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SUMMARY

This thesis is a study about different central parts of connected graphs and some

graphical indices related to them. The center, centroid, characteristic set and the

subtree core are four different central parts of a tree. There are many central parts

defined for a graph but when restricted to trees, most of them coincide with the

centroid. The center, median and the security center are three known different central

parts of a graph. Related to these central parts, there are different topological indices

associated with a graph. The Wiener index and the total eccentricity index are two

such topological indices related to the median and the center, respectively.

We define the subgraph core and the characteristic center as two new central parts

of a graph and study their centrality behaviour. It is shown that the subgraph core

and the characteristic center are different from the center, median and the security

center. We obtain the tree which maximizes the distance between the characteristic

center and the subtree core among all trees on n vertices. The asymptotic nature of

the distances between different central parts are also studied. We continue this study

to obtain the trees which maximize the distances between different central parts over

trees with fixed diameter and over binary trees on n vertices. A new graphical index

associated with the subgraph core of a graph is introduced. We define the subgraph

index of a graph and obtain the graphs which extremize the subgraph index over

unicyclic graphs and over graphs with fixed number of pendant vertices. We further

continue this study for the Wiener index and the total eccentricity index. We study

the extremization problems on the Wiener index and the total eccentricity index over

graphs with fixed number of pendant vertices and over graphs with fixed number of

cut vertices.
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Chapter 1

Introduction and preliminaries

In this chapter, we give a brief literature survey on the study of different central parts

of connected graphs and some associated indices. We also define two new central parts

for connected graphs and discuss the motivation for our study.

1.1 Introduction

Throughout the thesis, all graphs are finite, simple, connected and undirected. The

vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively.

We denote an edge with end vertices u and v by {u, v}. The distance between two

vertices u and v of G is denoted by dG(u, v) (or simply d(u, v) when the context is

clear) and defined as the number of edges in a shortest path joining u and v. The

diameter of G is defined as diam(G) = max{d(u, v) : u, v ∈ V (G)}. For two subsets X

and Y of V (G), the distance between X and Y is defined as dG(X, Y ) = min{d(x, y) :

x ∈ X, y ∈ Y }.

The degree of a vertex v ∈ V (G) is the number of edges incident with v and we

denote it by deg(v). By NG(v), we mean the set of vertices adjacent to v. A vertex

1



§1.1. Introduction

of degree one is called a pendant vertex. A vertex v of G is called a cut vertex of G

if G − v is disconnected. A graph G with |V (G)| > 2 is called a 2-connected graph

if it has no cut vertex. A maximal two connected subgraph of G is called a block of

G. An edge e of G is called a bridge if G− e is disconnected. A complete graph on n

vertices is denoted by Kn. A graph G is called bipartite if V (G) can be partitioned

into two parts V1 and V2 such that for any edge {u, v} ∈ E(G), u ∈ V1 and v ∈ V2. A

complete bipartite graph is a bipartite graph with bipartition V1 and V2 such that for

every u ∈ V1 and v ∈ V2, {u, v} ∈ E(G). A complete bipartite graph with |V1| = m

and |V2| = n is denoted by Km,n. A tree is a connected acyclic graph. A path on n

vertices is denoted by Pn and we denote the star on n vertices by K1,n−1.

By specifying a vertex r of a tree T , we say T is a rooted tree with root r. A binary

tree is a tree in which every non-pendant vertex has degree 3. A rooted binary tree is a

tree in which the root has degree two and any other vertex is either a pendant vertex

or a vertex of degree 3. Note that the number of vertices in a binary tree is always

even and every binary tree on n vertices has n+2
2

pendant vertices. The number of

vertices in a rooted binary tree is always odd.

Let T be a rooted binary tree with root r. The height of a vertex v in T is denoted

by ht(v) and defined as ht(v) = d(v, r). The height of T is denoted by ht(T ) and

defined as ht(T ) = max{ht(v) : v ∈ V (T )}. We say a vertex v of T is at level l if

ht(v) = l. Let P (r, v) denotes the path joining r and v. For u, v ∈ V (T ), v is called

a successor of u if P (r, v) contains P (r, u). If v is a successor of u and u is adjacent

to v, then we call v is a child of u and u is the parent of v. We call a rooted binary

tree to be ordered, if for l > 1, the vertices at level l are put in a linear order such

that if u and v are vertices at level l + 1 with different parents then the orders of u

and v at level l + 1 are same as the order of their parents at level l.

2



§1.1. Introduction

Definition 1.1.1 ([38]). A rooted binary tree is called an rgood binary tree if

(i) the heights of any two of it’s pendant vertices differ by at most 1 and

(ii) the vertices of the tree can be ordered such that the parents of the pendant vertices

at the highest level make a final segment in the ordering of the vertices at next

to highest level.

A single vertex rooted binary tree is also rgood. All rgood binary trees on n vertices

are isomorphic and we denote it by T nrg. A caterpillar is a tree which has a path such

that every vertex not on the path is adjacent to some vertex on the path. A binary

caterpillar is a caterpillar which is also a binary tree. Note that a binary caterpillar

on n vertices has diameter n
2
.

00

10 11

20 2321 22

3130

(a) (b)

Figure 1.1: (a) Structure of an rgood binary tree (b) Structure of a binary caterpillar

If G and H are two isomorphic graphs, we write G ∼= H. A cycle on n vertices

is denoted by Cn. The girth of a graph is the length of a smallest cycle contained in

it. A unicyclic graph is a graph containing exactly one cycle. For 3 6 g < n, let Up
n,g

be the unicyclic graph obtained by attaching n− g pendant vertices at one vertex of

the cycle Cg and U l
n,g be the unicyclic graph obtained by joining an edge between a

pendant vertex of the path Pn−g and a vertex of Cg. Note that Up
n,n−1

∼= U l
n,n−1.

A real matrix A is said to be nonnegative if all its entries are nonnegative. If all

the entries of A are positive, we say A is a positive matrix. Similarly we can define

3



§1.1. Introduction

n− g vertices

Cg

Up
n,g

Cg

Pn−g
U l
n,g

Figure 1.2: The graphs Up
n,g and U l

n,g

positive and nonnegative vectors. We write A > 0, if A is nonnegative and A > 0 if

A is positive. If A and B are matrices of same order, then A > B and A > B means

A−B > 0 and A−B > 0, respectively.

A permutation matrix is a square matrix in which exactly one entry in each row

and each column is 1 and all other entries are 0. For a matrix A, by AT we mean

the transpose of A. A square matrix A of order n > 2 is said to be reducible if there

exists a permutation matrix P such that

P TAP =

B C

0 D


where B and D are square matrices of order r and n− r, respectively with 1 6 r 6

n− 1. A square matrix is called irreducible if it is not reducible. For a square matrix

A, ρ(A) = max{|λi| : λi is an eigenvalue of A} is called the spectral radius of A. The

following is the well known Perron-Frobenius theorem which has many applications.

Theorem 1.1.2 ([15]). Let A > 0 be an irreducible square matrix of order n > 2.

Then ρ(A) is a simple eigenvalue of A, and there is a positive eigenvector correspond-

ing to the eigenvalue ρ(A). There are no nonnegative eigenvector corresponding to

any other eigenvalue of A.

4



§1.2. Different central parts of graphs

For nonnegative square matrices A and B (order of B is greater than or equal to

order of A ), by the notation A � B, we mean there exist permutation matrices P

and Q such that P TAP is entry wise dominated by a principal submatrix of QTBQ,

with strict inequality in at least one place, in case A and B have same order. A useful

fact from the Perron-Frobenius theory is that if B is irreducible and A � B then

ρ(A) < ρ(B). For more on nonnegative matrix theory, we refer to [15] and [17].

1.2 Different central parts of graphs

It was Jordan in 1869 who first introduced the notion of centrality in graphs by

defining the two central parts of trees, the center and the centroid. This definition of

center by Jordan was given for trees which was later adopted for graphs.

Let G be a graph. The eccentricity e(v) of v in G is defined as e(v) = max{d(v, u) :

u ∈ V (G)}. The min{e(v) : v ∈ V (G)} is called the radius of G and denoted by

rad(G). Clearly diam(G) = max{e(v) : v ∈ V (G)}. A vertex v is a central vertex if

e(v) = rad(G). The center of G is the set of all central vertices and we denote it by

C(G). The following result is due to Jordan [19] which tells about the center of a

tree.

Proposition 1.2.1 ([6], Theorem 2.1). The center of a tree consists of either a single

vertex or two adjacent vertices.

The above result is generalised by Harary and Norman for graphs in [16].

Proposition 1.2.2 ([16], Lemma 1). The center of a graph G is contained in a block

of G.

Let T be a tree. A branch at v ∈ V (T ) is a maximal subtree of T containing v as a

pendant vertex. The weight ω(v) of v is the maximum number of edges in a branch

5



§1.2. Different central parts of graphs

at v. A vertex of minimum weight in T is called a centroid vertex of T . The centroid

of T is the set of all centroid vertices of T and we denote it by Cd(T ).

Proposition 1.2.3 ([6], Theorem 2.3). The centroid of a tree consists of either a

single vertex or two adjacent vertices.

Since the centroid is defined for trees only, many people tried to generalise the defi-

nition of the centroid to graphs in different ways. As a consequence, the median of a

graph was observed as a central part of a graph by Zelinka [51] in 1968. The median

of a graph was first introduced by Ore [28], in 1962.

For v ∈ V (G), the distance DG(v) of v is defined as DG(v) =
∑

u∈V (G)

d(v, u).

A vertex of minimum distance is called a median vertex of G and the set of all

median vertices is called the median of G. In [51], Zelinka proved the following facts

regarding median.

Proposition 1.2.4 ([51],Theorem 2 and 3). The median of a tree consists of either

a single vertex or two adjacent vertices and it coincides with the centroid.

A result similar to Proposition 1.2.2 for median is proved in [43].

Proposition 1.2.5 ([43], Theorem 3). The median of a graph G is contained in a

block of G.

In 1975, Slater [34] defined the security center of a graph, which he felt, a better

generalisation of the centroid than the median. For u, v ∈ V (G), let Vuv = {x ∈

V (G) : d(x, u) < d(x, v)} and let g(u, v) = |Vuv| − |Vvu|. The security number of

u ∈ V (G) is denoted by s(u) and defined as s(u) = min{g(u, v) : v ∈ V (G)−u}. The

security center S(G) of G is the set of vertices x for which s(x) is maximum. Slater

proved the following result which is a motivation towards considering the security

center as a central part of a graph.

6



§1.2. Different central parts of graphs

Proposition 1.2.6 ([34], Theorem 1, Corollary 1a ). The security center of a tree

coincides with its centroid and hence it consists of either one vertex or two adjacent

vertices.

Smart and Slater in 1999 proved the following result regarding the position of the

security center of a graph.

Proposition 1.2.7 ([36], Theorem 6). For any graph G, the median and the security

center lie in the same block of G and hence S(G) is contained in a block of G.

Though the median and the security center lie in the same block of G, by an example

the authors have shown in [36] that S(G) and M(G) may not be same for every graph.

Many other central parts of trees are defined in different ways by several re-

searchers. For example, In 1978, Mitchel defined a central part of a tree known as

the telephone center ([26]) and shown that it coincides with its centroid. Let T be a

tree. Suppose the vertices of T represents telephone lines and the path between two

vertices u and v represents a telephone call between them. Assuming that at a given

time, a vertex can be involved in only one call, define the switchboard number sb(v)

of v as the maximum number of calls which can pass through v at a given time. The

telephone center of T is the set of vertices having maximum switchboard number.

The following result regarding the telephone center is due to Mitchell.

Proposition 1.2.8 ([26], Corollary 3). The telephone center of a tree consists of

either a single vertex or two adjacent vertices and it coincides with the centroid.

A lot of other interesting central parts for trees can be found in the survey paper [31],

many of which coincide with the centroid. In 2005, Sźekely and Wang [38] defined a

new central part of a tree different from both the center and the centroid.
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§1.2. Different central parts of graphs

For a vertex v of a tree T , let fT (v) be the number of subtrees of T containing

v. The subtree core of T is the set of vertices of T maximizing fT (v). The following

result is a motivation towards considering the subtree core as a central part of a tree.

Proposition 1.2.9 ([38], Theorem 9.1). The subtree core of a tree consists of either

a single vertex or two adjacent vertices.

To prove the Proposition 1.2.9, the authors have shown that fT is concave in the

following sense.

Proposition 1.2.10 ([38]). If u, v and w are three vertices of a tree T with {u, v}, {v, w} ∈

E(T ), then 2fT (v)− fT (u)− fT (w) > 0.

All the above central parts for trees or graphs are defined combinatorially. There

is a central part for trees raised from the Fiedler theory [13, 27] which is defined

algebraically. For a graph G with V (G) = {v1, v2, . . . , vn}, the degree matrix D(G) =

(dij) is the n × n diagonal matrix with dii is equal to the degree of the vertex vi,

for i = 1, 2, . . . , n. The adjacency matrix A(G) = (aij) is the n × n matrix where

aij = 1 if vi and vj are adjacent and 0 otherwise. The Laplacian matrix L(G) of G

is defined as L(G) = D(G) − A(G). It is known that L(G) is real, symmetric and

positive semi-definite. The smallest eigenvalue of L(G) is 0 with all one vector as

a corresponding eigenvector. The second smallest eigenvalue of L(G) is called the

algebraic connectivity of G as it is positive if and only if G is connected (see [14]). We

denote the second smallest eigenvalue of L(G) by µ(G). An eigenvector corresponding

to µ(G) is called a Fiedler vector of G.

Let Y be a Fidler vector of G. By Y (v) we mean the co-ordinate of Y correspond-

ing to the vertex v of G. A vertex v is called a characteristic vertex of G with respect

to (w.r.t.) Y if it satisfies one of the following two conditions.

8



§1.2. Different central parts of graphs

(i) Y (v) = 0 and there exists a vertex u adjacent to v such that Y (u) 6= 0.

(ii) there exists a vertex u adjacent to v such that Y (v)Y (u) < 0.

The set of all characteristic vertices of G w.r.t. Y is called the characteristic set

of G w.r.t. Y . We denote the characteristic set of G w.r.t. Y by χ(G, Y ). It is

observed that the the characteristic set behaves like a central part in trees. One

of the important reason to consider it as a central part of a tree is the following

proposition.

Proposition 1.2.11 ([13], Theorem 3,14 and [27],Theorem 2). Let Y be a Fiedler

vector of a tree T . Then χ(T, Y ) is either a single vertex or two adjacent vertices.

Furthermore, χ(T, Y ) is fixed for any Fiedler vector Y .

Note that for a characteristic vertex v, if condition (ii) holds then u is also a

characteristic vertex of G w.r.t. Y . In this case, the edge {u, v} is known as a charac-

teristic edge of G corresponding to Y . Thus by a characteristic edge of G w.r.t. Y , we

mean two adjacent characteristic vertices of G w.r.t. Y . The concept of characteristic

set in terms of characteristic vertices and characteristic edges was first introduced and

studied by Bapat and Pati in [4].

We now discuss some important results related to the study of the position of

the characteristic set in a tree. Let v be a vertex of G and C1, C2, . . . , Ck be the

connected components of G − v. Note that k > 2 if and only if v is a cut vertex of

G. For each such component, let L̂(Ci), i = 1, 2, . . . , k be the principal submatrix of

L(G) corresponding to the vertices of Ci. Then L̂(Ci) is invertible and L̂(Ci)
−1 is

a positive matrix which is called the bottleneck matrix for Ci. By Perron-Frobenius

theorem, L̂(Ci)
−1 has a simple dominant eigenvalue, called the Perron value of Ci at

9



§1.2. Different central parts of graphs

v. The component Cj is called a Perron component at v if its Perron value is maximal

among the components C1, C2, . . . , Ck, at v. The next result describes the entries of

bottleneck matrices for trees which is very useful for our study.

Lemma 1.2.12 ([21], Proposition 1). Let T be a tree and let v ∈ V (T ). Let T1 be

a component of T − v and L1 be the submatrix of L(T ) corresponding to T1. Then

L−1
1 = (mij), where mij is the number of edges in common between the paths Piv and

Pjv, where Piv denotes the path joining the vertices i and v.

A connection between Perron components and characteristic set of a tree is de-

scribed in next three results.

Proposition 1.2.13 ([21], Corollary 1.1). Let T be a tree on n vertices. Then the

edge {i, j} is the characteristic edge of T if and only if the component Ti at vertex j

containing the vertex i is the unique Perron component at j while the component Tj

at vertex i containing the vertex j is the unique Perron component at i.

Proposition 1.2.14 ([21], Corollary 2.1). Let T be a tree on n vertices. Then the

vertex v is the characteristic vertex of T if and only if there are two or more Perron

components of T at v.

Proposition 1.2.15 ([21], Proposition 2). Let T be a tree and suppose that v is not

a characteristic vertex of T . Then the unique Perron component at v contains the

characteristic set of T.

Let Pn : 12 · · ·n be the path on n vertices. As an application of Lemma 1.2.12,

Proposition 1.2.13 and Proposition 1.2.14, we have the following remarks.

10
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Remark 1.2.1. For any Fiedler vector Y of Pn,

χ(Pn, Y ) =


{n

2
, n

2
+ 1} if n is even,

{n+1
2
} if n is odd.

Remark 1.2.2. For any Fiedler vector Y of K1,n−1, χ(K1,n−1, Y ) = {v} where v is

the vertex of degree n− 1 in K1,n−1.

The centrality nature of the characteristic set of a tree and its relation with other

central parts of trees have been studied by many people. One can see some of the

related studies in [1, 8, 29, 55].

1.2.1 Two new central parts

By Proposition 1.2.11, it is clear that the characteristic set of a tree is independent

of the choice of the Fiedler vector but this is not true for general graphs. We have

the following example.

Example 1.2.1. In the cycle C4, µ(C4) = 2 and Y1 = (1, 0,−1, 0) and Y2 =

(0, 1, 0,−1) are two Fiedler vectors. If C4 is v0v1v2v3v0, then we get χ(C4, Y1) =

{v1, v3} and χ(C4, Y2) = {v0, v2}.

The above example shows that, the characteristic set of a graph can be different for

different Fiedler vectors. So, claiming it a central part in graphs is ill-suited. This

motivates us to give a more general definition of the characteristic set to consider it

as a central part of a graph.

Definition 1.2.16. Let G be a connected graph and L(G) be the Laplacian matrix of

11
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G. Then the characteristic center χ(G) of G is given by

χ(G) = {v ∈ V (G) : v ∈ χ(G, Y ) for some Fiedler vector Y }.

The term characteristic center (in place of characteristic set) of a tree is first used

by Zimmermann in [55]. Clearly, χ(G) is independent of the choice of the Fiedler

vector and for a tree T , χ(T ) = χ(T, Y ) for any Fiedler vector Y . So, we note the

following remark on the characteristic center of a tree.

Remark 1.2.3. The characteristic center of a tree consists of either one vertex or

two adjacent vertices.

For the remaining part of the thesis, we use the term characteristic center of a

tree instead of the characteristic set of a tree.

The subtree core is exclusively defined for trees. We give a very natural extension

of the subtree core of a tree to general graphs. As trees have subtrees, graphs have

connected subgraphs. So we define the subgraph core of a graph as follow.

Definition 1.2.17. Let G be a graph and v ∈ V (G). The subgraph number fG(v)

of v is the number of connected subgraphs of G containing v. The set of vertices of

G which have maximum subgraph number is called the subgraph core of G and we

denote it by Sc(G).

Note that for a tree T , the subgraph core of T is same as the subtree core of T . So,

we continue using the term subtree core for trees.

In section 1.4, we give an example of a tree in which the center, median, subtree

core and the characteristic center are distinct. In Chapter 2, we study more about

the characteristic center and the subgraph core, with a focus on their behaviour

resembling with other central parts.

12



§1.3. Indices related to some central parts

1.3 Indices related to some central parts

There are many topological indices defined for a graph. We observed that some of

these indices are associated with some central parts of graphs. The Wiener index and

the total eccentricity index are the two among them associated with the median and

the center of a graph respectively. We introduce the subgraph index associated with

the subgraph core of a graph.

The Wiener index is the oldest known and extensively studied graphical index.

The Wiener index of a graph was first introduced by the Chemist H. Wiener in 1947

[45]. The Wiener index W (G) of G is defined as the sum of distances between all

unordered pairs of its vertices. i .e.

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

The Wiener index of a graph can also be defined through the distances of its vertices

as follow.

W (G) =
1

2

∑
v∈V (G)

DG(v).

This indicates that the distance of a vertex of G is a local version of the Wiener index

of G. Since both M(G) and W (G) depend upon the distances of the vertices, the

Wiener index of a graph can be observed as an index associated with its median.

The total eccentricity index of G is defined as the sum of eccentricities of all its

vertices and we denote it by ε(G). Thus in a graph G, the eccentricity of a vertex

is a local version of the total eccentricity index. As the center of a graph is the set

of vertices having minimum eccentricity, we see the total eccentricity index as an

index associated with the center of a graph. The quantity closely related to the total

13
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eccentricity index is the average eccentricity of a graph. The average eccentricity of

G, denoted by avec(G), is defined as avec(G) = ε(G)
n

, where n is the order of G. The

average eccentricity is first defined by Buckley and Harary in 1990 (see [6], Exercise

9.1, problem 4) by the name eccentric mean.

In 2005, Székely and Wang ([38], [39]) started studying the number of subtrees of

trees. They found the trees which maximizes or minimizes the number of subtrees

over binary trees on n vertices. They observed that the number of subtrees of trees

have some kind of reverse correlation with the Wiener index of trees. In many classes

of trees, the tree which maximizes (minimizes) the number of subtrees are the trees

which minimizes (maximizes) the Wiener index. With this a number of extremal

problems regarding maximum or minimum number of subtrees in different class of

trees arose and answered by many people. Some of them can be seen in [20, 23, 33, 53]

and [54].

Motivated from the extremal problems on subtrees of trees, we chose to work

on extremal problems of number of connected subgraphs of graphs. We define the

subgraph index of G as the number of connected subgraphs of G and denote it by

F (G). From the definition of F (G) and fG(v), it can be observed that in a graph G,

the subgraph number of a vertex is a local version of the subgraph index. As both

Sc(G) and F (G) are dependant on the number of connected subgraphs of G, we see

the subgraph index as an index associated with the subgraph core.

The Wiener index, the total eccentricity index and the subgraph index are the

three graphical indices of our interest. It can be observed that the Wiener index

and the total eccentricity index are correlated in the sense that, in certain classes of

graphs, the graph maximizing (minimizing) the Wiener index is same as the graph

14
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maximizing (minimizing) the total eccentricity index. The subgraph index of a graph

is inversely correlated with both the Wiener index and the total eccentricity index in

the same sense.

1.4 Motivation for the work

Motivated from the median and the security center of a graph as a generalisation of

the centroid of a tree, we found it interesting to study the centrality behaviour of the

subgraph core and the characteristic center in general graphs.

Let τn be the set of all trees on n vertices. Consider the path Pn : 12 · · ·n and

the star K1,n−1 in which v is the vertex of degree n − 1. We have discussed the

characteristic center of Pn and K1,n−1 in Remark 1.2.1 and Remark 1.2.2. It can

be easily observed that, the other central parts of Pn or K1,n−1 coincide with the

characteristic center. So we have,

C(Pn) = Cd(Pn) = Sc(Pn) = χ(Pn) =


{n

2
, n

2
+ 1} if n is even,

{n+1
2
} if n is odd

(1.4.1)

and

C(K1,n−1) = Cd(K1,n−1) = Sc(K1,n−1) = χ(K1,n−1) = {v}. (1.4.2)

But this is not true for every tree. We have the following examples in which the

four central parts are mutually disjoint.

Example 1.4.1. In the tree T in Figure 1.3, the center C(T ) = {6} as e(6) = 5

and eccentricity of any other vertex is more than 5. The centroid Cd(T ) = {9} as

ω(9) = 8 and weight of any other vertex is more than 8. The subtree core Sc(T ) = {10}
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1 2 3 4 5 6 7 8 9
14

10

11

13
12

17

15
16

Figure 1.3: A tree T with disjoint central parts

as fT (10) = 10×27 and the the number of subtrees containing any other vertex is less

than 10× 27. Also µ(T ) = .0483 and Y = (−0.4116,−0.3917,−0.3528,−0.2970,

− 0.2267,−0.1455,−0.0573, 0.0337, 0.1231, 0.2065, 0.2170, 0.2170, 0.2170, 0.2170,

0.2170, 0.2170, 0.2170)T is a Fiedler vector. So χ(T ) = {7, 8}, which is disjoint from

each of the center, centroid and subtree core.

Since the center, centroid, subtree core and the characteristic center coincide in both

paths and stars, it follows that the minimum distance between any two of these central

parts over τn is zero. It is natural to think about the maximum possible distances

between any two of them, over τn. Next we introduce a class of trees which plays

an important role in the study of maximizing the distances between different central

parts of trees on n vertices.

For positive integers n and g with g < n, consider the tree obtained from the path

Pn−g and the star K1,g by identifying one pendant vertex of Pn−g with the center of

K1,g. We denote this tree by Pn−g,g and call it a path-star tree. Note that for a fixed

n, we get different path-star trees by varying g. Also for g = 1, Pn−g,g ∼= Pn and for

g = n− 1, n− 2, Pn−g,g ∼= K1,n−1. We keep the labelling of the vertices of Pn−g,g fixed

as in Figure 1.4.

In last two decades, the problems of maximizing the pairwise distances between

different central parts of trees on n vertices have been studied by many researchers .

We recall these results from the literature.
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1 2 3 n− g − 1
n− g

n− g + 1

n− g + 2

n− 1

n

Figure 1.4: The path-star tree Pn−g,g

Proposition 1.4.1 ([29] and [37]). For n > 5 and T ∈ τn, dT (C,Cd) 6 bn−3
4
c and

the bound is attained by Pn−bn
2
c,bn

2
c.

Proposition 1.4.2 ([12] and [37]). Let n > 5 and let g0 be the smallest positive

integer satisfying 2g0 + g0 > n− 1. For T ∈ τn, we have

(i) dT (C, Sc) 6 bn−g02
c − 1 and the bound is attained by Pn−g0,g0 .

(ii) dT (Cd, Sc) 6 bn−1
2
c − g0 and the bound is attained by Pn−g0,g0 .

Proposition 1.4.3 ([1] and [29]). For n > 5 and T ∈ τn, we have

(i) dT (Cd, χ) 6 dPn−bn2 c,b
n
2 c

(Cd, χ).

(ii) dT (C, χ) 6 dPn−g,g(C, χ), for some 2 6 g 6 n− 3.

Note that all the above maximum distances are attained in a path-star tree. The

maximum distance between the characteristic center and the subtree core over τn is

not studied yet. This motivated us to find the trees which maximizes the distance

between the characteristic center and the subtree core over τn. This further motivated

us to extend the study to some other classes of trees. We got to know about an

unsolved problem on distances between different central parts in binary trees, which

we discuss now. To introduce the problem, we need to describe the structure of a

specific binary tree.
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Let n > 4 be an even integer and let l > 3 be an odd integer such that l < n. Let

T n,lrg be the tree on n vertices which is obtained by identifying the root of the rgood

tree T lrg with a vertex of maximum eccentricity of a binary caterpillar on n − l + 1

vertices (see figure 1.5). The tree T n,lrg is called a crg tree. The binary caterpillar on

n > 6 vertices can be considered as one of T n,1rg , T n,3rg or T n,5rg . We denote by Ωn the

class of all crg trees on n vertices.

Figure 1.5: The crg tree T 18,11
rg

We observe that, due to symmetry in vertices, the center, centroid, subtree core

and the characteristic center coincide in binary caterpillars. This shows that among

all binary trees on n vertices the minimum distance between any two of these central

parts is zero. Regarding the maximum distance between two central parts, Smith et

al. conjectured the following in [37] (see Conjecture 3.10).

Among all binary trees on n vertices, the pairwise distance between any two of

center, centroid and subtree core is maximized by some trees of the family Ωn.

The above proposed conjecture for binary trees motivated us to study the pairwise

distances between different central parts in binary trees.

In [38], Sźekely and wang have proved some extremization results on the number of

subtrees of trees. Since then a lot has been studied regarding characterization of trees

maximizing or minimizing the the number of subtrees in different classes of trees (see
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[9, 20, 23, 33, 39, 47, 48, 52, 53, 54]). From this we get the motivation to characterize

the graphs maximizing or minimizing the number of connected subgraphs in various

classes of graphs. In this direction, we continue our study for the Wiener index and

the total eccentricity index also.
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Chapter 2

Central parts of trees and graphs

This chapter is divided into three sections. In Section 2.1 we discuss the centrality

nature of the characteristic center and the subgraph core of a graph. In Section 2.2 we

study the distances between different central parts of trees for some classes of trees.

Finally we conclude the chapter with some open problems related to different central

parts of graphs.

2.1 The characteristic center and the subgraph core

In Chapter 1, we defined the characteristic center and the subgraph core of a graph as

a generalization of the characteristic set and the subtree core of a tree, respectively.

Here we discuss their centrality nature in graphs. The center, median and the security

center are the three central parts defined for any connected graphs. All these three

have some similar features. We show that the new central parts we defined also have

these features, which suggest that they behave like central parts in graphs.

Like center, median and security center, the subgraph core and the characteristic

center of a tree contain either a single vertex or two adjacent vertices. For the path
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§2.1. The characteristic center and the subgraph core

Pn : 12 · · ·n and the star K1,n−1, we have

C(Pn) = M(Pn) = S(Pn) =


{n

2
, n

2
+ 1} if n is even,

{n+1
2
} if n is odd

(2.1.1)

and

C(K1,n−1) = M(K1,n−1) = S(Kn−1) = {v} (2.1.2)

where v ∈ V (K1,n−1) is the vertex of degree n− 1.

In the complete graph Kn, e(v) = 1 and D(v) = n − 1 for any v ∈ V (Kn). Also

for u, v ∈ V (Kn), Vvu = {v} and Vuv = {u} which gives s(v) = 0 for all v ∈ V (Kn).

