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ABSTRACT

The objective of this thesis is manifold. Based on the different problems and methods, we
divide the thesis into four parts. In the first part, we considered some strictly hyperbolic
systems adjoined with Riemann-type initial data and studied the limiting behavior of their
solutions. We showed that the solution of a non-strictly hyperbolic system can be obtained
by studying the limits of the solutions for a strictly hyperbolic system. In the second part,
we consider the 1D Saint-Venant model which is a non-strictly hyperbolic system of bal-
ance laws. The third part consists of the one-dimensional gas dynamics equation in the
quarter plane. Finally in the fourth part, measured valued solutions for scalar conservation
laws with discontinuous flux are obtained. In chapter 1, we collect the standard results
for the system of conservation laws, numerical approximation for conservation laws, and
some introductory material for non strictly hyperbolic systems. Chapter 2 and chapter 3 are
devoted to studying the limiting behavior of the solutions for the Euler equation of com-
pressible fluid flow and its generalization. Moreover, in chapter 2, we provide an example
of a strictly hyperbolic system whose solution contains d-measure. In chapter 4, We study
the kinematic 1D Saint-Venant model and use the vanishing viscosity method to obtain
an explicit formula for the model. In chapter 5, the question of solvability of the initial-
boundary value problem for the 1D gas dynamics equation is addressed. Using the method
of generalized potentials and characteristic triangles, extended to the boundary value case,
an explicit way of constructing measure-valued solutions is presented. The prescription
of boundary data is shown to depend on the behavior of the generalized potentials at the
boundary. In chapter 6, we study the scalar conservation laws with discontinuous flux with
overcompressive flux pair. A generalized solution containing j-measure is proposed. The
vanishing viscosity method is used for the linear fluxes and a Lax-Oleinik type formula
is obtained for general fluxes. An explicit numerical scheme is developed to capture the

d-shock solution efficiently.
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Summary

The well-established theory for the system of conservation laws generally assumes that the
system is strictly hyperbolic and the characteristic fields are either genuinely non-linear or
linearly degenerate. Moreover, the classical existence theories are applicable when the total
variation of the initial data is small. It is well known that the solution of conservation laws
may develop discontinuities after a finite time even though the initial data is smooth. In
that case, the solution space is generally L7, 1 < p < oo or BV, the space of the functions
of bounded variation. The solution is understood in a weak sense and in general the weak
solutions are not unique. In the literature, several admissible criteria have been developed to
establish the uniqueness of the solution depending upon its physical relevance. In practice,
there are systems that may violate both of the conditions (strict hyperbolicity and small total
variation of initial data) assumed in these theories. The solution class for these systems may
be wider than L>° or BV. Korchinski first observed that the solution of a 2 x 2 non strictly
hyperbolic system does not lie in BV (R) but a Borel measure.

This thesis is concerned about the existence and uniqueness of the non-classical (measure-
valued) solutions for the following conservation laws arising from various physical mod-
els: (i) Euler equations of compressible fluid flow and its generalization, (ii) system of
non-strictly balance laws arising from 1D Saint-Venant model, (iii) initial-boundary value
problems for 1D pressureless gas dynamics model and (iv) scalar conservation laws with
discontinuous flux function. The main focus of this thesis is to obtain the explicit formulae
for the above systems. For the system mentioned in (i), we used the shadow-wave method
and a vanishing pressure limit approach which can be viewed as a variant of the vanishing
viscosity method. In the presence of small pressure, the system is strictly hyperbolic thus by
using Lax theory we constructed a solution and found its distributional limit as the pressure
term approaches zero. The obtained distributional limit satisfies as the solution in a weak
sense. For the system mentioned in (ii), we used the vanishing viscosity method. To be
precise, we mainly used a transformation similar to Hopf-Cole transformation to linearize
the parabolic approximation (viscous approximation) of the system, and then by passing

to the limit we got an explicit formula. Using Volpert’s product we showed that the ob-



CONTENTS

tained explicit formula is a solution. The initial value problem for the system mentioned in
(ii1) in one and higher space dimension has been extensively pursued in the literature in the
past decades but to the best of our knowledge, no attempts have been made so far to solve
the initial-boundary value problem. We extended the work Huang by introducing a second
type of potential-boundary potential. Furthermore, the boundary condition is designed in a
physically meaningful way. For the scalar conservation laws with discontinuous flux (for
overcompressive flux pair) mentioned in (iv), first, we used the vanishing viscosity method
to obtain an explicit formula for a special type of flux function. For general overcompres-
sive flux pair, a weak formulation is proposed which allows concentration along t-axis and
an explicit formula is constructed satisfying the weak formulation. A numerical scheme
is proposed which effectively captures the solution and its convergence analysis is carried

out.
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Chapter 1

System of conservation laws

In this chapter, we recollect the well-known results about the general theory of the hyper-
bolic system of conservation laws and review the general solution of the Riemann problem.
Also, we introduce some preliminary facts about the non-strictly hyperbolic systems and
numerical approximation of conservation laws. The proofs are mostly taken from [1, 2].

For further reference, see Lax [3], Glimm [4].

1.1 Mathematical preliminaries

In this section, we recall some of the basic facts and tools which will be useful in the general

theory of conservation laws.

Theorem 1.1.1 (Implicit function theorem). Let U C R", V' C R™ are open sets and
f:UXxV — R"™ be a k-times continuously differentiable function with k > 1, such that
f(a,b) = 0 for some point (a,b) € U x V. Assume also D, f(a,b) is invertible. Then there
exists a neighbourhood W C V' of b and a k-times differentiable function g : W — U such

that

g(b) =a and f(g(y),y) =0

for everyy € W.

The derivative of g at the point b is a n X m matrix and is given by

Dg(b) = _[Da:f(a’ b)]_lDyf(av b)

The next result is the parameterized version of the implicit function theorem, meaning

f depends also on a parameter z.



1 System of conservation laws

Theorem 1.1.2 (Parametarized version of implicit function theorem). Let U C R", V' C
R™ and W C R™ are open sets and f : U x V. x W — R™ is a k-times continuously
differentiable map, with k > 1. Let& : W — U XV be a k-times continuously differentiable
map such that f(£(z), z) = 0 forevery z € W. Ifthe Jacobian D, f (£(z), z) is invertible for
every z in a compact set K C W. Then there exists a small ¢ > 0 and a k-time continuously

differentiable map ¢ : V- x W — U such that

¢(§2(2)7 Z) = 51(2)7 f(go(y, Z); Y, Z) =0
where z € K and |y — & (2)| < e.

Let A be a m x m matrix where the entries a;;’s are smooth functions on R™, that is
A R™ — M™™, We assume the following property of A.
Foreach z € R™, the eigenvalues of A(z) are real and distinct. Thus the eigenvalues \;(2)

can be arranged in an increasing order
AM(2) < XAa(z) < < Au(2), (z€R™) (1.1.1)
Let r;(z),7 = 1,2, .., m are the corresponding right eigenvectors such that
A(z)ri(z) = Ni(2)ri(2), 1=1,2,...,m and (z € R™)

Since we always assume (1.1.1), the eigenvectors {r;(z)}", span the whole space of R™.

We also introduce left eigenvectors {/;(2)}/,,i = 1,2, ....,m such that

Li(2)A(z) = Ni(2)li(2), i=1,2,...,m and (z € R™)



1 System of conservation laws

Since \j(z) # \i(z) for i # j, we get [;(2) - r;(2) = 0. We impose the conditions on the

eigenvectors
0, ifi#j
lifi=y

Now we study the behavior of \;(z),7;(2),l;(2) as the parameter z changes. We will see

ri(2)] = [Li(2)] =1, Li(2) -ri(2) = { (1.1.2)

that if A is a matrix of smooth functions depending on a parameter z, the eigenvalues and

the corresponding eigenvectors are also smooth functions depending on z.

Theorem 1.1.3. Let A = [a, 5], is a matrix where a;j(z) are k-times continuously dif-
ferentiable function for z € R™ and A satisfies the condition (1.1.1). Then

(a) The eigenvalues {\;(z)}, are k-times continuously differentiable functions.

(b) The corresponding right and left eigenvectors {r;(z) }", and {l;(z) }:* | are also k-times

continuously differentiable functions.
Proof. Since A satisfies the condition (1.1.1), for a fixed z € R™ we find
AM(Z) < Aa(2) < - < Ap(2).
Fora fixedi € {1,2....,m} and zZ € R™, let r;(2) satisfy
A(Z)ri(z) = N(2)ri(2).

Without loss of any generality, one may assume

We show that for |z — Z| < ¢, there exists k-times differentiable maps \;(z) and 7;(z) such
that

A(2)ri(z) = Ni(2)ri(2). (1.1.3)
First let us define x : R™ x R x R™ — R™*! by

W& 2) = (A = AL [¢l)

7



1 System of conservation laws

Simplifying the map and rewriting, we have

X(ga )‘7 Z) = <£1a11 + - +£ma1m - )\517 o 'aflaml + - +£mamm - )\fma |€’2>

Now we calculate

m Oxa O M

0&1 I O\

Ox(&, N, 2) _
9N
OxXm+1  OXm+1 OXm+1
3! 02 2
[ —&1
B A(z) = M
_Sm

_2& . 2&,.. 2&m 0

Since the eigenvenctor corresponding to A;(Z) is taken as (0, ..., 1), we will able to apply

implicit function theorem if we have,

0
det AQz) = LB | #0 (1.1.4)

0 . 0.. 2 0

To prove the above assertion we construct a perturbed matrix
A%(2) = A(2) — (\i(2) +0)I, ford > 0 small.

We note that A°(z) is invertible for sufficiently small 5. Indeed, suppose A° is not invertible,
so we have det(A(z) — (A\;(2) +d)1) = 0 which implies \;(z) + 0 is an eigenvalue of A(z).
Thus \;(z) + 6 = A;(2) for some j # i. But we can choose § sufficiently small so that the

above relation does not hold for any j. Since ;(z) = (0, .., 1), we also have
A%(2)ri(2) = —0ri(2). (1.1.5)

Now using (1.1.5) one can easily observe that



1 System of conservation laws

Thus

A(z) B :%det(A(S(z))ZQH()\J'(Z)—()%(Z)JF(S))

0 .. 0. 2 0 7

det

Now as § — 0, the last expression tends to 2 [[,,;(A;(2) — Ai(Z) and since A(Z) satisfies
(1.1.1), we get that the expression is nonzero which proves our claim (1.1.4). Thus applying
implicit function theorem we find \;(z), 7;(z) for |z — Z| < € satisfying (1.1.3).

To show the global existence of \;(z), r;(2), we define

R =sup {r : Ai(2), ri(2) exist and k-times continuously differentiable on B(0, r)}
r>0

If R is finite, we can cover 0B(0, R) by a finite number of open sets where we can extend
Ai(z),7i(z) continuously. But this gives a contradiction to the definition of R. Thus R = oo

and we are done. O]

1.2 The notion of weak solution

In this section, we will discuss the notion of the weak solution and Rankine-Hugoniot con-
dition for a solution. Let us start with reviewing the definition of conservation laws. A

scalar conservation law is a first-order PDE of the form
u + f(u), =0 (1.2.1)

where u(z,t) is a locally integrable function defined on U C R x Rt and f : R — R is
a smooth function. Here u and f are the conserved quantity and flux function respectively.

Integrating (1.2.1) over an interval [a, b] we find

b

G |t = - / F(ua, 1) = f(u(a,t) — f(u(b,1)).

This shows that the change of v only depends on the flow through the endpoints of an

interval. This calculation justifies the name conservation laws. Next, we will be studying

9



1 System of conservation laws

the n x n system of conservation laws defined below:

o Oft(u1,..um)
Ouy | Of wieum) _

ox
(1.2.2)
My | Of ™ (U1, um)
Gt T e =0
where u = (uy, ...., U, ) is a vector in R” and f : R™ — R™ is a smooth map. For smooth

solutions the above system (1.2.2) is equivalent to

0 0

— Alu)=—u =0

gt T Al g

where
ot aft oft
ouq Ous Y OQum
A(u) == Df(u) = [ ™~ ,

afm o™ afm
ouq Ous Y Oum

is m x m Jacobian matrix of f at the point u.

Definition 1.2.1 (Strictly hyperbolic systems). 4 system of conservation laws is said to be
strictly hyperbolic if for every u € R™, the Jacobian matrix A(u) := D f(u) has m real

distinct roots with A\ (u) < ..... < Am(uw).

The next theorem shows that the strictly hyperbolic property is independent of coordi-

nate transformation.

Theorem 1.2.2. Let u(z,t) be a smooth solution for the strictly hyperbolic system (1.2.2)
and ¢ : R™ — R™ be a smooth diffeomorphism such that ¢(v(x,t)) = u(x,t). Then v(z,t)

solves a strictly hyperbolic system
vy + B(v)v, = 0.

Proof. A straightforward calculation shows that u; = D¢(v(z,t))v;and u, = Do(v(x,t))v,.

10



1 System of conservation laws

Then
0 =u + A(u)u, = Dp(v)ve + A(p(v)) Dp(v)v,

= v + D(v) " A(d(v)) Do (v)vs

= + B(v)v,
It remains to show that v, + B(v)v, is strictly hyperbolic. Since A(u) is strictly hyperbolic

we have

A(u)ri(u) = Ni(u)r;(u)
for some eigenvalue \;(u) and corresponding eigenvector r;(u). Now we set
ri(v) = Dp(v) " 'ri((v), Ai(v) = Xi(d(v))

A simple calculation gives,

B(v)ri(v) = Do(v) T A(d(v)ri((v)) = Xi(d(v))ri(v).
A similar proof holds for the left eigenvector /;(u). This completes the proof. N

Next, we describe a fundamental phenomenon of the Cauchy problem
ug + f(u)y =0
u(x,0) = ug(x).
where f : R — R a nonlinear smooth function and initial data u(z) is also smooth. For

example, we show that even the initial data is smooth, the solution can develop discontinuity

after a finite time.

Example 1.2.3. Let us consider the Burgers’ equation with a continuous initial data,

2

u
wt(3),=0
L, <0
wz,0)=<¢1—xz, 0<z<1;
0, z>1

11



1 System of conservation laws

We use the method of characteristic to solve the Cauchy problem up to the time when char-

acteristics do not meet. Thus, we have

Now

d dz(t)
Su@(®),t) = w(x(t),) + ——~us((t).£) = 0.

So the solution is constant along the characteristic curve and one finds

X(n,t) =n+tug(n), thatis;

n+1t, n < 0;
X(mt)=<{n+t(l—n), 0<n<1;
7, n > 1.

We observe that the characteristics meet at time t = 1 and for t < 1, solution i given by

—_

)

n
u(z,t) =< =%, 0
n

=

vV IA A

0
¢ n<l
0.

O =

But after time t > 1 and in the region {1 < x < t} the solution u(x,t) becomes double-
valued function. So discontinuity must develop in this region. This phenomenon leads us
to seek global (in time) solutions into the class of discontinuous functions and to define the

solution in a weak sense.

Definition 1.2.4. Given an initial data
u(z,0) = ug(x) (1.2.3)

with ug € L} (R;R™), a function u : [0,T] x R — R™ is said to be a distributional

loc
solution for the Cauchy problem (1.2.2)-(1.2.3) if the following integral identity holds:
T o0 00
/ / [u(z, t)pi(x,t) + f(u)ps(x, t)]|dedt +/ up(z)p(x,0)dr =0
0 —00

—00

for every test function p € C°(R x [0,T)).

12



1 System of conservation laws

Next, we define the notion of weak solution which is somewhat a stronger concept in

the sense that, we demand the continuity of u as a function of ¢, with values into L}, (R).

Definition 1.2.5. A4 function v : [0, T] xR — R™ is said to be a weak solution of the Cauchy

problem (1.2.2)-(1.2.3) if u(-,t) : [0,T] — L}

loc(R) is continuous, the initial condition

(1.2.3) holds and u|(07T)XR is a distributional solution.
Theorem 1.2.6. Every weak solution is a distributional solution but not vice-versa.
Proof. See [2] [

Theorem 1.2.7 (Rankine-Hugoniot condition). Let U C R™ x [0, 00) is an open set and u :

U — R™ be a continuously differentiable function except a finite number of continuously
differentiable curves C; : (0,00) — R. We define
li t) =uf (¢ li t) = u; (t).
lim e =@, fim ulet) = ()
Then the following statements are equivalent:
(a) u(x,t) is a distributional solution of (1.2.2).

(b) u(x,t) satisfies the equation
ur + A(u)u, =0

for almost every (x,t) and for each i and almost every t € (a;, b;) we have

Proof. See [2] Il

1.3 Admissibility conditions

The solution of conservation laws may not be unique in practice. Thus to choose a ‘physi-

cally relevant solution” we need certain conditions, the so-called admissibility conditions.

13
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1.3.1 Lax admissibility condition

Let us first begin by defining the averaged matrix for D f(u) = A(u).

Definition 1.3.1. Given two fixed state u,v € R™, we define the averaged matrix for D f
by
1
A(u,v) = / Df(fu+ (1 —0)v)do.
0

and \;(u,v) for i = 1,..,m are called the eigenvalues of A(u,v).

Now take a piecewise constant function

u, <Mt
u(,t) = Uy, T >N

By Rankine-Hugoniot condition and the fundamental theorem of calculus we have
1
Mo = ) = () = f(w) = [0+ (1= Oyur)as
0
1
= / Df(0u; + (1 —0)u,) - (u; — u,)db
0
= A(uy, up ) (u; — )
The last equality shows that the speed of the discontinuity curve A corresponds to the eigen-
value A(uy, u,) of the averaged matrix A(u,,u,) with the eigenvector (u; — u,.). Now we

state Lax admissibility condition.

Let u(x,t) is a weak solution of (1.4.1)-(1.4.2) of the form

(1) = {ul, x < (t)

Un, x> (1)

where x = £(t) is a discontinuity curve of u(z,t). Then from the above calculation we
conclude that f(t) = \i(u, u,) forsome i € {1,..,m}. The weak solution u(z, t) is said to

be admissible in Lax’s sense if the following condition holds:

Ai(ug) > E()(= Nilug, uy) > Ailur). (1.3.1)

14
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1.3.2 Vanishing viscosity and traveling waves

Now we consider the following regularised system
uy + f(u), = eus, (1.3.2)

where the term euf,, is interpreted as a viscosity. Our plan is to study the limit of u¢ as
e = 0. If [Ju* —ullp;  — 0ase — 0, the u is the admissible solution of (1.4.1). In
the next theorem we demonstrate a connection between vanishing viscosity limit and Lax

admissibility condition. Let us start with a piecewise constant function

u T <A
ul(z,t) = U, T >N

The function u(x, t) satisfies travelling wave entropy condition if u(x,t) — u(z,t) a.e as

€ — 0 where
T — At
€

u(x,t) = v(

and € is a classical solution of (1.3.2). Inserting v (I;At) into the equation (1.3.2) we find

~Xi(s) + 5 f(uls)) = i(s)

where s = ”"‘T’\t Integrating the above equation once, we get

0(s) = —Av(s) + f(v(s)) + const. (1.3.3)
Now since
— At
tim (i, £) = lim o M) — {”l v
e—0 e—0 € Uy, T > )\t7
so we have
lim v(s) =, lim v(s)=u,.
S——00 s§——+00

Now employing the above limits in the equation (1.3.3) we get

0= lim o(s), const. = Au; — f(w) = A, — f(u,)

s—+o0

15



1 System of conservation laws

Hence from the above equations we have

o(s) = =Av(s) —w) + f(v(s)) — f(w)
limg, o v(s) =w, limg, v(s) = u,.

(1.3.4)

Mw —u,) = f(w) — f(u,) and {

Theorem 1.3.2. Let the i-th characteristic field be genuinely nonlinear and |u; —u,.| < €. If

there exists a travelling wave solution connecting u; to u, then \;(u;) > A= \;(u, uy)) >
/\z(ur)

Proof. From the above calculation we note that u, = 5;(£)(w;) for some i € {1,...,n}.
Now it is enough to show that u,, = S; () (w). Setting g(2) := f(2) — f(w) — XNz — w),

the above ODE in (1.3.4) takes the form

u(s) = g(v(s)), and g(w) = g(u,) =0

Now since Dg(u;) = A(w;) — A, the eigenvalues of Dg(v;) are A\;(u;) — A and the corre-
sponding left and right eigenvectors are {/;(w;)}™*, and {r;(u;)}*, respectively. Next we

state a fact
i) + Ni(w,)
2

The proof of the above fact shall be presented in the next section, see (1.4.28). Assuming

A= +0(£%), £ = 0.

the above and |u; — u,| < ¢ fact we find

i) — A = Ailw) ; M) + O(|w — u,|?)

since v(—o00) = u; and v(c0) = u, then we have \;(u;) — A > 0 and A\;(u,) — A < 0 in

respectively. This proves the claim u, = S; (). O

1.3.3 Entropy and entropy flux pairs

Definition 1.3.3. 4 smooth function n : R™ — R is called an entropy for the system

uy + f(u), = 0, with an entropy flux q : R™ — R if'n is convex and
Dn(z)Df(z) = Dq(z), = €R™.

16
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Once again let us consider the viscous equation
€ € _ €
up + f(u), = eus,.

Assume that u¢ is uniformly bounded for sufficiently small € and u¢ — v in L}, as € — 0.
The function w is the vanishing viscosity limit which is a solution for the system w;+ f (u), =
0. Let us choose any smooth entropy-entropy flux pairs (7, ¢). Left multiplying Dn(u¢) in

the above viscous equation, we get
D(u)ug + Dn(u) f(u)e = eDn(u)ug,
= n(u)e + Dn(u)Df(u)ug = eDn(u)ug,.
= n(u)s + Dq(u)ug, = eDn(u)ug,.
= n(u)s + q(u)e = eDn(u)ug,.
Since

M) = (D)) -+ D(uyas,

the last equality can be written as

n(u); + q(u)r = en(u)pe — 6<D277(u6)u§> - U, (1.3.5)
The convexity of 7 implies the Hessian matrix of 7 to be positive semi definite, that is
<D2n(u6)u;) -ug, > 0. Multiplying a test function ¢(z,t) € C2°(R x (0, 00)) with ¢ > 0
and using integration by parts we get

| nwecr atwrpadode = [ [ e(DPnws) o - enuyunadsd
0 —00 0 —00
> —en(u®) vy drdt.

In the last inequality, we used the convexity of 7 and positivity of ¢. Now using the in-

equality on compact subsets of R x (0, 0o)

/OOO/_ZW(ue)—n(u)\anHOO/OOO/:’ue_M_)O

17



1 System of conservation laws

as ¢ — 0, we find
/ / n(w)er + q(u)p.dadt > 0.
0 —o0

Summing up the above calculations we write

Definition 1.3.4 (Entropy inequality). 4 weak solution u(x,t) of the system u;+ f(u), = 0

is said to be entropy admissible if

n(u)e +q(u). <0

holds in the sense of distribution, for every entropy-entropy flux pairs (1, q) with convex

entropy 1 and the corresponding flux pair q.

1.4 The Riemann problem

In this section, we investigate the structure of the solution for a system of conservation law
when the initial data is piece-wise constant. More precisely, we will find the weak solutions

to the Riemann problem for the system of conservation laws

u 4+ f(u), =0 (1.4.1)
with the initial data
u, <0
u(x,0) = 1.4.2
(+,0) {u e (142)

where f : R™ — R™ smooth map and u;, u,, € R™. Let us start with seeking the solutions of
(1.4.1) of the form u(z,t) = V (%), (z,t) € R x (0,00) where v = (v!,...,v™) : R — R™
Now substituting u(x,t) = v(%) into the equation (1.4.1) we find

1 T T T.,T

L a(® .___._]:0

- [A@($)o(5) - F0(3)

This implies

e
—~
| 8
~—
I
&3
—~
e
—~
| 8
~—
~—
3/
—~
e
—~
| 8
~—
S~—
I
|

3;, for some i € {1,...,m}. (1.4.3)
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On the other hand, if we employ a change of variable £ = &, from (1.4.1) we find
0= 0(£)& + Av(£))0(§)éx

= 0(€) [& + Ni(v(€))&,]
= ri(wl€) & + M)

since eigenvectors are non-zero, we get

&+ Xi(v(§))& = 0.

Note that the above equation can be written in a form of a scalar conservation law

where
13
fi§) = /0 Ai(v(s))ds.

Since the general theory of scalar conservation law is developed [1] under the condition of

convex or concave fluxes, we compute,
F2(€) = DA(u(E)) - 9(6) = DA(v(9)) - ri(v(6)).
Thus we obtain the following possibilities,
DA((&)) - ri(v(€)) > 0 or DA(u(E) - (v(€)) < 0.

Also for linear fluxes we get DX;(v(€)) - r;(v(€)) = 0. All the computations above lead us

to define the following:

Definition 1.4.1. (a) Fori € {1,..,m}, the i-th characteristic field is said to be genuinely

non-linear if the pair (\;(2), r;(2)) satisfies
DX(z) -1i(2) #0, ¥ z € R™.

(b) For i € {1,..,m}, the i-th characteristic field is said to be linearly degenarate if the

pair (N\;(2),ri(2)) satisfies
DX(z) -ri(2) =0, ¥V z € R™.
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1.4.1 Rarefaction waves

Motivated by the previous computations and from the equation (1.4.3) we define

Definition 1.4.2. For a given fixed state z € R™, we define the i-rarefaction curve by £ —
R;(&)(2) which is a solution of the ODE in (1.4.3) and passes through z. If i-th characteristic

field is genuinely nonlinear, we write

R (€)(2) = {z € Ri(©)(2)|Ni(2) > Mi(2)}

and
Ry (£)(2) = {7 € Ri(§)(2)|Ni(2) < Ai(2)}-

Then the rarefaction curve is expressed as

Ri(§)(2) = R (§)(2) U {2} U R (§)(2)

Remark 1.4.3. Note that when the i-th characteristic field is genuinely non-linear, \;(2)
is increasing along the integral curve of v;(z). Indeed, since \;(z) is smooth, we calcu-
late d%)\i(v(f)) = DX\, (v(&)) - r;(v(€)) > 0 for all v € R™, by changing the sign of the
eigenvector r;, if necessary. On the other hand, when the i-th characteristic field is linearly

degenerate, \;(z) is constant along the integral curve of ;.

Theorem 1.4.4 (Existence of Rarefaction waves). Let u;, u, are given as (1.4.2) and the

i-th characteristic field is genuinely non-linear. Assume that there exists & > 0 such that

u, = R (€)(w). Then fort > 0,

ug, T < N(w)t
u(z,t) = q RF(§)(w),  Ni(w)t <z < Niu,)t (1.4.4)
Uy, x> N\(u,)t.

defines a weak solution of (1.4.1)-(1.4.2).
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Proof. Since u, = R} (€)(u;), we have \;(u,) > \;(u;) and we define amap @ : [0,¢] —
[Ni(w), Ai(u,)] such that ®(€) = X\;(R;F (€)(w;)). Againsince ®(0) = \;(w;), @(€) = \i(u,)
and @ is increasing due to the genuinely non-linearity, therefore ® is onto. In the regions
{z < N(w)t}and {x > \;(u,)t}, u(x,t) satisfies the equation (1.4.1) trivially. Now let us
consider the region {\;(u;) < = < A;(u,)}. Since we are interested in self similar solutions,
thatis u(x,t) = v(7), clearly u(x,t) is constant x = ct line for any constant c. Hence along
this line we have

d
0 = —ulet,t) = ui(ct, ) + Tualet, ). (14.5)

Observe that in the region {\;(u) < x < Ai(u,)}, we have £ = X;(R;(£)(w;)) for some

¢ € 10, &] becasue the map @ is onto. Now we calculate,

_dR{(§(w) d§ dN;

0 0
%U(xﬂf) = %[Rf(f)(ul)] T de AN dr
11

= i B () () [DACRT (€) () - ri(RE(€) ()]~
Since the i-th characteristic field is genuinely non linear and ¢ > 0 the last expression is
parallal to r;(u),u € R™. Therefore it is also an eigenvector of A(u) corresponding to the
eigen value \;(u),u € R™, thatis A(u)u, = A;(u)u,. Thus from the equation (1.4.5), we
find
up + %uw = us + N (B (6)(w))ue = up + A(u)u, = 0.

Now it remains to show |[u(z, t) —u(z, 0)||py — Oast — 07. Intheregions {x < A;(u;)t}
and {x > \;(u,)t}, the solution is defined by the initial data, thus the assertion holds

trivially. Now consider the region {\;(v;) < x < A;(u,.)}. Note that

Ai(ur)t
lu(z,t) — u(z,0)[|e; = /A | R (§)(w) — u(@,0)|dz — 0

loc
i(w)t

as t — 0. This completes the proof. U

Remark 1.4.5. It is worth full to note that if u, = R; (€)(w;) (equivalent to saying & < 0),
then by the definition of R?(£)(z), z € R™, we have \;(u;)t > X;(u,.)t. Thus from the above
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construction of solution we find u(x,t) = {ul in the region {\;(w)t > = > \;j(u, )t}
which is absurd.

1.4.2 Shock waves

In this section, we want to describe the solution for (1.4.1)-(1.4.2) which is of the form

u, <At
M%ﬂz{J Iy (1.4.6)

for some A € R. Then by Rankine-Hugoniot condition one must have

flw) = flur) = Mug — u). (1.4.7)

Now given a state u; € R™, we want to find all u,, and A such that the solution can be
expressed in the above form (1.4.6). But in the above equation (1.4.7), n equations and

n + 1 unknowns. So to obtain a solution it is natural to invoke implicit function theorem.

Theorem 1.4.6. Let the system (1.4.1) be strictly hyperbolic. Then for a fixed u; € R™

there exists £ > 0, n number of smooth curves S; : [—£,€] — R™ and n number of scalar

functions \; : [—€, €] — R such that

Flw) = F(Si()(w)) = Xi(€) (w — Si(€)(w)), € € [=€,€]. (1.4.8)

Furthermore, we have

(@) |2 = 1 and $;(0)(w) = w, Ai(0) = Ni(w).

(b) By = ri(w).

(C) —dki(gg(ul) |§:0 = %D/\Z<ul) . ’I"Z‘(Ul).

2q. U
(d) LS| o = Dry(w) - rilwy).

Proof. For any two pints u, v € R™, define
1
A(u,v) = / A(Ou+ (1 —0)v)de.
0
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Since A(u) consists of smooth entries, as v — u A(u,v) — A(u). A(u) has n real distinct
smooth eigenvalues with A\;(u) < ... < A\, (u). We want to show that there exists a neigh-
bourhood B(u,d) of u such that for any v € B(u,¢), matrix A(u,v) has n real distinct

smooth eigenvalues with Ay (u,v) < ... < Ap,(u,v). Consider the polynomial
P(v,\)=det(A(u,v) — AI).

Forafixedi € {1,...,m}, wehave P(u, \;(u)) = det(A(u)—A;(u)]) = 0and %5 (u, A;(u)) #

0. Thus by implicit function theorem we get a smoothmap v — \;(u, v) such that P(v, \;(u,v)) =
0. This implies \;(u, v) is an eigenvalue of A(u,v). Also following the similar arguments

of theorem 1, we get that the corresponding left eigenvectors {/;(u, v)}, and right eigen-
vectors {r;(u,v)}", are smooth satisfying the conditions (1.1.2). Now from fundamental

theorem of caluculas, we have

flu)— flw) = /0 Df(0u+ (1 —0)u)(u —u)dd = A(u, w;)(u — uy).

So R-H condition to be satisfied, we must have

flu) = flw) = Mu —w) = A(u, w) (v — uy)

which means that (u — v;) is a right eigenvector of A(u, ;) with the eigenvalue \;(u, u;)
for some i € {1,..,m}. Multiplying a left eigenvector /;(u, v;) in the above equation we

have
Li(w, w) A(u, w) (u— wy) = Ni(w, wy) i (w, w) (u — )

= N\;(u, )l (u,w)(uw—w) = Ni(u, )l (w, w) (uw— )

= [(u, w)(u— ) (N(u,w) — Ni(u, ) = 0.

Since \;(u,w;) # Ai(u,w), to find the i-th eigenvector of A(u, ;) it is enough to solve
the equation /;(u, u;)(u — w;) = 0 for j # 4. Note that there are m unknowns and m — 1

equations, thus to apply implicit function theorem let us define ® : R™ — R™!

®(u) = (ll(u, ) (= 1), ooy i (1) (1 — ), i (0, 102) (1 — 1), oy Ly (10, 200 (11 — ul)>)
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We observe that ®(u;) = 0 and D®(u;) = (ll(ul), o lioa (), i () s lm(ul)>

(mfl)xm.

Since [; (Ul);nzl forms a basis of R™, rank{D®(u;)} = m — 1. Hence by implicit function

theorem we can find a smooth function (with a choice of parametarisation £ and for a fixed

i) Si () (w) : [=€, €] — R™ such that

D(Si(§)(w)) =0, Si(0)(u) = . (1.4.9)
and
|d5i(§§(w)| _ 1

Therefore f(S5;(&)(w)) — f(w) = XN(Si(€)(w), u)(Si(€)(w;) — w;) holds and denoting
Ai(Si(&)(w),wy) = A\i(§) we write

F(Si(€)(w)) = fw) = Xi(€)(S:(&) (w) — w) (1.4.10)

holds. Now the equation (1.4.9) implies ®,;(.5;(&)(w)) = 1;(S:(&§)(w), w)(S:(§)(w) —
w),j # 1. Since r;(.) is perpendicular to [;(.) we find (S;(€)(w;) — w;) is parallel to

ri(Si(€)(w), u;). So there exists a function o : R — R such that

Si(€)(ur) = w + (&) - ri(Si(§) (wr), w).

which satisfies «(0) = and &(0) = 1. Thus

dSi(jg)(ul) le=o = a(§) - diéri(Si(é“)(ul), up)|e=o + i (Si () (wy), ul)a(§)|§:0 = ri(w)

Next, differentiating the equation (1.4.10) w.r.t £ we get

Df(Si(€)(w))Si(€)(ur) = Xi(€)S:(€) (wr) + Ni(€)(Si (&) (w) — w)

To simplify the notations, setting A(.S;(§)(w;)) = A;(§) and dropping the dependence on &,
we write

24



1 System of conservation laws

Differentiating once again, we get

Since S;(0) = 7;(u;), calculating (1.4.12) at the point ¢ = 0 we find

A;(0)85(0) (w) + A3 (0)rs () = 2X0:(0)r; () + (1) S5(0) (wy) (1.4.13)

Let us consider
Ai(€)ri(Si(€)) = Ail(S:(€))ri(Si(€))
Differentiating the above equation at £ = 0, we find
A (0)Dri(wy) - ri(w) 4+ Ay (0)rs(uy)
- (D)\i(ul) : ri(ul)>rz~(ul) + () <Dri(ul) : ri(ul)>

Now substituting A;(0)r;(u;) from (1.4.14) to (1.4.13) we get

(1.4.14)

A0S, 0) () + (DA (w) - ri(uw) )rifan) + i) = A (O] (DriGan) - )

= 2)\1(0)T1(U1) + )\Z(ul)Sl(O) (ul)

(1.4.15)
Since A;(0) = A(w,), multiplying the above equation by /;(u;) we get
. 1
Next using (1.4.16) in the equation (1.4.15) we find
(Afw) = () ) (8:(0) ) = DriCuw) - i) ) = 0. (1.4.17)

This implies S;(0)(w) — Dry(w) - r5(w) is an eigenvector of A(u;) with the eigenvalue
Ai(w). Thus S;(0)(w) — Dri(w) - 7:(w;) = Bri(u;) for some 8 € R. Taking inner product
with 7; (u)
(raw), Bra(w)) = (riw), Si(0)(w) = Dri(w) - rs(us))
= (ra(w), Si(0)(w)) — (ri(w), Dry(u) - ri(w))

25
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Now we use the following identities:

(1) Let X : R™ — R™, then
1
<X,DX-X>:§D<X,X)-X. (1.4.19)

(ii) Let £ — X (&) : R — R™, then

d
dg
The last expression of (1.4.18) can be written as

(S:(0)(wr), 55(0) (wr)) — {riwr), Dri(ur) - ri(wr))

_ . 1.4.21)
h %%<Si(0)(ul)a Si(0)(w)) — %D<Tz‘(uz)77’z‘(ul)> -ri(ug) =0, (

(X, X) = -—(X,X) (1.4.20)

(NN

as |53(0) (ur)| = |ri(w)| = 1. H

Thus from equation (1.4.18) we have (r;(v;), 5r;(w;)) = 0, hence § must be zero. So

we get the identity (d).

Theorem 1.4.7. If the i-th characteristic field is linearly degenerate then R;(§)(u;) =
Si(€) (w).
Proof. Suppose v(&) solves the ode

0(§) = ri(v())

v(0) =

Since A;(-) is constant in this case, we calculate

13 I3 13
F0(E)) — flur) = / d%f(U(S))dsz / Df (u(s))i(s)ds = / Df (u(s))ra(s)ds

0

13
= /0 Ai(v(s))ri(s)ds

o

Hence v(&) lies in the i-th shock curve through ;. N
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Now let us assume the ¢-th characteristic field is genuinely nonlinear. By the previous

theorem, we observe that

dN; 1
déé) =0 = ED)‘i(ul> ri(ur) >0 (1.4.22)
and
%ko = DAi(u) - ri(ug) >0 (1.4.23)
Since A; and S; are smooth function, thus in a neighbourhood of 0, dt}ég) and dAi(Si;g))(“l)

will be positive, in other words A;(£) and \;(S5;(€)(w;)) are increasing in a neighbourhood

of 0. Now let us define a smooth function ¥ : R — R given by

W(€) = 2Ai (&) — Ail(Si () (w))

Using a Taylor expansion of W near 0, we get

V() = W(0) +EW(0) + O(€)

d/\¢(§)| _dXi(Si(8)) (w))
g <=0 dg

= 20:(0) — Ai(w) + €]2 le=o| + O(£?)

= Ai(u) +O(€%)
The last equality holds because of A\;(0) = A;(w;) and the equations (1.4.22)-(1.4.23). Hence

2Xi(8) = Nilur) = Xi(Si(€)(w)) = O(&7) (1.4.24)

for £ near to 0. Next we observe that for £ € (0, &], we have
i) < Xi(€) < Ai(Si(€)(wr)). (1.4.25)
Indeed, Since A; (&) and \;(S;(§)) is increasing near 0, we find
Ai(u) = Xi(0) < Ai(€) (1.4.26)

and

Ai(ur) = Ai(Si(0) () < Ai(Si(€)(w)) (1.4.27)
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Now from the equation (1.4.24) and (1.4.27) we have

M(E) = Ai(w) + A1-2(31-(5)(161)) L o) Lo

< Ni(Si()(w)) + O(&7)
Thus combining (1.4.26) and (1.4.28) we get (1.4.25). Using similar arguments we get

Ai(wr) > Ai(€) > Ai(Si(€)(w)) (1.4.29)

for ¢ € [—£,0) for some suitably small £. Note that the inequality in (1.4.29) corresponds

to Lax admissibility condition.

Definition 1.4.8. For a given fixed state z € R, we define the i-shock curve by £ —
Si(€)(Z) which satisfies the equation (1.4.8). If the i-th characteristic field is genuinely

nonlinear, we write

S (6)(2) = {z € Si(O)(D)Ni(2) < Xi(€) < Xi(Si(€)(2))}
and

S (6)(2) == {z € Si(§)(2)[Ni(2) > Ni(€) > Ni(Si(§)(2))}
Then the shock curve is expressed as

Si(§)(2) = S ()(2) U {z} U 57 (§)(2)

Now by the construction of the theorem (1.4.6) the shock solution u(z, t) of the system

(1.4.1) is defined as

Definition 1.4.9. Assume that there exists a ¢ < 0 such that S; (€)(w;) = wu,, then the

function

S (O)(w), x> 1tA(§)

is said to be a shock solution if it is a weak solution of (1.4.1)-(1.4.2).

(1) = {ul, x < tX\(§)
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1.4.3 The general solution of the local Riemann problem

In this section we discuss the existence of a general solution to the local Riemann prob-
lem, more precisely we provide a unique weak solution of (1.4.1)-(1.4.2). In the previous
sections, we discussed the solutions when u, in either on a rarefaction curve or on a shock
curve passing through u,;. Here we use the previous construction to provide a solution for
any Riemann type initial data, u;, v, with |u; — w,.| small. Let us start with the following

definition.

Definition 1.4.10. (a) If the i-th characteristic field is genuinely nonlinear, for a fixed z €

R™ we write
Ti(6)(2) == R (§)(2) U {z} U S; (§)(2)

(b) If i-th characteristic filed is linearly degenerate, for a fixed z € R™ we write

Ti(6)(2) == R (§)(2) = Si ()(2)

Theorem 1.4.11. Assume that the i-th characteristic field is either genuinely nonlinear or
linearly degenerate. Then for every compact set K C R™, there exists ¢ > 0 such that
the Riemann problem (1.4.1)-(1.4.2) has a unique weak solution whenever u;,u, € K and

lu; — u,| < e

Proof. We plan to use implicit function theorem to a function A : R™ — R™ defined in a
neighborhood of 0, in the following manner.
Givena ¢ = (&, ...,&n) € R™ with |£] small. Now fixing the state zy = u; we will choose

the states zg, ...., 2,, such that :
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21 = Tl(fl)(zo), )\1(21) - )\1(20) = &1,

2y = T2(f2)(21), )\2(22) - )\1(21) = &,

Zm = mfl(gm)<szl)7 Am(zm) - )\m<zm71) = gm
and we define that map A(&, ..., &) (20) = 2zm. Next we observe that by the definition of

R} (€)(2) and S; (€)(2), the chosen state 21, ...., 2, can be represented as:

and finally,

Thus A can be represented as:

A(€1, o €m)(20) = Ton(6m) © Tine1(§m—1) © - - - 0 T1(&1)(20)

Now we observe that

A(0,..,0)(20) = 20

and

OA
9

le=0 = 7i(20)- (1.4.30)

Indeed, we calculate,
A, ., €5, .0)(20) — A(0, .., 0) (20)

= T;(&)(20) — 2o
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Ti(&)(20) is either R (&;)(20) or S; (&;)(20) depending on & > 0 or & < 0. Now by

definition of rarefaction curve, we get
REE)(20) = RF(0)(20) + &3 B (6) Gnllmo + O(E)..
= 20+ &ri(20) + O(ED).
Similarly, using the theorem (1.4.6), we have
5(6) ) = 5 (0)(a0) + €155, (6) )
= 2o+ &ri(20) + O(fg).

So in any case (¢ > 0 or £ < 0) we have,

&=0 + 0(612)

A0, ..., &, .0) — A0, ..., 0) = &ri(z0) + O(E2)

Thus (1.4.30) is proved. Therefore the matrix DA(0) = [{7;(20) }I™]mxm 1s invertible since
r;(20) forms a basis of R™ for each i. Now employing implicit function theorem we have
a unique & near 0 such that A(§)(w;) = 2, = u, whenever |u; — u,| < e. Now we will
define explicit form of a weak solution u(z, ) by combining rarefaction and shock waves.

By previous theorems, we know that each Riemann problem

Zi—1, x<0
u(a:,O): {z- x>0

has a unique entropy solution consists of rarefaction and shock waves.
Case I: If the i-th characteristic field is genuinely nonlinear and &; > 0, then the solution

consists of a rarefaction wave and it is given by

Zi-1, T < Ai(zi—1)t
u(z,t) = ¢ RI(€)(zim1) Ni(zim)t < < N2t

Case II: 1f the i-th characteristic curve is genuinely nonlinear and &; < 0 or the ¢-th charac-

teristic curve is linearly degenerate the solution is given by

w(z,t) = {Zi—b T < N(zie1, %)

Zi, x> N(zie1, %)
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where )\i(Zz'—l) > )\i(zi—17 Zz) > )\Z(ZZ> and /\i(zi—l) = )\i(Zi—la Zz) = )\Z(ZZ) hold respec-
tively. Now for (&1, .., &) near 0, using the strict hyperbolicity and continuity of \;’s we
conclude that the intervals [\;(z;_1), \;(2;)] would not intersect each other. Hence denoting

AT = N\i(z) and \; = \;(z;_1) we have
AL <A <A <A <<, <A

Now the weak solution u : R x [0, 00) — R" is defined as

uy, —oo < T <At

(2.1) RI(s)(zii1) Mt<z <At
u(z,t) = _
Uy, At < x < o0.

