sign depends on whether the interaction is attractive or repulsive. When the interac-
tion is weak compared to the Rabi frequency, the system behaves as non-interacting. However,
when the interaction is strong such that V,.. > h{2, the applied laser cannot be coupled to the

. . . 1
state |rr). Thus, the system will remain in the entangled state |+) = —=(|gr) + |rg)). The

Hamiltonian of the laser coupling between the state |gg) and |+) is given by
H =V2Q(|gg) (+| + H.C.).

From the above expression, it can be observed that the Rabi frequency of the system en-
hances by a factor of v/2. Also as the atoms cannot be excited to the state |rr), the population
of the Rydberg state will reduce to half compared to the non-interacting two-atom system. Sim-
ilarly if there are /V atoms inside the length scale a, the Rabi frequency of the system will be
v/ NQ and population of the Rydberg state will be % This blockade phenomenon creates
an entanglement between the participating atoms and therefore it is very useful in quantum

information processing.’”’
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Figure 2.12: a) Energy level diagram for two non-interacting atomic system excited to Rydberg
state in a cold atomic ensemble. b) Interacting two-atom system excited to the Rydberg state
depicting the energy level shift of |rr) state due to Rydberg-Rydberg interaction satisfying the
resonance to the applied laser.

2.8.4 Interaction induced Rydberg anti-blockade

Strong Rydberg-Rydberg interaction also introduces another effect known as Rydberg anti-
blockade. This is also an interesting phenomenon observed in various atomic systems and has
application in quantum information processing as studied by various groups.’®3103-105 Thjg
can be understood in a similar way as that of the blockade phenomenon. Consider a two-atom
system as shown in figure 2.12(a). The applied laser is detuned by A from the atomic resonance.
Therefore, individual atom excitation as well as the simultaneous two-atom excitation are not
possible as shown in figure 2.12(a) for a non-interacting system. However, if the atoms are
interacting and are separated in such a way that, the energy level shift due to interaction is
equal to the laser detuning i.e. V,, = 2A. In that case even if the atoms are not satisfying
resonance condition individually they satisfy simultaneous two-atom resonance and are excited
to the Rydberg state due to interaction as shown in figure 2.12(b). This phenomenon is known
as Rydberg anti-blockade.

In a cold atomic ensemble, the atoms are considered to be frozen and effect of velocity is

negligible. However, this effect can also be observed in thermal atomic vapor where atoms

move with broad range of velocities. Suppose two atoms are moving with two different veloc-
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Figure 2.13: a) Energy level diagram for non-interacting two-atom system in thermal atomic
vapour each moving with different velocity. b) Interacting two-atom system in thermal vapor
depicting the energy level shift of |rr) state due to interaction satisfying resonance to the ap-
plied laser.

ities. Thus, the laser detunings will be different for both due to Doppler shift. One of them is
resonant to the applied laser while the other one is out of resonance as shown in figure2.13(a).
When the atoms are non-interacting the resonant atom will be excited, but the off-resonant
atom cannot be excited. However, if the atoms are interacting with suitable inter-particle sepa-
ration such that V,,. = A, the off-resonant atom is also excited to the Rydberg state as shown in
figure 2.13 (b). This is due to the Rydberg anti-blockade effect in thermal atomic vapor. This
phenomenon also leads to generation of correlated atomic ensemble which has applications in

quantum information processing.%%-%%103-105
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Chapter 3

Robust measurement of Rydberg

population in thermal vapor using OHDT

Rydberg atoms are enriched with strong dipolar interaction which make them suitable for a

variety of applications .* These dipolar interaction lead to phenomena like rydberg blockade

42-47,54,55 90-93,168, 169

and anti-blockade in cold atomic ensemble. Rydberg population is mea-
sured using the absorption of the probe beam in a two photon excitation scheme.!”® However,
the precision of the measurement of population in this experiment is found to be 1072, In ultra
cold atomic ensemble, Rydberg blockade is imaged using Rydberg tomography technique.!”!
Micro-channel plates are also used in cold atomic ensemble to detect Rydberg atoms by ion-
izing them with an external DC electric field. However, these techniques cannot be used for
thermal atomic vapor as the system contains some initial ions sticking to the dielectric surface
of the vapor cell. Various interferometric techniques have been used in different experiments
to improve the measurement and the data quality .>*-2%28172 Optical heterodyne detection tech-
nique (OHDT) is extensively used for phase sensitive measurements in various systems. 73173
OHDT has been developed in our group to observe the dispersion of the probe beam and to
measure the Rydberg population.!?6:128: 131 The sensitivity of the OHDT is found to be very

high which can measure a Rydberg population of the order of 10~7.!?% However, while per-

forming the experiment, the system is stabilized in order to reduce error in the experiment due
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to the density fluctuation.

In this chapter, we have presented a modified OHDT which is independent of any initial
phase offset between the beat signals. Therefore the data can be collected in a faster way and
is also reliable. This technique has been used to study the Rydberg anti-blockade in thermal
atomic vapor. The dispersion peak height of the anti-blockade peak is found to be independent

of the phase offset.!!

3.1 Overview of the OHDT

(a) (b)
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Figure 3.1: (a)Experimental Set-up to measure the dispersion of the probe beam using OHDT
due to the two photon excitation to the Rydberg state. \/2: Half wave plate, \/4: Quarter
wave plate, PBS: Polarizing beam splitter, AOM: Aucosto-optic modulator, DM: Dichroic mir-
ror, PD: Photo detector, WM: Waveform mixer OPS: optical phase shifter, SAS: Saturated ab-
sorption spectroscopy and LP: Low pass filter. (b) Energy level diagram presenting two-photon
excitation to the Rydberg state.

Optical Heterodyne Detection Technique (OHDT) is an useful tool for phase sensitive mea-
surements. The details about the OHDT is presented in the refrences .'?%!?® In both the reported
works, the dispersion of the probe beam is measured during two-photon excitation of the ru-
bidium atom to the Rydberg state. The optical set-up for the OHDT is depicted in figure 3.1(a).
The technique uses two probe beams which are frequency separated using aucosto-optic modu-
lators (AOMs). Both the beams are then interfered using a polarizing beam splitter (PBS). Two

interference signals are generated at both output faces of the PBS. Probe beams coming out
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from one face of the PBS is detected in a detector directly and is taken as the reference beat.
Beams from the other output face of the PBS is passed through the medium and is detected in
another detector which is considered as the signal beat. The phase difference between the ref-
erence and the signal beat (¢,) can be varied using a combination of /4 plate and a polarizer
known as the optical phase shifter (OPS).!?6 When the coupling beam is applied the signal beat
will undergo a phase shift (¢) satisfying two-photon excitation to the Rydberg state as depicted
in figure 3.1(b). This phase shift is measured by comparing the reference beat with the signal
beat. These two beats are multiplied using a waveform mixer and is passed through a low pass

filter. Output of the low pass filter is given by

kl
— Im[xsL]

Sy~ 24, A 2 cos(¢p + ¢o). (3.1)

Here, [ is the length of the vapor cell and k is the wave vector of the applied laser. A, and
A, represent the amplitudes of the reference and the signal beat respectively. x3;, = X — Xar
represents the susceptibility of the probe beam due to two-photon excitation process only, where
X is the total susceptibility of the system and 5y, is the susceptibility of the probe in absence
of the coupling beam. Depending on the value of ¢, the absorption (¢g = 0) or the dispersion
(¢po = 7/2) of the probe beam can be measured. The signal observed at the output of the low

pass filter setting ¢ = 7/2 is found to be

kl
—Im[x3r]

S~ 24, A 2 . (3.2)

The susceptibility Re[xsz], can be calculated from ¢ using the lock-in amplifier parameters
and the sensitivity of the waveform mixer.'?® As presented in the reference,'”® Re[ysz] gives a
measure of the population of the Rydberg state p,... Therefore, the dispersion observed using
OHDT can be used to calculate p,...

128,131

Since the experiments presented in the references are in thermal vapor ensemble, the

vapor density of the system is varied in order to change the inter-particle separation. However,
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this changes the phase offset ¢y of the system which ultimately changes the observed signal
strength. Therefore, before taking a measurement the density of the system is stabilized and
the OPS is adjusted in order to maximize the signal strength. Some experiments 3! require
a larger number of data in order to have a better statistics. Thus, experiments with current
technique is time consuming. Hence, the technique is modified in order to avoid any variation

in signal strength due to change in phase offset.

3.2 Modified OHDT

3.2.1 Experimental set-up
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Figure 3.2: The modified experimental set up for the optical heterodyne detection technique.
PBS: polarizing beam splitter, NPBS: non-polarizing beam splitter.

The modified experimental set-up of the OHDT is shown in figure 3.2. Two probe beams

with frequency offset of 9 = 800 MHz is prepared using AOMs. Both the beams are interfered
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using PBS. Interference from one face of the PBS is fed to a fast detector Det-1, which is
consider as the reference. Probe beams from other face of the PBS is passed through the
experimental vapor cell. A 50:50 non-polarizing beam splitter (NPBS) is placed in this path
of the probes after the experimental vapor cell as shown in figure 3.2. Interference signal from
both output faces of the NPBS is fed to two fast detectors Det-2 and Det-3 which are considered
as signal beats. The phase difference between the two signal beats is adjusted using the OPS
placed before the detectors. Apart from that, the phase difference between the reference and the
signal beats are adjusted using the optical phase shifter. The two signal beats were individually
multiplied with the reference beat using two waveform mixers and are passed through low
pass filters. The output signals from the two low pass filters were fed to lock-in amplifiers to
improve the signal to noise ratio. The coupling beam is intensity modulated by using an optical
chopper and the chopper frequency is used as a reference signal for the lock-in amplifier. The
output signal is observed in an oscilloscope. The signal beats will undergo a phase change due
to the presence of a counter-propagating coupling beam satisfying two photon resonance to the
Rydberg state. This phase change can be observed as a dispersion signal from both the outputs.
The data are collected in a computer by interfacing the oscilloscope using LABView program.

Let us consider that the output signal from the Det-1 is D, = A,.cos(¢, + dt), where A,
and ¢, are the amplitude and phase of the reference beat and ¢ is the beat frequency. The
output signals from the det-2 and det-3 are D, = Ase*%I ML) cos(pg 4 ¢x + 0t) and Dyy =
Ase_%fm(xu)cos(gbs + ¢y + Ot) respectively. A, and ¢, represent the amplitude and phase of
the signal beat due to two photon excitation. ¢x and ¢y represent the phase difference of the
reference and signal beat in absence of the coupling beam for Det-2 and Det-3 respectively.
The outputs of the low pass filters after multiplication of the signal beats with reference beat

are given by

Srx = QATASG_%M(X“)COS(% + ox) (3.3)

Sry = QATASG_%M(X“)COS(QSS + oy ). (3.4)
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Ox =~ % and ¢y = ¢x + g is the experimental regime. ¢x is varied from % to g, which

is the range where this technique works well. In this regime, ¢, < ¢x, ¢y, the above two
expressions are expanded using Taylor’s series. Neglecting second or higher order terms of ¢,

the expressions are simplified to

Srx = QATAse’%Im(X?’L)[cos((bX) — ¢ssin(ox)] (3.5)

Sry = 2ATA367%M(X3L)[COS(¢Y) — ¢ssin(dy)]. (3.6)

These two signals are passed through the lock-in amplifiers to filter out the first two terms

which gives a constant DC value. The remaining phase dependent signals are given by
Six = 24,4673 M0, sin(¢x)]

SLY = ZATAse_%Im(X:jL)[¢s$in(¢y)]

Using these two expressions we calculated the quantity

R=\[Six+ 82, = 24, A2 0000 /(sin(px))? + (sin(oy))?.

The phase difference between the signal beats is varied using optical phase shifter placed before

™
the detectors. When we set ¢x — ¢y = 5

R=1/5% + 52, =24, A,e”2m0sr) g (3.7)

Thus, R will be independent of the phase offset variation between the signal and reference
beat for px — ¢y = g In this condition any variation of density which changes the phase
offset will not change the signal strength of the experiment. However, when ¢ x — ¢y # g, the

signal will vary depending on the phase offset.

55



3.2.2 Experimental observations and analysis
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Figure 3.3: (a) Energy level diagram of the two photon excitation to the Rydberg state. (b)
Observed dispersion signal with the variation of the coupling laser frequency for S x (1) and

Sry (o) with ¢x = /2 and ¢y = 0 and (c) with ¢x = % and ¢y = 7.

In order to verify the efficiency of the modified technique, we performed an experiment in
thermal rubidium vapor. We observed the dispersion of the probe beam during the two photon
excitation to the Rydberg state 335, /2. The energy level diagram for the excitation is shown
in figure 3.3(a). The dispersion of the probe beam is observed at both signal beat detectors.
The signals observed at the oscilloscope are depicted in figure 3.3 (b) where ¢x = 7/2 and
¢y = 0. In this case the dispersion observed at DET-2 is maximum while that of DET-3 is
minimum. When ¢x = % and ¢y = Z the observed signal is depicted in figure 3.3(c). There

are four peaks observed in the dispersion spectrum when the coupling laser is scanned over

few GHz. Out of them, three of the peaks correspond to the hyperfine lines of rubidium as
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Figure 3.4: The dispersion peak height for anti-blockade peak as a function of ¢x for
Srx (o), Sty (1) and R (/). The error bar represents the statistical error. The dotted
and the dashed lines are the fitting of the data Spx and Spy. The dotted dash straight
line is the linear fitting of the measured R values and the solid line is the fitting of with

V(sin(¢x = ¢a)))? + (cos(px — de2))™

depicted in figure 3.3(b). However, a fourth peak that doesnot satisfy two-photon excitation
also appears in the signal. The details of the anti-blockade peak is explained in section 4.3. In
order to varify the technique, the anti-blockade peak height is measured by varying the phase

difference between the reference and the signal beats.!3!

The dispersion signal after both the
lock in amplifiers were observed using an oscilloscope. The data is collected for S7.x and Spy
using a LABView program by varying the phase offset between the reference and signal beats.

As shown in figure 3.4, when ¢ is varied the signal in both Sy x and Sry changes. The
phase difference of the beats observed in DET-2 and DET-3 is set at ¢x — ¢y = g Thus,
when the signal in S7x becomes maximum, Sy goes to minimum and vice versa. The dotted
and the dashed line show the fitiing of these two data to the functions a;sin(¢x — ¢.1)) and a

ascos(px — ¢dea)) respectively. Here a; (ag) and ¢ (¢.2) represents the amplitude and phase

of the data Sy x (Sry). The reduced y? of the fitting of the S} x and Sy data to the theoretical
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model is found to be 0.21 and 0.39 respectively. As the number of data point is less, the
reduced y? is smaller than expected. This also indicates the fact that the variation is similar to
that presented in theory. Both the data set were normalized to the amplitudes (a;, as) of the
fitting. ¢xy = Pc1 — P2, is found to be 0.2263 4 0.0134 rad. This is arising as the phase
difference between the two signal beats was not 7 /2. This could be due to the electronics used
in the experiment or the cable length used for propagation of beat signal. R is calculated using
the formula presented above and is expected to have a constant value. R is found to be fitting
to a straight line with slope 0 and an intercept of C' = 1.0925 + 0.028. However, there is a
small variation of R from the straight line fitting as presented in the figure. This is due to the

fact that ¢.; — g2 # 0. As presented in fig 3.4, when the measured R values were fit to a

function \/(sin((bx — ¢e1))? + (cos(dpx — de2))?, the reduced x? is observed to be 0.09. This
could be due to less number of data in the experimental observation. Here ¢.; and ¢, are the
phases calculated using the fitting of the data S; y and Sy respectively. Even if we neglect the
small phase variation arising in the system and consider the straight line fitting, the technique

provides a phase offset independent measurement with an error of 3% as observed for the value

of C.

3.3 Conclusion

We have presented a modified OHDT which is independent of any phase offset variation be-
tween the reference and the signal beat. This technique have been verified by performing an
experiment in thermal atomic vapor where the anti-blockade peak height for two photon Ry-
dberg excitation has been observed. With the variation of phase offset the anti-blockade peak
height is found to be constant. This technique will be useful for experiments that require a

larger number of data to have higher statistics.
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Chapter 4

Study of Rydberg interaction induced
enhanced excitation in thermal atomic

vapor

Long-range many-body interactions in Rydberg atoms give rise to many interesting phenom-
ena. The suppression in the Rydberg population or the excitation blockade is the most striking
one giving rise to a variety of applications.* The opposite effect of Rydberg blockade where
enhancement in Rydberg population arising due to interaction has also been observed.”! This
phenomenon is also known as Rydberg anti-blockade. Using detuned excitation, Rydberg pair
distribution can be manipulated, and thus atomic pairs with separation less than the blockade
radius can be excited to Rydberg state. This phenomenon has been proposed in the ultracold
atomic ensemble using a two-photon excitation scheme to Rydberg state.”® Here, the ensem-
ble is considered in an optical lattice with fixed lattice constant and the interaction strength is
tuned by changing the principal quantum number. An experiment performed in the ultra-cold
atomic ensemble verifies the existence of Rydberg anti-blockade phenomenon predicted in the
above theoretical model.”! In this experiment, quantum number of the Rydberg state was kept
fixed and the interaction was tuned by selecting specific pairs with required inter-atomic sep-

aration. Resonant dipole dipole interaction is observed showing non-additive character due to
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anti-blockade for ensemble having more than two atoms in the blockade sphere.”> The exis-
tence of anti-blockade between two Rydberg atoms interacting with a zero area phase jump
pulse is also reported.”?

The energy shift due to Rydberg interaction can also be compensated by adjusting the laser
detuning from the atomic transition frequency such that it satisfies resonance.”**> Steady en-
tanglement between two Rydberg atoms can be achieved in the anti-blockade regime using
dissipative dynamics.!”! A study has reported Coulomb anti-blockade in a dense cold Rydberg
gas.!9? Several theoretical studies also proposed the implementation of quantum logic gate us-
ing Rydberg anti-blockade phenomenon.'*-1% Three-dimensional entanglement between two
Rydberg atoms using the anti-blockade effect can also be achieved.!"?

Some recent experiments with thermal vapor have drawn the attention for the study of Ry-
dberg interaction induced many-body effects.?!:!>>156 Rydberg electromagnetically induced
transparency in thermal vapor cell as well as in micron size vapor cell has also been stud-

ied.!® ! In addition, four-wave mixing for a Rydberg state!'3

and optical Kerr non-linearity in
Rydberg EIT has been reported in thermal Rubidium vapor.'?® A study of population suppres-
sion due to Rydberg blockade in thermal atomic vapor has also been reported.!*® Anomalous
excitation facilitated by Rydberg interaction has been proposed in thermal atomic vapor.'>

In this chapter, we present strong evidence of Rydberg excitation enhancement due to in-
teraction in thermal atomic vapor. Using the dressed state picture of a three-level system, an
interacting two-atom model is formulated for a cold atomic ensemble. The model is further ex-
tended to thermal atomic vapor by Doppler averaging it over the Maxwell-Boltzmann velocity
distribution. An experiment is performed in thermal rubidium vapor using a technique based
on optical heterodyne detection'?® to observe the Rydberg anti-blockade effect. A good agree-

ment is found between the theoretical model and the experimental observation as evidence of

the existence of Rydberg anti-blockade in thermal atomic vapor.
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4.1 Theory of Rydberg anti-blockade

As explained in the section 2.8, the strong interaction between Rydberg atoms lead to the
phenomenon of Rydberg anti-blockade. The experiment presented in this thesis uses a two-
photon process for Rydberg excitation. Therefore, each atom is considered to be a three-level
system in the calculation. In order to study the anti-blockade effect, a two-atom model is

formulated considering the dressed state picture of the three-level system.

4.1.1 Dressed state picture of a three-level atomic system
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Figure 4.1: Energy level diagram of a three-level system. |g), |€) and |r) represents the ground

state, excited state and the Rydberg state, respectively. The probe laser with Rabi frequency

Qp couples the state |g) — |e) and coupling laser with Rabi frequency )¢ couples the states
2

Q
le) — |r) satisfying Qp > Q. Aps = j, which represents the light shift factor. |g,) and
P

|g2) are the two dressed states with separated in frequency by Ap + Q% /2Ap.

Let us consider a three-level atomic system with energy levels |g),

e) and |r) coupled by

two monochromatic laser sources. As explained in chapter-2, the energy levels are dressed
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when a probe laser beam is applied in order to couple a two-level system. The separation
between the dressed states and population of each state changes depending on the laser detuning
and magnitude of the probe Rabi frequency. For a three-level system, another coupling laser
is applied in order to perform a two photon excitation to the Rydberg state. Here, the Rabi
frequency of coupling laser is much smaller compared to the Rabi frequency of the probe.
Hence, the effect of coupling on the dressed states can be neglected. Therefore, the coupling
laser interacts with both the dressed states generated due to the first laser and hence excites the
atom form both these states.