Hence we get

C(Kn) = M(Kn) = S(Kn) = V (Kn). (2.1.3)

Similarly in Cn, e(v) = bn
2
c and D(v) = bn2

4
c for any v ∈ V (Cn). Also For

u, v ∈ V (Cn), there are two paths from u to v, one in clockwise direction and the

other in anti clockwise direction. In each of these paths the number of vertices closure

to u than v is same as the number of vertices closure to v than u. So |Vvu| = |Vuv|,

implying s(v) = 0 for any v ∈ V (Cn). Hence we get,

C(Cn) = M(Cn) = S(Cn) = V (Cn). (2.1.4)

In Chapter 1, it is also mentioned that the center, median and the security center

of a graph is contained in a block. To explain the centrality behaviour of the two

newly defined central parts of graphs, we try to establish the above centrality features

for them.
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2.1.1 The characteristic center

From Remark 1.2.3, the characteristic center of a tree consists of either a single vertex

or two adjacent vertices. Also from Remark 1.2.1 and Remark 1.2.2, it follows that

χ(Pn) =


{n

2
, n

2
+ 1} if n is even,

{n+1
2
} if n is odd.

and

χ(K1,n−1) = {v}

where v is the vertex of degree n− 1 in K1,n−1.

Now we obtain the characteristic center of Kn and Cn.

Theorem 2.1.1. For n > 2, χ(Kn) = V (Kn).

Proof. Let V (Kn) = {v1, v2, . . . , vn}. The Laplacian eigenvalues of Kn are 0 with

multiplicity 1 and n with multiplicity n − 1. So µ(Kn) = n. It is easy to check

that Y = (1,−1, 0, 0, . . . , 0) is a Fiedler vector of Kn. Since Y (v1)Y (v2) = −1, so

v1, v2 ∈ χ(Kn). Also for i > 3, Y (vi) = 0 and vi adjacent to v1 with Y (v1) 6= 0. This

gives vi ∈ χ(G) for i = 3, 4, . . . n and hence, χ(G) = V (Kn).

Theorem 2.1.2. For n > 3, χ(Cn) = V (Cn).

Proof. Let Cn : v0v1 · · · vn−1v0 be the cycle on n vertices. The Laplacian eigen-

values of Cn are 2 − 2 cos(2πj
n

), j = 1, 2, . . . , n (see [5], Lemma 4.9). Since cosine

function is decreasing in [0, π] and cos(2π − θ) = cos θ, it follows that the algebraic

connectivity of Cn is 2(1 − cos(2π
n

)) with multiplicity 2. Consider the vectors X =(
1, cos(2π

n
), cos(4π

n
), . . . , cos(2(n−1)π

n
)
)

and Y =
(

0, sin(2π
n

), sin(4π
n

), . . . , sin(2(n−1)π
n

)
)

.

It is easy to check that X and Y are two linearly independent Fiedler vectors of Cn. As

22



§2.1. The characteristic center and the subgraph core

n > 3, sin(2π
n

) 6= 0, so Y is a Fiedler vector with Y (v0) = 0 and Y (v1) 6= 0 which im-

plies v0 is a characteristic vertex of Cn with respect to Y . Since there is no θ ∈ [0, 2π]

such that sin(θ) = cos(θ) = 0, hence X(vi) and Y (vi) can never be simultaneously

zero for any i = 1, 2, . . . , n−1. So for j = 1, 2, . . . , n−1, Zj = sin(2πj
n

)X−cos(2πj
n

)Y =(
sin(2πj

n
), sin(2π(j−1)

n
), sin(2π(j−2)

n
), . . . , sin(2π(j−n+1)

n
)
)

is also a Fiedler vector of Cn.

Note that for j = 1, 2, . . . , n− 1, Zj(vj) = 0 and Zj(vj−1) = sin(2π
n

) 6= 0. This implies

that, vj is a characteristic vertex of Cn w.r.t. Zj for each j = 1, 2, . . . , n − 1. Hence

χ(Cn) = {v0, v1, . . . , vn−1} = V (Cn).

An important feature of any central part of a graph G is that it lies in a block of

G. To support the centrality nature of the characteristic center, next we show that

χ(G) lies in a block of G. Let Y be a Fiedler vector of G. We call a vertex v has

a positive valuation, negative valuation or zero valuation depending upon whether

Y (v) is positive, negative or zero, respectively.

Proposition 2.1.3 ([13], Theorem 3,12). Let G be a connected graph and Y be a

Fiedler vector of G. Then exactly one of the following cases holds.

Case A: There is a single block B0 in G which contains vertices with both positive and

negative valuations. Each other block contains either only positively valuated vertices,

only negatively valuated vertices or only zero valuated vertices. Every path P starting

from B0, which contains at most two cut vertices in each block and exactly one vertex

k in B0 has the property that the valuations of the cut vertices of G lying in P , form

either an increasing or a decreasing or a zero sequence along this path according to

whether Y (k) > 0, Y (k) < 0 or Y (k) = 0. In the last case all the vertices on P have

valuation zero.

Case B: No block of G contains both positively and negatively valuated vertices. There
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exists a unique vertex z of valuation zero which is adjacent to a vertex with non-zero

valuation. This vertex z is a cut vertex. Each block contains (with the exception of z)

either the vertices with positive valuations only, vertices with negative valuations only

or vertices with zero valuations only. Every path P starting from z which contains

at most two cut vertices in each block has the property that the valuations at its cut

vertices either increases and then all valuations of vertices on P are positive(with the

exception of z), or decreases and then all valuations of the vertices on P are negative

(with the exception of z) or all valuations of the vertices on P are zero. Every path

containing both positively and negatively valuated vertices passes through z.

Kirkland and Fallat proved the following result which tells about the position of

characteristic center in a graph .

Lemma 2.1.4 ([22], Corollary 2.1). Let G be a graph. Then either Case A holds

for every Fiedler vector, and each such Fiedler vector identifies the same block as

being the one with both positively and negatively valuated vertices, or Case B holds

for every Fiedler vector, and each such vector identifies the same vertex z which has

zero valuation and is adjacent to one with nonzero valuation.

The next result follows from Lemma 2.1.4, which affirms the centrality nature of the

characteristic center.

Theorem 2.1.5. The characteristic center of a graph G is contained in a block of G.

The above deliberations show that the features of the characteristic center of a

graph resembles with center, median and security center, which indicates that the

characteristic center behaves like a central part of a graph. The following exam-

ple shows that the center, characteristic center, median and security center can be

different in a graph.
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G∗

Figure 2.1: A graph with different center, characteristic center, median and security
center

Example 2.1.1. In Figure 2.1, the center C(G∗) = {4, 5, 12, 13}, the median M(G∗) =

{4, 13}, and the security center S(G∗) = {1, 4, 5, 6, 7, 11, 12, 13} (see [34], Section 1).

It can be checked using Matlab that µ(G∗) = 0.2 and Y = (−0.2485,−0.2837,−0.2623,

− 0.1883,−0.0166, 0.1584, 0.3018, 0.3772, 0.3772, 0.3772, 0.1584,−0.0166,−0.1883,

− 0.2623,−0.2837)T is the unique Fiedler vector up to a scalar multiplication. So it

follows that χ(G∗) = {5, 6, 11, 12}.

2.1.2 The subgraph core

The subgraph core of a graph is a natural extension of the subtree core of trees. So

by Proposition 1.2.9, the subgraph core of a tree consists of either a single vertex or

two adjacent vertices. Also, we have

Sc(Pn) =


{n

2
, n

2
+ 1} if n is even,

{n+1
2
} if n is odd

and

Sc(K1,n−1) = {v}

where v is the vertex of degree n− 1 in K1,n−1.
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§2.1. The characteristic center and the subgraph core

Now we obtain the subgraph core of Kn and Cn.

Theorem 2.1.6. For any positive integer n, Sc(Kn) = V (Kn).

Proof. For any vertex v of Kn, we have F (Kn) = F (Kn−1) + fKn(v). Here F (Kn−1)

counts the number of connected subgraphs of Kn not containing v and fKn(v) counts

the number of connected subgraphs of Kn containing v. Thus, we get fKn(v) =

F (Kn)− F (Kn−1) for any v ∈ V (Kn). This implies Sc(Kn) = V (Kn).

Theorem 2.1.7. For n > 3, Sc(Cn) = V (Cn).

Proof. Let v ∈ V (Cn). Then the single vertex v and the cycle Cn are two connected

subgraphs of Cn containing v. All other connected subgraphs of Cn containing v

are paths with at least two vertices. The number of paths in Cn containing v as a

pendant vertex is 2(n − 1) and the number of paths in Cn containing v as a non-

pendant vertex is
(
n−1

2

)
. Thus, we have fCn(v) = 2n +

(
n−1

2

)
for all v ∈ V (Cn) and

hence Sc(Cn) = V (Cn).

Thus the subgraph core of a graph fulfils many features of a central part. By

Example 1.4.1 it follows that the subgraph core of a graph can be different from the

center, median and the characteristic center. One of the most important feature of

a central part of a graph is that, it should be contained in a block. We strongly feel

that the subgraph core fulfils this feature, but we are not able to prove it. So we

propose the following conjecture.

Conjecture 2.1.8. The subgraph core of a graph G is contained in a block of G.

This influences us to consider the subgraph core as a central part of a graph.

By examples 1.4.1 and 2.1.1, it is clear that the center, median, security center,
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characteristic center and the subgraph core may be different in a graph. Thus we have

five distinct central parts in graphs among which four are combinatorially defined and

one is algebraically defined.

2.2 Distance between different central parts of trees

In this section, we study the distance between the characteristic center and the subtree

core among all trees on n vertices. We also study the asymptotic nature of the

distances between different central parts of trees. Finally we discuss the distance

between different central parts of trees with fixed diameter.

2.2.1 Some results from the literature

The following two lemmas related to the subtree core of trees are important for our

study.

Lemma 2.2.1 ([12], Lemma 2.2). Let T be a tree, v ∈ Sc(T ) and y be a pendant

vertex of T not adjacent to v. If T̃ is the tree obtained from T by detaching y from T

and adding it as a pendant vertex adjacent to v, then Sc(T̃ ) = {v}.

Lemma 2.2.2 ([12], Lemma 3.1). Let T be a tree, v ∈ Sc(T ) and B be a branch

at v. Let u be the vertex in B adjacent to v and x be a pendant vertex of T in B.

Suppose that B is not a path. Let y be the vertex closest to x with deg(y) > 3 and

[y, y1, y2, . . . , ym = x] be the path connecting y and x. Let z 6= y be a vertex of B such

that the path from v to z contains y but not y1. Let T̃ be the tree obtained from T by

detaching the path [y1, y2, . . . , ym] from y and attaching it to z. Then fT̃ (v) > fT̃ (u).

The path-star trees play an important role in the study of distance between the

characteristic center and the subtree core of a tree. The following lemma tells about
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the subtree core of path-star trees.

Lemma 2.2.3 ([12], Theorem 2.4). The subtree core of the path-star tree Pn−g,g is

given by

Sc(Pn−g,g) =




{n−g+2g

2
} if n− g is even,

{n−g−1+2g

2
, n−g+1+2g

2
} if n− g is odd,

if 2g + 1 6 n− g,

{n− g} if 2g + 1 > n− g.

The next two results are related to the study of the position and the movement

of characteristic center in path-star trees.

Lemma 2.2.4 ([29], Lemma 2.2). The characteristic center of Pn−2,2 is given by

χ(Pn−2,2) =


{n

2
, n

2
+ 1} if n is even,

{n−1
2
, n+1

2
} if n is odd.

Lemma 2.2.5 ([29], Proposition 3.1, 3.2, 3.3 and 3.4). The following hold for the

path-star tree Pn−g,g.

(i) If χ(Pn−g,g) = {i, i+1} where g > 3 and 2 6 i 6 n−g−1, then χ(Pn−g+1,g−1) =

{i, i+ 1} or {i+ 1} or {i+ 1, i+ 2}.

(ii) If χ(Pn−g,g) = {i}, where g > 3, then χ(Pn−g+1,g−1) = {i, i+ 1}.

(iii) If χ(Pn−g,g) = {i, i+ 1} where g 6 n− 4, then χ(Pn−g−1,g+1) = {i− 1, i} or {i}

or {i, i+ 1}.

(iv) If χ(Pn−g,g) = {i} where g 6 n− 4, then χ(Pn−g−1,g+1) = {i− 1, i}.
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§2.2. Distance between different central parts of trees

2.2.2 The characteristic center and the subtree core

The center, centroid, subtree core and the characteristic center coincide for both path

and star. It shows that, among all trees on n vertices the minimum distance between

any two of the four central parts is zero. Except for the pair {characteristic center,

subtree core} the problems of maximizing the distances between all other five pairs

of central parts are studied (see Proposition 1.4.1, 1.4.2 and 1.4.3 ) . We now discuss

the same for the pair {characteristic center, subtree core}.

Lemma 2.2.6. For the path-star tree Pn−2,2, dPn−2,2(Sc, χ) = 0.

Proof. By Lemma 2.2.3, if n < 7 then Sc(Pn−2,2) = {n− 2} and if n > 7,

Sc(Pn−2,2) =


{n

2
+ 1} if n is even,

{n+1
2
, n+3

2
} if n is odd.

Hence by Lemma 2.2.4, dPn−2,2(Sc, χ) = 0.

Theorem 2.2.7. Among all trees on n > 5 vertices, the distance between the subtree

core and the characteristic center is maximized by some path-star tree.

Proof. Let T be a tree on n vertices. Our aim is to construct a path-star tree Pn−g,g

such that dPn−g,g(Sc, χ) > dT (Sc, χ). By Lemma 2.2.6, dPn−2,2(Sc, χ) = 0, so we assume

that dT (Sc, χ) > 1.

As the subtree core of a tree consists of either one vertex or two adjacent vertices

and the characteristic center of a tree consists of a vertex or an edge (two adjacent

vertices), so we need to consider four cases. Here, we prove the case when subtree

core consists of two adjacent vertices and the characteristic center consists of an edge.

The proofs of the other three cases are similar.
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Let χ(T ) = {u1, v1} and Sc(T ) = {u2, v2}. Also suppose that dT (Sc, χ) = d(v1, u2).

Let C1, C2, . . . , Ck be the components of T −v2 where C1 is the component containing

u2. If |V (Ci)| = 1 for 2 6 i 6 k, then rename the tree T as T̃ . Otherwise, let

C =
⋃k
i=2 Ci and |V (C)| = s. Construct a new tree T̃ from T by removing C and

adding s pendant vertices at v2. By Lemma 2.2.1, Sc(T̃ ) = {v2}. We will now check the

effect of this perturbation on the distance between characteristic center and subtree

core in T̃ . For that we will obtain T̃ from T little differently. In T at v1, let T1 be

the component containing u1 and T2 be the component containing u2. By Theorem

1.2.13, T1 is the only Perron component at v1 in T. In T at v1, replace the component

T2 by another component T̃2, where T̃2 is obtained from T2 by removing C and adding

s pendant vertices at v2. The new tree is T̃ and by Lemma 1.2.12, L̂(T̃2)−1 � L̂(T2)−1.

So, ρ(L̂(T̃2)−1) < ρ(L̂(T2)−1) and hence in T̃ at v1, T1 is the only Perron component.

By Theorem 1.2.15, the characteristic center of T̃ is either {u1, v1} or moves away

from u2. So dT̃ (Sc, χ) > dT (Sc, χ).

If T̃ is a path-star tree, then the result follows. Suppose T̃ is not a path-star

tree. In T̃ , let v3 be the characteristic vertex nearest to the subtree core v2. Let

A1, A2, . . . , Ap be the connected components of T̃ − v3 with A1 as the component

containing the subtree core. If p = 2 and A2 is a path then rename the tree T̃

as T̂ . Otherwise, let C̃ =
⋃p
i=2Ai. Construct a new tree T̂ from T̃ by replacing

C̃ with a path P on |C̃| vertices. Then by Lemma 1.2.12, L̂(C̃)−1 � L̂(P )−1. So,

ρ(L̂(C̃)−1) < ρ(L̂(P )−1) and hence in T̂ at v3, the component not containing v2 is the

only Perron component. By Theorem 1.2.15, the characteristic center of T̂ is either

{u3, v3} or moves away from v2. The tree T̂ can also be obtained from T̃ by following

the perturbation mentioned in Lemma 2.2.2. Hence by Lemma 2.2.2, Sc(T̂ ) = {v2}.

So dT̂ (Sc, χ) > dT̃ (Sc, χ).

If T̂ is a path-star tree, then the result follows. Otherwise, T̂ has three parts. The
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first part is the path from vertex 1 to u3, second is a tree T ′ containing v3 and u2

and the third part is the star K1,s centred at v2. Clearly T ′ is not a path. Let Q be

the v3− u2 path in T ′ and let there are l vertices of T ′ which are not in Q. Delete all

the vertices from T ′ which are not in the path Q and add a path on l vertices at 1,

to form a new tree T̄ . Note that T̄ ∼= Pn−s,s. At v3 in T̄ , there are two components

and the component containing u3 is the Perron component. By Theorem 1.2.15, the

characteristic center of T̄ is either {u3, v3} or moves away from v2. The tree T̄ can also

be obtained from T̂ by following the perturbation mentioned in Lemma 2.2.2. Hence

by Lemma 2.2.2, Sc(T̂ ) = {v2}. So dT̄ (Sc, χ) > dT̂ (Sc, χ). This proves the result.

For 1 6 i 6 n− g, the number of subtrees containing the vertex i in the path-star

tree Pn−g,g is given by

fPn−g,g(i) = i(n− g − i) + i(2g). (2.2.1)

Here the first term counts the number of subtrees of Pn−g,g containing the vertex i but

not n− g, while the second term counts the number of subtrees of Pn−g,g containing

both i and n − g. The following lemma describes the movement of the subtree core

while changing a path-star tree on n vertices by decreasing the size of its star part.

Lemma 2.2.8. Let g0 be the smallest positive integer such that 2g0 +1 > n−g0. Then

for 1 6 k 6 g0 − 2, a vertex n− g0 − α ∈ Sc(Pn−g0+k,g0−k) for some α > 0.

Proof. Since 2g0 + 1 > n − g0, by Lemma 2.2.3, Sc(Pn−g0,g0) = n− g0. For 1 6 k 6

g0 − 2, by (2.2.1), we have

fPn−g0+k,g0−k
(n− g0) = (n− g0)(k + 2g0−k)
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and

fPn−g0+k,g0−k
(n− g0 + 1) = (n− g0 + 1)(k − 1 + 2g0−k).

Then

fPn−g0+k,g0−k
(n− g0)− fPn−g0+k,g0−k

(n− g0 + 1)

= n− g0 − (k − 1 + 2g0−k)

= [n− (g0 − 1)− (2g0−1 + 1)] + 2g0−1 − 2g0−k − k + 1

> 2g0−k(2k−1 − 1)− k + 1

> 0.

By Proposition 1.2.10, the function fT is strictly concave, hence the result follows.

Theorem 2.2.9. Let g0 be the smallest positive integer such that 2g0 + 1 > n − g0.

Then among all trees on n > 5 vertices, the path-star tree Pn−g0,g0 maximizes the

distance between the subtree core and the characteristic center.

Proof. By Theorem 2.2.7, we need to consider path-star trees only. Consider the path-

star tree Pn−g0,g0 . Let dPn−g0,g0
(χ, Sc) = r. We show that for g 6= g0, dPn−g,g(χ, Sc) 6 r.

By Lemma 2.2.3, Sc(Pn−g0,g0) = {n− g0}. So χ(Pn−g0,g0) = {n− g0 − r} or {n− g0 −

r − 1, n− g0 − r}.

First suppose that g = g0+1. Then by Lemma 2.2.3, Sc(Pn−g,g) = Sc(Pn−g0−1,g0+1)

= {n−g0−1}. By Lemma 2.2.5, if χ(Pn−g0,g0) = {n−g0−r}, then χ(Pn−g0−1,g0+1) =

{n − g0 − r − 1, n − g0 − r} and if χ(Pn−g0,g0) = {n − g0 − r − 1, n − g0 − r},

then χ(Pn−g0−1,g0+1) = {n − g0 − r − 2, n − g0 − r − 1} or {n − g0 − r − 1} or

{n − g0 − r − 1, n − g0 − r}. It is easy to check that dPn−g0−1,g0+1(χ, Sc) 6 r. Same

argument holds for any g > g0.

Let 1 6 k 6 g0−2.Now suppose that g = g0−k. Then by Lemma 2.2.8, the subtree
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core of Pn−g0+k,g0−k moves at least k steps and by Lemma 2.2.5 the characteristic

center moves at most k steps towards center. So dPn−g0+k,g0−k
(χ, Sc) 6 r and hence

the result follows.

2.2.3 Asymptotic distance between two central parts

We define δn(χ, Sc) = max{dT (χ, Sc) :T is a tree on n vertices}. Analogously we

define δn(C, Sc), δn(C,Cd), δn(Cd, Sc), δn(C, χ) and δn(Cd, χ). In [1], the authors

have established the limits lim
n→∞

δn(C,χ)
n

and lim
n→∞

δn(Cd,χ)
n

. We will now do the same for

the remaining four. We need the following lemma to prove our results.

Lemma 2.2.10 ([29], Theorem 3.3 and [12], Proposition 4.1). In any path-star tree

the following hold.

(i) The characteristic center lies in the path joining the center and the centroid.

(ii) The centroid lies in the path joining the center and the subtree core.

Theorem 2.2.11. For the asymptotic distances between different central parts of

trees, we have the following:

(i) lim
n→∞

δn(C,Cd)
n

= 1
4
.

(ii) lim
n→∞

δn(C,Sc)
n

= 1
2
.

(iii) lim
n→∞

δn(Cd,Sc)
n

= 1
2
.

(iv) lim
n→∞

δn(χ,Sc)
n

= 1
2
.

Proof. (i) Follows from Proposition 1.4.1.

(ii) For n > 5, let g0 be the smallest positive integer such that 2g0 + g0 > n− 1. So

2g0−1 + g0 − 1 6 n − 1. This implies 2g0−1 < n. Taking logarithm with base 2
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on both side, we have g0 < 1 + log2 n. As n > 5, so 0 < g0 < 1 + log2 n. Since

lim
n→∞

log2 n
n

= 0, so lim
n→∞

g0
n

= 0. By Proposition 1.4.2(i), δn(C, Sc) = bn−g0
2
c − 1.

This implies that

lim
n→∞

δn(C, Sc)

n
= lim

n→∞

bn−g0
2
c − 1

n
=

1

2
.

(iii) Since lim
n→∞

g0
n

= 0, the result follows from Proposition 1.4.2(ii).

(iv) By Theorem 2.2.9, we have δn(χ, Sc) = dPn−g0,g0
(χ, Sc). Also by Proposition

1.4.2(i), δn(C, Sc) = dPn−g0,g0
(C, Sc) and by Proposition 1.4.2(ii), δn(Cd, Sc) =

dPn−g0,g0
(Cd, Sc). Now from Lemma 2.2.10, it follows that

δn(Cd, Sc) 6 δn(χ, Sc) 6 δn(C, Sc)

⇒ lim
n→∞

δn(Cd, Sc)

n
6 lim

n→∞

δn(χ, Sc)

n
6 lim

n→∞

δn(C, Sc)

n
.

As lim
n→∞

δn(C,Sc)
n

= 1
2

= lim
n→∞

δn(Cd,Sc)
n

, it follows that lim
n→∞

δn(χ,Sc)
n

= 1
2
.

2.2.4 Trees with fixed diameter

In this section, we try to obtain the trees which extremize the distances between two

central parts among all trees on n vertices with diameter d. It is clear that K2 is the

unique tree with diameter 1 and any tree of diameter 2 is a star on n > 3 vertices.

Also given n > 2, the path is the only tree with diameter n− 1. So we assume that

n > 3 and 3 6 d 6 n− 2.
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For a tree T and the edge e = {u, v} ∈ E(T ), we denote the component of T − e

containing u by Te(u). The following result helps us to find the location of the subtree

core in a tree.

Proposition 2.2.12 ([37], Proposition 1.7). Let T be a tree. A vertex u ∈ Sc(T )

if and only if for each neighbour v of u, fTe(u)(u) > fTe(v)(v) where e = {u, v}.

Furthermore, if u ∈ Sc(T ) and equality holds then v ∈ Sc(T ).

We denote the set of all trees on n vertices with diameter d by Γdn. Take the path

Pd+1 : v1v2 · · · vd+1 and construct a new tree by adding n− d− 1 pendant vertices at

the vertex vb d+2
2
c of Pd+1. We denote the new tree by T dn . Clearly T dn ∈ Γdn.

v1 v2 vb d+2
2
c vd vd+1

n− d− 1 vertices

Figure 2.2: The tree T dn

Theorem 2.2.13. Among all trees on n vertices with diameter d, the minimum

distance between any two of the central parts center, centroid, subtree core and char-

acteristic center is 0.

Proof. Since T dn ∈ Γdn, it is sufficient to show that the distance between different

central parts in T dn is zero. We consider two cases depending on d is even or odd.

Case I: d is even

It is easy to check that C(T dn) = Cd(T
d
n) = {v d+2

2
}. Also at v d+2

2
in T dn , there are two

Perron components (since d > 2), so by Proposition 1.2.14 χ(T dn) = {v d+2
2
}.

Since n > 3, so the subtree core Sc(T
d
n) does not contain any pendent vertex

(see [12], Remark 1.5). Consider the edge e = {v d
2
, v d+2

2
}. Let C1 and C2 be the
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components of T − e containing v d
2

and v d+2
2

, respectively. Since a copy of C1 is

properly contained in C2, fC2(v d+2
2

) > fC1(v d
2
). By symmetry and Proposition 2.2.12,

we have Sc(T
d
n) = {v d+2

2
} and hence the result follows.

Case II: d is odd

Since n > d + 1, we have C(T dn) = {v d+1
2
, v d+3

2
} and Cd(T

d
n) = {v d+1

2
}. At v d+1

2
, the

component containing v d+3
2

is the only Perron component and at v d+3
2

the component

containing v d+1
2

is the only Perron component, so by Proposition 1.2.13, χ(T dn) =

{v d+1
2
, v d+3

2
}. Also using similar technique as in Case I, it can be checked that Sc(T

d
n) =

{v d+1
2
}. Hence the result follows.

Now we try to obtain the trees , which maximize the distance between two central

parts over Γdn. Smith et al. have studied the same for the pairs {center, centroid}

and {center, subtree core} (see [37], Proposition 4.1 and Proposition 4.2). We will

discuss the maximum distances over Γdn for the pairs {center, characteristic center}

and {centroid, characteristic center}.

Theorem 2.2.14. The path-star tree Pd,n−d maximizes the distance between the center

and the characteristic center over Γdn.

Proof. Let T ∈ Γdn. We will prove that dPd,n−d
(C, χ) > dT (C, χ). Without loss of

generality we can take dT (C, χ) > 1. The center of T lies in all the longest paths of

T . We consider two cases depending on the position of characteristic center of T .

Case I: Characteristic center of T lies in a longest path

Let P be a longest path of T containing both C(T ) and χ(T ). Then the diameter

of the path P is d. Let v be the vertex in the characteristic center which is farthest

from C(T ). Let C1, C2, . . . , Cl be the components of T −v where C1 is the component

containing the center of T . If |Cj| = 1 for j = 2, 3, . . . l, then rename the tree T as T̃ .

Otherwise, let C =
⋃l
j=2Cj and |V (C)| = s.
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For 2 6 i 6 l, let xi ∈ V (Ci) be the vertex adjacent to v in T and βi =

max{d(xi, z) : z ∈ V (Ci)}. Construct a new tree T̃ from T by replacing C with

a path-star tree Pg,s−g at v, where g = max{β2, β3, . . . , βl}. Then T̃ ∈ Γdn. Suppose

M̃ is the bottleneck matrix of Pg,s−g at v in T̃ . Then by Lemma 1.2.12, M̃ � L̂(C)−1

and the characteristic center of T̃ is either same as characteristic center of T or it

moves away from its center towards the path-star part. So, dT̃ (C, χ) > dT (C, χ).

If T̃ is a path-star tree then the result follows. Otherwise at v, one of the com-

ponents in T̃ is a path-star tree. In the other component at v, choose a longest path

P1 which contains the center of T̃ . Delete the vertices which are not on P1, and add

the same number of vertices (as pendants) to the star part (of the other component)

to get a new tree T̂ . Clearly T̂ is the path-star tree Pd,n−d. Then C(T̃ ) = C(T̂ ) and

the characteristic center of T̂ is either same as characteristic center of T̃ or it moves

away from its center towards the path-star part. So, dT̂ (C, χ) > dT̃ (C, χ) > dT (C, χ).

Hence the result follows.

Case II: Characteristic center of T does not lie in any of the longest path

Let P be a longest path of T containing both C(T ) and χ(T ). Then the diameter

of the path P is less than d. Let v be the vertex in the characteristic center which

is farthest from C(T ) and let u be the pendant vertex of P farthest from v. Let

dT (u, v) = α. Let C1, C2, . . . , Cl be the components of T−v where C1 is the component

containing C(T ). For 2 6 i 6 l, let xi ∈ V (Ci) be the vertex adjacent to v in

T and βi = max{d(xi, z) : z ∈ V (Ci)}. Since diam(P ) < d and d(u, v) = α, so

max{β2, β3, . . . , βl} 6 d−α−2. Let C ≡
⋃l
j=2Cj and |V (C)| = s. As α > d

2
and v is

in the characteristic center, so s > d−α. Construct a new tree T̃ from T by replacing C

with a path-star tree Pd−α−1,s−(d−α−1) at v. Then T̃ ∈ Γdn. Suppose M̃ is the bottleneck

matrix of Pd−α−1,s−(d−α−1) at v in T̃ . Then by Lemma 1.2.12 M̃ � L̂(C)−1 and the

characteristic center of T̃ is either same as the characteristic center of T or it moves
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away from its center towards the path-star part. So, dT̃ (C, χ) > dT (C, χ).