]

1.5 Finite Difference Schemes for Approximating Scalar
Conservation Laws

Here we restrict ourselves to explicit one step finite difference schemes. Discretize the
xr—axis by a sequence {xH%} with ;1 = (i + $)h.i € Z,h > 0 and t—axis by {t,}
witht, = nAt,n =0,1,2,..., At > 0. At and h are called time step and spacial mesh size

Tiyp 31T

1
Aand ; = —2 "2,

respectively. Let A = =* y

To approximate the conservation law

ut + f(u), =0 in R x (0, 00), (1.5.1)
u(z,0) =up(z), x€R o
we introduce (2k + 1) point scheme of the form
VI = H (0] s U it ooy Uy ooy U1, Ul ) (1.5.2)

where H : R?**1 — R is a continuous function and v denotes the approximation of the
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exact solution v at the grid point (x; 1, ¢, ). Initial data {v?} is defined by

1 % 2
V) = —/ " up(z) dz. (1.5.3)

v) = ud = up(w;) Vi

Definition 1.5.1. A4 difference scheme (1.5.2) is said to be in the conservative form,if there

exists a continuous function F : R?* — R such that

H(0i s -, 0ilg) = 0 — )‘(Fﬁr% - Fin_%) (1.5.4)

where F!" = F(v ., ..., v}yy). The function F' is called numerical flux.

1
2

Definition 1.5.2. The difference scheme (1.5.4) is said to be consistent with the equation
(1.5.1) if
F(v,..,v) = f(v) Vv eR (1.5.5)

i.e., H(v,..,v)=v YveR (1.5.6)

In order to analyse the convergence of the solution {v]'} of the difference scheme (1.5.4)

we introduce the piecewise constant function v, defined a.e. in R x (0, 00) by
vp(z,t) = v for (x,t) € (xi_%,xH%) X [tn, tni1) (1.5.7)

Theorem 1.5.3 (Lax-Wendroff). Let v;, be the numerical solution obtained from the scheme

(1.5.2) which is in the conservative form and consistent with equation (1.5.1). Assume that

there exists a sequence {hy} which tends to 0 as k — oo such that, if we set At = \hy,
— Agt

(A = T, kept constant)

(D] |V, || oo (®x (0,00)) < C' for some constant C' > 0,

1

(ii) vy, converges in L, (R x (0,00)) and a.e to a function v. Then v is a weak solution of

(1.5.1).
For detail see [5, Chapter 3, Theorem 1.1]
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1.5.1 Examples of 3-point scheme:

The entropy solution of the Riemann problem

ur + f(u), =0 in R x (0, 00)

Jw if <0 (1.5.8)
u($’o)_{ur if >0

is self-similar,i.c., of the form

u(w,t) = wR(%,uz,ur) (1.5.9)

where wp depends only on the function f and consists of two constant states u; and u,.. Now
observe that { — f(wgr(&, w;, u,)) is a continuous function at £ = 0. Indeed if wg (&, u;, u,)
is discontinuous at & = 0,this means that this discontinuity is stationary(the corresponding
discontinuous wave moves with zero speed). Hence by Rankine-Hugoniot condition and

continuity of f(wgr(&,u;,u,)) at £ = 0 we have

fwr(0—,u, u,)) = f(wr(0+, u,u,)) = fwr(0,uy, u,)) (1.5.10)
Example 1.5.4 (The Godunov scheme). Now Godunov scheme is given by

vt =t — )\(Fﬁ% - Fin_%) (1.5.11)

where its numerical flux
Fiz—% = FG(”?»“?H) = [(wr(0, 0", v}y))-

Godunov has given the following simple formula for a general f to evaluate the numerical

flux

Fu,0) = fwa(0,0,0) (15.12)
_ minwe[u,v] f(w) ifu<w
B { MmaXeye[v,ul f(UJ) ifu>wv (1513)
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Godunov scheme (1.5.11) is in conservative form, consistent with the conservation law

(1.5.1) and also an upwind scheme i.e.,

FC(u,v) = f(u)if fisanondecreasing function between u and v
7 f(v)if fis anonincreasing function between u and v

(1.5.14)

Remark 1.5.5. If f is a convex function and f(0) = min,cg f(w),then the Godunov flux

(1.5.13) can be expressed in more simpler form
F€(u,v) = max(f(max(u,0)), f(min(v,6))).
Similarly if f is concave and f(0) = maxyez f(w),then
F€(u,v) = min(f(min(u, 6)), f(max(v,6))).

Example 1.5.6 (The Lax-Friedrichs scheme). This is the simplest centered finite scheme

which is given by

=" — \(F", — F" ) (1.5.15)

where
Fn _ FLF n .n _ 1 n n 1 n n
i+l = (0] Vi) = §(f(vz )+ f(vi) — X('Ui—i-l — 7))
This is in a conservative form and is consistent with conservation law (1.5.1) but is not an

upwind scheme.

1.5.2 Monotone and TVD Schemes

Definition 1.5.7. The finite difference scheme (1.5.2) is said to be monotone if H is non

decreasing function of each of its arguments.

Notation: Let v = (v;);cz and w = (w;);ez then v > w means v; > w; Vi € Z.
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Let (HA(U))Z = H(Ui_k, Vi—k4+1y ---- y Ugy oennn y Vitk—1, Ui—f—k) and HA(U) = (HA(U))i)iEZ

then scheme (1.5.2) is monotone means,

v>w = Ha(v) > Ha(w)

Examples of monotone schemes: Godunov,Lax-Friedrichs and Enquist-Osher schemes

are monotone under the CFL like condition

A sup | ff(vy)] < 1. (1.5.16)

J
Theorem 1.5.8. If a scheme is in conservative form, consistent, and monotone. Then we

have the following

1. If a 3-point scheme, then the numerical flux F(u,v) is an increasing function in its

first argument and a decreasing function in its second argument.
2. (1= stability):Let v = (V}')iez € I, then v = (/") iez € 1°° and

(2

10" oo < 10" ][00 (1.5.17)

3. (I* contraction) Suppose v € 1> . Then Hx : I' — I' is a mapping which preserves

the integral and for any sequence u and v in I we have
[1Ha(u) = Ha(v)lls < [Ju— vy (1.5.18)
For detail see [5, Chapter 3]
Definition 1.5.9. 4 scheme is said to be total variation diminishing(TVD) if
TV ") <TV(W")¥n =0,1,2,....
Lemma 1.5.10.
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1. (TVD). Any conservative, consistent monotone scheme satisfies total variation dimin-
ishing property i.e.,

St = = o =y,

1€Z 1€Z

i.e., To(v" ™) < TV (v") (1.5.19)

2. (Time estimate). Let scheme (1.5.2) be in conservative form, consistent with (1.5.1)
and TVD with a Lipschitz continuous numerical flux F;, 1. Assume moreover that
scheme is [ stable. Then there exists a constant C' > 0 such that¥ 0 <m <n,

hY =l < Cm—n) ATV (v) (1.5.20)
€2

For detail see [5, Chapter 3]

Theorem 1.5.11 (Existence of a weak solution). Let for any T' > 0,
(a) ug € L=(R) and BV (R),a functions of bounded variations and v° given by (1.5.3).
(b) vy (z,t) be an approximate solution obtained from a difference scheme (1.5.2) which is
in conservative form and consistent with (1.5.1).
) ||vn(.,t)|]oo < 00 and a TV (vp(.,t)) <oofor0 <t <T.
(d)

on(.st) —on(, 8)|[r < C(Jt —s| + ATV (vn(.,0)

for some constant C' > 0,0 < s <t <T.

Then there exists a sequence hy — 0 such that if we set, At = \h,with \ being kept

1

loe(R)) , say to u. This limit u is a weak

constant,the sequence vy, converges in L>(0,T; L

solution of (1.5.1).

For detail see [5, Chapter 3, Theorem 3.3, Theorem 3.4]
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1.6 Non-strictly hyperbolic systems

In this section, we move on to describe non-strictly or weakly hyperbolic systems. In the
previous sections, we presented an overview of the existing theory for the system of conser-
vation laws that generally assumes that the system is strictly hyperbolic and the characteris-
tic fields are either genuinely non-linear or linearly degenerate. Furthermore, the classical
existence theories are applicable when the total variation of the initial data is small. It is
well known that the solution of conservation laws may develop discontinuities after a finite
time even though the initial data lies in the space C'°(R). In that case, the solution space
is generally LP;1 < p < oo or BV, the space of the functions of bounded variation. The
solution is understood in a weak sense and in general the weak solutions are not unique.
In the literature, several admissible criteria [6, 7, 8] have been developed to establish the
uniqueness of the solution depending upon its physical relevance. In practice, some systems
may violate both of the conditions (strict hyperbolicity and small total variation of initial
data) assumed in these theories. The solution class for these systems may be wider than L>°
or BV. It is important to note that, unlike the strictly hyperbolic systems, there is no single
theory or framework towards the well-posedness of solutions for non-strictly hyperbolic

systems.

Definition 1.6.1. A4 system of conservation laws (1.2.2) is called non strictly hyperbolic if
the eigenvectors of the Jacobian matrix D f (u) does not form a complete basis, consequently
there exists u € R™ such that at least two eigenvalues of the Jacobian matrix D f(u) are
equal, i.e, if \{(u), - - -, A (u) are the eigenvalues of D f(u), then \;(u) = \j(u) for some
i ]

Example 1.6.2. (i) The first example of non strictly hyperbolic system appeared in the thesis
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of Korchinski[9]. The following system was considered

2

U
pe+ (pu)z =0

Observe that the both eigenvalues for this system are u and in the solution, the second
component p contains — measure. Other equations of this type which arise from various
physical models, were studied by many authors, e.g LeFloch [10], Joseph [11], Tan et.al.
[12],. Danilov and Shelkovich [13].
(ii) Another well-studied non strictly hyperbolic system is the Euler equation of gas dynam-
ics, see [14],

(1.6.1)

(pu): + (pu®), = 0.

For works on initial value problems of more singular type, see Joseph [15], Shelkovich

[16] and the references therein.

1.6.1 Approximation processes for non strictly hyperbolic systems

This subsection contains the approximation processes which are commonly used in litera-
ture and relevant to this thesis to solve non strictly hyperbolic systems.

1. Vanishing Viscosity method : The vanishing viscosity method is already described in
section 1.3.2. Among all the methods, vanishing viscosity is considered as the most “phys-
ically relevant” one.

2. Strictly hyperbolic approximation : Solution for some strictly hyperbolic systems can
be thought of as an approximation for the solution of non-strictly hyperbolic systems. For
example, Chen and Liu [17] considered the scaled (i.e considering the pressure term as a

function of some small parameter € > 0) system of gas dynamics equations

pe+ (pu)e =0
(1.6.2)

(pu)i + (pu® + ep(p))a = 0.
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and it was shown that the solution of (1.6.2) convergers to the solution of (1.6.1) as ¢ — 0.
3. Shadow waves : Shadow wave solutions (SDW) are constructed by a family of piecewise
constant functions with respect to the time variable depending on a small parameter € >
0. Primarily SDW is aimed to approximate ¢-shocks in a e-neighbourhood of the shock
location. Outside of that e-neighbourhood, they are just defined as a classical solution of

the system. Shadow waves are introduced by M.Nedeljkov[18] in 2010.
1.6.2 BY function and Volpert’s product
Let 2 C R™ be open.

Definition 1.6.3 (BV function). A4 locally integrable function u : ) — R has locally

bounded variation if for every compact set K C R™, there exists a constant Cy, such that

[

for each i and for every o € C} with compact support in K.

dp
0

y.dy\ < Cillglleo

Remark 1.6.4. When u is a function of bounded variation its distributional derivatives

D,.ufori=1,2,..,m are measures.

Definition 1.6.5 (Approximate jump). A4 function u has an approximate jump discontinuity

at the point i if there exists vectors u, # u; and a unit vector n € R™ such that, setting

u 1 -n <0
U =" v
Uy Zf y77>0

the following holds

i = [ Jug ) - Uy =0
ly|<R

Furthermore, when v, = u,., we say u is approximately continuous at yj.

The next theorem describes the structure of BV functions.
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Theorem 1.6.6. Let () € R™ be open and u : 2 — R™ be a BV function. The there exists
aset N C Qwith H™ Y (N') = 0 such that at each point y ¢ N, u is either approximately

continuous or has approximate jump discontinuity.

Definition 1.6.7. Let § be a point of approximate jump discontinuity for u = (uy, ..., Uy)
and f : R™ — R be C! function. We define the functional superimposition of f(u(y)) as

f(u(y)) in the following manner.

1
Flu) = [ fltw+ (0= i
0
where u;, u, are defined as before.
The next theorem states that the functional superposition is measurable.

Theorem 1.6.8. If u = (uy,...,u,) € BV(Q;R") and v € BV (Q), then f(u(z)) ia a

measurable with respect to the measure v, in any bounded region whose closer lies in ).
Now we define Volpert’s product as follows.

Theorem 1.6.9. If u = (uy,...,u,) € BV(Q;R") and v € BV (), then the product of

f(u) and the measure v, is a Borel measure y and given by

n(©) = [ Fupe.
U
for any Borel measurable subset U of €).

1.6.3 Conservation laws with discontinuous flux

The scalar conservation laws with discontinuous flux reads

u + (F(z,u)), =0,
(1.6.3)
u(z,0) = ug(x)

41



1 System of conservation laws

where F'(z,u) = H(x)f(u) + (1 — H(x))g(u), H is a Heaviside function, v, is bounded
measurable function and f,g are locally Lipschitz function in general. Non-strictly hyper-
bolic systems and scalar conservation laws with discontinuous flux are closely related. For

instance, consider the following non strictly hyperbolic system
u+ (f(u)z =0

pe+ (pf' (1)) =0
where f : R — R a Lipschitz function and f’(u) is possibly discontinuous. In that case,
the second equation of the above system becomes a transport equation with a discontinuous

coefficient. A detailed discussion about the related problems can be found in Chapter 6.
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Chapter 2

Limiting behavior of some strictly hyper-

bolic systems of conservation laws
2.1 Introduction

This chapter deals with the limiting behavior of two strictly hyperbolic systems of different
nature. The first one is the one-dimensional model for the Euler equation of compressible
fluid flow and the second one is a perturbed version of a non-strictly hyperbolic system
of conservation laws, called one dimensional model for the large scale structure formation
of the universe, which was first studied by Korchinski[9]. Both the characteristic fields of
the first system are genuinely nonlinear whereas the second one does not possess the same
property. For the second system, the first characteristic field is genuinely nonlinear and the
second characteristic field is linearly degenerate.

Euler equation of one-dimensional compressible fluid flow reads

u2

pe+ (pu)e = 0.

2.1.1)

We take the initial conditions

u(z,0) = ug(x), p(z,0) = po(z). (2.1.2)

The equation (2.1.1) was first derived by S. Earnshaw [19, 20] for isentropic flow. It is a
scaling limit system of Newtonian dynamics with long-range interaction for a continuous
distribution of mass [21, 22]. This equation is also hydrodynamic limit of Vlasov equa-

tion [23]. For smooth nonzero solutions the system(2.1.1) is equivalent to isentropic gas
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dynamics equation, namely
. _ P 2.13
(i o+ (o). =0, P(s) = [ 5P/ &4
0

This is evident from the following.

2

(pw)r + (pu® + (P(p))e = ulpe + (pu)] + plus + (5 + P(p))a]

But for shock solutions, the above identity is no more valid and the two systems (2.1.1) and
(2.1.3) are completely different.

The existence of viscosity solution of (2.1.1) with initial data py(z) > 0, was shown in
[24] and existence of global weak solutions for locally finite bounded variation initial data
for the equation (2.1.1) was by DiPerna [25], where he took p(p) = k%p7,~ € (1, 3).

Here we are interested in the limiting behavior of the solutions of (2.1.1) as the pressure
term P approaches zero. For that purpose we take scalar function P is not only a function
of density p but also a small parameter ¢ > 0, satisfying lim._,o P(p,e) = 0 and we take

P(p,e) = ep(p), where p(p) is a twice differentiable function and satisfies

P'(p) >0, 3p'(p) + pp"(p) > 0. (2.1.4)

For the calculation of the “entropy-entropy flux pair” we use the following particular form

of p which also satisfies (2.1.4).

’

7 q () P
plp) = Tdf, where q(p) = [ £ exp(§)d¢. (2.1.5)
0 0
At this point, the system(2.1.1) can be expressed as
w2

One can readily see that as € — 0, formally the system (2.1.6) becomes
u2
ut—l—(?)x:(), reRt>0

(2.1.7)
pe + (pu), =0, z €R.
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The above equation (2.1.7) is a one-dimensional model for the large-scale structure
formation of the universe[26]. This is an example of a non-strictly hyperbolic system, which
got widespread attention, started with the work of Korchinski[9]. For some interesting
articles regarding this system we cite[11, 27, 28, 29]. The importance of this system lies in
the fact that the solution is not a function of bounded variation, rather the second component
p 1S a measure.

Physical significance for introducing the term P(p, €) = ep(p) are as follows: Fore > 0,
1.e, in the presence of pressure there is no concentration of mass in the solution as we can
observe in section 3. As pressure vanishes(e — 0), the solution contains a concentration of
mass whenever there is a jump in the velocity component u(see Section 3, Theorem(2.3.4)).
Also, (2.1.6) can be thought of as a strictly hyperbolic system of conservation laws approx-
imating the non-strictly hyperbolic system of conservation laws(2.1.7).

In this chapter, we study the existence of solution for the equation(2.1.6) for Riemann

type initial data, namely,

”l>, if <0
(“0(9”)) _ A\ (2.1.8)

po(z) -
R BT
Pr

Note that for ¢ > 0, the system (2.1.6) is strictly hyperbolic and both the characteristics
fields are genuinely nonlinear. For a strictly hyperbolic system whose characteristics field
are either genuinely nonlinear or linearly degenerate, the theory[2, 30] demonstrates the
existence of a solution for close-by Riemann type initial data. But for our system(2.1.6),
large Riemann data is not an obstruction.

In this chapter first, we find the solution for the system(2.1.6) for any Riemann type
initial data and the solution is a combination of shock and rarefaction waves. Then we
study the limiting behavior of these solutions as the parameter ¢ approaches to zero. It

turns out that this limit is a solution for (2.1.7) and agrees with the vanishing viscosity limit
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

[11]. This kind of method is not very common in the literature and can be used to construct
solutions for non-strictly hyperbolic systems. In this regard, we refer to two interesting
articles ([17],[31]) on isentropic gas dynamics.

The second strictly hyperbolic system we study in this chapter is
u+€)?

Pt + (pu>fr = 07
Though the system (2.1.9) is strictly hyperbolic for ¢ > 0, it can be solved only for

(2.1.9)

close by Riemann data. We observe that if u; — u, > 2¢, one can not get Lax type solu-
tion consisting of shock and rarefaction waves. This is an example of a system where a
smallness condition is required on the initial data to get Lax type solution. For large Rie-
mann data, the solution is not a function of bounded variation. There are many methods
such as Colombeau generalized functions[32], weak asymptotic method[33], Volpert prod-
uct [34, 35]and shadow wave approach[18] to overcome such difficulties. We cite [36]
which deals with a highly non-strictly hyperbolic system of conservation laws using some
of these methods. Here in this case shadow wave approach [18] will be our method of
choice.

Shadow wave is a family of piecewise continuous functions (u", p"), n > 0 such that
the equations (2.1.9) holds in the sense of distribution as 1 approaches zero. It turns out that
the distributional limit of (u", p) as n) tends to zero satisfies the equation.

This chapter is structured as follows. In section 2, shock and rarefaction curves are de-
scribed for the system(2.1.6). In section 3, shock-wave solution is constructed for (2.1.6)-
(2.1.8), when u; > w, and the distributional limit is obtained when the parameter € ap-
proaches to zero and it is shown that limit satisfies (2.1.7) in the sense of distribution. In
section 4, entropy-entropy flux pair is found for (2.1.6) and it satisfies entropy condition for

small €. In section 5, the solution for the case u; < w, is obtained by using other elementary
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

waves. Finally, in section 6, we explicitly determine the solution for the system (2.1.9) for
any Riemann type initial data, and also the distributional limit of the solutions as ¢ vanishes,

are obtained.

2.2 The Riemann solution

The co-efficient matrix A(u, p) of the equation (2.1.6) is given by

Alu, p) = (u 6p’(p)>'

P u
Eigenvalues for this co-efficient matrix are the following: A;(u,p) = u — \/€p/(p)p and

Xo(u,p) = u + +/ep'(p)p and the eigenvectors corresponding to A; and A\, are X; =

(—\/@, 1) and X5 = ( ep;fp), 1) respectively and V\;. X; # 0 fori = 1, 2.

Each characteristic field is genuinely nonlinear for problem (2.1.6).

Shock curves: The shock curves sj,so through (u;, p;) are derived from the Rankine-
Hugoniot conditions

U,2 2

A =) =(5 + epl(p)) - (%l +ep(pr)), 2.2.1)

Ap = pi) =pu — pruy.
Eliminating A from (2.2.1), the admissible part of the shock curves passing through (u;, p;)

are computed as

s1={(u,p): (u— w>2(p+pl) =elp—p)(plp) —p(p)), p>pi; u<u},
o= () (0= PP — o p)plp) — plp)). < s <.

Rarefaction curves: The Rarefaction curves R;, Ry passing through (u;, p;) are the fol-

lowing :

47



2 Limiting behavior of some strictly hyperbolic systems of conservation laws

1- Rarefaction curve: The first Rarefaction curve passing through (u;, p;) is derived by

solving
du ep’
- p(p)’ u(pr) = up
Ry={(u,p):u—u= / df,P<PZ

2- Rarefaction curve: The second Rarefaction curve Rz passing through (u;, p;) is derived

by solving
du 6p/(,0) w(pr) = u
dp ) 1
Ry = {(u,p) s u— i = / e, p> ).

To solve the equation (2.1.6) with (2.1.8), three cases are required to be considered, that is
O v > up, M) vy = u, and (II) w; < w,. In case (I) for sufficiently small €, we have
solutions as a combination of two shock waves, if the Riemann type initial data are fixed.
For case (II) solutions are given as the combination of 1-rarefaction and 2-shock curves or
I-shock and 2-rarefaction curves depending upon p; > p, or p; < p, respectively. And
finally, in case (III) for sufficiently small € and with fixed Riemann type initial data, the
solution consists of two rarefaction waves and a vacuum state. We obtain the limit for the
solutions in each case and it is exactly equal to the vanishing viscosity limit found in [11]

which satisfies the equation in the sense of definition(2.3.5).

2.3 Formation of shock waves for u; > u,

In this section the limiting behavior for the solution of the equations (2.1.6)-(2.1.8) for
u; > u, as € tends to zero has been studied. We assume p(p) is a twice differentiable
function and satisfies (2.1.4). First, we find solution for the system (2.1.6) satisfying Lax-
entropy condition for the case u; > u,.. p; and p,. are taken positive through out this section.

The key result of this section is the following:
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Theorem 2.3.1. Ifu; > u,, there exists an n > 0 such that for any € < n, we have a unique
intermediate state (u*, p*) which connects (uy, p;) to (ur, p*) by I-shock and (uf, p}) to

(wr, pr) by 2-shock and satisfies Lax-entropy condition.

Proof. The admissible 1-shock curve passing through (u, p) satisfies the following:

u? u?
u—u)sy =(— +¢€ — (= +epp)),
(u—u)s1 =(5 +epp)) = (5 +ep(p) @3.1)
(p— p)s1 =pu — pu,
and satisfies the inequality
s1 < )\1<ﬂ,ﬁ), )\l(uv p) <85 < AQ(U,/}) (232)

Eliminating s; from (2.3.1) and simplifying yields

P— P

(u —u)? = 2¢
Pt p

(p(p) — p(p1))- (2.3.3)

We show that for a given u < u, there exists a unique p > p such that equation (2.3.3)

holds. For that let us define a function

Pp) =26 ;f(p(m — p(p)). (23.4)

We see that F'(p) = 0 and F(p) — oo as p — oo. So by intermediate value theorem we

have F'([p,00)) = [0, 00). Hence for a given u there exist a p > p such that

This proves the existence of p. To prove the uniqueness, now we differentiate the equation

(2.3.4) with respect to p to get
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

As p>pand p'(p) > 0, F'(p) is positive. So (u — @)? will be achieved only once in the
interval [p, 0o), which proves the uniqueness. The conditions (2.3.1) and (2.3.2) hold if and

only if u < wand p > p. In fact, s; satisfies (2.3.2) if
pu — pu .
ﬁ <u—+ep(p)p

; pu — pu
u—/ep'(p)p < ey <u++/ep/(p)p. (2.3.5)

Now from the first inequality of (2.3.5) one can get,

plu —u)

=5 < v’ (p)p-

Since u < u, the above inequality implies
2 2
p(u—1u N
plu—uy ; 2) > ep/(p)p- (2.3.6)
Then the equation (2.3.3) yields

2¢p” (p(p) — p(p) .
G pp—p) TP (237

To show that the inequality (2.3.7) holds let us define

Differentiating the above equation one can get

G'(p) := 29/ (p)p(p — p) + 4p(p(p) — p(p)) > 0.

The above inequality is evident since p is an increasing function and p > p. So, G is an
increasing function and G(p) > G(p) = 0. Thus we are done.

Again from the second inequality of (2.3.5), one can get
-2 )2
p (U’ B u) /
o < pp)p-
(p—p)? (v)
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

To prove this inequality, let us define the following:

Differentiating the above equation,

H'(p) = —(p* = p*)3p'(p) +p"(p)p) <O,

since p > pand 3p'(p)+p”(p)p > 0. So, H is a decreasing function and H(p) < H(p) = 0.
Therefore, the branch of the curve satisfying (2.3.1) and (2.3.2) can be parameterized by a
C! function p; : (—o0, @] — [p, 00) with the parameter u.
From the equation (2.3.3), p; (u) satisfies
(u—u)? p+pi(u) _
—~ +p(p) = p(p1(u)). (2.3.8)
¢ 2(pi(u) —p))

Differentiating the above equation with respect to u, we get

(u—0)pt+p)  —pphww—a?
e(p1(u) — p) + e(pr(u) — p)? = p'(p1(w)py(u).

Since p1(u) > p, p+p1(u) and —p+p; (u) are positive, left-hand side of the above equation
is negative. This implies p/ (u) is negative, because p’ is positive.

Similarly, the branch of the curve satisfying
S1 > )\g(u,p), )\1(1_6, ﬁ) <851 < AQ(@,E),

is the admissible 2-shock curve which can be parameterized by a C'* function p, : (—o0, @] —
(—o0, p] with the parameter u.

Also p, satisfies the following equation:

(u—1u)® p+ pa(u)
e 2(pa(u) —p))

Differentiating the above equation (2.3.9) with respect to u, we get

+p(p) = p(pa(u)). (2.3.9)

(u=0)(p+ palu)) , —pphlu) = )

Aol —7) o) P D)
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

That is,

(u Z(Zj ((5)+_p;)(u)) = ph(u) [p’(pz(u)) - %] (2.3.10)

From (2.3.9), we get

(u—u) p+pa(w) _ plpa(w) —p(p) (2.3.11)

¢ 2pa(u) = p)) u—u

Since p is increasing and v < @, from (2.3.11) and (2.3.10)
plu — u)?
pa(u) [p’(m(U)) + MI > 0.
This implies p5(u) > 0 on (—o0, @).

Consider the branch of the curve passing through (u,, p,.) satisfying the condition u >
Uy, p > p,. In a similar way as above it can be parameterized by a C'- curve p} :
[u,,00) — [p,00). The part of the curve p} from (w, z) to (u,, p,) will be the admis-
sible 2-shock curve connecting (w, z) to (u,, p,). So it is clear that p3’(u) is positive.

Let us denote the admissible 1-shock curve passing through (u;, p;) as pj. From the
previous analysis, this is parameterized by a C* curve p} : (—oo,u] — [p, o0) and satisfies
pi'(u) <0.

pi(u,.) satisfies (2.3.8) with p; (u) and u replaced by pj(u,) and u, respectively, and 4,
p replaced by u; and p; respectively, i.e.,

(ur —w)* pu+ pi(ur)
¢ 2(pi(ur) —p

>+p(/01) = p(p1(ur))-+ (2.3.12)
Again p}(u;) satisfies (2.3.9) with po(u) and u replaced by p3(w;) and u,; respectively, and
u, p replaced by u, and p, respectively, i.e.,

(w —ur)® pr+ ps(w)
€ 2(p§(ul) — Pr

) +p(pr) = p(p5(w)). (2.3.13)

It is evident from (2.3.12) and (2.3.13) that p}(u,) and p}(u;) tend to co as € tends to zero.

Therefore there exists an 7 > 0 such that e < 7, we have p5(u;) > p; and pi(u,) > p,.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Now let us consider the function p — p5. Since pi(u;) — pi(w;) = pr — pi(w;) < 0 and
pi(u,) — ps(u.) = pi(u,) — p, > 0, by intermediate value theorem there exists a point u’
such that pj(u}) = pi(u’) = pi(say). p! is unique because pj is strictly decreasing and
p5 1s strictly increasing. Since we are considering only admissible curves, the Lax entropy
condition holds. This completes the proof.

O

Now we determine the limit of the problem (2.1.6) for the shock case. For this, first, we

will define J-distribution followed by a simple technical lemma which will be useful later.

Definition 2.3.2. A4 weighted )-distribution “d(t)éx:c(t) ” concentrated on a smooth curve

x = ¢(t) can be defined by

() aoiey ol 1)) = / " d(t)plelt) )t
Sorall p € C°(R x (0,00)).

Lemma 2.3.3. Suppose a.(t)(> 0) and b.(t)(> 0) converge uniformly to 0 on compact
subsets of (0, 00) as € tends to zero. Also assume that d.(t) converges to d(t) uniformly on

compact subsets of (0, 00) as € tends to zero. Then

1
be(t) + ac(t)

converges 1o d(t)dy—() in the sense of distribution.

de(E) X (c(t)—ac (1) ct)+b. (1)) (2)

Proof. Let us denote

U t) = ———d_(t _ .
(x,1) be(t) + ac(t) e( )X(c ae(t),C-&-be(t))(x)

Let us now consider the integral

/OOO /_: (\Ij(z,t)¢($7t)dmdt — /OOO d(t)w(c(t),t)dt)‘
- 1

< /
0

be(t) + ac(t) /c(t)ae(t) A (Dple,t) — dt)p(elt), 1) du .
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Now, since ¢(z, t) has compact support and d.(t) converges to d(¢) uniformly on compact
sets as € — 0, the integral in the the right hand side of the inequality above converges to 0.

Since this is true for all test function ¢, the proof of this lemma is completed. ]

Theorem 2.3.4. The pointwise limit u® is uw which is also a distributional limit and is given
by
w, ifx < %t
— +ur ] . +ur
u(z,t) = e if g = uieg
U, if x> Mzurt.
The distributional limit of p® is p and is given by
Pl if =< WTUTt
p(z,t) =< (u — u,n)ﬂ;&téx:ul;w

] +ur
pr, if x> 5L

o if x:mf’“t

Proof. From the above theorem, (u, p¥) satisfies the following conditions:
*2 2

* p:u: — PLuy U * U
(ug — Ul)W = (7 +ep(pc)) — (51 +ep(p)),
e 2.3.14
up — U ) ———— = (—=—+e¢€ — (= +ep(pr)).
: P 5 +en(p; 5 o

We know u! € (u,, ;). So the sequence u’ is bounded. We claim that p} is unbounded
as e tends to zero. In fact, if p; is bounded, then it has a convergent subsequence still denoted
by p! and it converges to p* as e tends to zero. Then from the equation (2.3.3), we get that

p: satisfies:

(u: . ul)Q (pe ;Pl)

Now as € — 0, the above equation becomes

(0" — w)? (p" ;r pi)

= e(p; — p)(p(p}) — p(p1))-

=0,

as right hand side of the equation is bounded. Now since p* + p; > 0, we get u* = ;.
Again since p; satisfies:

(u* —u )2 (p: + pr)

5 = clpe = pr)w(PZ) = plpr))-
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By the similar argument as above, we get, u* = u,. This implies u; = u,, leads to a con-

tradiction.

So for subsequence of u} and p} still labeled as u} and p! respectively and that u) con-

verges to u* and p; tend to +o0o. Passing to the limit for this subsequence in (2.3.14), we

get
*2 2
u up
*(,) ok — I I
w*(u” — ) 5 5 +
*2 2
u u
* * L) = _ T l,
u*(u* — ) 5 5 +

where linéep(p:) = [. Solving the above two equations we get
e—

N U + Uy
u =
2

1
and | = ¢ (u — u,)”. (2.3.15)

The solution for (u, p°) is given by

(u; if x< (“;“l + 6(p(p2‘)—p(pz)))t

ug —ug
)= o it (g gl <o e L Sy Q306
uw, 1f = > (“*egrur _|_€(P(PZ)*P(Pr)))t
T U —ur ?

(p if z < (u*g;‘“l + €(P(PZ)*P(P1)))t

ut—uy

prla,t) = pr i (Mg 4 Py o g o (e RLOZPE))(23.17)
oy if x> (u*e+ur + G(P(Pi)*p(Pr))ﬂ
\ T 2 wr—up :

As u} converges to u* = “F' as e — 0, we have the limit for u(z,t) as stated in the

theorem.

From (2.3.14) and (2.3.15), one can show that

1im[“*f o e(plpp) = p(pz))} _wtu
e—0 2 U: — 5

and

lim[u*e +ur e(ppr) — p(pr))} _wtur

2 ur — u, 2

e—0

Let us denote
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() =,
uw'e+w | e(p(pi) —plor))
ae(t):c(t)—< S+ piz_fl” )t,

ba(t) = <u oy e(p(p) —p(pr))>t_ (0).

2 ur — U,

2 + * *
ur — Uy, ur —

pit.

_ [wr —w e(p(pz) —plpr))  elp(py) — p(p1))
dé(t) - - €
With the above notations, the formula for p¢ in equation (2.3.17) can be written in the

following form as in the Lemma(3.2):

P° =PIX (~c0rc(t)—ac (1)) (T) + mX(c(t)fae(t),c(t)ere(t)) (z) (2.3.18)
+ PrX (et)+0e(8),00) (2)-

Observe that a.(t) and b, (t) satisfies the condition of the lemma, i.e, a.(t) > 0 and b.(¢) > 0

for small e.

Now we will determine the limit of d () as € — 0.

The equation (2.3.14) can also be written in the following form:

(v _pl>{Ui+Uz L ) = plp)

* %
= PUe — PrUy
2 ur — }

(2.3.19)

(pz . r){u: + Uy + E(p(p:) _p(pr))

K,k
2 * } = PelUe — Prlr.
ur — u,

Subtracting second equation from the first in (2.3.19), we get

+ e

[ur —w | e(p(p;) —ppr)  elp(pr) —p(pz))]p*
2 uf — Uy U —

= p1u — Priy + pr(uz ;— uT) - Pl(uz _2‘_ U’l)
e(p(ps) —plpr)) o e(p(p) — plpr))

ur — Uy ur —

+ pr

Passing to the limit as e — 0, we get

[ur —u eplp) —ppr)) _ eplpe) = plor)

2 ul —u, ur — uy

lim
e—0

1
pe = é(uz —u,)(pr + pr). (2.3.20)
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This implies

limd, (1) = %(ul —u)(pi+ pot. 2.321)

e—0

1
Here in the calculation of (2.3.21), we have used the fact that lir%ep(p:) =3 (u; — u,)? and
e—
U + Uy

limu; = from the equation (2.3.15).

The first and the third terms of (2.3.18) converge to p;x (—o0, itz ) (x) and
PrX (urtur t,oo)(x) respectively. Hence, employing the above lemma to the second term of
(2.3.18), we get the distribution limit p(x,t) as given in the theorem. Note that all the
analysis has been done for a subsequence. Since the limit is the same for any subsequence,

this implies the sequence itself converges to the same limit. Thus the proof of theorem 3.3

is completed. [

The limit (u, p) satisfies the equation in the sense of Volpert is available in [37, 38].
There it was shown that R; + ©R, = 0, where p = R, and uR, is known as Volpert
product [34]. Then p = R, satisfies the equation (2.1.7) in the sense of distribution. For
completeness, we intend here to show that the limit (u, p) satisfies the equation by formu-

lating it as follows.

Definition 2.3.5. Let u is a Borel measurable function and p = dv is a Radon measure on
R x [0,00). Then (u, p = dv) is said to be a solution for the system (2.1.7) with initial data

(2.1.2) if the following conditions hold.

/ (upy + ug,)dxdt + / up(z)p(x,0)dr =0
Rx[0,00) R (2.3.22)

| @ uoiv+ [ miz)ote0ds =0,
Rx[0,00) R
for any test function ¢ supported in R x [0, 00).

Theorem 2.3.6. For w; > u,, the pointwise limit v of u* and distributional limit of p of p°

satisfies the equation(2.3.22).
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Proof. From Theorem(3.3), the pointwise limit u of u¢ and the distributional limit p of p°

are given by

wy, ifr < st o, if x < st
u(z,t) =4 s, if x = st p(z,t) = ¢ (u — ur)@t@zst, if x=st
Uy, ifr > st pr, 1If x> st,

where s = “Ftr

Let ¢ be any test function supported inR x [0, co). It is well known that u satisfies the first
equation of (2.3.22). Now we show that (u, p) satisfies the second equation of (2.3.22).

Observe that the limit p is a Radon measure and can be written in the following way.

pl+pr

p=dv={p + (p — p)H(x — st)}dxdt + (u; — u,) 18— s dt,

where H is the Heaviside function and ¢ is the Dirac delta distribution. Note that « is a

Borel measurable function and defined everywhere on the domain. We calculate

/ ¢th
Rx[0,00)

_ / pibydadt + / peddadt + (w — ) L / / tn (2, 1) 0pegdt (2.3.23)
x<st 0 R

r>st 2
= / p1Pedadt + / proedxdt + (u; — ur)pl P / toy(st, t)dt.
x<st T>st 2 0

Using integration by parts for the first two integrals of the equation(2.3.23), we get

/ ¢ydv
Rx[0,00)

= —sp /000 o(st,t)dt + sp, /000 o(st, t)dt — /Rpo(x)qﬁ(x, 0)dx

+ (g — up) 2 ; Pr / ton(st, t)dt

0
— s(or — p1) /O b(st, 1)t — /R o), O)dr + (1 — uy) P L /0 Lon(st, 1),
(2.3.24)

where po(x) = p; + (pr — p1) H(x). Similarly we calculate
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

/ UG, dv
Rx(0,00)

- / prubpdrdt + / ooty bpdidt + (g — uy)sPE L / tu (st t)dt
r<st 0

x>st 2

:plul/ qb(st,t)dt—prur/ ¢(st,t)dt+s(ul—ur)pl;pr/ b (st t)dt
0 0 0

= (puy — pruT)/ o(st,t)dt + s(u — uT)'Ol ; Pr / to.(st, t)dt,
0 0

(2.3.25)

where in the third step we used integration by parts. From equations (2.3.24) and (2.3.25),

we get
| @ woiv s [ (oot 0)ds
Rx[0,00) R
=[s(pr — p1) + prus — pru] / P(st,t)dt
0
+ r °
+ (u — uy) 2 5 P / t(su(st, t) + dy(st, 1))t
0
=[s(pr — p1) + prws — pruy | / (st t)dt
0
pit+pr [, d
—u, t—(p(st,t))dt
=) 2 [T o(enn)
o [
:[s(pr — ) + pwg — pruy — (ug — ur)pl 5 P } / o(st,t)dt = 0.
0
This completes the proof. [

2.4 Entropy and entropy flux pairs

In this section, we show that the solution constructed for the system (2.1.6) for Riemann
type data is entropy admissible. For the sake of completeness, we start with the following

definitions[2] restricted to the 2 x 2 system, namely

Uus + (fl(u7p>>:c =0
2.4.1)

oo+ (falu, ) = 0.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Definition 2.4.1. 4 continuously differentiable function n : R* — R is called an entropy

for the system(2.4.1) with entropy flux q : R? — R if
Dn(u, p).Df(u, p) = Dq(u, p),
where f(u, p) = (fi(u, p), f2(u, p)). We say (n,q) as entropy-entropy flux pair of the sys-
tem(2.4.1).
Definition 2.4.2. 4 weak solution (u, p) of the system (2.4.1) is called entropy admissible
if
// n(u, p)pr + q(u, p)p. dz dt > 0,
R % (0,00)

for every non-negative test function ¢ : R x (0,00) — R with compact support in R x

(0, 00), where (1, q) is the entropy-entropy flux pair as in the definition(2.4.1).

For our system (2.1.6), f(u,p) = (“72 + ep(p), up), where p is of the form (2.1.5).

Therefore (7, ¢) will be an entropy-entropy flux pair of (2.1.6) if

on on _om on\_ (0 04
ou app’ P Bu op ou' dp)’

That is,
da_on o
ou ou' " op” 242)
9 _ 00 00 h
) ou dp
Eliminating ¢ from (2.4.2), we have
Pn 0%
— = e —.
0p? ou?

One can see that
n(u, p) = %uz + ee’
is a solution of above the equation which is strictly convex (since D?n > 0) and the corre-
sponding entropy flux is

1
q(u, p) = gu?’ + epue”.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

We show here that our solution constructed in the previous section for Riemann type

initial data (u; > w,) is entropy admissible as in the definition(2.4.1).

We calculate

1 « 1
M+ Qe = — 851 (§UZ2 + eefe — —ul2 — eepl>5xslt

1 1 .
— 89 (5“3 + eefr — éu:Q - ee”ﬁ)&c:szt
) . (2.4.3)
+ (gU:B -+ GP:U:e'D: - gu? - Eplulepl)(sx:slt
1 3 Pr 1 *3 *0 % p*
+ §u7“ — €prur el — gue — €P U ETC 5:E=32t7
where i .
_ Wt u | e(p(p?) —p(o))
S1 = ( 9 + ut — U )7
_ Wt ue e(p(pr) — pler))
52 = 2 + urF —u )

One should note that to show 7(u, p) and g(u, p) satisfies the entropy inequality for small
€, we separately show that the coefficients 6,_s,; and d,—;,; are negative. Therefore it is

enough if the limiting values of the coefficients are negative as e tends to zero.

Coefficient of 0,—¢,¢
1 *2 * 1 2 1 *3 * x _pE 1 3
=—s1| Jue + eef — QUL ee” | + le + epiurels — —uy — epue” (2.4.4)
T bl

I

From (2.3.15),
(2.4.5)

2
e’ (pr — 1) %M as € — 0.

Since p; is unbounded, we get

PE(pr — 1
1) a5 e, (2.4.6)

(bt =1)
Now using (2.4.5) and observing that s; —

- r 3 r r
I — (Ul+u )< u1l6+u )(u Ul) ase — 0.

cele =

M, one can see
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Again using (2.4.5) and (2.4.6), a simple calculation yields

T

(up — w)(Tuf + 4ugu, + u?) N (uy — w)(u? — u?)

171 — — 0.
24 16 ase =0
Therefore from the equation(2.4.4),
2 T T 2
Coefficient of g, = I + 11 — (u uliéul ) ase — 0.

Since u; > wu,, Coefficient of §,—s,; = I + II < 0 for small €. In a similar way, the

coefficients of d,—,; can be handled.

Remark 2.4.3. It is well known that if n be a smooth entropy of the system (2.1.6) with the
entropy flux q and if one assumes that the Hessian D1 > 0, then for genuinely non-linear
characteristic fields the entropy inequality n(u), + q(u), < 0 is satisfied for sufficiently
close initial data. For details, one can see [2]. But in our case, initial data need not to be

sufficiently close. Our proof relies only on the smallness of .

2.5 Solution for the case u; < u,

This section is devoted to discuss other two cases, i.e, u; = u, and u; < u,. We assume
the same conditions on p(p) as in section 3, i.e., p(p) is a twice differentiable function and
satisfies (2.1.4). In this section our proof goes in the spirit of [31].