As presented in figure 4.1, the probe laser couples the transition |g) — |e) with Rabi
frequency €2p and detuning Ap satisfying the condition Ap > Qp and I';,. Here, I',,

represents the population decay rate from |e) to |g) . Thus, there are two dressed states

Qp
© 2Ap
quency () is applied such that 2p > ()¢, it can be treated as a small perturbation to the

Q
lg1) ~ i lg) + |e) and |g2) =~ |g) le). When the coupling laser with Rabi fre-
P

dressed states. Also, 2c < I'¢, such that the coherence between the two dressed states in-
troduced by the coupling laser can be neglected. Therefore, both these states can be treated
independently. When the coupling laser frequency is scanned over the dressed states, it excites
the populations from both |g;) and |g>) to |r). The coupling laser satisfies the dipole allowed

transition |e) — |r). Thus, the Rabi frequency for |g;) — |r) is Q¢ and for |go) — |r), it
QpQe
2Ap

excites the population to the state |r). As discussed in chapter-2, population of the state |g;) is

Qp

16A%
direct population decay from |r) — |e), I',. which is dipole allowed. The second one is an in-

is Qepp = . Depending on the population of the two dressed states, the coupling laser

~

and state |go) is ~ 1. The population decay from the state |r) has two pathways. One

direct decay from |r) — |g), I';, which arises due to the finite transit time of the atom through

the beam profile. Thus, the population decay rates for the transition |r) — |g1) and |r) — |g2)
Q Q

are given by I';,, ~ I',. + —PFTQ and Iy, ~ I',y + —PI‘TE. However, the two dressed
2Ap 2Ap

states have population in the state |e) which decay to the ground state |¢g) with decay rate I'.,.

Therefore, the dipole dephasing rates for the two dressed states are given by I'y = T',.,, /2+ T,

and FQ = Frgg/Q + (QP/QAP)FEQ.
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Figure 4.2: Population of the Rydberg state |r)i.e. p,. as a function of Ac. The optical param-
eters used are Ap = 1250 MHz and Q)p = 400 MHz and Q2 = 10 MHz. (a) For a cold atomic
ensemble with the inset showing the magnified view of peak due to the transition |g1) — |r).
The main peak is due to |g2) — |r). (b) For a thermal vapor ensemble where p,., is Doppler
averaged over the Maxwell-Boltzmann distribution. The inset shows the magnified view of peak
due to |g1) — |r).

Rydberg state population p,.. as a function of A is depicted in figure 4.2. For a cold atomic
ensemble, as shown in figure 4.2(a), two peaks are observed for p,,. when A is scanned over
the frequency span of the dressed states. These two peaks corresponds to the two dressed states.
The separation between these two peak is ~ Ap + (2% /(2Ap)). For the parameters specified
in the figure 4.2, Ap > Qp. Thus, population of the state |g;) is much smaller than |g>). In
this case, the peak corresponding to the transition |go) — |r) is of larger magnitude compared
to the transition |g;) — |r). The inset of the figure 4.2(a) shows the population of the dressed
state |g1) — |r). In a cold atomic ensemble, the atoms are considered to be frozen. Thus, the
width of the peak corresponds to the natural line-width or the Rabi frequency. As presented in
figure 4.2, the line-width of the peak due to the transition |g;) — |r) is ~ I';. Similarly, for
|ga) — |r) transition it is 2. s, or Iy whichever is dominating.

For a thermal vapor ensemble, the three-level system is Doppler averaged over the Maxwell
Boltzmann distribution in order to include the effect of velocity of the atom. As shown in
figure 4.2(b), p,. as a function of A, also shows two peaks due to both these dressed states.

Similar to the cold atom ensemble, the two peaks have different magnitude for thermal vapor
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system as well. The peak corresponding to |g;) — |r) transition have a detuning of As and
for |g2) — |r) itis Ap + A¢. Thus, after Doppler averaging the width of the peak due to
lg1) — |r) is &= kcv, and for |g2) — |r) itis = (k¢ — kp)v,, where kp and k¢ are the wave
vector due to the probe and coupling beam respectively and v, represents the most probable
speed. The inset of the figure 4.2(b) corresponds to the transition |g;) — |r). The line-width
of this peak is observed to be larger than that of the transition |g,) — |r).

For thermal atomic vapor the peak due to the transition |g;) — |r) is observed to be red
shifted unlike the cold-atom case. This is arising due to the population normalization factor
corresponding to the state |g;). As explained in section 2.3.2, for cold atom ensemble this is

953 )
~ ———. However, for thermal atom this population is given by ~ L
16A% 16(Ap + kp. T4

is dependent on the velocity of the atom ¢ and the wave vector kp. On the red detuned side

, which

— —
factor kp. U < 0. Since, we have considered Ap is positive, the quantity Ap + kp. U reduces
on the red detuned side. Thus, the Rydberg population increases which shifts the population

maxima to the red detuned side of the spectrum.

4.1.2 Two-atom model

Let us consider a system of two interacting atoms. The energy level diagram for the indi-
vidual atom is shown in figure 4.3(a). The energy difference between the two dressed states

QQ
l91) and |gy) is 6 = Ap + —ZL-. Thus, as shown in figure 4.3(a), when the applied laser has a

2A
detuning of A¢ from the trans};tion lg1) — |r), the detuning from |go) — |r) is A¢ + 0. The
coupling laser satisfies the dipole allowed transition from the state |e) — |r).

The composite two-atom system has eight-levels as shown in figure 4.3 (b). |g191) (|9292))
represents energy level where both the atoms are in |g1) (|g2)) state. |g1g2) and |g2g1) represent
levels with one atom in |g;) state and the other atom in |g,) state. When one atom is in |gs)
(lg1)) and the other atom is in the Rydberg state |r), it is represented by the level |rgs) (|g17)).

|rr) represents level with both the atoms in the Rydberg state.

Let us consider that the laser is resonant to the transition |g;) — |r). Then, the transition
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Figure 4.3: (a)Energy level diagram for single atom with 6 = Ap + 5 AP representing the
P

energy difference between the states |g,) and |go). The laser is detuned by A to the transition
lga) — |r). (b) Composite two-atom model with laser close to the resonance of the transition

QpQe
.0 =90 Qs =
lg1) — |r). c and §y oA

|r) and |go) — |r) respectively. (c) Simplified two-atom model by eliminating the states not
contributing to the Rydberg excitation processes.

are the Rabi frequencies for the transitions |g1) —

|g2) — |r) is out of resonance to the applied laser. Thus, the state |gog2) does not contribute
4

to the Rydberg excitation. As presented in chapter-2, the population of the state |g;) is 16%.
, P

ad
16A%
pared to other states. Therefore, excitation from |g;¢g;) to the Rydberg state can be neglected.

2
Thus, the population of the state |g;¢;) is ( ) . This population is negligibly small com-

Since Q¢ < Ty, the coupling laser cannot build coherence between the two dressed states.

eg>
Also, the state |g1g2) and |g2g1) are degenerate with equal populations. Thus, we consider any
one of them in the model by suitably normalizing the population. Using all theses conditions
the two-atom model is reduced to a four level system as shown in figure 4.3(c), when it is
resonant to the transition |g;) — |r).

The laser frequency is scanned further in order to satisfy resonance to the transition |g2) —

|r) as shown in figure 4.4(a). Just like the previous case, any one of the states |g1g2) or |g2g1) is
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Figure 4.4: (a)Energy level diagram for single atom with 6 = Ap + representing the

is the Rabi frequency for the transitions |gy) — |r) respectively.

considered by suitably normalizing the population. The coupling laser satisfies resonance to the

transition |g1g2) — |g17). Apart from that,

g292) — |rgo) transition will also satisfy resonance
as shown in figure 4.4(b). Hence, the state |gog2) contributes to the Rydberg excitation unlike
the previous case. Since, the population of the state |g2) ~ 1, the population of |goge) ~ 1.
This population is much larger than that of state |g; o). Therefore, the contribution of the
transition |gog2) — |rg2) is much larger than that of |g1g92) — |g17) to the Rydberg excitation.
This |g2g2) — |gor) transition is equivalent to an effective two level system with |g) — |r) by
adiabatically eliminating the intermediate state |e) of a three level system.

In an effective two level system, the population transfer to the Rydberg state due to the
transition |g;) — |r) is neglected. However, this population is observed to be enhancing due
to Rydberg-Rydberg interaction. This enhancement can be explained by the exact two-atom
calculation considering each atom as a three level system. However, as discussed above, for

given laser parameters using the dressed state picture, the Hilbert space is simplified which is
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Figure 4.5: Energy level diagram of the two-atom system with laser satisfying resonance con-
dition to |g1) — |r) when (a) the atoms are not-interacting and (b) for interacting system
with 2V, = Ay + Ay i.e. the anti-blockade condition when the system satisfies the resonance
|rga) — |rr). The states are |1) = |g1g2), |2) = |rgs2), |3) = |g17) and |4) = |rr). The Rabi

frequencies are Ql = QC’ Q2 = Qeff and interaction ‘/rr == 7"_2

used to model the population enhancement.
The energy level diagram for the two-atom system when the laser is resonant to the transi-

tion |g;) — |r) is shown in figure 4.5(a). The Hamiltonian for the system is given by

H=HYI+10 H® + 2V, |r) (r|. (4.1)

Here, V.. represents the strength of Van der Waals interaction between the two atoms in Ryd-

berg state and I is a two dimensional identity matrix. H") and H® represent the Hamiltonians
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of atom 1 and atom 2 respectively which are given by

g R0 ) e

2 Ql 2A1 2 Q2 2A2

Since, atom 2 is excited from |go) to |r) , the Rabi frequency €2y = Q.ss. Similarly for
atom 1 the Rabi frequency is 2; = Q¢. A; and A, are the laser detunings of atom 1 and atom
2 respectively. J is the energy difference between the two ground states |g;) and |g2). Thus, the

Hamiltonian for the two-atom system depicted in figure 4.5(a) is calculated to be

20 04 923 0

—h 1 24146 0 Q
o i 280 o (4.2)

2 1q, 0 92, 0

0 Qg Ql 2(A1 + AQ)

The decay and decoherence in the system is incorporated by the Lindblad operator. There
are four elements in the Lidblad matrix of the two-atomic system. The population decay of
both the atoms from Rydberg state to their respective ground states. These are represented by
the diagonal elements. The off-diagonal terms represent the dipole dephasing rate. Since, the
two dressed states are linear combination of bare atomic states, the dipole dephasing rate of

each atom depends on the dephasing between the bare atomic states. The L matrix for atom

ipy — —2Por Lapyy — —itPor
lis Lp; = 2 and the for atom 2 itis Lpy =
_Frrprgll T P _F4p7“g2 T 0
2 1Mrr 3Frr

These dephasing terms are mapped to a three-level system in order to calculate their corre-
sponding values. For |g;) — |r) transition, 'y = I',. and I'y = T, + I'.;. Similarly for
|ga) — |r) transition, I's = I, and I'y = I,y + [, (2p/2Ap). The composite L matrix for

the diatomic system is calculated as>®

Lp=Lp1 ® 0(2) + P(l) ® Lpo. (4.3)
Here, p™") and p® represent the density matrix of atom 1 and 2 respectively. In order to
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map the individual atoms to the composite two-atom model the density matrix is mapped as

p = pM @ p®. For the two-atom system the density matrix is given by

P11 P12 P13 P14

P21 P22 P33 P24
p= (4.4)

P31 P32 P33 P34

P41 P42 P43 P44

Thus, the Lp matrix of the two-atom system is calculated to be

Pipaa +Tapss Dspsa — FQQpIQ Lyipog — F4513 —(T2+ F4)%

L Uspas — F2§21 3psa —Tipe —(Ta+ F4)% - F42pg4 —I'1paa “5)
Pipas — F4§31 —(Py + F4)% —I3p33 +Tipas — F2§34 — I'3p34
—(Tg + F4)% - F4§42 — ipan —F2§43 —Dspss —Tipaa — Dspaa

1
The dynamics of the system is studied using the optical Bloch equations (OBE) p = 7 [H, p|+
1
Lp. Using the steady state condition i.e. p = 0 the OBEs for the system are found to be
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(1 —2p22 — p33 — paa) + Qa(pra — p32) + 2A1p12 + 2iL3p34 — il9p1o = 0. (4.6)

D1 (pra — p23) + Q2(1 — paz — 2p33 — pas) +2(Az — 6)p13 + 2iL1pog — ilyp13 = 0. (4.7)
Qi(p13 — p2a) + Qa(prz — paa) + 2(A1 + A2 — 5+ 2V)p1g — (T2 + Ty)p1a = 0. (4.8)
Q1 (p21 — p12) + Qa(pas — paz) + 2iT5pa0 — 2iT1p2p = 0. (4.9)

Qi (p21 — p13) + Qa(p2r — pag) — 2(B2 — 0 — Ay)pag — 1(I'2 + T'y)p2s = 0. (4.10)

Q1 (p2s — p1a) + Qa(paz — paa) + 2(Ag — 0 4+ 2V ) pay — 2i(T'1 + T'4/2)pas = 0. (4.11)

Qi (psa — paz) + Qa(ps1 — p13) + 2i(T1pas — Dapzz) = 0. (4.12)

1 (pss — paa) + Qa(ps2 — pra) + 2(A1 + 2V) pss — 2i(T's + T'2/2) p3g = 0. (4.13)

Q1(paz — p3a) + Qa(paz — p2a) — 2i(Fy + T'5)pag = 0. (4.14)
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Figure 4.6: (a)Rydberg population p,, as a function of Ac for non-interacting two-atomic
system (o) and for a single atom three-level exact calculation (__) in a cold atomic ensemble.
The parameters used are Qp = 20 MHz, Ap = 200 MHz and Q)¢ = 1 MHz. The inset
shows the magnified view of the peak corresponding to the transition |g1) — |r) at Ac =
0. (b) The residual plot of the non-interacting two-atom model and the three-level system
with the variation of A¢. The inset shows the magnified view of the residual plot of the peak
corresponding to the transition |g,) — |r) at Ac = 0.

These time-independent OBEs are solved numerically to calculate the population of the

Rydberg state for applied laser satisfying the resonance |g;) — |r) which is denoted as p,g») and
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is given by
4
(1 _ (p22 + p33) p 4.15
Prr ( 92 + P44 8A§3 . ( . )

represents the population of the state |g;g,) including the normalization

4
P

SAL
factor for the population of | g2g1 ). The coupling laser is scanned further to satisfy the resonance

The factor

lg2) — |r) as shown in figure 4.4. In this case the laser satisfies resonance to the transition
|g2g2) — |7g2). Rydberg state population for this transition is equivalent to that of an effective
two level system with adiabatically eliminating the intermediate state. Using the energy level

diagram presented in figure 4.4, Rydberg population when the laser satisfy resonance to the

transition |g2) — |r) which is denoted as p'?) and is given by
P = ((/)33 42' 044)) (4.16)

Thus, the population of the Rydberg state over the whole scan of the coupling laser is given
by
prr =04+ 1Y (4.17)

This Rydberg state population as a function of A is depicted in figure 4.6 (a). When the
atoms are not interacting i.e. V., = 0, the two-atom model will be equivalent to a three-level
system. As shown in the figure 4.6 (a) the Rydberg population calculated using the two-atom
model matches to that of a three-level system for a cold atomic ensemble. The inset of the
figure 4.6 represents the peak corresponding to the transition |g;) — |r). The residual plot
of both the system are depicted in figure 4.6 (b). For both the peaks the residuals are found to
be two-order of magnitude smaller than the maximum peak values. Thus, for both the peaks a
good agreement is observed between the two-atom model and the three-level system. This also

verifies that the calculation does not have any numerical errors.
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Figure 4.7: Energy level diagram of the two-atom system with laser satisfying resonance con-
dition to |g1) — |r) when (a) the atoms are not-interacting and (b) the atoms are interacting
such that the energy level shift due to interaction satisfies 2V,, = A’ i.e. the anti-blockade
condition where the system satisfies the resonance |rgy) — |rr). The states are |1) = |g192),
12) = |rg2), |3) = |g17) and |4) = |rr). The Rabi frequencies are 2 = Q¢, Qg = Qefy.

4.1.3 Interaction induced enhanced excitation

Let us consider the two-atom system such that the laser is resonant to the transition |g;g2) —
|rge) i.e. Ay = 0. Thus, the applied laser is off resonant to the transition |g1g2) — |g17) by
A'. The energy level diagram for the system is shown in figure 4.7(a). When the atoms are not
interacting the applied laser does not satisfy resonance to the state |rr). Therefore, the atom in
the state |go) cannot be excited to the Rydberg state. The atoms are considered to be interacting
via Van der Waals interaction which is included as a shift in the energy level of the state |rr).
The inter-atomic separation is considered such that the interaction strength V,,, = A’. Thus,
the transition |rgs) — |r7) satisfies resonance unlike the non-interacting system as shown in
figure 4.7(b). Thus, atoms in the state |g,) are also excited to the Rydberg state. Therefore, the

Rydberg population enhances for the system due to interaction compared to a non-interacting
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Prr (107)

Figure 4.8: Rydberg population of the two-atomic system p,.. as a function of A¢ for an ultra-
cold atomic ensemble for a non-interacting two-atom system (o) and two-atom system satisfy-
ing the anti-blockade condition 2V, = A is presented by (__). The inset shows the magnified
peak corresponding to Ac = 0. The parameters used are Ap = 100 MHz, Qp = 20 MHz and
Qc =1 MHz.

system. This phenomenon is known as Rydberg anti-blockade and the condition satisfied by
the interaction (2V,., = A) is known as Rydberg anti-blockade condition.

prr as a function of Aq for the two-atom system in a cold atomic ensemble is depicted
in figure 4.8. The red circle represents p,, with V.., = 0 and the black line represents p,..
satisfying 2V,,, = A’. The peak at A¢c = —100 MHz corresponds to the usual two photon
transition go — |r). The peak near A = 0 corresponding to the transition |g;) — |r) is
known as the anti-blockade peak. The inset of the figure 4.8 corresponds to the anti-blockade
peak at Ao = 0. A significant enhancement in the Rydberg population is observed due to

Rydberg anti-blockade effect as compared to the non-interacting system. This enhancement
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signifies that the population is transfered from |g2) — |r) which is facilitated due to presence
of interaction. The population enhancement factor for the parameters presented in fig 4.8 is

4.2 x 103 for the cold atomic ensemble.

4.1.4 Non-interacting two-atom model for thermal vapor

(a) (b)
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Figure 4.9: (a) Rydberg population calculated using exact three-level single atomic system
(__) and two-atoms non-interacting model (o) for a thermal atomic ensemble. Inset shows
the magnified view of the peak near Ac = 0. Laser parameters used in the calculation are
Qp =400 MHz, Q2c = 5 MHz and Ap = 1.5 GHz. (b) The residual plot of the non-interacting
two-atom model and the three-level system with the variation of Ac. The inset shows the

magnified view of the residual plot of the peak corresponding to the transition |g,) — |r) at
Ac = 0.

Let us consider the two-atom system in a thermal vapor ensemble where the atoms move
with a broad range of velocities. Thus, the system is Doppler averaged over all possible ve-
locities using Maxwell-Boltzmann distribution. Let us consider atom 1 and atom 2 are moving
with velocities v; and v respectively. The probe and the coupling lasers are considered in a
counter-propagating configuration with wave vectors kp and k¢ respectively. Thus, the probe
and coupling laser detunings for the thermal ensemble are given by Ag) = Ap — kpv; and
Ag) = A¢ + kev; respectively. Here ¢ = 1 and 2 for atom 1 and atom 2 respectively. The two

Q2
photon detunings for atom 1 and atom 2 is thus given by Ay = A¢+kevy — ———F——
) 4(AP — k’pvl)

Ay =Ap+Ac—(kp—ko)va+ — P _____respectively. The population of the states |g192)
4(AP — kpl)g)

and
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2 and 2
16<Ap - ]{val)4 16<Ap - ]{ZPUQ)4
when the laser satisfies the resonance to the transition |g;) — |r) is found to be

and |gog1) is given by . Thus, the Rydberg population

m_ L /oo p22(v1) + paa(v1) 04 eXp(_U%)dU
rr ﬁvp —00 2 16(4AP —_ kPrvl)4 I% 1
1 > ps3 (U2) + ,044(1)2) Q‘Ig _Ug
dvs. 4.18
—i—ﬁ% /OO 2 16(4Ap — kpug)? exp( U% )dvsg ( )

Here, v, represents the most probable speed of the atom. Monte-Carlo technique is used to
evaluate the integral which is explained in appendix A. Similarly when the laser satisfies the

resonance |go) — |r) the Rydberg state population is given by

1L [ ps3(v2) + paa(ve) —v3
2) _ 33\V2 2\ dvs. 4.19
Prr \/7_”)17 /_Oo 92 eXp( ,Ug ) (%) ( )

(2)

1
(7”) + pre’e Prr

Therefore, the Rydberg population over the whole scan of A¢ is p,.. = pr
as a function of A is depicted in figure 4.9(a). The inset of figure 4.9(a) represents the peak
corresponding to the transition |g;) — |r). Just like the cold atom system for V., = 0, p,.,
for two-atom model is compared to Doppler averaged Rydberg state population of a three-level
system. A good agreement is observed between both the models as depicted in figure 4.9(b).
For both the peaks the residuals are found to be two orders of magnitude smaller than the

maximum peak values. The width of the peak corresponding to the transition |g;) — |r) is

nearly kcv, and for the transition |go) — |r) itis ~ Akwv, as explained in the section 4.1.

4.1.5 Interacting two-atom model for thermal vapor

Now let us consider two atoms in thermal vapor ensemble are interacting with each other.
The laser detunings of atom 1 and atom 2 are given by A; and A, = A; + A’ respectively. The
corresponding energy level diagram is shown in figure 4.10(a). The atoms are considered to be
interacting via Van der Waal’s interaction with strength V... Since the atoms move randomly

in the system, it is Doppler averaged over the whole velocity class using Maxwell-Boltzmann
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Figure 4.10: (a) Energy level diagram to model Rydberg anti-blockade. Ay and Ay (= A1+ A)
are the coupling laser detuning of atom 1 and 2 respectively. (b) Schematic of the interaction
sphere of radius ry,. The atom in the dressed state |gy) is placed at the centre of the sphere.
The atoms in the spherical shell of radius r and thickness dr can compensate for the two-
photon resonance to the |rr) state due to van der Waals type Rydberg-Rydberg interaction
(Vy, = Cg/7%) with the atom at the center.

distribution.