Now the center and characteristic center of T̃ lie in a longest path of it and the

result follows from Case I.

For positive integers l,m, d with n = l +m+ d, let T (l,m, d) be the tree of order

n obtained by taking the path Pd : v1v2 · · · vd and adding l pendant vertices adjacent

to v1 and m pendant vertices adjacent to vd. Note that T (l,m, d) ∈ Γd+1
n .

l m

Pd

Figure 2.3: The tree T (l,m, d)

Theorem 2.2.15. Let d 6 dn
2
e. Then over Γdn, the distance between the centroid and

the characteristic center is maximized by the tree T (n− bn
2
c − d+ 1, bn

2
c, d− 1).

Proof. Let T ∈ Γdn. Without loss of generality we can take dT (Cd, χ) > 1. Let

u ∈ χ(T ) and v ∈ Cd(T ) such that dT (Cd, χ) = dT (u, v). Let C1, C2, . . . , Cl be the

components of T − v where C1 is the component containing χ(T ). If |V (Ci)| = 1 for

i = 2, 3, . . . l then name the tree T as T̃ . Otherwise, let C =
⋃l
j=2Cj and |V (C)| = s.

Construct T̃ from T by removing C and adding s pendant vertices at v. Observe that

Cd(T̃ ) = {v} and diam(T̃ ) 6 d. Let M be the bottleneck matrix of the component

of T − u containing v and let M̃ be the bottleneck matrix of the component of

T̃ − u containing v. Then by Lemma 1.2.12 M � M̃ and by Proposition 1.2.15 the

characteristic center of T̃ is either same as the characteristic center of T or it moves

away from v. So, dT̃ (Cd, χ) > dT (Cd, χ).

Let w ∈ χ(T̃ ) such that w is nearest to v. Let D1, D2, . . . , Dp be the components

of T̃ − w where D1 is the component containing the vertex v. For i = 2, 3, . . . , p, let

xi ∈ V (Di) be the vertex adjacent to w in T̃and βi = max{d(xi, z) : z ∈ V (Di)}.
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Let D =
⋃p
j=2 Dj and |V (D)| = q. Construct a new tree T̂ from T̃ by replacing D

at w with a path-star tree Pg,q−g at w, where g = max{β2, β3, . . . , βp}. Observe that

Cd(T̂ ) = Cd(T̃ ) and the characteristic center of T̂ is either same as characteristic

center of T̃ or it moves away from v. So, dT̂ (Cd, χ) > dT̃ (Cd, χ). Also diam(T̂ ) =

diam(T̃ ) 6 d.

Let w1 be the center of the star part of Pg,q−g. In T̂ , let v′ and w′1 be the non-

pendant vertices adjacent to v and w1, respectively. Consider the maximal subtree

of T̂ not containing v and w1. Delete all the vertices of this subtree which are not in

the w′1 − v′ path and add them as pendant vertices at w1 to form a new tree T̂1 from

T̂ . Clearly dT̂1(Cd, χ) > dT̃ (Cd, χ) and diam(T̂1) = diam(T̂ ) 6 d.

Since Cd(T̂1) = {v}, so at least bn
2
c pendant vertices are adjacent to v. If the

number of pendant vertices adjacent to v is α then remove α− bn
2
c pendant vertices

from v and add them as pendant vertices at w1 to form a new tree T̂2 from T̂1. Then

Cd(T̂2) = Cd(T̂1) = {v} and either χ(T̂2) = χ(T̂1) or χ(T̂2) moves towards w1. So

dT̂2(Cd, χ) > dT̂1(Cd, χ) and diam(T̂2) = diam(T̂1) 6 d.

If diam(T̂2) = d, then we are done. Otherwise let u′ ∈ χ(T̂2) such that u′ is closer

to v and dT̂2(u
′, v) = β. Let E1 be the component of T̂2 at u′ containing w1. Then

diam(E1) < d − β − 2 = γ1(say) and order of E1 is n − (bn
2
c + β + 1) = γ2(say).

Construct a new tree T̂3 from T̂2 by replacing E1 at u′ with a path-star tree Pγ1,γ2−γ1 .

The new tree T̂3 is the tree T (n−bn
2
c−d+ 1, bn

2
c, d− 1) and dT̂3(Cd, χ) > dT̂2(Cd, χ).

Hence the result follows.

2.3 Some open problems

The center, centroid and subtree core of a path-star tree is explicitly known. But it

is still open to give an expression for the characteristic center of a path-star tree. In
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this regard we conjecture the following.

Conjecture 2.3.1. For 2 6 g 6 n− 3, χ(Pn−g,g) consists of two adjacent vertices.

Among all trees on n vertices, the trees which attain the maximum distance between

two central parts are known. Also an strict upper bound on the distance for the

pairs {center, centroid} [29], {center, subtree core} and {centroid, subtree core}[12]

are established. Since the exact location of the characteristic center of a path-star

tree is not known, we are not able to give an upper bound on the distances for the

pairs consisting of the characteristic center. If the position of the characteristic cen-

ter of path-star trees are known, then an upper bound on such distances can be given.

Over Γdn, the following problems are open.

• Obtain a tree which maximizes the distance between centroid and characteristic

center when d > dn
2
e .

• Obtain a tree which maximizes the distance between subtree core and the char-

acteristic center.

• Obtain a tree which maximizes the distance between centroid and subtree core.

We name the subgraphs induced by the center, median, security center, character-

istic center and the subgraph core of a graph by the center subgraph, median subgraph,

security subgraph, characteristic subgraph and the core subgraph, respectively. In [7],

the authors have shown that for any graph G (may be disconnected) , there exists

a super graph H containing G such that the center subgraph of H is isomorphic to

G. In [35], it is shown that, for any graph G (may be disconnected), there exists

a super graph H containing G such that the median subgraph of H is isomorphic

to G. In this construction the size of H is much larger than the size of G. For G
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with no isolated vertices, a simple construction of H on 2|V (G)| vertices, is given in

[36] whose median subgraph is isomorphic to G. The same construction works for

the security subgraph also. i.e. The security subgraph of the same super graph H is

isomorphic to G (without isolated vertices). These results motivate us to raise the

following questions.

1. Given a graph G, does there exist a super graph H containing G, such that the

characteristic subgraph of H is isomorphic to G ?

2. Given a graph G, does there exist a super graph H containing G, such that the

core subgraph of H is isomorphic to G ?

Further study on the characteristic center and the subgraph core may be needed

to answer these questions.
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Chapter 3

Distances between central parts in

binary trees

In this chapter, we prove the conjecture posed by Smith et al. in [37] which says that

among all binary trees on n vertices the distances between any two of center, centroid

and the subtree core is maximized by some crg tree. Further, we obtain the crg trees

which achieve these distances.

3.1 Binary and rooted binary trees

For n > 3, let h be the height of the rgood binary tree T nrg. Then 2h+1 6 n 6 2h+1−1

and there exists a positive integer α such that n = 2h+α, which gives h = log2(n−α).

There are two branches at the root of an rgood binary tree. The branch having

maximum weight between the two, is termed as the heavier branch. If both the

branches have same weight then we say the rgood binary tree is complete. In this

case any branch can be considered as heavier.

Let T be a rooted binary tree. If the pendant vertices of T are in at least three

42



§3.1. Binary and rooted binary trees

different levels, then form a new rooted binary tree T ′ from T by moving a pair of

pendant vertices with same parent from the highest level to the lowest level. Then

ht(T ′) 6 ht(T ). This leads us to the next result which is straightforward and tells

about the rooted binary trees with minimum height.

Lemma 3.1.1. Among all rooted binary trees on n vertices, ht(T nrg) 6 ht(T ) and

equality holds, when T is a rooted binary tree in which the heights of any two pendant

vertices differ by at most one.

The following result determines the binary tree on n vertices with maximum diameter.

Lemma 3.1.2. Among all binary trees on n vertices, the binary caterpillar has the

maximum diameter.

Proof. Let T be a binary tree on n vertices with diameter d. Let P : u0u1 . . . ud be a

path of diameter d in T . Suppose T is not caterpillar. Then there exist two pendant

vertices v1, v2 ∈ V (T )− V (P ) adjacent to v such that v is not on the path P . Delete

the vertices v1, v2 and add them as pendant vertices at u0 to get a new tree T ′. Then

diam(T ′) > diam(T ). Repeat the process till a binary caterpillar is achieved.

The weight of a branch B at v is the number of edges in B and we denote it as

ωv(B).

Lemma 3.1.3. Let e = {u, v} ∈ E(T ). Then |V (Te(u))| > |V (Te(v))| if and only if

Cd(T ) ⊆ V (Te(u)).

Proof. Let |V (Te(u))| = k and |V (Te(v))| = k′. First suppose |V (Te(u))| > |V (Te(v))|.

Since k > k′, it follows that ω(v) = k and for any w′ ∈ V (Te(v)), w′ 6= v, ω(w′) > ω(v).

So the only possible vertex of Te(v) which may belong to Cd(T ) is v. Let B be

the branch at u containing v. If ω(u) = ωu(B), then ω(u) = k′ < k = ω(v). If
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ω(u) 6= ωu(B), then ω(u) is the weight of a branch of Te(u) at u and so ω(u) 6

k − 1 < k = ω(v). Hence, min{ω(z) : z ∈ V (T )} 6 ω(u) < ω(v). This implies

Cd(T ) ⊆ V (Te(u)).

Now suppose Cd(T ) ⊆ V (Te(u)). Let w ∈ Cd(T ), then ω(w) > k′ as the branch

at w containing v has weight at least k′. Since v 6∈ Cd(T ), so ω(v) > ω(w) > k′. This

implies ω(v) is the weight of the branch at v containing u, i.e. ω(v) = k and hence

k > k′.

Corollary 3.1.4. Let v be the root of the rgood part of T n,lrg and let v′ be the vertex

in a heavier branch of the rgood part at v such that {v, v′} ∈ E(T n,lrg ). If l > n
2

+ 1

then Cd(T
n,l
rg ) ⊆ {v, v′}. Moreover, if the rgood part is complete then Cd(T

n,l
rg ) = {v}.

Proof. Let T be a crg tree with l > n
2

+ 1 and let T ′ be the rgood part of T. Since

l > n
2

+ 1, so by Lemma 3.1.3, Cd(T ) ⊆ V (T ′).

First suppose that T ′ is not complete. Let e = {w, v} ∈ E(T ′) where w is not on

the heavier branch of T ′. Then a copy of T ′e(w) is properly contained in T ′e(v) and so

|V (Te(v))| > |V (Te(w))|. Since Cd(T ) ⊆ V (T ′), so by Lemma 3.1.3, Cd(T ) is contained

in the heavier branch of T ′. Suppose e1 = {u, v′} ∈ E(T ′) where ht(u) = 2 in T ′. Then

a copy of T ′e1(u) is properly contained in T ′e1(v
′) and so |V (Te1(v

′))| > |V (Te1(u))|.

Hence by Lemma 3.1.3, Cd(T ) ⊆ {v, v′}.

If T ′ is complete, then T ′ has two heavier branches at v. Since centroid of T

contains either a single vertex or two adjacent vertices, so Cd(T ) = {v}.

For l > n
2

+ 1, in Corollary 3.1.4, we proved that Cd(T
n,l
rg ) = {v} or {v′} or {v, v′}.

We also showed that Cd(T
n,l
rg ) = {v} if the rgood part is complete. For many values

of n and l, the other two cases will also happen. For example, it can be checked that

Cd(T
12,11
rg ) = {v′} and Cd(T

14,13
rg ) = {v, v′}.
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Corollary 3.1.5. Let v be the root of the rgood part of T n,lrg and let v′ be the vertex

in a heavier branch of the rgood part at v such that {v, v′} ∈ E(T n,lrg ). If n = 4k and

l > 2k + 1 then Cd(T
n,l
rg ) = {v} or {v′}.

Proof. Let T be a crg tree with n = 4k and l > 2k+1. By Corollary 3.1.4, Cd(T ) = {v}

or {v′} or {v, v′}. Let e = {v, v′} ∈ E(T ). If Cd(T ) = {v, v′} then |V (Te(v))| =

|V (Te(v
′))| = 2k. But both Te(v) and Te(v

′) are binary rooted trees with roots

v and v′, respectively and hence both must have odd number of vertices. Thus a

contradiction arises, so Cd(T ) = {v} or {v′}.

We will now prove a result similar to Lemma 3.1.3 related to subtree core of trees.

Lemma 3.1.6. Let e = {u, v} ∈ E(T ). Then Sc(T ) ⊆ V (Te(u)) if and only if

fTe(u)(u) > fTe(v)(v).

Proof. We have

fT (u) = fTe(u)(u) + fTe(u)(u)fTe(v)(v)

and

fT (v) = fTe(v)(v) + fTe(u)(u)fTe(v)(v).

So,

fT (u)− fT (v) = fTe(u)(u)− fTe(v)(v).

Now the result follows from Proposition 1.2.10.

Next, we discuss about the position of the center, centroid and subtree core for

rgood and crg trees.

Lemma 3.1.7. Let v be the root of T nrg and let v′ be the vertex in a heavier branch of

T nrg such that e = {v, v′} ∈ E(T nrg). Then center, centroid and subtree core of T nrg are
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contained in the set {v, v′}. Moreover, if T nrg is complete then C(T nrg) = Cd(T
n
rg) =

Sc(T
n
rg) = {v}.

Proof. Let P be a longest path of T nrg. Then it must go through v and C(P ) = {v}

or {v, v′} depending on the length of P is even or odd, respectively. So, C(T nrg) = {v}

or {v, v′}.

Let w′ 6= v′ and e′ = {v, w′} ∈ E(T nrg). Since v′ is in a heavier branch, so

|V (Te′(v))| > |V (Te′(w
′))|. By Lemma 3.1.3, Cd(T

n
rg) ⊆ V (Te′(v)). If n > 3 then

deg(v′) = 3. Let e1 = {v′, v1}, e2 = {v′, v2} ∈ E(T nrg). For i = 1, 2, Tei(v
′) contains a

copy of Tei(vi). By Lemma 3.1.3, Cd(T
n
rg) ⊆ V (Tei(v

′)). Hence Cd(T
n
rg) ⊆ {v, v′}.

Since v′ is in a heavier branch, so the tree Te′(v) contains a copy of the rooted

binary tree Te′(w
′) with root w′. So fTe′ (v)(v) > fTe′ (w′)(w

′) and hence by Lemma

3.1.6, Sc(T
n
rg) ⊆ V (Te′(v)). Also for i = 1, 2, the rooted binary tree Tei(v

′) with root

v′ contains a copy of the rooted binary tree Tei(vi) with root vi. So by Lemma 3.1.6,

Sc(T
n
rg) ⊆ V (Tei(v

′)) for i = 1, 2. Hence Sc(T
n
rg) ⊆ {v, v′}.

If T nrg is complete, then T nrg has two heavier branches at v and in this case we have

C(T nrg) = Cd(T
n
rg) = Sc(T

n
rg) = {v}.

We label the vertices of a longest path of the caterpillar part of T n,lrg by 1, 2, . . . , n−l+3
2

= v, where v is the root of the rgood part of it. We continue this labelling for a longest

path in a heavier branch of the rgood part starting from v as n−l+3
2

, n−l+5
2

, . . . , n−l+3
2

+h

where h is the height of the rgood part of T n,lrg .

Corollary 3.1.8. Let v be the root of the rgood part of T n,lrg and let v′ be the vertex in

a heavier branch at v with {v, v′} ∈ E(T n,lrg ). Then center, centroid and subtree core

of T n,lrg lie on the path from 1 to v′.

Corollary 3.1.9. Let v be the root of the rgood part of T n,lrg and let v′ be the vertex

in a heavier branch at v with {v, v′} ∈ E(T n,lrg ). Then C(T n,lrg ) 6= {v′} .
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Proof. Let T ′ be the rgood part of T n,lrg and also let ht(T ′) = h. Suppose C(T n,lrg ) =

{v′}. Then diam(T n,lrg ) = 2(h−1), which is a contradiction as diam(T n,lrg ) > 2h−1.

3.2 Root containing subtrees

To prove our main result, it is important to know the rooted binary trees which

extremize the number of root containing subtrees. In [37], the authors have obtained

the rooted binary tree which maximizes the number of root containing subtrees. Here

we obtain the rooted binary tree which minimizes the number of root containing

subtrees.

Proposition 3.2.1 ([37], Corollary 3.9). Among all rooted binary trees on n vertices,

T nrg maximizes the number of root containing subtrees.

For a tree T with u, v ∈ V (T ), we denote the number of subtrees of T containing

u and v by fT (u, v).

Lemma 3.2.2. Let T be a rooted binary tree with root r and x be a pendant vertex

in T . Let y be a vertex other than x in the path joining r and x. Then, fT (r, y) >

2fT (r, x) and equality holds if and only if y is adjacent to x.

Proof. Let x0 be the vertex adjacent to x in T and let T0 be the tree T − x. Then,

fT (r, x) = fT0(r, x0)

and

fT (r, y) = fT0(r, y) + fT (r, x) = fT0(r, y) + fT0(r, x) > 2fT0(r, x0) = 2fT (r, x).
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The inequality holds, as any tree containing r and x0 must contain r and y and

equality holds if and only if y = x0.

We denote the rooted binary tree on n vertices with exactly two vertices at every

level (except zero level) by T nr,2.

Theorem 3.2.3. Among all rooted binary trees on n vertices, the tree T nr,2 uniquely

minimizes the number of root containing subtrees.

Proof. Let T be a rooted binary tree with root r in which there are more than two

vertices at some levels. Let x be a pendant vertex of T such that ht(T ) = d(r, x).

Let y be the vertex nearest to r (y may be same as r) such that every branch at y

contains more than two vertices. Then the path joining r and x must contains y. Let

y0, y1 and y2 be the vertices adjacent to y. Let the branch at y containing y0 be the

branch which contains r (If y = r, then we can take y1 and y2 are the only two vertices

adjacent to y). Let X and Y be the branches at y containing y1 and y2, respectively

and let x be in the branch Y. Then X ′ = X − y is a binary rooted tree with root

y′ = y1. Let T ′ be the binary rooted subtree of T with root r, obtained by removing

X ′ from T but keeping y1 as a pendant vertex of it. Then T can be obtained from T ′

and X ′ by identifying y1 of T ′ with y′ of X ′. Then

fT (r) = fT ′(r) + fT ′(r, y1)(fX′(y
′)− 1).

Construct a new tree T̂ from T ′ and X ′ by identifying x of T ′ with y′ of X ′. Then T̂

is a rooted binary tree with root r and |V (T )| = |V (T̂ )|. Then

fT̂ (r) = fT ′(r) + fT ′(r, x)(fX′(y
′)− 1).
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So we have

fT (r)− fT̂ (r) = (fX′(y
′)− 1)(fT ′(r, y1)− fT ′(r, x)).

We have fX′(y
′) > 1 as |V (X ′)| > 3. Since y1 is a pendant vertex so fT ′(r, y1) =

fT ′(r, y). So by Lemma 3.2.2, fT ′(r, y1) = fT ′(r, y) > fT ′(r, x), hence fT (r)− fT̂ (r) >

0. If there are exactly two vertices at every level of T̂ then we are done. Otherwise,

repeat the above process till we get the rooted binary tree with exactly two vertices

at every level (except level zero).

Corollary 3.2.4. Let T be a rooted binary tree on n vertices with root r. Then

fT (r) > 3× 2
n−1
2 − 2 and equality holds if and only if T ∼= T nr,2.

Proof. Let r be the root of T nr,2. Suppose u and v are vertices adjacent to r among

which u is pendant. Let Sn be the number of subtrees of T nr,2 containing r. We have

S1 = 1 and for n > 3,

Sn = 2Sn−2 + 2

where number of subtrees containing r but not v is 2 and the number of subtrees

containing both r and v is 2Sn−2. We solve this recurrence relation to find the value

of Sn. We have

Sn = 2Sn−2 + 2

= 2(2Sn−4 + 2) + 2 = 22Sn−4 + 2 + 22

...

= 2
n−1
2 S1 + 2 + 22 + 23 + . . .+ 2

n−1
2

= 2
n−1
2 + 2(2

n−1
2 − 1)

= 3× 2
n−1
2 − 2.
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The result follows from Theorem 3.2.3.

Let r be the root of T nrg. It seems difficult to find the value of fTn
rg

(r). We will

only be able to give a bound for fTn
rg

(r) which is solution of a non-linear recurrence

relation. Let h be the height of T nrg and let m = 2h+1− 1. For n > 3, 2h− 1 < n 6 m

and the rooted binary tree Tmrg is complete.

Let Ah be the number of subtrees of Tmrg containing the root r. We have A0 = 1

and for h > 1, let u and v be the vertices adjacent to r. Then

Ah = 1 + Ah−1 + Ah−1(1 + Ah−1) = (Ah−1 + 1)2

where the first 1 is for the subtree containing only the single vertex r, the second

term Ah−1 counts the number of subtrees containing r and v but not u and the third

term Ah−1(1 + Ah−1) counts the subtrees containing r and u. Then for h > 1, we

have

Ah−1 < fTn
rg

(r) 6 Ah.

It will be nice to know the exact value of fTn
rg

(r).

3.2.1 Solution to the recurrence Ah = (Ah−1 + 1)2 for h > 1,

A0 = 1

In [2], the authors have established the solution of the following recurrence relation.

xn+1 = x2
n + gn for n > n0 with boundary conditions

i) xn > 0

ii) |gn| < 1
4
xn and xn > 1 for n > n0

iii) |αn| > |αn+1| for n > n0
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where αn = ln(1 + gn
x2n

).

The authors have shown that if xn ∈ Z and gn > 0, then the solution of this recur-

rence relation is given by xn = bk2nc, where k = x0exp (
∑∞

i=o(2
−i−1αi)).

We substitute Ah+1 = Yh then the recurrence relation Ah = (Ah−1+1)2 for h > 1,

A0 = 1 translates into Y0 = 2 and Yh+1 = Y 2
h + 1 for h > 0. Here Yh ∈ Z, gh = 1 > 0

and the relation satisfies the above boundary conditions for h0 = 2. So the solution

of this is Yh = bk2hc, where k = Y0exp(
∑∞

i=o(2
−i−1αi)) and αi = ln(1 + 1

Y 2
i

). So

k = Y0exp(
∞∑
i=o

(2−i−1αi)) = 2exp

(
1

2
ln(1 +

1

4
) +

1

4
ln(1 +

1

25
) +

1

8
ln(1 +

1

676
) + · · ·

)
= 2exp

(
1

2
ln(

5

4
) +

1

4
ln(

26

25
) +

1

8
ln(

677

676
) + · · ·

)
= 2.25851845 · · · .

Hence Ah = bk2hc − 1 where k = 2.25851845 · · · .

3.3 Center, Centroid and Subtree core

In this section, we prove the conjecture posed by Smith et al. (See Section 1.4) and

obtain the crg trees which maximize the pairwise distances between the central parts:

center, centroid and subtree core. Any crg tree on n 6 8 vertices is isomorphic to a

binary caterpillar. There are two non-isomorphic binary trees on 10 vertices and both

are crg trees. It can be easily checked that (due to symmetry of vertices) both the

crg trees on 10 vertices, the center, centroid and subtree core coincide. So throughout

this, we consider crg trees on n > 12 vertices.
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3.3.1 Center and centroid

Theorem 3.3.1. Among all binary trees on n vertices, the distance between the center

and centroid is maximized by a crg tree.

Proof. Let T be a binary tree on n vertices with dT (C,Cd) > 1. Let u ∈ C(T ) and

v ∈ Cd(T ) such that dT (C,Cd) = d(u, v). Let e = {v, w} ∈ E(T ) such that w lies on

the path joining u and v. Let |V (Te(v))| = k. The component Te(v) is a rooted binary

tree with root v. Since Cd(T ) ⊆ Te(v) so by Lemma 3.1.3, |V (Te(v))| > |V (Te(w))|.

If Te(v) is a rgood binary tree then rename the tree T as T ′. Otherwise, form a

new tree T ′ from T by replacing the component Te(v) with T krg rooted at v. Since

|V (T ′e(w))| < k = |V (T ′e(v))| = |V (T krg)|, so by Lemma 3.1.3, Cd(T
′) ⊆ V (T ′e(v)). By

Lemma 3.1.1, ht(Te(v)) > ht(T krg) and so the diam(T ′) 6 diam(T ). If diam(T ′) =

diam(T ) then C(T ′) = C(T ). If diam(T ′) < diam(T ) then all the longest path of

T ′ must contain v. So, while moving to T ′ from T , C(T ′) is either same as C(T ) or

moves away from the vertex v as compare to C(T ). Hence, dT ′(C,Cd) > dT (C,Cd).

If T ′ ∈ Ωn then the result follows. Otherwise let |V (T ′e(w))| = l. Construct a new

tree T ′′ from T ′ by replacing T ′e(w) with T lr,2 rooted at w. Observe that T ′′ ∈ Ωn and

diam(T ′′) > diam(T ′). Since the increment occurs in a branch at w not containing v,

so while moving to T ′′ from T ′, C(T ′′) moves away from v as compare to C(T ′). Also,

|V (T ′′e (v))| > |V (T ′′e (w))| and T ′′e (v) is same as T ′e(v). So Cd(T
′′) = Cd(T

′). Hence

dT ′′(C,Cd) > dT ′(C,Cd) > dT (C,Cd). This proves the result.

Theorem 3.3.2. Among all crg trees on n > 12 vertices, the distance between center

and centroid is maximized by the tree T n,lrg , where l = 2dn
4
e+ 1.

Proof. Let v be the root of the rgood part of T n,lrg and let dTn,l
rg

(C,Cd) = α. Since n is

even, we consider two cases depending on whether n is of the form 4k or 4k + 2.

Case I: n = 4k for some k > 3.
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In this case l = 2dn
4
e + 1 = 2k + 1. In T n,lrg , the rgood part has 2k + 1 vertices and

the caterpillar part has 2k vertices. Then ω(v) = 2k − 1 and the weight of any other

vertex of T n,lrg is greater than 2k − 1. Following the labelling of vertices of a crg tree

mentioned in Section 3.1, we have Cd(T
n,l
rg ) = {v} = {k + 1}. The diameter of the

caterpillar part is k and the height of the the rgood part is less than k. So, C(T n,lrg )

lies in the path from 1 to k + 1.

First consider the trees T n,lrg , T
n,l−2
rg , . . . , T n,5rg . Note that T n,5rg is a binary caterpillar.

Then Cd(T
n,l−i
rg ) = {k+1} for 0 6 i 6 l−5. In the above sequence of trees, the center

lies in the path from 1 to k + 1. In T n,l−irg , if the vertex numbered u is the central

vertex nearest to k + 1, then the central vertex in T n,l−i−2
rg nearest to k + 1 is either

u or u+ 1. So, dTn,l−i
rg

(C,Cd) > dTn,l−i−2
rg

(C,Cd) for 0 6 i 6 l − 7.

Now consider the sequence of trees T n,lrg , T
n,l+2
rg , . . . , T n,n−1

rg . For 0 6 j 6 n− l− 1,

let vj be the root of the rgood part of T n,l+jrg and v′j be the vertex in a heavier branch of

the rgood part of T n,l+jrg adjacent to vj. If dTn,l
rg

(C,Cd) = α = 0 then C(T n,lrg ) = {k+1}

or {k, k + 1}. The height of the rgood part of T n,lrg is k or k − 1 depending on

C(T n,lrg ) = {k+ 1} or {k, k+ 1}, respectively. Then the rgood part of T n,lrg has at least

2k−1+1 vertices and hence 2k−1+1 6 l = 2k+1. So k 6 4. Thus α = 0 implies n 6 16

and in these cases it can be checked that dTn,l+j
rg

(C,Cd) = 0 for 0 6 j 6 n− l − 1.

If α > 1 then n > 20. If t is the smallest positive integer such that Cd(T
n,l+t
rg ) =

{v′t} then Cd(T
n,l+t+p
rg ) = {v′t} for 0 6 p 6 n − l − t − 1. In the tree T n,l+2

rg , let

e = {v2, v
′
2}. Let B1 and B2 be the two components of T n,l+2

rg − e containing v2 and

v′2, respectively. Since n > 20, so |V (B1)| > 2k and |V (B2)| < 2k. Thus by Lemma

3.1.3, Cd(T
n,l+2
rg ) ⊆ B1 and hence Cd(T

n,l+2
rg ) = {v2}. Therefore, dTn,l+2

rg
(C,Cd) = α or

α − 1. If dTn,l+2
rg

(C,Cd) = α then dTn,l+4
rg

(C,Cd) = α or α − 1. If dTn,l+4
rg

(C,Cd) = α

then Cd(T
n,l+4
rg ) = {v′4} and Cd(T

n,l+j
rg ) = v′j for 4 6 j 6 n− l− 1. Hence the distance

between center and centroid of all the trees in the above sequence is at most α. This
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prove the result for the case n = 4k.

Case II: n = 4k + 2 for some k > 3.

A similar argument can be given to prove this case. This completes the proof.

We will now find the distance between center and centroid of T n,lrg , for l = 2dn
4
e+1.

Let h be the height of the rgood part of T n,lrg . Then h is the smallest positive integer

such that l 6 2h+1 − 1. This implies dn
4
e 6 2h − 1.

The caterpillar part of T n,lrg contains 2bn
4
c vertices. So, the diameter of the cater-

pillar part is bn
4
c and hence the root of the rgood part is numbered as bn

4
c + 1.

Continuing the labelling of vertices from the root to the center, the central vertex

which is nearest to the root of the rgood part is numbered as
⌊
bn
4
c+1+h

2

⌋
+ 1. Thus

the distance between center and centroid of T n,lrg is bn
4
c −

⌊
bn
4
c+1+h

2

⌋
, where h is the

smallest positive integer such that dn
4
e 6 2h− 1. This leads to the following corollary.