Case I (u; = u,.): For w; = u,, initial data is

i 2 <o0
(uo(x)) _ pL
po()
B I}
pr
Now if p; = p,, we have the trivial solution u(x,t) = w; and p(z,t) = p;. Another two

possibilities are p, < p; or p,. > py.

Subcase I(p,. < py): For this case, we start traveling from the state (u;, p;) in the curve R; to
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

reach at (u’, p¥), then from (u?, p}) we travel by S, to reach at (u;, p,). 1-rarefaction curve

R, through (v, p;) is obtained solving the differential equation

du ep'(p)
L A . 2.5.1
dp P u(p) = w ( )

So, the branch of the curve satisfying (2.5.1) can be parameterized by a continuous function
uy : [pr, pi] — [ug, 00) with parameter p. Since p'(p) > 0, we see that u; is decreasing.
Therefore, uy(p,) > uy.

Any state (u, p) connected to the end state (u;, p,.) by admissible 2-shock curve S, satisfies

the following equation:

U — Prl, u? u?
(w =) == = (5 epl(p) = (G +eplp), w> s and p >y, (252)
and
s> Xo(u, p), M(u,pr) < s < Xao(ug, p,), where s = % (2.5.3)
Equation (2.5.2) implies
(u— ) = 2L () — p(p,). (2.5.4)

(p+ pr)
Our claim is that for every fixed p > p, there exists a unique u > u; such that the equation
(2.5.2) holds. Let us define
F(u) == (u—w)*.
Since F(u;) = 0 and F(u) — oo as u — oo, we have F'([u;,00)) = [0, 00). Since p is
increasing and p > p,, right hand side of (2.5.4) is positive. Therefore for the given p > p,.,

there exists a u > u; such that

Flu) = 26%@@) (o)

Also since F'(u) is an increasing function for u > w;, u is unique for the given p.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Similarly in Theorem 3.1, the branch of the curve satisfying (2.5.2) and (2.5.3) can be

parameterized by a C''-function us(p) = us : [pr, pi] — [ug, 00) satisfying

(p - pr)
(p+pr)

F(uz(p)) = (uz(p) — w)® = 2€ (p(p) — p(pr)).- (2.5.5)

Note that us(p,) = u; and it is clear that the function u, is well defined. The function u, is
increasing in the interval (p,., p;). Infact, differentiating the above equation (2.5.5) we get,

P — Pr
P+ pr

(ua(0) = ) () = €| () 22 < (o) o) 200

pte)?|
Since p > p, and p(p) is an increasing function, i.e, p’(p) > 0, RHS of above equation is
positive for small € > 0. That is, (u2(p) — u;)us'(p) > 0. Since ua(p) > wuy, us'(p) > 0.
From the above analysis, there exists an intermediate state pf € (p,, p;) such that

uy(pk) = ua(pf) = uf. Hence the solution for (2.1.6) is given by:

U ifz < Ay (u, o)t
o) BiG/)(u, o) i A (u, )t < @< Aa(ug, p)t
fT) w if A (uf, p2)t < @ < BT
Uy if g > Lrupeucy
\ Pr pe
and ) '
Pl ifzr < Al(ul,pl)t
| RN/ A )t < < M, )t
P=3 pr if A (uf, )t <o < BEEemet
Or if g > Lru=peucy
\ Pr—Pe

Where Ry (&) (u, p) = (RY(&)(a, p), Ry (&)(4, p)) and RY(&)(u, p) is obtained by solving

du 2P (p) O (3. E

- s (@ _ =
E "oy ) =e
and RY(¢)(q, p) is obtained by solving
AL ()

¢ 3ep'(p) +epp”(p)’
Subcase Il (p; < p;): This can be handled in a similar way. In fact, here we start from

(w;, pr) and reach at (u?, p¥) by Sy and from (u}, p}) to (u;, pr) by Ry. So, the solution is
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

given by :
U if @ < Pele—pruy
PE—pL
oo ) ow f%t<az<)\2( uk, po)t
Rg(x/t)(u:,p:) lf/\2( e?pe)t <z < /\Q(Ul’pr)t
Uy if £ > Ao(uy, pr)t
and
pe e —PIUI
ol ifz < Wt
) if B g < Ay, )
Ry(a/t)(ut, pt) if Aol p1)t < @ < Dol pr)t
Pr if x > Ao(uy, pr)t

where Ry(&)(u, p) = (RY(§)(a, p), R5(&)(w, p)) and RY(§)(w, p) is obtained by solving

du 2p'(p) .
— = — —, u(Aa(u, &) = .
g 3p'(p) + pp"(p) Paln)
and R(&)(q, p) is obtained by solving
d 2\/ep’ _
£= 20 pe(a,€) = 5

ds — 3ep'(p) +epp”(p)’
Now our aim is to find the limit of (u, p°) as € — 0 in both of the above cases. Since

pr € (pi, pr) or pf € (py, pi) this implies p} is bounded. Also p! and u’ satisfies

(= P ) 0(02) — pl).

Since R.H.S is bounded, as ¢ — 0 we get,

lim(u* — ulfM

e—0 2

:O,

that is, lim._,o u* = u;. Therefore the solution (u¢, p) — (u, p) as € — 0 where (u, p) is

given by:

{ o ifx <ut
p= if
pr 1t > wt.

and

w ifr <t
u = .
u, ifx > wut.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Since here u; = u,. we have u = ;.

Case II (u; < wu,) : The Ist-rarefaction curve passing through (u;, p;) is given by the

solution of the following Cauchy problem:

dp p

du ep'(p
— = (p) p < pi, (p) =

Note that for this case it does not matter whether p; < p, or p; > p,.. So, W.L.O.G we can
take p; > p, > 0. Now a branch of R; can be parameterized by a differentiable function

uy = [0, pi] = [uy, 00) with a parameter p. Explicitly u; can be written as

— U= /
ol

Since p € [0, p;] is bounded and p is increasing, we have u;(p) — u; as € — 0 decreasingly.

d§

Similarly, the 2nd-rarefaction curve is given by the solution of then Cauchy problem :

du ep’
== (p)) p<pr, ulp)=u,. (2.5.6)
p p

Let uy : [0, p,] — (—o0,u,] is differentiable and parameterized branch of R, satisfying

)y = /

Since p € [0, p,| and p is increasing, we have us(p) — u, as € — 0 increasingly. Since

(2.5.6) and can be written as

d§

w < u,, by the above calculation one can see ul(O) < ug(0) for small e. In this case the

complete solution is the following:

(

U if x < Ap(wg, o)t
Ry(a/O)(u, p) i M, p)t < 2 < M(ui®, 0yt
u =1 gzt 1fA1(uZ(” 0)t <z < Ap(ur®, 0)t (2.5.7)
Ry(x/t)(®,0) it X(ui®,0)t < 2 < Na(uy, pr)t
[ ur ifz > Ao (uy, pr)t.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

and )
Pl if o < i (ug, p)t
R/ (w, p) i M(w, p)t < 2 < A (ur™, 0)t
=20 it A (e, 0)t < < Ao (ul®, 0)t
RO(x/0)(ui®,0) if A(ur®,0)t < 2 < Ao(uy, po)t
L O if x > \o(u, pr)t,

where RY(.), R{(.), R4(.), R5(.) are as above.

Now it remains to find the limit of (u€, p°) as ¢ — 0. Since wV = u1(0), we have

*(1) (2)

ue’ — u; and in the same way u; ~ — wu, as € — 0. Passing to the limit as € tends

to zero, we get
w ifx <wt
u(z,t) =< z/t ifuyt <z <ut
u, ifxz > u,t

and
p ifx <ut
plx,t) =<9 0 ifuyt <z <u,t
pr ifx > u,.t.

Remark 2.5.1. In equation (2.5.7), one has to take u‘(x,t) = 7 in the region \ (u:(l), 0)t <
< Ag(ue (2), 0)t. This kind of selection gives unique entropy solution. In fact, since p = 0
in this region, the first equation of (2.1.6) turns out to be the Burgers equation and u(x,t) =

% is the unique entropy solution for the rarefaction case.

2.6 Limiting behavior of another strictly hyperbolic model:
Shadow waves

This section aims to study the limiting behavior of the solution for the following strictly

hyperbolic system.

(ute?,
At (5 )e =0 2.6.1)
,Ot + (pu)l’ - 07
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

with Riemann type initial data:

. “l> . if 2z <0
<“0 v ) _ L\ (2.62)
pO(x) UT> ) if z>0.
pr

In comparison to the previous system dealt with in the first part of this article, this system
is very much different in nature and only retains the strict hyperbolicity property. The
eigenvalues and the eigenvectors for the system (2.6.1) are the following:

The first eigenvalue A\; (u) = w and the corresponding eigenvector is 7 (u) = (0, 1) and the
second eigenvalue A\»(u) = u + € and the corresponding eigenvector is 71 (u) = (1, p/e).
Again, VA (u).r1(u) = 0and Vg (u).r2(u) = 1. So, the first characteristic field is linearly
degenerate and the second characteristic field is genuinely nonlinear, whereas the previous
system is genuinely nonlinear in both of the characteristic fields. The main difficulty is that
for certain cases, Lax-type solutions don’t exist. In those cases we use a recent technique
introduced in [18] called Shadow Wave solution. Now we describe explicitly shock and
rarefaction curves for the system (2.6.1).

1-rarefaction curve: 1-rarefaction curve is the solution of the ODE;

w(€) =ri(w(€)), whil(w,p)) = (w,p),

where w(§) = (wy(§),wa(€)). So, solving the following pair of ODE:
w1(€) =0, wi(w) = .

wy(§) =1, wa(u) = pr.

we get the 1-rarefaction curve Ry passing through (uy, p;),

Ri(§) = (w, &+ p—w).

2-rarefaction curve: 2-rarefaction curve is the solution of the ODE;

w(&) = ra(w(§)), wa(w,m)) = (w, p),
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

where w(&) = (w1(£), wa(§)).

This gives the following system of ODEs with initial conditions.

w1 (&) =1, wi(u +e€) =u.

) w
wy(§) = 26(5)7 ws(uy + €) = py.
Solving the above pair of ODEs, we get the 2-rarefaction curve R, passing through (u, p;).
E—(u+e
R(§)=(E—€ n eXp(M)). (2.6.3)

The admissible part of the curve is Ry .

(5 - (Qél + 6)))

RI (&) =(£—¢€ prexp , E>ute. (2.6.4)

Since the first characteristics field is linearly degenerate, the 1st-Shock curve and the
Ist-Rarefaction curve will coincide, i.e., R1(§) = S1(§).
Admissible 2-shock curve: Admissible 2-shock curve passing through (u;, p;) is given

by:

a5t e
u;ul

< u, u—u < 2e.

Now, a brief description of the concept of Shadow waves is given below. Shadow waves
are constructed as families of functions that approximate delta shock waves (or, in fact any
types of singular shocks) in a small neighborhood of the shock location. Outside that small

neighborhood, they are classical solutions of the system.

Definition 2.6.1. Let f € C(Q : R") and U : R2 — Q C R" be a piecewise constant
function given by

((w, p1),  ifz < (c—ayt

(o), i (c—ap)t <a <ct

UMz, t) = (u", p")(z,t) =
(ug, p3), ifct <x < (c+by)t

(U, pr), ifx> (c+ by)t.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

If (U + (f(U")y — 0 in the sense of distribution, then U" is called a Shadow Wave

solution to the conservation laws
The main result of this section is the following.

Theorem 2.6.2. The solutions (uf, p°) of the system (2.6.1) with Riemann type initial data

(2.6.2) are given below case by case:

For u; < u,,
(ur, p1) if x < ut
(o) (ant) = | (@ preexp(ED) fut <o < (w+e)t
’ ’ (x/t — e, prexp(L=rDY)if (wy + )t <z < (u, + )t
(Ur, pr) if ©> (u, + e€)t.

(2.6.5)
For u; = u,, the solution is given by

(u, ) if e < ut
(u, p) (2, t) = < (w, pr) ifut <z < (u+ e€)t (2.6.6)
(w, pr) if @ > (w +€)t.

If u; > u, and u; — u, < 2¢, then the solution is given by:

(w, ) ifw <ut
(u, p)(z,t) =< (wg, p*) ifut <z < (U5 4 e)t (2.6.7)
(ur, py) If &> (M54 + e)t.
where

U — Uy
—5 - TE€

x _
p=p Lrtte

Ifw; > u, and wy—u, > 2¢, then the system admits shadow wave solution (u"<, p™), <.

The pointwise limit of u* is u® and the distributional limit of p"* is p° and are given as

follows:

o if r < (M4 o)t
u () = Q B o f gy = (M o) (2.6.8)
(ur,pp)  if &> (M4 + e)t,
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

o if oz < (M o)t

P = (w + €(pr — Pz))t(sx:(wﬁ)t, if o = (45 4 e)t. (2.6.9)
prif x> (M +e)t.

Further (u¢, p) satisfies the equation (2.6.1) with initial data (2.6.2) in the sense of the

definition (2.3.5).

Proof. Case 1: u; < u,: The state (u;, p;) can be joined to (u;, p¥) by 1-shock curve and
(w, p¥) can be joined to (u,, u,) by 2-rarefaction curve. Then by (2.6.3), (u, p}) will satisfy

the following equations.

. E—(w+e€
w=€—c p = et
Which yields
. Uy — Uy
E=u+e pr= pr.eXp(¥)‘
So the solution for the perturbed problem is given by:
(w, p1) if =< Ai(u,m)t
€ € (ulap*) if Al(ulapl)t <zr< )\2(ul7p*)t
, 1) = ¢ o . € 2.6.10
NG =N Ry(@) ) i Ml p) <2 < dolwrpt GO0
(wr, pr) if = > X(u,, p,)t.

where Ao (Ra(&)(u, pi) = x/t, i.e, & = x/t. Using equation (2.6.3) and putting the
values of \; and )\, yields (2.6.5).
Case 2: u; = u,: The state (u;, p;) is connected to (u;, p,-) by 1-shock and (uy, p,.) to

(uy, pr) by 2-shock,

(u, pr) ifx <t
(u, p)(z,t) = < (w, pr) fwut <z < (u+ et (2.6.11)
(u, pr) if > (u + e)t.

Case 3: u; > u,, u; — u, < 2¢: In this case (u;, p;) can be connected (u;, p*) by 1-shock
and (uy, p*) can be connected to (u,, p,) by 2-shock and a simple calculation yields

U —Up
-5 T€

x _
P pr—urgul +e€
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Case 4: u; > u,, u; — u, > 2¢: In this case Lax method cannot be used. This situation
is handled by using shadow wave approach. Use ansatz,
(w, ), ifz<(c—mn)t
(u?, p" (z,t) = < (u, 5), if(c—nt<xz<(c+n)t
(tur, pr), ifx > (c+n)t.
We want to determine c, u, and p such that the following limits hold in the sense of distri-

bution. Asn — 0,

("), + ((u";e)z) o

xT

(") + (up")y — 0.
That is, as n — 0, ,
n
(e (YT g o, .
((p") + (u"p")e, 0) — 0.

for all test function ¢ € C2°(R x (0,00)). Now we calculate

(e (MDY o) =~ [ wlte-mro

et s — ) / " ol(et n)t tydt

) L0 (2.6.13)
+(<u;€) - (ul;re) )/0 p((c—n)t, t)dt
+((ur—2ke)2 - (u+26)2> /0” o((c+ ), 1)dt.

Since ¢ has compact support, passing to the limit as 7 tends to 0, and using the first equation

of (2.6.12) and equation (2.6.13), we get

(ur + €)% (u; + €)?

—c(u, —wy) + 5 - 5 } /0 (ct, t)dt = 0. (2.6.14)

But equation (2.6.14) is true for all ¢ having compact support in R x (0, co). Therefore

U + Uy
CcC =
2

€.
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

Next,
(it @) = ~(e=mE =) [ elle=mt.0at
~e=mE=p) [ elle+ it
up

(L~ up) / " ol(e — )ty )t

up, [
Hurpr = 22) / o((c + )t Dt

(2.6.15)

Taylor expansions of the functions ¢((c — n)t, t) and ¢((c + n)t, t) about (ct, t) are
t
p((c —m)t, t) = p(ct, t) — atea((ct, t) + 772/2/ Paa(ct —nr,t)(t —r)%dr.
0

t
ol(c+ )t t) = (et t) + ateu((ct,t) + 172 / pualct + i, t)(t — r)dr.
0
Using the expansions in (2.6.15), we get
< (") + ("), 90>
= [~ = nloln =) = e+ 0loe = /) —wm+wup] [ ottt
0 (2.6.16)
+t [(C = m)(p = pm) — (wp = mupr) = (¢ +n)(npr = p) + (ntrpy — un)] X
/ . (ct, t)dt + O(n).
0
Passing to the limit as  — 0 in the equation (2.6.16) and comparing the coefficients of the

integrals as above, we get

u=cand p = il UT'OTQ_ el = ,Or)‘

Now (2.6.8) and (2.6.9) follows easily. (u, p) given in (2.6.8) and (2.6.9) satisfies the inte-
gral formulation(2.3.22) in the definition(2.3.5) is exactly similar to the proof of the Theo-

rem(2.3.6) and is omitted. This completes the proof. [

Remark 2.6.3. From the formula for (uf, p°) given in the Theorem 2.6.2, one can easily ver-

ify that for the case w; < u,, the distributional limit of (u¢, p°) as € tends to zero, converges
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2 Limiting behavior of some strictly hyperbolic systems of conservation laws

to
(wg, pr)  ifr <t
(u(z,t), p(x,t)) =< (x/t,0) ifwt <z < u,t
(urapr) ifx > u,t

and for the case u; > wu,., the distributional limit of (u*, p°) as € tends to zero, converges to

(w,pr) if < (“34e)t
(ue,pg)(fﬂ,t) — (ul;ur, (Ul—ur)Q(Pl-Fpr)ém:(ungw )t> if r= (Ul+ur )t

2
(ur, pr) if x> (U342)t

in the sense of distribution. This is the vanishing viscosity limit for the large scale structure
formation of the universe, see [11, 27]. This limit satisfies the equation (2.1.7) is already

proved in Theorem(2.3.6).
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Chapter 3

Limiting behavior of scaled general Euler

equations of compressible fluid flow
3.1 Introduction.

General Euler equations of compressible fluid flow read

U,2
pe+ (up+g(p))z = 0.

We take the initial conditions
u(z,0) = ug(x), p(x,0) = po(z) > 0. (3.1.2)
For the above system, the assumptions on f(p) and g(p) are the following:
HI. f, g€ C®0,00)and fy = £ € C*[0,00), gy = £ € C?[0, 00).

H2. fi > dand 2f] + gi(r1 +g1) > 0,2f] + ¢} (r1 — g1) > 0, where d is a fixed positive

constant and r; = \/g? + 4f1.

Under these assumptions H1-H2, the system (3.1.1) is strictly hyperbolic and genuinely
nonlinear in both of its characteristic fields[24]. Here we are interested in the system (3.1.1)

with the following conditions on f and g.
Al. f € C?0,00), f/ > 0and f” > 0.

A2. g € C*(0,00) and g is any linear decreasing function.
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

It can be easily observed that our assumptions on f and g are compatible with H1 and H2.
Since our g is any linear decreasing function, it is enough to work with g(p) = —p. So the

system (3.1.1) can be expressed as:

U2

pi+ (up — p)z = 0.

If f(p) = ”2—2, we get the following Brio system.

u? + p?

pe+ (plu=1))s = 0.

Therefore the system (3.1.3) can be regarded as a generalization of the physically significant

system known as Brio system (3.1.4). The Brio system (3.1.4) was first derived by M. Brio
[39] and mainly arises as a simplified model in ideal magnetohydrodynamics(MHD). The
study of MHD is based on the idea that the currents in the magnetic fields are inherent from
moving electrically conducting fluids. In this system (u, p) represents the velocity of the
fluid whose dynamics is determined by magnetohydrodynamics forces. In [40], equation
(3.1.4) was compared with a system whose first equation avoids the nonlinear term % 0%,

such as
u2
U + (?)x = 07
pe+ (plu—1)), = 0.

It was shown in [40] that the solution for the Riemann problem of the system (3.1.5) con-

(3.1.5)

tains 0- shock waves. In [41], 6-shock waves are observed in the solution of (3.1.4) by a
complex-valued generalization of weak asymptotic method [42, 43] and in [44] similar re-
sult is obtained via a distributional product. Although uniqueness was an unresolved issue
for both of them. Recently the question of uniqueness is also settled in [45] by introducing
some nonlinear change of variable in the flux function of the first equation of (3.1.4).

In this chapter, we are interested in the limiting behavior of the solutions for the scaled ver-

sion of (3.1.3) as the scaling parameter approaches zero. The scaled version of the system
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

(3.1.3) can be written as
2

u

wt g TefP)a =0, (3.1.6)
pe+ (up —ep)z =0,

where € > 0 is introduced as a scaling parameter. Recently [46] deals with the system

u?
ug + (? + Ef(p))l’ =0, (3.1.7)

pr + (pu)s = 0.
One can see that the system (3.1.7) can be obtained by taking g(p) = 0 and introducing the
scaling parameter ¢ in the system (3.1.1). It can be readily seen that as ¢ — 0, formally the

above systems (3.1.6) and (3.1.7) becomes

u?
2
pr+ (pu)y =0, z € R

u+(=).=0, zeRt>0

(3.1.8)
In [46], it is shown that the solution of the system (3.1.7) converges to the solution of (3.1.8)
in the sense of distribution. As a continuation of [46], here our goal is to obtain the solution
of (3.1.8) as a distributional limit of the solution of (3.1.6).

The above equation(3.1.8) is a one-dimensional model for the large-scale structure forma-
tion of the universe [26]. This is an example of a non-strictly hyperbolic system, which was
studied by many authors [11, 36, 27, 28, 29, 12], started with the work of Korchinski [9].
We study the existence of solution for the equation (3.1.6) for Riemann type initial data,

namely,

w), if <0
<“0(x)) _ VW (3.1.9)

po(x)) ) (u,
o(@) S DT}
pr

Note that for e > 0, the system (3.1.6) is strictly hyperbolic and both the characteristics
fields are genuinely nonlinear (see section 2). For a strictly hyperbolic system whose char-
acteristics fields are either genuinely nonlinear or linearly degenerate, the Lax theory[2, 30,

47] can be applied to show the existence of a solution for close-by Riemann type initial
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

data, i.e., the Riemann type initial data has small total variation. But for our system(3.1.6)
with a small epsilon which may depend upon the initial data, we show that the existence
of a solution for any type of Riemann initial data. Summarizing the above paragraphs, the

main result can be stated as follows.

Theorem 3.1.1. The admissible solution of the system (3.1.6) with Riemann type initial
data (3.1.9) converges to the solution (solution in the sense of definition (2.3.5)) of the non
strictly hyperbolic model (3.1.8) in the sense of distribution when the parameter € goes to

zero.

We propose a different regularization for the system (3.1.8) by introducing the parameter
e in the flux function of (3.1.1). Introduction of the scaling parameter ¢ > 0 is motivated
as follows: The flux (% + ef(p), pu — €p) in (3.1.6) compared to the flux (Q‘Q—Q,pu) in
system (3.1.8) gives a more regularized effect. Besides this in presence of € > 0 there is
no concentration of mass in the solution, however in the absence of ¢, the system (3.1.6)
becomes (3.1.8) and concentration of mass can occur in the solution.

In this chapter first, we find the solution for the system(3.1.6) for any Riemann type
initial data for small € and the solution is a combination of shock and rarefaction waves.
Then we study the limiting behavior of these solutions as the parameter € approaches to zero.
We show that the limit is a solution for (3.1.8) which is also the vanishing viscosity limit
[11]. This type of singular flux function limit approach is very useful for certain systems
and can be viewed as an alternative approach of vanishing viscosity to construct solution
(which may be singular in nature) for non-strictly hyperbolic systems. In this regard, we
refer [48] for the LeRoux system and [17, 49, 31, 50, 51] for isentropic and non isentropic
systems of gas dynamics. On a slightly different note, one can see [52] where Riemann

solution for (3.1.8) is obtained via a linear approximation of flux function.

This chapter is organized as follows. In section 2, shock and rarefaction curves are described
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

for the system(3.1.6). In section 3, shock-wave solution is constructed for (3.1.6)-(3.1.9),
when u; > wu, and the distributional limit is obtained when the parameter € approaches
to zero and it is shown that limit satisfies (3.1.8) in the sense of the definition(3.3.5). In
section 4, an entropy-entropy flux pair is found for (3.1.4) which satisfies entropy condition

for small €. In section 5, the solution for the case u; < w, is obtained as a combination of

other elementary waves. Lastly in section 6, we discuss the case when f(p) = % and

g(p) = —p?. Further possibilities are also discussed for general f and g.

3.2 The Riemann problem.

The co-efficient matrix A(u, p) of the equation (3.1.6) is given by

Alu, p) = (u ef’(p)) _

p uU—E€

Eigenvalues for this co-efficient matrix are the following: A (u, p) = u—§—35/4epf'(p) + €2
and \s(u, p) = u — § + 31/4epf'(p) + € and the eigenvectors corresponding to A; and A
(%

—1\/4epf’ € 4l Saepf! € . .
2 VA (o) 1) and X, = (22 4ppf o)te 1) respectively. Now consider,

P) )

p depf'(p) + €2
As f(p) and f'(p) are increasing, we have VA;.X; < 0. A similar calculation shows that

VA2.X3 > 0. So each characteristic field is genuinely nonlinear for problem (3.1.6).
Shock curves: The shock curves sq,s9 through (u;, p;) and (u,, p,) are derived from the

Rankine-Hugoniot conditions

1 1
Mu —uy) =(=u? +ef — (zu? +ef(p)),
(1 = ) =( + e () = (542 + S (p1) o)
Mpr = pr) =(pru — €) — (pruy — €).
Eliminating A from (3.2.1) and simplifying further, one can get the following quadratic

equation

(g — u,)? + (%) (= ) — 261~ p’“)f();fff’;_ 1)) _g 0 322
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Solving the above equation (3.2.2), the admissible part of the shock curves passing through

(u, py) are computed as

s1= {(u,p) : (u—w;) = > u<ul,

i \/ 2o ) = Tp))
P+ p (p—m)

- ) = PPy (2 260 p)(fp) — fl1) e
2= {wp): l)_p+pz[+\/ ! (0 — 1) } ppi u<u

Rarefaction curves: The Rarefaction curves R, R, passing through (u,, p;) are the fol-
lowing :
1- Rarefaction curve: The first Rarefaction curve passing through (u;, p;) is derived by
solving

du — \/depf!'(p) + €2
d_p = pf ( ) ) (Pl) = u;

Rlz{(up u—u_/ \/465]0 —|—€2

y P < pl}
2- Rarefaction curve: The second Rarefaction curve R, passing through (u, p;) is de-

rived by solving

du e+ +/depf'(p) + €

dp 2p

l 2
R (e [ STEEE

To solve the equation (3.1.6) with (3.1.9), three cases are required to be considered, that

) U(Pz) = Ui

is (D) w; > w,, (AI) w; = u, and (II1) u; < u,. In case (I) for sufficiently small (> 0), we
have solutions as a combination of two shock waves. For case (II) solutions are given as
the combination of 1-rarefaction and 2-shock curves or 1-shock and 2-rarefaction curves
depending upon p; > p, or p; < p, respectively. Finally, in case (III) for sufficiently small
e(> 0), the solution consists of two rarefaction waves and a vacuum state. We obtain the
limit for the solutions in each case and it exactly matches with the vanishing viscosity limit

found in [11] which satisfies the equation in the sense of definition(3.3.5).
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3.3 Formation of concentration for u; > u,.

In this section the limiting behavior for the solution of the equations (3.1.6)-(3.1.9) for
u; > u, as € tends to zero has been studied. We find solution for the system (3.1.6) satisfying
Lax- entropy condition for the case u; > wu,. The first step towards this is to show the
existence of the intermediate state. Note that p; and p, are taken positive throughout this

section.

Theorem 3.3.1. (Existence of an intermediate state).
If w; > wu,, there exists an 1 > 0 such that for any e < 1, we have a unique intermediate
state (uf, pt) which connects (uy, p;) to (u’, p¥) by I-shock and (u, p¥) to (u,, p.) by 2-

shock which satisfies Lax-entropy condition.

Proof. The admissible 1-shock curve passing through (u, p) satisfies the following:

_ _1 w2 — %) + e —J(p
(u—1u)s; —2< ) +elf(p) = F(P)), (3.3.1)

(p—p)s1 =(pu — pu) + €(p — p),
and satisfies the Lax entropy inequality

51 < >\1<a7ﬁ)7 )\l(uv p) <85 < AQ(U,[)) (332)

Eliminating s; from (3.3.1) and simplifying as in Section 2, we have

p=p [6 - \/62 L 2lp+ P Up) — 12D (3.3.3)
(p =)

(u—a) =

We show that for a given u < u, there exists a unique p > p such that equation (3.3.3)

holds. For that let us define a function

NI \/ 2o+ P = F19))

e
=
|

p+p (p—p)

5 o) f() (3.3.4)
1-£ , 2o+ p)(57 =57
R B
1+ £ (1-2£)
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As lim& = lim f'(p) < oo, we havelim F(p) = —oo. Since F(p) = 0, we have
p—o0 D p—>00 p—00

F([p,00)) = (—00,0]. Hence the equation(3.3.3) is solvable for any given u € (—oo, ul.
To prove the uniqueness of p in the interval [p, 00), observe that F'(p) satisfies the following

equation:
F(p)? — MF( ) — 2¢(p — p)(f(p) = f(P))

htp) " (p+p)

Differentiating the above equation, we have

, clp—p)1 _ 2ep(f(p) + f(p) +e(p®> = p*)f'(p) + 2¢pF (p)
F'(p)|F(p) — (p+p)] = TEYE (3.3.5)

Since F(p) — 220 < 0.and 2¢p(f(p) + f(p)) + €(p* — p*) f'(p) +2¢pF (p) > 0, from the

above equation we conclude that F'(p) is decreasing in [p, o). This shows the uniqueness
of p. The conditions (3.3.1) and (3.3.2) hold if and only if © < w and p > p. In fact, s;
satisfies (3.3.2) if

pz:zu—Ku—%—i 1pf'(p) + &
1 — pu 1
u—§—§ 46pf’(ﬂ)+€2<%—6<1ld—g+§ depf'(p) + €2 (3.3.6)

Now from the first inequality of (3.3.6) one can get,

—’)((5__ ;) & < VAP ) § &

Using the equation (3.3.3) the above inequality can be rephrased as

F_¢§+%@+mﬁw—f®q_g<_%qaﬂa:g' 637

(p—p)

p+p

To prove the above inequality (3.3.7), we consider

p ,  2e(p+p)(f(p) —f(P)] ¢
G(p):p+p[e—\/e + = 7) ] -5 (3.3.8)

Now we claim that the above function G(p) is decreasing. Assuming that the claim is true,

let us complete the proof of the inequality (3.3.7). Since G(p) is decreasing and p > p,
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we have G(p) < G(p). Note that, employing mean value theorem on f(p), (3.3.8) can be

written as

G(p) = —L—[e = \Je + 20+ )11(6,)] -

L & < [p.0)

>
Therefore,

G(p) = —5\/ + 4enf' (&)
As G(p) is decreasing and p > p, we have

Glp) <~/ +4enf' (&)
So it is enough to show that

&+ 4epf' (&) < v/ @+ AT (D)

This is evident since f'(p) is increasing. Now we show that G(p) is a decreasing function.

Differentiating (3.3.8) one can get

o wﬁpﬁmw%ﬁwq ﬁ%_ & + HHAU - ww 3
(p+1@VQ2+2mHQX$$ﬂm> (p+p)?
Now let us analyze the numerator of the first term of (3.3.9). Consider,
di [(p + p)((f (p))— f (p))]
A0 %0 56D (310

- (0= p)?
Since f’(p) is increasing, a use of mean value theorem on f(p) in the interval [p, p|] shows
that (p* — p)f'(p) — 2p(f(p) — f(p)) > 0. So from (3.3.9) we conclude that G’(p) < 0,

i.e, G(p) is decreasing. This proves our claim.

Now the second inequality of (3.3.6) can be rewritten as

plu—u) e 1

——— — 5 <5Ve+depf(p),

22_2) i 2 (3.3.11)
o)<, L aTriars)
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As p > p,u < u,the first inequality of (3.3.11) is evident. Again using the equation (3.3.3),

the second inequality of (3.3.11) can be written as

; I ) S —
pTﬁ[e—\/e—i- (o= 7) } 5~ 75 e +4depf'(p).

To prove the above inequality, we consider,

() - o \/€2+2e<p+p><f<p>—f<p>>]_; .

p+p (p—p)
In a similar way as above we can show that H(p) is a decreasing function of p and since
p < p, we have H(p) > H(p). Now following the similar steps as above one gets the
second inequality of (3.3.11). Note that the above inequality is independent of € and holds
for any (u, p) and (u, p) satisfying the condition v < @ and p > p.
Therefore, the branch of the curve satisfying (3.3.1) and (3.3.2) can be parameterized by a
C! function p; : (—o0, @] — [p, 00) with the parameter u.

From the equation (3.3.3), p; (u) satisfies

(u—u) =

m(u)_p[E_ JEM2e<pl<u>+ﬁ><f<p1<u>>—f(p))_ (3.3.13)

pi(u) +p (p1(u) = p)

Differentiating the above equation (3.3.13) with respect to the parameter u, we have

= —€

i[( p1(uw)+5)(f(p1(u)—£(p))
- [P 1(u) — P dp i

()P)

(u) \/ +9)i (a1 ()7 (5)
(o1.(w)—7) (3.3.14)
2¢e(p1(u )+p)(f(p1(u>)—f(ﬁ)) ,
o — ¢ FETIES T} e

Since p;(u) > pand f(.) is increasing, from (3.3.10) we have

d [(Pl(u) +0)(f(pr(w)) — f(P))}
dp (p1(u) — p)

Now since p;(u) > p, the first term in the right hand side of (3.3.14) is negative and the

> 0.

second term is also negative. Therefore we conclude that p/ (u) < 0.
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Similarly, the branch of the curve satisfying
1> Aa(u, p), Ai(, p) < s1 < Xo(@, p),

is the admissible 2-shock curve which can be parameterized by a C'* function p, : (—o0, @] —
(—o0, p| with the parameter w.

Also, po satisfies the following equation:

)= P = \/ L 2 ) = FO)) (554

pa(u) +p (p2(u) = p)
Differentiating the above equation (3.3.15) we have,

). d | (p2(W)+p)(f(p2(u)—F(p))
- {e<pg<u>—p>%["” Al
+7)

> . 2@ D) () ()
\/ € (2(w)—p)

E e +0)(f(p2(w) = f(P)) (3.3.16)
+\/ " <<u> ) )}

2+ 2@ ) a1 ()
pa(u) — [ ¢+ (p2()—) J

/
— po(u).
(p2(u) + p)? ] ’
Note that, since po(u) < p the second term of the above equation (3.3.16) is positive. Now

we determine the sign of the first term. To determine the sign, we calculate

clpa(u) — p) | BRI (c+ \/ J 2o + D pa() = F Py
)

\/62 N 26(p2(U)422((£§p_2;%1))—f(ﬁ (pa(u) — p)
e(pa(u) — p) [<p2<u>+@g{$2_<;)>>—f<m>] 4 2e<pz<u>+(2(({b§p_2/§;t»—f<p)>
\/62 1 2ol o))~ 115)
X 6[6 X \/62 N 2e<p2<u>+(2<({£/fg>>ff<p>>J
\/62 - Zelealo ) f{oale)—1(G)

(3.3.17)
Now observe that, in the view of (3.3.10) and employing mean value theorem on f(.) in

the interval [py(u), p], the the numerator of the first term of the above equation, i.e

d 7(pa(u) + p)(f(p2(u)) — f(ﬁ))] | 26(pa(u) + p)(f (pa(w)) = F(P))

“(pa(u) = )y | a5 O > 0.
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To show the above inequality we also used the fact that f(.) is increasing. Therefore from
(3.3.16), we conclude that pf(u) > 0.

Now consider the branch of the curve passing through (u,, p,) satisfying the condition
w > u., p > p.. Ina similar way as above it can be parameterized by a C'- curve
p5 ¢ [y, 00) = [pr, 00). Then for any given point (o, (3), the part of the curve p} connect-
ing («, B) to (u,, p,) Will be the admissible 2-shock curve. Let us denote the admissible
1-shock curve passing through (u;, p;) as pi. From the previous analysis, this is parameter-
ized by a C! curve p} : (—o0,u;| — [p;, 00). Then pi(u,) satisfies (3.3.13) with p; (u) and

u replaced by pi(u,) and u, respectively, and u, p replaced by «, and p; respectively, i.e.,

(0 ) = i) =01 o \/62+26(p’{(ur)+pz)(f(ﬂ’{(ur))—f(pz))' 33.18)

 pilur) + (i (ur) = p1)
Again p;(u;) satisfies (3.3.15) with py(u) and u replaced by pj(u;) and u; respectively, and

u, p replaced by u, and p, respectively, i.e.,

(ug — uy)

_ ) —pop | 2ep3(u) + o) (F(p3(w) — f(pr)
N pé(uz)+pr[ +\/ i (p3(u) = pr) ] (3.3.19)

It is evident from (3.3.18) and (3.3.19) that p}(u,) and p}(u;) tend to co as € tends to zero.
Suppose pi(u,) and p5(u;) are finite as € tends to zero, then (3.3.18) and (3.3.19) implies
u; = u,., which is not the case. Therefore there exists an 1 > 0 such that for any ¢ < 7, one
has p}(u;) > p; and pi(u,) > p,. Now let us consider the function p} — p} : [u,, u;] — R.
Since pi(w) — p3(w) = pr — p3(w) < 0 and pi(u,) — p3(u;) = pi(ur) — pr > 0, by
intermediate value theorem there exists a point u* such that pi(u’) = pi(u*) = pi(say).
The uniqueness of p; follows from the fact that pj is strictly decreasing and pj 1s strictly
increasing. Since we are considering only the admissible part of the curves, the Lax entropy

condition holds. This completes the proof. [

The next task is to determine the limit of the problem (3.1.6) for the shock case. First,

we recall the definition of J-distribution and state a Lemma from the Chapter 2 without
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proof .

Definition 3.3.2. 4 weighted 0-distribution “d(t)d,—.) "~ concentrated on a smooth curve

x = c(t) can be defined by

() emay (0 0) = | " dt)p(e(t), by
Sorall p € C°(R x (0,00)).

Lemma 3.3.3 ([46]). Suppose a(t)(> 0) and b.(t)(> 0) converge uniformly to 0 on com-
pact subsets of (0, 00) as € tends to zero. Also assume that d.(t) converges to d(t) uniformly

on compact subsets of (0, 00) as € tends to zero. Then

1
—ds t c(t)—a c e iy
b0+ ) (E)X (et —ac (1),e(t)+be (1) ()

converges to d(t)6,—() in the sense of distribution, X (q)(-) denotes the characteristic func-

tion on the interval (a,b).

Theorem 3.3.4. (Limiting behavior as ¢ — 0 )
The distributional limit of (u<, p) is (u, p) and is given by
(ulapl)7 if r < urg—wt

(u, p)(,1) = § (U552 (up = ) 252580, ), i @ = 50t

(ur, py), if @ > 434,

Proof. From the previous Theorem 3.1, we have (u}, p}) satisfies the following equations:

(uf —wy) =

= pl \/ e(p: + o) (f(p2) — f<p1>>}

m+m (pr—pm1) (3320
@ —w) o+ \/ ot + P 1) = 1))
<7 m+m (pr = pr) '
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We know u! € (u,,u;). So the sequence u; is bounded. We claim that p} is unbounded as
€ tends to zero. In fact, if p? is bounded, then it has a convergent subsequence still denoted
by pf and it converges to p*(# pi, pr) as € tends to zero. Then passing to the limit as ¢ — 0

in the above equation (3.3.20), we have v* = u; = u,. Now suppose p* = p;, since
pemoL PE = P
In all of the cases we get a contradiction.

> 0, we have v} = u; = w,. Similar argument works when p* = p,.

So for subsequence of u} and p; still denoted as u} and p; respectively we have that u}
converges to u* and p} tend to +-00 as € — (. Passing to the limit for this subsequence in

(3.3.20), we get
(u* — ul) = —\/Z

(v —u,) = VI,
where lim 2¢(f(p}) — f(m)) = lim 2¢(f(p%) — f(pr)) = L. Solving the above two equa-

tions one can easily find

. 1
= ““;“ and 1 = - (u — ). (3321

Now from the above Theorem 3.1, we see that the intermediate state (u, p}) satisfies the

equation (3.3.1). That is,

(1= )31 =5 (0 — ) + (£ () ~ F(01),

(3.3.22)
(p = pe)s1e =(pu — piug) — e(p — p;),
where s; . 1s the 1-shock speed. From the above equation we have,
o= B Pele (3.3.23)
P — Pe

Now we observe that, using the first equation of (3.3.20)(with v; replaced by ) s; . can be
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rewritten as

_pu— pug
pP—Pe

S1,e

— €

(ut+u)(p—pf) + (u—u)(p+p7)

2(p — p;)

u+tul €

2 2

*

_utu, €
2

1%_(U—UD@+ﬂD (3.3.24)
2 p— P;

1¢@+2dn+mXﬂm—f@D>

(p—p7)

Similarly using the second equation of (3.3.20) s, . can be written as

utul €
2

32,6

2

where s; . 1s the 2-shock speed.

The solution for (u€, p°) is given by

(

(us, p)(,1)

As u} converges to u* = “Eir
theorem.

From (3.3.21), one can show that

__+_

: wpFuk
(ug,p) i (M5 -5 -4y e
wrFuk
< (e

\(ur,pr) if x>< 5

. (3.3.25)

1¢é+%@+mxﬂm—ﬂm»
2

(p—p7)

€2 + 2¢e(p1+p2) (f(p1)—f(pE))

)t

22 2 )
O G 26(pz+p2‘(;§{($—f(pz))>t <z
—54%%Vk2+2dm+§%ﬁg§*@®0t
Eﬁ£_§+%¢§+%Wﬂ%&g#@Dt
(3.3.26)

as ¢ — 0, we have the limit for u(x,t) as stated in the

lim

e—0

[ul—l—u: e 1
2 2

and

N 2¢(py + p2)(f (1) — f(P:))}

Ut Uy
= 5

(o0 = p7)

Iim

e—0

[ur +ul
2

Let us denote

cilley
2 T o\/€

2¢(pr 4 p2)(f(pr) — f(pF))
(pr — p%)

U + Uy

]: 2

89



3 Limiting behavior of scaled general Euler equations of compressible fluid flow

t
—t,
wAul e 1] 2e(p+ pp)(f (o) — fp?))
a.(t) = (T—i—é\/e + T )t—c(t),
(0= et) —; ul <y %\/62 | 2elp, + p(’ggff_(/;r*))— f(p?:)))t’
w —w Lo 2e(p+ pE)(f(p) — £(p7))
de() = [ > §<\/6 " (o1 — )
o, 2e(pr +p)(f(pr) = F(PE))NT
" \/6 i (pr — p7) ﬂpet'

With the above notations, the formula for p in equation (3.3.26) can be written in the

following form as in the Lemma(3.2):

d
‘= —o00,c Qe T)+ ————X( ae(t),c(t)—be iy
P =PX(oeiace) (@) + g e a0 o) (2)

(3.3.27)
+ PrX (e(t)—be (1).00) (T)-
Note that a.(¢) and b.(t) satisfies the condition of the lemma, i.e, a.(¢) > 0 and b.(t) > 0

for small e.

Now we are in a position to determine the limit of d.(¢) as ¢ — 0. The equation (3.3.20)

can also be written in the following form:

(3.3.28)

‘ ' . o, 2¢(pe +pr)(f(p2) = f(pr))
(pﬁm)(ue—ur)z(pe—pr)[ﬁ\/6 + o — o) ]

Subtracting second equation from the first in (3.3.28), we get

[w<_uy+¢§+24@+prm®—f@m_%Jé+2am+¢»uww—f@»q*
T (pz = p1) (pz = pr) ‘

+ pulul = w) = po(ul = uy) = elor — p1)
:m¢g+%@PﬂwU@ﬁ—ﬂmD+m¢@+%@puwuwn—ﬂm»

(pr —m) (pr = pr)
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Passing to the limit as e — 0, we get

€2 + p;
(Pt —m) (Pt —pr)

e—0

1im[<ur_ul>+\/eu2€<P?+Pl><f<ﬂi>—f<m>>+ \/ o 260+ p)(F(p2) = Flo))7 .