Let us consider an interaction sphere of radius r;, as shown in the figure 4.10 (b). r, =
6 CG 471'7”2

h2y
the total number of atoms inside the interaction sphere is /N. The vapor density of the atoms

is the blockade radius. The volume of the interaction sphere is V' =

. Suppose

inside the sphere is n = . We consider that the atom satisfying resonance to the coupling

3
Yy,

laser |g1) — |r) is at the center of the sphere and has a velocity of v;. Not all the atoms inside
the interaction sphere but only certain atoms moving with specific velocity class satisfying the
anti-blockade condition due to its inter-atomic separation from atom 1 will contribute to this
effect.

To calculate the effective number of atoms contributing to the anti-blockade process, let us

choose an annular region of radius 'r’ and width ’dr’. The volume enclosed by this annular
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region is dV = 4nr?dr. The total no of atoms present in that annular region is given by,
ny = ndrrdr. (4.20)

These atoms are considered to be in the state |g). For a particular Rydberg state 7, is con-
stant and thus the atomic density n is also constant. Out of these n; atoms, only atoms with
specific velocity satisfy anti-blockade condition and are excited to the |rr) state. Suppose the
atoms moving with velocity v, within the velocity window dv are only contributing to the anti-
blockade effect. So, the number of atoms in the annular region moving with velocity v, 1s found
as

v

_ 72
T . 4.21)

VU

The velocity width dv, is calculated using the line-width of the state |g;7). The velocity is

Nz; =y f(v2)dvy = Nz; =

A—;, where Ak = ko — kp is the wave vector

mismatch between the probe and the coupling laser. Substituting the value of n from equation

related to the Rabi frequency (25 as dvy, =
4.18 and Ak in the equation 4.21, the number of atoms in the annular region satisfying the
enhanced excitation condition is calculated as

2, v
N Amr n Qs

b v, Ak

dr. (4.22)

The velocity vy is calculated using the anti-blockade condition. As mentioned earlier, the
atom at the center of the interaction sphere is moving with velocity v;. Thus, the laser detunings

QQ
of both the atoms are found to be A = A¢ + kcvy — 1 P

—————and A, = A Ac —
(Ap—kpvl)an 2 p+ Ac

2

kp — k S —
(kp c)ve + 1Dy — kpvy)

second atom to depend on the velocity of the first atom and their inter-particle separation. The

The anti-blockade condition constraints the velocity of the

resonance condition for the system is given by
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02 02

:>2Vrr:AP+AC_(kP_kC)U2+4 +Ac+kc’01—4

4(Ap — kpvs) 4(Ap — kpor)
= Ap+Aps,, +2A¢ — (kp — ko)va — As,, + kv (4.24)
where the light shift factors are
02
Ars, = m
and
02
Aps,, = m‘

The laser parameters are considered such that the laser detuning is larger than the Doppler

width i.e. Ap > kpvy, kpvy. Thus, the above two light shift factors are expanded using

Ak Ak
Taylor’s series expansion and neglecting the second and higher order terms of A U and A 2
P P
we get
QQ kpvl
Aps, = —2(1
150 = 37,1+ A
and
Q2 kPUQ
Ars, = —2-(1+
150 = A, 0 R,
Using these values of Ays, and Apg, in equation 4.24 we have
Q2 k’pvg QQ k?p?]l C@
A E (1 2A¢ + kovo — kpvg — —2-(1 kovi =2— (425
P+4AP( +AP)+ ¢ + kcgvz — Rpv2 4AP( +AP)+ cu1 6 (4.25)
C
= v =A (2—66 - A;I) (4.26)
r
/ 0%k 1 0%k

where Avl = Ap+2Ac+ (k?c - ﬁ) v1 and 1= kc—kp—kﬁ. Thus, v, is derived as

a function of the velocity of the central atom v; and the inter-particle separation r. Substituting

the value of v5 in equation 4.20, the number of contributing atoms in the annular region is found
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to be
2 ,
N, = AT (a(a%-at, ) g) O
LS Ak

The total no of atoms in the interaction sphere which contribute to the anti-blockade phe-

dr. (4.27)

nomenon is then calculated by integrating N, given in equation 4.27 over the radius of the

interaction sphere r, which is given by

b c A E
Ny = 1 / 47?7“2716_(['4(2'7?_%1)] /Ui)&dr (4.28)
VU, Jo Ak

To simplify the integral let us define x = 2% — A , Which can be used to calculate

3 2Cs
(A, +2)7
= ridr = — 2Ce d

6 (&, +a)
The integral limit will also change due to change of variables. For r — 0, x — oo and for

C , Cs . .. .
r—= Ty, T — 2—(? — A, .- The first factor —g is the blockade condition and is ~ (2,. The
Ty Ty

second factor A} depends on the velocity of the central atom v; and the laser detunings Ap

and Ac. For zero velocity class of atoms i.e. v; = 0, A . = Ap which is > ;. For blue
2

O5k
detuned side v; > 0, thus | k¢ — P
4A%

) v1 > 0. Therefore, the factor A;l > Ap and thus

O kp

it is > (). For red detuned side with v; < 0, thus <k:c TUA
P

) v1 < 0. For smaller value

0%k
of vi, Ap > (kc — ﬁ) vy in this region also A/, > . However, for large value of
P

. . C

vy, A}, =~ Q. Therefore for a major part of the velocity spectrum of vy, A} > 2—66. Hence,
Ty

for r — rp, x — —oo will be valid for this region. Substituting 7 and dr in terms of x on

equation 4.28 we have

A2y
2
p

2
_dx (4.29)
+x)2

N _ 2mnfda/2C5 /°° e
NN SN

In the velocity spectrum mentioned previously A . > x. Thus, the numerator of the above
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equation is expanded using a binomial expansion

N

1 _ 1 _§L+E(i)2_
(A;}l_'_x) - A/ 2A;1 8 A;}l .......

U1

Since the integral presented in equation 4.29 is even, all the terms with odd power of x will
be integrated to zero. Compared to first term, the contribution of the rest of the terms with
even power of x is very small and hence are neglected in the integral. Therefore, the integral in

equation 4.29 gives

2mns/2Cs /°° _ A2
N,

_ % d 4.30
Vo aka, )7 | ¢ T “30

—00

This equation is solved using the gamma function which gives

. iby8Cs 8,063 (4.31)
BAAK(A, )3

Substituting the values of A and A/, in the above equation gives

O3k
/80 (ke — kp + 42;’)
N, = 1 (4.32)

QQICP’Ul %
Ak |Ap +2Ac + kovy — P 3
AT,

The atom at the center of the interaction sphere can move with all possible velocity range.
Thus, the total Rydberg population is calculated by Doppler averaging N, over the velocity v,

using Maxwell-Boltzmann distribution which is given by

1

TUp

Prr = / Nyppr(v1)e ™ Y0 dy

The real part of susceptibility in the regime (2p > ()¢ is related to the population of the

Rydberg state as'?’

N fleg |2

R€ (XSL) - thAP Prr
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= Re(x3L) =

2k
Qov/BCh | freg |2 (Ak + ZEEY o )
’ 5 2 / prr(v1)e dv,  (4.33)

e, AR oo (Ap — kpv1)(A),)3

b)

‘*’\c_, 0.4}

=

= 0.3F

5

14

S 0.2}

£

Ry

% 0.1

4

3

a 0.0 A \
0 1 132 3

Ac (GHz) Density (10"/cc)

Figure 4.11: (a)Dispersion spectrum of the probe laser calculated using non-interacting model
(solid line) and two-atom interacting model (o). (b) Calculated dispersion peak height of the
anti-blockade peak using two-atom interacting model (o) showing the quadratic dependance
(solid line) on density.

The dispersion of the probe beam Re (x31) as a function of A is shown in figure 4.11(a).
This model presented above describes the anti-blockade peak corresponding to the transition
|g1g2) — |rr). The usual two photon peak is studied by using the transition |gage) — |7g2).
For comparison, a non-interacting two-atom model is also depicted in the figure 4.11(a). A
significant enhancement in the anti-blockade peak is observed for the interacting system as
compared to the non-interacting one. The population enhancement is observed to be nearly ten
times compare to a non-interacting system as presented in figure 4.11(a). This enhancement
depends on the interaction strength Cs. Thus, this phenomenon depends strongly on the prin-
cipal quantum number of the Rydberg state. Apart from that, it also depends on the density of
the atomic vapor. Peak height of the anti-blockade peak in the plot of Re (3. ) as a function
of the density is also depicted in figure 4.11(b). A quadratic dependence of the anti-blockade
peak height is observed with n. Thus, the results provide theoretical prediction of the existence

of Rydberg anti-blockade phenomenon in a thermal vapor ensemble.
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4.2 Experimental observation

780 nm

—i

AOM Lens 1/4' Mirror
1
............. v |
WM LP
.pm i S S—
........... Lock-in
PD2 Amp

== Magnetically shielded
Rb Vapor Cell

Polarizer
== Oscilloscope

DM

Figure 4.12: Experimental Set-up to measure the dispersion of the probe beam using OHDT
due to the two photon excitation to the Rydberg state. \/2: Half wave plate, \/4: Quarter
wave plate, PBS: Polarizing beam splitter, AOM: Aucosto-optic modulator, DM: Dichroic mir-
ror, PD: Photo detector, WM: Waveform mixer, OPS: Optical phase shifter, SAS: saturated
absorption spectroscopy and LP: Low pass filter.

An experiment is performed in thermal atomic vapor to observe the Rydberg anti-blockade
effect. The schematic of the experimental set up is depicted in figure. 4.12. The atoms are
excited to the Rydberg state using a two photon excitation scheme. Optical heterodyne detec-
tion technique (OHDT)'2%128 is used to measure the dispersion of the probe beam propagating
through a magnetically shielded rubidium vapor cell. The details of the OHDT and the theoret-
ical model for relating the dispersion of the probe beam with Rydberg population is presented
in the reference.!?%!%5 The probe beam is blue detuned from the atomic resonance of the tran-
sition ®*Rb 55 2F =3 — 5P3,, by 1.25 GHz which is well outside the Doppler linewidth.
The frequency offset of 800 MHz is generated between the probe beams using AOMs. Both the
beams are derived from an external cavity diode laser operating at 780 nm. The coupling laser

operating in the range of 478 to 482 nm satisfying two photon transition to the Rydberg state
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counter-propagates the probe beams through the vapor cell. The density of the atomic vapor is
varied by changing the temperature of the cell using a heating arrangement and the temperature
is controlled using a PID controller. The non-linear phase shift of the probe laser (Re(y3z)) due
to two-photon excitation to the Rydberg state in the presence of the coupling laser is measured
using the OHDT.

The corresponding energy level diagram associated with the experiment is depicted in fig-
ure 4.13(a). A typical dispersion spectrum of the probe beam observed in the experiment during
excitation to a Rydberg state of 33S;/, by scanning the coupling beam is presented in the fig-
ure. 4.13(b). Four different peaks are observed in the spectrum of Re(ysz,) when A is scanned
by few GHz. Out of the four peaks, three of them correspond to the hyperfine ground state of
rubidium. Two of them are for ®*Rb 55,/ = 2 and F' = 3 to the Rydberg state and the other
one corresponds to *'Rb 55 o F = 2 — |r) transition. The probe beam blue detuned to the
transition **Rb 55;oF = 3 — 5P;; by 1.25 GHz. Thus, the peak at Ac ~ —1.25 GHz,
corresponds to the two photon excitation peak. This peak is used to study the blockade phe-
nomenon.'?” However, a fourth peak at A¢ = 0 that does not satisfy any resonant two-photon
atomic transitions is also observed. The existence of this peak can only be explained using the
phenomenon of Rydberg anti-blockade. This peak is used to study the Rydberg anti-blockade
effect. The experiment is performed for the Rydberg states 35S, /2, 40S; /2, 4551 /2 and 53S; /5.
The beam waist (Rayleigh range) of the probe and the coupling laser was 95 ym (36.33 mm)
and 80 pm (41.86 mm). The probe laser power is kept fixed at 4 mW which corresponds to a
Rabi frequency of 400 MHz. The coupling laser power is varied by following n*/? law to keep
the coupling Rabi frequency fixed at 4 MHz. By varying the density of the rubidium vapor the
variation in the dispersion of the probe beam is measured using OHDT with Ap = 1.25 GHz.
All the laser parameters including the gain in lock-in amplifier are kept fixed throughout the

experiment for all the Rydberg states.
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Figure 4.13: (a) Energy level diagram of the two-photon atomic excitation to the Rydberg state.
(b) Observed dispersion signal of the probe beam while scanning the coupling laser frequency
Ac.

4.3 Analysis

As predicted in the theoretical model, two peaks are observed in the experiment that corre-
sponds to the two dressed states. One of them is the usual two photon resonant peak that arises
in a three level system. The other one is the anti-blockade peak arising due to Rydberg-Rydberg
interaction. The inter-atomic interaction is repulsive for n.S;/, Rydberg state. Therefore, the
anti-blockade peak is anticipated to be observed on the blue detuned side of the dispersion
spectrum. For Rydberg states with lower principal quantum number, the interaction is weak
and becomes significant only at very high atomic density. However, with increase in Rydberg
state principal quantum number, the interaction becomes significant and the anti-blockade peak
is observed even at lower densities. The usual two photon resonant peak has a width of nearly
Akuv, as presented in the theoretical model. Similarly, for the anti-blockade peak the width is
nearly kcv,. The width of the anti-blockade peak is observed to be larger than the two photon
peak as presented in figure 4.14, which is in good agreement with the theory. For repulsive
interaction, as shown in figure 4.10(a), the contribution of the off resonant atom to the Ryd-
berg population is more in a blue detuned case as compared to a red detuned case. Referring

to the two photon resonant peak presented in figure 4.14, the anti-blockade effect is larger on
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Figure 4.14: Dispersion spectrum measured from the experiment (black triangle) and calcu-
lated from the interacting two-atom model (o) for the Rydberg state with principal quantum
numbers (a) n = 35 (b) n = 40 (¢c) n = 45 and (d) n = 53. For comparison, dispersion
calculated from the non-interacting model is depicted as solid lines for all the n states. PH
represents the Peak height of the anti-blockade peak.

the blue detuned side compared to the red detuned side while coupling to nS, /, state. Since,
both blockade and anti-blockade effect is contained in the two photon resonant peak, it is dif-
ficult to model theoretically. However, this peak is compared to a non-interacting model in
order to have a qualitative understanding. As shown in figure 4.14, with increase in principal
quantum number a deviation is observed in the experimental data compared to the non inter-
acting model. The deviation on the blue detuned side of the spectrum is an indication of the
dominating anti-blockade effect.

The experiment is repeated for Rydberg states with n = 35, 40, 45 and 53 S, /. The disper-
sion spectrum observed in the experiment is compared to the interacting two-atom model and

is depicted in figure 4.14. Both the peak widths are found to be matching with the theoretical
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Figure 4.15: Anti-blockade peak height (e) and the usual two-photon resonant peak height for
85Rb 5812 F= 3 — nSy2 (o) and 85Rb 581/2 F= 2 — nSy; transition(o) for n = 35 Rydberg
state as a function of the density of the atomic vapor. The peak heights are normalized to the
dispersion peak height corresponding to the highest density. Dotted lines are the straight line
fitting of usual two-photon resonant peaks showing the linear dependence of density whereas
the solid line is fitting of the anti-blockade peak height showing quadratic dependence of den-

sity.

model for all Rydberg states. Both peak heights are normalized to the height of the experi-
mental peaks. Re(xsy) calculated from a three-level system is also depicted in figure 4.14. A
significant enhancement in the anti-blockade peak height is observed when the density of the
atomic vapor is increased to have more than two-atom inside the interaction sphere.

With increase in principal quantum number of the Rydberg state, the anti-blockade peak
height is observed to be increasing for fixed atomic density. This is arising as the anti-blockade
peak height depends on the interaction strength Cs as mentioned in the equation 4.33. How-
ever, the scaling of Cg with the principal quantum number of the Rydberg state could not be
observed using this peak. This is due to the fact that, when the number of atoms in the state

|g2) inside the interaction sphere is more than one, the blockade effect contributes. Along with
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Figure 4.16: The dispersion peak height for anti-blockade peak as a function of the density
of the atomic vapor. The dots are the experimental observation and red line represents the
quadratic fitting.

that other cascaded processes involving more number of atoms also contribute to the Rydberg
excitation. Therefore, it will be difficult to model theoretically. For a Rydberg state with n=35,
the interaction is small and the number of atom in the state |gs), IV, ~ 1 with atomic density
of 3.0 x 103 /cc. Thus, the experimental data is expected to match with the two-atom model
presented in the theory. The dispersion peak height for the anti-blockade peak is measured
with the variation of density and is depicted in figure 4.15. For 35S, /5, a quadratic dependence
of the anti-blockade peak height with the density of the atomic vapor is observed as predicted
in the theoretical model. The height of the two photon resonant peaks corresponding to the
transitions ®Rb 5S;/ F' = 2 — 35S;,, and ®Rb 5S;/2 F' = 3 — 35S, is also measured
by varying the atomic density. For these two peaks, the variation is observed to be linear.
The peaks corresponding to the transition °Rb 5S; 2 =2 — 35S, is expected to be non-
interacting as the applied laser is highly detuned from the atomic resonance. Therefore, a linear
dependence of density is expected. For the two photon resonant peak corresponding to 8°Rb

5S1/2 F' = 3 — 35S, both the blockade and anti-blockade effects are present which may be

87



compensating each other such that the variation with density is roughly linear. The dotted and
dashed lines are the linear fittings and the solid line is the quadratic fit of the peak height data
as shown in figure 4.15. The reduced y? for the quadratic fit is found to be 1.4 x 10~%. This
is due to insufficient number of data in the experimental observation. Thus, the experiment
is performed using the modified OHDT in order to have a higher number of data for better
statistics.

In order to collect larger number of data for the anti-blockade peak, the modified OHDT is
used. The experimental set-up for the modified OHDT is explained in details in chapter 3. The
peak height of the anti-blockade peak in the dispersion spectrum of the probe beam is measured
by varying the density of the atomic vapor. The density and the peak height data is collected
simultaneously using LabVIEW program. The statistical error is then calculated for the anti-
blockade peak height. The plot for the anti-blockade peak height with the density of the atomic
vapor is depicted in figure 4.16. The red line represents the fitting with a quadratic function.
The reduced x? for the fitting is found to be 0.57, which indicates the fitting has improved due

to higher number of data points.

4.4 Conclusion

We observe the interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade
using thermal rubidium vapor. Using the dressed state picture of the three-level atomic system,
a two-atom interacting model is formulated to explain the anti-blockade effect. An experiment
is performed in thermal rubidium vapor to observe the dispersion of the probe beam due to
two photon excitation to the Rydberg state. The anti-blockade peak is observed in the exper-
iment along with other resonant peaks. The population of the Rydberg state is observed to
be enhancing quadratically with the density of the atomic vapor for n=35, as predicted in the
theoretical model. The quadratic dependence of the anti-blockade peak with the density of the
atomic vapor could not be observed for higher principal quantum number states as the number

of atoms inside the interaction sphere will be larger than two. The deviation from the quadratic
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behavior is arising due to the blockade effect and the cascaded processes on the anti-blockade
peak having more than one atom in the |g») state inside the interaction sphere. In order to study
the effect of higher number of atoms, the model for three atoms in the interaction sphere has
to be formulated by suitably incorporating the blockade effect and other cascaded processes in
the system. Incorporating all these effects in the model will be difficult. Therefore, the study
presented here is limited to a two-atom model. Also, the scaling of the interaction strength with
the principal quantum number of the Rydberg state could not be observed. However, the result
presented here provides a clear indication of the existence of the Rydberg anti-blockade effect

in thermal atomic vapor.
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Chapter 5

Study of the effect of super-atom
dephasing on Rydberg blockade in

thermal vapor

Strong dipolar inter-atomic interactions of Rydberg atoms are considered to be an useful tool
to study many co-operative phenomena such as Rydberg blockade and Rydberg anti-blockade.
Rydberg blockade is a phenomenon where the energy of the Rydberg state shifts out of reso-
nance to the applied laser by interacting with nearby atoms. It has a variety of applications as it

generates a correlated atomic ensemble.* The blockade phenomenon has been experimentally

42-47 54,55

studied by various groups in ultra-cold atomic ensemble, single atom trap and Bose
Einstein condensate.**>3 It was realized that a fully blockaded ensemble of N atoms can be
represented by a super-atom with dipole moment enhanced by a factor of v/N. This leads the
system to a many-body entangled state.’®>” This enhances the possibility of realization of non-
classical sources of light .!%36:57-66 Qptically driven Rydberg interaction induced many body
effect due to the blockade phenomenon are also studied in a dissipative system theoretically’!~">
as well as experimentally in ultra-cold ensemble.’¢

Thermal vapor ensemble has an advantage in terms of simplified experimental set-up com-

pared to a cold atomic ensemble. Experimentally, it has been observed that Rydberg excitation
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in thermal vapor in the mean field regime shows non-equilibrium phase transition.!0!118.176.177

Study of non-equilibrium dynamics in a driven dissipative thermal ensemble is reported re-
cently using Rydberg interaction.'?! Similarly, partial suppression in the Rydberg excitation
has also been observed when the atom is excited using a pulsed laser.!”® Using Rabi oscillation
in nano-second time scale, existence of Van der Waals interaction between Rydberg atoms has
been reported.?! Using two photon excitation to Rydberg state, observation of blockade '3 and
anti-blockade'3! effects are reported in thermal atomic vapor. A single photon source based on
strongly interacting Rydberg atoms has also been reported in thermal atomic vapor.'?