Corollary 3.3.3. Let T be a binary tree on n vertices and let h be the smallest

positive integer such that dn
4
e 6 2h − 1. Then

dT (C,Cd) 6
⌊n

4

⌋
−
⌊bn

4
c+ 1 + h

2

⌋

and equality happens if T ∼= T n,lrg where l = 2dn
4
e+ 1.

3.3.2 Center and Subtree core

Theorem 3.3.4. Among all binary trees on n vertices, the distance between center

and subtree core is maximized by a crg tree.

Proof. Let T be a binary tree on n vertices with dT (C, Sc) > 1. Let u ∈ C(T ) and

v ∈ Sc(T ) such that dT (C, Sc) = d(u, v). Let e = {v, w} ∈ E(T ) such that w lies on
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the path joining u and v. Let |V (Te(v))| = k. The component Te(v) is a rooted binary

tree with root v. Since Sc(T ) ⊆ V (Te(v)) so by Lemma 3.1.6, fTe(v)(v) > fTe(w)(w).

If Te(v) is an rgood binary tree then rename the tree T by T ′. Otherwise, form

a new tree T ′ from T by replacing the component Te(v) with T krg rooted at v. By

Proposition 3.2.1, fTk
rg

(v) > fTe(v)(v) > fTe(w)(w) and hence by Lemma 3.1.6, Sc(T
′) ⊆

V (T ′e(v)). We have by Lemma 3.1.1, ht(Te(v)) > ht(T krg). So, while moving to T ′ from

T , C(T ′) is either same as C(T ) or moves away from the vertex v as compare to C(T ).

Hence, dT ′(C, Sc) > dT (C, Sc).

If T ′ ∈ Ωn then the result follows. Otherwise, let |V (T ′e(w))| = l. Construct

a new tree T ′′ from T ′ by replacing T ′e(w) with T lr,2 rooted at w. Observe that

T ′′ ∈ Ωn. In T ′′ the length of the longest path is more than the length of the longest

path of T ′ and the increment occurs in a branch at w containing the center. So,

while moving to T ′′ from T ′, C(T ′′) moves away from v as compare to C(T ′). By

Proposition 3.2.3, fT l
r,2

(w) < fT ′e(w). So fT ′′e (v)(v) > fT ′′e (w)(w) and hence by Lemma

3.1.6, Sc(T
′′) ⊆ V (T ′′e (v)). Thus dT ′′(C, Sc) > dT (C, Sc). This proves the result.

Theorem 3.3.5. In any crg tree T n,lrg , the centroid lies in the path connecting the

center and the subtree core.

Proof. In a binary caterpillar tree on n vertices the center, centroid and subtree core

are same. So we can consider crg trees which are not caterpillar. Let T be a crg

non-caterpillar tree, and let T ′ be the rgood part of T . Let v be the root of T ′ and

let v′ be the vertex in a heavier branch of T ′ such that {v, v′} ∈ E(T ′). By Corollary

3.1.8, the center, centroid and subtree core of T lie in the path from 1 to v′.

Let w be the centroid vertex of T nearest to v′ (w may be same as v′). Let w′ be

the vertex adjacent to w and lies in the path from 1 to w. Let e = {w′, w} ∈ E(T ).

Then by Lemma 3.1.3, |V (Te(w))| > |V (Te(w
′))|. If w = v or v′ then Te(w) is a
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rgood binary tree with root w. By Proposition 3.2.1, fTe(w)(w) > fTe(w′)(w
′) and

hence by Lemma 3.1.6, Sc(T ) ⊆ V (Te(w)). If w is neither v nor v′ then Te(w
′) is

a rooted binary tree in which every level has exactly two vertices( except the zero

level). By Proposition 3.2.3, fTe(w)(w) > fTe(w′)(w
′) and hence by Lemma 3.1.6,

Sc(T ) ⊆ V (Te(w)). So, Sc(T ) lies in the path between Cd(T ) and v′.

Let u be the central vertex of T nearest to the vertex 1. Let u′ be the vertex lies

in the path from 1 to u (u′ may be same as 1) such that e1 = {u′, u} ∈ E(T ). By

Corollary 3.1.9, u lies in the path from 1 to v and the component Te1(u
′) is a rooted

binary tree with root u′ in which every level has exactly two vertices (except the zero

level). Hence |V (Te1(u
′)| < |V (Te1(u)| and by Lemma 3.1.3, Cd(T ) ⊆ V (Te1(u). Thus

Cd(T ) lies in the path from C(T ) to v′. This completes the proof.

Corollary 3.3.6. In a crg tree T n,lrg , among center, centroid and subtree core, the

center is nearest to the vertex 1.

Proof. We rename the crg tree T n,lrg as T . Let u ∈ C(T ) and v ∈ Sc(T ) such that

d(1, C(T )) = d(1, u) and d(1, Sc) = d(1, v). We show that d(1, v) > d(1, u). Suppose

d(1, v) < d(1, u). Let w be the vertex adjacent to u in the path joining 1 and u.

Consider the edge e = {w, u}. Then v ∈ V (Te(w)). Also, as u ∈ C(T ) is the central

vertex nearest to 1, k = |V (Te(w))| < |V (Te(u))|. Note that the tree Te(w) is T kr,2. So

by Lemma 3.2.3, fTe(w)(w) < fTe(u)(u). Hence by Lemma 3.1.6, v ∈ V (Te(u)), which

is a contradiction.

Let l be an odd integer and let r be the root of T lrg. We denote the number fT l
rg

(r)

by Rl.

Lemma 3.3.7. Let n > 12 be even and let l be the smallest positive odd number

such that Rl > 3 × 2
n−l−1

2 − 2. For an even integer i with 2 6 i 6 l − 3, let e =
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{n−l+3
2

, n−l+5
2
} ∈ E(Ti) where Ti = T n,l−irg . Then Sc(Ti) ⊆ V (Tie(

n−l+3
2

)) or Sc(Ti) =

{n−l+3
2

, n−l+5
2
}.

Proof. Since n > 12, so l > 5 and Ti is defined for every even integer i with 2 6 i 6

l − 3. Also since l is the smallest positive odd integer such that Rl > 3× 2
n−l−1

2 − 2,

so Rl−i 6 Rl−2 6 3× 2
n−l+1

2 − 2.

The component Tie(
n−l+5

2
) of Ti−e is a binary rooted tree on l−2 vertices with root

n−l+5
2

(Tie(
n−l+5

2
) is a rgood tree if i = 2). By Proposition 3.2.1, fTie (n−l+5

2
) 6 Rl−2

for 2 6 i 6 l − 5. The component Tie(
n−l+3

2
) of Ti − e is a binary rooted tree on

n− l + 2 vertices with root n−l+3
2

. By Corollary 3.2.4, fTie (n−l+3
2

) = 3× 2
n−l+1

2 − 2.

Thus we have

fTie

(
n− l + 3

2

)
= 3× 2

n−l+1
2 − 2 > Rl−2 > fTie

(
n− l + 5

2

)

for 2 6 i 6 l − 5. If Sc(Ti) 6= {n−l+3
2

, n−l+5
2
} then fTie (n−l+3

2
) > fTie (n−l+5

2
). Then

by Lemma 3.1.6, Sc(Ti) ⊆ V (Tie(
n−l+3

2
)). This completes the proof.

Lemma 3.3.8. Let n > 12 be even and let l be the smallest positive odd number such

that Rl > 3× 2
n−l−1

2 − 2. Then Sc(T
n,l+j
rg ) = {vj} where vj is the root of the rgood part

of T n,l+jrg for 0 6 j 6 2.

Proof. Since T n,5rg is a binary caterpillar and n > 12, we have l > 7. For 0 6 j 6 2, let

v′j be the vertex in a heavier branch of of the rgood part of T n,l+jrg with ej = {vj, v′j} ∈

E(T n,l+jrg ). We have Sc(T
n,l+j
rg ) ⊆ {vj, v′j} as Rl > 3 × 2

n−l−1
2 − 2. The component

Tej(v
′
j) of T n,l+jrg − ej is an rgood binary tree with root v′j and has at most l − 2

vertices. The component Tej(vj) of T n,l+jrg − ej is an rooted binary tree with root vj

and has at least n − l + 2 vertices. Also, at level one of Tej(vj) there are more than
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two vertices. Thus we have,

fTej (v′j)(v
′
j) 6 Rl−2 6 3× 2

n−l+1
2 − 2 < fTej (vj)(vj)

for 0 6 j 6 2. Hence by Lemma 3.1.6, Sc(T
n,l+j
rg ) = {vj} for 0 6 j 6 2.

Theorem 3.3.9. Let n > 12 be even and let l be the smallest positive odd number

such that Rl > 3× 2
n−l−1

2 − 2. Among all crg trees on n vertices, the distance between

center and subtree core is maximized by the tree T n,lrg .

Proof. Let v be the root of the rgood part of T n,lrg . Then by Lemma 3.3.8, Sc(T
n,l
rg ) =

{v}. Following the labelling of vertices mentioned in Section 3.1, v is labelled as n−l+3
2

in T n,lrg . Let the vertex numbered as u be the central vertex of T n,lrg nearest to the

vertex n−l+3
2

. Then by Corollary 3.3.6, u lies on the path joining 1 and n−l+3
2

and

dTn,l
rg

(
u,
n− l + 3

2

)
= dTn,l

rg
(C, Sc).

Let i be an even integer with 2 6 i 6 l − 3. Consider the crg tree T n,l−irg . Since

the center of a tree is same as the center of every longest path in it, so the central

vertex of T n,l−irg nearest to n−l+3
2

is u + k for some k > 0. Also by Lemma 3.3.7,

Sc(T
n,l−i
rg ) = {n−l+3

2
, n−l+5

2
} or lies on the path from 1 to n−l+3

2
. Hence, we have

dTn,l−i
rg

(C, Sc) 6 dTn,l−i
rg

(u, Sc) 6 dTn,l−i
rg

(
u,
n− l + 3

2

)
= dTn,l

rg
(C, Sc)

for 2 6 i 6 l − 3.

Consider the sequence of trees T n,l+jrg for 0 6 j 6 n− l − 1 with j even. Then by

Lemma 3.1.6 and Corollary 3.1.8, Sc(T
n,l+j
rg ) ⊆ {w,w′} for 0 6 j 6 n− l− 1 where w

is the root of the rgood part of T n,l+jrg and w′ is the vertex in a heavier branch with
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e = {w,w′} ∈ E(T n,l+jrg ). In T n,l+jrg , w is numbered as n−l−j+3
2

. Let dTn,l
rg

(C, Sc) = α.

We have two cases :

Case I: α > 1

By Lemma 3.3.8, dTn,l+2
rg

(C, Sc) = α or α − 1. Let j′ be the smallest positive even

integer such that d
Tn,l+j′
rg

(C, Sc) = 0. Then dTn,l+k
rg

(C, Sc) = 0 or 1, for j′ 6 k 6 n−l−1

and dTn,l+k
rg

(C, Sc) 6 α for 0 6 k 6 j′ − 2. Hence dTn,l+j
rg

(C, Sc) 6 dTn,l
rg

(C, Sc) for

2 6 j 6 n− l − 1.

Case II: α = 0

Since n is even, so n = 4k or 4k+2 for some k. So l 6 2k+1 as l is the smallest positive

odd number such that Rl > 3×2
n−l−1

2 −2. It can be checked that C(T 14,7
rg ) = {4} and

Sc(T
14,7
rg ) = {5}. So dT 14,7

rg
(C, Sc) = 1 and hence for n = 4k+2, k > 3, dTn,l

rg
(C, Sc) > 1.

It can also be checked that C(T 20,11
rg ) = {5} and Sc(T

20,11
rg ) = {6}. So dT 20,11

rg
(C, Sc) = 1

and hence for n = 4k, k > 5, dTn,l
rg

(C, Sc) > 1.

If n = 12 then l = 7 and it can be easily checked that dT 12,7
rg

(C, Sc) = dT 12,9
rg

(C, Sc) =

dT 12,11
rg

(C, Sc) = 0. If n = 16 then l = 9 and it also can be checked that dT 16,9
rg

(C, Sc) =

dT 16,11
rg

(C, Sc) = dT 16,13
rg

(C, Sc) = dT 16,15
rg

(C, Sc) = 0. Hence if dTn,l
rg

(C, Sc) = 0 then

dTn,l+j
rg

(C, Sc) = 0 for 2 6 j 6 n− l − 1. This completes the proof.

Corollary 3.3.10. Let T be a binary tree on n > 12 vertices. Let r be the root of

the rooted binary tree T lrg and let l be the smallest positive integer such that fT l
rg

(r) >

3× 2
n−l−1

2 − 2. Then

dT (C, Sc) 6 dTn,l
rg

(C, Sc).

3.3.3 Centroid and Subtree core

Theorem 3.3.11. Among all binary trees on n vertices, the distance between centroid

and subtree core is maximized by a crg tree.
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Proof. Consider a binary tree T on n vertices with dT (Cd, Sc) > 1. Our aim is to

construct a crg tree T̃ ∈ Ωn such that dT̃ (Cd, Sc) > dT (Cd, Sc). Let u ∈ Cd(T ) and

v ∈ Sc(T ) such that dT (Cd, Sc) = d(u, v). Let u′ and v′ be the vertices adjacent to

u and v respectively, and lie on the path joining u and v. Let e1 = {u, u′}, e2 =

{v′, v} ∈ E(T ).

Let |V (Te2(v))| = k. The component Te2(v) is a rooted binary tree with root

v. Since Sc(T ) ⊆ V (Te2(v)) so by Lemma 3.1.6, fTe2 (v)(v) > fTe2 (v′)(v
′). If Te2(v)

is an rgood binary tree then rename the tree T by T ′. Otherwise, form a new tree

T ′ from T by replacing the component Te2(v) with T krg rooted at v. By Proposi-

tion 3.2.1, fTk
rg

(v) > fTe2 (v)(v) > fTe2 (v′)(v
′) and hence by Lemma 3.1.6, Sc(T

′) ⊆

V (T ′e2(v)). Since Cd(T ) ⊆ V (Te1(u)) so by Lemma 3.1.3, |V (Te1(u))| > |V (Te1(u
′))|.

As dT (Cd, Sc) > 1 and V (T ) = V (T ′) so Cd(T ) = Cd(T
′). Hence, dT ′(Cd, Sc) >

dT (Cd, Sc).

If T ′ ∈ Ωn then the result follows. Otherwise, let |V (T ′e2(v
′))| = l. Construct a new

tree T ′′ from T ′ by replacing T ′e2(v
′) with T lr,2 rooted at v′. Observe that T ′′ ∈ Ωn.

By Proposition 3.2.3, fT l
r,2

(v′) < fT ′e2 (v′). So fT ′′e2 (v)(v) > fT ′′e2 (v′)(v
′) and hence by

Lemma 3.1.6, Sc(T
′′) ⊆ V (T ′′e2(v)). Also we can construct T ′′ from T ′ step wise such

that in each step the centroid is same as the centroid of T ′ or moves away from v.

For that choose a longest path P starting from v′ containing the centroid of T in

the binary rooted tree T ′e2(v
′) with root v′. Let x be the end point of the path P .

Delete two pendant vertices from same parents, where the parent is not on the path

P and add them as pendant vertices at x. Continue this process till T ′e2(v
′) becomes

the tree T lr,2 and we reach the tree T ′′. In each step of the process, the centroid is

either same as the centroid of the tree in the previous step or moves away from v.

Hence, dT ′′(Cd, Sc) > dT (Cd, Sc). This completes the proof.
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Theorem 3.3.12. Let T be a binary tree on n > 12 vertices. Let r be the root of

the rooted binary tree T lrg and let l be the smallest positive integer such that fT l
rg

(r) >

3× 2
n−l−1

2 − 2. Then

dT (Cd, Sc) 6


dTn,l

rg
(Cd, Sc) if dTn,l

rg
(Cd, Sc) > 1,

1 otherwise.

Proof. Since n is even, so n = 4k or 4k + 2 for some k. So l 6 2k + 1 as l is the

smallest positive odd number such that Rl > 3 × 2
n−l−1

2 − 2. Then Cd(T
n,l
rg ) lies in

the path from 1 to n−l+3
2

. Let the vertex numbered u be the centroid vertex of T n,lrg

nearest to the vertex n−l+3
2

. Then by Lemma 3.3.8,

dTn,l
rg

(
u,
n− l + 3

2

)
= dTn,l

rg
(Cd, Sc).

Let i be an even integer with 2 6 i 6 l − 3. Consider the crg tree T n,l−irg . Then

the centroid vertex of T n,l−irg nearest to n−l+3
2

is u for 2 6 i 6 l − 3. Also by Lemma

3.3.7, Sc(T
n,l−i
rg ) = {n−l+3

2
, n−l+5

2
} or lies on the path from 1 to n−l+3

2
. So we have

dTn,l−i
rg

(Cd, Sc) = dTn,l−i
rg

(u, Sc) 6 dTn,l−i
rg

(
u,
n− l + 3

2

)
= dTn,l

rg
(Cd, Sc)

for 2 6 i 6 l − 3.

Consider the sequence of trees T n,l+jrg for 0 6 j 6 n− l − 1 with j even. Then by

Lemma 3.1.6 and Corollary 3.1.8, Sc(T
n,l+j
rg ) ⊆ {w,w′} for 0 6 j 6 n− l− 1 where w

is the root of the rgood part of T n,l+jrg and w′ is the vertex in a heavier branch with

e = {w,w′} ∈ E(T n,l+jrg ). In T n,l+jrg , w is numbered as n−l−j+3
2

. Let dTn,l
rg

(Cd, Sc) = α.

We have two cases :
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Case I: α > 1

Let j′ be the smallest positive even integer such that d
Tn,l+j′
rg

(Cd, Sc) = 0. Then

dTn,l+k
rg

(Cd, Sc) = 0 or 1, for j′ 6 k 6 n−l−1 and dTn,l+k
rg

(Cd, Sc) 6 α for 0 6 k 6 j′−2.

Hence

dTn,l+j
rg

(Cd, Sc) 6 dTn,l
rg

(Cd, Sc)

for 2 6 j 6 n− l − 1.

Case II: α = 0

In this case, dTn,l+j
rg

(Cd, Sc) = 0 or 1, for 2 6 j 6 n− l − 1.

Hence the result follows from Theorem 3.3.11.

3.4 Future works

Among all binary trees on n vertices, we have obtained a tree which maximizes the

distances between two central parts for the pairs {center, centroid}, {center, subtree

core} and {centroid, subtree core}. The trees which maximize the pairwise distances

between the characteristic center and any one of the center, centroid and subtree core,

over binary trees on n vertices are still not known. We feel that the following is true.

Among all binary trees on n vertices, the pairwise distances between the charac-

teristic center and each one of the center, centroid and subtree core are maximized by

some crg tree.

It will be nice to study these maximum distances and justify the truth or fallacy of

the above statement.
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Chapter 4

The subgraph index of a graph

In this chapter, we characterise the graphs which maximize or minimize the subgraph

index among all unicyclic graphs on n vertices and among all graphs on n vertices

with fixed number of pendant vertices.

4.1 Some preliminary results

The following lemma is straightforward which shows the effect of a new edge on the

subgraph index of a graph.

Lemma 4.1.1. Let u and v be two non adjacent vertices of a graph G. Let G′ be the

graph obtained from G by joining u and v with an edge. Then F (G) < F (G′).

It follows from Lemma 4.1.1 that among all connected graphs on n vertices, the

subgraph index is maximized by the complete graph Kn and minimized by a tree.

Among all trees on n vertices, the subgraph index is maximized by the star K1,n−1

and minimized by the path Pn (see [38],Theorem 3.1) with

F (K1,n−1) = 2n−1 + n− 1 and F (Pn) =

(
n+ 1

2

)
. (4.1.1)
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Let hk be the number of connected labelled graphs on k vertices. Then hk can be

obtained by the recurrence relation k2(k
2) =

∑
i

(
k
i

)
ihi2

(k−i
2 ) (see [46],Theorem 3.10.1).

So, h1 = 1, h2 = 1, h3 = 4, · · · and the sequence hk, k > 2 is strictly increasing. We

have

F (Kn) =
n∑
i=1

(
n

i

)
hi. (4.1.2)

Although there is no routine methods to count the number of connected subgraphs

of a graph, the following two lemmas are helpful in counting F (G).

Lemma 4.1.2. Let u be a cut vertex of G. Let G1 and G2 be two subgraphs of G

with G = G1 ∪G2 and V (G1) ∩ V (G2) = {u}. Then

F (G) = F (G1) + F (G2)− 1 + (fG1(u)− 1)(fG2(u)− 1).

Lemma 4.1.3. Let e = {u, v} be a bridge in G. Let G1 and G2 be the two connected

components of G− e containing u and v, respectively. Then

F (G) = F (G1) + F (G2) + fG1(u)fG2(v).

Corollary 4.1.4. Let G and H be two vertex disjoint graphs having at least 2 vertices

each. Let u, v ∈ V (G) and w ∈ V (H). Let G1 and G2 be the graphs obtained from G

and H by identifying the vertex w of H with the vertices u and v of G, respectively. If

fG(v) > fG(u) then F (G2) > F (G1) and equality happens if and only if fG(v) = fG(u).

Proof. By Lemma 4.1.2,

F (G1) = F (G) + F (H)− 1 + (fG(u)− 1)(fH(w)− 1)
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and

F (G2) = F (G) + F (H)− 1 + (fG(v)− 1)(fH(w)− 1).

So

F (G2)− F (G1) = (fH(w)− 1)(fG(v)− fG(u))

and the result follows since fH(w) > 2.

Let G be a connected graph on n > 2 vertices. Let v be a vertex of G. For l, k > 1,

let Gk,l be the graph obtained from G by attaching two new paths P : vv1v2 · · · vk

and Q : vu1u2 · · ·ul of lengths k and l, respectively at v, where u1, u2, . . . , ul and

v1, v2, . . . , vk are distinct new vertices. Let G̃k,l be the graph obtained by removing

the edge {vk−1, vk} and adding the edge {ul, vk}. Observe that the graph G̃k,l is

isomorphic to the graph Gk−1,l+1. We say that G̃k,l is obtained from Gk,l by grafting

an edge.

G

ul
ul−1

u1

v

v1

vk−1

vk

Gk,l

G

vk

ul

u1

v

v1

vk−2

vk−1

G̃k,l

Figure 4.1: Grafting an edge operation

In the path Pn : v1v2 . . . vn,

fPn(vi) = fPn(vn−i+1) = i(n+ 1− i), for i = 1, 2, . . . , n.
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So, if n is odd, then

fPn(v1) < fPn(v2) < · · · < fPn(vn+1
2

) > · · · > fPn(vn−1) > fPn(vn)

and if n is even, then

fPn(v1) < fPn(v2) < · · · < fPn(vn
2
) = fPn(vn+2

2
) > · · · > fPn(vn−1) > fPn(vn).

The next result follows from the above observation and Corollary 4.1.4.

Corollary 4.1.5. If 1 6 k 6 l, then F (Gk−1,l+1) < F (Gk,l).

Let v1, v2, . . . , vk ∈ V (G). By fG(v1, v2, . . . , vk), we denote the number of connected

subgraphs of G containing v1, v2, . . . , vk. The following result compares the subgraph

index of two graphs, where one is obtained from the other by moving a component

from one vertex to another vertex.

Lemma 4.1.6. Let H,X and Y be three pairwise vertex disjoint graphs having at

least 2 vertices each, such that u, v ∈ V (H), x ∈ V (X) and y ∈ V (Y ). Let G be

the graph obtained from H,X, Y by identifying u with x and v with y. Let G∗ be the

graph obtained from H,X, Y by identifying the vertices u, x, y. If fH(u) > fH(v) then

F (G∗) > F (G).

Proof. Construct the graph G1 from H and X by identifying u and x and denote

the new vertex as w. Then G and G∗ are the graphs obtained from G1 and Y by

identifying v with y and w with y, respectively. So, we have

fG1(w) = fX(x) + fX(x)(fH(u)− 1)
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u vH
X Y

G

u vH
X

Y

G∗

Figure 4.2: Movement of a component from one vertex to other

and

fG1(v) = fH(v) + fH(u, v)(fX(x)− 1).

Thus,

fG1(w)− fG1(v) = (fX(x)− 1)(fH(u)− 1− fH(u, v)) + (fX(x) + fH(u)− 1− fH(v)).

Since fH(u) > fH(v) and X has at least two vertices, fX(x) + fH(u)− 1− fH(v) > 0.

Also as H has at least two vertices, so fH(u) − 1 − fH(u, v) > 0. Hence, fG1(w) −

fG1(v) > 0. Since Y has at least 2 vertices, so the result follows from the Corollary

4.1.4.

The next two corollaries follow from Lemma 4.1.6.

Corollary 4.1.7. Let e = {u, v} be a bridge in G such that neither u nor v be a

pendant vertex. Let G′ be the graph obtained from G by identifying the vertices u and

v (removing the loop) and adding a pendant vertex y at the identified vertex of G′.

Then F (G′) > F (G).

Corollary 4.1.8. Let G be a graph on n > 2 vertices and let u, v ∈ V (G). For

n1, n2 > 0, let Guv(n1, n2) be the graph obtained from G by attaching n1 pendant
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vertices at u and n2 pendant vertices at v. Let fG(u) > fG(v). If n1, n2 > 1, then

F (Guv(n1 + n2, 0)) > F (Guv(n1, n2)).

Lemma 4.1.9. Let G be a graph on n > 3 vertices. Let u, v ∈ V (G) such that

fG(u, v) > 2. For l, k > 1, let Gp
uv(l, k) be the graph obtained from G by identifying a

pendant vertex of the path Pl with u and identifying a pendant vertex of the path Pk

with v. Let fG(u) 6 fG(v). If l, k > 2, then

F (Gp
uv(l + k − 1, 1)) < F (Gp

uv(l, k)).

Proof. We have

F (Gp
uv(l, k)) = F (G) + F (Pl) + F (Pk)− 2 + (fG(u)− 1)(fPl

(u)− 1)

+ (fG(v)− 1)(fPk
(v)− 1) + fG(u, v)(fPl

(u)− 1)(fPk
(v)− 1)

F (Gp
uv(l + k − 1, 1)) = F (G) + F (Pl+k−1)− 1 + (fG(u)− 1)(fPl+k−1

(u)− 1)

and the difference

F (Gp
uv(l, k))− F (Gp

uv(l + k − 1, 1)) > F (Pl) + F (Pk)− F (Pl+k−1)− 1

+ (fG(u)− 1)(fPl
(u)− 1 + fPk

(v)− 1− fPl+k−1
(u) + 1)

+ fG(u, v)(fPl
(u)fPk

(v)− fPl
(u)− fPk

(v) + 1)

= l + k − lk − 1 + fG(u, v)(lk − l − k + 1)

= (fG(u, v)− 1)(lk − l − k + 1)

> 0, as l, k > 2 and fG(u, v) > 2.
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This completes the proof.

4.2 Unicyclic graphs

Let v be a vertex of Cn. We need to know the values of F (Cn) and fCn(v) to count

the number of connected subgraphs of unicyclic graphs. In the proof of Theorem

2.1.7, we have seen that fCn(v) = 2n +
(
n−1

2

)
for any v ∈ V (Cn). We give the value

of F (Cn) in the following lemma.

Lemma 4.2.1. For n > 3, F (Cn) = n2 + 1.

Proof. Let Cn : v1v2 · · · vnv1. The single vertices v1, v2, . . . , vn are n connected sub-

graphs of Cn. The cycle Cn itself is one connected subgraph of Cn. Any other

connected subgraph of Cn is a path having the end vertices from {v1, v2, . . . , vn}. If

we chose any two vertices vi, vj from {v1, v2, . . . , vn}, it corresponds two paths, one

in clockwise direction from vi to vj and other in anticlockwise direction from vi to vj.

So the number of such paths are 2
(
n
2

)
. Thus we have

F (Cn) = n+ 1 + 2

(
n

2

)
= n2 + 1.

For n > 3, Un denotes the set of all unicyclic graphs on n vertices and Un,g denotes

the set of all unicyclic graphs on n vertices with girth g.

For 3 6 g 6 n, Un,g(T1, T2, . . . , Tg) denotes the unicyclic graph on n vertices

containing the cycle Cg =: 12 · · · g1 and trees T1, T2, . . . , Tg, where Ti is a tree on

ni + 1 vertices containing the only vertex i of Cg with ni > 0 for i = 1, 2, . . . , g

and g +
∑
ni = n. Then clearly, Un,g(T1, T2, . . . , Tg) ∈ Un,g. For g < n, if Ti is a
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star on n − g + 1 vertices with i as the center of Ti, for some i = 1, 2, . . . , g, then

Un,g(T1, T2, . . . , Tg) ∼= Up
n,g and if Ti is a path on n− g+ 1 vertices with i as one of its

pendant vertex for some i = 1, 2, . . . , g, then Un,g(T1, T2, . . . , Tg) ∼= U l
n,g.

Lemma 4.2.2. Let G be a unicyclic graph on n vertices. Then

F (Un,g(Pn1+1, · · · , Png+1)) 6 F (G) 6 F (Un,g(K1,n1 , . . . , K1,ng))

where K1,ni
is the star with center at i and Pni+1 is the path with i as one of its

pendant vertex. The left equality holds if and only if G ∼= Un,g(Pn1+1, · · · , Png+1) and

the right equality holds if and only if G ∼= Un,g(K1,n1 , . . . , K1,ng).

Proof. Since G is unicyclic, G ∼= Un,g(T1, T2, . . . , Tg) for some trees T1, T2, . . . , Tg.

Suppose, for some i ∈ {1, 2, . . . , g}, Ti is not a star with i as the central vertex. Then

the vertex i must be adjacent to a vertex, say v of Ti of degree at least 2. Identify the

vertices i and v and add a pendant vertex at i. Continue this operation till Ti becomes

K1,ni
with center at i. By Corollary 4.1.7, in each step of this the subgraph index

will increase. Continuing this, we get the unicyclic graph Un,g(K1,n1 , . . . , K1,ng). So,

F (Un,g(T1, . . . , Tg)) 6 F (Un,g(K1,n1 , . . . , K1,ng)) and the equality happens if and only

if Un,g(T1, . . . , Tg) ∼= Un,g(K1,n1 , . . . , K1,ng).