= (ul - ur)(pl + 107")
(3.3.29)

This implies

) 1
limd,(t) = =(u; — u,)(p1 + pr)t. (3.3.30)
e—0 2

Here in the calculation of (3.3.30), we have used the fact that lim 2¢(f(p}) — f(p)) =
€E—
U + Uy

lim 2¢(f(pl)—flpr) =1 = i(ul —u,)*and limau; = from the equation (3.3.21).
The first and the third terms of (3.3.27) converge to p; X (—oo, tatur t)(a:) and

PrX (ertuny o) (x) respectively. Hence, employing the above lemma to the second term of
(3.3.27), we get the distribution limit p(z, t) as given in the theorem. Note that all the analy-
sis has been carried out for a subsequence. Since the limit is the same for any subsequence,

this implies the sequence itself converges to the same limit. This completes the proof of the

theorem. O

Now it remains to show that the limit (u, p) found in the theorem above, satisfies the
equation (3.1.8). The limit (u, p) satisfies the equation in the sense of Volpert is available in
[37]. There it was shown that R; +uR, = 0, where p = R, and uR, is known as Volpert
product [34]. Then p = R, satisfies the equation (3.1.8) in the sense of distribution. The
limit (u, p) satisfies the equation (3.1.8) is also shown in [46] the sense of the following

definition.

Definition 3.3.5 ([46]). Let u is a Borel measurable function and p = dv is a Radon mea-

sure on R x [0,00). Then (u,p = dv) is said to be a solution for the system (3.1.8) with
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

initial data (3.1.2) if the following conditions hold.

/ (upr + ud,)dxdt + / up()p(z,0)dzr =0
Rx[0,00) K (3.3.31)

| e woniv s [ (ot 0)dz =0,
Rx[0,00) R
for any test function ¢ supported in R x [0, 00).

Now we state the following theorem and the proof can be found in [46].

Theorem 3.3.6 ([46]). For u; > wu,, the point wise limit u of u® and distributional limit of

p of p° satisfies the equation(3.3.31).

3.4 Entropy and entropy flux pairs.

This section is devoted to constructing an explicit entropy-entropy flux pairs for the system
(3.1.6) when f(p) = %, i.e for Brio system. We start with the following definitions[2]
restricted to the 2 x 2 system, namely

u+ (fi(u, )z =0

pe + (f2(u, p))s = 0.
Definition 3.4.1. A4 continuously differentiable function n : R? — R is called an entropy

(3.4.1)

for the system(3.4.1) with entropy flux q : R? — R if
Dn(u, p).Df(u, p) = Dq(u, p),

where f(u, p) = (fi(u, p), f2(u, p)). We say (n,q) as entropy-entropy flux pair of the sys-
tem(3.4.1).

Definition 3.4.2. 4 weak solution (u, p) of the system (3.4.1) is called entropy admissible
if
// n(u, p)ee + q(u, p)p, dr dt >0,
Rx(0,00)

for every non-negative test function ¢ : R x (0,00) — R with compact support in R x

(0, 00), where (1, q) is the entropy-entropy flux pair as in the definition(3.4.1).
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Now for the system (3.1.6), f(u, p) = <“—22 + £p% up— ep). Therefore (7, ) will be

an entropy-entropy flux pair of (3.1.6) if

@u—i-@ 6@4-(16—6)@ _ (92 %
ou 8pp’ P ou op)  \ou dp)
That is,
og _on o
ou  Ou 8pp’
(3.4.2)

o0,
ap_epau “ eap'

Eliminating ¢ from (3.4.2), we have

—— =0.
oy

P oz dpdp

e( Pn ) P

One can see that

L, €,
n(u, p) = Fu”+ 5p

is a solution of above the equation which is strictly convex (since D?*n > 0) and the corre-

sponding entropy flux is

1 €

q(u, p) = gu?’ + (u — 5)6/)2.

By constructing an explicit entropy-entropy flux pair for the Brio system, we show here
that our solution constructed in the previous section for Riemann type initial data (u; > w,)

which can also be treated as a solution coming from scaled Brio system if we plug f(p) = 92—2

into the equation(3.1.6), is entropy admissible in the sense of the above definition(3.4.2).
For that we calculate

€

2

1 1 * € L2
— 52 (5“? + eefr — §u62 — 5,06 >6$=32,et

[

y 1
052 - éulz - §pl2) (5x=81,et

1 *2
M+ Gz = — S1,e o Ue +

(3.4.3)

1 * * € * 1 €
+ <§u63 + (ue - 5)61062 - gu? - (ul - 5)5/)12) 5m:slyet
1 €, o 1

# (ut - o= St - gt - - 5

2

2 )6p:2) 627:32,6t7
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

where s; . and s . denote 1-shock speed and 2-shock speed respectively. So from (3.3.24)

s1,e and sy . can be written as

w+u e 1

Sl,e:< l2 —5—5\/€(Pz+92‘)2+€2>,
U +u; e 1

S26 = ( 5 §+§\/€(pr+p:)2+€2>‘

One can observe that to show n(u, p) and ¢(u, p) satisfies the entropy inequality for small
€, we must treat the coefficients d,_s,¢+ and d,—,,; separately. We show that each of the
coefficient will be negative as € tends to zero. let us first consider the coefficient of §,_g, ;.

Coefficient of 0,—s, ¢

1, € . 1 € 1, . €L . 1 €
= =S (5%2 + 5062 - 5“12 - 5/052) + (gugg + (u¢ — 5)6052 - guf — (w — 5)60?)
1 b
(3.4.4)
From (3.3.20) we have (u}, p}) satisfies the following equations.
Ue — U = pi—:rpl[ﬁ— Ve +ep: +pz)2]7
?_f (3.4.5)
ur — U, = E—T[e— e2+e(pj+pr)2].
pe+ pr v
Now similarly as in Theorem 3.3 we have
u: — Uy = —\/Z
wt —u, = V1
where
lime(p! + pi)° = lime(pl + p,)° = limep” = —(u, —w;)”. (3.4.6)
e—0 e—0 e—0 4

Now using (3.4.6) and observing that s; — %, one can see

— (w4 up) (uy — i)

I — — 0.
g as e
Again using (3.4.6), a simple calculation yields
3_,3
I]—>(ur6ul) ase — 0.
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Therefore from the equation(3.4.4),

(ur — ) (g — UT)2
24

Coefficient of 0,—g,¢ = [ + 11 — ase — 0.

Since w; > u,, Coefficient of §,—,,; = I + 11 < 0 for small e. Similarly, the coefficients

of d,—s,+ can be handled.

Remark 3.4.3. It is well known that if n be a smooth entropy of the system (3.4.1) with the
entropy flux q and if one assumes that the Hessian D*n > 0, then for genuinely non-linear
characteristic fields the entropy inequality n(u); + q(u), < 0 is satisfied for Riemann type
initial data having small total variation. Details can be found in [2]. Here we showed that
the solution (uf, p°) satisfies the entropy condition in the following sense: for any given

initial data (u;, p;) and (u,, p,) there exists a j1 > 0 such that

// n(us, p) e + q(u, p*)py dedt > 0
Rx(0,00)

holds for € < 1 and for any test function p > 0 compactly supported in R x (0, 00).

3.5 Formation of contact discontinuity and cavitation for
U < Uy

In this section we discuss other two cases, i.e, u; = u, and u; < u,. The discussion in
this section is a mere repetition of the steps [46] except for the fact that here we have two
different shock speeds.

Case I (u; = u,): For w; = u,, initial data is

(u (z)) ;‘j) Cif 2 <0

po(x))
0() S T )
pr

Now if p; = p,, we have the trivial solution u(z,t) = u; and p(x,t) = p;. Another two

possibilities are p, < p; or p,. > py.
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Subcase I(p, < p;): In this case, we start traveling from the state (u;, p;) in the curve R; to
reach at (u}, pf), then from (u?, p¥) we travel by S5 to reach at (v, p,). 1-rarefaction curve
R, through (v, p;) is obtained solving the differential equation

du e~ \/lepf'(p) + &

dp 2p

) u(pr) = w (3.5.1)

Therefore the branch of the curve satisfying (3.5.1) can be parameterized by a C'! function
uy : [pryp1] = [w,00) with parameter p. Since p > 0, we see that u; is decreasing.
Therefore, uy (p,) > ;.

Any state (u, p) connected to the end state (u;, p,-) by admissible 2-shock curve S, satisfies

the following equation:

(u—uy) = 21? [6+ \/62 + 6(,0+Pr()p(f_(pp) )_ f(pr)) s pr<p<p; u>u (3.52)

and

pU — Priy .
P — Pr

s> Xa(u, p), M(u,pr) < s < Aa(ug,p,), where s = (3.5.3)

Our claim is that for every fixed p > p, there exists a unique u > u; such that the equation

(3.5.2) holds. For that let us define
F(u) :=u—u.

Since F'(u;) = 0 and F(u) — oo as u — oo, we have F'([u;,00)) = [0, 00). Since p > p,,
right hand side of (3.5.2) is positive. Therefore for the given p > p,., there exists a u >

such that

Flu) = 2= [€+ e 2€(p+pr)(i(p)—f(pr)) _
p+ pr (p—pr)

Also observe that F'(u) is an increasing function for all u since F”(u) = 1, u is unique for

the given p.
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Similarly in Theorem 3.1, the branch of the curve satisfying (3.5.2) and (3.5.3) can be

parameterized by a C''-function us(p) = us : [pr, pi] — [ug, 00) satisfying

(o) ) = PPl [y 260t p)(f(p) = flpr)
F(uz(p)) = (uz(p) — ) p+pr[+\/ + =) ] (3.5.4)

Note that us(p,) = u; and it is clear from the above equation (3.5.4) that the function u, is
well defined. One can easily check that the function us is increasing in the interval (p,., p;).

In fact, differentiating the above equation (3.5.4) we get,

U2/(P)

e(p—pr)L [<p+pr>(f(p>ff<pT)>] 5 -
P (p—pr) n [€+ 24 elp+p.)(f(p) f(pr))]‘
\/ + 2ot Ul :) (o= pr)
pr)
Since p > p, and p, > 0, in the view of (3.3.17) right hand side of above equation is
positive for any € > 0. That is, uy'(p) > 0.
From the above analysis, there exists an intermediate state p € (p,, p;) such that

u1(pf) = ua(p?) = uf. Hence the solution for (3.1.6) is given by:

(ur, p1) if o < Ai(w, o)t
(u pf) = (R (/) (wr, pr), RY (/1) (ur, 1)) if M (w, p)t <& < M (ug, p7)t
’ (uf, p7) ifA1 (uf, pO)t < @ < sa.e(w, pr, ul, P
(uhpr) ifz > 82,6(ul7p7“7u:’p:)t

Where Ry (&) (u, p) = (RY(&)(a, p), Ry (&)(u, p)) and RY(&)(u, p) is obtained by solving

_ / 2 _
TN

and RY(¢)(q, p) is obtained by solving

and

. x w+u; e 1 2€e(pr + p ) — f(p*
827€(ul7p1”7u67pe>: l _\/€2+ (p p)(f<p) f(p ))

2 2 2 (pr — p¥)
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Sub-case Il (p; < p): In a similar way one can start from (u;, p;) and reach at (u}, p*) by

Sy and from (u?, p¥) to (w, p,) by Ry. Therefore the solution is given by :

(ul ) ifz < 51,6<ul>pl>u:7p:)t
(ue pe) — (U: Z) ifsl,e(ulu Pr, U:,p:)t <z < )‘2<U:7P:)t
’ (Ru [E/t e?p:)’ Rg(x/t)(u:, IO:)) 1f)\2(u:,p:)t <x< >‘2<ul7p7”)t
(tr, pr) ifz > Ao(uy, pr)t

where Ry(&)(u, p) = (RY(£)(u, p), R5(&)(w, p)) and RY(§)(w, p) is obtained by solving

du e+ /Tpf () +

and R5(&)(w, p) is obtained by solving
dp -
_— = 1 1 pu— _'

and

wtup e 1¢§+%m+mmmm—ﬂm»
2 2 2 '

Sl,e(ulaplau:ap:):—____ (pl_p*)

Now we aim to find the limit of (u€, p¢) as € — 0 in both of the above cases. Since p} €
(p1, pr) ot p* € (pp, pr) this implies p; is bounded. Also from the above analysis it is evident

that p} and v satisfies 1-shock curve and 2-shock curve. This implies

_ 2 * *)
(0 — ) = Pe—p [6_ 24 6(p6+pz)£f(pe) f(pz))]7 s s o U <
106 + P (pe _pl)
2 *+ - *) __ - . .
(0 — ) = pi — pr [H oy 2ele p)*(f(pe) fp ))]7 << pi U >
pi+ pr (pt = pr)

(3.5.5)

Since right hand side of (3.5.5) is bounded, as ¢ — 0 we get, lim._,o u} = w;. Therefore the

solution (uf, p¢) — (u, p) as € — 0 where (u, p) is given by:

] () ifr <t
(u, p) = { (U, pr)  ifx > wyt.
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

Since here u; = u,. we have u = ;.

Case II (u; < u,) : It can be observed that solution for this case is exactly same as the
solution for the case u; < w, described in [46]. For the sake of completeness we include
here that part of the result from [46]. The 1st-rarefaction curve passing through (u;, p;) is

given by the solution of the following Cauchy problem:

du e—/depf'(p) + € B
dp 20 ; u(py) = uy, p<pr

Note that for this case it does not matter whether p; < p, or p; > p,. Therefore without
loss of any generality one can take p; > p, > 0. Now a branch of R, can be parameterized
by a differentiable function u, : [0, p;] — [u;, 00) with a parameter p. Explicitly u; can be

written as

U1(P) — U=
p

e IO, 556
. | s.

Since p € [0, p;] is bounded and p > 0, the above integral goes to zero as € approaches to
zero. Therefore we have u;(p) — w; as € — 0 decreasingly. Similarly, the 2nd-rarefaction

curve is given by the solution of then Cauchy problem :

du e+ /depf'(p) + €
dp 2p

) P < Pr; u(pr) = u,. (3.5.7)

Let us : [0, p,] — (—00,u,] is differentiable and parameterized branch of R, satisfying

(3.5.7) and can be written as

walp) —u, = [ SO g
P

Since p € [0, p,| and p > 0, using the same argument as above, we have uy(p) — u, as

¢ — 0 increasingly. Since u; < u,, by the above calculation one can see u;(0) < ug(0) for
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

small e. In this case the complete solution is given by:

([ (w, py) ife < Ay (uw, o)t
(Ry (/1) (i, i), R (/1) (ur, 1) it A (g, o)t < & < A (ur™, o)t
(u, p%) =< (2/t,0) it A (ur,0)t < < Ap(ui®, 0)t
(R (/1) (ut®,0), R (x/t) (i, 0)) if Ap(ui®, 0)t < & < Ay (up, pr)t
| (ur,Tho,) ifz > Ao (uy, pr)t.

(3.5.8)
where RY(.), R{(.), R4(.), R5(.) are defined as above.
Now we find the limit of (u€, p°) as € — 0. Since u;" = u;(0), we have u;") — v, and

*(2)

similarly ue ™ — w, as € — 0. After passing to the limit in (3.5.8) as € tends to zero, we

get
(u, pr) ifz <ut
(u, p)(x,t) =< (x/t,0) ifwt <z <ut
(U, pr) ifz > u,t

Remark 3.5.1. In equation (3.5.8), one has to take u(x,t) = 7 in the region A, (u:(l), 0)t <
r < Ay (uem 0)t. This kind of choice gives an unique entropy solution. In fact, since p = 0
in this region, the first equation of (3.1.6) becomes the well known Burgers equation and

u(w,t) = 7 is the unique entropy solution for the rarefaction case of Burgers equation.

3.6 Concluding remarks and further possibilities.

1. Theorem 1.1 can be achieved by combining the results of Theorem 3.1, Theorem 3.3 and
the discussion in Section 5. In this article, we studied the generalized Euler system when
f(p) and f’(p) both are increasing and g(p) is any linear decreasing function. We observed
that our analysis is still valid for some particular non linear decreasing ¢(p) and particular
2

f(p) with the property stated above. For example, if we take f(p) = % and g(p) = —p7,

the shock curves passing through (u;, p;) are the following.
S1= {(u’p) : (u_ul):<10_pl)|:€_ V€2+€i|7 p > pr; U<Ul},
so={(u,p): (u—w)= (P—pz)[e—ir\/e?—ire], p<p; u<u}
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3 Limiting behavior of scaled general Euler equations of compressible fluid flow

For the case u; > u,, one can have the existence of the intermediate state in the same way
as in Theorem 3.1, however, in this case, calculations are simpler than the calculations pre-
sented here. One can show that lim,_,o \/€p? exists and following the steps of Theorem3.3,
distributional limit of (u., p.) as € — 0 can be determined. Finally, the case u; < u, can be

handled in a similar way as in Section 5.

2. One can address a similar question with general g(p). Note that the shock curves passing

through (u;, p;) for any general f(p) and g(p), can be found in the following manner.

Sty = 9 =glo) ] 2e0? = pE)(f(p) — F(p)
= {me): (w—m) = FEEENE \/+ O

o) = ) =glo) ] 260® = p)(f(p) = f(p)
2= {(0p): (0 mw) = S [+\/ e )

The next difficulty is to choose the admissible shock curves satisfying Lax entropy inequal-
ity and show the existence of the intermediate state as in theorem (3.1). Then one needs to
determine the proper growth condition on ¢ to find the distributional limit of solutions of

the scaled system.
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Chapter 4

Vanishing viscosity limit for a system of
balance laws with general type initial data
arising from 1D Saint-Venant model

4.1 Introduction

This chapter considers the following non-strictly hyperbolic system of balance laws

T — r 7t )
up +uu (z,t) @1
with initial data

u(z,0) = u(x), p(x,0) = po(a). (4.12)

Here we assume the initial datum are measurable functions. We study (4.1.1)-(4.1.2) for

the class of functions I'(x, t) = W(t)x, where W(t) belongs to the set

H:{}z'(f))yh;[o,ooHR and h(t) £ 0Vt €[0,00), h(t)eC’Q[O,oo)}.

The above system (4.1.1) physically motivated by the following system known as 1-D Saint-

Venant equation, namely
A+ (Au), =0,
Pr (4.1.3)
—
The above is a model for incompressible fluid flow in an open channel of an arbitrary cross-

section [53], where A(x,t) denotes the cross sectional area, u(x,t) is the velocity of the
flow, £(x, t) is the free surface elevation and 7(x, t) is stress along the perimeter P(zx,t) of
the cross sectional area at z. Furthermore, d denotes the constant density of the fluid and g

is the gravitational acceleration which may depend on the location x (see Fig.1). Note that,
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arising from 1D Saint-Venant model

Figure 4.1: Cross section of an open channel

the first equation of the system (4.1.3) is a continuity equation and a substitution A = p
gives the second equation of the system (4.1.1). This system has extensive usage in various
fields such as computer modelling [54], flood forecasting [55], dam breaking analysis and
soon. If §' = —%, Sy = ngR and R = %, the second equation of the system(4.1.3) can be
written as (see [56])

u + iy + ghy + g(Sy — S) =0,

where A is the depth from the free surface. Now for the kinematic waves, it is assumed that
Sy (friction slope) is approximately equal to .S (slope of the channel) which simplifies the
above equation as

Uy + uu, + gh, = 0.

Note that, if we consider —gh, as a function of (z,t), say ['(x, t) we get the first equation
of (4.1.1).

Moreover for the diffusive waves gh, + ¢(S;y — S) = 0 and the system (4.1.3) turns out
to be the well-known one dimensional model for the large scale structure formation of the
universe[26]. In our case, this can be obtained by taking h”(¢) = 0. For this case, there
are literature which deals with the existence and uniqueness of solutions. For this, we cite
[29, 57, 27, 11, 9, 28, 36, 12] and the references therein. One can also use the vanishing
pressure limit approach[46, 58] to construct the solution.

In this chapter, we use the vanishing viscosity method to study the system(4.1.1)-(4.1.2) for
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arising from 1D Saint-Venant model

a general type of initial data. The viscous form of (4.1.1) can be written as follows.

U2 €

€
pr+ (pu)s = St

(4.1.4)

The first equation of the above system(4.1.4) is a viscous Burgers equation with a source
term ['(z,t). For I'(x,t) = 0, the vanishing viscosity limit and large time behavior for the
first equation are studied by E. Hopf[59].

Hopf [59], using a transformation (widely known as Hopf-Cole transformation) lin-
earized the Burgers equation to heat equation and in this way obtained an explicit solution.

Ding et al. [60] studied equation of the form
Up + Uy = Uz — kx, x € R, >0, (4.1.5)

where 1 and k are positive constant. A Hopf-Cole transformation transformed the above

equation into the following linear equation.
01 — Wpee = —T2, T ER, t>0.

Then using Hermite polynomials, they got an explicit formula for (4.1.5). In the same
paper, they also analyzed large-time behavior for (4.1.5). In a subsequent paper, following
the arguments of Hopf [59], Ding et al.[61] studied the limiting behavior of the solution
as p approaches to zero. They also showed that the distributional limit of the solution u*
satisfies the inviscid forced Burgers equation u; + uu, = kz when the initial data is locally
bounded measurable and the growth is of order o(z). In the same paper, they also observed

the 6-wave phenomenon for Riemann type initial data by coupling (4.1.5) with the equation
pr+ (up), =0, xeR, t>0. (4.1.6)

The equation(4.1.6) can be viewed as a conservation law with discontinuous flux when the

initial data for u is of Riemann type. In the case of overcompressiveness, it is interesting to
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observe d-waves for linear discontinuous fluxes, see[62]. For a general discontinuous flux,
this is a difficult question. Extensive works on this discontinuous flux are being done, see
[63] and references therein.

It is worth mentioning that the non homogeneous term I'(x, t) in the system (4.1.1) is not in
LP(R % [0, 00)) forany p € [1, 00]. Also, it is not very common in the literature to deal with
this kind of function depending upon both space and time-variable (x, t) that is unbounded
in any strip 0 < ¢t < T'. Oleinik[64] studied scalar conservation law in the Sobolev setting.
However, due to the unboundedness of our non-homogeneous term, the first equation of
(4.1.1) does not lie in Oleinki’s framework.

An explicit formula for (4.1.4) is obtained by linearising the system. A use of a generalized
Hopf-Cloe transformation to the first equation of the system (4.1.4) leads to a linear equation
of the form

¢t_a'¢m$:f(mat)¢7 CBGR’ t>07 a>0.

Apparently, one cannot expect to obtain an explicit solution for the above type of linear
equation. Followed by another transformation, we are able to change it into a heat equation.
In this way, we got an explicit formula for the component u as well as the component p and

our first result is the following.

Theorem 4.1.1. Let uy be a locally integrable function satisfying the growth condition
Iy uo(§)d€ = o(x?) and py be a locally integrable function with Ro(y) = [} po(€)dé =
O(|y|?), for any B € N. Then the explicit formulas

1(t)z—y)> 2
oo I(t)z—y 7%|:<<;)m(tq)d) +f0“/u0(z)dzi|

e, 1,6) = n(e + (1)) = 0
z—vy)2
o e_%[%wg’uo(z)dz] dy
and
> Ry(y)e E[ Zmtn T d
R(z,t,e) = S oo Fo®) y’
)2
o e_% [“(Qm(;p +lo “O(z)dz] dy
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are regular in the region t > 0 and satisfies the equation(4.1.4) and the initial condition
(4.1.2) holds in the following sense.
/ u(y, t,e)dy — / uo(y)dy as t—0
0 o (4.1.7)
/ p(y,t,€)dy — / po(y)dy as t — 0,
0 0

where [(t), m(t) and n(t) are given by the equation (4.2.11).

We also study the large time behavior for the solutions of (4.1.4) when the initial data

ug and py are lies in L!(R). In this regard, we have the following result.

Theorem 4.1.2. Suppose the initial data (ug, py) € L*(R) and n(t) defined by the equa-

tion(4.2.11) is integrable on [0, 00|, then as t — oo

: m(t) €| o= OO) po(o0)
(1) T(u(x,t,e) - n(t)x) — (o0 )\/>[ s p——" oo)]
( on(—00) + Rol (4.1.8)
g Ry (—00)po of (o0
(1)  R(x,t,e) — o0(—50) T po(oc ]
uniformly in compact sets, where po(r) = €™« e Jo w0 ©de gpg Ry(y fo po(&)d€. Also for
r€Randt >0
‘u(:r;,t,e) = n(t)x‘ < G ,
m(t) (4.1.9)
’R(x, tie)| < Cy

for some constants Cy and Cy which depend only on the initial data and e.

Our next aim is to find the the vanishing viscosity limit for (u(x, t, €), p(x, t, €)) to obtain
the solution (u(x,t), p(x,t)) for (4.1.1). This is done through two steps. In the first step we
find the vanishing viscosity limit for the solutions of the system(4.1.4) by imposing the same
conditions on the initial data ug and py that [ uo(2)dz = o(2?), [ po(z)dz = O(|z|?), for

any 5 € N. In this context we state the following theorem:
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Theorem 4.1.3. Assume uy and pgy are locally integrable functions. Furthermore, assume

[ @) = oe?), Rofw) = [ po(€)dg = O(lal?), for any 5 € N and Suppose
(u(z,t,€), p(x,t,€)) be a solution of (4.1.4) subject to (4.1.2). Then we have,

(1)

limu(z,t,€) =n(t)r + —[l(t)r — y(z,t)]
e mi(t) (4.1.10)
R(x,t) = lgré R(x,t,e) = Ro(y(x,t)).

aﬁ (R(x,t)). Here the partial
T

derivative 2 is understood in the sense of distribution, where n(t), [(t), m(t) are defined

fora.e. (x,t) in R x (0, 00). This in turn gives liI%p(x, te) =
e—

by(4.2.11).

In the second step we show that the limits u(z, t) and R(x, t) satisfies the system (4.1.1).
A localization technique is used to prove that the limit u(x, t) for the first equation of (4.1.1)
satisfies the weak formulation. To prove that R(x,t) satisfies the equation, we employ the
Volpert product[34]. First, this is done when the function u(z,t) has a simple geometric
structure and then extended for any u(z, t) by writing the flux function in the second equa-

tion in a certain way. Now we mention some remarks in the following.

Remark 4.1.4. The system (4.1.1) is more general than the system (4.1.5) that is considered
in [60] and the non-homogeneous term depends both on time and space. For instance, the
equation considered by Ding et al.[60, 61] can be obtained from the first equation of (4.1.1)

if we take h(t) = e .

Remark 4.1.5. In [61] only the Riemann problem is solved for the de-coupled system,
whereas we found an explicit formula for the de-coupled system for any general type of

initial data.

Remark 4.1.6. We used a technique that is based on the idea of localization of the initial

data. We prove Lemma 4.4.3 which plays an important role in the proof of the Theorem 4.4.4.
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Our analysis differs from the usual way followed by [60, 61]. This approach may be used

for a more general type of system as well.

Moreover, we consider the following non-homogeneous system where the non-homogeneous

term only depends on the variable ¢, namely,

T — h(t )
e + iy = h{t) 4.1.11)
pt+ (pu)e =0
with initial data
ul(z,0) = uo(), p(z,0) = pol2). (4.1.12)

The first equation of this system (4.1.11) is a generalized form of the equation studied in

[65],namely,
k

V26t +1)

We give an explicit solution for (4.1.11)-(4.1.12) by following a method introduced by

U + UUG, =

Lax[47].

The plan of this chapter is as follows. In section 2, we prove the Theorem 4.1.1using a
generalized Hopf-Cole transformation. In section 3, we give proof of the Theorem4.1.2. In
section 4, we prove Theorem 4.1.3and the vanishing viscosity limit satisfies the equation in
a distributional sense is also shown. Finally, in section 5 we consider the system (4.1.11)-

(4.1.12) and obtain a solution characterized by a variational formula.

4.2 Explicit formula using Hopf-Cole transformation

In this section, we prove the Theorem 4.1.1. We use generalized Hopf-Cole transformation
and obtain an explicit formula for the solution of the equation (4.1.4)-(4.1.2). Let us assume

the following two conditions on A(t):

« (HI) hA(t) #0,0 <t < ocoisaC? function.
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« (H2) IfA/(0) # 0, then for ¢ > 0, h(t) satisfies

| 1
/o 25" T H0)h(0)

Proof of Theorem 4.1.1. Consider the equation (4.1.4) with initial data (4.1.2). Set u = U,
and p = R, then (U, R) satisfy

h” t 2
Ut + _Tr EUME + &
2 2 2h(t) 4.2.1)
Rt + UxRx gRLI}J}?
with initial conditions
Uz, 0) = Up(x) = / wo(y)dy, Rolx) = / o(y)dy. (42.2)
0 0

Using the generalized Hopf-Cole transformation

B t) = F, plat) = —2eE, (423)
€
we obtain
¢t ¢cc ¢zx ¢a: 2
Ui=—-e—, Uy,=—e—, Uy = —¢€ +e(—)". 424
: 5 5 p ( 3 ) (4.2.4)
From equations (4.2.1) -(4.2.4), ¢ satisfies
€ h" (t)x?
(b - _(bmz = - ¢
b2 2h(t)e 4.2.5)
Be,0) ="
Using the transformation
_n(®)a? ~
oz, t) = k(t)e” 2 o(I(t)x, m(t)), (4.2.6)
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we get
bo(2,1) = k(t)e "5 [/ () (1 (8), m(t)) + U'() s (1(E), m(t))]
n(t)a? ~ _n(®)a? ~ n'(t):l?Q

+ K (t)e” 2 o(U(t)z, m(t)) — k(t)e™ > ¢(I(t)z, m(t))

2e
(1) = K()2(E))e "5 G (1), m(t)) — we—wém(zu)x,m(t))
_ "““)E’”‘“%—"%?qu(z(t)x, m(t)) + —k(t)i(twe—"%f&(zg)x, m(t)).
4.2.7)
Equations (4.2.5) and (4.2.7) yields,

K(E)e™ 5 [ (05,1 (0), m(1)) — P(6) 5 e 1(0)ar, ()]

T R(E)ae 5 (1) + n(e)I(0)] 6, + 5 [ () + %k(t)n(t)]& (4.2.8)
1 _n(e? 207,/ 2 h//(t> T _

—5e k(t)x? [n/(t) + n(t) — o) Jlo=0

In order to get a simplified equation of ¢, we take the following compatible conditions,

K (t) + sk(t)n(t =0,
/ O] _
n'(t) 4+ n(t) . =0, 4.2.9)
k@ {I®) +n@®)i)} =0,
m/(t) = 1%(t).
We impose the following initial assumptions on k(t),[(t), m(t) and n(t),
k(0) =1, 1(0) =1, m(0) =0, n(0)=0. (4.2.10)

Solution for the equation(4.2.9) with initial conditions (4.2.10) are as follows.
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h .
T A B(0) =0

_ ) 1
n(t) = f;g)) + 1 L ifW(0) #£0
[fo e @5 — )h(O)}

[(t) = exp ( - /O t n(s)ds> 4.2.11)
m(t) = /Ot (eXp ( - /Osn(r)dr)>2ds.

After taking such combinations we see that (4.2.8) satisfies the usual heat equation:

~ €~
¢t_§¢xx:0

Therefore,

b © o M yUOZ z
statemn) = [ e [t o],

o0

From the given transformation (4.2.6) we get,

nw [e'e) 7LM Yau Zdzi|
olat) = 5 [ ]

o0

Now from (4.2.4), U, = u(x,t) = —e%z, then

[ ey, |t oo dy
u(z,t,e) = n(t)w + () =0 — . (4.2.12)
7”” Y ug(z)dz
ffoooe |: +f0 0 :|dy

Now a direct calculation shows that 1) satisfies the equation,

U

h”(t)$2

€ e« € R U? ¢
— ZWpye — —— R UxRx - _Rzzi| —e « |:U - _Uxm} - - )
Ve ¥ : [”L pltes| T ce Uit 5 =3 2h(ye
with the initial condition ¢ (x,0) = —ROT(I)e* wAs before, the solution for v is the

following:

D(x,t) = k(t)e™ =

nwe? [ Ro(y) -+ 7(1(5)31 Ot [ uo (2 d]
— e dy.
—0o0
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From the Hopf-Cole transformation(4.2.3), we get R(z,t) = —e%. Then

IOO Ro(y>67% [%J’»ISJ ’LLo(z)dz:|

)2
- {[(“?m(ﬁ +fY uo(z)dz]
[Te dy
—0o0

where Ro(y) = [ po(z)dz and 2 (R(z,t,€)) = p(z,t,¢€).

d
Riz.t,e) = /

: (4.2.13)

The proof of the equation (4.1.7) is a mere repetition of the arguments of Hopf[59] and
therefore omitted. Hence the equations (4.2.12) and (4.2.13) together with the arguments
of Hopf[59] complete the proof of the theorem. [

Remark 4.2.1. In general the linear equation ¢y — 5¢pe = @(ﬁ cannot be solved ex-

' (t)x2
2h(t)

plicitly. In our case f(x,t) = — , and is solved using a clever choice of the transfor-
mation (4.2.6). Also we would like to mention that in this way we avoided the use of Her-
mite polynomials and got the explicit formula for more general class of non-homogeneous

term in comparison to the article[60, 61]. Also note that if the condition H is violated,

ie., fotl hQI(S) ds — h’(O)lh(O) = 0, for somet = t; > 0, then the solution u only valid in

{Z'ER, t<t1}.

4.3 Large time behavior

In this section, we discuss the large time behavior of the solution u(z,t, €) and R(z,t,¢€).
To be more precise we prove the Theorem 4.1.2. Here we need an additional condition on

n(t) defined in (4.2.11) that n(t) is integrable on [0, co).

Proof of Theorem 4.1.2. Recall the explicit formula (4.2.12) for the first equation, derived
in the previous section. Observe that it is enough to investigate the long time behavior for

u(z, t, €) and similar arguments hold for R(z,t, €). From the explicit formula (4.2.12):

l(t)z— 2
1= l(t)x—ye_i[“?)m(tg) +f0y”°(z)dz}

—oo  m(t)

—)2
0o —% [(l(glﬁ(t)y) +f7 uo(z)dz]
e dy
—0o0

dy

u(z,t,€) =n(t)r + U(t) (4.3.1)
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where n(t), [(t) and m(t) are defined in (4.2.11).

First, we study the asymptotic behavior of the following term as t — oo,

1(Hz—y)2
I l(t)w—ye_%[((z):b(t?) +f0y“0(z)dz}d

e y' (4.3.2)
)2
fjooo 6_% [%‘Fﬁ uo(z)dZ] dy
Using change of variable 12—y _ 4, we have
£/ 2m(t) i
o I _1 [M_;'_fyu()(z)dz]
f_oo l(:)l(t)ye ) ’ dy
)2
o -1 [ugﬂé(t)zf\/mu UO(Z)dZ}
2 f_oo ue u
I IO [“2+fé(”“m" uo(Z)dJ
ffoo ¢ du
5 fo ue_% [uzﬂé(t)zﬂ/mu uo(z)dz} s foo ue_% [uufé(t)zf\/mu uo(z)dz} N
N —0 0
m(t) 0o -1 [u2+fé(t>r\/mu uo(z)dz} - |:u2+fol(t)z—\/mu uo(z)dz]
ffoo € du -+ f() e ”
_ 2 L+ 1
N L+ 1
(4.3.3)
Hence
m(t) I + Iy
5 (u(z,t) —n(t)x) = I( )]3 —

Since uq is integrable, using dominated convergence theorem in [;,7 = 1, 2, 3, 4; yields

, m(t) B € | po(—00) — wo(o0)
lim T(u(:v, t) —n(t)z) = l(oo)\/;[ ] ;

t—oo o(—00) + po(o0)

uniformly in compact sets. This proves first asymptotic behavior of (4.1.8). Second asymp-

totic behavior of (4.1.8) is a mere repetition of the above analysis.
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To prove (4.1.9), note that from the previous calculation

1 [u2+fé(t>zﬂﬁ2m(t>u uo(z)dz} )

2 o lule u
(e, t) — n(t)x) < (t)
m(t) o —= |:u2+fol(t>zi\/mu uo(z)dz]
[e du
< G
m(t)

for some constant ('}, which may depend on the initial data and €. A very similar calculation

for R can lead to the estimate |R(z,t)| < C5, for some constant Cs. O

Remark 4.3.1. An immediate remark is that

(b C(K €) | po(—00) — go(c0)
sup ot tre) = nltel < 70 o —oo)+soo(oo>|
C(K,e)
~ /m(t)’

as t tends to infinity, where C (K €) is a constant which depends on the compact set K and

€, and is independent of the initial data.

4.4 Vanishing viscosity behavior

This section aims to investigate the vanishing viscosity behavior of the system of equations.
We start with two standard lemmas. Lemma 4.4.1 and Lemma 4.4.2 are used to proving the
Theorem 4.1.3 in which vanishing viscosity limit is determined. In Theorem 4.4.4, we show
that the vanishing viscosity limit u(z, t) satisfies the equation. Theorem 4.4.5 contains the
proof of the fact that the vanishing viscosity limit for the second component R(z, t) satisfies

the equation. This section finishes with a Riemann solution. Let us denote

G(z,y,t) = wt;;—y)z + /Oy up(z)dz.

(t)
Lemma 4.4.1. Suppose G(x,y, t) attains minimum at y, for fixed (x,t). Then G(x',y1,t) <
G(2',y,t) holds for y < y, and v < x'.
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Proof. Since G(z,y, t) attains minimum at y;. Therefore

(B —y)* ™ (z—y)?* "
Tomi) +/0 up(2)dz < “om@) +/0 up(2)dz. (4.4.1)

Now observe that for y < y; and x < 2/,

UMz —y)* (@' —y)® _ UMz —yi)®  (UH)2 —y)*

2m(t) 2m(t) 2m(?) 2m(D) (4.4.2)
Adding equation (4.4.1) and equation (4.4.2), we get
(l(t)x - y1)2 (l(t):z: — y)2 (l(t)x’ _ y1)2 Y1
2m(t) 2m(t) 2m(t) + /0 up(z)dz was
(Wz—y)?  ()z—y)? , (IO —y)? , [ 4.
< 2m(t) i 2my(t) - 2m(t) t /0 uo(2)dz.

Equation (4.4.3) leads after cancellations,

() —y)? [ (M2 —y)?* ¥
T(t) +/0 up(2)dz) < T(t) +/0 uo(2)dz).

This implies, G(z',y1,t) < G(2',y,t).

For fixed (z,t), define
y_(z,t) = inf{y(x,t) € R|G(z,y,t) attains minimum at y(z,t)}

yi(z,t) = sup{y(z,t) € R|G(z,y,t) attains minimum at y(z,t)}.

The following lemma is a straightforward application of Lemma (4.4.1).
Lemma 4.4.2. For fixed t, y_(z,t) and y, (x,t) are monotonic increasing function in the

variable x. Hence there is a unique minimizer of G(x,y,t) for a.e. (x,t) € R x (0, 00).

4.4.1 Proof of Theorem 4.1.3

Proof of Theorem 4.1.3. Fort > 0, let y(z,t) is a unique minimizer for G(z,y, t), then it

is enough to determine the limit of the expression

125 (M2552) exp { LG, 9,1)} dy
ffooo eXp {_%G(CE7 Y, t)} dy
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Now for any 6 > 0,
’f“; (4552 ) exp { ~1G(w,y,1)} dy () — y(x,t)‘
7 exp{—1G(z,y,t)} dy m(t)
‘f—oooo (y(;?t)— ) exp {—1[G(z,y,t) — G(z,y(x, 1), }dy‘

<IL+1I
2 exp{—L[G(z,y,t) — G(z,y(z,t),1)]} dy =hthy
where
o Jyswnres [t e { G . t) — Gy, 0. D]} dy
1 2 exp {—L[G(z,y,1) — G(z,y x,t>,t>]} dy
I, = f‘y—y(z,t)|>5 |y($’t)_y| exXp {_%[ x,y, ) G(f, y( )]} dy
2 ffoooexp{—%[G(x,y,t)—G(x y( x,t),t)]}dy )

It can be easily seen that |[;| < Now we have

)

lim G(z,y,t) — G(x,y(z,t),t) _ 1
lyl—o00 (y — y(z, 1)) 2m(t)’

Since y(z, t) is the unique minimizer, so G(z,y,t) — G(z,y(x,t),t) > 0. Therefore there

exist an a > 0 such that

G(.’L’,y,t) — G(.T,y(l’,t),t)

> )
(v — y(,1)? ‘
for |y — y(z,t)| > §. Now consider,
I, — fly y(wt\>6|ymt) y|exp{__ xy,t)—G(Z'yxt }dy
t ffo eXp{—- (z,y,t) — G(x,y(x,t), }dy
fy:ct |ya:t) y|exp{—— .Ty,t)—G(ajy;Et }dy
ffo exp{—— (z,y,t) — G(x,y(x,t), }dy
_|_fmt)+6‘y(zt) y}eXP{—‘ (z,y,t) — G(z,y(x,t),t }dy

Joexp { =[Gz, y.1) — Ga,y(x, 1), 1)]} dy

We estimate the first part of the above equality and the estimation of second part will follow

similarly. For a small np > 0, since y(z,t) < y < y(x,t) +n, by continuity of G(x,y,t) we
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have 0 < G(x,y,t) — G(z,y(x,t),t) < ad?. Now consider the first part of Iy,

fymt }ymt) yleXp{—- x%t)—G(xyxt }dy
T exp {—1Gr.010) G0

fy(” ’y"”tt)y’exp{—— (z,y,t) — G(z,y(z,1),t }dy
T ey e { -G y’t)_G(‘” y(w 0, DI} dy (4.4.4)

Jren 5?!(”“? Yexp {—Laly —y(z,1))*} dy
< w2

ne

f in?(i) exp{——azz}dz _ €

- ne-2 - 2am(t)n’

which tends to zero as € tends to zero. Since ¢ is arbitrary, we have the first identity of
(4.1.10).

Now we find the limit for the R(z, ¢, €). Since Ry is continuous, so for any givenn > 0,
there exist 9 > 0 such that

|Ro(y) — Ro(y(x,t))] < nfor |y —y(x,t)] <.

R(w,t,0) = Roly(w, )|
7 )Ro(y) — Ro(y(=, ‘eXp{ 1G(x,y,t)} dy

< oo
B ffooexp{_zG I,y, }dy
=0L+ I,
where
fly ywt\<5|R0 Ro(y (x,t))’exp{—— (z,y,t) — Gz, y(z,1),t)]} dy
I = Y
S exp{—%[G<w t) = Gla,y(w,0),0)]} dy
I - Jiy—ywiyss [Bo(y) = Ro(y(a, 1) exp { = [G(x,y,t) — G(z,y(x,1), }dy
- S exp {=HG(,y.t) = Glz,y(x,1), )]} dy

It can be easily seen that |I;| < 1. Now from the previous analysis, there exist an a > 0,

such that
G(l‘,y,t) - G(ZL’, y(l‘,t),t)
(y —y(z,1))?

> a,
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for |y — y(x,t)| > J. Since Ry(y) = O(|y|?), for any 8 € N, we can choose a large C' > 0

such that the following holds,

f|y y(z,t)|>8 |y(l’ t) - y|B€Xp {—%[G(ﬂf yvt) - G(l‘ y z, t }dy

L, <C
2 ffo exp{—— (r,y,t) — G(z,y(x,t),t }dy
S ) gl exp {- Gy t) ~ Gyl ) O dy
2 exp{—L[G(z,y,t) — G(z,y(x,t),1)]} dy o

Syenyss (@, t) —ylP exp {—[G(z, y,1) — G(z,y(x,t), 1)] } dy
7o exp { =[G (x,y,t) — G(a,y(x,t),1)]} dy

A similar argument as (4.4.4), shows the expression (4.4.5) tends to zero as € tends to zero.