For cold atomic ensemble, the atoms are considered to be frozen. Thus, the dephasing in
the system is mostly due to the population decay and the laser frequency noise. However, for
thermal vapor ensemble the velocity of the atoms contribute significantly to the dephasing rate.
The population decay is dominated by transit time dephasing which arises mostly due to the
transverse movement of the atoms through the beam profile. Also, the super-atom dephasing,
arising due to transverse velocity of the atoms inside the blockade sphere becomes significant
for a thermal vapor system.

In this chapter, we have presented an approximate model for N-interacting atoms inside
the blockade sphere for cold as well as thermal vapor ensemble. The exact numerical calcu-
lation for two, three and four atoms inside the blockade sphere are presented. Using suitable
approximations due to strong Rydberg-Rydberg interaction and symmetry in the system, the
optical Bloch equations are simplified which leads to an approximate model with a set of four
independent equations irrespective of the number of atoms in the blockade sphere. Using the
two, three and four-atom calculations, the OBEs of the approximate model are extrapolated
for N-atoms inside the blockade sphere using the method of induction. Due to the phenomena
of blockade, atoms present inside the blockade sphere combinely behave as a super-atom as
presented in section 2.8.3. Using this super-atom picture, an empirical formula is also derived
for N-interacting atoms inside the blockade sphere for a cold atomic ensemble. The effect of

different dephasing mechanisms in the blockade phenomenon is also studied in details.
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5.1 Two-atom model

5.1.1 Two-atom system in thermal vapor

[rr)—

+|gg)

Figure 5.1: (a) The energy level diagram of the two-atom system with levels |1) = |gg),
12) = |gr), |3) = |rg) and |4) = |rr). The applied laser is detuned by A from one atomic
resonance and A, from the other atomic resonance and the Rabi frequencies are $2, and ).

Consider a simple case of two atoms each of them having two energy levels, a ground
state |g) and an excited state |r) coupled by an applied laser. In a thermal vapor ensemble,
the atoms move randomly and the Doppler effect due to the velocity of the atoms is significant
enough to take into consideration. Both the atoms are considered to be moving with different
velocities. Let us consider the velocity of atom 1 and atom 2 are v; and v3 respectively. So the
laser detunings are given by A; = A — E.v} for atom 1 and Ay = A — 12.172 for atom 2, where
A is the laser detuning with respect to the atoms at rest and k is the wave vector of the applied
laser. The Rabi frequencies of atom 1 and atom 2 are considered to be €2; and (2, respectively.
Figure 5.1 represents the energy level diagram for the two-atom system. |1) corresponds to the

level where both the atoms are in the ground state, |2) and |3) correspond to levels with one
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atom in the ground state and the other one in the Rydberg state and when both the atoms are in
the Rydberg state, it is represented with level |4). The Hamiltonian for the composite two-atom

system is given by

H=HYI+10 H® +2V,,[4) (4]. (5.1)
—K10 Q —h|0 Q
Here H) = - "| and H® = - ? represent the Hamiltonians
0 24, Qs 24,
of atom 1 and atom 2 respectively calculated using the rotating wave approximation and I =

10
is a 2 dimensional identity matrix. The two atoms are considered to be interacting via

01
Van der Waals interaction. As presented in chapter 2 section 2.1.2, the interaction potential is
Vi = —66. This interaction is significant when both the atoms are in the Rydberg state and
’
hence it is included as a shift in energy of the state |4). Using equation 5.1 the Hamiltonian for

the two-atom system is calculated to be

0 9 0
—h Ql 2A1 0 QQ
H=— . (5.2)
Qy 0 27, 9]
0 Qo D 2(A+Ag) + 2V,

The decay and decoherences of the system are incorporated in the model using the Lindblad
matrix. The dephasing mechanisms in the system are described below.
Dephasing mechanisms in the system

There are two significant dephasing mechanisms present in this system.

1. Population decay

The first dephasing mechanism is the population decay, that comprises of the rate of population
transfer from the excited state to the ground state. The population decay in ultra-cold atom is

mostly due to the spontaneous emission due to finite lifetime of the excited state. However,

93



for thermal ensemble, the finite transit time of the atom moving transverse to the beam profile
dominates. Due to the motion of the atoms, when a Rydberg excited atom moves out of the
beam profile and a ground state atom comes in, it can be considered as a population decay from

Rydberg state to the ground state.

2. Laser frequency noise

The second dephasing mechanism is the laser frequency noise limited by the source. The output
of the ECDL is not ideally monochromatic but it exhibits some fluctuation of the optical phase.
Thus, when the laser field is applied for atomic excitation, it introduces a decoherence between
the states.

The Lindblad matrix for the two-atom system where these dephasing mechanisms are suit-

ably incorporated is given by>®

Lp =LY @ p® 4+ pM e LP. (5.3)

o and L%) represent the density matrix and Lindblad matrix for the ith atom. For an

individual atom these are given by

O R Y v IR 7
e el T e el G4
—Ypar —Lpa P21 P22

r
where [ is the population decay rate and v = 5 + 7 18 the dipole dephasing rate, where
vrer 18 the laser frequency noise. To calculate the L, matrix for the two-atom system the density
matrix is mapped to a four-level system using p = p(!) ® p(®. The Lp matrix for the two-atom

model is given by,
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D(pa2 + p33) Dpsa —yp12 Tpas — yp1s —2vp14

Lp = Lpiz —vpar Dlpaa—p22)  —(27)p2s (I'+7)pau , (5.5)

Lpso —vps1 —(29)ps2 D(paa — ps3) (D' +7)paa
—29pn (T +v)pse T +7)ps —20pu

The dynamics of the system is studied using the Optical Bloch equations (OBEs) which is

given by

dp 1
D H g+ Lo (5.6)

d
Using the steady state condition i.e. d_i = 0, the OBEs for the two atom system are found to

be

(1 = 2pg2 — p33 — paa) + Qa(pra — ps2) + 2A1p12 + 2i(Lpsy — vp12) = 0. (5.7)
Q1(p1a — p23) + Qa1 — pag — 2p33 — paa) + 289p13 + 2i(L'pag — vp13) = 0. (5.8)
Qi(p13 — p2a) + Qa(pr2 — p3a) + 2(A1 + Ag + 2V) 1y — 4ivy(p14) = 0. (5.9)
Qi(pa1 — p12) + Qa(pas — paz) + 2i0(pas — p22) = 0. (5.10)

Q1(p2a — p13) + Qa(par — pas) + 2(As — Ay)pas — 4iy(pa3) = 0. (5.11)

Q1(paz — p1a) + Qa(paz — paa) + 2(As + 2V) pog — 2i(T + v) p2g = 0. (5.12)

Q1 (p3s — paz) + Qa(ps1 — p13) + 210 (pag — p33) = 0. (5.13)

Q1 (p33 — paa) + Qa(p32 — pra) + 2(A1 +2V)p3y — 2i(I' + ) psa = 0. (5.14)

1 (paz — psa) + Qa(paz — pas) — 4l (pas) = 0. (5.15)

These equations are solved numerically using singular value decomposition'®® in fortran to
calculate the population of the Rydberg state. The states |2) and |3) have half of the population

in the Rydberg state with the other half in the ground state. Thus, the Rydberg state population

(p22 + p33)
2

a function of A; and is shown in figure 5.2 with €2, = €, and ~,,; = 0 for both interacting

of the two-atom system is given by p,., = + pas. Rydberg population is plotted as

and non-interacting systems. The interaction strength is considered such that it satisfies the

95



blockade condition. As shown in figure 5.2 (a), for A; — Ay = 0, where both the atoms
are moving with the same velocity, a significant suppression in population due to Rydberg
interaction is observed as compared to the non-interacting system. This suppression is due to
the blockade effect arising as a result of strong inter-atomic interaction. However, when the
velocity of the two atoms are different satisfying A; — Ay = €2, a very small deviation is
observed between the interacting and the non-interacting system as depicted in figure 5.2(b).
This also signifies that the blockade phenomenon reduces when the velocity difference between
the atoms is increasing. In addition to that, as shown in figure 5.2(c) when A; — A, = 3(), the
interacting system behaves similar to a non-interacting one. Thus, from this observation it can
be anticipated that, when the atoms are moving with the same longitudinal velocity or within
the velocity range such that A; — Ay < ) they interact with each other and can participate in
the blockade process. If the velocities are very different such that A; — A, > (2, they behave
like non-interacting.

Therefore, the blockade phenomenon for a system in thermal atomic vapor is explained by
solving its OBEs for an atomic system moving with same longitudinal velocity. Thereafter, it
can be Doppler averaged over the whole velocity class to include the effect of thermal motion
of the atoms. In the next section, we discuss the simplified two-atom model by considering

equal detunings for both the atoms.

5.1.2 Simplified two-atom system with super-atom dephasing

Let us consider a two-level atomic system as shown in figure 5.3 (a). It has two energy levels,
a ground state |g) and an excited state |r). A laser with Rabi frequency (2 is applied to excite
the atom from |g) — |r) which has a frequency detuning of A from the atomic resonance. Two
such identical interacting atoms are considered in an ultra-cold atomic ensemble where they are
considered to be frozen. The energy level diagram for the composite two-atom system is shown
in figure 5.3 (b). Using the similar approach as presented in equation 5.1, the Hamiltonian for

the two-atom system is written as,
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Figure 5.2: Rydberg state population as a function of A1 for non-interacting (—_) and interact-
ing (o) two-atom system with (a) Ay — Ay =0, (b) A1 — Ay = Q and (c) A1 — Ay = 3. The
parameters used for these plots are )y = Qs = 2 MHz, I' = 0.1 MHz, ~.o; = 0 and V., = 10
MHz.

0 Q Q 0
—h |92 2A 0 Q
H=_" . (5.16)
2 g o0 2A Q0
0 Q Q 4A+V,)

Similarly, the Lp matrix for the system is calculated using the equation 5.3 to incorpo-
rate the effects of decoherence mechanisms. The population decay and the dephasing due to
the laser frequency noise is included in the L matrix of individual atoms. However, a third

dephasing also arises in the thermal atomic system called a the super-atom dephasing.
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Figure 5.3: (a) A two-level atomic system with ground state |g) and Rydberg state |r). 2 (A)
is the Rabi frequency (laser detuning) of the the applied laser and 1 is the population decay
rate. (b) The energy level diagram of an identical two-atom system with levels |1) = |gg),
12) = |gr), |3) = |rg) and |4) = |rr). T's is the super-atom dephasing introduced between the
states |2) and |3).

Super-atom dephasing

Although it has been observed in the previous section that atoms with same longitudinal veloc-
ity only participate in the blockade phenomenon, the transverse velocity of the atom may move
it out of the blockade sphere. This introduces a dephasing between the atoms contributing to
the blockade phenomenon. This dephasing is called as the super-atom dephasing (I'g). To un-
derstand about this dephasing, let us consider a hypothetical situation where two atoms moving
with same longitudinal velocity and the transverse velocity component is zero. In this condition
the relative distance between the atoms remains constant. The composite two-atom system can
1 1

be explained using the basis state |gg), |+) = \/§(|gr>+e*i¢ 7)), |—) \/§(|gr)—e*i‘l5 Irg))

.

and |rr). Here, the phase difference ¢ = k .(7{ — 75) with k representing the wave vector

of the applied laser and 71 and 73 represent the positions of both the atoms. In an ultra-cold
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atomic ensemble where the atoms are frozen the blockade sphere can be imagined to be fixed
in space. For an ensemble where the atoms are moving with same longitudinal velocities and
the transverse velocities are zero, the system can be imagined as if the blockade sphere is co-
propagating with the participating atoms along the propagation direction of the laser beam. In
both these cases, the phase ¢ between the state |gr) and |rg) remains constant. However, for
a thermal atomic ensemble, the atoms participating in the blockade process may move out of
the blockade sphere due to their transverse velocities and new atoms can enter inside the same
blockade sphere. The relative positions of the new atoms could be different than the previous
atoms which would lead to the dephasing of the coherence between the states |gr) and |rg).
This dephasing is called as the super-atom dephasing and is denoted as I'g. Crudely speaking,
the super-atom dephasing would depend on the size of the blockade sphere and average ve-
locity of the atoms (v,,,) in thermal vapor as I's = v,,/2r,, where 7, is the blockade radius.
If the blockade radius is taken to be 5 um then I's = 50 MHz for the thermal ensemble at
room temperature. In our model, we study the effect of super-atom dephasing in the system by
varying it from zero to 60 MHz.

Thus, the Lp matrix for the two-atom system including the super-atom dephasing along

with the population decay and laser frequency noise is given by,

[(po2 + p33)  Tpsa — yp12 L' pos — vp13 —27p14
L - Cpas —vp2r T(paa — pa2)  —(2y+Ts)pes (T4 7)pau ‘ 5.17)
Lpso —ypsr —(2y+Ts)ps2 T(paa—p33) (I +7)psa
—279pa1 (T + ) paz (T + ) pas —20pyy

The OBE:s for this system is calculated using equation 5.6 in steady state which are given
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Q1 — 2pg2 — p33 — paa) + Qp1a — ps2) + 2Ap12 + 2i(Cp3s — yp12) = 0.
Q(p1a — paz) + Q1 — pa2 — 2p33 — paa) + 2813 + 2i(Tpas — yp13) = 0.
Q(p13 — p2a) + Qp1z — p3a) + 2(2A + 2V ) prg — 4iy(p14) = 0.

Qpa1 — p12) + Qp2s — paz) + 2i0(pag — p22) = 0.

Qpas — p13) + Qp21 — paz) — 4iy(paz) — 2L 5paz = 0.

Qp23 — p1a) + Qpaz — paa) + 2(A + 2V) p2q = 2i(I" + ) p24 = 0.

Q(psa — paz) + Qpa1 — p13) + 2iL(pas — p3z) = 0.

Qpsz — paa) + QUpsz — p1a) + 2(A + 2V) p3g — 2i(T + ) p3s = 0.

Q(paz — p3a) + Qpaz — p2s) — 4L (paa) = 0.

(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)
(5.25)

(5.26)

These equations are solved numerically using same technique mentioned above to calculate

the Rydberg state population of the composite system which is given by p,, = pas + (pa2 +

p33)/2. pq as a function of A is depicted in figure 5.4 (a) for V,, = 0. Although the two-

atom model can be solved exactly due to less complexity in mathematical formulation, with the

same technique it becomes difficult to solve the system exactly when the number of atoms in

the interaction sphere is large. In the next section we discuss a simplified two-atom model in

order to reduce the mathematical complexity.

5.1.3 Approximate two-atom model

The two-atom model presented in the previous section assumes the atoms are indistinguishable.

This introduces a symmetry in the system which is used to simplify the OBEs of the two-atom

exact numerical calculations. The parameters of the laser coupling of the states |1) and |4) to

the states |2) and |3) are the same. Hence, the population and the coherence terms connecting

these states are also the same, i.e. pas = ps3, p12 = p13 and pay = p34. Apart from that,

the system is considered to be strongly interacting such that it satisfies the blockade condition.
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Thus, the doubly Rydberg excited state |4) shifts out of resonance to the applied laser and is not
populated i.e. py4 = 0. These conditions are used in the OBEs of the two-atom exact calculation

which gives Im(pay) = 0 and po3 =

po22. From this equation it can be noted that, for
2y +T'g
Yret = I's = 0, peg = pao. This is due to the fact that, in absence of dephasing mechanisms
the coherence between the two atoms will be maximum. Using the approximations the exact
two-atom numerical calculation in steady state simplifies to a set of four OBEs as presented

in equation 5.27. This simplified OBEs for the system is called as the approximate two-atom

model.

Q1 — _— 2A 2 — =
(1-0@B+ S FS)Pzz + p1a) + 2A8p19 + 2il(pas) — 2i7p12 =0
2Q(p12 — p24) + 2(2A + QV)p14 — 4l’yp14 =0
(5.27)
Q(Im(p12>) + Fp22 =0
T )
Q1+ )p22 — p1a) + 2(A + 2V)(p2s) — 2i(L + ) (p2s) = 0
2v+1T's

These equations are solved to evaluate the matrix element py» which gives the Rydberg

population due to the blockade process for the approximate two-atom model.

5.1.4 Empirical formula based on the super-atom model

As presented in section 2.1, the population of the Rydberg state using a two-level system is

given by
Q2
o = . 5.28
P = 002 + AN (T/(27)) + 29T (5:28)
Similarly the coherence between the two states is given by
QAT
Re(pyy) [ (5.29)

T 02+ 4A2(T/29) + 2T

Consider the case where both the atoms are moving with same longitudinal velocity and the

transverse velocity is zero. The composite two-atom system can be explained using the basis
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Figure 5.4: (a) The population of the Rydberg state as a function of A with Q) = 1 MHz,
I' =0.1 MHz, v;et = 0 and I's = 0 for the singe atom two-level system (o) and exact two-atom
calculation with V., = 0 (1) and with V., = 20 MHz (—). (b) The residual plot of the exact
two-atom calculation with V.., = 0 and the single atom two-level system.

= (lgr)+e 7 rg)). | =) = —=(gr) e rg)) and [rr), where 6 = F.(ri ~

V2 V2

75) and remains constant during the excitation process since the relative position of the atoms

state [gg), [+) =

is constant. Such a system can be considered as frozen during the Rydberg excitation process.
System being frozen during the excitation process is an important aspect of the study which
is achieved in the experiments with ultra-cold atoms. It can be shown that the Rabi coupling
of the transition |gg) — |+) is v/2Q and for the transition |gg) — |—) it is 0. Similarly, the
Rabi coupling of the transition |+) — |rr) is v/2Q and for |~) — |rr) it is 0. The energy
shift of the |rr) state due to strong Rydberg-Rydberg interaction makes it out of resonance
from the driving laser and hence the population of the |rr) state is assumed to be 0. Such a
system can be reduced to an effective two-level system with energy levels |gg) and |4) with
the coupling Rabi frequency to be v/2(). Also, the effective Rydberg population of the state
|+) is reduced by a factor of 2. The population decay rate from |+) to |gg) is the same as I" due
to the compensation between the factors of enhanced Rabi frequency and reduced population.

Considering it as an effective two-level system, we derive the empirical formula to find the
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Figure 5.5:  (a) p, as a function of A for two-atom exact numerical calculation (1J) and

approximate model (o) with V..., = 20 MHz and for the empirical formula (__). (b) The residual

plot of empirical formula (blue dotted line) and approximate model (red dashed line) with the
exact numerical calculation.

effective Rydberg population of the composite two-atom system which is given by,

QZ
P = AP L AN (T)(29)) + 29T 30

Using similar approach, an empirical formula is derived for the coherence term Re(p,,)
using the super-atom picture. Due to the blockade process in a two-atom system, the coherence

1
between the ground state |gg) and the entangled state E(l gr) + |rg)) reduces by a factor of

1/+/2. Using this condition, the empirical formula for the coherence between |g) and |r) for

two-atom system is given by

_ (V2Q)AT /y
Belbor) = (/a0 + 468(T29) 1 2T) 31

Rydberg population as a function of the laser detuning for the exact numerical calculation
is presented in figure 5.4(a) using V,,, = 0. When the atoms are non-interacting, the two-
atom system will be equivalent to a single atom picture i.e. a two-level system. Rydberg

population calculated using the two-level system presented in equation 5.28 is also depicted in
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figure 5.4(a). The residual plot of the non-interacting two-atom calculation and the single atom
picture is depicted in figure 5.4 (b). They are found to be in good agreement with each other
with residual 15 order of magnitude smaller than the maximum peak height. This also verifies
that the calculation does not have any numerical errors. Now the interaction is included such
that it satisfies the blockade condition i.e. 2V, > (). This is the case where any one out of
the two atoms is excited to the Rydberg state. Therefore, the population of the Rydberg state
reduces approximately by a factor of 2 in the two-atom model compared to the non-interacting
system as presented in figure 5.4 (a).

For the two-atom system satisfying the blockade phenomena, Rydberg population is cal-
culated using the empirical formula presented in equation 5.30 and is depicted in figure 5.5
(a). The Rydberg population calculated from the exact numerical calculation and the empirical
formula matches to each other as shown in the figure 5.5 (a), where ,.; and I'g is considered to
be zero. The residual plot between them (blue dotted line) is depicted in 5.5 (b). The residuals
are found to be nearly 3 orders of magnitude smaller than the maximum peak value. Although
for finite v,.; and I'g a significant deviation is observed between them which is explained in
details later in this chapter. However, the empirical formula is sufficient to explain the blockade
phenomenon for the system with I'g = 0 and ,¢; = 0.

Rydberg population calculated using the approximate model is also depicted in figure 5.5
(a). It is observed that the approximate model matches to the exact numerical calculation for
Vi, > /29, with residuals 3 orders of magnitude smaller than the maximum peak value as
shown in figure 5.5 (b). However, for V,, < /20 a significant deviation of the approximate
model is observed compared to the exact calculation. This is due to the fact that, for V,.. < 2,
the exact calculation satisfies the anti blockade condition along with the blockade process when
the applied laser is frequency scanned. However, in the approximate calculation the system is
assumed to be strongly interacting. Thus, it can explain the blockade process only.