To prove the other inequality, suppose Ti is not a path with i as one of its pendant

vertex. Then by using the grafting of edges operations, we can make Ti a path with i as

one of its pendant vertex. By Corollary 4.1.5, in each step of this, the subgraph index

will decrease. Continuing this, we get the unicyclic graph Un,g(Pn1+1, . . . , Png+1).

This gives us, F (Un,g(Pn1+1, . . . , Png+1)) 6 F (Un,g(T1, . . . , Tg)) and the equality holds

if and only if Un,g(T1, . . . , Tg) ∼= Un,g(Pn1+1, . . . , Png+1). This completes the proof.

Now we prove the result which characterises the graph extremizing the subgraph
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index in Un,g. Note that Cn is the only graph in Un,n.

Theorem 4.2.3. For 3 6 g < n, let G ∈ Un,g. Then

(
n− g

2

)
(n+g2 +3)+g2 +1 6 F (G) 6 n+g2−g+1+(2n−g−1)

(
2g +

(
g − 1

2

))
.

The left equality holds if and only if G ∼= U l
n,g and the right equality holds if and only

if G ∼= Up
n,g.

Proof. By Lemma 4.2.2, F (G) 6 F (Un,g(K1,n1 , . . . , K1,ng)) and equality happens

if and only if G ∼= Un,g(K1,n1 , . . . , K1,ng). If exactly one vertex on the cycle of

Un,g(K1,n1 , . . . , K1,ng) has degree greater than 2 then Un,g(K1,n1 , . . . , K1,ng) ∼= Up
n,g.

Otherwise, let i and j be two vertices of degree greater than 2 on the cycle of

Un,g(K1,n1 , . . . , K1,ng). Assume that fUn,g(K1,n1 ,...,K1,ng )(i) > fUn,g(K1,n1 ,...,K1,ng )(j).Move

the pendant vertices from the vertex j to the vertex i. Continue this till exactly one

vertex on the cycle of Un,g(K1,n1 , . . . , K1,ng) has degree greater than 2. Then by

Corollary 4.1.8, F (Un,g(K1,n1 , . . . , K1,ng) 6 F (Up
n,g) and equality happens if and only

if Un,g(K1,n1 , . . . , K1,ng) ∼= Up
n,g.

Let w be the central vertex of K1,m. Then fK1,m(w) = 2m. Let u be the vertex in

Up
n,g with degree at least 3. Then by Lemma 4.1.2,

F (Up
n,g) = F (Cg) + F (K1,n−g)− 1 + (fCg(u)− 1)(fK1,n−g(u)− 1)

= g2 + 1 + 2n−g + n− g − 1 +

(
2g +

(
g − 1

2

)
− 1

)
(2n−g − 1)

= n+ g2 − g + 1 + (2n−g − 1)

(
2g +

(
g − 1

2

))
. (4.2.1)

Similarly, by Lemma 4.2.2, F (G) > F (Un,g(Pn1+1, . . . , Png+1)) and equality hap-

pens if and only if G ∼= Un,g(Pn1+1, . . . , Png+1). If exactly one vertex on the cycle of
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Un,g(Pn1+1, . . . , Png+1) has degree 3 then Un,g(Pn1+1, . . . , Png+1) ∼= U l
n,g. Otherwise,

let i and j be two vertices on the cycle of Un,g(Pn1+1, . . . , Png+1) of degree 3. With-

out loss of generality, let fUn,g(Pn1+1,...,Png+1)(i) 6 fUn,g(Pn1+1,...,Png+1)(j). Replace both

the paths at i and j by a single path at i on ni + nj + 1 vertices. Continue this

till exactly one vertex on the cycle of Un,g(Pn1+1, . . . , Png+1) has degree 3. Then by

Lemma 4.1.9, F (Un,g(Pn1+1, . . . , Png+1)) > F (U l
n,g) and equality happens if and only

if Un,g(Pn1+1, ..., Png+1) ∼= U l
n,g.

Furthermore, let u be the only degree 3 vertex of U l
n,g. Then by Lemma 4.1.2,

F (U l
n,g) = F (Cg) + F (Pn−g+1)− 1 + (fCg(u)− 1)(fPn−g+1(u)− 1)

= g2 + 1 +

(
n− g + 2

2

)
− 1 +

(
2g +

(
g − 1

2

)
− 1

)
(n− g)

=

(
n− g

2

)
(n+ g2 + 3) + g2 + 1. (4.2.2)

This completes the proof.

Now we proceed towards finding the graphs which extremize the subgraph index

over Un.

Theorem 4.2.4. Let G ∈ {Up
n,3, U

p
n,4, . . . , U

p
n,n−1}. Then F (G) 6 (7× 2n−3) + n and

equality happens if and only if G = Up
n,3.

Proof. We first compare F (Up
n,g) and F (Up

n,g+1) for 3 6 g 6 n−2. By (4.2.1), we have

F (Up
n,g) = n+ g2 − g + 1 + (2n−g − 1)

(
2g +

(
g − 1

2

))
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and

F (Up
n,g+1) = n+ (g + 1)2 − (g + 1) + 1 + (2n−g−1 − 1)

(
2g + 2 +

(
g

2

))
= n+ g2 + g + 1 + (2n−g−1 − 1)

(
2g + 2 +

(
g

2

))
.

So, the difference

F (Up
n,g)− F (Up

n,g+1) = −2g + (2n−g − 1)

(
2g +

(
g − 1

2

))
− (2n−g−1 − 1)

(
2g + 2 +

(
g

2

))
= −(g − 1) + 2n−g−1

[
g(g − 1)

2

]
= (g − 1)

[
2n−g−1

(g
2

)
− 1
]

> 0, since g > 3 and n > g.

This implies Up
n,3 has the maximum subgraph index in {Up

n,3, U
p
n,4, . . . , U

p
n,n−1} and

the result follows from (4.2.1).

The following result compares the subgraph index of graphs in {U l
n,3, U

l
n,4, . . . , U

l
n,n−1}.

Theorem 4.2.5. Let n > 5 and let g0 be the largest positive integer such that

3g20−g0+2

2g0
< n. Let G ∈ {U l

n,3, U
l
n,4, . . . , U

l
n,n−1}. Then

F (U l
n,3) 6 F (G) 6 F (U l

n,g0+1)

with left equality happens if and only if G = U l
n,3 and right equality happens if and

only if G = U l
n,g0+1.

Proof. For 3 6 g 6 n− 2, by (4.2.2), we have

F (U l
n,g) =

(
n− g

2

)
(n+ g2 + 3) + g2 + 1
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and

F (U l
n,g+1) =

(
n− g − 1

2

)
(n+ g2 + 2g + 4) + g2 + 2g + 2.

So the difference

F (U l
n,g+1)− F (U l

n,g) = (2g + 1)

(
n− g

2

)
−
(
n+ g2 + 2g + 4

2

)
+ 2g + 1

=
2gn− (3g2 − g + 2)

2
.

Suppose 2gn − (3g2 − g + 2) = 0. Then 3g2 − (2n + 1)g + 2 = 0 which implies

g =
(2n+1)±

√
(2n+1)2−24

6
. But g is an integer so (2n + 1)2 − 24 must be a perfect

square. This implies 2n + 1 = 7 or 5, which is a contradiction as n > 5. So either

F (U l
n,g+1)− F (U l

n,g) > 0 or F (U l
n,g+1)− F (U l

n,g) < 0.

Let g0 be the largest integer such that
3g20−g0+2

2g0
< n. Then among all graphs in

{U l
n,3, U

l
n,4, . . . , U

l
n,n−1}, the subgraph index is maximized by the graph U l

n,g0+1 and

minimized by the graph U l
n,3 or U l

n,n−1. But

F (U l
n,3) =

(
n− 3

2

)
(n+ 9 + 3) + 9 + 1

and

F (U l
n,n−1) =

1

2
(n+ (n− 1)2 + 3) + (n− 1)2 + 1.

So the difference F (U l
n,n−1)−F (U l

n,3) = (n−3)(n−4) > 0 for n > 5. Hence the result

follows.

The graphs U l
4,3 and C4 are the only elements of U4 and F (C4) = 17 < 18 =

F (U l
4,3). For n = 5 and 6, by Theorem 4.2.3 and Theorem 4.2.5, the subgraph index

is minimized by U l
n,3 or Cn over Un. We have F (C5) = 26 < 27 = F (U l

5,3). So,

C5 minimizes the subgraph index over U5. Also F (C6) = 37 = F (U l
6,3), so both the
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graphs C6 and U l
6,3 minimizes the subgraph index over U6. By Lemma 4.2.1, Theorem

4.2.3 and Theorem 4.2.4, Up
n,g maximizes the subgraph index. The following theorem

characterizes the graphs which extremize the subgraph index over Un, n > 7.

Theorem 4.2.6. Let n > 7 and let G ∈ Un. Then

n2 + 9n− 16

2
6 F (G) 6 (7× 2n−3) + n.

The left equality holds if and only if G ∼= U l
n,3 and the right equality holds if and only

if G ∼= Up
n,3.

Proof. Since F (Up
n,3) = (7×2n−3)+n > n2+1 = F (Cn) for n > 7, so by Theorem 4.2.3

and Theorem 4.2.4, the graph Up
n,3 uniquely maximizes the subgraph index over Un.

Also by Theorem 4.2.3 and Theorem 4.2.5, the subgraph index is minimized by U l
n,3 or

Cn over Un. We have F (Cn) = n2 + 1 and F (U l
n,3) = n2+9n−16

2
. So F (Cn)−F (U l

n,3) =

n2−9n+18
2

> 0 as n > 7. This completes the proof.

4.3 Graphs with fixed number of pendant vertices

Let Hn,k be the class of all connected graphs of order n with k pendant vertices. If

k = n, then n = 2 and Hn,k = {K2}. If k = n − 1 then Hn,k = {K1,n−1 : n > 3}.

For n = 3, either k = 0 (C3 is the only graph in this case) or k = 2 (K1,2 is the only

graph in this case). So, we assume that 0 6 k 6 n− 2 and n > 4.

For 0 6 k 6 n− 3 and n > 4, let P k
n be the graph obtained by adding k pendant

vertices at one vertex of the complete graph Kn−k. We define a specific subclass of

graphs in Hn,0 as follows. Let m1,m2 and n be positive integers with m1,m2 > 3 and

n > m1 +m2− 1. If n > m1 +m2− 1, take a path on n− (m1 +m2) + 2 vertices and

identify one pendant vertex of the path with a vertex of Cm1 and another pendant
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vertex with a vertex of Cm2 . If n = m1 +m2− 1 then identify one vertex of Cm1 with

a vertex of Cm2 . We denote this graph by Cn
m1,m2

.

n = m1 +m2 − 1

Cm1 Cm2

n > m1 +m2 − 1

Cm1 Cm2

Figure 4.3: The graphs Cn
m1,m2

We prove the following two results regarding the extremization of the subgraph

index over Hn,k.

Theorem 4.3.1. Let 0 6 k 6 n− 2. Then

(i) the graph P k
n uniquely maximizes the subgraph index over Hn,k for 0 6 k 6 n−3.

Furthermore,

F (P k
n ) = (2k − 1)(F (Kn−k)− F (Kn−k−1)) + F (Kn−k) + k.

(ii) the tree T (1, n− 3, 2) uniquely maximizes the subgraph index over Hn,n−2. Fur-

thermore,

F (T (1, n− 3, 2)) = 3(2n−3) + n.

Theorem 4.3.2. Let 0 6 k 6 n− 2 and let G ∈ Hn,k . Then

(i) for 2 6 k 6 n − 2, F (G) > F (T (bk
2
c, dk

2
e, n − k)) and equality happens if and

only if G ∼= T (bk
2
c, dk

2
e, n− k).

(ii) for k = 1, F (G) > F (U l
n,3) and equality happens if and only if G ∼= U l

n,3.
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(iii) for k = 0,

F (G) >


F (Cn), if n 6 16

F (Cn
3,3), if n > 16.

Moreover, F (G) > min{n2 + 1, n
2+17n

2
}.

Before proceeding to prove these results, we first see the results regarding extrem-

ization of the subgraph index among all trees on n vertices with k pendant vertices.

For 2 6 k 6 n−1, let Tn,k be the subclass of Hn,k consisting of all trees of order n with

k pendant vertices. By Theorem 4.3.1(ii) (we prove later), the tree T (1, n− 3, 2) has

the maximum subgraph index over Tn,n−2. We next prove this result for 2 6 k 6 n−3.

To do this, we first introduce the following tree.

By sG we mean, the graph consisting of s copies of G. Let Tn,k be the tree on

n vertices that has a vertex v of degree k and Tn,k − v = rPq+1 ∪ (k − r)Pq, where

q = bn−1
k
c and r = n− 1− kq. Here, we have 0 6 r < k. Note that Tn,2 ∼= Pn where

v is one of the central vertex of Pn.

v

u1v1 u2v2 uqvq+1

r k − r

Figure 4.4: The tree Tn,k

Lemma 4.3.3. Let k > 2 and n = kq + 1. Then F (Tn,k) = (q + 1)(kq
2

+ (q + 1)k−1).

Proof. Let v be the vertex of degree k and Tn,k − v ∼= kPq. If k = 2, then Tn,k is a

path on 2q + 1 vertices. So, we have fT2q+1,2(v) = (q + 1)2 and F (T2q+1,2) =
(

2q+2
2

)
=

(q + 1)(2q + 1).
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Now consider k > 3. Then

fTn,k
(v) = fTn−q,k−1

(v) + qfTn−q,k−1
(v)

= (q + 1)fTn−q,k−1
(v)

...

= (q + 1)k−2fTn−(k−2)q,2
(v)

= (q + 1)k−2fT2q+1,2(v)

= (q + 1)k−2(q + 1)2

= (q + 1)k.

By Lemma 4.1.3, we have

F (Tn,k) = F (Tn−q,k−1) + F (Pq) + qfTn−q,k−1
(v)

= F (Tn−q,k−1) +
q(q + 1)

2
+ q(q + 1)k−1

...

= F (T2q+1,2) + (k − 2)

(
q(q + 1)

2

)
+ q(q + 1)2

[
(q + 1)k−2 − 1

(q + 1)− 1

]
= (q + 1)(2q + 1) + (k − 2)

(
q(q + 1)

2

)
+ (q + 1)k − (q + 1)2

= (q + 1)

(
kq

2
+ (q + 1)k−1

)
.

This completes the proof.

Lemma 4.3.4. For n > 3, F (Tn,k) = (q+2)r(q+1)k−r + (q+1)(qk+2r)
2

where q = bn−1
k
c

and r = n− 1− kq.

Proof. We have n − 1 = kq + r, with 0 6 r < k. For r = 0, the result follows from

Lemma 4.3.3. Now consider 1 6 r < k. For k = 2, Tn,k is a path on 2q + 2 vertices
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and F (T2q+2,2) = (q + 1)(2q + 3). For k > 3, let v be the vertex of degree k in Tn,k.

Let us rename the tree Tr(q+1)+1,r as T1 and the tree T(k−r)q+1,k−r as T2. Note that for

r = 1, T1
∼= Pq+2 and for r = k − 1, T2

∼= Pq+1. Then by Lemma 4.1.2, we have

F (Tn,k) = F (T1) + F (T2)− 1 + (fT1(v)− 1)(fT2(v)− 1)

= (q + 2)

(
r(q + 1)

2
+ (q + 2)r−1

)
+ (q + 1)

(
(k − r)q

2
+ (q + 1)k−r−1

)
− 1

+ ((q + 2)r − 1)((q + 1)k−r − 1)

= (q + 2)r(q + 1)k−r +
(q + 1)(qk + 2r)

2
.

Theorem 4.3.5. For 2 6 k 6 n − 3, the tree Tn,k uniquely maximizes the subgraph

index over Tn,k.

Proof. If k = 2 then Pn is the only tree in Tn,2 and the result is true. So assume

k > 3. Let T ∈ Tn,k be a tree with maximum subgraph index over Tn,k.

Claim : There is a unique v ∈ V (T ) with deg(v) > 3.

Let there be two vertices u, v ∈ V (T ) with deg(u) = n1 > 3, deg(v) = n2 > 3. Let

NT (u) = {u1, u2, . . . , un1} and NT (v) = {v1, v2, . . . , vn2} where u1 and v1 lie on the

path joining u and v (u1 may be v and v1 may be u). Let T1 be the largest subtree

of T containing u, u2, u3, . . . , un1−1 but not u1, un1 and T2 be the largest subtree of

T containing v, v2, v3, . . . , vn2−1 but not v1, vn2 . We rename the vertices u ∈ V (T1)

and v ∈ V (T2) by u′ and v′, respectively. Let H be the connected component of

T \ {u2, u3, . . . , un1−1, v2, v3, . . . , vn2−1} containing u and v. Then H,T1 and T2 are

trees having at least 2 vertices each. Without loss of generality, let fH(u) > fH(v).

Construct a tree T ′ from H, T1 and T2 by identifying the vertices u, u′, v′. Clearly

T ′ ∈ Tn,k and by Lemma 4.1.6, F (T ′) > F (T ), which is a contradiction. This proves
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the claim.

So, the connected components of T − v are all paths and deg(v) = k. Suppose

T � Tn,k. Then there exist two paths P : vv1 · vl1 and Q : vu1 . . . ul2 attached at v

in T with |l1 − l2| = α > 2. By grafting an edge operation, we can construct a tree

T̃ ∈ Tn,k from T such that the difference of the lengths between P and Q in T̃ is

α − 1. Then by Corollary 4.1.5, F (T̃ ) > F (T ), which is a contradiction. So, Tn,k is

the only tree which maximizes the subgraph index over Tn,k.

The above result is proved by Zhang et al. in [53] (see Corollary 5.3) but we have

given a different proof. We also explained the counting for F (Tn,k). The following is

an important result in the study of minimizing the subgraph index over Hn,k.

Theorem 4.3.6 ([23], Theorem 1). For 2 6 k 6 n − 2, the tree T (bk
2
c, dk

2
e, n − k)

uniquely minimizes the subgraph index over Tn,k. Furthermore,

F

(
T

(⌊
k

2

⌋
,

⌈
k

2

⌉
, n− k

))
=


(n− k − 1)2

k
2

+1 + 2k + k +
(
n−k−1

2

)
if k is even,

3(n− k − 1)2
k−1
2 + 2k + k +

(
n−k−1

2

)
if k is odd.

Proof of Theorem 4.3.1: (i) Let G ∈ Hn,k and let v1, v2, . . . , vn−k be the non-

pendant vertices of G. Assume that G � P k
n . It is enough to show that F (P k

n ) >

F (G).

If the induced subgraph G[v1, v2, . . . , vn−k] is not complete, then form a new

graph G′ from G by joining all the non-adjacent non-pedant vertices of G with

new edges. If the induced subgraph G[v1, v2, . . . , vn−k] is complete, the take

G′ = G. Then G′ ∈ Hn,k and by Lemma 4.1.1, F (G′) > F (G). If G′ ∼= P k
n then

G′ 6= G and in that case F (G′) > F (G). Otherwise, G′ has at least two vertices
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of degree greater than or equal to n − k. Form a new graph G′′ from G′ by

moving all the pendant vertices to one of the vertex v1, v2, . . . , vn−k following

the pattern mentioned in the statement of the Corollary 4.1.8. Then G′′ ∼= P k
n

and by Corollary 4.1.8, F (G′′) > F (G′) > F (G).

For v ∈ V (Kn), fKn(v) = F (Kn) − F (Kn−1). Also we know, F (K1,k) = 2k + k

and fK1,k
(u) = 2k where u is the non-pendant vertex of K1,k. Let w be the

vertex of P k
n with which k pendant vertices are adjacent. Then by Lemma 4.1.2

we have

F (P k
n ) = F (Kn−k) + F (K1,k)− 1 + (fKn−k

(w)− 1)(fK1,k
(w)− 1)

= F (Kn−k) + F (K1,k) + fKn−k
(w)fK1,k

(w)− fKn−k
(w)− fK1,k

(w)

= (2k − 1)(F (Kn−k)− F (Kn−k−1)) + F (Kn−k) + k.

(ii) Let G ∈ Hn,n−2. Then G is isomorphic to T (k, l, 2) for some k, l > 1. If k = 1 or

l = 1, then G ∼= T (1, n− 3, 2). If k, l > 2 then form the tree T (1, n− 3, 2) from

G by moving pendant vertices from one vertex to other following the pattern

mentioned in the statement of the Corollary 4.1.8. Then F (T (1, n − 3, 2)) >

F (G) and by Lemma 4.1.3,

F (T (1, n− 3, 2)) = 3 + 2n−3 + n− 3 + 2n−2 = 3(2n−3) + n.

This completes the proof.

Proof of Theorem 4.3.2 (i) and (ii): (i) Let G ∈ Hn,k, 2 6 k 6 n−2. Suppose

G � T (bk
2
c, dk

2
e, n−k). If G is not a tree, then construct a spanning tree G′ from
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G by deleting some edges. If G is a tree, take G′ = G. Then, F (G′) 6 F (G)

and equality holds if G′ = G. The number of pendant vertices of G′ is greater

than or equal to k. If G′ has k pendant vertices then the result follows from

Theorem 4.3.6. Suppose G′ has more than k pendant vertices. Since k > 2, G′

has at least one vertex of degree greater than 2. Consider a vertex v of G′ with

deg(v) > 3 and two paths Pl1 , Pl2 with l1 > l2 attached at v. Using grafting

of edges operation on G′, we will get a new tree G̃ with number of pendant

vertices one less than the number of pendant vertices of G′ and by Corollary

4.1.5, F (G̃) < F (G′). Continue this process till we get a tree with k pendant

vertices from G̃. By Corollary 4.1.5, every step in this process the subgraph

index will decrease. So, we will reach a tree of order n with k pendant vertices

and the result follows from Theorem 4.3.6.

(ii) Let G ∈ Hn,1 and G � U l
n,3. Since G is connected and has exactly one pendent

vertex, it must contain a cycle. Let Cg be a cycle in G. If G has more than

one cycle, then construct a new graph G′ from G by deleting edges from all

cycles other than Cg so that the graph remains connected. If G has exactly one

cycle, then take G′ = G. Clearly F (G′) 6 F (G) and equality holds if G′ = G.

Now G′ is a unicyclic graph on n vertices with girth g. By Theorem 4.2.5,

F (U l
n,3) 6 F (G′) and equality happens if and only if G′ ∼= U l

n,3. As U l
n,3 ∈ Hn,1,

so the result follows.

The only case left in the problem of minimizing the subgraph index over Hn,k is

when k = 0. Upto isomorphism, there are only three connected graphs on 4 vertices

without any pendant vertex. It can be easily checked that C4 has the minimum

subgraph index over H4,0. For the rest of this section, n is at least 5. The next lemma
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compares the subgraph index of Cn
3,3 and Cn.

Lemma 4.3.7. For n > 6, F (Cn) < F (Cn
3,3) if and only if n 6 16.

Proof. Let v and w be two vertices of C6
3,3 with deg(v) = deg(w) = 3. Then by Lemma

4.1.3, F (C6
3,3) = F (C3) + F (C3) + fC3(v)fC3(w) = 10 + 10 + 49 = 69 > 37 = F (C6).

For n > 7, let v1 be the vertex of one of the 3-cycles with degree 3 and let v2 be the

vertex adjacent to v1 but not in that 3-cycle of Cn
3,3. Then by Lemma 4.1.3,

F (Cn
3,3) = F (C3) + F (U l

n−3,3) + fC3(v1)fU l
n−3,3

(v2)

= 10 +

(
n− 6

2

)
(n+ 9) + 10 + 7(n+ 1)

=
n2 + 17n

2

So, F (Cn
3,3) − F (Cn) = n2+17n

2
− n2 − 1 = 17n−n2−2

2
> 0 if and only if n 6 16. This

completes the proof.

Lemma 4.3.8. Let m1,m2 > 3 be two integers and let n = m1 + m2 − 1. Then

F (Cn) < F (Cn
m1,m2

).

Proof. Let v be the vertex of degree 4 in Cn
m1,m2

. Then by Lemma 4.1.2

F (Cn
m1,m2

) = F (Cm1) + F (Cm2)− 1 + (fCm1
(v)− 1)(fCm2

(v)− 1)

= m2
1 + 1 +m2

2 + 1− 1 +

(
2m1 +

(
m1 − 1

2

)
− 1

)(
2m2 +

(
m2 − 1

2

)
− 1

)
> m2

1 +m2
2 + 1 + 4m1m2.

So, the difference F (Cn
m1,m2

)− F (Cn) > 2m1m2 + 2m1 + 2m2 − 1 > 0.

Corollary 4.3.9. Let m1,m2 > 3 be two integers and let n = m1 + m2 − 1. Let

G ∈ Hn,0 with Cn
m1,m2

as a subgraph of G. Then F (G) > F (Cn).
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Lemma 4.3.10. Let u be the pendant vertex and v be a non-pendant vertex of the

unicyclic graph U l
n,g. Then fU l

n,g
(u) < fU l

n,g
(v).

Proof. Let g be the vertex of degree 3 in U l
n,g and let g + 1 be the vertex adjacent

to g not on the g-cycle of U l
n,g. Then the path from u to the vertex g + 1 has n − g

vertices. So,

fU l
n,g

(u) = fPn−g(u) + fCg(g).

If v is a vertex on the cycle Cg of U l
n,g, then

fU l
n,g

(v) = fCg(v) + fCg(v, g)fPn−g(g + 1)

Since fPn−g(g + 1) = fPn−g(u), we have

fU l
n,g

(v)− fU l
n,g

(u) = fPn−g(u)(fCg(v, g)− 1) > 0.

If v is is not on the cycle Cg, then

fU l
n,g

(v) = fPn−g(v) + fCg(g)fPn−g(g + 1, v).

So,

fU l
n,g

(v)− fU l
n,g

(u) = fPn−g(v)− fPn−g(u) + fCg(g)(fPn−g(g + 1, v)− 1) > 0.

The last inequality holds because fPn−g(v) > fPn−g(u) and fPn−g(g + 1, v) > 1.

The next corollary follows from Lemma 4.3.10 and Corollary 4.1.4.

Corollary 4.3.11. Let u be a vertex of G with V (G) > 2. Suppose v is the pendant

vertex of U l
n,g and w is a non-pendant vertex of U l

n,g. Let G1 be the graph obtained
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from G and U l
n,g by identifying u with v and G2 be the graph obtained by identifying

u with w. Then F (G1) < F (G2).

Proposition 4.3.12. Let G ∈ Hn,0 with at least one cut-vertex. Suppose Cn
m1,m2

with

m1 +m2 − 1 = n is not a subgraph of G. Then F (G) > F (Cn
g1,g2

) for some g1, g2 > 3

and the equality holds if and only if G ∼= Cn
g1,g2

.

Proof. Since G has a cut-vertex and no pendant vertices, so G contains two cycles

with at most one common vertex. Let Cg1 and Cg2 be two cycles of G with at most

one common vertex. Since Cn
m1,m2

with m1 + m2 − 1 = n is not a subgraph of G, so

g1 + g2 6 n. Clearly G has at least n+ 1 edges.

If G has exactly n+1 edges, then there is no common vertex between Cg1 and Cg2

and G ∼= Cn
g1,g2

. So, let G has at least n + 2 edges. Suppose |E(G)| = n + k, where

k > 2. Choose k−1 edges {e1, . . . , ek−1} ⊂ E(G) such that ei /∈ E(Cg1)∪E(Cg2), i =

1, . . . , k− 1 and G \ {e1, . . . , ek−1} is connected. Let G1 = G \ {e1, . . . , ek−1} (G1 may

have some pendant vertices). Then F (G1) < F (G). If G1 has no pendant vertices

then G1
∼= Cn

g1,g2
.

Let G1 has some pendant vertices. Then for some l < n, C l
g1,g2

is a subgraph of G1.

By grafting of edges operations (if required), we can form a new graph G2 from G1

where G2 is isomorphic to the graph obtained by attaching paths to different vertices

of C l
g1,g2

. Then by Corollary 4.1.5, F (G2) < F (G1). If there are paths attached to

more than one vertex of C l
g1,g2

in G2, then using the graph operation as mentioned in

Lemma 4.1.9, form a new graph G3 from G2, where G3 has exactly one path attached

to C l
g1,g2

. Then by Lemma 4.1.9, F (G3) < F (G2).

Let the path attached to the vertex u in C l
g1,g2

of G3. Then we have two cases:

Case-1: u ∈ V (Cg1) ∪ V (Cg2)

Without loss of generality, assume that u ∈ V (Cg1). Then the induced subgraph of
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G3 containing the vertices of Cg1 and the vertices of the path attached to it, is the

graph U l
p,g1

for some p > g1. Let v be the pendant vertex of U l
p,g1

. Since the two cycles

Cg1 and Cg2 have at most one vertex in common, so we have two subcases:

Subcase-1: V (Cg1) ∩ V (Cg2) = {w}

Let H1 be the induced subgraph of G3 containing the vertices {V (G3)\V (U l
p,g1

)}∪

{w}. Clearly H1 is the cycle Cg2 . Then identify the vertex v of U l
p,g1

with the vertex

w of H1 to form a new graph G4. By Corollary 4.3.11, F (G4) < F (G3) and G4 is the

graph Cn
g1,g2

.

Subcase-2: V (Cg1) ∩ V (Cg2) = ∅

Let H2 be the induced subgraph of G3 containing the vertices V (G3) \ V (U l
p,g1

).

In G3 exactly one vertex w1 ∈ U l
p,g1

adjacent to exactly one vertex w2 of H2. Form

a new graph G5 from G3 by deleting the edge {w1, w2} and adding the edge {v, w2}.

By Corollary 4.3.11, F (G5) < F (G3) and G5 is the graph Cn
g1,g2

.