+C

Therefore lim._,o R(z,t,€) = Ro(y(t, z)). O

Our next aim is to prove that the limit function w satisfies a weak formulation (see equa-
tion(4.4.6) in Theorem (4.4.4)). For this purpose, we prove the following lemma regarding

the bound on the minimizer y(x, t).

Lemma 4.4.3. If x belongs to a bounded set B and 0 < t < T, then the minimizer

ly(z,t)| < M, for some constant M > 0, which may depend on B and T.

Proof. Forx € Band 0 < t < T, choose large M > 0, such that for |y| > M, the

following hold:
(1)

BcC(—M,M).
(i)

‘ I3 uo(z)dz

m%n(t) <e<l,

for some € > 0.

(iii) For 0 < ¢t <T,0 < m(t) < T and

W [1—€] > sup </Ol(t)~"ﬂ Uo(z)dz)‘

z€B
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Now for |y| > M and 0 <t < T,

LULE A APRE VR (L) i uo(2)dz

2m(?) 2m(?) UOrETE
() —y)?
. ((2m<t>y> .
(I(t)e — y)?
>y 11—

I(t)x
> sup </ uo(z)dz>.
zeB 0

Therefore, the minimum is achieved for |y(z,¢)| < M, where M depends only on B and

T'. This proves the lemma. ]

Theorem 4.4.4. If uy() is locally bounded measurable function and [ ug(z)dz = o(z?),

then the limit function u(x,t) = linau(x, t, €) satisfies the weak formulation in the following
€—

way.

/00 /00 [u(z, t)pr + u;goz + I'(z, t)pldzdt + / u(z,0)p(z,0)de =0,  (4.4.6)
0 —00 _

[e.9]

for all test functions ¢ compactly supported in R x [0, 00).

Proof. We divide our proof into three steps.
Step 1. Let B = (a,b), M as in the previous theorem. Choose a cut off function ( satisfying
the conditions

(=1 on [-M,M], (=0 on R—[-M,M].

Then for x € B, 0 <t < T, we have the following :

- [Ur —y)* [ e —y)?® [
e o uo(2)d=] = min | om®) T, C(=)uo(z)dz
and the minimum is achieved at the same point at |y(x,t)| < M. This follows easily from

the previous lemma(4.4.3).

Step 2. Let us define
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Then clearly iy is a bounded function. Now consider the problem
_ P €_

w(z,0) = up(x).
One can derive an explicit formula for u(x, ¢, €),

1| t@Wz—y)?

foo l(t)gcfyef6 [T@)Jrfoy(do(z))dz}
iz, t,€) = n(t)x + () =" 2
foo 6_% [%Jrfoy(iO(Z))dZ}

—00

dy

dy
Now, observe that

/ “A(t)r — v, [%H&’(@(z)m} p
oo m(?) y

€ [ d[ 10w’ 1oy
- o7 2m - J5 do(2)dz g
1(1) / . dx [e }6 y
e [ dr _10we=v?7 1y -
—— — [ —lt)— [e‘f 2m (D) ]e—z Jo' o)z gy,
1(t) /oo dy
o0 z—y)2 ~
:e/ d;‘ly[e—iW]e—ifoy o (2)dz gy
Using integration by parts, we have

/oo l(t)x — ye_% [%Jrfdy Eo(z)dz} dy = /oo B -1 [%Jrfoy u(f(z)dz]

to(y)e

[e.o]

oo m(t)
From (4.4.8), we have

_1| awa—y)?

foo l(t)x—ye c [T(t)-i-foy(do(z))dz]
a(x,t,€) = n(t)z + (1) —= m(t)

dy

z—y)2 ~
ffooo 67% [%+fg’(uo(z))dzi| dy

. —%[%Hé’wo(zndz}
f_oo Uo(?J)G
— ey + 1(2)

dy

€T — 2 ~
IS f%[—“%t?) +foy<uo<z>>dz]
€

—00

dy

4.4.7)

(4.4.8)

dy.

Since () is bounded, u(x, t, €) is locally bounded independent of . Again by step 1 one

can observe that

ll_lgau(a:,t, €) = 15% u(z,t,€) = u(x,t).
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Step 3. Since u(x,t,€) is smooth and satisfies (4.4.7), multiplying with test function ¢

supported in B x [0, T') and using integration by parts we get

/ / a(x, t, €)y + @T“)Qd) + Dz, t)¢|dudt

+/_oo (e, oz, 1)d :——/ / (1, 1, €) ¢ oddt.

This implies,
/ / [z, t, €)py + ( e’ ————— ¢, +I'(x,t)p|dxdt

0 z (4.4.9)
+/ (/ fb(y,tl,e)dy> o, 1)) dz = ——/ / (2, €)buadadt.
—0o0 0 x 2 t1 —00
Applying integration by parts in (4.4.9), we have
t
/ / (b, €)y + qux + D, t)¢)dudt
(4.4.10)

/ / u(y, tr, €)dydy(x, t)dr = ——/ / u(x,t, €) Py drdt.

As u(x,t,€) is locally bounded and limy_o [; @(y,t,€)dy = [ uo(y)dy, applying limit

t; — 01in (4.4.10), we get
/ / (x,t, €)b; + (”“" L) BE5Y  + (e, t)glddt

_/m(/o o (y)dy) éu (. 0)d :__// (2, t, ) pradadt.

—0o0

(4.4.11)

Now, by step 2, lim,_,o @(z,t,€) = u(x,t) and @(z,t, €) is locally bounded independent of

€, passing to the limit ¢ — 0 in (4.4.11), we have the desired result. This completes the

proof. [

Next we show that R(z, t) satisfies the equation R; + uR, = 0 in the sense of Volpert.
If u 1s a function of bounded variation, we write
R x [0,00) = S.US;US,,
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where S, and S; are the set of points of approximate continuity and points of approxi-
mate jump discontinuity. S; can be expressed as a countable union of Lipschitz continuous
curves. The set S,, has one dimensional Hausdorff measure zero. At any point (z,t) € S},
u(z—,t) and u(z+, t) are respectively denote the left and right values of the jump disconti-
nuity. For any continuous function g : R — R, the averaged superposition g(u)(see Volpert

[34]) is defined as
— { g(u(z,1)), if (z,t) € S.

glu)(e,t) = fol 9((1 — a)u(z—,t) + au(z+,t))de, if (x,t) € ;. (44.12)

For any v € BV (R x (0,00)), g(u) is a Borel measurable function with respect to the

measure v, and the product g(u)v, is defined as follows:

g(u)v.(E) = / g(u)v, (4.4.13)
E
for any Borel measurable set £ C R x (0, 00).

Theorem 4.4.5. Let ug be a bounded measurable function, then the limit function R(x,t) =

lim0 p(y,t,€)dy = Ro(y(t, x)) satisfies the equation
€E— 0

Rt —+ UR:D =0
in the sense of Volpert and lim; o R(x,t) = Ry(x), a.e. x € R,

Proof. From the formula, it is clear that u is a function of bounded variation and it satisfies
up + uu, = I'(x,t)

in the region z € R, ¢ > 0. Now we show that R(z, t) satisfies the equation R; +uR, = 0
in the volpert sense. We divide our proof into four steps.
Step 1. Let us introduce the equation

(Un)e + Un(tn)e = I'(2,1)
(4.4.14)
Up(2,0) = ug ().
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Take a partition —R— LT = z1 < x5... < 2, = R+ LT, forsome T > 0 and L = ||ug||oo-
Here the initial data v, (z) is a piecewise constant function
uy, ifr <x

Upn(T) =  u,  ifr; <@ < @iy

Uy, ifr >x,,

and [, ‘uo(x) - uovn(x)‘dx — 0.

|<R+LT

Then by L!- contraction (see [2]), we have,

T
/ / ‘u(m,t) — Up(x,t)|dedt — 0 as n — oo.
0 |z|<R

So, yn(x,t) — y(z,t) in LY([—R, R] x [6,T]) for some § > 0, as n — oo, where y,,(z,t)
is the minimizer corresponding to the initial data v ,.

Step 2. We claim that the set of all discontinuous points of w,,(z, t) of (4.4.14) can be
written as the union of finite numbers of Lipschitz continuous curves.

Observe that for (x,t) € [—R, R] x [0,T] is a point of discontinuity, the minimizer
is not unique. Let the left most minimizer is (y,)_(z,t) and the right most minimizer is
(Yn)+(z,t). We see that,

() 1 (40)(2,8), () (2:8) € 21, 2o, then (ya) _(2,1) = 2 and (y) (2,6) = wian.
This is because [ oy, (z)dz is an affine function on (z;, z;11).

(i1) If (yn)—(x,t) € (wi, i41) and (yn)+(x,t) € (x5, 2541) (¢ < j), then

[(t)x — (yn)-(2,1)
m(t)

= uon((yn)- (7, 1)) = wi

and

[({H)x — (yn)+ (2, 1)
m(t)

= Uon ((Yn)+ (7, 1)) = u;

Therefore from (i) and (ii), we have
()= (2,8) = (yn)+ (2, 1) > drfui — uyl,
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for ¢ > 0. Choose 0, = min {01|u; — u;|,7 # j Vi, j}. If (z,%) is a point of discontinuity,
then ((y,)+(z,t) — (yn)_(x,t)) > 61. Now D(u,) be the set of all discontinuous points of
uy. Letty = (z,t)ierg(un){t}. Pick 24 such that (z1,t1) € D(u,). Consider the discontinuous
curve ; starting at (xy,t;) which is possible because any discontinuous point is part of a
discontinuous curve. Now lett, = (I’t)igg \ﬁ{t} where v denotes the range of ;. Similarly
one can choose xs such that (2, %) € D(u,). Again consider the discontinuous curve 7,
starting from (x5, t5). Continuing this way we will find discontinuous curves 71, Y2, V3....
with starting points (x1, t1), (22, t2), (x3, t3)..... respectively and this process will eventually
stop after a finite number of steps as the characteristic triangles constructed from the points
(x;, t;) will never intersect and the length of the base of the characteristic triangles is atleast
d; when ¢ > 0. So this implies in the compact set [— R, R| x [0, T], v;’s are finite. This
completes the proof of our claim.

Step 3. We show that R,, = Ro(y,(x,t)) satisfies the equation (R,,); + u,(R,), = 0 in
the sense of Volpert. Since there are only finite number of discontinuity curves and in the

complement solution is smooth. Let {z = x;(t)}"_, be the discontinuous curves. Now we

write
(Rn)e = (Ry): + (Rn(xj ()=, ) = R (0)+,£) (=X (1)) 0amy, t)

(Rn)x = (Rz)x + (Rn(Xj (t)_>t) - Rn(Xj (t)+>t)5ac=><j(t)

Where R{ denote the continuous part of 7, and using (4.4.12), we have

o.t) = {un(x,t) if (2,1) € Q= {(x;(t).),§ = L..n}

WG (O — ) Fun O (O +8) - -
un (x; () )2 (i (O)+:t) if (.C(I,t) € {(XJ(t)7t)7~] = 1n} .

Now using R-H condition, we get,
(Rn)t +n(Rn)e = (Ry): + un(R)e
If (z, 1) is a point of continuity of u,, it is enough to show:
(B5)e + un(Ry)z = 0.
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Let (z,t) € S, i.e, the point of continuity of u,, and we know that

un(x,t) = n(t)x + %[l(t)x — yn(z,1)].
Then d (¢ d /It I(t
(un)e =g [00) + ] = o0 (i) = (it
(un)o = [nlt) + 0] = L0 ot
We calculate
(ke ) =2 5 [0+ 0] = 05 (o) = 2O )
- ([0l0) + e = (o 8) [0+ 08— ()t
d I2(t) I2(t)\2
- [E (n(t) + m(t)) + (n(t) + m(t)) }
d , It) I(t) I2(t)
(GG + g 0+ ) e
- (+ ul).)
(4.4.15)
Now,
d 12(t) I2(t) \2
%<n(t) + m(t)) + (n(t) + m(t)>
s (2] (G
W) d () (BN ()
= T E(m(t) )+ m(t)> 20
) )

TRt omt)  Tm()
ey 20 (l’(t) +l(t)n(t)) LR
0 m(t) - h(t)

In the above calculation we used the relation (4.2.9). A similar calculation reveals that the

coefficient of y,, in the equation (4.4.15), that is, % (%) + % (n(t) + %) = 0. Since

uy, satisfies (uy,); + un(u,), = I'(x,t), we get
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Therefore

(Bt + un(Ry)z = po(yn(z, E)[(Yn)t + w(Yn)z] = 0.

Step 4. From step 2, we have (R,,); + u,,(R,), = 0. This can be rewritten by using the

chain rule for Volpert product(see [34])

We calculate,

o), = Rl 0) (e -+ 5100~ t)])m
= Rolya(,0)| (n(t) + j:(?)) y ) 21| 4.4.17)
- Rl (ul0) + =) - %( e >>)x,

where Ro(y) = Mj(y). Since (Ry, My) € WL(R), step 1 gives,

Ro(yn(z,t)) = Ro(y(z,t)) in L'([-R,R] x[8,T]),

Mo(yn (. 1)) = Mo(y(z,t)) in LY([=R, R] x [3,T]).

Hence, ,
Rl ) (n(0) + ) = 20 (Mol .0)
p (4.4.18)
= Ry 0) () + 15 ) = 210 (Maly(a ).

in the sense of distribution.

So from equations (4.4.16)-(4.4.18), we get
(R): + (uR), — Rolyle, 0) (n(t) +

in the sense of distribution.

0) 1 (1)

xT
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Finally one has,

Rt ), - Bl ) (nft) + S0 4 20 () =0

m(t) m(t) @
1e.
Ro+ (uR), = oy ) (nlt) + 0 ) + 0 Rl (. £) =0
This implies,
Re+ (uR), = Ry ) (nft)e + (1) — (o, 1)]).
= R, + (uR), — Ru, = R, +uR, = 0.
This completes the proof of the theorem. [

4.4.2 The Riemann problem

The following theorem describes an explicit solution for (4.1.1) when the initial data is of

Riemann type, i.e,
“L) L if oz <0

G- -

Using explicit formula (4.1.10), one can easily deduce the solutions for Riemann type initial

data.

Theorem 4.4.6. The solution for the problem

u +uu, =T(x,t) €R, t>0
pr+ (up)y =0, x€R, t>0,

with initial data

(ULaPL)T lf‘l‘ < 07
(ur, pr)" ifz >0,

(u’ p)T(x’ O) = {
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where (.,.)T denotes the transpose, case by case are given below.

Case: up > ug:

n(t)r + l(t)ur if v < g(t),
u(e,t) = § [0 1)) (5) of @ = g(0),
n(t)r + l(t)ur if © > g(t),
and
(oL ifx < g(t),
pla,t) = S mlt) (pr + pr) (4528 ) bugiey i = g1(2).
l(t)pr ifz > g(t),
where

L(t) 2
Case: ur, < up:
n(t)r + 1(t)ur, if © < l(gt))uL,
2 m
u(z,t) = (n(t) + anli if %UR <z < %UL,
n(t)r + l(t)ur if x> %U,R

and

I(t)pr i x> g5 us,
where n(t), l(t), m(t) are defined as in (4.2.11).

Proof. Case I: uy, > up : For y < 0, the minimizer of the functional G(y, z,t) is y =
[(t)x — urm(t) and the minimum value is uy, (I(t)z — “Em(t)).
For y > 0, the minimizer of the functional G(y, z,t) is y = [(t)r — ugm(t) and the

minimum value is ug (I(t)z — “Lm(t)).
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For y = 0, the value of G(y, x,t) is l;,(;)(f;

A straightforward calculation gives,

iff

Now observing the fact

2 2m(t)
ur(l(t)z — %m(t)) < l27(7?(f) )

we conclude that, in the region x < g(t), the minimizer of the functional G(y, x, t) is given

by y(x,t) = l(t)x — urm(t). Now recalling the formula

u(z,t) =n(t)x + —(l(t):z: —y(z, t)),

R(l’, t) = RO(y<I7 t)),

we obtain
u(z,t) = n(t)z + 1(t)ur, R(z,t) = pr(Il(t)z — urm(t)).
Similarly, in the region x > g¢(t), the minimizer of the functional G(y, x,t) G(y,x,t) is

given by y(z,t) = l(t)x — ugm(t), we get

w(z,t) =n(t)z +1(t)ur, R(z,t) = pr(l(t)z — upm(?)).

Since p = R, in the sense of distribution, we get the above formula.

Case Il: u;, < ug : In the region x < %ub the minimizer of the functional G(y, x, ) is

y(x,t) = l(t)x — urm(t). So the from the explicit formula for u(x,t) and R(z,t), we get

u(z,t) = n(t)r + 1(t)ug

R(z,t) = pr(l(t)x — upm(t)).
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Similarly, in the region x > Ty UR; the minimizer of the functional G(y, x,t) is y(x,t) =

[(t)xr — ugrm(t). So the from the explicit formula for u(z,t) and R(x,t), we get

m(t)
l

u(z,t) = n(t)xr + U(t)ug

R(x,t) = pr(l(t)x — ugm(t)).

In the region %1@ <x< %uR, G(y, x,t) attains the minimum at y = 0, hence the

solution is given by

u(z,t) = (n(t) + m(t))x
R(z,t) =0.
This completes the proof of the theorem. U

4.5 Space independent non-homogeneous system

In this short section, we are interested in the hyperbolic system with non-homogeneous
terms depending only on ¢. We follow Lax [47] to show the existence of a solution for this

system of balance laws. Let us consider the following system

{ut +uu, = h(t), zeR, t>0, (4.5.1)

pe+ (up)y, =0, z€R, t>0,

where h(t) is a bounded measurable function on [0, co). For simplicity, we take the initial

data for v and p as bounded measurable function.

u(z,0) = ug(x), p(x,0) = po(). (4.5.2)

Define the following functions
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Note that fi(t), fo(t) and f3(t) satisfies the following differential equations.

i =280,
bﬁ):—m@_fﬁw, (4.5.3)
f(t) = = f3(1).
Define
Lz —y)? y
Ulz,y,t) = r;gﬂg{—% + fit)y + fa(t)x + f3(t) + /O uo(z)dz}. (4.5.4)

Almost repeating the proof of lemmas (4.1) and (4.2), one can get

Lemma 4.5.1. Suppose U (x,y, t) attains minimum at y, for fixed (x,t). ThenU(x',y;,1) <

U(a',y,t) holds for y < y, and v < x'.

Lemma 4.5.2. For fixed t, y_(x,t) and y, (x,t) are monotonic increasing function in the

variable x. Hence there is a unique minimizer of U(x,y,t) for a.e. (x,t) € R x (0, 00).

Theorem 4.5.3. For a.e. (x,t) € R x (0,00), there exists a unique minimizer of (4.5.4)

and the solution for the equation (4.5.1)-(4.5.2) is given below.

u(z,t) = 2=yt + fa(t)
, / (4.5.5)
1) = 2 Rufy(z. ).

a% is understood as the distributional derivative with respect to x.

Proof. Denote

(z —y(x,1))*

G(z,y,t) = 5

y(z,t)
+ﬁ@%mﬂﬁwn+ﬁ@+A uo(2)dz.

Following Lax [47], we define
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Then
I (52 + ) e Noemvay

z foooo efNG(x,y,t)dy

S <_ @D+ ity + fot)z + fé@)efNG(x,y,t)dy
Jo e NG@uhdy

Because of the relations (4.5.3),

(=~ (5 + )

—n - HAOy+ Bzt f0) = - 2

— h(t)z.

By lemma (5.2) and using the method of proof of the previous result in section 4, one can

also show for a fixed ¢, the functions U}¥ and UY converges a.e. = € R to the following

limit.
Jim U (@) = %(“) + folt) = ulz, t)
tim 0 (e.t) = = ZYEOT e 4 g0+ (0
- —“(””T’t)Q — h(t)z.

So the above limit holds for a.e. (z,¢) € R x (0, 00).

Since UY = UN

tx

multiplying with test function and integrating by parts on the domain

R X [t100), we get,

—00

/ / UN ¢, (z, t)dadt — / / UN ¢, (z,t)dxdt + / UN¢(x,t,)dx = 0.
i1 —00 t1 —00

Using integration by parts,

// U;Vqﬁt(x,t)dxdt—/ / UthSx(x,t)dxdt—/ UNgp(x,t))dr = 0.
t1 —0o0 t1 —00 —00

Now passing to the limit as ¢; — 0, we get

/0 ) / Z Uy, t)drdi— /0 N / Z U () dardt— / Z ( /O “uo(2)d: ) s (@, 0)do 0,
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Now passing to the limit as N — oo, we get

/ / u¢tdxdt+/ / gbxdmdt—/z (/O uo(z)dz)gbx(x,O)dx:O.

Applying integration by parts, we get

/ / (ugy + 2 qﬁz )dxdt —/ / oz, t)dxdt + /_Z uo(z)p(x,0)dz = 0.

The proof that R(x,t) = Ry(y(z,t)) satisfies the equation
Rt -+ UR;E = O,

with initial data R(z,0) = Ry(z) is some what similar to the proof of Theorem 4.6 and

details are omitted. Therefore p = R, satisfies

Pt + (Up>z = Oa
with initial data p(z,0) = po(z). O

Remark 4.5.4. We showed that the formula (4.5.5) satisfies the equation (4.5.1)-(4.5.2)
when the initial data uo(x) and po(x) are bounded measurable functions. But this formula
(4.5.5) still satisfies the equation when [ uo(z)dz = o(2?) and [ po(z)dz = O(||°), for

any 5 € N.
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Chapter 5

Initial-boundary value problem for 1D pres-

sureless gas dynamics
5.1 Introduction

This chapter addresses the solvability of the initial-boundary value problem for the system
of pressureless gas dynamics

pr+ (pu)e =0
(5.1.1)

(pu)e + (pu?)z =0

in one space dimension. Here p denotes the density and u the velocity. The two lines
in equation (5.1.1) express conservation of mass and momentum, respectively. We adjoin
initial data

p(x,0) = po(x), u(z,0)=wuy(z), x>0, (5.1.2)

and ask under what conditions and in what sense boundary data

U(O, t) = ub(t)v (pu)(()?t) = (pbub)(t)’ t>0, (5.1.3)

can be prescribed. It is assumed that the data uy and u;, are bounded measurable functions
with u;, > 0. Further, py and p, are positive locally bounded measurable functions.

The initial value problem (5.1.1), (5.1.2) has been intensively studied in the literature.
The key issue is that, in general, p is no longer a function, but a measure. This led to the
introduction of various strongly related notions of weak solutions, such as measure solu-
tions [66], duality solutions [67] (based on [68]), duality solutions obtained by vanishing
viscosity [69], mass and momentum potentials [70, 29, 71], together with generalized char-

acteristics [72], generalized potentials and variational principles [14, 73, 74]. In this paper,
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5 Initial-boundary value problem for 1D pressureless gas dynamics

we shall extend the approach of [73, 74] to the boundary value problem.

Let us begin by discussing what is meant by a generalized solution to the system of
differential equations (5.1.1). We shall construct locally bounded measurable functions
m(z,t), u(x,t) such that for almost all ¢, m(z, t) is of locally bounded variation with respect
to z. Thus, for almost all ¢, the distributional derivative m, defines a Radon measure p. In
addition, u is measurable with respect to p. Following [74, Definition 1.1], the pair (p, u)

is viewed as a generalized solution to (5.1.1), if

[[emazar~ [ [ ouimac=o -

// (Yeu + pu®) dmdt =0

for all test functions ¢, ) € D(IR?). The construction of the solution (m, u) to (5.1.4) will
be based on the method of generalized potentials and characteristic triangles [ 74]. However,
differently from [74], we will need two types of generalized potentials (initial and boundary
potential) and their relation, as well as different types of characteristic triangles, depending
on the location of their apex.

More precisely, the initial and boundary potentials are defined by

F(y,x,t) = /Oy[tUo(n) +n — z]po(n)dn, (5.1.5)
G(ria.) = [ o = wtn)(t = nlpmus(a)an (5.1.6)
Further,
Flat) = min Fly,r.1) (5.1.7)
Gla.t) = _min G(r..1) (5.1.8)

The characteristic triangles with apex (z,t) will depend on whether F'(z,t) < G(x,t),
F(z,t) > G(x,t) or F(z,t) = G(x,t). For x = 0, the respective relation between F'(0, t)

and G (0, t) will also decide about the assumption of the boundary data.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

To further clarify the solution concept, we wish to show that (p, u) actually is a weak
solution to system (5.1.1) in its proper sense. Let us recall the measure-theoretic point of
view and the distributional point of view (for simplicity in the one-dimensional case). If m
is a function of locally bounded variation, it defines a Lebesgue-Stieltjes measure dm. On
the other hand, its derivative in the sense of distributions defines a Radon measure p = m,.

The two objects are the same, identified by the chain of equalities

/R o(@)m(dz) = (p, ) = —{m, u) = — / pa(z)m(z)dz

for ¢ € D(R). The first equality can be extended to ¢ € C(R) with compact support.
What is more, the Lebesgue-Stieltjes integral can be extended to all functions ¢ which are
integrable with respect to p. This a priori makes no sense at the other end of the chain
of equalities but allows us to define the product of the measure p with the bounded, p-

measurable function u as the distribution given by

(o, 0) = / o ()u(zym(dx)
for ¢ € D(R).

Using this identification, the second line in (5.1.4) means

0= // (Vw4 ) dmdt = (pu, ) + (pu®, y),

which is exactly the distributional meaning of the second line of (5.1.1). To obtain the first

line of (5.1.1), one has to insert ¢, in place of ¢ in (5.1.4) to obtain

0=//<pxtmd:cdt—//<pxudmdt= —(p, 1) — (pu, ¢z).

The actual proof of (5.1.4) will be done on yet a higher level. Apart from the mass poten-
tial m(z, t), momentum and energy potentials ¢(x,t) and E(x,t) will be constructed, both

bounded measurable functions which are in addition of bounded variation in x for almost
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5 Initial-boundary value problem for 1D pressureless gas dynamics

all t. Further, the Lebesge-Stieltjes measures dg and dE' are absolutely continuous with
respect to dm, namely
dg = udm, dFE = %u2dm,

and they satisfy the system
my + @z = 0

in the sense of distributions. By similar arguments as above, this system is equivalent to

(5.1.9)

(5.1.4).

What concerns the initial data, we will show that (5.1.2) is satisfied in the sense that p
and u are continuous functions of time with values in D’'(R). Actually for almoust all = we
show limy_o u(z, ) = ug(x), and lim,_,o m(z, t) = [ po(y)dy.

We turn to the assumption of the boundary data (5.1.3). As is well known from the
theory of conservation laws [75, 76, 77], one cannot arbitrarily prescribe boundary data,
because a priori there is no control of the sign of u(0+,t), except in the case when wy is
positive and hence u(x,t) > 0 everywhere (recall that u;, was assumed to be positive).

We will show the following: If ¢ > 0 is a Lebesgue point of u;, and p;, and F'(0,¢) >
G(0,t), then lim, o4 u(x,t) = up(t). If in addition u, is continuously differentiable and
oy 1s locally Lipschitz continuous, then lim, o, p(x, )u(z,t) = pp(t)up(t). If F(0,t) <
G(0,t) then u(0+,¢) < 0 and the boundary condition (5.1.3) cannot be fulfilled. Rather, it
may happen that mass accumulates at the boundary in the form of ¢ - (m(0+,¢) — m(0, t)).
However, the solution we construct conserves total mass. Momentum is conserved at the
points of time ¢ for which F'(0,¢) > G(0,t), while it satisfies an inequality otherwise. For
further aspects of boundary conditions for systems involving measure solution, see [78, 79].

The plan of this chapter is as follows: Section 2 is devoted to the construction of the
solution. In Section 3 it will be shown that the constructed solution satisfies system (5.1.4),

and hence (5.1.1). Section 4 addresses the assumption of initial and boundary values, as
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5 Initial-boundary value problem for 1D pressureless gas dynamics

well as conservation of mass and momentum. In Section 5, it will be shown that the so-
lution satisfies Oleinik’s entropy condition. Finally, Section 6 contains several examples

illustrating some of the possibly occurring effects.

5.2 Construction of solution

In this section, we construct the solution for the initial-boundary value problem. Recall the

definition of the initial and boundary potentials (5.1.5), (5.1.6),

Fly,,1) = / ltuo(r) + 17— 2lpo(m)dn,
Gr,a.t) = / e — un(m) (¢ — ) pa(m)uas ()il

Given (z,t), let 7*(z,t) and 7.(x,t) be the uppermost and lowermost points on the

t-axis such that

m>i10’1G(7’,:E,t) = G(t"(x,t),x,t) = G(7u(2, 1), 2, 1) .

Similarly, let y.(z,t) and y*(z, t) be the leftmost and rightmost points respectively on the

x-axis such that

min F(y, z,t) = F(y.(z,t),x,t) = F(y*(z,t),z,1).

y=>0

Note that these minima exist as real numbers because uq is bounded from above and below

and uy is positive. The following lemma collects some properties of the minimizers.
Lemma 5.2.1. With our assumptions on the initial and boundary data we have

1. 7.(x,t) and T*(x,t) are, for fixed x, monotonically increasing in t and for fixed t
monotonically decreasing in x. Moreover, we have for t; < iy that T*(x,t;) <

To(x,t2) and for vy < x5 that T.(v1,t) > 7°(29, 1).
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5 Initial-boundary value problem for 1D pressureless gas dynamics

2. y«(x,t) and y*(x,t) are, for fixed t, monotonically increasing in x and for 1 < xo

we have y*(x1,t) < y.(xa,1).
3. 7.(0,t) = 77(0,t) = t.
4. y.(z,t) is lower semicontinuous and y*(x,t) is upper semicontinuous.
5. 1.(x,t) is lower semicontinuous and T (x, t) is upper semicontinuous.

Proof. (1) Let z, t1, to > 0 be arbitrary but fixed and 7; a minimizer of G(7, x,t;) and 7
one of G(7, z,t3). Now we have
0 < G(TQ, x, tl) — G(Tl, X, tl) s and 0 < G(Tl, x, tg) — G(TQ, x, tg) .
Summing the two inequalities results in
T2 9
0< (ta—t) / p(n)us(n)dn .
T1
Since the term in the integral is positive by our assumptions we conclude that the minimizers
have to be increasing in ¢.
Now on the other hand fixing ¢, x1, o and denoting by 7; a minimizer of G(7, x1,t) and
by 75 one of G(7, 25, t) we derive in the same way
T2
0< (=) | plwntdn.
T1
From this one can conclude that the minimizers are decreasing in .
(2) is Lemma 2.1 in [74], from which also the proof of (1) is adopted. (3) is obvious, (4)

see Lemma 2.2 in [74]. (5) is proved along the lines of (4). [

Remark 5.2.2. Ifmin.>q G(7, ,t) is constant on an interval [x1, x5] X {t} one can argue

similarly to the proof of (1) above:

T2

0 < G(m,z1,t) — G(1y,21,t) = G(19, 21, t) — G(T2, T2, 1) = (21 — xg)/pb(n)ub(n)dn
0
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5 Initial-boundary value problem for 1D pressureless gas dynamics

Now since py, and uy, are assumed to be strictly positive we conclude that any minimizer T,
of G(T,x9,t) has to be zero and thus min,>o G(7,x2,t) = 0. Since G is constant on the
interval it has to be equal to zero on the whole interval. Note also that the minimizers on
the whole interval have to be zero (uniquely) because one can replace xo by any point in
the interval in the estimate above.

This situation will correspond to the case when the solution contains a rarefaction wave

starting at the origin.

We first quote the following result, which was established by Wang, Huang, and Ding
[74] in their study of the initial value problem. This will be central also in our work for

parts of the solution depending only on the initial data.

Lemma 5.2.3. For fixed (x,t), let the minimum minycpo o) F (y, x,t) be attained at y(x,t).
Then for any given point (x',t') on the line segment joining (y(z,t),0) and (x,t), we have

F(y, o', t') > F(y(x,t), 2, t') for y # y(x,t).

Proof. The proof follows directly from the proof of Lemma 2.3. in [74]. It also follows
from the poof of Lemma 2.4 in [73], noting that we assumed p, to be strictly positive (at

least in the L..-sense). [

Now we establish a similar result for the part of the solution depending on the boundary

data.

Lemma5.2.4. Forfixed (x,t), x,t > 0, let T = 71 be a point which minimizes the functional
G(r,z,t). Let (T,t) # (x,t) be any point on the line segment joining (x,t) and (0, t1). Then

the minimizer of G(7, %, ) is unique and is 7.
Proof. We want to show that for 7 # 7 :
G(r,Z,t) — G(m,T,t) > 0.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

By definition we have
G(Tv z, E) - G(Th Z, E) = / [‘f - Ub(n)(f_ 7])] Pb(n)ub(n)dn =

= :Y:/T: [1 = ub(n)f_%l po(n)up(n)dn =

= [ 1= ) S w2 (.

Since (z, t) lies on the line connecting (z,¢) and (0, 71) we conclude

Gl = Glr) =2 [ [1= w2 = ) =2 ooy =
= f/: [1 - ub(n)t_Tn} po(n)us(n)dn + f/: i (1) ps(n) (11 — 1) E - %1 dn .

Now the first term in the sum is 2 [G(7, z,t) — G (71, x,t)], which is non-negative by as-
sumption. For the second term observe that z < x. Thus it is strictly positive if 73 < 7 but

(considering the direction of integration) also if 71 > 7. O

The minima of the initial and boundary potentials, respectively, were introduced in
(5.1.7) and (5.1.8) as
F(z,t) = min F(y,x,t),

y€[0,00)

G(z,t) = min G(T,z,t).

7€[0,00)

Observe that for a fixed ¢ > 0 the function F'(z,t) is monotonically decreasing in = while

G(x,t) is monotonically increasing.

Lemma 5.2.5. The function [0, 00[x [0, co[— R: (z,t) — F(x,t) is locally Lipschitz con-

tinuous and the same holds for G(x,t).

Proof. Let U be a bounded open subset of [0, oo[x [0, 0o|. Since y.(x,t) is locally bounded

in [0, co[x [0, co], there exists an M > 0 such that
Y (2,t)
‘ / po(n)dn| < M
0
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5 Initial-boundary value problem for 1D pressureless gas dynamics

forall (x,t) € U. For (z1,t), (z9,t) € U we have
F(*Tlat) - F($27t) = F(y*(l'l,t)a%,t) - F(y*<x27t)7$27t> =
= [F(y*<l’1,t),l’1,t) - F(y*(xht)?x%t)] + [F(y*(xlat)vx%t) - F(y*(l’g,t),JZQ,t)] :

Since the second term is non-negative we infer that

Y= (xlvt)
Fuhw—Fumwzcw—xa/ po(n)dn
0

Similarly, we get
Y (T2,t)
Flant) = Flant) < m=o0) [ poo)dn.
Combining the inequalities above results in
|F(x1,t) — F(x9,t)] < M|xy — 29 .
On the other hand varying ¢ we obtain in a similar manner for (z,t,), (x,t3) € U,
|F(x,t1) — F(x,to)| < Mty — o .
Therefore for (z1,t1), (z2,t2) € U we conclude
|F(21,t1) — F(xa,t2)] < M(|lz1 — o + |t — a]) .
Lipschitz continuity of GG can be checked similarly. [

Next, we define the characteristic triangle associated to a point (z, ). We will later show
that this triangle contains all the initial or boundary information, respectively, necessary to

give the solution at point (z, t).

Definition 5.2.6. Let > 0, t > 0 and F(x,t), G(x,t) be given by equations (5.1.7),
(5.1.8).
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5 Initial-boundary value problem for 1D pressureless gas dynamics

1. For F(z,t) < G(x,t) and x > 0 we define the characteristic triangle at the point

(x,t) as the convex hull generated by the points (x,t), (y.(z,t),0) and (y*(x,t),0).

2. For F(x,t) > G(x,t) we define the characteristic triangle at the point (x,t) as the

convex hull generated by the points (x,t), (0, T.(x,t), and (0, 7*(x, t)).

3. For F(z,t) = G(x,t) we define the characteristic triangle at the point (x,t) as the

convex hull generated by the points (z,t), (y*(x,t),0), (0,7*(x,t)) and (0,0).

4. Forz = 0and F(0,t) < G(0,t) we define the characteristic triangle as the convex

hull generated by the points (0,t), (0,0) and (y*(z,t),0).
We denote the characteristic triangle associated with the point (x,t) by A(x,t).

Note that the characteristic triangle may collapse to a line segment or even to a sin-
gle point (Case 2 with x = 0). Figure 5.1 serves as an illustration of possible cases for

characteristic triangles.

G<F G=F G>VF

X ) X3

P S~ Lo

~ &~ &~ Po, Uo z
& » B

& S S

SN— S~— ~—

* * *

= = >

Figure 5.1: Illustration of characteristic triangles
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Note that G = F' can happen on an interval in x for fixed ¢. Since however F'is decaying
in z and G is increasing in « this can only happen if both, /' and G, are constant. We denote

this closed interval by

I(t) = {x[F(x,1) = G(x, 1)} = [I(t), r(1)] -

The following Lemma gives a characterization of the set where F' = G.
Lemma 5.2.7. With the notation as above, let t be such that .(7)(75) # (. Then:

1. Forall x € I(t) it holds that F(z,t) = G(z,t) = 0.

2. Tu(x,t) = 71"(x,t) = 0oni(t),r(t)] and T.(I(t),t) = 0.

3. yu(z,t) = y*(x,t) = 0on [I(t),r(t)] and y.(r(t),t) = 0.

4. Forallt' <t we have ;(t’) # 0.

5. The setJy<y<, 1(t) is star-shaped with respect to (0, 0).

Proof. (1) and (2) are direct consequences of Remark 5.2.2.

For the proof of (3) note that, since F'(x,t) = 0, clearly y = 0 is a minimizer of F'(y, z,t)
and thus y,(z,t) = 0 on I(t). The statement for y* then follows from the second point in
Lemma 5.2.1.

To prove (4) let 77 < x5 € I (t) and consider the line segments joining (z;,¢) and (0, 0).
Now denote the points on these line segments at time ¢’ < ¢ by (z/,t’) and (z},t"). Then

from Lemma 5.2.3 and Lemma 5.2.4
7'*(5(]/1, t/) = 7_*<1‘J27 t/) = y*(x,ht,) = y*(x/%t/) =0,

and thus Vz € [z, 2}]: F(x,t') = G(z,t'), leading to ?(t’) # 0.

(5) follows from the proof of (4) immediately. O
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Corollary 5.2.8. If for some t' > 0 we have that [(t') = r(t'), then
Vit U(t) =r(t).

Figure 5.2 illustrates the proof of Lemma 5.2.7 as well as the set G = F, including the

characteristic triangles, in the situation of Corollary 5.2.8

t
=
S F=G
)
QL
X ;
t/ ,,,,,,,,,,,,,,,,,,,,,,,,,,
F=G=0
Ti(@, t')
/ —~
T*<x2’ t:j:e Lo, Uo x
— &
B
Pt
D

Figure 5.2: Characteristic triangles (blue lines) corresponding to a rarefaction wave ema-
nating from the origin

Our next goal is to show that, as anticipated in Figure 5.1, characteristic triangles associated
with different positions at the same time do not intersect. For two triangles reaching only
the initial data, this is clear from Lemma 5.2.3. The same holds true if both triangles only
reach the boundary data by Lemma 5.2.4. We still need to study the case when one of the
triangles is as defined in points (3) or (4) of Definition 5.2.6. For this purpose, we prove

the following lemma.

Lemma 5.2.9. Lett > 0 be fixed, and x1, x5 > 0, x1 # xo but arbitrary. Then the

characteristic triangles associated to (x1,t) and (x4,t) do not intersect in the interior of
2

R?,

Proof. Let t be fixed and assume w.l.o.g. that xo > x;. Since F'(z,t) is decreasing and

G(z,t) is increasing in = we only have the following cases:
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Case 1, G(z2,t) < F(xg,t): Then automatically also G(x1,t) < F(z1,t). Now assume

that the two characteristic triangles intersect. Since the point of intersection p = (z,,%,)

€ X2
t ,,,,,,,,,,,,,,,,,,,,,

21, t) ¥
$27t
Jll,t g

7_*
7_*
T

Te(2, 1)

T

Figure 5.3: Intersecting triangles for boundary potential

lies on the line segment joining (z1,t) to (0, 7.(z1,t)) we know from Lemma 5.2.4, that
G(1,xp,t,) attains its minimum for 7 = 7,(z1,¢). Since p is also on the line segment
joining (xq,t) to (0, 7*(x2,t)) we have that G(7*(z2,t), zp, t,) = G(7u(21,t), 2, t,). This
however contradicts Lemma 5.2.4, because the minimizer is not unique.

Case 2, G(xa,t) = F(x9,t): Ifalso G(z1,t) = F(x1,t) then on an interval the characteris-
tic triangles are lines and do not intersect (see Figure 5.2). Otherwise, if G(x1,t) # F(x1,t),
denote by y, a minimizer F'(x2,t) = F(y2, ¥2,t) and by 75 one with G (3,t) = G(7, 22, 1).

Then we have for y > 0 arbitrary
F(yaxlat) > F(yax%t) Z F<y27x27t) = G(T27x27t) > G(T%xht)?

and we conclude G(z1,t) < F(xy,t). Thus we are in the situation depicted in Figure 5.4.
Again we can conclude as in Case 1 that an intersection is impossible.

Case 3, G(x3,t) > F(x9,t): Here we distinguish three more cases, namely

1. G(z1,t) > F(xy,t). This case is the same as Case 1 but using Lemma 5.2.3.
2. G(x1,t) = F(x1,t). The argument follows along the lines of Case 2, using Lemma 5.2.3.

3. G(x1,t) < F(x1,t). Here intersection is not possible by definition.
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t
Ty, 1) L
7*(2,1) 2B
Tk .CEl,t {
y*($27t) .

Figure 5.4: Intersecting triangles
O

Lemma 5.2.10. Lett > 0 be fixed, and x1 > 0. Then the characteristic triangles associated

to (0,t) and (x1,t) do not intersect in the interior of R%.

Proof. The proof is trivial if F'(0,t) > G(0,t). Thus let us assume that F'(0,¢) < G(0,1).
Then, by monotonicity, we have F'(x,t) < G(z,t) for all z > 0. Thus the characteristic
triangle at (1, t) is the convex hull of (xy, ), (y.«(z1,1),0) and (y*(x1,t),0). Since by point

(2) of Lemma 5.2.1 we have y*(0,t) < y.(z1,t) the assertion follows. O

Now we are in the position to state the first theorem that combines the results for fixed

t and the lemmas before.

Theorem 5.2.11. If two characteristic triangles intersect in R2, then one is contained in
the other. Moreover, if they intersect on the boundary at more than one point, then also one

has to be contained in the other.
Proof. The result follows from the direct application of Lemmas 5.2.3-5.2.10. U

The properties of characteristic triangles established so far allow us to derive additional

properties of 7., 7%, y., y*, which will be used frequently later. We collect them in a remark.
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Remark 5.2.12. (a) At fixed t, the function x — T.(x,t) is right continuous and x —
T*(x,t) is left continuous. Further, T,(x+,t) = 7.(x,t) = 7" (x+,t) for all t > 0 and
T(x—,t) = 7" (x,t) = 7"(x—, t) for x > 0.

(b) At fixed t, the function v — y.(x,t) is left continuous and © — y*(x,t) is right
continuous. Further, y.(x+,t) = y*(z,t) = y*(x+,t) for all x > 0.

Indeed, to verify (a), combine the semicontinuity properties stated in Lemma 5.2.1 with
the fact that T(x, t) is decreasing in x. In particular, 7.(x,t) = T.(z+,t). By Lemma 5.2.9,
m*(x+,t) < Tu(x,t). On the other hand, 7.(x+,t) < 7*(x+,t). Combining the inequali-
ties leads to T.(x+,t) = 7.(v,t) = 7*(2+,t). The second assertion and item (b) is proved

in the same way.

The following lemma states that the domain of interest is indeed covered by character-

istic triangles.