Similarly, the coherence between the state |¢g) and |r) is also studied for the two-atom

model. The dispersion of the laser beam due to single photon excitation to the Rydberg state
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Figure 5.6: Dispersion of the probe beam due to single photon excitation to the Rydberg state
as a function of A with = 1 MHz and I' = 0.1 MHz for (a) exact two-atom calculation
(1) with V..., = 0 and for single atom picture (o). (b) The residual plot for the non-interacting
two-atom model and the single atom calculation. (c) p.. as a function of A for empirical
formula (__), approximate model (o) and exact calculation (L) with V., = 20 MHz. The inset
of the figure represents a magnified view of a small section of the graph.(d) the residual plot

Jfor empirical formula (blue dashed line) and approximate calculation (red dotted line) with the
exact calculation.

for the two-atom system is represented by the quantity

Re(py) = Re(p12) + Re(pis) —g Re(pas) + Re(p34).

Re(pgr) is plotted as a function of A for the exact numerical calculation as depicted in figure 5.6
(a). When the system is non-interacting, this is compared to Re(p,,) calculated using equation
5.29 and is also depicted in the same figure. They are found to be in good agreement with

residual 14 orders of magnitude smaller than the maximum peak value as depicted in figure 5.6

105



(b). When the interaction is included such that the system satisfies the blockade condition,
Re(py,) is found to be deviating from Re(p,,) calculated using a single atom picture. This
is due to the presence of the blockade effect that shifts the |rr) state out of resonance to the
applied laser. For a two-atom system, the empirical formula for the single photon dispersion is
presented in equation 5.31. Re(p,,) as a function of A, calculated using the empirical formula
is plotted in figure 5.6 (c). It is found to be in good agreement with the exact calculation
with residual less than 2 x 1072 as shown in figure 5.6 (d), which is 3 orders of magnitude
smaller than the maximum peak height. Probe dispersion due to single photon excitation for the
approximate two-atom model presented in equation 5.27, is given by Re(p12). This is compared
to Re(py,) calculated from the exact numerical calculation and is depicted in figure 5.6 (c). In
presence of the strong interaction, a good agreement is observed between them with residual
(red dotted line) less than 5 x 10~* as shown in figure 5.6 (d), which is 3 orders of magnitude
smaller than the maximum peak value.

Therefore, we present three different approaches to study the blockade effect for a two-
atom system, the exact numerical calculation, approximate model and the empirical formula.
For atomic system with I's = ~,; = 0, a good agreement is observed between them. However,
for thermal vapor ensemble, these dephasing mechanisms are significant. Therefore, in the next

section the effect of these dephasing mechanisms in the blockade phenomenon are studied.

5.1.5 Effect of dephasing mechanisms in the two-atom model

For a thermal ensemble of atoms, there are three major dephasing mechanisms in the system.
Two of them are the population decay and the super-atom dephasing arising due to thermal

motion of the atom. The third one is the dephasing due to laser frequency noise.

Population decay

For thermal vapor ensemble, the population decay is dominated by the finite transit time of the
atom as explained in section 5.1.1. For a beam size of 100 and the thermal atoms at tempera-

ture 400 K, I' ~ 1.5 MHz, which is the typical value of population decay rate in thermal atomic
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Figure 5.7: (a) Rydberg population with the variation of A using I' = 1.5 MHz for exact
numerical calculation (L), approximate two-atom model (o) and the empirical formula (__).
(b) The residual plot of the empirical formula (red dotted line) and approximate model (blue
dashed line) with the exact calculation with the variation of A. (c) p,. as a function of I" at
A = 0 for exact numerical calculation (L), approximate two-atom model (o) and the empirical
formula (). (d) The residual plot of the empirical formula (red dotted line) and approximate
model (blue dashed line) with the exact calculation by varying . In both the plots () = 1 MHz,
Yrer = 0and I'g = 0.

vapor. For cold atomic ensemble, this decay rate is ~ 100 KHz. As shown in figure 5.7 (a),
Rydberg population calculated using the exact numerical calculation, the approximate model
and the empirical formula match to each other for I' = 1.5 MHz with v,.; = 0 and I's = 0.
The residuals of the approximate model (blue dashed line) and the empirical formula (red dot-
ted line) with the exact numerical calculation are depicted in figure 5.7 (b). The residuals are
found to be four order of magnitude smaller than the maximum peak value. Similarly the pop-
ulation of the Rydberg state at A = 0 with the variation of I" using 7, = 0 and I'g = 0 is

also depicted in figure 5.7 (c). For any variation of I', a good agreement is observed between

107



(@) .15 | (b)

[

o
-
©
=]
o
0.10 2
[ L R P
Ofeccccccsccce , . "%%ececcscscen
= 0
o A (MHz)
0.2 (c) '|
0.05 9 S
ha ¢ ’
t_:,v -’ ‘l
EOO o= Iy "-----
2 .
(14 \e
0.2 1
- 0
A (MHz)

Figure 5.8: (a) Rydberg population as a function of A with I' = 1.5 MHz, 7, = 0.3 MHz
and I's = 0 for exact numerical calculation (L), approximate model (o) and the empirical
formula (__). The residual plot of exact numerical calculation with the (b) empirical formula
(blue dotted line) and (c) the approximate calculation (red dashed line) with the variation of
frequency.

them with residual three order of magnitude smaller than the maximum peak value as shown in

figure 5.7(d).

Laser frequency noise

The typical laser frequency noise for an experiment mentioned in reference'® is around 300
KHz which can’t be neglected while compared to the population decay rate of the Rydberg
state which is around 1.5 MHz. For a two-atom system, as shown in figure 5.8 (a), the Rydberg
population calculated using the exact numerical calculation and the empirical formula does
not match to each other with ~v,.,; = 300 KHz. The residuals are depicted in figure 5.8(b)
which is only a order of magnitude smaller than the maximum peak value. For a cold atomic
ensemble, the population decay rate is >~ 100 KHz. Thus, 7,; 1s significant compared to I'
in this case. Therefore, the disagreement observed between the exact numerical calculation
and the empirical formula would be larger. However, the approximate model is found to have

a good agreement with the exact numerical calculation as presented in figure 5.8 (a). The
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Figure 5.9: (a) ,07(3) as a function of Ve /2 at A = 0 with I' = 1.5 MHz for exact numerical
calculation (L), approximate model (o) and the empirical formula (o). The residual plot of
the exact numerical calculation with (b) the empirical formula (blue dashed line) and (c) the
approximate calculation (red dotted line) with the variation of ;.

residual plot is depicted in figure 5.8 (c), which is nearly three orders of magnitude smaller

than the maximum peak value.

To analyze it further, let us define a quantity pg;) = '(OTT NT) called as the normalized Rydberg
Prr

blockaded population, where p,,. and pq(njrw) are the Rydberg population for an interacting and

non-interacting system respectively. For p,(f,’) = 1, the system behaves as non-interacting and

for interacting system pg;) < 1. The variation of pg’«) as a function of ,; is shown in figure. 5.9
(a). The blockade effect is found to be reducing with increase in ~,.; as expected and then the
system becomes non-interacting at very high v,.;. A clear deviation is observed between the
empirical formula and the exact numerical calculation as presented in 5.9 (b) with residuals
only an order of magnitude smaller than the maximum peak value. However, the approximate
model is found to be in good agreement with the exact numerical calculation. For any variation

of 7,1, the residuals as depicted in figure 5.9(c) are found to be nearly three orders of magnitude

smaller than the maximum peak value.
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Figure 5.10: (a) p, as a function of A with I's = 50 MHz for exact numerical calculation (OJ),
approximate model (o) and the empirical formula (__). The residual plot of the exact calcula-
tion with (b) the empirical formula (blue dotted line) and (c) the approximate calculation (red
dashed line) with the variation of frequency. (d) p°, at A = 0 with T's/Q using v, = 0.3 MHz
for exact numerical calculation (L) and for the approximate model (—). I' = 1.5 MHz and
Yret = 0.3 MHz are used for both the plots. (e) Residual plot of the approximate model and the
empirical formula with the variation of I's .

Super-atom dephasing

As mentioned in the section 5.1.1, the transverse velocity of the atoms participating in the
blockade process introduce a significant dephasing in the system called as the super-atom de-
phasing. For a Rydberg state with n=50, the blockade radius r, ~ 5um. Atoms in thermal vapor
at temperature 400 K, have an average velocity of v ~ 400m/s. Therefore, I's = 2%1) ~ 50
MHz will be the super-atom dephasing rate in the system. For a two-atom system, the Rydberg
population as a function of A is shown in figure 5.10 (a) with I'g = 50 MHz, I' = 1.5 MHz
and 7,; = 300 KHz. The figure also represents the variation of p,, using the empirical for-
mula. Since the super-atom dephasing cannot be included in the empirical formula, it is found
to be deviating from both the exact calculation. The residual plot is depicted in figure 5.10 (b)
which is an order of magnitude smaller than the maximum peak value of p,,.. However, the

approximate model and exact calculation are found to be in good agreement with each other.

Their residual plot is depicted in figure 5.10(c). The residual is found to be 3 orders of mag-
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nitude smaller than the maximum peak value. The variation of normalized Rydberg blockaded
population ,07(3) at A = 0 with ['g is depicted in figure 5.10 (d). With increase in I'g, pgf) is
observed to be increasing and then saturates after certain value of I's. This explains that the
blockade effect reduces due to the increase in I's. However, for any variation of I'g, as depicted
in figure 5.10 (d), pff;) < 1. This explains that the system does not reach to a non-interacting
regime. The approximate model and the exact calculation are found to be in good agreement
with each other with residuals as depicted in figure 5.10 (e), which is 3 orders of magnitude
smaller than the maximum peak value. Thus, I'g has a significant contribution in the Rydberg
blockade phenomenon in thermal vapor and its effect has to be included during the calculation.

This observation also signifies that Rydberg blockade can still be observed in thermal vapor

ensemble where ['g is significantly large.

5.2 Three-atom model

Now consider a system with three interacting identical atoms, each having two energy levels, a
ground state |g) and an excited state |r) coupled by an applied laser with Rabi frequency (2. The
energy level diagram of the composite system is depicted in figure 5.11 (a). |1) corresponds to
the level where all the atoms are in the ground state. |2), |3) and |5) represent levels with any
one atom in Rydberg state and the other two in the ground state. |4), |6) and |7) represent the
levels with two-atoms in the Rydberg state and one atom in the ground state and |8) represents
the level with all the atoms in the Rydberg state. The time independent Hamiltonian for the

three-atom system is given by

H=HYQII+IeHYI+IIe H® (5.32)
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Figure 5.11: (a) The energy level diagram for three interacting atoms. The applied laser is
detuned by A from the atomic resonance and Rabi frequency of the transition is Q). |ggg) = |1),

Irgg) = 12), lgrg) = 13), lggr) = |5),

rrg) = |4), |rgr) = |6), |grr) = |7) and |rrr) = |8).

(b) p, as a function of A for non-interacting three-atom calculation (L), two-level system (e)
and interacting three-atom model (__).
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(5.33)

Here, 512 = Al -+ Ag, (513 = Al -+ Ag (523 = AQ -+ Ag and 0 = Al —+ AQ -+ Ag. Slmllarly, the

Lindblad matrix for the system is calculated to be

Lp=LY @ p? 00 +p0eLP p® 4+ o0 ep® oL
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The Lindblad matrix and the density matrix for i** atom is given by

' Fp(i) _W)(i) . p(i) p(i)
Ly = 2(') §~> 2= 3 2» ' (5:35)
—7P211 _FIOZZ P211 0222

Density matrix of the individual atoms are mapped to the three-atom model using p =
pM @ p? @ pB). I'g is included in the composite Lindblad matrix of the three-atom system
between the states |2) , |3) and |5). The OBEs of the system are solved numerically in steady

state to calculate the Rydberg population which is given by

1 2
Prr = g(ﬁm + pas + pss) + g(ﬂ44 + pes + pr7) + Pss-

The population of the Rydberg state as a function of laser detuning for the exact numerical
calculation is depicted in figure 5.11 (b). When the atoms are considered non-interacting, it
is found to be matching with a single atom two-level system as presented in the same figure.
A significant suppression in the Rydberg population is observed when the system is strongly
interacting satisfying the blockade condition compare to a non-interacting system as depicted
in figure 5.11 (b).

Using the similar approach as the two-atom model, the OBEs of this system is also simpli-
fied further using the available symmetry and suitable approximations due to strong Rydberg-
Rydberg interaction. We ignore the inhomogeneous light shift of the single Rydberg excited
states which introduces the dephasing in many-body Rabi oscillation.’® Since, the atoms are
identical and indistinguishable, coupling of the states |1), |4), |6), |7) and |8) to the states
|2), |3) and |5) are considered to be the same. Hence, the population of these states and the
corresponding coherence terms are also the same, 1.e. p12 = pi13 = P15, P22 = P33 = P55
P24 = P26 = P3a = P31 = Ps6 = P57 P28 = Pas = Pss and par = p3g = pse and
p16 = p1a = p17. The states |4), |6), |7) and |8) contains two or more atoms in the Rydberg
state. Thus, the energy level shift of these states are large due to strong interaction between

the atoms. Therefore, the applied laser becomes out of resonance to these states and hence the
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populations pyy = pgs = p77 = pss = 0. Thus, there won’t be any coherence between these
states 1.e. pus = pes = P18 = pac = par = per = 0 . Using all these approximations, we get
3 o . .
7 po7. Further simplifications of the exact numerical OBEs
f)/

2’}/ + FS r +
in steady state reduced to a set of four independent equation which are given by

P23 = p22 and poy =

Q1 — (442 9 2A AiT poy — i pre =
( ( + (27+1—\S))p22+ p14)+ p12+ 11l poy 1YP12 0
20(p12) + 2(2A + 2V) p1a — 4iyp1a = 0

(5.36)
QIm(p12) +Tpae =0
r

Q1 4+ —— — 2(A +2 — 29T =

((1+ 27+Fs)'022 p11) + 2(A + 2V)(p2s) i(T +7)pes =0

These equations are solved to calculate the matrix element py, which is the Rydberg pop-
ulation for the approximate three-atom model. This is compared to the Rydberg population
calculated from the exact numerical calculations and is depicted in figure. 5.12 (a). A good
agreement is observed between them for strongly interacting regime for V,,, > /3§ with resid-
ual less than 10~° as presented in figure 5.12(b). The residuals are four orders of magnitude
smaller than the maximum peak value. However, with an interaction strength V,,, < V30 the
approximate model significantly deviates from the exact calculation.

To derive the empirical formula we can choose the basis states for the composite three-
atom system. The states with two or more atoms excited to the Rydberg state are shifted
out of resonance to the exciting laser due to strong interaction and hence are not populated
during the excitation process. Neglecting these states, the basis states of the reduced Hilbert
space can be choosen as |gg9), [a) = (lgg7) + lgrg) + [rgg))/V3, [b) = (e |ggr) +
e/ |grg)—|rgg))/v3and |c) = (e/3 |ggr) +€™/* |grg) —|rgg))/v/3. The Rabi coupling
of the transition |ggg) — |a) is v/3Q and for the transitions |ggg) — |b) and |ggg) — |c)
are 0. Also, the effective Rydberg population of the state |a) is reduced by a factor of 3.
The population decay rate from |a) to |ggg) is same as I" due to the compensation between

the factors enhancing the Rabi frequency and reducing the Rydberg population. Thus, the
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Figure 5.12: (a) The population of the Rydberg state as a function of A with () = 1 MHz,
I' = 0.1 MHz and V..., = 50 MHz for exact three-atom calculation (L), approximate model (e)
and for empirical formula (—_). The residual plot of (b) approximate model (blue dotted line)
and (c) empirical formula (red dashed line) with exact calculation. (d) p,, at A = 0 is plotted
as a function of I for exact calculation (L), empirical formula (__) and approximate model
(o). (e) The residual plot of empirical formula (red dotted line) and approximate model (blue
dashed line) with exact calculation by varying T'.

composite three-atom system can be reduced to an effective two-level system with levels |ggg)

and |a) with copuling Rabi frequency 1/32. The empirical formula for the Rydberg population

of the three-atom system is given by

QQ
© 602 +4A2(0/27) + 2Ty

Prr (5.37)

Rydberg population calculated using the empirical formula is also depicted in figure 5.12 (a).
The residual plot with the exact calculation is depicted in figure 5.12 (c). The empirical formula
is found to be in good agreement with the exact numerical calculation having residuals 3 orders
of magnitude smaller than the maximum peak value. In all these plots 7,.; = 0, ['s = 0 and
the interaction strength V. > V39, Similar to the two-atom model, prr at A = 0 with the
variation of I' is depicted in the figure 5.12 (d). For any variation of I', the residuals of the
approximate model and the empirical formula with the exact numerical calculation are found

to be 2 orders of magnitude smaller than the maximum peak value as depicted in the inset of
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figure 5.12 (e). This indicates they are in good agreement with each other for any variation of

I.

5.2.1 Effect of dephasing mechanisms in three-atom model
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Figure 5.13: (a) Rydberg population as a function of A with " = 1.5 MHz, ,¢; = 0.3 MHz and
I's = 0 for exact numerical calculation (L), approximate model (o) and the empirical formula
(_). The residual plot of (b) the empirical formula (blue dotted line) and (c) approximate
model (red dashed line) with the exact calculation by varying A. (d) p°, as a function of e /S
at A = 0 with I' = 1.5 MHz for approximate model ((J), the exact numerical calculation (e)
and empirical formula (o). The residual plot of (e) the empirical formula (red dashed line) and
(f) approximate model (blue dotted line) with the exact calculation by varying v,.;.

Just like the two-atom model, the effect of v,.; and I's on the blockade processes has also
been studied here. As shown in figure 5.13 (a), when ~,.; = 0.3 MHz, a clear deviation is ob-
served between the exact calculation and the empirical formula as depicted in figure 5.13 (b).
The residual is only an order of magnitude smaller than the maximum peak value. Also, the
variation of the normalized Rydberg blockaded population with ~,; is depicted in figure 5.13
(d). With increase in ,.; the empirical formula is found to be deviating from the exact calcula-
tion. This is due to the fact that, during the consideration of the empirical formula, the system
is considered to be coherent. Thus, the dephasing intrduced in the system due to -, is not

being taken care in the formula. The residual plot of the empirical formula with the exact nu-
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Figure 5.14: (a) p,, as a function of A with I's = 50 MHz, V,e; = 0.3 MHz and I's = 1.5 MHz
for exact three-atom calculation (1), approximate model (o) and the empirical formula (—).
(b) plr’r at A = 0 with I's /) for approximate model (o) and the exact calculation (OJ). The inset

shows the residual plot of the graph.

merical calculation is depicted in figure 5.13(e). The residuals are found to be only an order of
magnitude smaller than the maximum peak value. Thus, a significant deviation is observed be-
tween them. However, the approximate model is found to be in good agreement with the excat
calculation as depicted in figure 5.13(c) with residual 3 orders of magnitude smaller compared
to the maximum peak value. Also with the variation of ~,;, residuals of the empirical formula
with the exact calculation is depicted in figure 5.13(d). The residuals are found to be 2 orders
of magnitude smaller than the maximum peak value with the variation of ,.; indicating a good
agreement between them.

Similarly the effect of I's on the Rydberg population is also studied for the three-atom sys-
tem. Rydberg population with the variation of A for I's = 50 MHz is depicted in figure 5.14(a).
The approximate model and the exact calculation are found to be producing similar result with
the variation of A. However, the super-atom dephasing cannot be introduced in the empirical
formula and hence it deviates from the exact calculations as well as the approximate model.
pv(f;) at A = 0 with the variation of I'g is depicted in figure 5.14 (b). The approximate model
and the exact calculation are found to be in good agreement with each other with residual less

than 3 x 10~* as shown in the inset of figure 5.14 (b), which is 3 orders of magnitude smaller
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Figure 5.15: (a) The energy level diagram for 4 interacting atoms with states |1) = |gggg),
|2) = |rggg) and |4) = |rrgg). (b) The population of the Rydberg state as a function of laser
detuning A with Q) = 1 MHz, I' = 0.1 MHz and V,,, = 200 MHZ for the empirical formula (o)
and the approximate model (—_). The inset shows the variation of p,. as a function of T /<.
(b) The residual plot of the approximate model and the empirical formula with the variation of
frequency.

than the maximum peak value. It can also be observed that the blockade effect reduces with
increase in I'g. However, after a certain value of I'g, a saturation in pﬁi’) is observed. pg;) <1
explains that the system does not reach a non-interacting regime even for larger value of I's.

Therefore, this signifies that the blockade phenomenon can be observed for a thermal ensemble

of atoms where ['g is large.

5.3 Four-atom model

To extend the study further, let us consider a system of four identical atoms each with two
energy levels |g) and |r). The energy level diagram for the system is depicted in figure 5.15(a).
The energy level |1) = |gggg) represents all the atoms in the ground state. |2) = |rggg) and
|4) = |rrgg) represent levels with one and two atoms in the Rydberg state respectively with
rest of the atoms in the ground state. Using the similar approach as the two and three-atom

model, the Hamiltonian and Lindblad operator for the system is written as
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4 4
H=Y T oHY @I+ Vilr)Ir), (rl; (v,

;- (5.38)
i=1 i<y
4 i1 ‘ 4
Lp = Z Hp(k) ® L%) Q H p(J). (5.39)
i k=1 j=it1
i>1 j<4

['s is included in the composite L matrix between the states having one Rydberg excited
atom. The OBEs in a steady state are calculated using 5.6. Using the available symmetry in the
system, the four-atom model is simplified just like the two and three-atom model. The atoms
are considered to be strongly interacting such that states having two or more Rydberg excited
atoms will not be populated due to the blockade phenomenon. Using all these approximations
the OBEs of the system are simplified to a set of four independent equations which are given

by

Q1 — 2A 1K — 2 = 0.
(1-0G+ 3(27 - FS))P22 + 3p14) + 2Ap12 + 6ilpoy — 2iyp12 = 0
29(,012 + p24) + 2<2A + 2V)p14 — 42"}/[)14 = 0.