Case-2: u /∈ V (Cg1) ∪ V (Cg2)

Let w be the pendant vertex of G3 and let w3 be a vertex in C l
g1,g2

of G3 adjacent

to u. Form a new graph G6 from G3 by deleting the edge {u,w3} and adding the

edge {w,w3}. By Corollary 4.3.11, F (G6) < F (G3) and G6 is the graph Cn
g1,g2

. This

completes the proof.

Lemma 4.3.13. Let u be a vertex of G. For m > 4, let G1 be the graph obtained

by identifying the vertex u of G with the pendant vertex of U l
m+1,m and G2 be the

graph obtained by identifying the vertex u with the pendant vertex of U l
m+1,3. Then

F (G2) < F (G1).
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Proof. We have

F (G1) = F (G) + F (U l
m+1,m)− 1 + (fG(u)− 1)(fU l

m+1,m
(u)− 1)

F (G2) = F (G) + F (U l
m+1,3)− 1 + (fG(u)− 1)(fU l

m+1,3
(u)− 1).

By Theorem 4.2.5, F (U l
m+1,3) < F (U l

m+1,m). So, the difference

F (G1)− F (G2) > (fG(u)− 1)(fU l
m+1,m

(u)− fU l
m+1,3

(u))

= (fG(u)− 1)

(
1 + 2m+

(
m− 1

2

)
−m+ 2− 7

)
= (fG(u)− 1)

(
m− 4 +

(
m− 1

2

))
> 0.

Corollary 4.3.14. Let m1,m2 > 3 be two integers and let m1 + m2 6 n. Then

F (Cn
m1,m2

) > F (Cn
3,3) and equality happens if and only if m1 = m2 = 3.

Proposition 4.3.15. Let G be a 2-connected graph on n > 5 vertices. Then F (G) >

F (Cn) and the equality holds if and only if G ∼= Cn.

Proof. Let g be the circumference (length of the longest cycle) of G. Let Cg be a

g-cycle in G. Then every connected subgraph of Cg is also a connected subgraph of

G. If g = n and G is not isomorphic to Cn, then G has at least n + 1 edges. In this

case clearly F (G) > F (Cn).

If g = n−1 then the number of connected subgraphs of Cg is equal to (n−1)2 +1.

Let v be the vertex of G not on the cycle Cg of G. Since G is 2-connected, so v is

adjacent to at least two vertices of Cg. Let u be a vertex of Cg such that {u, v} is

an edge in G. Then Cg ∪ {u, v} is a connected subgraph of G. By Lemma 4.2.1, the
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number of connected subgraphs of Cg ∪ {u, v} containing {u, v} is 2(n − 1) +
(
n−2

2

)
.

So, F (G) > (n− 1)2 + 1 + 2(n− 1) +
(
n−2

2

)
> n2 + 1 = F (Cn).

If g 6 n − 2 then at least two vertices of G are not on the cycle Cg. Since G is

2-connected, so for every pair of distinct vertices u, v ∈ V (G) \ V (Cg) there exists

at least two distinct paths in G with u and v as pendant vertices. Each of these

paths is a connected subgraph of G. Apart from these subgraphs, also for every

v ∈ V (G)\V (Cg) there exists a w ∈ V (Cg) such that there is a path joining v and w.

This path together with Cg gives a subgraph of G with v as a pendant vertex. Thus

there are at least (n− g)(fCg(w)) more connected subgraphs in G different from the

above mentioned connected subgraphs of G. Thus

F (G) > F (Cg) + 2

(
n− g

2

)
+ (n− g)(fCg(w))

= g2 + 1 + (n− g)(n− g − 1) + (n− g)

(
2g +

(
g − 1

2

))
= n2 + 1 +

g(n− g)

2
(g − 3) > n2 + 1 = F (Cn).

The last inequality follows from the fact that g is the circumference of a 2-connected

graph on n > 5 vertices. Hence the result follows.

Proof of Theorem 4.3.2(iii): If G has no cut-vertices, then by Proposition 4.3.15

and Lemma 4.3.7 the result follows. Suppose G has a cut-vertex. If Cn
m1,m2

with

m1 + m2 − 1 = n is a subgraph of G then by Corollary 4.3.9 and and Lemma 4.3.7

the result follows. If Cn
m1,m2

with m1 + m2 − 1 = n is not a subgraph of G then by

Proposition 4.3.12, Corollary 4.3.14 and Lemma 4.3.7, the result follows.
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4.4 Future works

We have studied the extremal problems on subgraph index over unicyclic graphs and

graphs with fixed number of pendant vertices. Similar problems on the subgraph

index can be studied for some other classes of graphs. To be specific, it will be

interesting to know the graphs which maximize or minimize the subgraph index over

graphs with fixed number of cut vertices. Further, there are no routine methods to

count the subgraph index of a graph. Even for many well known graphs the subgraph

index is not known. A unified approach to count the number of connected subgraphs

of graphs may help to know the subgraph index of various graphs.
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Chapter 5

The Wiener index of a graph

In this chapter, we characterize the graphs which extremize the Wiener index among

all graphs on n vertices with k pendant vertices and the graph which minimizes the

Wiener index among all graphs on n vertices with s cut vertices.

5.1 Some preliminary results

The following lemma is straightforward which shows the effect of a new edge on the

Wiener index of a graph.

Lemma 5.1.1. Let u and v be two non adjacent vertices of G. Let G′ be the graph

obtained from G by joining u and v by an edge. Then W (G′) < W (G).

It follows from Lemma 5.1.1 that among all connected graphs on n vertices, the

Wiener index is uniquely minimized by the complete graph Kn and maximized by

some tree. Among all trees on n vertices, the Wiener index is uniquely minimized by

the star K1,n−1 and uniquely maximized by the path Pn (see [44], Theorem 2.1.14).

It is easy to determine the Wiener index of the following graphs(see [44]):
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• (i) W (Kn) =
(
n
2

)
;

• (ii) W (Pn) =
(
n+1

3

)
;

• (iii) W (K1,n−1) = (n− 1)2.

The Wiener index of the cycle Cn is (see [30],Theorem 5)

W (Cn) =


1
8
n3 if n is even,

1
8
n(n2 − 1) if n is odd,

(5.1.1)

and for u ∈ V (Cn)

DCn(u) =


n2

4
if n is even,

n2−1
4

if n is odd.

(5.1.2)

The following lemma is useful in counting the Wiener index of graphs with cut vertices.

Lemma 5.1.2 ([3], Lemma 1.1). Let u be a cut vertex of a graph G. Let G1 and G2

be two subgraphs of G with G = G1 ∪G2 and V (G1) ∩ V (G2) = {u}. Then

W (G) = W (G1) +W (G2) + (|V (G1)| − 1)DG2(u) + (|V (G2)| − 1)DG1(u).

Corollary 5.1.3. Let G and H be two vertex disjoint graphs having at least 2 vertices

each. Let u, v ∈ V (G) and w ∈ V (H). Let G1 and G2 be the graphs obtained

from G and H by identifying the vertex w of H with the vertices u and v of G,

respectively. If DG(v) > DG(u) then W (G2) > W (G1) and equality happens if and

only if DG(v) = DG(u).
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Proof. By Lemma 5.1.2,

W (G1) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(u)

and

W (G2) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(v).

So

W (G2)−W (G1) = (|V (H)| − 1)(DG(v)−DG(u))

and the result follows.

In the path Pn : v1v2 · · · vn,

DPn(vi) = DPn(vn−i+1) =
(n− i)(n− i+ 1) + i(i− 1)

2
, for i = 1, 2, . . . , n.

So, if n is odd, then

DPn(v1) > DPn(v2) > · · · > DPn(vn+1
2

) < · · · < DPn(vn−1) < DPn(vn)

and if n is even, then

DPn(v1) > DPn(v2) > · · · > DPn(vn
2
) = DPn(vn+2

2
) < · · · < DPn(vn−1) < DPn(vn).

Let Gk,l be the graph described in Section 4.1. Then the next result follows from the

above observation and Corollary 5.1.3.

Corollary 5.1.4 ([24], Lemma 2.4). If 1 6 k 6 l, then W (Gk−1,l+1) > W (Gk,l).
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The following result compares the Wiener index of two graphs, where one is ob-

tained from the other by moving a component from one vertex to another vertex.

Lemma 5.1.5 ([25], Lemma 2.4). Let H,X and Y be three pairwise vertex disjoint

graphs having at least 2 vertices each. Suppose u, v ∈ V (H), x ∈ V (X) and y ∈ V (Y ).

Let G be the graph obtained from H,X and Y by identifying u with x and v with y.

Let G∗1 be the graph obtained from H,X, Y by identifying the vertices u, x, y and let

G∗2 be the graph obtained from H,X, Y by identifying the vertices v, x, y (see Figure

5.1). Then, either W (G∗1) < W (G) or W (G∗2) < W (G).

u vH
X Y

G

u vH
X

Y

G∗1

u vH
X

Y

G∗2

Figure 5.1: Movement of a component from one vertex to other

Let Guv(n1, n2) be the graph described in Corollary 4.1.8. Then we have the

following corollary.

Corollary 5.1.6. If n1, n2 > 1 then

W (Guv(n1 + n2, 0)) < W (Guv(n1, n2)) or W (Guv(0, n1 + n2)) < W (Guv(n1, n2)).

In [49] Lemma 2.6, the authors have proved the following.

Let G0 be a connected graph of order n0 > 1 and u0, v0 ∈ V (G0) be two distinct

vertices in G0. Ps = u1u2 · · ·us and Pt = v1v2 · · · vt are two paths of order s and t,

respectively. Let G be the graph obtained from G0, Ps and Pt by adding edges {u0, u1}
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and {v0, v1}. Suppose that G1 = G−{u0, u1}+{vt, u1} and G2 = G−{v0, v1}+{us, v1}.

Then either W (G) < W (G1) or W (G) < W (G2) holds.

If we take G0 = Pn0 and u0 and v0 as two distinct pendant vertices of G0, then

G0
∼= G1

∼= G2. So, W (G0) ∼= W (G1) ∼= W (G2) and hence the statement is not true.

We give a proof of the corrected version of this result. Let Gp
uv(l, k) be the graph

mentioned in Lemma 4.1.9.

Lemma 5.1.7. Let u, v be two vertices of a graph G and G is not the u-v path. If

DG(u) > DG(v) and l, k > 2, then

W (Gp
uv(l + k − 1, 1)) > W (Gp

uv(l, k)).

Proof. Let us name the graph Gp
u,v(l, 1) as H and let w be the pendant vertex of H

corresponding to Pl. Then by Lemma 5.1.2,

W (Gp
u,v(l, k)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(v) + (k − 1)DH(v)

and

W (Gp
u,v(l + k − 1, 1)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(w) + (k − 1)DH(w).

As DPk
(v) = DPk

(w) we get,

W (Gp
u,v(l + k − 1, 1))−W (Gp

u,v(l, k)) = (k − 1)(DH(w)−DH(v)).

Now

DH(w) = DPl−1
(w) + (l − 1)|V (G)|+DG(u)
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and

DH(v) = DG(v) + (l − 1)(dG(u, v) + 1) +DPl−1
(u′)

where u′ is the vertex on the path Pl adjacent to u. Since DPl−1
(w) = DPl−1

(u′), so

DH(w)−DH(v) = (l − 1)(|V (G)| − dG(u, v)− 1) +DG(u)−DG(v).

As l > 2 and G is not the u-v path, so (l− 1)(|V (G)| − dG(u, v)− 1) > 0. Hence the

result follows from the given condition DG(u) > DG(v).

The Wiener index of Up
n,g and U l

n,g are useful for our results and can be found in

[49] (see Theorem 1.1). We have

W (Up
n,g) =


g3

8
+ (n− g)(g

2

4
+ n− 1) if g is even,

g(g2−1)
8

+ (n− g)(g
2−1
4

+ n− 1) if g is odd,

(5.1.3)

and

W (U l
n,g) =


g3

8
+ (n− g)(n

2+ng+3g−1
6

− g2

12
) if g is even,

g(g2−1)
8

+ (n− g)(n
2+ng+3g−1

6
− g2

12
− 1

4
) if g is odd.

(5.1.4)

We next calculate the Wiener index of some other trees, which we need for the

extremal bounds in some of our results. Let Pd,m be the path-star tree on d + m

vertices. By using Lemma 5.1.2, it is easy to see that

W (Pd,m) =

(
d+ 1

3

)
+m2 + (d− 1)m+

d(d− 1)m

2
. (5.1.5)
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Using the value of W (Pd,m) and W (K1,l) in Lemma 5.1.2, we get

W (T (l,m, d)) =

(
d+ 1

3

)
+ l2 +m2 +

(d2 + d− 2)(m+ l)

2
+ (d+ 1)ml. (5.1.6)

For k > 2, let Tn,k be the tree defined in Section 4.3. Let v be the central vertex

of Tkq+1,k. Then

DTkq+1,k
(v) = k + 2k + · · ·+ qk =

kq(q + 1)

2
. (5.1.7)

As T2q+1,2
∼= P2q+1, in which v is the central vertex of P2q+1, by Lemma 5.1.2

W (T2q+1,2) =

(
2q + 2

3

)
= 2

(
q + 2

2

)
+ q2(q + 1).

Now for k > 3, by Lemma 5.1.2 we have

W (Tkq+1,k) = W (T(k−1)q+1,k−1) +W (Pq+1) + (k − 1)qDPq+1(v) + qDT(k−1)q+1,k−1
(v)

= W (T(k−1)q+1,k−1) +

(
q + 2

3

)
+ (k − 1)q2(q + 1)

...

= W (T2q+1,2) + (k − 2)

(
q + 2

3

)
+ (2 + 3 + · · ·+ k − 1)q2(q + 1)

= 2

(
q + 2

2

)
+ q2(q + 1) + (k − 2)

(
q + 2

3

)
+ (2 + 3 + · · ·+ k − 1)q2(q + 1)

= k

(
q + 2

3

)
+
q2(q + 1)k(k − 1)

2
. (5.1.8)

5.2 Graphs with fixed number of pendant vertices

As in section 4.3, we assume that 0 6 k 6 n − 2 and n > 4. The Wiener index

and the subgraph index are inversely correlated with each other. In chapter 4, we
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characterised the graphs which extremize the subgraph index over Hn,k. Here we

prove the corresponding results for the Wiener index. We have the following result

regarding the maximization of the Wiener index over Tn,k.

Proposition 5.2.1 ([32], Theorem 4). For 2 6 k 6 n− 2, the tree T (bk
2
c, dk

2
e, n− k)

uniquely maximizes the Wiener index over Tn,k.

We prove the following results.

Theorem 5.2.2. Let 0 6 k 6 n− 2 and let G ∈ Hn,k. Then

(i) for 2 6 k 6 n− 2, W (G) 6 W
(
T (bk

2
c, dk

2
e, n− k)

)
and equality happens if and

only if G ∼= T (bk
2
c, dk

2
e, n− k). Furthermore, W

(
T (
⌊
k
2

⌋
,
⌈
k
2

⌉
, n− k)

)
=


(
n−k+1

3

)
+ k2

4
(n− k + 3) + k

2
[(n− k)2 + n− k − 2] if k is even(

n−k+1
3

)
+ k2−1

4
(n− k + 3) + k

2
[(n− k)2 + n− k − 2] + 1 if k is odd.

(ii) for k = 1, W (G) 6 W (U l
n,3) and equality holds if and only if G ∼= U l

n,3. Fur-

thermore,

W (U l
n,3) =

n3 − 7n+ 12

6
.

(iii) for k = 0 and n > 7, W (G) 6 W (Cn
3,3) and equality holds if and only if

G ∼= Cn
3,3. Furthermore,

W (Cn
3,3) =

n3 − 13n+ 24

6
.

Theorem 5.2.3. Let 0 6 k 6 n− 2 and let G ∈ Hn,k. Then

(i) for 0 6 k 6 n − 3, W (P k
n ) 6 W (G) and equality holds if and only if G ∼= P k

n .
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Furthermore,

W (P k
n ) =

(
n− k

2

)
+ k2 + 2k(n− k − 1).

(ii) for k = n − 2, W (T (1, n − 3, 2)) 6 W (G) and equality holds if and only if

G ∼= T (1, n− 3, 2). Furthermore,

W (T (1, n− 3, 2)) = n2 − n− 2.

Theorem 5.2.4. Let 2 6 k 6 n − 2 and T ∈ Tn,k. Then W (Tn,k) 6 W (T ) and

equality holds if and only if T ∼= Tn,k.

We now proceed towards proving these results. The following two resullts are

useful in that aspect.

Proposition 5.2.5 ([49], Corollary 1.2). Let G ∈ Un, n > 5. Then, W (G) 6 W (U l
n,3)

and equality holds if and only if G ∼= U l
n,3.

Proposition 5.2.6 ([30], Theorem 5). Let G be a 2−connected graph with n vertices.

Then W (G) 6 W (Cn) and equality holds if and only if G ∼= Cn.

The following two lemmas compare the Wiener index of Cn with the Wiener index

of Cn
3,3 and Cn

m1,m2
.

Lemma 5.2.7. For n > 6, W (Cn) 6 W (Cn
3,3) and equality happens if and only if

n = 6.

Proof. By (5.1.4), we have W (U l
n,3) = n3−7n+12

6
. If u is the pendant vertex of U l

n,3

then

DU l
n,3

(u) = DPn−2(u) + 2(n− 2) =
(n− 3)(n− 2)

2
+ 2n− 4 =

n2 − n− 2

2
.
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For n > 6, let u be the cut-vertex common to C3 and U l
n−2,3 of Cn

3,3. Then by Lemma

5.1.2,

W (Cn
3,3) = W (C3) +W (U l

n−2,3) + 2DU l
n−2,3

(u) + 2(n− 3)

= 3 +
(n− 2)3 − 7(n− 2) + 12

6
+ (n− 2)2 − (n− 2)− 2 + 2n− 6

=
n3 − 13n+ 24

6
. (5.2.1)

By (5.1.1) and (5.2.1), we have

W (Cn
3,3)−W (Cn) =


n(n2−52)

24
+ 4 if n is even,

n(n2−49)
24

+ 4 if n is odd.

Hence the result follows.

Lemma 5.2.8. Let m1,m2 > 3 be two integers and let n = m1 + m2 − 1. Then

W (Cn) > W (Cn
m1,m2

).

Proof. Let v be the vertex of degree 4 in Cn
m1,m2

. First suppose n is even. Then one

of m1 or m2 is odd and other is even. Without loss of generality, suppose m1 is odd

and m2 is even. Then by Lemma 5.1.2 and equations (5.1.1) and (5.1.2), we have

W (Cn
m1,m2

) = W (Cm1) +W (Cm2) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1 −m1

8
+
m3

2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2

1m2 + 2m1m
2
2 − 2m2

1 − 2m2
2 −m1 − 2m2 + 2)
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and

W (Cn) =
1

8
(m1 +m2 − 1)3

=
1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 3m1 + 3m2 − 1).

The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8
(m2

1m2 +m1m
2
2 −m2

1 −m2
2 − 6m1m2 + 4m1 + 5m2 − 3)

=
1

8

(
(m2 − 1)m2

1 + (m1 − 1)m2
2 + 4m1 + 5m2 − 6m1m2 − 3

)
.

An easy calculation gives

W (Cn)−W (Cn
m1,m2

)


= 1

4
m2(m2 − 2) if m1 = 3,

> 1
8
(3(m1 −m2)2 + 4m1 + 5m2 − 3) if m1 > 5,

which is greater than 0.

Now suppose n is odd. Then there are two possibilities.

Case 1: Both m1 and m2 are even.

In this case, we have

W (Cn
m1,m2

) = W (Cm1) +W (Cm2) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1

8
+
m3

2

8
+ (m2 − 1)

m2
1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2)
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and

W (Cn) = W (Cm1+m2−1)

=
1

8

(
(m1 +m2 − 1)3 − (m1 +m2 − 1)

)
=

1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 2m1 + 2m2).

The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8

(
(m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 2m1 + 2m2

)
>

1

8

(
3(m1 −m2)2 + 2m1 + 2m2

)
> 0.

Case 2: Both m1 and m2 are odd.

In this case, we have

W (Cn
m1,m2

) =
m3

1 −m1

8
+
m3

2 −m2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2 − 1

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2 − 3m1 − 3m2 + 4)

and the difference is

W (Cn)−W (Cn
m1,m2

) =
1

8

(
(m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 5m1 + 5m2 − 4

)
.

An easy calculation gives
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W (Cn)−W (Cn
m1,m2

)


> 1

8
(3(m1 −m2)2 + 5m1 + 5m2 − 4) if m1,m2 > 5,

= 1
8
(2m2

2 − 4m2 + 2) if m1 = 3,

= 1
8
(2m2

1 − 4m1 + 2) if m2 = 3,

which is greater than 0 and this completes the proof.

Lemma 5.2.9. Let u be the pendant vertex and v be a non-pendant vertex of the

unicyclic graph U l
n,g. Then DU l

n,g
(u) > DU l

n,g
(v).

Proof. Let vg be the vertex of degree 3 in U l
n,g. Then the path from u to vg has

n− g + 1 vertices, so

DU l
n,g

(u) = DPn−g+1(u) + (g − 1)(n− g) +DCg(vg). (5.2.2)

If v is a vertex on the cycle Cg of U l
n,g, then

DU l
n,g

(v) = DCg(v) + d(v, vg)(n− g) +DPn−g+1(vg).

Since DPn−g+1(u) = DPn−g+1(vg), so

DU l
n,g

(u)−DU l
n,g

(v) = (n− g)(g − 1− d(v, vg)) > 0.

If v is not on the cycle Cg of U l
n,g, then

DU l
n,g

(v) = DPn−g+1(v) + d(v, vg)(g − 1) +DCg(vg).

Since DPn−g+1(u) > DPn−g+1(v) and DCg(vg) = DCg(v), so
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DU l
n,g

(u)−DU l
n,g

(v) > (g − 1)(n− g − d(v, vg)) > 0.

This completes the proof.

The next corollary follows from Lemma 5.2.9 and Corollary 5.1.3.

Corollary 5.2.10. Let u be a vertex of G with |V (G)| > 2. Suppose v is the pendant

vertex of U l
n,g and w is a non-pendant vertex of U l

n,g. Let G1 and G2 be the graphs

obtained from G and U l
n,g by identifying u of G with the vertices v and w of U l

n,g,

respectively. Then W (G1) > W (G2).

Lemma 5.2.11. Let u be a vertex of G. For m > 4, let G1 be the graph obtained

by identifying the vertex u of G with the pendant vertex of U l
m+1,m and G2 be the

graph obtained by identifying the vertex u with the pendant vertex of U l
m+1,3. Then

W (G2) > W (G1).

Proof. By Lemma 5.1.2, we have

W (G1) = W (G) +W (U l
m+1,m) + (|V (G)| − 1)DU l

m+1,m
(u) +mDG(u)

and

W (G2) = W (G) +W (U l
m+1,3) + (|V (G)| − 1)DU l

m+1,3
(u) +mDG(u).

By Proposition 5.2.5, W (U l
m+1,3) > W (U l

m+1,m). So, the difference is

W (G2)−W (G1) > (|V (G)| − 1)(DU l
m+1,3

(u)−DU l
m+1,m

(u)).
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By (5.2.2), we have DU l
m+1,3

(u) = (m−1)(m+2)
2

and

DU l
m+1,m

(u) =


m+ m2

4
if n is even,

m+ m2−1
4

if n is odd.

So,

DU l
m+1,3

(u)−DU l
m+1,m

(u) =


m2−2m−4

4
if m is even,

m2−2m−3
4

if m is odd,

which is greater than 0 and this completes the proof.

Corollary 5.2.12. Let m1,m2 > 3 be two integers and let m1 + m2 6 n. Then

W (Cn
3,3) > W (Cn

m1,m2
) and equality happens if and only if m1 = m2 = 3.

Proof of Theorem 5.2.2: (i) Let G ∈ Hn,k, 2 6 k 6 n − 2. Suppose G is

not isomorphic to T (bk
2
c, dk

2
e, n − k). If G is a tree then by Proposition 5.2.1,

W (G) < W (T (bk
2
c, dk

2
e, n− k)).

Suppose G is not a tree. Construct a spanning tree G′ from G by deleting some

edges. Then by Lemma 5.1.1, W (G′) > W (G). The number of pendant vertices

of G′ is greater than or equal to k. Suppose G′ has more than k pendant vertices.

Since k > 2, G′ has at least one vertex of degree greater than 2 and at least

two paths attached to it. Consider a vertex v of G′ with deg(v) > 3 and two

paths Pl1 , Pl2 , l1 > l2 attached at v. Using grafting of edges operation on G′, we

get a new tree G̃ with number of pendant vertices one less than the number of

pendant vertices of G′ and by Corollary 5.1.4, W (G̃) > W (G′). Continue this

process till we get a tree with k pendant vertices from G̃. By Corollary 5.1.4,

every step in this process the Wiener index will increase. So, we will reach at

a tree T of order n with k pendant vertices. By Proposition 5.2.1, we have
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W (T (bk
2
c, dk

2
e, n − k)) > W (T ) > W (G). Hence T (bk

2
c, dk

2
e, n − k) uniquely

maximizes the Wiener index over Hn,k.

Now by replacing d, l and m with n − k, bk
2
c and dk

2
e, respectively in (5.1.6),

we get the value of W
(
T (bk

2
c, dk

2
e, n− k)

)
as in the statement. This completes

the proof.

(ii) Let G ∈ Hn,1. Suppose G is not isomorphic to U l
n,3. Since G is connected and

has exactly one pendent vertex, it must contain a cycle. Let Cg be a cycle in

G. If G is a unicyclic graph then by Proposition 5.2.5, W (U l
n,3) > W (G). If

G has more than one cycle, then construct a new graph G′ from G by deleting

edges from all cycles other than Cg so that the graph remains connected. Then

by Lemma 5.1.1, W (G′) > W (G) and G′ is a unicyclic graph on n vertices with

girth g. By Proposition 5.2.5, W (U l
n,3) > W (G′) > W (G). Hence U l

n,3 uniquely

maximizes the Wiener index over Hn,1. We get the value of W (U l
n,3) from (5.1.4)

and this completes the proof.

(iii) Let n > 7 and let G ∈ Hn,0. Suppose G is not isomorphic to Cn
3,3. Then we

have two cases:

Case 1: For some integers m1,m2 > 3 with n = m1 + m2 − 1, Cn
m1,m2

is a

subgraph of G.

Since Cn
m1,m2

is a subgraph of G, by deleting some edges(if required) from G, we

get Cn
m1,m2

∈ Hn,0 and by Lemma 5.1.1, W (G) 6 W (Cn
m1,m2

). Again by Lemma

5.2.7 and Lemma 5.2.8, we have

W (G) 6 W (Cn
m1,m2

) < W (Cn) < W (Cn
3,3).

Case 2: There are no integers m1,m2 > 3 with n = m1 + m2 − 1 such that
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Cn
m1,m2

is a subgraph of G.

If G is a two connected graph then by Proposition 5.2.6 and Lemma 5.2.7,

W (G) 6 W (Cn) < W (Cn
3,3). So let G has at least one cut vertex.

Since G has a cut-vertex and no pendant vertices, so G contains two cycles with

at most one common vertex. Let Cg1 and Cg2 be two cycles of G with at most

one common vertex. Since Cn
m1,m2

with m1 + m2 − 1 = n is not a subgraph of

G, so g1 + g2 6 n. Clearly G has at least n+ 1 edges.

If G has exactly n+ 1 edges, then there is no common vertex between Cg1 and

Cg2 and G ∼= Cn
g1,g2

. As G is not isomorphic to Cn
3,3, so by Corollary 5.2.12,

W (G) < W (Cn
3,3).

Now let |E(G)| > n + 2. Suppose |E(G)| = n + k, where k > 2. Choose k − 1

edges {e1, . . . , ek−1} ⊂ E(G) such that ei /∈ E(Cg1) ∪ E(Cg2), i = 1, . . . , k − 1

and G \ {e1, . . . , ek−1} is connected. Let G1 = G \ {e1, . . . , ek−1} (G1 may have

some pendant vertices). Then by Lemma 5.1.1, W (G1) > W (G). If G1 has

no pendant vertices then G1
∼= Cn

g1,g2
for some g1, g2 > 3. By Corollary 5.2.12,

W (G) < W (G1) 6 W (Cn
3,3).

Suppose G1 has some pendant vertices. Then for some p < n, Cp
g1,g2

is a

subgraph of G1. By grafting of edges operations (if required), we can form a

new graph G2 from G1 where G2 is a connected graph on n vertices obtained by

attaching paths to different vertices of Cp
g1,g2

. Then by Corollary 5.1.4, W (G2) >

W (G1). If there are paths attached to more than one vertices of Cp
g1,g2

in G2,

then using the graph operation as mentioned in Lemma 5.1.7, form a new graph

G3 from G2, where G3 has exactly one path attached to Cp
g1,g2

. Then by Lemma

5.1.7, W (G3) > W (G2).

Let u be the vertex on Cp
g1,g2

of G3 at which the path is attached. Then we have
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two cases:

Case-i: u ∈ V (Cg1) ∪ V (Cg2)

Without loss of generality, assume that u ∈ V (Cg1). Then the induced subgraph

of G3 containing the vertices of Cg1 and the vertices of the path attached to it,

is the graph U l
p,g1

for some p > g1. Let v be the pendant vertex of U l
p,g1

. Since

the two cycles Cg1 and Cg2 have at most one vertex in common, so we have two

subcases:

Subcase-1: V (Cg1) ∩ V (Cg2) = {w}

LetH1 be the induced subgraph ofG3 containing the vertices {V (G3)\V (U l
p,g1

)}∪

{w}. Clearly H1 is the cycle Cg2 . Then identify the vertex v of U l
p,g1

with the

vertex w of H1 to form a new graph G4. By Corollary 5.2.10, W (G4) > W (G3)

and G4 is the graph Cn
g1,g2

. By Corollary 5.2.12, W (G) < W (G4) 6 W (Cn
3,3).

Subcase-2: V (Cg1) ∩ V (Cg2) = ∅

Let H2 be the induced subgraph of G3 containing the vertices V (G3)\V (U l
p,g1

).