Lemma 5.2.13. For any time ty > 0 we have

U A to) = {(z.t)]x € [0,00),0 < t <t} .
)

z€(0,00

Proof. Case I(tg) # (: Assume first that I (o) consists of the single point o = I(ty) =

r(to). Let (z,t) be a point which lies left of A(xg,ty) (see Figure 5.5). Consider points
(z,to) on the horizontal line segment joining (0, ¢o) with (¢, o). As z decreases to 0, both

Te(z,to) and 7*(z, to) converge to (0, ) (Remark 5.2.12). Let
xy =inf{z : 77 (2, 1) < Tu(z, 1)}

Then 7*(x1+,t9) < 7i(x,t), and by Remark 5.2.12, 7*(x1+,t9) = 7u(x1,%0), so that
Te(w1,t0) < T(z,t). Whenever z < 1, we have 7%(z,ty) > 7.(x,t) and consequently,
by the non-intersection property, 7*(z,ty) > 7*(z,t) as well. Again by Remark 5.2.12,

(21, t0) = T (21—, t0) > 7(x,t). Thus A(z,t) C A(xy,ty), as desired.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

y* (o, to) Po, Uy z

Figure 5.5: Illustration of Lemma 5.2.13

Second, if (tg) # r(to), then 7.(l(to),t0) = 0 and y.(r(to),to) = 0 by Lemma 5.2.7.
We may apply the same arguments to points (z,¢) lying to the left of the segment join-
ing (0, 7*(zo, to)) with ({(ty), o) or to the right of the segment joining (y*(xzo,tp)) with
(r(to), to), respectively. If (x, t) lies between those segments, then = € I(¢) and Figure 5.2
applies.

Case I(tg) = (): Then A(0, to) contains the line segment connecting (0, ¢y) and (y*(0, ¢o), 0)

as well as all points to the left of it. For points to the right of the line segment the same
argument as in the first case ensures that they are contained in the characteristic triangle of

a point (z, o). O

Lemma 5.2.14. Let t; be strictly positive. Each point (1, t,) uniquely determines a curve
x = X(t), fort > ty, with x1 = X(t1) such that the characteristic triangles associated to
points on the curve form an increasing family of sets. This curve is Lipschitz continuous as

a function of t € [t1,00|. At everyt > ty, and (x,t) on the curve we have the following:
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5 Initial-boundary value problem for 1D pressureless gas dynamics

(i) If F(z,t) < G(x,t) then

x — yi(x,t)
X(t") - X(t) !

m — = y*(z,t)
AN " —t yu(a,t) POYO

v @) i ye(x,t) <y*(x,t).

Y (,t) Po

(i) If F(x,t) > G(x,t) then
T
t — Tz, 1)

= T (x5t)
I (z,t) potip

T*(x,t
f‘r*(:(t,t)) UbPo

X (¢ — ’
X - X()
t",t/\t t// _ t/

(iii) If F(x,t) = G(x,t) and y*(x,t) # 0 or 7*(x,t) # 0 then

if T(z,t) =71"(x,1)

if Tz, t) <71(x,t).

lim

(iv) If F(x,t) = G(z,t) and y*(z,t) = 7*(x,t) = 0, then

X t// _ /
LX) - X(@) _w
t”,t’\,t t// _ t/ t

) Ift =0,t>0and F(0,t) < G(0,t), then

lim X(t") — X(t)

=0
t",t’\t t/l _ t/

X =X (@) _ Jy " oo+ 7 o
N o — ¢ foy*(g;,t) oo + fOT*(:c,t) U

(5.2.1)

(5.2.2)

(5.2.3)

Proof. The statement (i) corresponds to Lemma 2.4 in [ 74] and the proof can be found there.

For the proof of (ii) let t” > ¢’ > ¢t and X (t") = 2”, X (¢') = 2. The non-intersecting

property of characteristic triangles implies the chain of inequalities

T (2" ") < 1 (2 ) < 1w, t) < 7F(x,t) < () < (),

and the semicontinuity then gives that 7. (z”,t") — 7.(z,t) and 7*(2",t") — 7*(x,1) as

t” — t. Consider the case when 7*(x,t) = 7.(x,t). From Figure 5.6 it is straightforward

to see the following inequality on inclinations:
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5 Initial-boundary value problem for 1D pressureless gas dynamics

7_* (.T//, t//)

Te(z,t) = 7" (2, 1)
7_* (‘I‘//7 t//)

-«
\

Figure 5.6: Bounds on slope

xl/ x// _ .,L,/ x//

t// _ T*(.Z'H t”) Z t” _ t/ Z t” _ 7_*(1.// t”) :

(5.2.4)

Passing to the limit as t”, ¢’ \ t leads to the first identity of equation (5.2.2).
Now consider 7. (z, t) < 7*(x, t). From the definitions of the boundary functional G(r,y, z, t),

T and 7*, we have

Gr (@ ), o ) =G, #),a" ) <0 <

(5.2.5)
<G(r*(", "), 2, ') — G(r(2!, 1), 2, 1).
After simplification inequality (5.2.5) yields
(2 ) (2 )
/ [2" = up () (" — )] po(n)up(n)dn < (2" — up(n) (" — )] oo () up(n)dn .
(@ ) (@ )
Thus we can conclude
- _ I D w3 () pu(n) 526
s ey () py(m)dn B
On the other hand, considering the inequality
G(ro(a” "), 2" ") =G (" (', ¢), 2" ,t") <0 <
<G(r(2",t"), 2, 1) — G(r* (2, 1), 2", ¥),
we get, using 7*(2’, t') > 7. (2", t") that
xff ) 5,, o 12 (0)pu(m) el 527)

> .
- ", tn) up(n)po(n)dn
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5 Initial-boundary value problem for 1D pressureless gas dynamics

Now passing to the limit as t”, ¢’ \ ¢ in equations (5.2.6) and (5.2.7), we proved the second
identity of (5.2.2).

Now to verify the statement of (iii) we assume F'(x,t) = G(z,t). Then by definition of
the curve and the characteristic triangles, F'(X (¢'),t') = G(X(t'),t) for all ' > ¢. Using

the minimizing properties we have the following inequality.

F y*(x/I’ tl/)7 :Ij'//,t”) _ G(7_>l<(:€/7 tl)’ l‘”,t”) —
T*<x//7t”)’ x//,t//) _ G(T*(l’/,t/),x//,t”) S 0 S
y' (@', t), 2 1) =

>)< Z‘ t/)

y* (.T//7 t// ) F

This inequality implies
(xu t”) " ! / 1
[ mmune = o) + i’ — oy <
0

T*(z',t)
sA (" — " )pu()us(n) + 2 () polm) (t' — ")l

and simplification leads to

y*(xl/7t//) T*(.Z‘/,t/) 2
fo Polo + fo Pty a" —a

I" ll / / —_— ° (5'2'8)
fy *(x't o+ fo ) ubpb H—
Now in the same way starting from the inequality
G(T* (ZE”, t”), l’”, t//) —F(y* (ZL',, t,), J]”, t//) <
S G(T*<CL’”7 t//)7 {L‘/, t/) o F(y*<l’/, t/>, l‘l, t/)
and simplifying as before we get
foy*(a:’,t ) Potio -+ fo z" ") pbug o
* Y // // 2 * (5'2'9)
y*(a’t") )t o —
0 pO + fo ubpb

Passing to the limit as t”, ¢’ \ ¢ in (5.2.8) and (5.2.9) completes the proof of (iii).

To prove (iv) observe that in this case the curve X (¢') for ¢’ < ¢ is just a straight line with
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5 Initial-boundary value problem for 1D pressureless gas dynamics

inclination x /¢.
In case (v) the statement is obvious by the definition of characteristic triangles.

Finally, the Lipschitz continuity follows from the fact that, whenever t” > ¢’ > ¢, the
differences X (") — X (') are bounded by a constant times ¢” — ¢/, according to (5.2.4),

(5.2.6), (5.2.7), (5.2.8) and (5.2.9). 0

Remark 5.2.15. Note that from (v) it follows that when such a curve X (t) reaches (with
increasing time) v = 0 it stays there until F' and G become equal and then leaves x = (0

according to (iii).

We conclude this sections by defining the functions u(x,t) and m(z,t). In the next

section we will prove that these are indeed solutions of system (5.1.4).

Definition 5.2.16. For x,t > 0 we define the real valued function u(x,t) by

(x — y.(z,1)
t

*(x,t
yy* (;715)) Polo

y* (,t)

if F(z,t) < G(x,t) and y.(z,t) = y*(z,1)

if F(z,t) < G(x,t) and y.(z,t) < y*(z,1)

ya(at) PO
% if F(x,t) > G(x,t) and 1.(x,t) = 7% (2, 1)

T (z,t) 2

— T« (T Poll . "
u(z,t)= % if F(xz,t) > G(x,t) and T.(x,t) < 7" (x, 1)

fT*(x,Lz) Polp

b)) o ryt() y*(x,t) #0or
I! poug + | Polly ’

v Py b _Jo e if F(z,t) = G(x,t) and

o pyuy + o Po (2, t) # 0
. y*(x,t) = 0 and
n if F(z,t) = G(x,t) and

T"(z,t) =0.

\

Forx =0andt > 0 we defineu =, if F(0,t) > G(0,t) and uw = 0 if F(0,t) < G(0,1).

For F(0,t) = G(0,t) we use the same definition as for x > 0.

More specifically, when z = 0 and F'(0,t) = G(0, t), the second to last formula applies

because 7(0, t) = t always.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

Definition 5.2.17. Fort > 0 and x > 0 we define the real valued function m(x,t) by

Y (1)
/ po(n)dn if Fz,t) < G(z,t) andx >0
m(x,t) = 0

_ /OT*(M) pu(Mup(n)dn if F(x,t) > G(x,t) orz=0.

Remark 5.2.18. Since only (weak) derivatives of m are of interest later, the definition at
isolated points is not important apart from x = 0, where we will use the height of the jump
Srom m(0,t) to lim,~ o m(x, t) times delta as the mass concentrated at v = 0. If we have a
whole area with F' = G then m will be zero, since in this case F = G = 0andy* =7 =0
(c.f. Lemma 5.2.7 ). This is also consistent with tracing back along the triangles (lines) in

the rarefaction wave.

Note that in areas along the t-axis z = 0 where F' < G we can not ask to fulfill the
boundary conditions (5.1.3) locally. For all other regions on the boundary, the boundary
conditions will be shown to hold, at least under some mild regularity conditions on the

boundary data (cf. Section 5.4).

5.3 Existence of generalized solution

In this section, we are going to show that (u, m) as described in definitions 5.2.16 and 5.2.17
satisfy the system of equations (5.1.4). For that purpose, we first show how to extend the

curves defined in Lemma 5.2.14 to the initial- or boundary manifold.

Lemma 5.3.1. There is a countable set S of points on the x- and t-axis with the following

properties.

(i) For all (n,0) & S there is a unique Lipschitz continuous curve x = X (n,t), t > 0,
such that X (n,0) = n and the characteristic triangles associated to points on the

curve form an increasing family of sets.

154



5 Initial-boundary value problem for 1D pressureless gas dynamics

(ii) For all (0,m) & S there is a unique Lipschitz continuous curve x = Y (n,t), t > n,
such that Y (n,n) = 0 and the characteristic triangles associated to points on the

curve form an increasing family of sets.

Further, for all n > 0 such that (n,0) and (0, n) does not belong to S,
2 X(n,t) = u(X(n,t),t) foralmostallt>0

2Y(n,t) =u(Y(n,t),t) foralmostallt>n,

where the right hand side is a measurable function.

Proof. Our proof follows the arguments found in [73] and [74] extends them to include the
boundary points. We introduce a* (7, t) and b* (&, t) to consider all the cases simultaneously.
For a fixed point (0, {) on the ¢t-axis and ¢t > 0 we define

B7(&,t) ={z € [0,00[: F(z,t) > G(x,t) and 7.(x,t) < &}

BT (&,t) ={x € [0,00[: F(x,t) > G(z,t) and 7. (x,t) > £},

and

e [swBEn, Bt £0
= {o, B(6.,t) =0,

as well as

_ JsupBF(&,t), BT t)#D
bHED) = {0, B(,1) = 0.

Now for a fixed point (7, 0) on x-axis and ¢t > 0 we define similarly

A7 (n,t) ={z €]0,00[: F(x,t) < G(x,t) and y.(z,t) < n}
At(n,t) = {x €]0,00[: F(x,t) < G(z,t) and y.(z,t) > n},
and

a (n,t) =supA~(n,t), a"(n,t)=infA"(n,1).

Let us denote

Sy(t) = {(0,€): £ € (0,00),07(&, 1) # b7 (€, 1)}

Sa(t) = {(n,0): n € (0,00),a(n,t) # a*(n, 1)}
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5 Initial-boundary value problem for 1D pressureless gas dynamics

We define the set S(t) by
S(t) = Sa(t) U S(2).-

Then for any fixed ¢ > 0 the set S(t) is countable. This follows from the fact that the
intervals [a™(n,t),at(n,t)] and [a~ (7', t),a™ (7', t)], can not intersect for n # 1’ except
at the endpoints, and the same holds true for [b™ (&, t),b" (&, ¢)] and [b~ (¢, t), b1 (&', t)] for

¢ # &' Indeed, let ) > 1 and assume that a= (7', ¢) < a*(n,t). This means that
sup{z € R: F(x,t) < G(x,t) and y.(x,t) <n'} <a™(n,t).

Therefore, for all = between a™ (1), t) and a™ (1, t) we have y.(x,t) > 1’ > n, contradicting
the definition of a™* (7, ¢). A similar proof works for the other intervals.

Observe that for decreasing ¢ the sets S, (t) form an increasing family of sets. To see this
let0 <t <tandn € S,(t). Then necessarily y,(z,t) = n forall x € [a™(n,t),a™(n,t)].
Let L(x,t) be the line connecting (z,t) and (7, 0) (for such x). By Lemma 2.3 of [74] we
have that y, = 7 along this line. In particular, the line segment cut out by the bounding
lines L(a™(n,t),t) and L(a™(n,t),t) at height ¢’ is contained in [a™ (n,t'), a*(n,t’)]. Thus
n € Sy(t'). In particular, for every ¢ there is n € N such that S,(t) C S,(+). A similar
reasoning can be applied to S,(t). Therefore, the set

s=Uso=Use)

t>0 neN

is countable.
Next, we discuss the definition of generalized characteristics according to [73]. For

(n,0) ¢ S, the generalized characteristic is defined by
X(n,t)=a*(n,t), t>0,

with X (n,0) = n. Since (n,0) € S, a™(n,t) = a*(n,t) forall t > 0.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

Let z = X (n,t) be the generalized characteristic. We claim that the characteristic trian-
gles at the point (X (7, t),t) form an increasing family of sets, that is if (z1,¢;) and (x2, t5)
are two points on the curve with ¢; < to, then A(xy,t1) C A(xo,t3). Indeed, in the case
when both characteristic triangles are given by (x;,t;), (v« (i, t:),0), (y*(x;,t;),0), con-
sider the line segment joining the point (x2, t5) to (y*(x2, t2), 0) and assume that segment in-
tersects ¢ = ¢; at the point (z3, ¢1). Then from Lemma 5.2.3 we have y* (22, t3) = y.(x3,t1).

Then by definition of X (7, t), we find
X(’I], t1> < I3 .

On the other hand, assume that the the line segment joining the points (2, t2) and (y.(x2, t2), 0)

intersects the line ¢t = ¢; at (Z3,¢;). Then we claim
T3 S X(’I], tl) .

Indeed, the map = — y.(z,t5) is lower semicontinuous and increasing, hence left contin-
uous. Further, xo = sup{z : F(z,t2) < G(z,ts) and y.(z,t2) < n}. Thus y.(zq,ty) =
lim, ., y.(z,t2) < 7, and consequently 3 < 7 as well. Combining the two arguments
shows that (z1,t1) € A(xs,t2) and hence using the non-intersection property of character-

istic triangles we have

A(l’l, t1> C A(l'g, tg) .

In the case when either of the characteristic triangles is given by the edges (z;, t;), (0, 7% (22, t2)),
(y*(xi,t:),0), the inclusion A(z1,t1) C A(xe,ts) follows directly from the first argument
above and the non-intersection property.

Now we turn to the time derivative of the curves X (7, t). It is obvious that n — X (1, )
is an increasing function at fixed ¢ > 0. Therefore, it is Borel (and Lebesgue) measurable.
Lemma 5.2.14 together with Definition 5.2.16 mean that

%X(n,t) =u(X(n,t),t) (5.3.1)
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in the sense of a right derivative, at least for (1,0) ¢ S. Since X (n,t) is Lipschitz con-

tinuous, it is differentiable almost everywhere and its derivative satisfies (5.3.1). Further,

u(X(n,t),t)is alimit of difference quotients of measurable functions, and thus measurable.

Similarly, for (0,&) ¢ S the generalized characteristic is defined by
Y(€8) = b€ 1)t > 0.

An analogous assertion as above is true for the characteristic triangles, and

0

holds for almost all £ > €.

]

Remark 5.3.2. The exceptional set S corresponds to points on the x- or t-axis from which

a rarefaction wave starts. Indeed, if (n,0) & S,(t) andt > 0, then y.(z,t) = n = y*(z,1)

whenever x € [a_(n,t),ay(n,t)]. One could define X (n,t) by X (n—,t) as is done in [72]

or by X(n+,t) (to include n = 0). However, to state and prove the results of the present

paper, it is not required to assign a value to X (n,t) at the exceptional points.

Definition 5.3.3. We define, for x,t > 0 the momentum and the kinetic energy associated

to equation 5.1.4 by

Y (1)
/ po(nyuo(n)dy, if Fla,t) < Gla,t)
q(z,t) = OT*(Lt)
- / oy (n)dn . ifF(z.t) > Gla,t),

and

N

E(z,t) =

The following lemma will make our physical interpretation more precise.
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Tx (2,t)
3 [T 0. 00, i Fe0) > G,

(5.3.2)
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Lemma 5.3.4. In the sense of Radon-Nikodym derivatives in x, the following holds in the

interior of R2.: (i) dg = udm, (ii) dE = su*dm.

Proof. If F(z,t) < G(x,t), then the result is Lemma 2.8. in [73].

Let (z,t) be a point where G(z,t) < F(z,t). If 7, is constant in some neighborhood of
(x,t), then the above quantities are constant and the lemma holds trivially. Now suppose
T«(z, t) is not constant in a neighborhood of (x, t) and assume 7. (x,t) = 7*(x,t) = 7(x, t).

Let 1 < x < x4, then by definition

*($17t)
Gr(athant) = [l = (= mwnlp(n)un)ds
0
*(5527t)
Glr(aathant) = [ o = (¢ = muntmlostmntndn.
0
By the minimizing properties we have we have
G(Te(x1,t), 21,t) < G(Te(T2, 1), 21, 1),

and using the definitions leads to

T (22,1) _
1 S (Erama) e
t—7u(wa,t) ~ [0 (Y () dn

T (21,t)

(5.3.4)

Now since
t — Tu(z1,1) o t=m
t — Te(x2,t) = t — Tu(ma, 1)

<1,

and since 7, (x,t) = 7"(z,t) = 7(x, t) is continuous at (x, ) we can take the limits z; "

and x, \, 7 in (5.3.4) to derive

t—7(x,t) = w2ai—ze m(zg, t) — m(xq,t)

(5.3.5)

Similarly considering the inequality

G(Tu (w9, 1), 29, 1) < G(Tu(21,1), 22, 1)
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and following the analysis as above, we get

T 1 Q(x27t> - Q(ﬂflat)
~ >l .
t—7(x,t) = w2e—z m(xy, t) — m(xy,t)

(5.3.6)

From equations (5.3.5) and (5.3.6) and Definition (5.2.16), we conclude dq = udm.

If 7 (z,t) < 7*(x,t), then

T (z1,t) 9 7 (z,t) 2
im q(x%t) — q(xlat) B H fT*(Izi) PoUy _ fr*(x,t) Potly '
wa@1—e M(Ta, t) — m(1,t) w2210 f;*(il,’tt)) Opts f:*(ixt;) Ol

Here we used Remark 5.2.12. Now we consider the remaining case, where (z, t) is a point

with F(x,t) = G(x,t). If this happens in an isolated point then we have, for z; < x < x5

lim Q<x2>t> - q<l’1, t) _
T2,T1—T m(l'g, t) — 777,(x17 t)
= lim fOT*(xht) Pyt + foydx%t) Polo foT o0 Py + foy (z,t) Polto
L A T I oy + [ p

)

again using Remark 5.2.12. If on the other hand F'(x,t) = G(z,t) in a whole neighbor-
hood of (x,t) then we are in a rarefaction wave emanating from zero and thus 7*(x,t) =
y*(z,t) = 0 in a whole neighborhood. Then m, ¢, and E are zero by definition and the
proof'is finished. In the boundary points of the region F'(x,t) = G(x,t), the same proof as
in the case F' < G or F' > (G works, on the right and left boundary, respectively. Thus in
all possible cases, we derived that dg = udm in the sense of Radon-Nikodym derivative.

Now we turn our attention to the proof of dE = %qum. First let (z, t) again be a point
where G(z,t) < F(x,t) and 7, (z,t) = 7*(x, t). Then

Tx(21,t)
Blea ) =B =4 [ 0,00 637

Note that for 7, (xo,t) < n < 7.(x1,t) we have

v <u(Y(n,1),t) <

t_T*(x%t) N t_T*(xht) ‘ (538)
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Hence from equation (5.3.7) and (5.3.8) we derive

1 E(ZEQ, ) (Z’l,t) < 1 T

2t_7—*(l‘27 ) Q(‘Tl )_Q(.Tg,t) a 21('-_7—*(1‘17t) '
E(xo
qa(z1

4)—E(x1,t)
) —q(z2,t)

In the limit z; " x / x2, we have — Ju and we know 49— 4. Combining

dm

these two, we get dE = sudm.
For the final case assume F'(z,t) = G(x,t) in an isolated point. Then noting that (z1, )
lies left of (z,t) and thus F'(z1,t) > G(x1,t), and the opposite holds true for (z5,t), we

have
E(xy,t) — E(z1,t)
mar—e (32,t) — q(21,1)
Y po(m)usm)u(X (n, 8), t)dn + 3 J7 " py(m)up(m)u(Y (n,1), t)dn
25“” o(myuo(m)dn + & [ py(n)ui (n)dn
t),t

Forn € [0,y*(x,t))], we have u(X (n,

) = u(z,t) and similarly for n € [0, 7*(z,t))]
we know that u(Y (n,1),t) = u(z, ).
Thus from the equation above, we have

E(Iz,t) —E(ZL’l,t) . 1

— u(z,t).
vz (X9, 1) —q(:cl,t) 2u(x, )

Since dq = udm, we again conclude dE = Xu?. This completes the proof. [

Lemma 5.3.5. Define
w(x,t) = min(F(x,t), G(z,t)),

then the following holds for x1,x5,t > 0:

/902 m(z,t)dr = p(xy,t) — p(zg,t). (5.3.9)

1

/"«awwzuwiﬂ—umiu. (53.10)

t1

Proof. We start with proving the first equality. For that purpose let ¢ > 0 be fixed and pick

any two points x, z’ € [xq, x3], x < 2. We claim that

(x — 2" Yym(2,t) < p(a',t) — p(z,t) < (x —2")m(z,t). (5.3.11)
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For p(x,t) and p(2’, t) depending upon the minimization the possible cases are:
(a) :u(xvt) = F($’ t) ) M(Ila t) = F(Ilvt)
() u(z,t)=Glx,t), pl@t)=F('t) (5.3.12)

() p(z,t)=G(x,t), pl',t)=G 1)
The proof of the inequality (5.3.11) for the case (a) in (5.3.12) can be found in Lemma 2.9.

in [73]. In case (b) we have

(' t) — p(x,t) = Fy.(a',t), 2, t) — G(ru(z,t), 2, ) =

= [Fy.(2',t), 2", t) — F(ye(2', 1), 2, )] + [F(y« (2, 1), 2, t) — G(1u(2, 1), 2,1)] .
Since the term in the second bracket is positive, we get
u(x', t) - ,U(iC, t) > F(y*([L‘/’ t)? xla t) - F(y*<l'/, t)> Z, t) (5313)

One can also write

(' ) — p(x,t) = F(y (2, 1), 2", t) — G(ru(x, 1), 2, 1) =

= [Fly.(2',t), 2", t) — G(ru(z, 1), 2", )] + [G(7u(2, 1), 2", t) — G(7u(z, 1), 2,1)] .
Since the term in the first bracket is negative, we get
,u(m/a t) o M(%, t) < G(T*(l’, t)a l’,, t) - G(T*(l’, t)a €, t) : (5314)

Combining (5.3.13)-(5.3.14) and using the definition of m, F' and GG, we conclude (5.3.11).

In case(c) we have

p(a' ) — p(x,t) = G(r(',t), 2", t) — G(1i(, 1), 2, t)

= [G(ru (2", 1), 2", t) — G(Tu(z, t), 2", 1)] + [G(Tu(2, 1), 2", 1) — G(7i(, 1), 2, 1))] .
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Since the first bracket of the above expression is negative, we get
(' t) — p(x,t) < G(ru(z,t), 2", t) — G(ri(, 1), 2, 1) . (5.3.15)
On the other hand, we write
(@' t) — p(x,t) = G(r(a', 1), 2, t) — G(1u(, 1), 2, t)
= [G(r (2, 1), 2" t) — G(ru (2, 1), 2, 1)] + [G(Tu (2, 1), 2, 1) — G(Tu(, 1), 2, 1))] .
Now the second bracket of the expression is positive and thus
(' ) — p(x,t) > G(r(a)t), 2", t) — G(re(2, 1), 2, 1) . (5.3.16)

Again, combining (5.3.15), (5.3.16) and using the definitions of G and m we have (5.3.11).
Since m is monotonous in z, it is also Riemann integrable. Taking Riemann sums and

using (5.3.11), we get

/mmWJMx—M%J%w@%w,

1

finishing the proof of (5.3.9).

For the proof of (5.3.10) let z > 0 be fixed and pick ¢ < t in [t1, t5]. We claim that

(t = )l ¥) < pla,t) — pla,t) < (= t)a(a, ). (5.3.17)

To verify this, we distinguish the following possibilities for p(z,t) and u(x,t'):
(a) plx,t) =F(z,t), pxt)=F(zt)
(b)  plx,t) =G(z,t), px,t) =Gzt
(€) plx,t) =F(z,t), pxt) =Gzt

(d) /L(Zt,t) = G(:L’,t), M(I,t,) = F(:L’,t/>
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Note that again the case (a) on {x} X [t1, 2] is covered by Lemma 2.9. in [73]. Since the
proofs in all cases are rather similar, we only present the proof of case (b) explicitly. We

start by observing that

p(z,t") — p(x, t) = G(r(z, t), 2, t") — G(ri(x,t), 2,t) =
= [G(r(z,t),z,t") — G(1(z, 1), 2, 1)) + [G(1e (2, t), 2, 1) — G(Tu(z, 1), 2,1))] <

S G(T*($,t),l’,t/) o G(T*($,t),l’,t)),

and

p(z,t") — p(x, t) = G(r(z, t'), 2, t") — G(ri(x, ), 2,t) =
= [G(Tu(x, "), 2, ") — G(Tu(x, V'), 2, 1)] + [G(Tu(z, '), 2, 1) — G(Tu(, 1), 2, 1))] >
> G(ru(z, ), 2,t) — G(u(z, ), 2, 1) .
Those two inequalities combined imply (5.3.17).
For a fixed = the function y.(x,t) is monotone in the interval [t1, t5] and thus ¢(x,t)

is a function of bounded variation, hence Riemann integrable. Now following a similar

argument as before, identity (5.3.10) follows from (5.3.17). [

From the previous lemma we have p, = —m and p; = ¢, and thus we verified the first

equation of system (5.1.9). As anticipated in the introduction, for a test function ¢ with

compact support in |0, co[? we infer using Lemma 5.3.4:

0= //[—wtux(%t) + otz t)]dedt =
_ / / (i@, (. ) + pu(@, O)q(x, 1)) dedt =
= //gpt(x,t)m(:p,t)dxdt—//go(x,t)u(m,t)m(dx,t)dt. (5.3.18)

This identity proves that (u, m) satisfies the first equation of the system (5.1.4).

To prove the second equation, we use the following notation.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

Lemma 5.3.6. For x,t > 0, let us denote

Y (2,t)
H(z,1) = / po(myuo(m)(X(n.8) — a)dn,  if F(a.t) < Gla 1)
H(x,t) = 0

7w (z,t)
H(at) = — / o (E)(Y (1,8) — @), ifF(x,t) > Gl t).

Then we have H, = —q and H; = 2F in the weak sense.

Proof. We will first show that

- /m q(x,t)dr = H(xy,t) — H(z17,t). (5.3.19)

1
Let t be fixed and [z, 25| be an interval. Assume that = and 2’ are any two points in
[x1, x2] with x < 2’. We will again argue by taking Riemann sums. First, depending on the
minimization we distinguish the cases

(a) H(wq,t) = Hy(z1,t), H(xo,t) = Hi(xs,t)

(b) H(xy,t) = Ho(xy,t), H(wg,t) = Hay(x,1)

(¢) H(xy,t) = Ho(xy,t), H(wo,t) = Hy(z2,1).
For case (a) it is shown in [74] (what we denote by H, is denoted by 6 in [74]), that (5.3.19)
holds.
For studying case (b), we define Hy(7,z,t) = — [ pu(n)ui(n)(Y(n,t) — x)dn. Since
Y (n,t) is decreasing in 7 (by the non-intersecting property of the characteristic triangles)

and Y (n,t) =z for 7.(z,t) <n < 7%(x,t), we have
Hy(z,t) = m>1g1 Hy(T,2,t). (5.3.20)

In particular, Hy(-,t) is upper semicontinuous. Note that f(z,¢f) > G(z,t) and hence

H(z,t) = Hy(x,t) for all  in the interval [z, 25]. The rest of the proof is similar to the
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one of Lemma 5.3.5. We have, denoting minimizers in the usual way,

H(x,t) — H(2',t) = Hy(x,t) — Hy(a' 1) = Ho(7u(z,t), 2, 1) — Ho(mu(2', 1), 2", 1) =
= [Ho(7u(z,1),,t) — Ho(mu(2', 1), 2, 1)] + [Ho(Tu (', t), 2, t) — Ho(u (2, 1), 2/, 1)] <

< Ho(ru(2!,t), 2, t) — Ho((2/, 1), 2/ 1) = —(x — 2)q(a', 1) .
On the other hand

H(xz,t) — H(z',t) = Hy(x,t) — Ho(2',t) = Ho(mu(, 1), 2, t) — Ho(m (2, 1), 2/, 1) =
= [Hy(Tu(x, 1), x,t) — Hao(Tu(x, 1), 2", 8)] + [Ho(Tu(, t), 2", t) — Ho(Tu (2!, 1), 2", )] >

> Hy(7(,1), 2, 1) — Hy(ru(,t), 2/, t) = —(z — a")q(x,1).
Combining those two inequalities establishes
(& — a)qla,t) < H(z,t) — H@,t) < —(z —a)q(e',1). (5321)

Now taking the supremum of the Riemann sums over all partitions of the interval [z1, z5],
we deduce (5.3.19) on all intervals [z, 23] with F' > G.

The case F(z,t) = G(z,t) requires special consideration. Recall from Lemma 5.2.7
that this happens on an interval I(t) = [I(t),r(¢)]. If [(t) = r(t) = z, then A(x,t) con-
tains [0, y*(x,t)] x {0} and {0} x [0, 7*(z, ¢)]. Thus by the non-intersecting property, we
have X (n,t) = = forn € [0,y*(z,t)] and Y (n,t) = x for n € [0, 7"(z,t))]. This implies
Hy(xz,t) = 0 = Hy(x,t). Note that this is also true if (x,t) lies in a rarefaction wave
emanating from 0. In this case we have y*(z,t) = 7*(x,t) = 0 for all points in the in-
terior of /(t) and thus H as well as ¢ is zero in these points. Further, A(l(¢),?) contains
{0} x [0, 7*(L(t),t)] and A(r(¢),t) contains [0,y*(r(¢),t)] x {0}, so H is also zero in the
boundary points of ().

The proofiin case (c) then follows from these facts. Since F'(xy,t) > G(z1,t) and F(z3,1) <
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G(z2,t), we have [(t) Clxy, xo). Write x3 = [(t), x4 = r(t). We split the integral in three

(possibly only two) parts and use the results of cases (a) and (b) accordingly,

x2
- [Cawtt == [ gt [ gnde- [ gletde -

x1 [x1,z3] [x3,24] |x4,22]

= Hy(w3—,t) — Ha(w1,t) + 0+ Hy(zo,1) — Hy(x4+,1) = H(wa,t) — H(21,1) .

Here we used the assertions of Remark 5.2.12, namely 7. (x3—, t) = 7*(x3, t) and y, (x4+, 1) =
y*(x4,t). The consideration above then allows us to conclude that Hy(z3—,t) = Hy(x4+,t) =
0.

Collecting all cases proves that H, = —q weakly for fixed ¢. Similar arguments can be

used to show H; = 2F. (]

Now we conclude that again for a test function with compact support in ]0, co[?

0= [[ H )t + st = [ [[Hos(e,0) = Hioaa(o, ) dnde =
_ / / =g, )b, ) — 2B (2, 1)) dadt —
_ / / (s ) () dmdt + / / 2(z, ) (O dmdt . (5.3.22)

Identity (5.3.22) proves that (u, m) satisfies the second equation of the system (5.1.4). Com-

bining (5.3.18) and (5.3.22) we proved the following theorem:

Theorem 5.3.7. The functions v and m as given in Definiton 5.2.16 and 5.2. 1 7respectively,
are global solutions of (5.1.4) in the sense specified in the introduction. The functions m,
q and E given in Definition 5.2.17 and Definition 5.3.3 are global weak solutions of system
(5.1.9) on R2.

Proof. The statement about solutions of (5.1.9) is clear from Lemma 5.3.5 and 5.3.6. Now
by Lemma 5.3.4 these functions and w are related in the correct way as Radon-Nikodym
derivatives. Thus following the discussion in the introduction v and m are solutions of

(5.1.4). u
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Note that we did not discuss initial and boundary data yet. In the next section we will
show that p, as the derivative of m, and u satisfy the boundary and initial conditions (5.1.2),

(5.1.3) in an appropriate sense.

5.4 Verification of initial and boundary condition

Now we turn our attention to the initial and boundary conditions. For that purpose, we
define, as already discussed in the introduction, the Radon measure p as the derivative of
m. We also explicitly define the mass at = 0 as the one-sided distributional derivative of

m and will show later in this chapter that this leads to conservation of mass.

Definition 5.4.1. Let m be as in Definition 5.2.17. Then we define
Opm forx,t >0
plz,t) = il{‘l’(l) p(x,t) Jor x =0and F(0,t) > G(0,1) (5.4.1)
J- li{‘% (m(z,t) —m(0,t)) forxz =0and F(0,t) < G(0,t).

Here § is the Dirac measure, 0, is the distributional derivative and p is interpreted as a

measure.
Lemma 5.4.2. For u according to Definition 5.2.16 and for all t > 0 we have
1. F(0,t) < G(0,t) = u(0+,t) <0
2. u(0+,t) < 0= F(0,t) < G(0,1).

Proof. We start by proving the first implication. Since F' and G are continuous in (z, t), the
statement F'(x,t) < G(z,t) holds true in a whole neighborhood of the point (0,¢). Now
following Definition 5.2.16 in this neighborhood u is defined as

T — y*(xa t)
t
u(z,t) = y*(@,t)
’ zp) PoUo
) = iy () <y (o, t).
fy*(;p,t) pU
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5 Initial-boundary value problem for 1D pressureless gas dynamics

In the first case we see that for z ™\, 0 the velocity u becomes negative, apart from the
case when lim,~ o y.(x,t) = 0. This is however impossible because that would lead to
F(y.(0,t),0,t) = 0 and thus F'(0,t) = 0 > G(0, t) contradicting the assumption.

In the second case, observing that F'(y.(z,t), x,t) = F(y*(x,t),z,t) and simplifying we

get
y* (2,t)
[ttt + 0 - 2)plnian =0,
Y (,t)
This implies
y
ety MPo(n)dn
tu(z,t) — oz = — f t) < —yu(z, ).
y*(z,t) ( )d
ye(at) P il

Now passing to the limit as x Y\, 0, we obtain tu(0+,7) < —y.(0+,t) = y*(0,t) by
Remark 5.2.12. Since G(0,t) < 0 always and F'(0,t) < G(0,t) by assumption, we must
have y*(0,¢) > 0 and hence u(0+,t) < 0.

In order to prove (2) first note that, for z > 0 we have that 7*(z, ¢) < t. This is due to the
fact that at fixed (z, t) the quantity G(7, =, t) becomes increasing for 7 > t — x/||up]| 0, s
seen from the definition of G and remembering that we assumed p;, and u;, to be positive.
Thus the only cases in Definition 5.2.16 that can lead to negative u(0+, ¢) are cases with

F<GorF <Q(@. U

Theorem 5.4.3. The pair (p, u) as defined above solves equation (5.1.1) in R?..

The initial conditions are satisfied in the sense that for almost all x we have limy o u(z,t) =
uo(x) and p = Oym with limp o m(z,t) = [ poly

The boundary condition is satisfied in regions where F(0,t) > G(0,t) in the following
sense: For almost all t we have lim,\ o u(x,t) = uy(t).

If in addition vy, is continuously differentiable and p, is locally Lipschitz continuous, then
lim, o p(x, t)u(x,t) = pp(t)up(t).
Proof. The fact that (p, u) is a solution is clear from the discussion in the introduction since

they are derived from a solution (m, u) of (5.1.4).
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To prove the validity of the initial conditions observe that

)
i F(y..0) = [ (0= 2)m(a)dn (542)
N0 0
and
lim G/, ) = 0. (5.4.3)

The assumption py > 0 implies that F'(z,t) < G(x,t) for small values of ¢. So the initial
condition holds for u by the arguments of Wang [72]. Since y.(x,t), y*(z,t) — zast \ 0
, we get

fimm(a.t) = [ (o)

Next we verify the boundary conditions. From our assumptions we have F'(0,t) > G(0, t)
and by continuity, for  close enough to zero, G(x,t) < F(x,t). Let ¢, be a Lebesgue
point of wu, and p,. We start by showing that the boundary conditions for u hold, i.e.
lim,\ o u(z,t9) = w(to). Let (z,,t0) be sequence converging to (0,%;). First assume
that 7. (x,,to) = 7"(xn, to) = T(x,%o). In this case, the minimum is unique and thus for

h > 0 (in fact, any h # 0) we have
G(T(2n,t0), Tn, to) < G(T(xp, to) + ATy, Ty, to).

This implies

($7zat0)+h$n T(:Emto)-l-hxn 9
Tn / ( po(1) s ()dn = / uyy (1) (to — 1) pe()dn

Tn,to) T(Zn,to)
T(xn,to)+haen

> (to — (2, to) — hit) / B p(mdn. (5.4.4)

T(xn,t)
Simplifying (5.4.4) and using Definition5.2.16, we get

T(xn,to)+hen 2

<u(; 1) A C) L

T(Tn,to)+han -7
T, Lo) fT((mmtOO)) po(m)uy()dn
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and as n — oo, we have

lim sup ( - h) up(te) < 1. (5.4.5)

n—o0 U(In, tO)

Similarly considering the inequality
G(T(xna tO)a Y, T,y tO) < G(T(:an tO) - hxna Y, T,y tO)v
and following the same analysis as above, we find

lim inf

Since h is arbitrary positive number, inequalities (5.4.5) and (5.4.6) result in

1
lim ————uy(to) = 1.
lim u(%to)ub( 0)

Thus we proved that lim,,_, o, u(z,, to) = up(to) implying continuity of u up to the boundary
and validity of the boundary condition in this case.
If 7. (zp, to) < 7*(2p, to), then by Definition 5.2.16 we have

fT* (zn,to)

2
Tx (Ccrut()) pbub

u(xn, to) = fT* (z,t)
7w (z,t) PoUp
Soifty is a Lebesgue point of pyu; and pyu?, as is true for almost all to, we get lim,, o u(x,, to) =

up(to) again.

It remains to show that the boundary condition for p holds. In this case, if the boundary

potential
G(r..1) = [ o = wn)(t — )lm(au(o)dn
0
attains the minimum in (0, co) at a point 7, then 4%|,_- = 0. That is

oG

E‘r:f =(x—wup(T)(t = 7)) pp(T)up(7) = 0.
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Since 7. (z,t), 7"(z,t) S tasx N\ 0, for x close enough to 0, the minimizing point lies in

(0, 00). Consider the function f : R™ x [0, 00) — R where f is defined as

flz,7) =2 —up(7)(t — 7).

Then 9 = —(¢t — 7T)up(7) + up(7), £(0,¢) = 0 and 2£(0,¢) > 0. Thus by the implicit
function theorem there exists a neighborhood of (0,t) where f(z,7) = 0 has a unique
solution. That gives the unique minimizer of the boundary potential G(7,z,t) and thus

T.(z,t) is a continuously differentiable function of x in some neighborhood of 0. Now

1
up(t)

T
t—T (x,t)

from the relation u(z,t) = , we see that lim,\ o 8%7*(:5, t) =— Consequently,

: .0 . 0
}:1{% plx,t) = }:1{% %m(x, t)=— il{% Pu(Te (2, 1) )up (Te (2, t))£7'*(x, t) = pp(t) .

This completes the verification of the initial and boundary condition for (u, p). ]

The next theorem concerns the global conservation of mass and momentum for our

solutions.

Theorem 5.4.4. Let py € L'([0,00)), then the solution given in Definition 5.4.1 conserves

the total mass, i.e.

w20: [ ptant = [ mwdes [ o

Moreover, the total momentum is conserved but only for times without influx to the bound-

ary. More precisely we have fort > 0:

. _ / " o(@uo(x)da + / p(my(n)dn i F(0.1) > G(0,1)
/u(x,t)p(dx,t) OOO Ot
0 > / pol(@)uo(z)dz — / (e (mdn ifF(0,) < G(0,1).

Proof. First we prove the mass conservation property. We start in the situation, when

F(0,t) > G(0,t). Since F' and G are continuous functions, in a neighborhood of (0, ¢)

172



5 Initial-boundary value problem for 1D pressureless gas dynamics

we have F'(z,t) > G(xz,t) and thus m(z,t) = — OT*(M) up(n)po(n)dn. Note that 7, (z, t) is
decreasing in x and m(z, t) is increasing in . Moreover, m(z, t) is upper semicontinuous
in this case as we shall prove now.

For this purpose consider a sequence z,, = (z,,t,) — z = (z,t). Then,

T« (2n)
lim sup m(2,) = — lim sup / o)y () =
0

n—00 n—00 n>k
‘ SI;IL T (2n) nlimm 51;;;C T« (2n)
= tim [ patndn =~ [T g

By lower semicontinuity we have 7,.(z) < liminf,, o 7.(2,) < limsup,,_, . 7«(2,). Thus
we conclude

n—=00 p>k

lim sup 7«(zn) T (2)
limsupm(z,) = —/ po(1)up(n)dn < —/ po(n)us(n)dn = m(z).
0 0

n—oo

Now m(x,t) is right continuous in z since it is increasing and upper semicontinuous. This

leads to the desired mass conservation for F'(0,¢) > G(0, t),
00 00 t
| otdnt) = [ mdnt) =mioo.t) = m(.0)= [~ ula)de+ [ wtmmtadn.
0 z€(0,00) 0 0

For the other case when F'(0,¢) < G(0,t) we decompose the integral in the following

manner:

/000 p(dz,t) = m(0+,t) —m(0,t) + [ m(dz,t) = m(oco,t) —m(0,t) =

z€(0,00)

- /OOO po(z)dx + /Ot up(1)py(n)dn -

This finishes the proof of mass conservation.