(5.40)
Q(]mp12) + Fp22 = 0.

T

Q((1 — 2(A +2 — 2¢(T =0.
(T + 2+ FS)P22 p1a) + 2(A +2V)(p24) — 2i(T + 7)p2s = 0

These equations are solved to calculate the population of the Rydberg state p,, for the
approximate four-atom model. The plot for the population of the Rydberg state with A is
presented in figure 5.15 (b) where, 7, = I's = 0. An empirical formula for the Rydberg
population is also formulated for the four-atom model using using similar approach as the two
and three-atom system which is given by

Q2

T 802+ AA2(T/27) + 2Ty (541

Prr

prr calculated using the empirical formula is also depicted in figure 5.15 (b). The residuals

119



of the plot are presented in figure 5.15 (c). A good agreement is observed between the approx-
imate model and the empirical formula with residual 3 orders of magnitude smaller than the
maximum peak value. The Rydberg state population with the variation of I' is depicted in the
inset of the figure 5.15 (b). For any variation of I' the approximate model and the empirical
formula are found to be in good agreement with each other for ~,., = I's = 0.

Similar studies as the two and three-atom system have been performed for the four-atom
system in order to observe the effect of v,., and I's on the blockade phenomenon. Similar
to the previous cases, a clear deviation is observed between the empirical formula and the
approximate model for 7,.; = 0.3 MHz and I'g = 50 MHz. However, a good agreement is
always observed between the exact calculation and the approximate model in the regime V., >
() as explained in the two and three-atom model. Therefore, from the above observations it can
be anticipated that a system having finite I'g and ~,..;, the empirical formula is not sufficient to

explain the blockade phenomena. However, the approximate model is useful for these cases.

(a)

0.04

F)rr

0.02
|rr.....99) rg...gr) |gg....17)

.
.
.
.
.
.

......

oo

.
.,
..
.
......

Residual(107°)
o
N

Figure 5.16: (a) The energy level diagram for N interacting atoms with states |1) =
lggg - -+ -9), |2) = |rgg----g) and |3) = |rrg----g). (b) The population of the Rydberg
state as a function of laser detuning A with ) = 1 MHz, I' = 0.1 MHz and V,,, = 200 MHz
for approximate model (o) and for the empirical formula (__). The inset shows the variation
of Rydberg population as a function of T /(0.
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5.4 N-atom model

Consider a system of N interacting identical atoms each having two energy levels, a ground
state |¢g) and an excited state |r), coupled by an applied laser with Rabi frequency (2 and laser
detuning A. The energy level diagram of the system is depicted in figure. 5.16(a). The Hamil-

tonian for the system is represented by,

N N
H=Y 1" @HO @17+ 3 Vi), ), (rl, (],

J
i=1 i<j

(5.42)

Where, V;; represents the strength of the Van der Waal’s interaction between atom i and atom

J- Similarly, the Lindblad matrix for N-interacting atoms is given by,

N i—1 N
Lp=)Y [ eLde [T o (5.43)
i k=1 j=i+1
i>1 J<N

where p( and L([? represents the density matrix and the lindblad matrix for the ith atom re-

spectively. I'g is introduced between the Rydberg states in the composite Lindblad operator of
the multi-atom system. However, solving the OBEs for a system with large number of atoms is
a difficult task. But as observed from the approximate model of two, three and four-atom sys-
tems presented above, the OBE:s is reduced to a set of four independent equations, which gives
similar observations to that of the exact numerical calculations. These three sets of OBEs are
extrapolated for N interacting atoms inside the blockade sphere using the method of induction

which is given in equation 5.44.
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Q1-(N+1)+(N-1)

)pgz + (N — 1)p13> + 2Ap12 —+ 2(N — 1)ZFP23 - 2Z">/p12 =0.

2v+T'g
2Q(p12> + QQ<N — 3)/)23 + 2((2A + QV)plg — 4Z’yp13 =0.
Q([m(plg)) + Fpgz =0.
r
Q(1 = 2(A+2 — 2y = 0.
((1+ o+ FS)P22 p13) + 2(A +2V)paz — 2i(I' + 7)paz = 0

(5.44)

The population of the Rydberg state from equation 5.44 is given by ps2. The population as a
function of laser detuning is depicted in figure 5.16 (b) for 10 atoms inside the blockade sphere.
Using the similar approach as the two and three-atom model, the N-atom system can be reduced
to an effective two-level system with levels [gg---¢g---g¢) and |4+) = 1/V/N(|rg---g---g) +
c++lgg--re-g)+ -+ |gg---g---r)). The coupling Rabi frequency of the transition
lgg---g---g) — |+) is V' NQ and the total Rydberg population reduces by a factor of N.
These factors compensate each other to give the population decay rate of |+) as I'. Using this
condition the empirical formula of Rydberg population with N atoms in the blockade sphere is

given by
QQ
T 2NQ2 + 4AX(T)27) + 20

pT‘T‘

Rydberg population calculated from the empirical formula for 10 atoms inside the blockade
sphere is also depicted in figure 5.16(b). A good agreement is observed with the approximate
model for I' = 0.1 MHz, v,..; = 0 and I's = 0 with residuals four orders of magnitude smaller
than the maximum peak value as depicted in figure 5.16 (c). Also, Rydberg state population
with the variation of I' is depicted in the inset of figure 5.16 (b). A good agreement is observed
between the empirical formula and the approximate model with variation of I'.

Similarly, the coherence between the state |¢g) and |r) is studied using the approximate

model which is given by the quantity Re(p;2). An empirical formula is also derived for Re(pg; )
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Figure 5.17: p\" as a function of A for the approximate model (o) and the empirical formula

(x)withQ) =1MHzand ' = 0.1 MHz and I"'s = ~,¢; = 0.

using the super-atom picture. for N atoms it is given by

Re(p,) = AQT [~
Wor) = 9NQ? 1 4A2(T/27) + 2T

(5.45)

Re(py,,) calculated using the empirical formula is compared to Re(p;2) of the approximate
model. As shown in figure 5.17 (a), a good agreement is observed between them for 10 atoms
in the strongly interacting regime. The residuals are depicted in the figure 5.17 (b), which are

an order of magnitude smaller than the maximum peak value.

5.4.1 Effect of laser frequency noise and super-atom dephasing in the

model

The effect of ~,; and I's on the blockade phenomenon is studied. The variation of py;) with

~Yrer/$2 i depicted in figure 5.18(a). Just like the two and three-atom model, as shown in
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Figure 5.18: Normalized Rydberg blockaded population as a function of (a) Yy /<2 for the
approximate model () and the empirical formula (o) and (b) I's /) for approximate model (o)
for 10 interacting atoms with A = 0, I' = 1.5 MHz. The inset of (a) represents the residual
plot of the empirical formula and the approximate model with the variation of V.

figure 5.18(a), for 10 atoms inside the blockade sphere, a deviation is observed between the
approximate model and the empirical formula with increase in 7,.;. The normalized Rydberg
blockaded population with increase in I'g, at A=0 is depicted in figure 5.18(b). pff;) is found
to be increasing with increase in ['g indicating the blockade effect is reducing. However, the
system does not reach a non-interacting regime even for higher I'g. This signifies the existence
of blockade effect in thermal vapor ensemble. I's cannot be included in the empirical formula
and thus it deviates from the approximate model for finite I'g. Thus, for system with finite
I's and ~,.;, the empirical formula will not be sufficient to explain the blockade phenomenon.
Thus, in that cases the approximate model with four OBEs presented here will be useful, where

the mathematical complexity due to exact numerical calculation for higher number of atoms

can be avoided.

5.5 Conclusion

The theoretical study presented here suggest that Rydberg blockade in an ensemble consist-

ing of large number of atoms inside the blockade sphere with I's = ~,; = 0 can be modeled
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using the simple empirical formula. However, the empirical formula is not sufficient to explain
the blockade phenomena for significant dephasing due to laser frequency noise and relative mo-
tion of the atoms. Here, we have presented a model for Rydberg blockade with large number
of atoms with suitably incorporating the super-atom dephasing and dephasing due to laser fre-
quency noise. The exact optical Bloch equations for N-interacting atoms in the strong blockade
regime are simplified using suitable approximations which gives only four independent OBEs.
The approximate model is useful to explain the blockade phenomena for large number of atoms
inside the blockade sphere for cold atomic ensemble where -, is significant. This model is also
useful for thermal vapor ensemble where I'g is large due to thermal motion of the atoms. We
show that Rydberg blockade does not vanish with significant super-atom dephasing suggesting
the possibility of observation of Rydberg blockade in thermal atomic vapor.

An experiment has been performed by our group in order to observe the blockade effect in
thermal atomic vapor. The details regarding the experimental technique and the observations
can be found in the reference.!?”-!> OHDT has been used to measure the dispersion of the
probe beam due to two-photon excitation to the Rydberg state. The blockade effect has been
observed on the red detuned side of the two-photon resonance peak for the transition *> Rb
F = 3 — nSj, where the anti-blockade phenomena has negligible effect. However, the
non-linearity is observed to be small as the spectrum is Doppler broadened due to significant
residual wave vector mismatch. Therefore, a four-photon excitation scheme is proposed where
the residual wave vector mismatch can be minimized to zero by suitable beam geometry. Thus,
the thermal vapor ensemble will behave like a cold atom system leading to a strong optical
non-linearity in the Rydberg blockade regime. This can lead to application of thermal vapor in

quantum information processing.
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Chapter 6

Theoretical study of Rydberg blockade

using four-photon excitation

Rydberg blockade phenomenon that arises due to strong dipolar interactions between Rydberg

atoms has a variety of applications.* The blockade phenomenon has been experimentally stud-

42-47 27

ied by various groups in ultra-cold atomic ensemble as well as in thermal atomic vapor.'
In most of the experiments, a two-photon scheme is used for Rydberg excitation. For rubidium
vapor, a probe at 780 nm excite the atoms from 55/, to 5/, and the coupling laser at 480 nm
excite the atoms from 5P3/5 to the Rydberg state. The residual wave vector between the two
lasers in the counter-propagating configuration is given by Ak = kp — k¢ ~ 0.8 x 10°m L,
Here, kp and k¢ are the wave vectors of the probe and the coupling laser respectively. In cold
atomic ensemble as well as in thermal atomic vapor, this wave vector mismatch introduces a
dephasing due to the velocity of the atom. For thermal atomic vapor at 300 K, the most prob-
able velocity v, ~ 240 m/s. Thus, the Doppler broadening due to the residual wave vector
mismatch Akv ~ 200 MHz. Similarly, in cold atomic ensemble, the average velocity of the
atoms within the trap >~ 10 cm/s. Thus, the dephasing introduced in the system due to wave
vector mismatch is Akv ~ 100 KHz. A study reported Doppler free Rydberg excitation in

Rubidium atom using three-photon excitation scheme.!®> EIT has also been studied experi-

mentally using three-photon Rydberg excitation in atomic vapor.'®® Analytical calculation of

126



four-photon Rydberg excitation using adiabatic elimination has also been reported using Cs

vapor. '3

In this chapter, we propose a four-photon excitation scheme for rubidium atomic vapor
where the residual wave vector mismatch can be minimized. Due to very small residual wave
vector mismatch, the system in thermal atomic vapor will behave similar to a cold atom ensem-
ble. A five-level excitation scheme is used to study the dynamics of the single atom system.
The blockade phenomenon is studied using a two-atom model by simplifying the five-level
system of individual atom to an effective two-level system with suitable approximations. The
effect of super-atom dephasing on the blockade phenomenon is also studied using this model.

The experimental proposal in thermal and cold atomic ensemble is also presented.

6.1 Five-level system
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Figure 6.1: (a) Five-level atomic system with levels |g), |e), |€'), |¢") and |r) coupled by four
laser sources with Rabi frequencies (laser detunings) 0 (A1), Qs (As), Q3 (Az) and Q4 (Ay).
L'y is the population decay rate from initial state |i) to |f). (b) Four-photon excitation to the
Rydberg state with beams in counter-propagating configuration.

Let us consider a five-level atomic system coupled by four laser sources. The energy level

diagram for the system is depicted in figure 6.1 (a). The level |g) represents the ground state,
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levels |e), |¢') and |e") represent the intermediate excited states and |r) represents the Rydberg
state. Applied lasers with Rabi frequencies (laser detunings) £2; (A1), Qs (As), Q3 (As)and €2y
(Ay) couple the transitions |g) — |e), [e) — |e), |¢) = |€”) and |¢”) — |r) respectively. The

time independent Hamiltonian for the five-level system using the rotating wave approximations

is given by
0 O 0 0 0
Ql 2A1 QQ 0 0
h
0 0 Qs 2(A1 + As + Ag) Qu
0 0 0 Qy 2081+ Ay + Az + Ay) |
The density matrix for the five-level system is given by
Pgg  Pge  Pge’  Pge”  Pgr
Peg Pee Pee! Pee’ Per
P = Pelg Pele  Pele’  Pele  Pe'r (62)
pe”g pe//6 peue/ pe//e// pe//r
L Prg  Pre  Pre Pre’ Prr i

The decay and decoherence is incorporated in the system using the Lindblad matrix which

is given by

L(p)

1
2

m

5 D (Ch.Cup+ pClLC) + Y CrapCh,

(6.3)

Here, summation index m represents all possible decay channels of the system and C,,, =

Cig = /Tig 1) (i

|, with |7)

) and | f) denoting the initial state and final state respectively and I';;

represents the population decay rate from |i) to | f). The dipole allowed decays that arises due
to process of spontaneous emission are given by I' », I' v/, '/, I'cy and I',.. However, the

re e e’

system have few indirect decays that arises due to the finite transit time of the atoms through
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Figure 6.2: Rydberg population as a function of Ay with y =150 MHz)s =300 MHz,
Q3 =180 MHz, )y =180 MHz, Ay =1200 MHz, Ay =-800 MHz and A3 =800 MHz for

(a) cold atom and (b) thermal vapor. The decay terms are I', » = 0.01 MHz, I' » » = 0.1 MHz,
I'y,=1MHz 'y =6 MHz, I, = 0.0l MHz, ', = Fe"g = Fe’g = 0.1 MHz.

t

he beam profile. These decays are represented by ', I' v and I' /| as depicted in figure 6.1

(a). The different physical quantities associated with the system are calculated using the OBEs

given by

1
)= —[H Lp.
p m[ ,p| +Lp

These equations are solved in steady state condition where p = 0. The quantity p,, is
calculated which gives population of the Rydberg state. p,.. as a function of A, for the cold atom
system is depicted in figure 6.2(a). The FWHM of the peak is found to be 0.54 MHz for the
parameters {2; =150 MHz, €2, =300 MHz, Q23 =180 MHz, 2, =180 MHz, A; =1200 MHz,

Ay =-800 MHz and A3 =800 MHz. The parameters are choosen such that the population get
transfer from the ground state to the Rydberg state without populating the intermediate states.

Thus, any laser parameter satisfying the conditions A; > €;, where ¢ = 1, 2 and 3 can be used

for the Rydberg excitation.
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6.1.1 Doppler averaging

In order to extend the system for thermal atomic vapor, the effect of velocity is considered in
the model. In a thermal vapor ensemble, the atoms can move with broad range of velocities.
Thus, the Doppler’s effect comes into the picture. In order to minimize the effect of velocity, we
propose a Rydberg excitation scheme for rubidium atom exciting to 70S; ;. Details regarding
the excitation scheme is presented in section 6.4. The laser beams are considered in a counter-
propagating configuration as presented in figure 6.1 (b), in order to reduce the wave vector
mismatch. The beams with Rabi frequencies €2; and (23 counter-propagate the beams with
Rabi frequencies €25 and €24. The single photon laser detunings will vary due to Doppler effect.
For an atom moving with velocity v, the detunings are given by A} = Ay — kyv, AL, = Ay +
kov, AL = Ag—kgv, A} = Ay+kqv. Here k;, i € {1,2,3,4} are the wave-vector corresponding
to each laser. The =+ sign corresponds to the direction of propagation of the applied laser. Thus,
the four-photon detuning of the excitation process is given by §, = A} + A, + Ag + A, =
Ay + Ao+ Az + Ay — ((ky — k2) — (ks — k3)). The residual wave vector mismatch is defined
as Ak = Ak; — Aky, where Aky = ki — ko and Aky = k4 — k3. The wave vectors for the
laser configuration presented in figure 6.1 (b) are k; = 1.282 x 10% cm™?, ky = 1.289 x 10°
cm™ !, k3 = 0.414 x 10 ecm~! and k4, = 0.384 x 10° cm~!. The configuration is used such
that Ak becomes minimum. Thus, the effect of Doppler broadening can be minimized. The
beams are considered in the counter-propagating configuration as presented in figure 6.1 where
the residual wave vector mismatch is found to be Ak ~ 0.023 x 10° m~!. Using these values
of k, the system is Doppler averaged over the whole velocity class using a Maxwell-Boltzmann
distribution. Rydberg population p,, is calculated for the thermal vapor ensemble by solving
the OBEs.

prr as a function of A, is depicted in figure 6.2(b). The FWHM of the peak is found to be
0.7 MHz. This width is comparable to that of the cold atomic ensemble. This is arising as Ak
is very small for this system unlike the two-photon Rydberg excitation scheme. Therefore, the
Doppler width Akv, becomes smaller for the system, where v,, is the most probable speed of

the atom. Thus, using a four-photon excitation scheme, the residual wave vector mismatch is
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Figure 6.3: (a) Five-level atomic system |g), |e), |¢'), |€") and |r) coupled by four laser sources
with Rabi frequencies (laser detunings) (0 (Aq), Qa (Ag), Q3 (Ag)and QU (Ag). Tis is the
population decay rate from initial state |i) to | f). (b) Effective two-level system by adiabatically
eliminating the intermediate state with levels |g) and |r) coupled by lasers with effective Rabi
frequency Q. ;y, effective detuning A. sy and effective decay rate Iy .

reduced which ultimately reduces the Doppler broadening and the system behaves similar to a
cold atomic ensemble. Therefore, using a four-photon excitation process, the Rydberg blockade
phenomenon can be studied in thermal vapor ensemble where the system will produce similar

result like the cold atom.

6.2 Effective two-level system using adiabatic elimination

In order to study the blockade phenomenon in thermal atomic vapor using the four-photon
excitation, a multi-atom system is considered. However, the mathematical complexity comes
in even with two interacting atoms which will have 25 energy levels. Thus, solving the OBEs
require large computation. Thus, the five-level system is simplified to an effective two-level

system using the adiabatic elimination condition which is described here.
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The Hamiltonian of the five-level system is given by,

0 & 0 0 0
O 2A1 Q2 0 O
H=—210 Q 26 Q3 0
0 0 Q3 203 U

0 O 0 Qy 204

Where do=A1 + Ay, d3=A1 + Ay + Az and 6,=A1 + Ay + A3 + Ay4. In order to simplify

the system the Hamiltonian is modified which is given by

H =H+ 25415X5 (6.4)
5, o 0 0 0]
O 281 -6, 0 0
;»H’z—g 0 Q, 20, — 04 s 0
0 0 Qs 255—04 U
| 0 0 0 Q0

The time evolution of the system is studied using the time dependent Schrodinger’s equa-
tion.

il = H'p (6.5)

Here ) represents a 5 x 1 column vector with elements {C,(t), C.(t), Ce/(t), Cen (t), Cr(t) }.

Here, |C;(t)|? represents the probability amplitude of the state |:). Substituting 1 in equation
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6.5 we get

maf:—gbﬂ&§+9ﬂk) (6.6)
iML:—gmﬂ%+@Ay—&Xk+Qﬂb) (6.7)
ihCy = —S(QQ(J& + (205 — 64)Cor + Q3C,0) (6.8)
imiu:—ga%cg+(%3—@yzﬁ+941) (6.9)

mcﬁz—gahaw+5gz) (6.10)

Using the adiabatic elimination condition A; > 2;, where ¢ = 2, 3, 4, the population of
the states |e), |e') and |¢") are neglected. Thus, the quantities C,(t), Cr(t), Cor (t) will be time

independent. The above equations are solved using this condition to calculate

O+ Cuy

C.= ((54—2A1) (6.11)
. CeQQ + Ce//Qg

Co= =5 559 6.12)
. Cu s + C.0y

Cor = =55 (6.13)

The quantities C,, C.s, Cer are calculated in terms of C, and C), using the above equations.
Substituting the values of C, C./, C,r in equation 6.6 and 6.10, the Hamiltonian reduces to an

effective two-level one which is given by

h 0 Qeff

H = —5
TR AY

The parameter (). ;¢ and . are given by

0. 010030 1
ST (64— 2000) (64 — 203) (2)° ()’
01— 20, 64 — 204

(6.14)
54 — 20, —
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() ()?
04 — 205 04 — 24\

+ ! 0\ (ot Y’
()2 (£23)? 04 — 203 04 — 24\

— 98 — _
01 = 202 5, —2A, &4 — 205

Aeff = 2(54 +

(6.15)

Thus, with adiabatic elimination, the five-level system is reduced to an effective two-level
system with states |g) and |r). Now the effective decay rate from |r) to |g) for the effective
2-level system is given by I'c;p = I',y + I'ye + I',er. The Lp matrix of the effective two-level

system is calculated to be

pgr
b Ty

LD:Ffo p’r‘g
o

The OBEs of the system is solved in steady state to calculate the density matrix element p,..
which gives the Rydberg population for the effective two-level system. This, Rydberg popu-
lation is plotted as a function of A, and is depicted in figure 6.4 (a) and is compared to the
Rydberg population calculated using the five-level system. A good agreement is observed be-
tween both the calculation with residual less than 102 as depicted in figure 6.4 (b), while the
maximum peak value is ~ 0.35. The parameters used in the plot are {2; =150 MHz, €2, =300
MHz, (23 =180 MHz, {2, =180 MHz, A; =1200 MHz, A, =-800 MHz and A3 =800 MHz.
However, for any parameter satisfying the adiabatic elimination condition mentioned above in
this section, the two models agree with each other. This indicates that with adiabatic elimina-
tion, the five-level system is reduced to a simple effective two-level system which is useful to

study phenomena due to multiple atom system.
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Figure 6.4: (a) Rydberg state population as a function of Ay calculated using the five-level
system (L) and the effective two-level system (o) for parameters {3y =150 MHz, () =300 MHz,
Q3 =180 MHz, )y =180 MHz, Ay =1200 MHz, Ay =-800 MHz and A3 =800 MHz. The
decay terms are I' . ,» = 0.0l MHz, I' ,»» = 0.1 MHz, Iy, = 1 MHz, I'.y = 6 MHz, I',. = 0.01
MHz, 'ty = Uy =T, = 0.1 MHz and Ucyy = 0.17 MHz. (b) The residual plot with the
variation of frequency.