In G3 exactly one vertex w1 ∈ U l
p,g1

adjacent to exactly one vertex w2 of H2.

Form a new graph G5 from G3 by deleting the edge {w1, w2} and adding the

edge {v, w2}. By Corollary 5.2.10, W (G5) > W (G3) and G5 is the graph Cn
g1,g2

.

Again by Corollary 5.2.12, we have W (G) < W (G5) 6 W (Cn
3,3).

Case-ii: u /∈ V (Cg1) ∪ V (Cg2)

Let w be the pendant vertex of G3 and let w3 be a vertex on Cp
g1,g2

of G3 adjacent

to u. Form a new graph G6 from G3 by deleting the edge {u,w3} and adding

the edge {w,w3}. By Corollary 5.2.10, W (G6) > W (G3) and G6 is the graph

Cn
g1,g2

. Again by Corollary 5.2.12, we have W (G) < W (G6) 6 W (Cn
3,3). Hence

Cn
3,3 uniquely maximizes the Wiener index over Hn,0 for n > 7.
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By (5.2.1), we have W (Cn
3,3) = n3−13n+24

6
. This completes the proof.

It can be checked easily that for 3 6 n 6 5, the cycle Cn has the maximum Wiener

index over Hn,0 and for n = 6, the Wiener index is maximized by both the graphs C6

and C6
3,3.

Proof of Theorem 5.2.3: (i) Let G ∈ Hn,k, 0 6 k 6 n−3 and let v1, v2, . . . , vn−k

be the non-pendant vertices of G. Suppose G is not isomorphic to P k
n . If the

induced subgraph G[v1, v2, . . . , vn−k] is complete, then name G as G′, otherwise,

form G′ from G by joining all the non-adjacent non-pedant vertices of G with

new edges. Then G′ ∈ Hn,k and by Lemma 5.1.1, W (G′) 6 W (G) (equality

holds if and only if G′ ∼= G). If G′ ∼= P k
n then W (P k

n ) < W (G). Otherwise,

G′ has at least two vertices of degree greater than or equal to n − k. Form a

new graph G′′ from G′ by moving all the pendant vertices to one of the vertex

v1, v2, . . . , vn−k. Then G′′ ∼= P k
n and by Corollary 5.1.6, W (P k

n ) = W (G′′) <

W (G′) 6 W (G). Hence for 0 6 k 6 n − 3, P k
n uniquely minimizes the Wiener

index over Hn,k.

Let u ∈ V (P k
n ) be the vertex of degree n− 1. Then by Lemma 5.1.2, we have

W (P k
n ) = W (Kn−k) +W (K1,k) + (|V (Kn−k)| − 1)k + kDKn−k

(u)

=

(
n− k

2

)
+ k2 + 2k(n− k − 1).

(ii) Let G ∈ Hn,n−2. Suppose G is not isomorphic to T (1, n − 3, 2). Then G is

isomorphic to a tree T (k, l, 2) for some k, l > 2. Now form the tree T (1, n−3, 2)

from G by moving all but one pendant vertices from one end of P2 to the
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other end. Then by Corollary 5.1.6, W (T (1, n − 3, 2)) < W (G) and by taking

d = 2, l = 1 and k = n− 3 in (5.1.6), we have W (T (1, n− 3, 2)) = n2 − n− 2.

Proof of Theorem 5.2.4. The path Pn is the only tree in Tn,2 and hence the result

is true for k = 2. So, assume 3 6 k 6 n − 3 and let T be the tree with minimum

Wiener index in Tn,k.

Claim: There is a unique vertex v in T with deg(v) > 3.

Let there be two vertices u, v ∈ V (T ) with deg(u) = n1 > 3, deg(v) = n2 > 3. Let

NT (u) = {u1, u2, . . . , un1} and NT (v) = {v1, v2, . . . , vn2} where u1 and v1 lie on the

path joining u and v (u1 may be v and v1 may be u). Let T1 be the largest subtree

of T containing u, u2, u3, . . . , un1−1 but not u1, un1 and T2 be the largest subtree of

T containing v, v2, v3, . . . , vn2−1 but not v1, vn2 . We rename the vertices u ∈ V (T1)

and v ∈ V (T2) by u′ and v′, respectively. Let H be the connected component of

T \ {u2, u3, . . . , un1−1, v2, v3, . . . , vn2−1} containing u and v. Then H, T1 and T2 are

trees with at least two vertices each. Construct two trees T ′ and T ′′ from H, T1

and T2 by identifying the vertices u, u′, v′ and v, u′, v′, respectively. Clearly both

T ′, T ′′ ∈ Tn,k and by Lemma 5.1.5, either W (T ′) < W (T ) or W (T ′′) < W (T ), which

is a contradiction. This proves the claim.

So, the connected components of T − v are all paths and deg(v) = k. Suppose

T � Tn,k. Then there exist two paths P : vv1 · · · vl1 and Q : uu1 · · ·ul2 attached at v

in T with |l1− l2| = α > 2. By grafting an edge operation, we can construct a tree T̃

from T such that the difference of the lengths between P and Q in T̃ is α− 1. Then

by Corollary 5.1.4, W (T̃ ) < W (T ), which is a contradiction. So, Tn,k is the only tree

which minimizes the Wiener index over Tn,k.
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For r = 0, n = kq + 1 and hence by (5.1.8),

W (Tn,k) = k

(
q + 2

3

)
+
q2(q + 1)k(k − 1)

2
.

For 1 6 r < k, by Lemma 5.1.2, we have

W (Tn,k) = W (Tr(q+1)+1,r)+W (T(k−r)q+1,k−r)+r(q+1)DT(k−r)q+1,k−r
(v)+(k−r)qDTr(q+1)+1,r

(v),

where v is the vertex of Tn,k with Tn,k − v = rPq+1 ∪ (k− r)Pq. Thus by using (5.1.7)

and (5.1.8) the value of W (Tn,k) can be obtained.

5.3 Graphs with fixed number of cut vertices

We denote the set of all connected graphs on n vertices with s cut vertices by Cn,s.

Any graph on n vertices has at most n−2 cut vertices. The path Pn is the only graph

on n vertices with n− 2 cut vertices. Hence for Cn,s, we consider 0 6 s 6 n− 3. Let

Ct
n,s be the set of all trees on n vertices with s cut vertices. In a tree, every vertex

is either a pendant vertex or a cut vertex. So, Ct
n,s = Tn,n−s. Hence the next result

follows from Proposition 5.2.1 and Theorem 5.2.4.

Theorem 5.3.1. For 0 6 s 6 n− 3, the tree T (bn−s
2
c, dn−s

2
e, s) uniquely maximizes

the Wiener index and the tree Tn,n−s uniquely minimizes the Wiener index over Ct
n,s.

For 2 6 m 6 n, let v1, v2, . . . , vm be the vertices of the complete graph Km. For

i = 1, 2, . . . ,m consider the paths Pli , li > 1 such that l1 + l2 + · · · + lm = n. By

identifying a pendant vertex of the path Pli with the vertex vi (if li = 1, then identify

the single vertex with vi), for i = 1, 2, . . . ,m, we obtain a graph on n vertices with

n − m cut vertices. We denote this graph by Kn
m(l1, l2, . . . , lm). In this section, we
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obtain the graph which minimizes the Wiener index over Cn,s. We prove the following

result.

Theorem 5.3.2. For 0 6 s 6 n− 3, the graph Kn
n−s(l1, l2, . . . , ln−s) with |li− lj| 6 1

for all i, j ∈ {1, 2, . . . , n− s} uniquely minimizes the Wiener index over Cn,s.

To prove our result, we develop some theory about the Wiener index of graphs in

Cn,s. First we recall the definition of the block graph of a graph.

Let G be a graph. The block graph BG of G is the graph with V (BG) as the set of

blocks of G and two vertices of BG are adjacent whenever the corresponding blocks

in G contain a common cut vertex of G. We call a block B in G, a pendant block if

there is exactly one cut vertex of G in B. The block corresponding to a central vertex

in BG is called a central block of G. Two blocks in G are said to be adjacent blocks if

they share a common cut vertex.

Lemma 5.3.3. Let G be a graph which minimizes the Wiener index over Cn,s. Then

every block of G is a complete graph.

Proof. Let B be a block of G which is not complete. Then there are at least two non

adjacent vertices in B. Let u and v be two non adjacent vertices in B. Form a new

graph G′ from G by joining the edge {u, v}. Clearly G′ ∈ Cn,s and by Lemma 5.1.1,

W (G′) < W (G), which is a contradiction.

Lemma 5.3.4. Let G be a graph which minimizes the Wiener index over Cn,s. Then

every cut vertex of G is shared by exactly two blocks.

Proof. Let c be a cut vertex in G shared by more than two blocks say B1, B2, . . . , Bk,

k > 3. Construct a new graph G′ from G by joining all the non adjacent vertices of⋃k
i=2Bi. Then G′ ∈ Cn,s and by Lemma 5.1.1, W (G′) < W (G), which is a contradic-

tion.
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Lemma 5.3.5. Let m > 3. For i, j ∈ {1, 2, . . . ,m}, if li 6 lj − 2, then

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm)) < W (Kn

m(l1, . . . , li, . . . , lj, . . . , lm)).

Proof. Let u be the pendant vertex of Kn
m(l1, . . . , li+1, . . . , lj−1, . . . , lm) on the path

Pli+1 and v be the pendant vertex of Kn
m(l1, . . . , li, . . . , lj, . . . , lm) on the path Plj . Let

w1 and w2 be the vertices adjacent to u and v, respectively. Then using Lemma 5.1.2

we have

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm))−W (Kn

m(l1, . . . , li, . . . , lj, . . . , lm))

= DKn−1
m (l1,...,li,...,lj−1,...,lm)(w1)−DKn−1

m (l1,...,li,...,lj−1,...,lm)(w2) < 0,

since li < lj − 1 and m > 3.

Let G be a graph in which every cut vertex is shared by exactly two blocks. Then

BG is a tree. So, BG has either one central vertex or two adjacent central vertices

and hence G has either one central block or two adjacent central blocks.

Lemma 5.3.6. Let G be a graph which minimizes the Wiener index over Cn,s. If

s > 2, then every pendant block of G is K2.

Proof. By Lemma 5.3.3, all the blocks in G are complete. Suppose B is a pendant

block of G which is not K2. Let V (B) = {v1, v2, . . . , vm} with m > 3. Assume v1

is the cut vertex of G in B which is shared by another block B′ with V (B′) =

{v1 = u1, u2, . . . , ur} and r > 2. Construct a new graph G′ from G as follows: Delete

the edges {v2, vj}, j = 3, 4, . . . ,m and add the edges {vj, ui}, j = 3, 4, . . . ,m and i =

2, 3, . . . r. When G changes to G′ the only type of distances which increase are d(v2, vj),

j = 3, 4, . . . ,m. Each such distance increases by one and hence the total increment
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in distances for vj, j = {3, . . . ,m} is exactly m − 2. The distance d(vj, ui), j =

3, 4, . . . ,m; i = 2, 3, . . . r decreases by one. Since r > 2, the total distance decreases

by such pair of vertices is at leastm−2. Since s > 2 there exists a vertex w belonging to

some other block B′′ such that d(vj, w), j = 3, 4, . . .m decreases by one. So W (G′) <

W (G), which is a contradiction.

Lemma 5.3.7. Let G be a graph which minimizes the Wiener index over Cn,s. If

s > 2 then all non-central blocks of G are K2.

Proof. Since G minimizes the Wiener index over Cn,s, by Lemma 5.3.3 and Lemma

5.3.6, all blocks of G are complete and all pendant blocks are K2. Assume that G

has a non-pendant non-central block which is not K2. By Lemma 5.3.4, every cut

vertex of G is shared by exactly two blocks. Let B be a central block in G. Let B1

be a non-central non-pendant block with at least 3 vertices and a cut vertex (of G)

c1 ∈ V (B1) such that a path Pl is attached to B1 at c1. Since B1 is a non-pendant

block, so there is a cut vertex (of G) c2 ∈ V (B1) different from c1, shared by another

block B2 such that the vertices corresponding to the blocks B1, B2 and B (starting

from B1) in the tree BG lie on a path.

Let V (B1) = {c1 = u1, u2, . . . , um1 = c2} and V (B2) = {v1, v2, . . . , vm2 = c2}.

Construct a new graph G′ from G as follow: Delete the edges {c1, ui} for all ui ∈

V (B1) \ {c1, c2} and add the edges {ui, vj} for all ui ∈ V (B1) \ {c1, c2} and vj ∈

V (B2) \ {c2}.

For i = 2, . . . ,m1−1, let Hi be the maximal connected component of G containing

exactly one vertex ui of B1. Let Pl : t1t2 · · · tl be the path with t1 identified with c1.

When G changes to G′, the only type of distances which increase in G′ are dG′(u, tj)

where u ∈
⋃m1−1
i=2 V (Hi) and j = 1, 2, . . . , l. Each such distance increases by one

in G′. For any other pair of vertices, the distance between them either decreases or
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remains the same. Since B1 is not a central block, for each tj, j = 1, 2, . . . , l there

exists a vertex t′j ∈ V (G) \
(⋃m1−1

i=2 V (Hi) ∪ {t1, t2, . . . , tl, v1, v2, . . . , vm2}
)

such that

dG′(u, t
′
j) decreases by one where u ∈

⋃m1−1
i=2 V (Hi). So, the increment in distances

by the pairs u, tj are neutralized by the pairs u, t′j. Apart from this, at least the

distances dG′(ui, vj) for i = 2, 3, . . . ,m1− 1 and j = 1, 2, . . . ,m2− 1 decreases by one.

So W (G′) < W (G), which is a contradiction. Hence for s > 2, all non-central blocks

of G are K2.

Proof of Theorem 5.3.2: Let G be a graph which minimizes the Wiener index over

Cn,s.

Claim: G ∼= Kn
n−s(l1, . . . , ln−s) for some l1, l2, . . . , ln−s.

By Lemma 5.3.3 and Lemma 5.3.4, every block of G is complete and every cut vertex

of G is shared by exactly two blocks.

If s = 0, then G has exactly one block. So G ∼= Kn
∼= Kn

n(1, 1, · · · , 1).

If s = 1, then G has exactly two complete blocks with a common vertex w

(say). Let B1 and B2 be the two blocks of G. If any of B1 or B2 is K2 then G ∼=

Kn
n−1(2, 1, . . . , 1). Suppose neither of B1 or B2 is complete. Then |V (B1)|, |V (B2)| >

3. Let V (B1) = {u1, u2, . . . , um1 = w} and V (B2) = {v1, v2, . . . , vm2 = w} with

m1,m2 > 3. Construct a new graph G′ from G as follow: Delete the edges {u1, ui}, i =

2, 3, . . . ,m1 − 1 and add the edges {ui, vj}, i = 2, 3, . . . ,m1 − 1; j = 1, 2, . . . ,m2 − 1.

Clearly G′ ∈ Cn,1. Then, the only type of distances which increase are d(u1, uj), j =

2, 3, . . . um1−1 and each such distance increases by one. So total increment in distance

is exactly m1−2. Also each distance d(ui, vj), i = 2, 3, . . . ,m1−1; j = 2, 3, . . .m2−1

decreases by one. The total decrement is (m1 − 2)(m2 − 1). Since m1,m2 > 3, so

W (G′) < W (G), which is a contradiction. Hence G ∼= Kn
n−1(2, 1, . . . , 1).

If s > 2, then G has s + 1 blocks and also G has either one central block or two
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adjacent central blocks. By Lemma 5.3.7, all non-central blocks of G are K2. If G

has exactly one central block, then G ∼= Kn
n−s(l1, . . . , ln−s) for some l1, l2, . . . , ln−s.

Suppose G has two central blocks and G is not isomorphic to Kn
n−s(l1, . . . , ln−s) for

any l1, l2, . . . , ln−s. Then each of the central blocks of G has at least 3 vertices.

Let B1 and B2 be the two central blocks with a common vertex w. Let V (B1) =

{u1, u2, . . . , um1 = w} and V (B2) = {v1, v2, . . . , vm2 = w} with m1,m2 > 3. Let

H1(H2) be the maximal connected component of G containing exactly one vertex w

of B2(B1). Let Pl : wu1t3 · · · tl be the longest path in H1 starting at w containing u1

such that non of the vertices t3, . . . , tl belong to B1. Take w as t1 and u1 as t2 in Pl.

Since B1 and B2 are central blocks, so there exists a path P ′l : t′1t
′
2 · · · t′l on l vertices

in H2 starting at w = t′1 and containing exactly two vertices of B2. Construct a new

graph G′ from G as follow: Delete the edges {u1, ui}, i = 2, 3, . . . ,m1− 1 and add the

edges {ui, vj}, i = 2, 3, . . . ,m1 − 1; j = 1, 2, . . . ,m2 − 1. Clearly G′ ∈ Cn,s. The only

type of distances which increase in G′ are dG′(u, tj) where u ∈ V (H1) \ V (Pl) and

j = 2, . . . , l also each such distance increases by one. The distance dG′(u, t
′
j) decreases

by one where u ∈ V (H1) \ V (Pl) and j = 2, . . . , l. So, the increment in distances

by the pairs {u, tj} are neutralized by the pairs {u, t′j}. Since m2 > 3, there exist at

least one vertex w′ in B2 which is not in P ′l . For each u ∈ V (H1)\V (Pl), the distance

dG′(u,w
′) decreases by one. So, W (G′) < W (G), which is a contradiction. Hence

G ∼= Kn
n−s(l1, . . . , ln−s) for some l1, l2, . . . , ln−s. This proves the claim.

Suppose |li − lj| > 2 for some i, j ∈ {1, 2, . . . n − s}. Without loss of generality

assume that l1 6 l2 − 2. Then, by Lemma 5.3.5, W (Kn
n−s(l1 + 1, l2 − 1, . . . , ln−s)) <

W (Kn
n−s(l1, l2, . . . , ln−s)), which is a contradiction. So, |li − lj| 6 1 for all i, j ∈

{1, 2, . . . , n− s} and this completes the proof.
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5.4 Future works

Though the Wiener index is the oldest known graphical index, there are still some

classes of graphs in which the graphs maximizing or minimizing the Wiener index

are not known. Over graphs with fixed number of cut vertices, we only obtained the

graph which minimizes the Wiener index. In this class, the graph which maximizes

the Wiener index is still unknown. Further, it is observed that, in the study of

the extremal problems for many classes of graphs, the Wiener index has a reverse

correlation with the subgraph index. But in [38], the authors have given an example

of two trees T1 and T2 such that W (T1) > W (T2) and F (T1) > F (T2). A detailed

study may be needed to say anything concretely regarding the relation between the

Wiener index and the subgraph index of graphs.
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Chapter 6

The total eccentricity index of a

graph

In this chapter, we obtain the graphs which maximize the total eccentricity index over

graphs with fixed number of pendant vertices and the graphs which minimize the total

eccentricity index over graphs with fixed number of cut vertices. Further, over graphs

with s cut vertices, we obtain the graphs maximizing the total eccentricity index for

s = 0, 1, n− 3, n− 2 and propose a conjecture for 2 6 s 6 n− 4.

6.1 Some preliminary results

The following lemma is straightforward which shows the effect of a new edge on the

total eccentricity index of a graph.

Lemma 6.1.1. Let u and v be two non-adjacent vertices of a graph G. Let G′ be the

graph obtained from G by joining u and v with an edge. Then ε(G) > ε(G′).

Lemma 6.1.2 ([18], Theorem 2.1 and [40], Lemma 4.5). Let Gk,l be the graph defined

in Section 4.1. If 1 6 k 6 l, then ε(Gk−1,l+1) > ε(Gk,l).
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In a graph G, a vertex u is called an eccentric vertex of v if e(v) = d(v, u). In the

following lemma, we compare the total eccentricity index of two graphs, where one

graph is obtained from the other by some graph perturbation.

Lemma 6.1.3. Consider two connected graphs H1 and H2 with |V (H1)|, |V (H2)| > 2

and a path P : v1v2 · · · vd with d > 2. Suppose u ∈ V (H1) and v ∈ V (H2). Let G be

the graph obtained from H1, H2 and P by identifying the vertices u and v with v1 and

let G′ be the graph obtained from H1, H2 and P by identifying the vertices u with v1

and v with vd (See Figure 6.1). Then ε(G′) > ε(G).

H1 H2

G

u

v2

vd−1

vd

H1 H2

G′

u
v2 vd−1

v

Figure 6.1: The graphs G and G′

Proof. Let x, y ∈ V (H1). Then from the construction of both G and G′ (see Figure

6.1), it is clear that the length of all the shortest paths between x and y remain

unchanged in both G and G′. So, dG′(x, y) = dG(x, y). Similarly, for any two vertices

either in H2 or in P , the distance between them remain unchanged in both G and

G′. Now take one vertex in Hi, i = 1, 2 and the other vertex is in P . Without loss of
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generality, suppose z ∈ V (H1) and w ∈ V (P ). Then

dG′(z, w) = dG′(z, u) + dG′(u,w)

= dG(z, u) + dG(u,w)

= dG(z, w).

Finally suppose a ∈ V (H1) and b ∈ V (H2). Then dG′(a, b) = dG′(a, u) + dG′(u, v) +

dG′(v, b) > dG′(a, u)+dG′(v, b) = dG(a, u)+dG(u, b) = dG(a, b). So, while moving from

G to G′, the eccentricity of each vertex either increases or remains same. Now it is

enough to find a vertex x0 belong to both V (G) and V (G′) such that eG′(x0) > eG(x0).

Without loss of generality, take diam(H1) = D1 > diam(H2) = D2. Let x0 ∈

V (H2) be a vertex farthest from v. Then dH2(x0, v) > D2

2
. Similarly, there exists

y0 ∈ V (H1) farthest from u such that dH1(y0, u) > D1

2
. Then dG(x0, y0) = dG(x0, u) +

dG(u, y0) > D2. So, an eccentric vertex of x0 in G lies outside H2. Therefore,

eG(x0) = dG(x0, vd) or eG(x0) = dG(x0, y0). But eG′(x0) = dG′(x0, v) + dG′(v, u) +

dG′(u, y0) > eG(x0). Hence ε(G′) > ε(G).

Corollary 6.1.4 ([11], Corollary 1 and [40], Proposition 4.3). Among all trees on n

vertices, the total eccentricity index is maximised by the path and minimised by the

star.

An easy calculation gives ε(K1,n−1) = 2n−1 and ε(Pn) = b3n2−2n
4
c. Since ε(Kn) =

n, so for any connected graph G with n vertices,

n 6 ε(G) 6

⌊
3n2 − 2n

4

⌋
.

Lemma 6.1.5. Let B and B′ be two blocks in G. Suppose d(B,B′) is maximum

among all pairs of blocks in G. Then both B and B′ are pendant blocks.
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Proof. Suppose B is not a pendant block. Then B contains at least two cut vertices of

G. Let u and v be two cut vertices of G in B such that d(B,B′) = d({u}, B′). Since v

is a cut vertex of G there exists a block B′′ (other than B and B′) containing v. Then

d(B′′, B′) = d({v}, B′) = d(v, u) + d({u}, B′) > d(B,B′), which is a contradiction.

Hence B is a pendant block of G. Similarly, we can show that B′ is also a pendant

block of G.

Lemma 6.1.6. Let B be a block in G. Suppose |V (B)| = r > 3 and at most one

vertex of B is a cut vertex in G. Let G′ be the graph obtained from G by replacing B

with the cycle Cr. Then ε(G′) > ε(G).

Proof. Since |V (B)| > 3 and B is a block in G, so B must contain a cycle. Let

x ∈ V (G) and y be an eccentric vertex of x in G.

First suppose G has no cut vertex. Then G = B and G′ = Cr. Let Cl : v1v2 . . . vlv1

be a largest cycle in B. Since G has no cut vertex, so there exists a cycle Ck

containing both x and y. As Cl is a largest cycle of G, so k 6 l. Therefore,

eG(x) 6 bk
2
c 6 b l

2
c 6 b r

2
c. But the eccentricity of any vertex of G′ is b r

2
c. Hence the

result follows for this case.

Now suppose w ∈ V (B) is the cut vertex in G. Let Cm : wv2 . . . vmw be a largest

cycle in B containing w. Delete the vertices of B not in Cm and insert those r −m

vertices between vdm
2
e and vdm

2
e+1 to form G′ from G. Let S = (V (G)\V (B))∪{w} ⊆

V (G). Since (V (G) \ V (B)) ∪ {w} = (V (G′) \ V (Cr)) ∪ {w} so S ⊆ V (G′).

First suppose x ∈ S ⊆ V (G). If y ∈ S then eG(x) = dG(x, y) = dG′(x, y) 6 eG′(x).

If y ∈ V (G) \ S, then eG(x) = dG(x, y) = dG(x,w) + dG(w, y) 6 dG′(x,w) + b r
2
c =

eG′(x).

Now suppose x ∈ V (G) \ S = V (G′) \ S. If y ∈ V (G) \ S, eG(x) = dG(x, y) 6
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b r
2
c 6 eG′(x). If y ∈ S, then eG(x) = dG(x, y) = dG(x,w) + dG(w, y). In G′, if

x ∈ {v2, . . . , vm} then dG(x,w) 6 dG′(x,w) and hence eG(x) = dG(x,w) + dG(w, y) 6

dG′(x,w) +dG′(w, y) = dG′(x, y) 6 eG′(x). In G′, if x /∈ {v2, . . . , vm} then dG′(x,w) >

bm
2
c. Since Cm is the largest cycle in B containing w, so dG(x,w) 6 bm

2
c 6 dG′(x,w).

Therefore, eG(x) = dG(x,w) + dG(w, y) 6 dG′(x,w) + dG′(w, y) = dG′(x, y) 6 eG′(x).

This completes the proof.

6.2 Graphs with fixed number of pendant vertices

As in previous chapters, we take 0 6 k 6 n−2 and n > 4. Note that all the elements

of Hn,n−2 are of the form Tl,n−l−2,2, where 1 6 l 6 n − 3. It is easy to check that

the total eccentricity index of Tl,n−l−2,2 is same for any l, 1 6 l 6 n− 3. So, we take

0 6 k 6 n− 3.

We are familiar with the tree Tn,k. Here we define a new tree belonging to Tn,k.

For k > 2 with k|n− 2, let T tn,k be the tree having two adjacent vertices u and v with

degree t + 1 and k − t + 1, respectively, such that T tn,k − u − v = kPn−2
k
. Note that

T tn,k ∈ Tn,k.

vu

u1v1 u2v1
un−2

k
vn−2

k

t k − t

T tn,k

Figure 6.2: The tree T tn,k

In [40], the authors have studied the total eccentricity index (in terms of average

eccentricity) of trees over Tn,k and proved the following results.
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Proposition 6.2.1 ([40], Proposition 4.7). Let T ∈ Tn,k. Then

ε(T ) 6 ε(T (l, k − l, n− k)), for any 1 6 l 6 k − 1,

and

ε(T ) >


ε(Tn,k) if k - n− 2,

ε(T tn,k) if k | n− 2,

for any 1 6 t 6 k − 1.

Since ε(Pn) is known, the value of ε(T (l,m, d)) can be easily calculated. We have

ε(T (l, k − l, n− k)) =

⌊
3n2 − k2 − 2nk + 2(n+ k)

4

⌋
.

The values of ε(Tn,k) and ε(T tn,k) are given in [40].

In [41] and [50], the authors have studied the total eccentricity index (in terms of

average eccentricity) of unicyclic graphs and proved the following results.

Proposition 6.2.2 ([41], Theorem 3.3 and [50], Theorem 2.3). Let H be a unicyclic

graph on n > 5 vertices. Then

2n− 1 6 ε(H) 6

⌊
3n2 − 4n− 3

4

⌋
.

Furthermore, the left equality happens if and only if H ∼= Up
n,3 and the right equality

happens if and only if H ∼= U l
n,3.

The authors have proved the Proposition 6.2.2 for n > 6. A simple calculation

shows that the result is also true for n = 5. So, we modified the statement in

Proposition 6.2.2 by taking n > 5. It is clear that Kn uniquely minimizes the total

eccentricity index over Hn,0. For 1 6 k 6 n − 3, we have the following result due to

Tang and West.
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Theorem 6.2.3 ([42], Theorem 3.4). Let G ∈ Hn,k, n > 3 and 1 6 k 6 n−3, . Then

ε(G) > 2n− 1 and the equality happens if G ∼= P k
n .

Now we prove some lemmas to prove the corresponding maximization result over

Hn,k.

Lemma 6.2.4. Let H be a graph with at least two vertices and u ∈ V (H). Let G be

the graph obtained by joining an edge between u and the pendant vertex of U l
r,g with

g > 4. Let G′ be the graph obtained by joining an edge between u and the pendant

vertex of U l
r,3. Then ε(G) < ε(G′).

Proof. Let V (U l
r,g) = {v1, v2, . . . , vr} where v1v2 · · · vr−g is the path Pr−g, vr−g+1vr−g+2

· · · vrvr−g+1 is the cycle Cg and vr−g is adjacent to vr−g+1. We form G′ from G by

naming the vertices of U l
r,3 as following: v1v2 · · · vr−3 is the path Pr−3, vr−2vr−1vrvr−2

is the cycle C3 and vr−3 is adjacent to vr−2. Note that V (G) = V (G′). We will prove

that for any v ∈ V (G) = V (G′), eG(v) 6 eG′(v) and strict inequality occurs for atleast

one vertex.

Suppose v ∈ V (G) = V (G′). Let v′ be an eccentric vertex of v in G. Following

are the three cases.

Case-I: v ∈ V (H).

If v′ ∈ V (H), then eG(v) = dG(v, v′) = dG′(v, v
′) 6 eG′(v). If v′ /∈ V (H), then vr−1

is an eccentric vertex of v in G′. So, eG(v) = dG(v, v′) = dG(v, u) + dG(u, v′) 6

dG′(v, u) + r − 1 = eG′(v).

Case-II: v ∈ {v1, v2, · · · , vr−1}.