Now we show momentum conservation. The momentum p.u is understood as

(um, = q, forz,t >0

pu(t)up(t) forz = 0and F(0,t) > G(0,1)
plx, u(z, t) = (5.4.7)
0 forz = 0and F(0,t) < G(0,t)

Lp(0,%)u(0,t) forz =0and F(0,t) = G(0,1).
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Note that in the last case this is the Dirac mass at zero, multiplied by the non-zero velocity
expected at this point. This is consistent with the point-wise interpretation as pu up to the
boundary if u is as in Definition 5.2.16 and p as in Definition 5.4.1. When F'(0,¢) > G(0, 1),
by similar argument as in the proof of mass conservation one can show that ¢(x, t) is right

continuous in z. Hence we find

| utany = [ et = g(oc,t) - a(0.0) =
0 z€(0,00)
) t
— [ mlauords + [ pnuta)dn.
0 0
Now we consider the case F'(0,¢) < G(0,t). In this case
| sty = [ a0 = gloeut) — a0+.1) -
0 z€(0,00)

- /0 h po()ug(z)dz — /0 e po(m)uo(n)dn .

For the last equality, Remark 5.2.12 was used. Since we are in the case F'(0,t) < G(0,t),

we have
Y+ (0,t) t
/0 (tuo(7) + mpo(m)dy < — / (t — nyad(m)ou(m)d.

leading to

This implies
t

/000 plz, u(z, t)ds > /Ooo po(x)ug(z)dx —/0 pu()(n)dn .

Finally we have to consider the case F'(0,¢) = G(0, ). First note that we have y,.(0+,¢) =
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y*(0,t), again by Remark 5.2.12. Now for F'(0,t) = G(0,t) we have

[ otae-
0
7*(0,t)
_ / (dl’ t) 1 ( (LL’ t) (O,t)) fO — t)pbub + fo T tpOUO _
z€(0,00) fo PolUy + f

y (0+,t) t
pouy + Pouo
= q(00,t) — q(0+,1) ( podn + / pbubdn> Joowi + Ji -
0 Jo pon + fC

oo «(04,t) t y*(0,t)
_/ po(z / (n)dn+/ pbuidn+/ Polodn =
0 0 0

[e'e) t
_ / po(@)uo(z)de + / pidd,
0

completing the proof. [

5.5 Entropy condition

In this section, we will show that the solution we constructed is an entropy solution up to

the boundary.
Theorem 5.5.1. Lett > 0 and x > 0. If z is a point of discontinuity of u(-, t), then we have
u(x—,t) > u(z,t) > u(x+,1t).
Moreover, for almost all t > 0 we have that u(-,t) is either right continuous at x = 0 or
w(0,t) > u(0+,t).

Proof. Firstlet z > 0,t > 0. If (z,t) is a point where F(z,t) < G(z,t) and y.(z,t) =
y*(x,t) then u(x,t) = (z — y«(z,t))/t is continuous at (x, t). On the other hand if we have
y«(x,t) < y*(z,t) singularities can form and this case is considered in [72].

Now we look at points (z,t), where F'(x,t) > G(z,t) and we have 7.(x,t) < 7(z,1).

Using again Remark 5.2.12 we have that u(z—,t) = —f— and u(z+,t) = —

t—7*(z,t)
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5 Initial-boundary value problem for 1D pressureless gas dynamics

From

G(Te(z,t), 2, t) = G(T7(x,t), 2, 1) ,

we know that

‘@)
/ oy (=l ()dn = 0.

This implies
(2t (2t
P p— Tix? ) /T *(;))pb(n)ub(n)dn = /T *(;) | Pa——Y _(tT:(Z?t)%(n)pb(n)dn,

from which we conclude u(z+,t) < u(z,t). The other inequality also follows easily if one
divides the above equality by (¢ — 7*(x, t)).

The case F'(z,t) = G(x,1) is slightly more complicated. If F'(x,t) = G(x,t) in an interval
then we are in the case of the rarefaction wave emanating from zero and the solution is
continuous. Thus we can assume that the equality holds in an isolated point. As already

observed above, we have that u(z—,t) = - Note that

Fy*(z,t),z,t) — G(t"(x,t), z,t) < F(y*(x,t),0, 7" (z,t)) — G(7"(x,t),0,7%(x, 1)),

since the term on the left side is zero. The inequality above yields

/Oy*(m,t)<(t B 7_*(1,7 t))Uo(Tl) — .I) po(n)d’f] <
< / T*(z’t)(a: = (=7 (@ 0)u () po(n)as ()

and dividing by t — 7*(z, t) we get u(z,t) < —eD

s—y* (a,t)
t

, using the definition of u(z, t).

To derive the inequality for u(x+,t) = we proceed in a similar way, starting from

G(t*(x,t),z,t) — F(y*(x,t),x,t) < G("(x,t),y"(x,1),0) — F(y*(z,1t),y"(z,1),0).

This completes the proof in the interior.

It remains to consider the boundary = = 0. For almost all ¢ > 0 such that F'(0,¢) > G(0, )
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5 Initial-boundary value problem for 1D pressureless gas dynamics

we know from Theorem 5.4.3 that lim,~ o u(z, t) = u,(t), that is u(-, t) is right continuous.
For F'(0,t) < G(0,t), Lemma 5.4.2 implies that u(0+,¢) < 0 while «(0,¢) = 0 according
to Definition 5.2.16. For the only remaining case F'(0,¢) = G(0, t), the entropy condition
follows from the same argument as in the interior, since «(0, ¢) is defined in the same manner

in this situation. 0

5.6 Some explicit examples

First, we present an example that includes a rarefaction wave emerging from zero and a
delta mass forming from the initial data due to a downward jump in the velocity. To make
the construction of the solution easier to follow we present i = min(F, G) in the left half of
Figure 5.7. The right half is the solution that we get from the derivatives of 1. The boundary
conditions p, = 1, u, = 1 are satisfied up to t = 16/3. At this time the ¢ hits the boundary
and stays there, increasing its mass, as influx from the right continues. We also indicated
the values of 7 and y in the right picture.

The next example, presented in Figure 5.8, is interesting since it is a case where a delta
at zero forms driven by influx from the initial data. Moreover, the example is constructed in
such a way that the influx from the initial manifold stops after some time while the boundary
data continues to gives a positive momentum influx. Thus the delta indeed leaves zero when
the influx of momentum from the boundary is sufficient. Note that the delta does not leave
x = 0 with zero velocity. Thus our solution can be interpreted as one for a sticky boundary.
Moreover, it can be seen from this that the solution does not satisfy a semi-group property. It
could be restored by keeping the negative momentum in such cases, which however would
lead to the momentum no longer being the product of mass and velocity. We choose not to
do that for physical reasons - even if the momentum could be considered as a kind of dummy

variable in this case. Note also that strictly speaking the situation depicted in Figure 5.8 is
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Figure 5.7: Rarefaction absorbed by shock generated from initial data and meets the bound-
ary at finite time.
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5 Initial-boundary value problem for 1D pressureless gas dynamics

not covered by our theory since py = 0 for z > 2 but the solution is similar if p is very
small for x > 2.

t

4423

! —
= I+
- ey
I g1
~ //' Q
S| 2—-2(2t+1x) /,/mgt m = 2t +ux, q =
—2(PF byu = —2
— Q 7
17 L2 . <
33;5?\\\\3T%%+x) 5\\\;<1\\\
S x | x
po=1 r=2p=0% «  p=1 r=2p=07%
Uy = —2 ug arbitrary Uy = —2 ug arbitrary

Figure 5.8: Left: Potential 4 = min{F, G} in blue. Right: Solution, calculated from
potential according to Lemma 5.3.5 and Definition 5.4.1

In Figure 5.9 we give an example where a delta forms due to a jump up in the boundary
velocity. Moreover, we included a jump down in the initial data and the two discontinuities
merge into a single Dirac-mass. For the values, we choose the delta that does not reach the

boundary again.
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5 Initial-boundary value problem for 1D pressureless gas dynamics
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Figure 5.9: upper left: F, upper right: G, lower left: ;1 = min{ F, G}, lower right: Solution
satisfying initial and boundary conditions. The delta approaches x = 3/4 asymptotically
for a large time.

Finally in figure 5.10 we show that rarefaction can generate from the initial and bound-
ary values. The initial and boundary data are the following: initial data py = 1,uy = 3
forr < 1and py = 1,ug = 4 for x > 1 and boundary data p, = 1,u, = 2 fort < 1 and

pp = 1,u, = 2fort > 1. Rarefactions are generated from the points (z,t) = (1,0), (z,t) =

(0,0) and (z,t) = (0,1).
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Figure 5.10: Rarefaction generated from initial and boundary data
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Chapter 6

Solutions with concentration for conser-
vation laws with discontinuous flux and
its applications to numerical schemes for
hyperbolic systems

6.1 Introduction

The aim of this study is two-fold:

1. To look for solutions with concentration for the following scalar conservation law

with discontinuous flux:

u + (F(z,u)), = 0, (z,t) € R x R, (6.1.1)

u(z,0) = wup(x), z €R, (6.1.2)

where F(z,u) = H(z)f(u)+ (1 —H(x))g(u), uo is a bounded measurable function,

H is the Heaviside function, g and f are locally Lipschitz continuous functions on R.

2. Touse the above and propose convergent, conservative finite volume numerical schemes

for the general class of hyperbolic systems of the following form:
vy + (k(v))2 = 0, (6.1.3)
u + (l(u)k' (v)g = 0, (6.1.4)

which may not admit bounded weak solutions depending on the nature of the func-

tions k£ and [.
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The system of the form (6.1.3)-(6.1.4) is physically important, for example, the Augmented
Burgers system finds applications in cosmology and is closely linked to Zeldovich approx-
imation, see [26]. According to this model, the evolution in the last stage of the expansion
of the universe, the matter is described as cold dust moving under gravity alone and the
laws are governed by the system (6.1.3)—(6.1.4) with k(v) = %2 and [(u) = w in one di-
mension. This system was studied extensively in the literature, see for example, [37] and

the references therein.

For a hyperbolic system of n equations of conservation laws given by

w+fw, = 0, zeRt>0,

B uy, if z <0,
u(z,0) = {uR, if >0,

it can be seen that in the absence of strict hyperbolicity and small total variation of the initial
data, the system may not admit bounded solutions, for example, see Keyfitz-Kranzer sys-
tem, [80], Augmented Burgers system [16], the system of Pressureless gas dynamics[51],
the system of Pressureless gas dynamics with Coulomb friction [81] etc.

It is to be noted that since the system (6.1.3)-(6.1.4) admits d-shocks, see[16], exact or
standard approximate Riemann solvers cannot be used. To this end, we aim to approximate
this system using a finite volume type scheme, by viewing the system equation by equation.
It was shown in the literature that this system admits J- shock whenever the first equation,
1.e. the Burgers equation admits a classical shock. Since the first equation (6.1.3) of the sys-
tem is a scalar nonlinear conservation law, any standard 3- point scheme such as Godunov

scheme can be used for (6.1.3). However, the second equation is of the form
ug + (K (v(z, t))u), =0, (z,t) € R x RY,

if we assume that v(x,t) is known at the point (z,t). This is a scalar conservation law

with linear flux k'(v(z,t))u that has a variable coefficient &'(v(z,t)). It will be shown
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in this chapter that it can be solved numerically by considering a local Riemann problem
at each numerical interface of the form (6.1.1)-(6.1.2). Depending on the nature of g, f,
the IVP (6.1.1)-(6.1.2) has numerous physical applications in different fields such as two-
phase flow in a discontinuous porous medium [82], sedimentation procedure [83], traffic
flow on highways with different flow density [84], opinion dynamics [85], blood flow, the
flow of gas in a non-constant channel, fabrication of semiconductor device [86] etc. The
IVP (6.1.1)-(6.1.2) has been studied in the literature extensively. Various methods have
established the existence of solutions, for example, vanishing viscosity method [87, 88, 89],
front tracking method [90, 91], convergent numerical schemes [92, 93, 94, 95] and the
references therein. In the context of the existence and uniqueness of entropy solutions,
it has been observed in the literature that the geometry of flux functions g and f play an
important role. In fact, the IVP (6.1.1)-(6.1.2) has been shown to have unique bounded
solutions when ¢g and f are functions with one critical point or they are monotone with
the same monotonicity, see [63, 96, 97]. In fact, Hopf-Lax Type formulae were derived in
some of these studies. However, the existence of bounded weak solution of the IVP (6.1.1)-
(6.1.2) for the overcomperessive flux pair (f, g) with g increasing and f decreasing remains
currently unsettled. For example, with g(u) = au, f(u) = bu, the existence of the solutions

for the Riemann problem for the PDE (6.1.1)-(6.1.2) with the Riemann initial data

UO(‘I) = ulX{z<0} + UTX{x>O}7

can be handled using the existing literature of discontinuous flux, except for the case a >
0,0 < 0. The case a > 0,0 < 0, does not fit into the existing theory of conservation laws
with discontinuous flux as, g and f do not have decreasing and increasing parts respectively
to look for the intermediate connection values A and B such that g(A) = f(B),¢'(A) <
0, f/(B) > 0, see [94] for details. As characteristics overlap each other at the interface

x = 0, cases may arise when there may not exist a weak solution for the IVP (6.1.1)-(6.1.2)
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that satisfy the following weak formulation:

/ / ), t) + F(z,u(z,t))d. (2, t)dxdt—i—/ o(x)o(z,0)dx =0,

R (6.1.5)

forall p € C°(R x (0, 00).
In [95], the authors relaxed the R-H condition at the interface x = 0 to seek weak solution
and proposed a non—conservative bounded entropy solution. The linear transport equation
with variable coefficient has been studied in some earlier papers, for example, [68] for one-
dimensional case and [98] for multi-dimensions but this case of overcompressive flux pair
has not been dealt with. In view of mass conservation, a natural choice to define a solution,
in this case, could be to look for a solution that conserves the mass but it may not be bounded.
At this point, we propose a different concept of solution, the so-called -shock type solution
for the IVP (6.1.1)-(6.1.2). This paper proves that this proposed solution is a vanishing vis-
cosity limit of an approximate parabolic PDE, that approximates (6.1.1)-(6.1.2). Moreover,
it also shows a surprising connection between fractional differential equation and the IVP
(6.1.1)-(6.1.2). Asymptotic behavior of this parabolic approximation is also studied in §6.4.
The concept of solution with j-measure mainly arises in the existence theory of non-strictly
hyperbolic systems. This type of unbounded solution was first introduced by Korchinski
in his Ph.D. thesis[9], post which it was explored extensively in the literature. In this re-
gard, we mention the vanishing viscosity method [12, 16, 27], weak asymptotic method
[33, 99, 100], Colombeau generalized functions[36], shadow wave approach [18] and more
recently, singular flux function limit [46, 58]. Numerical schemes for capturing §-shocks
were proposed in, see for example, [101, 51, 102, 103, 104] and references therein. Also,
it is to be noted that the numerical schemes for the hyperbolic systems admitting d-shocks
fail to converge to the expected solution if the numerical schemes are constructed using
bounded solutions proposed in [94]. It is interesting to note that the hyperbolic systems of

Euler gas dynamics also admit d-shocks for suitable pressure P, [51, 17] which are of the
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form
P+ (pu)s =0, (6.1.6)
(pu)i + (pu® + P(p))s = 0. (6.1.7)

These models work as a suitable mathematical approximation to calculate the lifting force
on a wing of an airplane in aerodynamics, find presence in cosmology, and are used as
possible models for dark energy. It is to be noted that the first equation of the system (6.1.6)
is also of the form (6.1.1).

In this chapter, a numerical scheme for the system (6.1.3)-(6.1.4) will be proposed by
proposing a scheme for the IVP (6.1.1)-(6.1.2). Since (6.1.1)-(6.1.2) is a type of linear trans-
port equation with a discontinuous coefficient, for which the existence theory of solutions
is not completely settled, this paper will also establish the notion of the solution along with
its existence using the vanishing viscosity approach.

The rest of the chapter is organized as follows: In §6.2, we give the notion of generalized
weak solution for conservation laws with discontinuous flux and discuss the uniqueness of
the solutions. In §6.3 and §6.4, we derive the solution for linear overcompressive flux pair
and show that this solution is obtained as a distributional limit of viscous approximation of
the problem (6.1.1)-(6.1.2). Also, the asymptotic behavior of this viscous approximation
is studied. In §6.5, we derive the Lax—Oleinik type formulae for the - shock type solu-
tions of (6.1.1)-(6.1.2) with non-linear overcompressive flux pair (f, g). In §6.6, upwind
numerical scheme for (6.1.1)-(6.1.2) is proposed and shown to converge analytically to the
generalized weak solution. Some additional properties of the scheme are also established
and the scheme is also extended to the system (6.1.3)-(6.1.4) and the convergence of the
numerical scheme to the solution is established. The scheme is also extended to balance
laws, i.e., (6.1.1)-(6.1.2) with source terms, both real-valued and measure-valued. Finally,

in §6.7, numerical results are presented to exhibit the performance of the schemes.
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6.2 Preliminaries

In this section, we collect some preliminary results and basic facts.

Definition 6.2.1. (Interior Entropy Condition) For v € L>®(R x R") and f, g Lipschitz

continuous, the interior entropy condition is given by,

Orlu — k| + O, [sgn(u — k)(g(u) — g(k))] <0, for x <0,

Oilu — k| + 0, [sgn(u — k)(f(u) — f(K))] <0, for x>0, (6.2.1)

forall k € R, in the sense of distribution.

Lemma 6.2.2. Let u,v € L¥(R x [0,00)) N C([0,00); L, .(R)) satisfying the interior

entropy condition (6.2.1) and u(x+,t),v(z+,t), u(x—,t) and v(x—,t) exist, for almost

every t > 0, where u(x=+,t) = lim,_,o+ u(z,t). then, we have the following:

Jew | [ o) [ (s@.00) - ot 0.0 0) s,

where h(a,b) = sgn(a — b) (h(a) = h(b)),h =g, |.

The above lemma is true for any Lipschitz continuous flux pair (f, ¢) and is a conse-
quence of integration by parts followed by a doubling of the variable technique. Proof can

be found in, for example, [63].

Theorem 6.2.3. The IVP (6.1.1)-(6.1.2) with an overcomperessive flux pair (f, g) admits
at most one weak solution (6.1.5) satisfying the hypothesis of the Lemma6.2.2.

Proof. For f decreasing and g increasing, f(a,b) < 0 and g(a,b) > 0. Suppose u and v

are two weak solutions, then from Lemma 6.2.2, we have the following,

0o b+Mt
/¢'(t) / u(z, ) — v(a, 8)|dx | dt >0,
0 —Mt
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b+Mt

which implies ¢ — / |u(z,t) — v(x,t)|dx is non increasing and leads to the L' contrac-

a—Mt
tion inequality,
b+ Mt b
[ tute.t) = vttt < [ fuo(a) = ofa)lde
a—Mt a
which implies the u = v a.e. U

The above theorem talks about uniqueness of the solutions of (6.1.1)-(6.1.2) given that
the weak solutions exist. However, bounded weak solution satisfying (6.1.5) does not exist
in general for vy € L*(R). For example, with g(u) = u, f(u) = —u,up(z) = k # 0,
(6.1.1)-(6.1.2) does not have any bounded weak solution satisfying (6.1.5). In this paper,
we look for measure-valued solutions which are solutions of the IVP (6.1.1)-(6.1.2) in the

following sense:

Definition 6.2.4. 4 measure valued function u(x,t) = u(x,t) + w(t)dgz—oy is said to be a

generalized weak solution of the IVP (6.1.1)-(6.1.2) if the following holds:
/ / D)u(,t) + Fa, iz, 1)) bn(x, £)dadt + /0 0 (0)64(0, 1)t
+ /Ruo(x)gb(x, 0)dz = 0,V¢ € C°(R x (0,00)),
where u and w are locally bounded.

Theorem 6.2.5. If u,(x,t) = Uy (x,t) + w1 (t)0gz—0y and ua(x,t) = Up(x,t) + wa(t)d(z—0
are two generalized weak solutions of (6.1.1)-(6.1.2), in the sense of (6.2.4). Suppose u,
and Uy satisfy the hypothesis of the Lemma 6.2.2 and wy,wy € C([0,T];R), then u; = Ty

a.e. and w; = ws.

Proof. Note that u; and u5 are bounded solutions of the conservation laws away from the

interface. Thus @, and us satisfies interior entropy condition and a proof can be found in
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[63]. Hence by Lemma 6.2.2 implies that w; = us. From Definition 6.2.4, we have

| o)~ wslt) 60,00t =0, o € CE®x (0,50),

0

which implies w; (t) — wy(t) = C, C, some constant. Since w;(0) = wy(0) = 0, we have
w1 = Wa. O

We now give the generalized weak solution for (6.1.1)-(6.1.2) with overcompressive

flux pair (f, g) and start with the case when ¢ and f are linear.

6.3 Generalized weak solution with linear overcomperes-
sive flux pair

Let g(u) = au, f(u) = bu,a > 0,b < 0. To propose the generalized weak solution for
(6.1.1)-(6.1.2), we consider the following nonlinear version of (6.1.1)-(6.1.2):

For an € > 0, consider

w+ (Fo(z,u)e = 0, (z,t) € R x RY, (63.1)
Fo(w,u) = H(z)f(u)+ (1 - H(x))ge(u), (6.3.2)

g(u) = au+§(au)2, (63.3)

flu) = bu+§(bu)2, (6.3.4)

uo(r) = gy gy + U X gy (6.3.5)

It is clear that f, and g. are convex functions and the above PDE has a unique entropic
solution with any Riemann data (u;, u,) owing to the theory of discontinuous flux of [94].

For example, in the case where g.(u;) > fe(u,):

ug, if x <0,
-1 /2 .

ue(x,t):< T(E—FCLUZ), 1f0<l’<8€t,’
Uy, if x> 0,
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where

For any time ¢t > 0, we have

St p
/O u(x,t)dx = (au; — bu,)(1 + aulé),

which as € — 0, converges to au; — bu,.. Also, note that the pointwise limit

limu(x,t) = u(x,t) = WX gy T UrX pmy (6.3.6)

e—0

is, in fact, the solution proposed in [94]. It is worthwhile noting that this pointwise limit in

(6.3.6) does not respect the conservation of mass in the interval o, 8], < 0 < [ as

d B
0= E/ u(z, t)dr # —bu, + auy,

1

instead, the weak convergence of {u}{es0p € Ly,

(R) in the space of signed Radon mea-
sures gives

u(x, t) == u(x,t) + t(aw — bu,)dp—oy (2, 1),

takes care of the missing mass u, by concentrating it at the point x = 0, through the term
t(au; — bu,)dz—0y(x). Since we are looking for solutions which satisfies the conservation

principle for (6.1.1)-(6.1.2), it motivates to look for solutions of the type
U(x,t) + w(t)de—oy () (6.3.7)

so that the missing mass (au; — bu,. )t is represented by the time-dependent function w. The
weak limit stated in the equation (6.3.7) solves the problem (6.1.1)-(6.1.2) in the sense of
Definition 6.2.4. It is important to note that the solutions of the problem (6.1.1)-(6.1.2) with
any other sign of a, b can also be seen as vanishing e— limit of the solutions of the same

nonlinear version (6.3.1)-(6.3.5).

190



6 Solutions with concentration for conservation laws with discontinuous flux and its
applications to numerical schemes for hyperbolic systems

Similar calculations allow us to consider the IVP (6.1.1)-(6.1.2) with a source term,
namely
ur + (bH(z)u + a(l — H(x))u), = k(t)u.
t
For example, fora = 1,b = —1, V(xz,t) = exp <—/ k:(s)ds) ,u(z,t) satisfies the
0

homogeneous equation

Vit (—H(@)V + (1= H(z))V), = 0, (63.8)
which gives,
(exp (/Otk:(s)ds) oz + 1), it 250,10,
(1) = { exp < /0 t k:(s)ds) Uo(t) — Uo(—D)pacy,  if =0,
ex (/Otk(s)ds) ol — 1) it 2 <050,

We can also consider (6.1.1)-(6.1.2) with point source,
ut + F<x7 u)x = S(t)5{x:0},
for which the weak formulation is given by

/Oo/(u(az,t)gbt(x,t)+F(a:,u(a:,t))qﬁx(a:,t)da:dt+/ w(t)p:(0,t)dt
0 JR 0 (6.3.9)

—|—/ uo(x)o(x,0)dr = /t S(t)p(0,t)dt, Vo € CX(R x RT U{0}).

If u(z,t) + w(t)dz—oy is the solution of the problem
u + F(z,u), =0,
subjected to the initial data ug € L>°(R), then the problem
u 4+ F(x, 1)y = —(t)0g—0 (),

has a bounded solution for the same initial data. Physically, this can be interpreted as the

mass concentration at x = ( can be avoided by keeping a negative point source (sink) of a
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suitable strength at x = 0.
In this section, we show that the previously stated solution can be obtained as a limit of the

vanishing viscosity of the solutions of viscous formulation of the equation (6.1.1)-(6.1.2).

6.4 Distributional Solution of Linear Transport Equation
as a Vanishing Viscosity Limit

In this section, we obtain the previously stated solution as a limit of the vanishing viscosity

of the solutions of viscous formulation of the equation (6.1.1)-(6.1.2)

U + F(z, 1), = €Uyy,
(6.4.1)
u(z,0) = ug(x).

In the section §6.4.1, we obtain the solution of (6.4.1), which is the parabolic approximation
of (6.1.1)-(6.1.2) and in the section §6.4.2, we show that the vanishing viscosity limit of

these solutions is the distributional solution of (6.1.1)-(6.1.2).
6.4.1 Continuous Solution of the Parabolic Approximation (6.4.1)
The weak formulation of the problem (6.4.1) is given as follows:

Definition 6.4.1. 4 function u € C*(R x R*;R) is a weak solution of the equation (6.4.1)

if the following integral identity holds

/ / (udpy — €uyy)dzdt + / / (2, u)ppdrdt

(6.4.2)
s [ 100,60 = ow(0.00)60.0 + [~ ), 0)ds =0,
0 —00
SJorall $ € CZ (R x [0, 00)).
For simplicity, assume a = 1,b = —1. In this section, the explicit solution for the prob-

lem (6.4.1) will be derived in the above sense and in the next section, we show thatas e — 0,

the limit is a measure and satisfies the weak formulation stated in Definition6.2.4. The next
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theorem gives us an explicit formula for the solution for the parabolic approximation of
discontinuous flux problem. We consider the problem in two separate quarter planes with a
boundary function (¢). Then the idea is to study two boundary value problems separately
and in the end we found an explicit formulation for the boundary function /() which will

be useful to study asymptotic behaviour later.

Theorem 6.4.2. The explicit solution of the equation (6.4.1) in the sense of the Definition

(6.4.2) is given by,

u(e, z,t) = u'(e, x, t)X{a:>D,t>0} + u*(e, 2, t)X{x<0,t>0}7 (6.4.3)

with
u' (e, z,t)
= sy ) i@ () e (G T Jue
T ayme Jo <t5—(?>€/2 P (‘(f(tt——_;) u
(6.4.4)
and
u2(ext)
Qﬁ exp< (£+(Z€t—t)))_exp(_(§ 1) f)}d&
(6.4.5)
where
e e el e M

26(0) 1 ( t >
dr,
v )]
with E, s being the Mittag-Leffler function [105] with o,& > 0 and F(.) be defined in
(6.4.24).
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Proof. The above problem (6.4.1) can be split into the following two initial-boundary value

problems:
ul u = eum,x > 0,t >0,
(6.4.7)
u'(@,0) = uo(x),u' (0,1) = B(t),
an
d ul +ul =eut,, v<0,t>0,
(6.4.8)

u*(2,0) = up(x), u*(0,t) = B(t).
The problem (6.4.7) has the explicit formula[106, sec. 1.1.4]:

u'(e, x,t) = /OO up(&)G (x, &, t)dE + e/tﬁ(T))\(x,t —T7)dr (6.4.9)
0 0

with

o shzen (5 ) (5 ) e (253
— L [ () (et Y,

2v/met det det €
(6.4.10)
and
x r t 2P x (z +1t)?
Mt = e (~(Ea e P ) o (- |
(z,4) 2,/ (et)3/2 xp ( 2 " de T e ) 2/ (et)3/2 xp ( et
(6.4.11)

Now substituting G(z, £, t) and A\(x, t—7) in (6.4.9), we get the required expression (6.4.4).

Now, simplifying the second integral involving 3(7)) from (6.4.4), we have

2\/—/ 3/2 exp (—%) dr = \/‘/ B(r dLl dr,  (6.4.12)
where
L=t (%) re(Z ) e (1),

erf(z) = /Z exp (—s°) ds, erf(co) = lim erf(z).

Z—00

where
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Now integrating (6.4.12) by parts, we have,
1 boB(r)x (x+t—7)2
e [ e (‘W> "
x+t— r—(t—7) T
/ﬁ T))—l—erf(—zm)exp( e)}dT

\};) [erf( ) + erf(oo) exp (—%) ]

Rl ) e ()]

Therefore, u' (e, z,t) =

. / o (RO g (o085

(6.4.13)

2\/; ict 4et €
/ B(r x+i_ﬂ)+erf<%> eXp(_%”dT
+ =00 [erf<oo> +ert(oo)exp (-2 |

_% et (2 ;E_;) + erf(g_@ exp (-2) ]
(6.4.14)

Differentiating u! with respect to x, we get

= i [ (652 (220
(M ) (S
1 [t (x+t—71)° 1
VT o 6(7)[exp(_ de(t — 1) ) e(t—7)

- %erf(%) exp (—%) ]dT - %erf(oo) exp (—%)

e () () e ()

(6.4.15)

Similarly, let us now consider the problem (6.4.8). Using the transformation v(e, x,t) =

u?(e, —z, t), for z > 0, we observe from (6.4.8) that v(x, t) satisfies

Vi — Uy = €Ugs, >0, t>0,
(6.4.16)
v(x,0) = up(—z), >0, v(0,t) =p(t), t>0.
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The explicit formula for equation (6.4.16) is then given by[106, sec. 1.1.4]:

v(z,t) = /000 vo(§)G(z, &, t)dE + 6/0 B(T)\(x,t — T)dr. (6.4.17)

where

et~ ggoe (57 ) o (F5 ) o (FE5)]
R E @=Ll

2v/ et 4et 4et €
(6.4.18)
and
x(et) =3/ r t 2P x(et) =3/ (x+1t)?
Mz, t) = ——— —(=—+—+) ] =" ).
(z,%) 2\/m exp <2€ TET 4et> 2\/m xp et
(6.4.19)

Now substituting G(x, &, t) and A\(x,t — 7) in (6.4.17), we get v(e, x,t) =

2\/% X /OOO vo(§) [exp (——(5 - Ei: t))Q) — exp (_W _ %) ]df
tove e (=)
Replacing = by —x, we get (6.4.5) and further simplification gives u?(e, z,t) =
le_e y /WUO(_O [exp (_(5 4 (f;t_ t))2> e (_w N g) Je
/ o) fert( = t_j)) ¥ erf(%) exp (L) ] ar
+ ﬁ (1) [erf(oo) + erf(oo) exp <£> ]
() e ) e ()]

Differentiating u? in (6.4.21) with respect to  and following a similar analysis as before,

(6.4.21)
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we get
—i2(e, 1) 2\/5 exp( (§+(4:c€t— t) > <(£+;:;—t))>
i S

[t (x — (t—17))* 1
T OB(T)[GXP(_ de(t — 1) )< e(t—7)>

+ 1erf<%) exp (%) ]dT — %erf(oo) exp (%)

oo (5) - () ow )
(6.4.22)

Now, we aim to characterize ((t) such that the solution of the problem (6.4.1) is differen-

tiable and hence we must have
ul(e,04,t) = uZ(e, 0—, ).

Now passing through the limit as x — 0" in equation (6.4.15), x — 0~ in equation

(6.4.22) and equalizing we get

r ) fzewn (<) (1) + e (<)
L rolen (- ”) e pert(( 7)o - MO

0 o ()~ rer (1)

_ QJ% Owuo(_@ 2exp (_(54—;)2) (1) 1 Lo <_<54—dt>2> Jac

e Lo (57) iy + b 2

(6.4.23)

197



6 Solutions with concentration for conservation laws with discontinuous flux and its
applications to numerical schemes for hyperbolic systems

This implies
Lol ”) e ()l
2/3(0) t t
" \/% P <_4_6> ( 4_> (6.4.24)
—t —t
zﬁ &)+ uol= 5)} [26Xp <_<£4et) ) <£26t )
- %exp (—%) }dﬁ = F(t), [since erf(x) = —erf(—x)]

Using integration by parts, we calculate the first term in LHS of (6.4.24)
t—T1 1 t—rT
\/_/5 6erf 2\/_>~|— (_T)exp(— P )]dr
t—T , 1 t—T
\/_/ T T) exp <_4—e) } + 5 (T)—e(t = exp (— " ) dr
25(_ E) orf ( \/E )
21 0y (PO (i))d 28(0) ¢ \/7
= ﬁ% €Xp (_4—6) A (t = 7_) T— \/7_1_6 er E .

From equations (6.4.23)-(6.4.25), we get

\/_/ T) exp (i))dT%—Lexp (i

Vi—T1 2,/e

(6.4.25)

)8t = Lo (L) r0-22.
(6.4.26)

The above equation is in the form of a non-homogeneous fractional differential equation

oD y(t) — Ay(t) = h(t), (6.4.27)
where th% y(t) is defined as
Diylt) = o [ =) Ey 0
y(t) = — 1)y (t)dr
TG
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Solution of the above problem, see [105, p. 140], is given by

B(t) exp (4%) _ %/Ot(t i, (- %ﬁ) [Veexp (L) F(T)—2§7(T_OT> i,

(6.4.28)

where E, 5(.) is Mittag-Leffler function defined as

o k}

z
E.; :E S 5 .
aal?) 2 ok + @)’ (a>0,a>0,2€C)

From equation (6.4.28), we get (6.4.6). Now using integration by parts, one can easily check

that u given in (6.4.3) satisfies weak formulation (6.4.2). [
Proposition 6.4.3. The boundary data () is bounded, independent of € and t.

Proof. Let us recall that the explicit formula for 5(t) is the following:
B(t) =1 + I

<y fem e (- ) e (57 P

524l

where,

and

Now, we consider

VTE(t)
75 | (6 + =€) [2exp (‘“4; ”2) () + Lew (%) Jae
= /O_Ot [uo(\/ﬁz + 1) + up(—V4etz — t)} [exp (—2z%) (% + %)}dz,
Vet

(6.4.30)
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by a simple change of variable formula Since u 1s bounded measurable function, clearly

1 t t ..
< —
|F(t)| < K [\/@ exp ( ) E\/_erfc ( \/ 46> ],where K is independent of € and

t. Now using a change of variable in /1, one gets

|[1‘<6K/ 46 11
212
+6K/” 46

— 111 + 112.

1 (t — 4ez?)
2
2l expi==) me(t — 4ez?) =P (_T> dz

(t — 4ez?)

d
4e >Z

2)| exp{—2*} \/_erfc(

ll
272

(6.4.31)
Using the change of variable formula, one can prove that ;5 is locally bounded independent

of e in R* U {0}. Now,

[111] < \/7Kexp (——) /$1 (t_14€z )dz.

Now using the recursive relation £, 5(2) = 2Eq a+a(2) +

M\»—‘
M\»—‘

1
—_— t
F(O~[),we ge

2
v

where Ey 1(z) = exp{z*}erfe(—z) and erfe(z) is the complementary error function de-

Ei1 1(—2) = —zexp{z*}erfe(z) + (6.4.32)

1
2

D=

fined as

erfe(z / exp d
\/_
Now from (6.4.31) and (6.4.32), we have

VE
|111\<\/7Kexp (——)/ ' ‘
\/_ \/t—4622
< \/> K Vi —d (since erfe(z) exp (2°) + 2 is bounded)
— z. —z z z —
R V(t — 4dez?) P VT

Again using the same change of variable in /5, we get

4K,|B(0 |\/—/

— z erfe(z) exp (2

|Io] <

Vit — 4622
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Therefore, 3(t) is bounded independent ¢ and e. O

Now, we obtain the asymptotic behavior of the solution of the problem (6.4.1). Let us
assume

up(£o0) = q;grfoo up ()

Theorem 6.4.4. Let lim wg(x) exists.Then

r—+oo

lim B(t) = >[uo(00) + tip(—o0)]

t—o0 2

and the solution of the equation (6.4.1) approaches to the steady state solution:

1(00) 4 3 [to(0) 4 Bug(—00)] exp <—£> , if x>0, 1t>0,
limu(e, z,t) = ;,
t—00 p(—00) + 1 [ug(00) + 3ug(—00)] exp (;) , if <0, t>0.

The above convergence is uniform in compact sets.

Proof. First, let us consider the region z > 0,¢ > 0: From the expression of F'(¢) in
(6.4.30), it is straightforward to see that

lim F(t) — %[uo(oo) T tg(—o0)). (6.4.33)

t—o00

Now, the task is to find the asymptotic behavior of 3(t), when ¢t — oo, where

B(t) = %/Ot(t—T)éEéjé (_%ﬁ) [Veexp (J ;;) F(T)_ﬂ\/i_?exp (-i) Jar

(6.4.34)

After a change of variables, in the above equation, we get,
t

() =2 [ V4 ) (o) [veexp (+22) F0 - et - 220 %]d”

[N

(6.4.35)
Ast — oo,
tlim B(t) = 2[ug(+00) + up(—00)] /Oo E%é(—z) exp (_22) dz.
o 0 (6.4.36)

3
§[u0(—|—oo) + up(—00)].
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Using a change of variables, we get

—(z+t) w—t

Vi Uvaa !
[/OO uo(VAetz + (v +t)) exp (—22) dz

L
NZS
—exp (— %) / up(Vdetz +t — x)) exp (—2°) dz} (6.4.37)

q

2\/_/“_2 exp(—%)d&

Clearly the first term of the above equation approaches to ug(+00) <1 — exp <—£> ) as
€

ut(e, z,t) =

t — oo. In the view of (6.4.12), the second term of the above equation can be written as,

Bt—z exp (_(a:+z)2

dez

2\/_/ )d ———/Bt—z —dr  (6.4.38)

where
L erf<m+z>+erf(m_z) (I>
= —_— — | exp|——].
2\/€z 24/€z P €

Now passing to the limit as ¢ — oo in (6.4.38), we have

_3[U0(+002)\;;U0(—00)] /OOO %dz = g[uO(Jroo) + ug(—00)] exp (—%) .

From the above analysis, it can be easily seen that that

lim u' (e, 2, ) = ug(+00) + 1[uo(—l—oo) + 3ug(—o0)] exp (—%) ,

t—o00 2

which is clearly the steady state solution. The case x < 0, > 0 can be similarly handled.

]

6.4.2 Vanishing viscosity limit

In this section, we obtain the vanishing viscosity limit for the problem (6.4.1). Let
Us(z) = /0 uo(2)dz.

Then, we have the following theorem:
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Theorem 6.4.5. The distributional limit of u(e, x,t) as € — 0 is u(x,t) and is given by

uo(z + 1), if x>0,t>0,
u(z,t) = ¢ [Uo(t) = Uo(=t)]0gzm0y,  if =0, (6.4.39)
up(z — 1), if ©<0,t>0.

Proof. Let us recall the expression of u' (e, z, ).

u'(e, z,t)
= s ) @ oo () e (D) e

oy, wemmee () o

= ﬁ[féh(e)xat) + Bl(E,I',t) - B1(€707tﬂ7

Ox
where A )
— = [ e (—W) ¢
+eX§§;> /OOOU(@exp( =) g
/ Uo (€ €+ +t> exp <—§> d¢
and

Bl(e,x,t):\/g/o \/6%[_6)(13 (—%)_ t—ETerf<$Z€((i::>)>]dT.

Similarly, one deduces

u?(e, x t)

S exp( S R T

- wﬁ/o mee ()

0
= %[AZ(vat) + B2(€7x7t) - B2<€707t)]'
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where
Ay(e, x,t)
— o= [ tagew (- g
+ 92 [ genp (- E O g
+ \/1%6 /OOO Uo(—g)erf(g%/f_d“) exp (—%) d¢
and

e =1 [ Lo (=) e e

Now define

U( 9 Ai(e,z,t) + Bi(e,x,t) — By(6,0,t), if x >0,t>0,
€,x,t) =
A2(€,$,t)+BQ(E,ZL‘,t)—BQ(E,O,t), if ©<0,t>0.

Then, U is C? function and U, = u. Ul(e, z,t) is a locally bounded function, therefore the

point wise limit is the distributional limit. Using change of variable, A; (e, z,t) =

\/_/Ht o(Videtz +x +t)exp (—2%) dz

Vet

+ # /_O; Uy(V4etz — x +t) exp (—2%) dz

Vet

1 & €ez+x+t
+ — Uy(lez)erf| ——— ) exp (—2z2) dz

The pointwise limit of the first term, second term, third term and fourth term of A, (¢, x, t)

respectively are

Us(z +1), 0, Up(0) =0,

1 t

and the point wise limit for By(e, x,t) = —3 / B(1)dr. Hence, the point-wise limit
0

of Aj(e,x,t) + By(e,z,t) — Bi(€,0,t) is Up(x + t). Similarly the point-wise limit of

As(e,z,t) + Bo(e,x,t) — Ba(e,0,t) is Up(x — t). Therefore, the distributional limit of
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Ule,x,t) is

Up(z+1t), if x>0,t>0,

6.4.40
Up(z —t), if x <0,t>0. ( )

imU (e, z,t) = U(x,t) = {
e—0

Since u(e, z,t) = U,(€, x, t), the distributional limit of u(e, x, t) is equal to the distributional

derivative of U(z, t) and is given by

uo(z + 1), if ©>0,t>0,
u(a,t) = { [Uo(t) - UO(—t)] Spo—ny, if T =0, (6.4.41)
up(x — t), if x <0,t>0.
[
If we assume that
up(£oo) = xgrfoo up (),

then ug(+o00) = 0 as ug € L'(R). Therefore, from (6.3.8) the asymptotic behavior of the
solutions of (6.1.1)-(6.1.2) can be given as follows:
tgrgo u(z,t) = (/uo(x)dx> Ofz=0}

R
The above limit is understood in the sense of distribution. Now, recalling the asymptotic
behavior of the viscous equation given in Theorem 6.4.4, we see that tlim u(e, z,t) = 0.
—00
Therefore, lim limu(e, z,t) # lim limu(e, x, t), i.e., the vanishing viscosity and large time
e—0t—o00 t—00 e—0
limits do not commute. In [107], this property of viscosity solution u(e, x, t) was established

for Burgers equation. To this end, we observed that (6.1.1)-(6.1.2) is an example of a scalar

conservation laws with discontinuous fluxes where this property holds.

Remark 6.4.6. One can also consider the multi-dimensional transport equation with a

discontinuous coefficient, that is

n
up + Zaiu% =0, if @ eR" Y x, <0,
i—1

U + Zbiul’i =0, if 2’ € Rz, > 0.

=1
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and a,, > 0, b, < 0. A similar analysis as previous gives the solution,

ug(zq — bit, xg — bot, .., &, — byt), if ©,>0,t>0,
[Uo(z1 — bit, 29 — bat, .., —byut)

—Up(w1 — art, w2 — ast,.. — ant)|0iz,—0y, if xn =0,

uo(z1 — art, xg — ast, .., x, — apt), if v, <0,t>0,

u(zx,t) =

Now, we move on to providing explicit formulae for generalized weak solutions for

nonlinear overcompressive flux pairs.

6.5 Explicit Formulae for generalized weak solution

This section concentrates on deriving explicit formulae for the solutions for (6.1.1)-(6.1.2)
for overcompressive flux pair (f, g), where f and g are either strictly convex or concave.
We derive the formulae for the case when f and g are both strictly convex, the other three

cases can be handled similarly.

Lemma 6.5.1. Let v be Lipschitz continuous in R/{0} x (0,00), which is the viscosity

solution of

v +gv,) = 0, x<0,t>0,

v+ f(v,) = 0, x>0,t>0.
then, its distributional derivative satisfies (6.1.1)-(6.1.2) in the sense of Definition 6.2.4.

Proof. The proof is motivated by the proof in [Chapter 3, Theorem 2, [1]]. Since v is

Lipschitz in R/{0} x (0, 00), it is differentiable a.e. in R x R* and satisfies
v+ (H(—=z)g(ve) + H(z)f(v,)) =0 ae. inR x RY,

thus, for every ¢ € C°(R x [0, 00)), we have

/ /vtgbxdxdt + (H(—x)g(vy) + H(x) f(vy))pedxdt = 0. (6.5.1)

—o0 0
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Now note that

lo/vt%dtdx = —//vqﬁxtdtdx—/v(x)())%dx

%0 0 “0o
= / / Vpdadt — 0/ _é Vo dadt + / (:E,O)gbim
= 0/_4 vy Ppdadt + /[ (0+,t) — v(0—,t)] ¢udt +_£ vz (2, 0)pdx.