6.3 Theory of Rydberg blockade using four-photon excita-
tion

As presented in the previous section, the five-level system reduced to an effective two-level
system with energy levels |g) and |r) as shown in figure 6.5 (a). Let us consider a system of

two interacting atoms as shown in figure 6.5 (b). The level |1) = |gg) corresponds to both the

atoms in the ground state, |2) = |rg) and |3) = |gr) correspond to the levels with one atom in

the ground state and the other in the Rydberg state and |4) = |rr) corresponds to the level with

both the atoms in the Rydberg state. The Hamiltonian of this system is given by

H=HY QI +I®H? +2V,,]4) 4], (6.16)
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|g)

Figure 6.5: (a) Energy level diagram of the individual atom with effective two-level system with
Rabi frequency ); and detuning A;. (b) Energy level diagram of the two-atom system with
levels |1) = |gg), |2) = |rg), |3) = |gr) and |4) = |rr). Ay (21) and Ay (§s) represents the
laser detuning (Rabi frequency) of atom I and atom 2 respectively. 1 is the effective population
decay rate.

where H") and H® are the Hamiltonian of atom 1 and atom 2 respectively. V,, is the Van
der Waals interaction between two Rydberg atoms. Let us consider the laser detuning (Rabi
frequency) of atom 1 and atom 2 are A; (€2;) and A, (£25) respectively. The Hamiltonian of the

two-atom system is calculated as

0 Q 0
- _E Ql 2A1 0 QQ
210, 0 2, 0,

0 Q O 2(A1+A+2V)

For the two-atom system the L matrix is calculated by using

Lo = 19 & )@ 4 p) 4 L@
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Figure 6.6: Rydberg state population as a function of A, for single atom five-level system (o),
two-atom system with V., = 0 () and V., = 20 MHz (__). The parameters used are 21 =150
MHz, Q, =300 MHz, Q3 =180 MHz, Q0 =180 MHz, Ay =1200 MHz, Ay, =-800 MHz,
A3 =800 MHz, I' = 0.17T MHz and T's = 0.

The Lp matrix and the density matrix for the ith atom is given by

0)
@ P12 @ ()

P22 N [P P2
Lp =T p(i) 2. Yo i) ()
—% — sz) P21 P2

We have explained in the previous chapter that, the transverse velocity of the atoms partici-
pating in the blockade process introduces a dephasing in the system known as the super-atom
dephasing (I's). This dephasing arises bewteen the state |gr) and |rg) due to the variation of
relative position of the atoms. Thus, this dephasing is included between the states |2) and |3)
phenomenologically in the composite L matrix of the two-atom system. Thus, the L matrix

for the system is calculated as
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P22 + P33 Py P34 M P24 —P14
2 2 3
_P + pa3 —p22 + Pas —p23(1+Ts/T) 2P
Lp=-I Pgl 3P234 6.17)
5 +paz —p3(l+Tg/T) —pP33 + Paa Ty
_ _3pe _3pss 9
i P41 5 5 P44_
The dynamics of the system is studied using OBEs which is given by
1
PZE[HW]JFLD (6.18)

The OBEs of the system are solved in a steady state p = 0. The population of the Rydberg state

for the two-atom system is calculated to be

Prr = M + Paa- (6.19)

In a cold atomic ensemble the atoms are considered to be frozen. However, in thermal vapor
ensemble, they move with a broad range of velocities. In order to extend the blockade theory
of four-photon excitation for thermal atomic vapor, the atoms are considered to be moving with
different velocities. Consider the velocity of atom 1 and atom 2 are v; and v, respectively.
Thus, the laser detunings are given by A} = A; — Akv; and A, = Ay — Akvy. Here, Ak is the
residual wave vector mismatch. Using Monte-Carlo technique the system is Doppler averaged
over these velocities using the Maxwell-Boltzmann distribution. The Rydberg population for

thermal vapor is given by

Prr = / / prr('Uh U2)€_v%/vze_v§/vgdvldv2~ (620)

Rydberg population for the thermal vapor two-atom system is plotted as a function of A, in
figure 6.6. When the system is non-interacting, this population is expected to be same as that

of the single atom picture. As depicted in figure 6.6, they are found to be in good agreement
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with each other. When, the interaction is included the population is observed to be suppressed
significantly compare to the non-interacting system. This is due to the blockade effect arising
for interaction between the atoms.
Using the similar approach as mentioned in chapter 5, the exact OBEs of the system can be
simplified to have the approximate model with 4 independent equations. Extending the study

for three and four-atom system, the model can be extended for N atoms inside the blockade
sphere.

6.3.1 Effect of Super atom dephasing
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Figure 6.7: Normalized Rydberg blockaded population as a function of I's /) for the two-atom

interacting system.
The effect of the super-atom dephasing is also studied in the system. The super-atom de-

phasing for a thermal vapor ensemble at temperature 400 K, is calculated to be 50 MHz. It was

(Vo) represents the

rr

observed that the blockade effect reduces when I'g increases. The normalized Rydberg block-

aded population is defined as p,(f,’ﬂ) = prr/ pSX,Y” is calculated, where p,.. and p
) as a function

rr

Rydberg population for the interacting and non-interacting two-atom model. p
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of the I's is depicted in figure 6.7. With increase in I'g, the blockade effect is observed to be
reducing. However, even for large value of I'g, pgf) < 1, which indicates that the system does
not reach to a non-interacting regime. This observation indicates that the blockade effect can

be observed in thermal atomic vapor.

6.4 Experimental proposal using four-photon excitation

(a) 3 70542 |(b)
2.41 um
2.6 pm
y y 8Py,
2.41 E
41 pm 5
g
A 5D3/2 -
776 nm
Y S5P3/2
6 tery
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551/2

Figure 6.8: Experimental proposal for four-photon excitation. (a) The energy level diagram for
rubidium atom excited to a Rydberg state 705/, by four photon excitation. (b) Experimental
set-up with suitable geometry such that residual wave vector Ak = 0.

The experiment in thermal atomic vapor can be performed using four-photon excitation.
The corresponding energy level diagram for the excitation is presented in figure 6.8 (a). The
transitions are choosen to minimize the residual wave vector mismatch. Diode lasers can be
used for the wavelengths 780 nm and 776 nm. Fiber coupled high power diode laser are re-
quired for the wavelengths 2.41 ym and 2.6 pm with power nearly 1 watt. When the atoms

are in counter-propagating configuration as shown in figure 6.1(b), the residual wave vector is

140



Ak ~ 0.023 x 10° m~!. However, the beam geometry can be changed as shown in figure 6.8 (b)
such that the residual wave vector can be reduced to zero. One such configuration is 6, = 6°,
0y = 6°, 03 = 2.67° and 6; = 2.93° for which Ak = 0. In this configuration the thermal
vapor system will behave similar to a cold atomic ensemble. The Rydberg excitation with four-
photon can also be performed in cold atom ensemble. The average velocity of the atoms in
an ultra-cold atomic ensemble ~ 10 cm/s. Thus, during the two-photon excitation with 780
and 480 nm laser, the dephasing due to residual wave-vector mismatch becomes ~ 100 KHz.
However, in an experiment with four-photon excitation, this dephasing can be reduced to zero

by suitable alignment of beam angle.

6.5 Conclusion

We have studied the blockade phenomenon in thermal atomic vapor using four-photon excita-
tion. Using the adiabatic elimination the five-level system is reduced to an effective two-level
system. The blockade phenomenon is studied using a two-atom model. The effect of super-
atom dephasing in the blockade phenomenon is also studied. It is observed that unlike the
single photon or two-photon case, atoms with different velocity also participate in the block-
ade process. Also, for thermal atomic vapor where the super-atom dephasing will be large the
blockade phenomenon does not vanish which indicate the existence of Rydberg blockade in
thermal atomic vapor.

The experiment can be proformed in thermal atomic vapor with rubidium atom as explained
in the section 6.4. The advantage of the system over the usual two-photon excitation scheme is
the residual wave vector mismatch which can be reduced to zero with suitable beam geometry.
Thus, the system in thermal atomic vapor will produce similar result to that of a cold atomic
ensemble. This also opens up the possibility of the application of thermal atomic vapor in

quantum information processing.
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Chapter 7

Summary and Future plans

We have demonstrated the phenomenon of Rydberg anti-blockade in thermal atomic vapor
using the OHDT. A two-atom model using the dressed state picture of the three level system is
presented to explain the experimental observation. The observations are verified for multiple
Rydberg states where a good qualitative agreement between the theory and the experiment
indicates the existence of the anti-blockade phenomena in thermal atomic vapor. This is the first
ever observation of Rydberg anti-blockade phenomenon reported in a thermal vapor ensemble.
The scaling of the interaction strength with the principal quantum number of the Rydberg state
could not be observed in the experiment. This is due to the presence of blockade and other
cascading processes involving three or more atoms which could not be determined with our
simple theoretical model. The experiment can be performed in a cold atomic ensemble where
the atoms are frozen and the anti-blockade effect can be studied there to observe the scaling of
interaction strength.

The theoretical study of the Rydberg blockade phenomenon using an interacting model
of N atoms inside the blockade sphere is also presented in this thesis. Exact calculation of
two, three and four-atom model with suitable approximations are extrapolated to formulate an
approximate model for N atoms. Also, an empirical formula is derived for N atoms using the
super-atom picture. In a cold atomic ensemble where dephasing due to laser frequency noise

can’t be neglected, the empirical formula is not sufficient to explain the blockade phenomenon.
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Thus, the approximate model for N atoms presented here is more appropriate to study the
phenomenon of blockade in ultra-cold atomic ensemble with large laser frequency noise. The
study also indicates the existence of the blockade phenomenon in thermal atomic vapor where
the super-atom dephasing is very large. An experiment can be performed in thermal atomic
vapor to observe the blockade effect. The blockade phenomenon can be studied at the red
detuned side of the two-photon excitation peak where the anti-blockade effect is negligible.

The Rydberg blockade phenomenon is also studied theoretically using a four-photon excita-
tion scheme. The advantage in this process is the residual wave vector mismatch which is much
smaller compared to a two-photon process. The blockade phenomenon is studied theoretically
using the two-atom model by suitably reducing individual atom to an effective two-level sys-
tem using adiabatic elimination. It is observed that although atoms are moving with different
velocity in thermal vapor, they participate in the blockade process unlike the single-photon or
two-photon excitation scheme.

The experiment in thermal atomic vapor can be performed using four photon excitation.
With a two-photon Rydberg excitation with 780 nm and 480 nm laser, the wave vector mis-
match is larger. This leads to the Doppler broadening of ~ 250 MHz of the transition lines in
thermal atomic vapor at room temperature. However, using four-photon excitation process, the
transitions can be chosen such that the wave vector mismatch can be minimized. Four-photon
excitation scheme to the Rydberg state 705/, in rubidium vapor is proposed. By suitable
alignment of beam geometry the residual wave-vector mismatch can be reduced to zero. In this
situation, the thermal vapor system behaves equivalent to a cold atomic ensemble. The block-
ade effect can be observed using the four-photon excitation process, where the dominating de-
phasing mechanism is the super-atom dephasing. The Rydberg excitation with four-photon can
also be performed in cold atom ensemble. The average velocity of the atoms in an ultra-cold
atomic ensemble >~ 10 cm/s. Thus, during the two photon excitation to the Rydberg state, the
dephasing due to residual wave-vector mismatch becomes ~ 100 KHz. However, in an exper-
iment with four-photon Rydberg excitation, this dephasing can be reduced to zero by suitable

alignment of beam angle.
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SUMMARY

In this thesis, a theoretical study of Rydberg blockade as well as theoretical and experimental
study of Rydberg anti-blockade effects are presented with emphasis on thermal atomic vapor.
Using optical heterodyne detection technique, dispersion of the probe beam is observed due to
two-photon excitation to the Rydberg state in thermal atomic vapor. The phenomena of inter-
action induced enhancement in Rydberg excitation or Rydberg anti-blockade is demonstrated
in the system. A model involving two interacting atoms is formulated using the dressed state
picture of the three-level atomic system to explain the experimental observations. A non-linear
dependence of the peak height on the atomic vapor density is observed for the anti-blockade
peak arising in the dispersion spectrum of the probe laser. The peak height also increases with
increase in principal quantum number of the Rydberg state. A good agreement is found be-
tween the experimental observations and the proposed interacting model for different Rydberg
states indicating the existence of Rydberg anti-blockade in thermal vapor.

A theoretical model that explains the possibility of Rydberg blockade for an ensemble of N-
atoms in thermal atomic vapor is also presented. Starting from a two atom model, the blockade
theory is extended to three and four atoms inside the blockade sphere. An effective model is
formulated for N atoms using the method of induction. Also, the effect of different dephasing
mechanisms on the blockade process, arising due to the velocity of the atoms in thermal vapor
ensemble are studied. The existence of blockade effect in thermal atomic vapor is observed in
the theory where the dephasing due to relative motion of the atoms is large. In addition to this, a
theoretical model for Rydberg blockade in thermal atomic vapor is proposed using four-photon
excitation scheme. The advantage of using this scheme is the residual wave vector mismatch
which is much smaller compared to a two-photon process. The blockade phenomenon is stud-
ied theoretically with the two-atom model by suitably reducing the individual atomic system
to an effective two-level system using adiabatic elimination. It is observed that although atoms
are moving with different velocity in thermal vapor, they participate in the blockade process

unlike the single-photon or two-photon excitation scheme.
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Appendix A

Data table

S1. No. Quantity Symbol Value
1 Speed of light in free space c 2.998 x 10% ms™!
2 Permeability of free space Lo 47 x 107" Hm™!
3 Permittivity of free space €o 8.854 x 10712 Fm~!
4 planck’s constant h 6.625 x 10734 Js
5 Boltzmann’s constant kg 1.381 x 1072 JK—!
6 Elementary charge e 1.602 x 107 C
7 Bohr Magneton LB 9.274 x 1072 Am?
8 Electron mass Me 9.109 x 1073 Kg

Table A.1: Fundamental physical constants used in this thesis.
Adapted from: http://physics.nist.gov/cuu/Constants.

155



S1. No. Quantity Symbol Value
1 atomic number Z 37
2 Relative natural abundance n(® Rb) 72.17 %
3 Atomic mass m 1.41 x10-*% Kg
4 Nuclear spin I 5/2
5 Vapor pressure at 25° C Pv 3.92x 107" Torr
6 Electron spin g-factor gs 2.002319
7 Electron orbital g-factor g1, 0.999993
8 Fine structure Lande’s g-factor 9s(5%S1)2) 2.00233
9 Nuclear g-factor gr -0.000294
10 D2 (525} /2 — 5 Py/5) wavelength vacuum A 780.2414 nm
11 D2 lifetime T 26.63 ns
12 D2 Natural linewidth r 21 x 6.07 MHz
13 D2 Transition dipole matrix element (J=1/2|a|J =3/2) 3.58x107% Cm
14 Saturation intensity (F' =3 — [/ = 4) Lo 3.89 mW/cm?

Table A.2: Properties of **Rb
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Appendix B

Monte-Carlo simulation

—1

Figure B.1: The Cartesian and polar co-ordinates relation in the unit circle.

The Monte Carlo simulation is used in the work presented in this thesis to doppler-average
the two-atom system each moving with different velocities. The Box-Muller transformation
has been used to generate uniformly distributed random numbers. The Box-Muller transform
is commonly expressed in two forms. The basic form which takes two randomly generated
samples with uniform distribution on the interval [0,1] and map them to two standard normally

distributed samples. The other one is the polar form which takes two samples from a different
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interval [-1,1], and map them to two normally distributed sample without the use of sine and
cosine functions. The polar form is relatively faster than the basic form and hence we have
used it here.

Box-muller algorithm here is based on representing the joint distribution of two independent
standard normal random Cartesian variable set to polar co-ordinates. Let us consider an integral

in the cartesian co-ordinates given by

fla) = [ [ geeop(~(a* + 42 /2)dody

Directly solving it in the basic form is more time taking and computationally difficult. Thus

using the relation between polar and Cartesian co-ordinates we can transform the integral to

1 27 R )
f(r,0) = —/ de/ rel=" /2 dr
2m Jo 0

Which can be solved using the monte-carlo simulation by generating random numbers. Con-

polar co-ordinates.

sider two random numbers set u and v in the closed interval [-1,1]. Now let us calculate
s = R? = u? + v?%, where, s is always a positive number. We include only those values of
s which lies in the open interval (0,1) and discard all other values of u and v. Thus s will have
a uniform distribution over a unit circle.

As shown in fig 5.1 we can relate the Cartesian variable u and v to polar variable r and 6.
Thus we have cos(f) = u/r = u/+/s and sin(f) = v/r = v/4/s. Thus we can define two
variables r = u %ﬂ(s) andy = v %n(s) These two random numbers are similar to
the cartesian variables having a gaussian distribution. However the width of the distribution
can be changed depending on the requirement. This factor can be multiplied with the defined

variables. Each of the variable can be considered as the velocity of an atom. Then the doppler

averaging over the both the velocity can be performed using the algorithm.

B.1 Fortran code for monte carlo simulation
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O o a 0

implicit real *x8(a—h,o0—z)

dimension a(20,20),v(20,20),b(20),s1(20),e(20)
dimension al(20,20)

open(1l, file="rydpop’,status="unknown )

open(2, file="twolevel ’, status="unknown )

common dkp ,dkc,vp,g2,dc,dp,fp,fc,grr ,omega, delta , goff
common dnb,q2

pi=3.141592654 !Value of Pi

dkp=1.2816549 !Probe wave vector

dkc=2.083 !'Coupling wave vector
T=347.d0 !Temperature in Kelvin
dl=0.05 !'Cell length in meter

Rubidium partial pressure in Pascal (Liquid phase)
pv=133.32%10%%(2.881+4.312—-4040.0/T)

Rubidium partial pressure in Pascal (Solid phase)
pv=133.32x10%%(2.881+4.857 —4215.0/T)

print x,’ Vapor pressure in Pascal’, pv

Number of atoms per meter cube scaled by 1lel6
dn=pv/(1.38e—-7xT)

print x,’Atom Density X 1.0el6/meter cube’,dn
Most probable speed 2xkbxT/dm

vp=sqrt (1.38e2xT/1.445)

print *, ’Average velocity in meter’ ,vp
q2=1.0/(vpxdsqrt(2.d0*pi)) !Normalization factor
dpp=1575.d0

rbp=450.d0 !Probe detuning

rb1=10.d0 !Rydberg to ground state decay rate
decl=1.0
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10

dc2=1.0
de3=1.0
dc4=8.2 !Rydberg—Rydberg interactions in MHz
dplmin=—2500
dplmax=1000
np=701 !Number data points
jmax=100000 !Number of random numbers genereated
do i=1,np
dpl=dplmin+(i —1)*x(dplmax—dplmin)/(np—1)
pop=0.d0
j1=0
x1=2.d0xrand () —1.d0
yl1=2.d0xrand () —1.d0
rsq=xl*xI1+ylx*yl
if(rsq.ge.1.d0.or.rsq.eq.0.d0) goto 10
jl=j1+1
fac=dsqrt(—2.d0Oxdlog(rsq)/rsq)
vi=facxxlxvp
v2=facxylxvp
dppvl=dpp—dkpx*vl
dppv2=dpp—dkpx*v2
dplvl=dpl+dkcxvl
dplv2=dpl+dkcxv2
Isl=rbp*x*x2/(4*x(dppvl))
Is2=rbp xx2/(4x(dppv2))
Effective two photon Rabifrequency

rb2=rbl x(rbp/(2+dppv2))

K3k 3k 3k ok ok sk sk skosk sk sk ok Sk skosk sk sk sk skosk sk sk ok skoskoskosk ok sk sk skosk sk sk sk skosk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk ok k
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n=15
do il1=1,n

do i2=1,n

a(il ,12)=0.d0

end do
end do
a(l,2)=dc4
a(l,5)=rb2
a(l,7)=—2xrbl
a(l,8)=—rb2
a(l,12)=—rbl
a(l,14)=—2xdcl
a(l,15)=—rbl
a(2,1)=—dc4
a(2,6)=rb2
a(2,9)=rb2
a(2,13)=2xdcl
a(3,4)=dc2
a(3,5)=rbl
a(3,7)=—rb2
a(3,8)=—rbl
a(3,11)=—2x%dc3
a(3,12)=—2xrb2

a(3,15)=—rb2
a(4,3)=—dc2
a(4,6)=rbl
a(4,9)=—rbl

a(4,10)=2xdc3

161



a(5,1)=rb2
a(5,3)=rbl
a(5,6)=dc2+dc4
a(5,10)=—rbl
a(5,13)=—rb2
a(6,2)=rb2
a(6,4)=rbl
a(6,5)=—(dc2+dc4)
a(6,11)=—rbl
a(6,14)=—rb2
a(7,2)=—2xrbl
a(7,7)=—2xdc3
a(7,11)=2x%rb2
a(7,15)=2xdcl
a(8,1)=rb2
a(8,3)=—rbl
a(8,9)=dc2+dc4

a(8,10)=rbl
a(8,13)=—r1b2
a(9,2)=—rb2
a(9,4)=—rbl

a(9,8)=—(dc2+dc4)
a(9,11)=rbl
a(9,14)=rb2
a(10,5)=—rbl
a(l10,7)=rb2
a(l10,8)=rbl
a(10,11)=2xdc3+dc2
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a(10,15)=—rb2

a(11,6)=—rbl

a(l1,9)=rbl

a(11,10)=—(2*dc3+dc2)

a(12,4)=—2x%rb2

a(12,12)=—-2xdcl

a(l12,14)=2xrbl

a(l12,15)=2xdc3

a(l13,5)=—rb2

a(13,8)=rb2

a(13,12)=rbl

a(13,14)=2xdcl+dc4

a(13,15)=—rbl

a(14,6)=—rb2

a(14,9)=—rb2

a(l14,13)=—(2xdcl+dc4)

a(15,11)=—2xrb2

a(15,14)=—2xrbl

a(15,15)=—2x%(dcl+dc3)
a(l,1)=2«(dplvl—lsl)
a(2,2)=2«(dplvl—lIsl)
a(3,3)=2x(dplv2+dppv2+1s2)
a(4,4)=2«(dplv2+dppv2+1s2)
a(5,5)=2«(dplvl+dplv2+dppv2+Ils2—1sl)—4xu
a(6,6)=2x(dplvl+dplv2+dppv2+1s2—1sl)—4xu
a(8,8)=—2x(dplvl—dplv2—dppv2—lsl —1s2)
a(9,9)=—-2x(dplvl—dplv2—dppv2—Isl —1s2)
a(l10,10)=2«(dplv2+dppv2+I1s2)—4xu
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a(l1l,11)=2x(dplv2+dppv2+1s2)—4xu
a(l4,14)=2«(dplvl—1lsl)—4xu
a(13,13)=2x(dplvl—Isl)—4xu
K3k R Kk 5k Kk sk sk sk sk sk Sk sk sk sk sk kR >k ok sk sk skosk sk sk sk sk sk sk sk sk sk kR ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk kosk sk sk sk sk sk ok
do i3=1,n
b(13)=0
enddo
b(l1)=—rbl
b(3)=—rb2
sk ok oK ok K oK ok K KR K KR K K K K KK oK R K K K K KK KR K K K K kK K R K ok K K kK K R K K K K K K K K K K K Kk K K K Kk K
reps=le—14
call svd(n,n,a,v,si,n,n,e,reps,ier)
print x, ’ier=’,ier
if (ier.ne.0) go to 100
reps=le—11
call svdevl(n,n,a,v,si,n,n,b,e,reps)
pop22=b(7)
pop44=b(15)
pop33=b(12)
popl =((pop22+pop44))*x((rbp*x*x4)/(16x((dppvl)*xx4)))
pop2=((pop33+pop44))«x((rbp*xx4)/(16x((dppv2)*xx4)))
pop=pop+popl
if (jl.1t.jmax) goto 10
pop=(pop)/jmax
write (x,x) dpl,(pop)
write (1,%) dpl,pop
write (4 ,%)dp0,((rb)*x2)/(4x(dp0*xx2)+2x((rb)**2)+(dc*x%2))
enddo
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stop

end

sk 3k sk sk skoskoskoskoskoskoskosk sk sk sk skosk sk sk skosk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk skosk skosk skosk skosk sk skoskosk sk sk sk sk ok
subroutine svd(n,m,a,v,sigma,la,lv,e,reps,ier)

implicit real *x8(a—h,o0—z)

parameter (itmax=30)

dimension a(20,20),v(20,20),sigma(20),e(20)

if(n.gt.m.or.n.le.0.or.m.le.0.or.m.gt.la.or.n.gt.lv) then

ier=111

return

endif

ier=0

g=0

rmax=0

do 3000 i=1,n

e(i)=g

s=0

do 1200 j=i.,m
1200  s=s+a(j,1)*x*2

if(s.le.0.0) then

g=0

else
f=a(i,i)
g=sqrt(s)

if(f.ge.0.0) g=—¢g
h=fxg—s
a(i,i)=f—g
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do 1800 j=i+1,n
s=0
do 1400 k=i ,m
1400 s=s+a(k,i)*xa(k,j)
f=s/h
do 1600 k=i ,m

1600 a(k,j)=a(k,j)+f*xa(k,1)
1800 continue

endif

sigma(i)=g

s=0

do 2000 j=i+1,n
2000 s=s+a(i,]j)*x2

if(s.le.0.0) then

g=0

else

f=a(i,i+1)

g=sqrt(s)

if(f.ge.0.0) g=—¢g

h=fxg—s

a(i,i+l)=f—g

do 2200 j=i+1,n
2200 e(j)=a(i,j)/h

do 2800 j=i+1,m

s=0

do 2400 k=i+1,n
2400 s=s+a(j,k)*xa(i,k)
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2600
2800

3000

3200

3400

3600
3800

3900

4000

do 2600 k=i+1,n
a(j,k)=a(j,k)+sx*xe(k)
continue

endif

rl=abs(sigma(i))+abs(e(i))

if(rl.gt.rmax) rmax=rl

continue

do 4000 i=n,1,-1

if(g.ne.0) then

h=a(i,i+1)xg

do 3200 j=i+1,n
v(j,i)=a(i,]j)/h

do 3800 j=i+1,n

s=0

do 3400 k=i+1,n
s=s+a(i,k)*xv(k,j)

do 3600 k=i+1,n

vik,j)=v(k,j)+s*v(k,i)

continue

endif
do 3900 j=i+1,n
v(i,j)=0.0
v(j,1)=0.0

continue
v(i,i)=1
g=e (1)

continue
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do 5000 i=n,1,—-1
g=sigma (i)
do 4200 j=i+1,n
4200 a(i,j)=0
if(g.ne.0.0) then
h=a(i,i)*g
do 4700 j=i+1,n
s=0
do 4400 k=i+1,m
4400 s=s+a(k,i)xa(k,j)
f=s/h
do 4600 k=i ,m
4600 a(k,j)=a(k,j)+f*xa(k,1i)
4700 continue
do 4800 j=i.,m
4800 a(j,i)=a(j.i)/g
else
do 4900 j=i.,m
4900 a(j,i)=0.0
endif
a(i,i)=a(i,i)+l

5000 continue

aeps=reps*rmax
do 8000 k=n,1,-—1
do 7500 itr=1,itmax

do 5200 I=k,1,-1
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if (abs(e(l)).1t.aeps) go to 6000
if (abs(sigma(l —1)).1t.aeps) go to 5400

5200 continue
5400 c=0.0
s=1.0

do 5800 1=1.,k

f=sxe(1)

e(i1)=cxe (1)

if (abs(f).1t.aeps) go to 6000
g=sigma(i)
sigma(i)=sqrt(fxf+gxg)
c=g/sigma(1i)
s=—f/sigma(1i)

do 5600 j=1,m
rl=a(j,1-1)

r2=a(j,1)
a(j,l—=1)=rlxc+r2xs

a(j,i)=cxr2—sxrl

5600 continue
5800 continue
6000 z=sigma (k)

if(l.eq.k) then
if(z.1t.0.0) then
sigma (k)=—z
do 6200 j=1,n

6200 v(j,k)==v(j,k)
endif
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go to 8000
endif

if(itr.eq.itmax) then
ier=11

go to 7500

endif

x=sigma (1)
y=sigma (k—1)

g=e(k—1)

h=e (k)
f=((y—z)*(y+z)+(g—h)*(g+h))/(2.xhxy)
g=sqrt (1.+fxf)

if(f.1t.0.0) g=—g
f=((x—z)*(x+z)+hx(y/(f+g)—h))/x

c=1.0

s=1.0

do 7000 i=1+1.,k

g=e (1)

y=sigma (1)

h=sxg

g=C*xg
e(1—1)=sqrt(fxf+hxh)
c=f/e(i—1)
s=h/e(i—1)

f=cxx+sxg
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6400

6600
7000

g=C*kg—S*X
h=sxy

y=c*y

do 6400 j=1,n
x=v(j,i1—1)
z=v(j,1)
v(j,1—1)=cxx+sxz
V(] ,1)=C*zZ—S*X

continue

sigma(i—1)=sqrt(fxf+hxh)
if (sigma(i—1).ne.0.0)

c=f/sigma(i—1)
s=h/sigma(i—1)
endif
f=cxg+sx*y
X=C*y—S*g
do 6600 j=1,m
y=a(j.,i-1)
z=a(j,1)
a(j,1—1)=c*xy+sx*z
a(j,i)=cxz—sxy
continue

continue

e(1)=0
e(k)=f

then
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sigma (k)=x
7500 continue
8000 continue
end
ook ok ok ok ok o ok ok ko kK ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o ok X
subroutine svdevl(n,m,u,v,sigma,lu,lv,b,wk,reps)
implicit real*8(a—h,o0—z)

dimension u(20,20),v(20,20),sigma(20),b(20),wk(20)

smax=0.0
do 2000 i=1,n
if (sigma(1i).gt.smax) smax=sigma(1)

2000 continue

aeps=smaxx*reps
do 3000 i=1,n
s=0.0
if (sigma(i).gt.aeps) then
do 2400 j=1,m

2400 s=s+u(j,i)xb(j)
s=s/sigma(i)
endif
wk(1i)=s

3000 continue

do 4000 i=1,n
s=0.0
do 3400 j=1,n
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3400 s=s+v(i,j)*xwk(j)
b(i)=s
4000 continue

end
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Appendix C

LabVIEW Program for computer control

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-design plat-
form and development environment for a visual programming language from National Instru-
ments. LabVIEW program is used in our experiments to interface the instruments with the
computer to control it digitally as well as to collect and analyze the data. We collect data using
a Tektronix oscilloscope DPO5034, for our experiment. The LabVIEW program to collect the
data from multiple channels of the oscilloscope is presented in figure C.1. To record one set of
data from 3 channels the program takes ~350 ms.

In some experiments the data has to be collected from multiple instruments simultaneously.
In our experiment, the information about the temperature of the vapor cell, which ultimately
measures the vapor density, is collected simultaneously with the experimental signal. There-
fore, the program is modified for multiple instrument connection and is given in fig C.2. This
program connects the DPO5034 oscilloscope to collect the data for experimental observations
and the digital multimeter from Agilant to collect the resistance of the sensor for density mea-
surement simultaneously. The observed signals collected in the LabVIEW program is also an-
alyzed using the same formula and fitting windows. The initial data and the data after analysis

are collected in the computer.
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Formula

fanalysis

Prode ion (10.0) [D5LY *3 .| B

channel-1

channel-2

Channel (0: Channel 2)  [[u16M]

Channel (0: Channel 3) [[uzay]
Channel {¢: Channel 1) [[UZ60]

Maximum Time (10000 ms) b
ped B e feed
L e | o Fd

[ single waveform =] [single Waveform ]|

VISA Resource Name

Reset? ( Yes)[F] |

[ single Waveform ~]

acp iteration

,,,,,, W,
L@
stop

Figure C.1: Labview program for connecting the oscilloscope DP0O5034 to the computer and

transfer data.

Probe Attenuation (10.0 [[251

Channel (0: Channel 4) 2 [T36]
Channel (0: Channel 2) [G6—————&

Channel (0: Channel 3) [EEEl———
Channel (0: Channel 1) [(T5ER

Maximum Time (10000 ms) [EEE———

= e = e 0 = = B @
Lo F=d i L oy
[single wavetorm =] [singte wavetorm =] [single Wavetorm =] [singte waveform =]

VISA Resource Name [T20)

Reset? (Ye9 [T}

Configure Measurement
sutczero[omeeT]
——fiBoT Measurements 2

o)
i

Function (0: DC Voltage)

Serial Configuration 2 [ =323}

= 7

VISA resource name 2 s l_rﬁb:gi
EEYY 2]
:
Enable Auto Range[Hl— :
Write Ta
Measurement

Sample Count (10) 1
Maximum Time (10000 ms) [F52———————————@ e
B signais

S

loop iteration

)

[i]
o @

req. fteration 3

ﬁ stop T2

Figure C.2: LabVIEW program for connecting the oscilloscope DPO5034 and Agilent Digital

multimeter to the computer and transfer data.
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Appendix D

Cold atom set-up developments

D.1 Anti-helmholtz coil arrangements

coupler

Figure D.1: MOT set-up for trapping atoms in a 3D trap. \/4: quarter wave plate. I: current
applied to the anti-Helmholtz coil.

A pair of magnetic coils in anti-Helmholtz configuration is required for the MOT set-up.

This is needed to generate the magnetic field gradient in order to trap the atoms. For an anti-
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Figure D.2: Plot for magnetic field for current of (a) 5 amp and (b) 3 amp.

Helmholtz coil aligned in the z-axis having radius R and inter-coil separation d, the magnetic

field gradient at any point in the axis is given by

2 _
dB  3uoNIR ( z+d)2 z—d/2 ) .1

dz 2 (R?+ (= = d/2)2)2  (R?+ (= +d[2)?)"
Here, pg is the permeability, /V is the number of turns of the coil and [ is the current passing
through it. The coils are placed on both side of the chamber as shown in figure D.1. Enameled
copper wires of diameter 1.5mm are used to prepare the coil. The former for the coils are
prepared in the mechanical workshop of NISER. The coils are having an inner diameter of
160 mm and total of 200 turns. A variable current source is used to apply current to the
coils. The plot of the magnetic field due to the coils at various points in the axis is shown in
figure D.2. For a current of 5 amp in each coil a field gradient of 7.5 G/cm is observed as shown
in figure D.2(a). Similarly for 3 amp current as shown in D.2(b), a field gradient of 4.5 G/cm is
observed. Since we are trapping Rb atoms, which requires a field gradient of ~ 4 G/cm. Thus,

a current of 3 amp is sufficient to generate the required field.
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PD =

Metal
Block

Speaker

Figure D.3: Optical setup to block the beam using mechanical shutter. M: Mirror, AWG: Arbi-
trary waveform generator and PD: Photo detector.
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Figure D.4: Rise time and fall time plot of the mechanical shutter and the detector signal. (a)
Power supply switching on time (red) and detector switching off time (black) and (b) Power
supply switching off time (red) and detector switching on time (black).

D.2 Low cost mechanical shutter

In order to perform the experiment with MOT, the laser beams are applied to the trapped atoms.
However, performing the experiment or measurements, the trapping as well as the re-pumper
laser is switched off. This can be done using a mechanical shutter which can be controlled
with an external waveform generator. Thus, we have prepared a mechanical shutter using a
loudspeaker and a metal plate.'®™!8! The arrangement of the mechanical shutter is depicted

in figure D.3. The diaphragm of the speaker is removed and the base is glued to a metal foil.
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The speaker is connected to an arbitrary waveform generator. When the voltage is applied, due
to electromagnetic induction the speaker base moves up and down depending on the applied
voltage. This moves the metal foil up and down along with it.

When an oscillating signal is applied the speaker, the metal foil oscillates according to the
signal. An experiment is performed in order to measure the response time of the mechanical
shutter. A laser beam is applied from an ECDL which is passed through the foil. When the foil
is down the beam will pass and will hit the photo-detector PD. When the foil is up the beam
will be blocked and nothing will be seen in the PD. Thus due to the oscillating signal supplied
to speaker, an oscillating output will be generated at the PD. The rise time and fall time of the
generated signal is shown in figure D.4. When the power supply will be off the photo detector
will be on and vice versa. As shown in figure D.4(a), the power supply switching on time
~ 100ms and the detector switching off time ~ 10 ms. Similarly, switching off time of the

power supply is ~ 10 ms and the detector on time is ~ 1 ms as shown in figure D.4(b).

D.3 Computer Controlled AOM Driver

im7s2a} 2 —4

i—— 3
LM7812

|

28V Input
I 3 I
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i

o

NEIN

sssss

]

vco (=

RF-input
To Amp.

Amplifier

RF out to
AOM
H
2

K ‘ To the connector for computer control ‘ /

Figure D.5: Electronic circuit for digitally controlled AOM driver.

While performing the experiment, the MOT beams and the re-pumpers are switched off.

However, after a short period of time again the beams are switched on and the experimental
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beams are switched off. In order to do this, the AOMs are used in the path of the beam where a
fast switching can be performed. When the AOM controllers are switched off, first order beam
through the AOM will be blocked. However, this cannot be done with the mechanical shutter
as the experimental time scales are of millisecond order. Thus, we need an AOM driver which
can be controlled using digital signals.

The circuit diagram of the AOM driver is presented in appendix D. This AOM driver is used
to frequency shift the MOT and the repumper beams. When the oscillating voltage is applied
to the driver, the frequency shifted laser will be switched on and off in the same manner. An
optocoupler and two transistors are used for fast switching. Switching time of 10 s is achieved

using this driver.

D.4 NI-DAQMXx programming

a)

Figure D.6: NI PXle system and DAQ card to generate digital output.

The MOT set-up requires the beams to be switched on and off in millisecond time scale.
Therefore, the system has to be controlled using computer-program. For this we are using a
NI-PXIe system and LabVIEW program. The PXIe system is a stand alone one which can be

operated with windows. The LabVIEW is used to control hardwares and generate signals of
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Figure D.7: NI-DAQmx program to acquire signal.

>
>
>
>
>
»

Simulate Signal DAQ Assistant
data
device name

Sine ey’

error in
stop (F)

timeout (s)

error out »|

SABdAAd

stopped stop

|
task out » ‘
H e

Simulate
Signal2
Square »

|

Figure D.8: NI-DAQmx program to generate signal.

required voltage and frequency through the DAQ card.

The PXIe system is shown in figure D.6 (a). This is connected to a monitor where the
LabVIEW program can be written. In order to generate the digital signals, the PXIee system is
connected to a DAQ card. The DAQ card is shown in figure D.6(b). In order to connect the DAQ
card to the PXIe system, different modules are used which is shown in figure D.6(c). The DAQ
card can generate digital and analog signals. The number of digital and analog output depends
on the type of DAQ card. The DAQ card can be controlled with the LabVIEW program. Two

LabVIEW programs are presented in figure D.7 and D.8 to acquire and generate signal.
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In this thesis, a theoretical study of Rydberg blockade as well as theoretical and experimental study of
Rydberg anti-blockade effects are presented with emphasis on thermal atomic vapor. Using optical
heterodyne detection technique (fig.(a)), dispersion of the probe beam is observed due to two-photon
excitation to the Rydberg state (fig.(b)) in thermal atomic vapor. The phenomena of interaction induced
enhancement in Rydberg excitation or Rydberg anti-blockade is demonstrated in the system. A non-linear
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picture of the three-level system. A good I 15512) A (GHz)

agreement is found between the experimental
observations and the proposed interacting
model indicating the existence of Rydberg
anti-blockade in thermal vapor (fig.(c)).

A theoretical model that explains the
possibility of Rydberg blockade for an
ensemble of N-atoms in thermal atomic vapor
is also presented. Using a two atom model
(fig.(d)), the blockade process is studied using
the exact calculation, an empirical formula
and an approximate model. A good

agreement is observed between them when
the population is plotted as a function of laser scheme of the two-photon excitation. (c) The matching of the

detuning (fig.(e)). The theory is extended to  theoretical model and the experimental observations for the
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(a) The experimental set-up of the optical heterodyne detection
technique to measure the dispersion of the probe beam due to
two-photon excitation to Rydberg state. (b) The energy level

three and four atoms inside the blockade  anti-blockade peak. (d) Two-atom model to study the blockade

sphere. An effective model is formulated for ~ phenomena. (e) Rydberg population as a function of laser
N atoms using the method of induction. Also, detuning for the empirical formula, exact numerical calculation
the effect of different dephasing mechanisms  and the approximate model. (f) Normalized Rydberg blockaded
on the blockade process, arising due to the  population with increase in super-atom dephasing.

velocity of the atoms in thermal vapor

ensemble are studied. In presence of large super-atom dephasing, the system does not reach to an non-
interacting regime (fig.(f)), indicating the existence of Rydberg blockade in thermal atomic vapor. The
existence of blockade effect in thermal atomic vapor is observed in the theory where the dephasing due to
relative motion of the atoms is large. In addition to this, a theoretical model for Rydberg blockade in thermal
atomic vapor is proposed using four-photon excitation scheme. The advantage of using this scheme is the
residual wave vector mismatch which is much smaller compared to a two-photon process. The blockade
phenomenon is studied theoretically with the two-atom model by suitably reducing the individual atomic
system to an effective two-level system using adiabatic elimination.
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