Substituting this in (6.5.1) and setting u = v,., we get,

// Uy + Jg(u) + H(x)f(u))¢,] dedt + f (0+,t) — v(0—,t)] Pudt

+ [ wlw, 0)0(w)dz = 0,

ie.
// ug, + v)g(u) + H(x)f(@))dz] dudt + /w(t)¢tdt+ /UO($)¢(x)d~’C=0,
where w(t) = v(0+,t) — v(0—,1). O

Before proceeding further, we recall some preliminaries in the following lemma:

h
Lemma 6.5.2. Leth : R — R be a convex function with superlinear growth .i.e. | lllrn _‘(u’) =
u|—oo |U

00. then the following properties hold:

(i) Define the Legendre transform by h*(u) := sup {pu — h(p)}, thenh* : R — Risa

peR
convex function with super-linear growth.

(i) h**(u) = sup {pu — 1*(p)} = h(u).
peER
(iii) In addition if h € C'(R) and strictly convex, then the following holds true.
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(@) I (u) = (h)~" (u).
(b) h*(h'(u)) = uh/(u) — h(u).
(©) h(h*'(u)) = ub™(u) = h*(u).

Consider the overcompressive flux pair (f, g) such that, f, g € C''(R) are strictly con-
vex and suppose initial data uy € [m, M], define f,§ € C'(R) which are strictly convex
functions with superlinear growth such that f = fand g = g on [m, M]. Then, we have

the following explicit formula.

Theorem 6.5.3. Let uy € [m, M|, vo(z) = /uo(s)ds. Define the following cost func-
0

tional,
. ~x [T — Y1
vi(z,t) = min {vo(yl) +tg ( ; )} , x<0,t>0, (6.5.2)
Yi1>
. P [ T Y2
vo(x,t) = min {Uo(yg) +tf ( ; )} , x>0,t>0. (6.5.3)
Y22

If u(z,t) = u(x,t) + w(t)dg is the solution of (6.1.1)-(6.1.2), then the Lax-Oleinik type
formula for the solution of (6.1.1)-(6.1.2) is given by,
— r—y1(z,t .
(/)1<%>7 lf‘l'<07t>0,
— r—y2(z,t .
(/)1<%>7 lf‘l'>07t>0,

Q»

u(x,t) =

~m

with
w(t) = v9(0,t) —v1(0,t), ¢>0,

where yi(x,t) and ys(x, t) are the minimizers of v, and v, respectively at the point (x, t) as

defined in (6.5.2)-(6.5.3). [see [1]].

Proof. Following the proofs in [1, 63] it follows that, v; (-, ) and vs(-, -) defined in (6.5.2)-
(6.5.3) are Lipschitz continuous in R~ x R and R™ x R*, respectively and satisfy the

following ,
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(1) m < (v1)g, (v2), < M.

(i) v and v, is the viscosity solution to the following problem:

(Ul)t +§((U1)x) = 0, T < O,t > 0,

(v2)e + f((12)2) =0, x>0,t>0.

(v1), (z,t) = (3")7" (W) . if x<0,t>0,

(v2), (2,1) = () (w) . i 2 <0,t>0.

From Lemma 6.5.1,

Az 1) (v1)z(z,t), if x<0,t>0,
U x’ = .
(v1)g(x,t), if x>0,t>0,

with

w(t) = v9(0,t) — v1(0, 1),

satisfies Definition 6.2.4 with F(z,u) = H(—z)j(u) + H(z)f(u). Due to (i) and the

Definition of f and g, for all (z,¢) € R x RT we have,
H(—a)g(u(z, 1)) + H(x)f(a(z,1)) = H(=2)g(@(z, 1)) + H(x) f (a(z,1)).
Thus we have u satisfies (6.2.4) with F'(z,u) = H(—x)g(u) + H(x)f(u). O

Remark 6.5.4. The formula for v(x,t) is independent of the choice of the extensions fand

g, of f and g. 7 satisfies interior entropy condition (6.2.1).

In the next section, we propose a finite volume numerical scheme approximation (6.1.1)-

(6.1.2).
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6.6 Numerical Scheme

6.6.1 Numerical Scheme for (6.1.1)-(6.1.2)

In this section, we consider the Riemann problem for (6.1.1)-(6.1.2) with overcomperessive
flux pair ( f, g). We start with proposing the scheme for the linear case. The scheme is based
on the fact that the Riemann problem for (6.1.1)-(6.1.2) with f(u) = bu and g(u) = au can
be shown to have the solutions using the vanishing € limit of solutions of a nonlinearification

of the conservation law given by (6.3.1)-(6.3.5). It can be observed that

limg(u) = au, lim f.(u) = bu,

and

u(z,t) = lg% ue(x,t).

The Riemann Problem solution of (6.3.1)-(6.3.5) is known in each case and Rankine Hugo-
niot condition is satisfied, hence, the flux at the interface x = 0 is explicitly known and is
given by

F.o(a,byu,u.) = g.(u™) = fe(u"),

where u~ = lim,_,o- u.(x,t),u™ = lim,_,g+ u.(x,t) are obtained from the solutions of the
Riemann problem of (6.3.1)-(6.3.5). Since g. and f, are non-linear convex functions, the
flux at the interface © = 0 can be obtained using the theory of discontinuous flux [94] and

is given by:

F.o(a,b,u;,u,) = max (g6 (max (i, %a>) e (min (ur, _?b)) > (6.6.1)

Owing to the behavior of the solutions and the fluxes as ¢ — 0, we define the flux at the

interface = 0 for the problem (6.1.1)-(6.1.2) with g(u) = au, f(u) = bu as
Fo(a,b,up,u,) :=limg.(u”) = lim f(ut) = lim F_g(a, b, u;, u,),
e—0 e—0 e—0
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which implies that

au, if a>0,0>0,
bu, if a<0,b<0,
FO(aa b7 ul?“?") = 0 if a<0b>0 (662)

max(au;, bu,) if a>0,b<0.

The above defines the flux at the interface at x = 0 for the problem (6.1.1)-(6.1.2). We now
Tyt + Tipl
2
such that T1 = 0, the location of the §- shock. For At > 0, define the time discretization

present the numerical scheme. Let & > O and ;.1 = ih,i € Z with z; =

points t,, = nAt for non-negative integer n, and A = At/h is fixed. Define

xX.
z+%

up = 7 /x u(z, t")dz,

as the approximation for v in the cell C; = [z 1,y %) at time ¢,,. Then the finite volume

71—
scheme is given by

W =~ A(E™, — FT ) (6.6.3)

)

where F", , is the numerical flux associated with the flux /* (x,u) at the interface v = x| 1
2

and defined as follows,

auy if <0,

bu, if >0, (6.6.4)
Fo(a,b,u,u,) if =0,

ey
+ 3
ol

I

as away from the interface x 1 the fluxes are au and bu with a > 0,b < 0 and hence take

backward and forward numerical fluxes respectively. For a nonlinear overcomperessive

flux pair (f, g),
g(uy) if <0,

— Flu) if >0, (6.6.5)
max(g(w), f(u,)) if =0,

as away from the interface rL = 0, the fluxes are g and f which are increasing and decreas-

n
£

D=

ing respectively and hence take backward and forward numerical fluxes respectively.
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Lemma 6.6.1. Under the CFL condition,

1= Asup(lg'(w)], |f"(w)]) = 0,

u€R

the following properties hold true:

(@)

n+1l __ n

1€EZ 1EZ

(b) Let

n+1l __ n n ,n
ui™ = H(ul g, uf,uly),

Then, the function H is monotone in each of the arguments.

(c) Let (ul) e EZ}denote the sequence of approximation obtained by the numerical scheme.

Define a new sequence z, = (uj') (;cz,/(41yy- Then

2ni1lloe < Hl2n]loo:

(@

RY <Y jull.

1€EL 1€EZ

(e) If ug € Rt U{0}, then ul € RT U {0}, Vi, n.

() If up(x) € LY(R), then the following result holds,
>t =) = SoA(F, —FLy) =0
i€z i€z ’ ’
Proofs can be done on the same lines as in [94, 108]. We now proceed to prove the

existence of the solution proposed in §6.2 via the convergence of the numerical scheme

At
(6.6.3). To this end, we assume that initial data lies in Ly N BV(R). Let h_N =\ We

N
then have the following theorem:
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Theorem 6.6.2. Let u;, and wy, be the numerical approximations obtained from the scheme
(6.6.3). Assume that there exists a sequence hy, which tends to 0 as k — oo such that if we

set Agt = Mg, w) (t) = hul',t € [nAt, (n + 1)At) i = 0,1, with

< K for some K >0

(@) Hw;lkHLoo(COXR"') = K, H (1 B X[-’%’“%’ﬂ) i Loo(RxR+) —

(b) (1 — X[ M]> up, converges in Ll (R/{0} x R") and a.e to a function @ and wy,,
272

1

te(RT) and a.e to a function w,

converges in L
Then, U + wdy—oy is the weak solution of (6.1.1)-(6.1.2).

Proof. The proof follows on the same lines as in [94, 108] except for the cells adjacent to
the interface {z = 0}. Let ¢ € C°(R x R") and ¢ = ¢(z;,t,,). Define

up(z,t) =u? if (z,t) € C; x [nAt, (n+1)At) 1 #0,]1,
Fila,t)=F', if (2,1) € (25, 201) x [nAt, (n+ 1)At), (6.6.6)
wh(t) =hul if t€[nAt, (n+1)At) i=0,1.

Multiplying (6.6.3) by ¢ for each ¢ € Z,n > 0 and summing them,

NS ) + A3 (P - ) o

R n=0 =2 n=0
i=—1 oo 00 00
FAEY S (B - B ) ot ALY (Fy = B+ ALY (FY - FTL) 6 =0
—oo n=0 n=0 n=0

Summation by parts and rearranging the terms we get,

0=h) D (67 —al)ui —&t) B Fiyy (6 —61) +h)_uie]
R

—oo n=1 n=0 1=—oc0
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Converting the above summations into integrals, we have the following,

o0

¢h<l‘,t) — qﬁh(x,t — At)
0= up(x,t) dxdt+
A
R/[—/h,h]A/t !
r oz + hyt) — én(z, 1)
//Fh(:v,t) s dxdt
R O
[ o on(F1) — dn(0,¢ — At)
,0 ,0)d Dt 2 dt
+ [ @ 0)on(a.0)dr + A/ R (1) =
T bty — én(0,t — At
At

Applying Lebesgue dominated convergence theorem and passing to the limit,

/ (g, + F(x,u)¢,) dedt + /uo(:v)qb(x, 0)dx + /ODO w ()¢, (0, t)dt

RxR+
2 t07 dt = 0.
+/0 w? () (0, t)dt

Now, setting w(t) = w!(t) + w?(¢) gives the desired weak formulation

/ (upy + F(x,u)¢,) dedt + /uo(:v)gb(x, 0)dx + /Ooow(t)gbt(o,t)dt = 0.

RxR+

Substituting the above limits, we get,

/ (s + Fl,7)6,) dudt + / wo(2)6(x, 0)dz + /0 T w()64(0, )t = 0.

RxR+
Since ¢ € C°(R x R*) is arbitrary, 7 + wdy,—o) is a weak solution of (6.1.1)-(6.1.2). [

6.6.2 Extension to Systems

We extend the above ideas to the system (6.1.3)-(6.1.4), which admits -shocks, see[16],
exact or standard approximate Riemann solvers cannot be used. The idea is to avoid cre-

ating a Riemann solver based on the eigenstructure of the system and instead treat each
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equation of the system separately, assuming that the flux of the equation is a function of
the remaining state variable at the previous time step. As discussed in the introduction,
this system admits J- shock whenever the first equation admits a classical shock. Since the
first equation (6.1.3)-(6.1.4) of the system is a hyperbolic conservation law, any standard
3— point scheme such as Godunov scheme can be used for (6.1.3)-(6.1.4). However, the

second equation is of the form
ug + (K (v(x,t))u), =0, (z,t) € R x RY, (6.6.7)

if we assume that [(u) = u and v(z, t) is known at the point (x,¢) from the first equation.
This is a scalar conservation law with a variable coefficient, which can be discontinuous.
Note that &'(v(x,t)) is always bounded.

Since the previous section only dealt with a single discontinuity of the flux of the linear
transport equation, to propose the scheme for (6.6.7), we need to generalize the scheme for
any general linear transport equation with variable, possibly discontinuous coefficient, both

in space and time, in particular,

u + (a(x, t)u), =0, (x,t) € R x RT u(z,0) =ug(z), r €R. (6.6.8)

T, 1 +xi+%

For h > 0, let the space grid points as x,, 1 = th,1 € Z. Let x; = 2 " For

it
At > 0, define the time discretization points ¢, = nAt for non-negative integer n, and

A = At/h. Define

z, 1 1 T,y 1
al = E/z = a(x, t")dx,ul = 7 /x " u(z,t")dx,

.1 1
T2 -2

as the approximation for a and  in the cell C; = [z;

11—

1,7, 1) at time £,. Then the finite

volume scheme for the system (6.6.8) is given by

uptl = — N(EF", — FT ) (6.6.9)
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where F" , is the numerical flux associated with the flux F'(z, ¢, u) = a(z,t)u at z, 41 at
2

time ¢". They are the functions of left and right values of @ and u at z, 1 at time ¢" with
‘FZT—LQ—% = F(azl? a?+17 U,LT-L, u?+1)'
Denote
F = a(z,t)u,

where a(z, t) is known function at time ¢ which is allowed to be discontinuous at the space

discretization points. Therefore on each C; x (¢",¢" 1), we look at the conservation law,
v+ (F(af',u)), =0, (6.6.10)

where F'(a?,u) = alu, with a(z,t") = a? for z € (xi_%,xiJr%). Now, the corresponding

local Riemann problem reduces to
w+1(za), =0 in (z_1,21) x (7,077, (6.6.11)

where
F(al u if r<uwz, 1,
l(x,u) — (nl ) . ’L-‘ré
Flafy,u) if x>0,

with the initial data

n

u  if r <z

+1,

u(z,t") = ' " 2
2

The objective is to construct an upwind numerical flux £, 1 for the flux function l(x,u) at
the cell interface x; 11 Note that each i** conservation law is of the type (6.1.1)-(6.1.2) and

hence considering the different signs of ;' , we can define the numerical flux F}", , by
2
Fy = Fo(af, aff g, uff udyy), (6.6.12)

where Fy(a, b, u;, u,) is given by (6.6.2).
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Using the scheme (6.6.9) with a(x,t) = k'(v(z,t)) for (6.1.4) and Godunov scheme for
(6.1.3) gives the scheme for the system (6.1.3)-(6.1.4). In particular, the scheme is given
by:

n+l _ ,n v,n v,n
o - (R - R

ultt =l — A (F“" —F.u’ri>

! it+3 i—3
where F;j% = Fgoa(v}, v}, ) and Fl’jr% = Fo(a}, aly, ul, uly ), witha(x, t) = K (v(x,t)).
Let us define the piecewise constant approximate solution to the system (6.1.3)-(6.1.4)
Up(x,t) = (Uh>. We then have the following theorem showing that the above scheme

Up
converges to a weak solution of the system.

Theorem 6.6.3. For every ¢ € C°(R x RT), we have

}lllg(l) / uppr + k (Uh)uh¢x =0, (6.6.13)

RxRt

P(xi,t") — p(xi1,1")

Proof. Fix¢ € C*(RxR*).Leti € Z,n € N, ¢} = ¢(x;,t,) and ¢} ; = Vi, n.

h
To prove the theorem, it is enough to show that
lim A(h) =0, (6.6.14)
h—0
where
Ah) = =h 37 [ =l + MK @)} — K @u))] 6
i€Z,neN
By the Definition of the scheme,
AR) = =h Y7 [=MEL = F5) + MK @) = (R @) o7,
which, on rearranging the terms and applying summation by parts, gives
A(h) = =N | F = (K ()i | 64 (6:6.15)
2

in
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The possible choices for F7' are k' (v )ui_y, k'(vi)uf, and 0.
2
Let ig € Z. For a fixed n, the only term containing &'(v; )u;! is
N @)l [0, — 0] < KA @0l (66.16)

using the L, stability of &'(v)u, where Ky = 2[|@ | (g y+)- Summing over n € N, we

get

ST [F = (@] 6 < 3D KNI ool = KoThIK (00)uoll
’ (6.6.17)
where 7' is the final time. This shows that (6.6.15) and equivalently A(h) = O(h)ash — 0.

This proves the claim. [

6.6.3 Numerical Scheme for Balance Laws

This section aims to extend the numerical scheme described in the previous section for the
equations of the type

u + F(z,u), = s(x,u,t),
where s(z,t) is a real valued function. We will also extend the numerical scheme for sin-
gular source term. The idea will be to ”locally”” modify the balance law as a conservation

law with a space-time dependent discontinuous coefficient
u + Fz,u,t), =0,

where [ is the flux function locally modified by the source. This strategy has been earlier
used in literature, see for example, [109] for balance laws with continuous convex flux
functions and [110, 111] for non-strictly hyperbolic systems with source terms. For this,
we modify the flux function F'(z,u) in each cell C; by including with it, an approximate

divergence form of source term s(z, ¢, ). To this end, we define

B"(z) = ZB?XQ(J;,IS),B? = / Z s(z,u,t)dz,

Nl
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and can be calculated using an approximate integration rule. As earlier, the discretization is
done in such a way that the location of the §-shock lies in the cell Cyy. Then, for [, t" 1),

we solve the following conservation law with discontinuous coefficient,
ur + (F(z,u) — B"(x)), = 0,u(x,t") = u"(x),

then define
vt = o — AMF L, —F" ), (6.6.18)

where F , is the numerical flux at the interface x = z; 1 and defined as follows,
2

but,, — B, if i >0,
Fr

1 . .
i+3 au; — B 1if 1 <0,

Now, let us extend the numerical scheme for the case when s(z,t,u) = kd{z—oy. These
kind of equations have been of interest, for example, [112, 83]. Since the distributional

derivative of

(kH)'(z) = kd (a0},

the balance law can be rewritten as
u + F(z,u) =0, F(z,u) = H(z)au + (1 — H(z))(bu — k),

for which schemes have already been discussed before.

6.7 Numerical Results

This section displays the performance of the scheme proposed in §6.6 for various sets of
Riemann data in capturing both §-shocks and classical shock solutions efficiently for the
system (6.1.3)-(6.1.4) and (6.1.1)-(6.1.2) with and without source terms. The domain for
the system (6.1.3)-(6.1.4) is [—1, 1] and for (6.1.1)-(6.1.2) is [—0.2,0.2], with M = 200,

witha = 1,0 = —1,T = 1.008, k = 1. The final time 7" is taken small enough so that
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the solution does not reach the boundary of the numerical domain. Hence, we can take

boundary conditions to be u; and u, respectively.
6.7.1 Simulations for the equation (6.1.1)-(6.1.2)
Example 1: s(z,u) = 0:

(a) Classical and 9- shock solution of (6.1.1)-(6.1.2)

We take two cases here, first where there is only classical solution and second

where there is a concentration at the interface z = 0.

i. au; —bu, = 0,u; = 1,u, = —1 : It can be seen in Figure 6.1 that there is

no 4- shock as the Rankine-Hugoniot condition is satisfied at z = 0. It

coincides with the exact solution

(2.1) ug, if z <0,
(4 x? - .
U, if x> 0.

— Approximate Solution
— Exact Solution
0.5 B
3 0F B
0.5 B
-1 | L L | | I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 6.1: No d-shock with au; — bu,, = 0

i. au; — bu, # 0,u; = 1,u, = 2 : To show the efficiency of the scheme to

capture the weight of - shock, primitive of the approximate solution is
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calculated at final time 7". At the location of d- shock, the graph of the
primitive will be seen to have a sudden jump, equal to the weight of the
0-shock. It can be seen in Figure 6.2 that there is a - shock with numerical
weight 3.0024 which is the exact weight of the J-shock at time 7', i.e. (au;—

bu, )T = 3.0024.

1600

1400 |

1200 |

1000 -

= 800

600 |

400 |

200 |

iil.

4
35¢ /
3 F 4
= 25)
o
227
E
GREL
1 L
0.5¢
0 0 /"""’J ‘
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

Figure 6.2: §-shock at x = 0 with weight 3.0024

It can be also be seen that the approximate solution coincides with the exact

solution
uy, if z <0,
u(z,t) = ¢ (au; — buy)dp—ey, if =0,
Uy, if > 0.

away from the interface.

Comparison with schemes of [113]: To show the efficiency of the scheme

to capture the weight of - shock, we compare the results of our scheme
with the results presented in [113]. The flux is assumed to be F'(x,u) =
—H(z—.5)+(1—-H(x—.5))1 withug(z) =0H(z —.5)+ (1 — H(zx —
.5))1. Let the domain be [0.44,0.56], 7 = 0.5, h = 0.002. The solution

is given by u(z,0.5) = 0.5(1 — H(xz — .5)). The numerical weight is
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computed as earlier and it can be seen in Figure 6.3 that our scheme does
not have diffusion and captures the exact weight 0.5. Also, on comparison
with Figures 1 and 2 of [113], it can be noticed that the location of d-shock
is little shifted to the left of the exact -shock location, x = 0.5, while
the scheme presented in this paper captures the d-shock precisely at the

location.

250 — 1 i 0.6

200 -

o
'S

150

o
©

Primitive of u

o
[S)

100

50

o
o

/ ‘

0.45 0.5 0.55 0.45 0.5 0.55

Figure 6.3: §-shock at = = 0 with weight 0.5

(b) (6.1.1)-(6.1.2) as a vanishing e— limit of (6.3.1):

This experiment is to show that the non—linear approximation (6.3.1) is a good
approximation to (6.1.1)-(6.1.2). Since (6.3.1) is a conservation law with dis-
continuous flux considered in [114], with both functions convex, the finite vol-

ume scheme for (6.3.1) is given by:

ul ™ = = N(F", — F" ),

R
FSH% = max (g6 <max (up, ;—1)) e (min(uyﬂ, ﬁ)) ),
Ui =Xy o T bX{i>0}'
It can be seen in Figure (6.4) that the solutions of (6.1.1)-(6.1.2) and (6.3.1) are

centered around the x = 0 with the width of the shock increasing with increasing
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€. Also, as € is tending towards zero, the height of the shock is approaching
the height achieved by the solution of (6.1.1)-(6.1.2). It is evident that with
decreasing ¢, the solution of (6.3.1) are having more height and less width and

hence converging to d-shock solution of (6.1.1)-(6.1.2).

35

T

— Exact Solution
e=.1

—e=.075

30—

25— -

20— *

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.4: Non-linear approximation for small e

Example 2: s(z,u) = ku, k # 0: Now, we present the numerical results with a linear non-zero

source term

(a) au; — bu, = 0,u; = 1,u,, = —1 : It can be seen in Figure 6.5 that there is no -

shock. It coincides with the exact solution

u, if >0,
u., 1f x <0.

u(z,t) = exp(7) {
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—— Approximate Solution
——Exact Solution

2L -

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 6.5: No d-shock when au; — bu,, = 0

(b) au; — bu, # 0,u; = 1,u, = 2 : It can be noted that the numerical solution ob-

tained from either of the schemes is same as the exact solution

Uy, if z > O,
u(z,T) = exp (kT) < (aw; — bu,)dgp—oy, if =0,
uy, if x <0,

away from the interface. We compare the performance of our scheme with the

following standard scheme for source term

n+l _ n n n
U; _uz_>\( z'—i—%_Fi—

) + kAtu,

N

which we call Scheme 2. The difference between weight captured by our scheme
and the exact weight 37 exp(7") = 8.1679 is 8.06e — 4, while by Scheme 2 is
9e — 3. In the Figure 6.6, our scheme is shown in — and results by Scheme 2

is given in — while the exact solution away from interface is given by —.
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4500

4000 —

3500 — -

3000 — —

2500 — -

32000 —

1500 (— -

1000 — -

500 — —

Figure 6.6: Comparison of schemes in presence of source terms for capturing 6-shocks

Example 3:

s(x,u) = kdgz—oy : Letus start witha = 0 = u; and b = 1, u, = —1 so that there is

a=1wu =0,b=u, =—1,k = 0 J-shock with weight —7". Now, a singular source
term of the same weight is added to the right-hand side of the homogeneous conser-
vation laws so that the previously occurring §-shock in “nullified” and concentration

will be absorbed. Results can be seen Figure 6.7.

600

[—Solution without Source Term|

[——Solution in Presence of Source Term

500 -
0.8

0.7
400 -

0.6

= 300 1 =05F

0.4

200

0.3

0.2
100 -

Figure 6.7: §-shock with weight —T" being absorbed by a point source term
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Now, let’s start with the datum a = u; = 1,b = u,, = —1 so that there is no J-shock.
Then, by adding a point source term —dy,—oy, a negative delta shock of weight —T'
is obtained. The figure 6.8 displays that the negative d-shock can be nullified by

appropriately modify the flux F'(z,u)toa = 2,0 = —1.

08 1 08

06 1 06

=100 -

04r 04r

0.2 B 02
-200 - 1

=300 1
02 1 -0.2-

-400

0.6 1 06

-500 -
08 1 -0.8

4 L L 600 L L L 4 L A L
-0.2 -0.1 L] 0.1 0.2 -0.2 -0.1 o 0.1 0.2
z E

Figure 6.8: Source-Sink Phenomenon of d-shock

Example 4: Non-linear Overcompressive flux Pair:

Here we illustrate the performance of our schemes for overcompressive flux pairs.

In particular, let

US —u5

g(u) - §7f<u> = T,T = .05, M =101,
with the domain [—1, 1]. Then the problem (6.1.1)-(6.1.2) admits J-shocks at the in-
1, if x<-05,
1.5, if —05<x<0,
2, if 0<z<0.5,

0, else .

terface x = 0 with uy(z) =

It can be seen in the Figure 6.9that the scheme is able to capture the d- shock at the

interface effectively.
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Figure 6.9: Non-linear Monotone fluxes

6.7.2 Simulations for the system (6.1.3)-(6.1.4)

This section displays the performance of the scheme proposed in §6.6.2 for various Rie-
mann data in capturing both d-shocks and classical shock solutions efficiently for Aug-
mented Burgers system (6.1.3)-(6.1.4). The numerical solutions have been compared with

the solutions established in [37, 16] and references therein.

Example 1: Classical Shock for u:

Let v, = v, = 1,u; = 1,u, = 2. The solution is given by: v(x,t) = vo(z) and

(2.1) u, if x < wt,
u(zx,t) = ) )
u,, if x> vot.

The figure (6.10) shows that the right solution has been captured by the scheme.
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vy=v=1=wu,u =2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.10: No d-shock with initial data as constant v

Example 2: Moving Classical Shocks:

Let v; = 3 = 3v,,u; = —1 = —u,. The solution is given by:

vy, if x < st,

v(x,t) = ) s= .5y +v
(%) vy, if x> st ( )
and
Uy, if x <wpt, VU — VpUy
u(z,t) = . ,Vg = ———.
u., 1f x> vot. U — Uy

The figure (6.11) shows that the right solution has been captured by the scheme.

3
25 —— Approximate Solution v i
—— Approximate Solution u
2l —— Exact Solution v |
—— Exact Solution u
1.5 h
1 |-
0.5 i
0 i
-0.5 N
_1 L | | | | |
-2 15 1 0.5 0 0.5 1 1.5 2

Figure 6.11: Classical Moving Shocks for u, v
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Example 3: Vacuum Solution:

Let —2v; = v, = 1 = u; = 2u,.. The solution is given by:

v, if x<wut, u, it x <wt,
v(r,t) = ¢ %, if yt <z <wvt, and u(x,t) = 10, if vt <ax <w,.t, The
v, if x>t u,, if x> v.t.

figure (6.12) shows that the right solution has been captured by the scheme.

1 T

=

—2u; = u, = v = 2,

0.5

05 I I ! I I

Figure 6.12: Vacuum solution for v with initial data as Riemann Data v; < v,

Example 4: Stationary ¢-shock for u:

Let vy = —v, = 1 = u,, = 2u,;. The solution is given by:

<0 ug, if = <0,

i
v(z,t) = v s andu(z,t) = { (w —u,)stogxr =0}, if = =0, where

v, if x>0, )
Up,y if >0,

5= 2 o . The figure (6.13) shows that the right solution has been captured by the
scheme.
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80

60 - B

w=1l=-u=v,=1=2y

50 - 7

a0 8

u,v

30 B

20 - -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.13: Stationary ¢-shock for u with weight v; = —v, > 0

60 T

50 - -

w=—2u=1=uv =20,

30 B

u,v

20 - 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 6.14: Moving d-shock at x = st with weight v; > v,., where s = .5(v; + v;.)

(% +U7’

Example 5: Moving d-shock for u: Letv; = —v, = 1 = u, = 2u;. Lets = . The solution

is given by:

iy < st ug, if x < st,
if = < st, .
v(x,t) = {Ul’ and u(z,t) = q (w — u,)stog,—gy  if o = st,

) if x> st .
" ’ Uy, if x> st.

The figure (6.14) shows that the right solution has been captured by the scheme.
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Chapter 7

Conclusions and future research
7.1 Conclusions

The main focus of this thesis is to study the non-classical ( measured valued ) solutions for
system of conservation laws and scalar conservation laws with discontinuous flux function
with initial and boundary values. For system of conservation laws, my study revolves within
the 2 x 2 systems arising from various physical models. The main tools, we used to study the
systems are, a generalised Hopf-Cole transformation, vanishing viscosity method, volpert’s
product, singular flux function limit or vanishing pressure limit, shadow waves approach

and analysis on characteristic curves. The detailed chapterwise conclusions are given below.

7.1.1 Vanishing pressure limit for some strictly hyperbolic systems

In the second and third chapter of my thesis, we studied the limiting behavior of some strictly
hyperbolic system of conservation laws. The second chapter considers the following strictly

hyperbolic system of conservation laws known as Euler equation of compressible fluid flow,

2

w (5 + Plp)a = 0;

pr+ (pu)z =0
The limiting behavior of solutions for the above system with Riemann type initial data is
studied when the pressure term P(p) approaches zero. For that purpose we take the scalar
function P not only as a function of density p but also a small parameter ¢ > 0 satisfy-
ing lim._,o P(p,e) = 0. More precisely, we take P(p,e) = ep(p) where p(p) is a twice
differentiable function. One can readily observe that when € goes to zero, the above sys-

tem formally goes to the one-dimensional model for the large-scale structure formation of
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the universe. This is an example of a non-strictly hyperbolic system that has no classical
solution and a solution containing concentration (d-shocks) had introduced by Korchinski
[9]. In the presence of pressure (¢ > 0), there will be no concentration of mass and the
solution will lie in the space of bounded variation. Therefore Lax’s theory can be employed
to construct the solution. Then the distributional limit as € tends to zero of the solution for
this strictly hyperbolic system converges to the d-shock solution of the non-strictly hyper-
bolic system[11]. This kind of method can be thought of as an alternative to the vanishing
viscosity method.

In the second part of the second chapter, we studied another strictly hyperbolic system which
is a perturbed version of the model for large scale structure formation of universe, namely,

Uy + (@)x = 0;

pr+ (pu)e =0

When € > 0, the above system is strictly hyperbolic and can be solved by Lax’s theory
only for close by Riemann type initial data. It is observed that if u_ — u, > 2¢, one can
not get Lax type solution containing shock and rarefaction waves. Therefore to handle the
case of large Riemann type data, the Shadow wave approach is chosen. This system also
provides an example where a smallness condition is required on the initial data to get Lax
type solution.

The third chapter is a continuation of the first one, where I dealt with a more general system.

The general equation of compressible fluid flow reads

U,2
uy + (5 + F(p,€))e = 0;

2
pr+ (pu+G(p,€))e =0
where F(p,¢) = ef(p) and G(p,€) = eg(p) and f is C?, increasing and convex function

where as ¢ is any differentiable linear decreasing function. It is to be noted that when

e=1,f(p) = é and g(p) = —p the system takes the form of well known Brio system
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which admits a §-shock solution. The above system is strictly hyperbolic when ¢ > 0.
To deal with this problem we used a similar techniques from the previous work mentioned
above, with some additional difficulties and showed that the distributional limit (as € tends to
zero) of the solution for strictly hyperbolic system converges to the solution of non-strictly
hyperbolic system which contains J measure. In the same project we also deal with some

non linear g, for example g(p) = —p? and f(p) = %.

7.1.2 Vanishing viscosity approach for some non-strictly hyperbolic
systems

The fourth chapter of the thesis is devoted to study a non-strictly system of balance laws,

namely,
up + uu, = (x,t);

pr+ (pu)e =0
with the initial data u(z,0) = ug(x), p(z,0) = po(x), where uy and py are locally inte-
grable functions with certain growth condition. This kind of balance laws arises form 1-D
Saint-Vanent model which is a type of shallow water equation, modeling incompressible
fluid flow in an open channel of an arbitrary cross-section. This chapter deals with the
kinematic case of the Saint-Vanent model. Besides this, the problem is of mathematical
interest also. Indeed, the vanishing viscosity limit for the Burgers equation was studied by
E.Hopf[59] and in 2003 Ding xiaqi and Ding Yi[61] extended the idea of Hopf for Burgers
equation with a nonhomogeneous term. The important point is to note here that the nonho-
mogeneous term considered by Ding is unbounded in the space variable. In this work, we
addressed the above-mentioned problem coupled with a continuity equation. Unlike Ding
et.al, we consider a system of conservation laws when the nonhomogeneous term depends
both on time and space variables. The vanishing viscosity method is used to find an explicit
formula for that inhomogeneous system with a general type of initial data. Along the way,

we contributed some developments in the vanishing viscosity method, also by localization
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of initial data, we showed that the vanishing viscosity limit for the first equation ( inho-
mogeneous Burgers equation ) satisfies the equation. Now the question is, in what sense
p satisfies the equation as up is not well defined in general. To handle this situation, we
use non-conservative product [35], for example Volpert product[34]. There are also certain
difficulties depending upon the geometry of u. We resolve the problems as follows: if u is
piecewise smooth then we showed that p satisfies the second equation in the classical sense
in the continuous region of u. Along the discontinuity curves we showed that the measure
R, +uR, = 0,(p = R,) where uR, is understood as Volpert product. If u is not piece-
wise smooth then by using a limiting approximation argument and the properties of Volpert
product we showed that p satisfies the equation. The techniques used here are significantly

different from Ding and may be applied to other systems.

7.1.3 Measure valued solutions for conservation laws with discontin-
uous flux

In the fifth chapter, we propose the measured valued weak solution for scalar conservation
laws with discontinuous flux and provide an explicit formula for the same. The scalar con-
servation laws with discontinuous flux read

Uy + (F(m,u))z =0,

(7.1.1)

u(z,0) = ug(x)
where F'(x,u) = H(z)f(u) + (1 — H(z))g(u), H is a Heaviside function, v is bounded
measurable function and f,g are locally Lipschitz function in general. Depending on the
nature of f and ¢ the above equation has various physical applications in different fields
such as two-phase flow in the discontinuous porous medium, traffic flow on highways with
different densities, etc. The above initial value problem has been shown to have a unique
bounded solution when f and g are functions with one critical point or they are monotone

with the same monotonicity[96, 63]. In fact, [63] provides a Lax-Oleinik type formula
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when f,g € C'(R) and strictly convex with superlinear growth, i.e \ul|i£>noo % =

However, the existence of bounded weak solution, when f and ¢ are strictly convex(or
strictly concave) with g increasing and f decreasing remained unsettled. It is important to
note that when f, g are decreasing and increasing respectively, in whole R, one already loses
the superlinearity condition. Also, in this case, as the characteristics overlap each other at
the interface x = 0, cases may arise when there is no bounded weak solution exists. To
settle this question, first we looked for the linear case, that is g(u) = au and f(u) = bu,
with a > 0, b < 0. Observe that the linear fluxes are not strictly convex and therefore
need to be treated separately. We use the vanishing viscosity method and end up with a
solution containing J-measure. For any general f,g € C'*(R) strictly convex with f/ < 0
and ¢’ > 0, we are also able to provide a Lax-Oleinik type formula with a J-measure along
the interface. Furthermore, convergent, conservative finite volume numerical schemes are

proposed to capture d-shock efficiently. The numerical schemes are also extended to the

hyperbolic system which does not pose a bounded weak solution.

7.1.4 Initial-boundary value problem for 1D pressureless gas dynam-
ics
The fifth chapter of the thesis deals with the pressureless gas dynamics system in the quarter
plane. More precisely, the question is to give an explicit entropy solution for pressureless
gas flow with initial-boundary values, i.e
pr+ (pu)e = 0;
(7.1.2)

(pu)i + (pu®)s = 0.
with the initial data (p(z, 0), u(z, 0)) = (po, uo) and the boundary data (p(0, ¢), p(0, t)u(0,t)) =

(pv, poup), where the initial and boundary data are bounded measurable function. Also we
ask under what conditions and in what sense boundary data can be prescribed. The initial

value problem for (7.1.2) has been intensively studied in the literature. The key issue is that,
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in general, p is no longer a function but a measure. This led to the introduction of various
strongly related notions of weak solutions such as measure solutions, duality solutions, du-
ality solutions based on vanishing viscosity etc. On the other hand explicit formula for the
above system with initial value was given by Rykov, Sinai and Weinan[14] via generalized
variational principle and these formulae are extended by Wang,Huang and Ding[74] when

ug 18 not continuous. Their key idea is to introduce a generalized potential,

Fly,,1) = / " o) (tualm) + 1 — ).

The explicit formula for the Burgers equation in the quarter plane via vanishing viscosity
was given by Joseph [115]. Then Joseph and Gowda extended their previous work to pro-
vide an explicit formula for scalar conservation laws when the flux is strictly convex with
superlinear growth [76]. To the best of our knowledge, no attempts have been made in the
literature so far to solve the initial-boundary value problem for the pressureless gas dynam-
ics model. The reason for this neglect may be that it is not clear in what sense boundary
data can be prescribed.

In this chapter, we succeeded in giving a physically meaningful answer to this question,
in one space dimension. we extend the method of Huang and Wang [73] by introducing a

second type of potential — boundary potentials,

Gr,,t) = / "l — (¢ — myu(m)lun(n)os(n)dn.

The locus at which the new boundary potentials and the previously established initial po-
tentials coincide plays a crucial role as a new ingredient in constructing the solution.

The possibility of prescribing boundary data is shown to depend on the behavior of the
generalized potentials at the boundary. We show that the constructed solution satisfies an
entropy condition and it conserves mass, whereby mass may accumulate at the boundary.
Conservation of momentum again depends on the behavior of the generalized boundary

potentials.
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7.2 Future Research

The future problems/ proposals are mostly on (i) vanishing viscosity approximation of con-
servation laws and (ii) constructing explicit formula for gas dynamics equation and related

models.

7.2.1 Vanishing viscosity approximation for scalar conservation laws
with discontinuous flux

The study of the conservation laws with discontinuous flux and related parabolic problems
has been an important area of interest during the last decade. Even in one dimension, the
problems are quite interesting because of the possibility to give different non-equivalent
generalizations of Kruzkov’s entropy solution. Moreover, in the literature there are several
concepts of entropy solutions for conservation laws with discontinuous flux, see equation.
Adimurthi et.al[94] studied the concept of AB-entropy solution when both the fluxes are
either convex or concave. For linear fluxes, they used convex(or concave) approximations
to find AB connections. However, the additional conditions f’ < 0 and ¢’ > 0 gives
rise to a problem of finding AB connections, i.e it may happen that there doesn’t exist
any (A, B) connection which can produce a A B-entropy solution. In this case, there is a
concentration(d-wave) along the discontinuity which is successfully solved in chapter 6.
We used vanishing viscosity method for linear fluxes f(u) = bu and g(u) = au with
a > 0, b < 0 and for general convex fluxes f,g with the conditions f* < 0Oand ¢’ > 0, a
Lax-Oleinik type formula is given. Our next aim is to use the vanishing viscosity approach
for general fluxes f, g with the above-mentioned conditions (we call it overcompressive
flux pair). The introduction of a viscous term in the right-hand side of (7.1.1) makes the

equation parabolic type and it reads
up + F(r,u), = €Uyy, (7.2.1)
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where
F(z,u) = H(x) f(u) + (1 — H(x))g(u).

In Chapter 6, the weak formulation for the above viscous equation is given by

Definition 7.2.1. 4 function u € C°(R x R*; R) is a weak solution of the equation (7.2.1)
if the following integral identity holds

/OOO /Z(w% — €Uy, )dudt + /Ooo /O; Pz, u)podudt

s . (7.2.2)
#7100 = g(ut0.00100.00 + [ wfa)ofa, 0o =0

Sorall p € C (R x [0, 00)).

We shall study the problem (7.2.1) and find out an appropriate entropy condition for the
limit solution. To carry out the analysis, our plan is to study the viscous equation separately
in two quarter planes putting boundary condition (0, ¢) = (¢). That is we shall study two
parabolic boundary value problems such as

u + f(u)y = gy, >0
(7.2.3)
u(:v, 0) = u0<$)7 u((), t) = ﬁ(t)
and
U+ g(u)y = €Uy, =<0
(7.2.4)
U(ZL’, 0) = UO(‘T)’ U(O’ t) = B(t)

and to show the existence of C'! (with respect to the space variable) solution u(e > 0) in
the half plane. Then one has to obtain proper estimates on the boundary function 5(¢) and
this in turn will give estimates on u° for passing to the limit as ¢ tends to zero.

In Chapter 6, we obtained the asymptotic behavior for the solution of (7.2.1) and showed
that the solution converges to a steady state solution as t — oo when fluxes are linear, i.e
f(u) = bu and g(u) = au with a > 0, b < 0. Now we propose to study the asymptotic
behavior for more general overcompressive flux pair. Also we aim to construct a numerical

scheme in the presence of the viscous term (i.e for the parabolic equation).
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7.2.2 Vanishing viscosity limit for adhesion model

The next proposal is to study the vanishing viscosity limit for the adhesion model [116]

u + (u-Vu = eAu

pr + V- (up) =0.
If u = V¢, the vanishing viscosity limit for the first equation is determined in [116]. The
limit for p° is expected to be a measure known for the one-dimensional case. We aim to
determine an explicit representation of the second component p© as € tends to zero for multi-
dimension. There are certain difficulties to find the limit for p¢ in the multidimensional case.
Indeed, the explicit formula of p°(e > 0) is in the non-conservative form. Even the limits
for the individual terms are known, we cannot find the limit as a whole in the space of
distribution. A variant of compensated compactness argument may be required to find the
limit. The next difficulty is to develop a notion of solution such that the limit satisfies the
second equation. This is because the limit of p° is a measure in general, the limit of u€ is a
function of bounded variation and the product does not make sense in general in the space

of distributions.

7.2.3 Initial-boundary value problem for 1D pressureless flow with
measure data
As an extension of Chapter 5, next we want to construct an explicit entropy solution for
the initial-boundary value problem (7.1.2) when datum are non-negative Radon measures.
More precisely, po and p, are non-negative Radon measures and u, u; are bounded mea-
surable (with respect to pg and p, respectively) functions. The choice of initial-boundary
data as non-negative measures is natural since the solution for the pressureless model turns
out to be measure or produce a vacuum. For example, in the shock case the solution for the
Riemann type data contains a 6 — measure in the second component p, and in the rarefaction

case p contains a vacuum. Huang and Wang [73] obtained the explicit formula for purely
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initial value problem by introducing the initial potential. In order to construct a solution for
the initial boundary value problem, we need a new boundary potential and a proper notion
of boundary condition.

Another interesting direction is to study the explicit formula for various systems related
to the pressureless gas model (e.g pressureless gas model with a time-dependent source,
Eulerian droplet model, multidimensional gas model [79], gas flow in a general nozzle
[117] ) accompanied with initial-boundary value by determining the appropriate generalized

potentials and studying generalized characteristics.
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