We have dG(vi, u) 6 dG′(vi, u) for 1 6 i 6 r − 1. If v′ ∈ V (H), then eG(v) =

dG(v, v′) = dG(v, u) + dG(u, v′) 6 dG′(v, u) + dG′(u, v
′) = dG′(v, v

′) 6 eG′(v). If
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v′ /∈ V (H), then v′ is in the cycle Cg. So,

eG(vi) =


r − g − i+ 1 + bg

2
c if 1 6 i 6 r − g,

bg
2
c if r − g + 1 6 i 6 r − 1.

Thus, for 1 6 i 6 r − g, vr−1 is an eccentric vertex of vi in G′. So, we have eG(vi) =

r − g − i+ 1 + bg
2
c = r − i− (g − bg

2
c − 1) 6 r − i− 1 = eG′(vi). The last inequality

holds since g > 4. For r− g+ 1 6 i 6 r− 1, eG(vi) = bg
2
c 6 eG′(vi), since vi lies on a

path in G′ of length at least g.

Case-III: v = vr.

Let z be a vertex of H farthest from u. In this case, eG(vr) = max{r − g + 2 +

d(u, z), bg
2
c}. Since g > 4 so r − 1 > max{r − g + 2, bg

2
c} and hence eG(vr) <

r − 1 + d(u, z) = eG′(vr).

Therefore, ε(G) < ε(G′) and this completes the proof.

Lemma 6.2.5. For n > 7, ε(Cn
3,3) > ε(Cn).

Proof. We have

ε(Pn) =


3n2−2n

4
if n is even,

3n2−2n−1
4

if n is odd,

and it is easy to check that

ε(Cn) =


n2

2
if n is even,

n2−n
2

if n is odd.

Also

ε(Cn
3,3) = ε(Pn−2) + 2(n− 3).
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So,

ε(Cn
3,3) =


3
4
n2 − 3

2
n− 2 if n is even,

3
4
n2 − 3

2
n− 9

4
if n is odd.

Hence

ε(Cn
3,3)− ε(Cn) =


n2

4
− 3

2
n− 2 if n is even,

n2

4
− n− 9

4
if n is odd.

> 0, for n > 7.

Lemma 6.2.6. Let m1,m2 > 3 and n = m1+m2−1. For n > 7, ε(Cn
3,3) > ε(Cn

m1,m2
).

Proof. Without loss of generality assume that m1 6 m2. As n > 7, so m2 > 4. If

m2 = 4, then Cn
m1,m2

= C7
4,4 and ε(C7

4,4) = 22 < 24 = ε(Cn
3,3).

Suppose n > 8. Then m2 > 5. Let Cm2 : v1v2 · · · vm2v1 be the subgraph of Cn
m1,m2

with deg(v1) = 4. Delete the edge {vdm2
2
e, vdm2

2
e+1} from Cn

m1,m2
to get a new graph G.

By Lemma 6.1.1, ε(Cn
m1,m2

) 6 ε(G). Note that in G there are two paths (v1v2 . . . vdm2
2
e

and v1vm2 . . . vdm2
2
e+1) attached at v1 each of length at least 2. By grafting of edges

operation we can get a new graph G′ from G where G′ is the graph in which two

paths, one of length 1 and other of length m2 − 2 are attached at a vertex v1 of Cm1 .

Then by Lemma 6.1.2, ε(G) < ε(G′).

Let P : v1v2 and P ′ : v1vm2vm2−1 · · · v3 be the paths attached at v1 in G′. Observe

that if v2 is an eccentric vertex of some x ∈ V (G′) then m1 = 3 and the two vertices

of C3 other than v1 are also the eccentric vertices of x. So, we will not consider v2

as an eccentric vertex of any vertex of G′. Construct a new graph G′′ from G′ by

deleting the edge {v1, v2} and adding the edges {v2, v4} and {v2, v3}.
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For any x ∈ V (G′) \ {v2}, eG′(x) = eG′′(x). Let w ∈ V (Cm1) be a vertex farthest

from v1. Then eG′′(v2) = dG′′(v2, v1) + dG′′(v1, w) = m2 − 2 + dG′′(v1, w) = m2 − 2 +

dG′(v1, w) > max{m2 − 1, 1 + dG′(v1, w)} = eG′(v2) and hence ε(Cn
m1,m2

) < ε(G′) 6

ε(G′′). Note that G′′ ∼= Cn
m1,3

. If m1 > 4, then the result follows from Lemma

6.2.4.

We now prove the maximization result on the total eccentricity index over Hn,k.

Theorem 6.2.7. Let G ∈ Hn,k and 0 6 k 6 n− 3. Then

(i) for 2 6 k 6 n−3, ε(G) 6

⌊
3n2 − k2 − 2nk + 2(n+ k)

4

⌋
and equality is attained

by the trees T (l, k − l, n− k) for any 1 6 l 6 k − 1.

(ii) for k = 1, ε(G) 6
⌊

3n2−4n−3
4

⌋
and equality holds if and only if G ∼= U l

n,3.

(iii) For n > 7 and k = 0, ε(G) 6
⌊

3n2−6n−8
4

⌋
and equality holds if and only if

G ∼= Cn
3,3.

Proof. (i) Suppose G � T (l, k − l, n− k) for any 1 6 l 6 k − 1. If G is not a tree,

construct a spanning tree G′ from G by deleting some edges. If G is a tree,

then take G′ same as G. By Lemma 6.1.1, ε(G) 6 ε(G′). While constructing

G′ from G, the number of pendant vertices may increase in G′. Suppose G′

has more than k pendant vertices. Since k > 2, G′ has at least one vertex of

degree greater than 2 and at least two paths attached to it. Consider a vertex

v of G′ with deg(v) > 3 and two paths Pl1 , Pl2 , l1 > l2 attached at v. Using

grafting of edges operation on G′, we get a new tree G̃ with number of pendant

vertices one less than the number of pendant vertices of G′ and by Lemma 6.1.2,

ε(G′) < ε(G̃). Continue this process till we get a tree with k pendant vertices

from G̃. By Lemma 6.1.2, every step in this process the total eccentricity index

will increase. So, we will reach at a tree T of order n with k pendant vertices. If
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G′ has k pendant vertices then take T as G′. Thus ε(G′) 6 ε(T ). By Proposition

6.2.1, ε(T ) 6 ε(T (l, k − l, n− k)) for any 1 6 l 6 k − 1. Now the result follows

as ε(T (l, k − l, n− k)) =

⌊
3n2 − k2 − 2nk + 2(n+ k)

4

⌋
for any 1 6 l 6 k − 1.

(ii) Suppose G is not isomorphic to U l
n,3. Since G is connected and has exactly

one pendent vertex, it must contain a cycle. Let Cg be a cycle in G. If G is

a unicyclic graph then by Proposition 6.2.2, ε(G) 6 b3n2−4n−3
4
c with equality

if and only if G ∼= U l
n,3. If G has more than one cycle, then construct a new

graph G′ from G by deleting edges from all cycles other than Cg, so that the

graph remains connected and G′ � U l
n,3. Then, by Lemma 6.1.1, ε(G) 6 ε(G′)

and G′ is a unicyclic graph on n vertices with girth g. By Proposition 6.2.2,

ε(G) 6 ε(G′) 6 b3n2−4n−3
4
c and equality holds if and only if G ∼= U l

n,3.

(iii) Let G � Cn
3,3. First suppose G has no cut vertex. Then G has exactly one

block, which is G itself. By Lemma 6.1.6, ε(G) 6 ε(Cn) and the result follows

from Lemma 6.2.5.

Now suppose G has at least one cut vertex. Then G has at least two blocks.

Let H1 and H2 be two blocks such that distance between them is maximum

among all pair of blocks in G. Suppose |V (H1)| = n1 and |V (H2)| = n2.

First suppose d(H1, H2) = 0. Then there is exactly one cut vertex w in G and

every block is a pendant block with at least 3 vertices. Replace each block by

a cycle on same number of vertices to get a new graph G′. Then by Lemma

6.1.6, ε(G) 6 ε(G′). If there are exactly two cycles in G′, then the result follows

by Lemma 6.2.6. If there are more than two cycles in G′, then keep two cycles

say Cn1 and Cn2 unchanged and from all other cycles delete an edge with an

end point w to get a new graph G′′. Clearly ε(G′′) > ε(G) but number of

pendant vertices in G′′ is more than that of G. If there are more than one path
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attached at w in G′′, then sequentially apply grafting an edge operation to G′′

to obtain a new graph G̃ such that G̃ has exactly one path attached at w. If

exactly one path is attached at w in G′, then take G̃ as G′′. By Lemma 6.1.2,

ε(G̃) > ε(G′′). Note that G̃ ∈ Hn,1 and is isomorphic to the graph obtained by

identifying a vertex x of Cn1 , a vertex y of Cn2 and a pendant vertex z of the

path Pn+2−n1−n2 . Let v be the pendant vertex of G̃. Construct a new graph Ḡ

from G̃ by identifying x with v and y with z. Then Ḡ has zero pendant vertex

and by Lemma 6.1.3, ε(Ḡ) > ε(G̃). Now the result follows from Lemma 6.2.4.

Now suppose d(H1, H2) > 1. Replace the blocks (if required) H1 and H2 by

two cycles Cn1 and Cn2 respectively to form a new graph G′ from G. Clearly

G′ ∈ Hn,0 and by Lemma 6.1.6, ε(G′) > ε(G). If G′ is isomorphic to Cn
n1,n2

then the result follows from Lemma 6.2.4. Otherwise, there must be some

blocks in G′ other than Cn1 and Cn2 with at least three vertices. Remove edges

say {e′1, . . . , e′p} from all such blocks to form a new graph G′′ such that G′′ is

connected and there are no cycles other than Cn1 and Cn2 . We can choose the

edges {e′1, . . . , e′p} such that G′′ is not isomorphic to Cn
n1,n2

. Then by Lemma

6.1.1, ε(G′′) > ε(G′).

Let P : v1v2 . . . vk be the path in G′′ joining Cn1 and Cn2 where v1 ∈ V (Cn1) and

vk ∈ V (Cn2). Let v0 and v′0 be the two vertices on Cn1 adjacent with v1, and let

vk+1 and v′k+1 be the two vertices on Cn2 adjacent with vk. Consider the edges

ei = {vi, vi+1} for i = 1, 2, . . . , k − 1,e0 = {v1, v0}, e′0 = {v1v
′
0}, ek = {vk, vk+1}

and e′k = {vk, v′k+1} in G′′.

Since G′′ � Cn
n1,n2

and contains exactly two cycles there are some non trivial

trees attached at vi for some i = 1, 2, . . . , k. Let Ti be the tree attached at vi

for i = 1, 2, . . . , k. Note that for i = 2, . . . , k−1, Ti is the component containing
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vi in G′′ \ {ei−1, e1+1}, T1 is the component containing v1 in G′′ \ {e1, e0, e
′
0} and

Tk is the component containing vk in G′′ \ {ek−1, ek, e
′
k}.

Suppose some Ti’s, i = 1, . . . , k are neither trivial trees nor paths with vi as

a pendant vertex. Then form G̃ from G′′ by sequentially applying grafting of

edges operations on those trees such that all Ti, i = 1, . . . , k become paths with

vi as a pendant vertex. If all Ti, i = 1, . . . , k are either trivial or paths with vi

as a pendant vertex then take G̃ as G′′. By Lemma 6.1.2, ε(G̃) > ε(G′′).

Let vi be the vertex nearest to v1 in T̃ such that deg(vi) > 3 (strict inequality

occurs only when vi = v1 or vk, in these cases d(vi) = 4) and suppose wi is the

pendant vertex of the path Pi attached at vi. If vi = v1, delete the edge {v1, v2}

and add the edge {w1, v2} and if vi 6= v1, then delete the edge {vi, vi−1} and

add the edge {vi−1, wi}. Repeat this till deg(v1) = deg(vk) = 3 and deg(vi) = 2

for i = 2, . . . , k − 2. . This way we get the graph Cn
n1,n2

from G̃ and by Lemma

6.1.3, ε(Cn1,n2) > ε(G̃). Now the result follows from Lemma 6.2.4.

For 3 6 n 6 6, it can be easily checked that Cn uniquely maximizes the total

eccentricity index over Hn,0.

6.3 Graphs with fixed number of cut vertices

Since every tree with s cut vertices has n − s pendant vertices, so the next result

follows from Proposition 6.2.1.

Theorem 6.3.1. Let T ∈ Ct
n,s. Then

ε(T ) 6 ε(T (l, n− l − s, s)), for any 1 6 l 6 n− s− 1,
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and

ε(T ) >


ε(Tn,n−s) if (n− s) - n− 2,

ε(T tn,n−s) if (n− s) | n− 2,

for any 1 6 t 6 n− s− 1.

We now study the problems of finding the graphs which minimize or maximize the

total eccentricity index over Cn,s . Let Kn
m(l1, l2, . . . , lm) with li > 1, for i = 1, 2, . . . ,m

be the graph defined in Section 5.3.

Lemma 6.3.2. Let m > 2 and lk = max{l1, l2, . . . , lm}. Suppose lj 6 lk − 2, for

some j ∈ {1, . . . , lk−1, lk+1, . . . , lm}. Then ε(Kn
m(l1, l2, . . . , lj +1, . . . , lk−1, . . . , lm)) 6

ε(Kn
m(l1, l2, . . . , lm)).

Proof. Let G = Kn
m(l1, l2, . . . , lm). Let Plj : u1u2 · · ·ulj and Plk : w1w2 · · ·wlk be

the paths in G such that deg(u1) = deg(w1) = 1,ulj = vj and wlk = vk. Delete

the edge {w1, w2} and add the edge {u1, w1} in G to form a new graph G′. Clearly

G′ ∼= Kn
m(l1, l2, . . . , lj + 1, . . . , lk − 1, . . . , lm).

If m = 2 then G ∼= Plk+lj
∼= G′ and so ε(G′) = ε(G). Therefore, assume m > 3.

Let S1 = {w1, w2, . . . , wlk = vk, u1, . . . , ulj = vj} and S2 = V (G) \ S1 = V (G′) \ S1.

So, S1 ∩ S2 = ∅ and S1 ∪ S2 = V (G) = V (G′). We show that, while moving to

G′ from G, the eccentricity of every vertex decreases or remains the same. Suppose

v ∈ V (G) = V (G′). Following are the two cases.

Case-I: v ∈ S2

Since lk = max{l1, l2, . . . , lm}, for any v ∈ S2, w1 is an eccentric vertex of v in G.

Then, eG(v) = dG(v, w1) and eG′(v) is either dG′(v, w2) = dG(v, w2) or dG′(v, w2) + 1.

So we get, eG(v) > eG′(v) for v ∈ S2.
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Case-II: v ∈ S1

Let lq = max{l1, . . . , lk−1, lk+1, . . . , lm} and let z be the pendant vertex of G associated

with Plq . Since lk > lj + 2 so lq > lj. First consider lq > lj. Then eG(v) = dG(v, w1)

or dG(v, z).

Subcase-I: eG(v) = dG(v, w1)

Then v 6= w1 and dG(v, z) 6 dG(v, w1). Since lq > lj, so eG′(v) = dG′(v, w2) or

dG′(v, z). But dG′(v, w2) = dG(v, w2) < dG(v, w1) = eG(v) and dG′(v, z) = dG(v, z) 6

dG(v, w1) = eG(v). So, eG′(v) 6 eG(v).

Subcase-II: eG(v) = dG(v, z)

If v = w1, then dG′(w1, w2) = dG(w1, u1) < dG(w1, z).We have eG′(w1) = dG′(w1, w2) <

dG(w1, z) = eG(w1) or eG′(w1) = dG′(w1, z) = lj+lq < lk−1+lq = dG(w1, z) = eG(w1).

If v 6= w1 then a similar argument as in Subcase-I will give eG′(v) 6 eG(v).

Now consider lq = lj. Then either w1 or u1 is an eccentric vertex of v in G. Also

in G′ either w2 or w1 is an eccentric vertex of v. Let A1 be the w1 − u1 path in

G and let A2 be the w2 − w1 path in G′. Then |V (A1)| = |V (A2)| = lk + lj. So∑
v∈S1

eG(v) = ε(Plk+lj) =
∑

v∈S1
eG′(v).

Hence from Case-I and Case-II, ε(G′) 6 ε(G) and this completes the proof.

Corollary 6.3.3. Let G ∼= Kn
n−s(l1, l2, . . . , ln−s) for some l1, l2, . . . , ln−s. Then,

ε(Kn
n−s(l

′
1, l
′
2, . . . , l

′
n−s)) 6 ε(G), where |l′i − l′j| 6 1 for every i, j ∈ {1, 2, . . . , n− s}.

We now count ε(Kn
n−s(l1, l2, . . . , ln−s)) where |li−lj| 6 1 for every i, j ∈ {1, 2, . . . , n−

s}. Let q = b n
n−sc and take r = n−(n−s)q. Then 0 6 r < n−s. Observe that Kn−s is

a subgraph of Kn
n−s(l1, l2, . . . , ln−s) and Kn

n−s(l1, l2, . . . , ln−s)\E(Kn−s) ∼= rPq+1∪(n−

s − r)Pq. We may consider Pq and Pq+1 as Pq : u1u2 · · ·uq and Pq+1 : w1w2 · · ·wq+1,

respectively, where u1 and w1 are pendant vertices in Kn
n−s(l1, l2, . . . , ln−s).

If r = 0, then q = n
n−s and Kn

n−s(l1, l2, . . . , ln−s) \ E(Kn−s) ∼= (n− s)Pq. So,
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ε(Kn
n−s(l1, l2, . . . , ln−s)) = (n− s)

q∑
i=1

eKn
n−s(l1,l2,...,ln−s)(ui)

= (n− s)
q∑
i=1

(2q − i)

= q(3q − 1)

(
n− s

2

)
=

(
n

n− s

)(
3n

n− s
− 1

)(
n− s

2

)
=
n(2n+ s)

2(n− s)
.

If r = 1 then Kn
n−s(l1, l2, . . . , ln−s) \ E(Kn−s) ∼= Pq+1 ∪ (n− s− 1)Pq. So

ε(Kn
n−s(l1, l2, . . . , ln−s)) =

q+1∑
j=1

eKn
n−s(l1,l2,...,ln−s)(wj) + (n− s− 1)

q∑
i=1

eKn
n−s(l1,l2,...,ln−s)(ui)

=

q+1∑
j=1

(2q + 1− j) + (n− s− 1)

q∑
i=1

(2q + 1− i)

= (n− s)
q∑
i=1

(2q + 1− i) + q

=
q

2
[3(n− s)q + (n− s+ 2)] .

If r > 2 then Kn
n−s(l1, l2, . . . , ln−s) \ E(Kn−s) ∼= rPq+1 ∪ (n− s− r)Pq. So

ε(Kn
n−s(l1, l2, . . . , ln−s)) = r

q+1∑
j=1

eKn
n−s(l1,l2,...,ln−s)(wj) + (n− s− r)

q∑
i=1

eKn
n−s(l1,l2,...,ln−s)(ui)

= r

q+1∑
j=1

(2q + 2− j) + (n− s− r)
q∑
i=1

(2q + 1− i)

= (n− s)
q∑
i=1

(2q + 1− i) + 2rq + r

=
1

2
[2r(2q + 1) + q(3q + 1)(n− s)] .
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This leads to the following Lemma.

Lemma 6.3.4. Let 0 6 s 6 n− 2. Then

ε(Kn
n−s(l1, l2, . . . , ln−s)) =



n(2n+s)
2(n−s) if r = 0

q
2

(3(n− s)q + (n− s+ 2)) if r = 1

1
2

[2r(2q + 1) + q(3q + 1)(n− s)] if r > 2,

where q = b n
n−sc and r = n− (n− s)q.

We will now prove the main result of this section regarding minimization .

Theorem 6.3.5. Let 0 6 s 6 n − 2 and G ∈ Cn,s. Then ε(Kn
n−s(l

′
1, l
′
2, . . . , l

′
n−s)) 6

ε(G), where |l′i − l′j| 6 1 for every i, j ∈ {1, 2, . . . , n− s}.

Proof. Let G ∈ Cn,s and let H be the graph Kn
n−s(l

′
1, l
′
2, . . . , l

′
n−s) where |l′i − l′j| 6 1

for every i, j ∈ {1, 2, . . . , n − s}. If G ∼= Kn
n−s(l1, l2, . . . , ln−s) for some l1, l2, . . . , ln−s

then by Corollary 6.3.3, ε(H) 6 ε(G).

Suppose G � Kn
n−s(l1, l2, . . . , ln−s) for any l1, l2, . . . , ln−s. If some blocks, say

B1, B2, . . . , Bl of G are not complete, then form a new graph G1 from G by joining

the non-adjacent vertices of each Bi, 1 6 i 6 l with edges such that each block of G1

becomes complete, otherwise take G1 as G. Observe that G1 ∈ Cn,s and by Lemma

6.1.1, ε(G1) 6 ε(G). If s = 0, then G ∼= Kn
∼= Kn

n(1, 1, . . . , 1) and the result follows.

Suppose s > 1. Then every cut vertex of G1 is shared by at least two blocks. If w

is a cut vertex of G1 and C1, C2, . . . , Ck with k > 3 are the blocks sharing the vertex

w, then join every pair of non adjacent vertices of
⋃k
i=2 V (Ci) by an edge. Repeat

this for each cut vertex of G1 which is shared by more than two blocks. This way we

get a new graph G2. If every cut vertex of G1 is shared by exactly two blocks then

take G2 as G1. Clearly G2 ∈ Cn,s and by Lemma 6.1.1, ε(G2) 6 ε(G1). Note that G2
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is a graph in which, every block is complete and every cut vertex is shared by exactly

two blocks. If G2
∼= Kn

n−s(l1, l2, . . . , ln−s), for some l1, l2, . . . , ln−s then by Corollary

6.3.3, ε(H) 6 ε(G2) and the result follows.

Suppose G2 is not isomorphic to Kn
n−s(l1, l2, . . . , ln−s) for any l1, l2, . . . , ln−s. We

further consider two cases depending on whether s = 1 or s > 2 .

First suppose s = 1. Then G2 has exactly two complete blocks with a common cut

vertex w. Let B1 and B2 be the two blocks of G2 with V (B1) = {u1, u2, . . . , um1 =

w} and V (B2) = {v1, v2, . . . , vm2 = w} with m1,m2 > 3. Construct a new graph

G′2 from G2 as follow: Delete the edges {u1, ui}, i = 2, 3, . . . ,m1 − 1 and add the

edges {ui, vj}, i = 2, 3, . . . ,m1 − 1; j = 1, 2, . . . ,m2 − 1. Then V (G′2) = V (G2) and

G′2 is isomorphic to Kn
n−1(2, 1, . . . , 1) . Note that eG′2(w) = eG2(w) = 1 and for

x ∈ V (G′2) \ w = V (G2) \ w, eG′2(x) = eG2(x) = 2. So ε(G′2) = ε(G2) and the result

follows.

Now suppose s > 2. Then G2 has s + 1 blocks and BG2 , the block graph of G2

is a tree. So G2 has either one central block or two adjacent central blocks and at

least one non central block. Let C be a central block in G2. Suppose P is a longest

path in G2. Then P passes through exactly two vertices of C. Suppose B1 is a non

central block in G2 which is not isomorphic to K2. Then |V (B1)| > 3. Let b ∈ V (B1)

be a cut vertex of G2 such that d(B1, C) = d(b, c), where c ∈ V (C) is a cut vertex of

G2. Let B2 be the block adjacent to B1 sharing the cut vertex b with B1 (B2 may be

same as C). Let V (B1) = {b = v1, v2, . . . vm1} and V (B2) = {b = u1, u2, . . . , um2}. If

P passes through B1, then P also passes through B2. So, P must contain b and some

other vertex of B1, say v2. Construct a new graph G′2 from G2 by deleting the edges

{v2, vi} i = 3, 4, . . .m1 and adding the edges {vi, uj} i = 3, 4, . . . ,m1, j = 2, 3, . . . ,m2.

If P does not pass through B1, we can chose any vertex of B1 in place of v2. Clearly

G′2 ∈ Cn,s and the number of blocks in G′2 is same as the number of blocks in G2.
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Note that P is still a longest path in G′2. So, the block corresponding to C in G′2 is

still a central block in G′2. We will now show that ε(G′2) 6 ε(G2).

Let v ∈ V (G2) = V (G′2) and let v′ be an eccentric vertex of v in G2 lies on the

longest path P . Since P is a longest path in both G2 and G′2, so v′ is also an eccentric

vertex of v in G′2. Thus we have dG′2(v, v
′) 6 dG2(v, v

′). So, eG′2(v) = dG′2(v, v
′) 6

dG2(v, v
′) = eG2(v) and hence ε(G′2) 6 ε(G2).

If G′2 has some non central block which is not isomorphic to K2, then repeat the

same process until we get a graph in which all the non central blocks are K2. Name

the new graph as G̃. Note that (as we have shown while moving to G′2 from G2)

in each intermediate step between G2 and G̃, the block corresponding to C is the

central block in each step and the total eccentricity index decreases or remains the

same. If all the non central blocks of G2 are isomorphic to K2 then take G2 as G̃. So

ε(G̃) 6 ε(G2).

If G̃ has exactly one central block then it is isomorphic to Kn
n−s(l1, l2, . . . , ln−s) for

some positive integers l1, l2, . . . , ln−s and the result follows from Corollary 6.3.3.

Suppose G̃ has two adjacent central blocks C and C ′ sharing the cut vertex z. Let

V (C) = {x1, x2, . . . , xs = z} and V (C ′) = {y1, y2, . . . , yt = z}. Since P is a longest

path of G̃, it must contain a vertex , say x1 of C different from z. Construct a new

graph Ḡ from G̃ by deleting the edges {x1, xi}, 2 6 i 6 s − 1 and adding the edges

{xi, yj} 2 6 i 6 s−1; 1 6 j 6 t−1. For v ∈ V (G̃) = V (Ḡ), the shortest path between

v and its eccentric vertex (both for G̃ and Ḡ) passes through z, so eG̃(v) = eḠ(v).

Hence ε(Ḡ) = ε(G̃2). Note that Ḡ is isomorphic to Kn
n−s(l1, l2, . . . , ln−s) for some

l1, l2, . . . , ln−s. So the result follows from Corollary 6.3.3.

We will now study about the graphs which maximize the total eccentricity index

over Cn,s. We have the following theorem for s = 0.
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Theorem 6.3.6. Let n > 3 and G ∈ Cn,0. Then ε(G) 6 nbn
2
c and equality happens

if G ∼= Cn.

Proof. Since s = 0, so G has exactly one block and the result follows from Lemma

6.1.6.

We will now find a graph which maximizes the total eccentricity index over Cn,1.

To obtain the graph, the following lemma is very useful.

Lemma 6.3.7. Let H be a graph with at least two vertices and w ∈ V (H). Let G

be the graph obtained from H, Cm1 and Cm2 by identifying w, a vertex of Cm1 and a

vertex of Cm2. Let G′ be the graph obtained from H and Cm1+m2−1 by identifying w

with a vertex of Cm1+m2−1. Then ε(G′) > ε(G).

Proof. Consider the following labelling of vertices of Cm1 , Cm2 and Cm1+m2−1:

Cm1 : wu1 · · ·ubm1
2
cubm1

2
c+1 · · ·um1−1w,

Cm2 : wv1 · · · vbm2
2
cvbm2

2
c+1 · · · vm2−1w

and

Cm1+m2−1 : wu1 · · ·um1−1vm2−1vm2−2 · · · v1w.

Let v ∈ V (G) = V (G′) and v′ be an eccentric vertex of v in G. Let h ∈ V (H) such

that d(h,w) = max{d(x,w) : x ∈ V (H)}. Without loss of generality, assume that

m1 > m2. We now consider the following cases.

Case I: d(w, h) > bm1

2
c

Suppose v ∈ V (G)\V (H) = {u1, u2, . . . , um1−1, v1, v2, . . . , vm2−1}. Then we can take v′

as h and so dG′(v, h) = dG′(v, w)+dG′(w, h) > dG(v, w)+dG(w, h) = dG(v, h) = eG(v).

This implies eG′(v) > eG(v).
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Now suppose v ∈ V (H). Then either v′ ∈ V (H) or v′ = ubm1
2
c. If v′ ∈ V (H),

then dG′(v, v
′) = dG(v, v′) = eG(v). This implies eG′(v) > eG(v). If v′ = ubm1

2
c, then

dG′(v, v
′) = dG′(v, ubm1

2
c) = dG′(v, w) + dG′(w, ubm1

2
c) = dG(v, w) + dG(w, ubm1

2
c) =

dG(v, v′) = eG(v). This implies eG′(v) > eG(v). Thus ε(G′) > ε(G).

Case II: d(w, h) 6 bm1

2
c

Suppose v ∈ V (H). For any z ∈ V (H), dG(v, z) 6 dG(v, w) + dG(w, z) 6 dG(v, w) +

bm1

2
c = dG(v, ubm1

2
c). Therefore, we can take v′ as ubm1

2
c and so the eccentric vertices

of v in G′ are in Cm1+m2−1. Therefore, eG′(v) = dG′(v, w) + bm1+m2−1
2
c > dG(v, w) +

bm1

2
c = eG(v). This implies eG′(v) > eG(v) + 1 for all v ∈ V (H).

Now suppose v ∈ V (G) \ V (H). If v′ ∈ V (H), we can choose v′ = h and in this

case dG′(v, v
′) = dG′(v, w) + dG′(w, h) > dG(v, w) + dG(w, v′) = dG(v, v′) = eG(v).

This implies eG′(v) > eG(v). If v′ ∈ V (G) \ V (H) then we have two subcases.

Subcase I: At least one of m1 or m2 is odd

In this case, eG(v) 6 bm1

2
c+ bm2

2
c 6 bm1+m2−1

2
c 6 eG′(v).

Subcase II: Both m1 and m2 are even

Suppose v ∈ {u1, u2, . . . , um1−1, v1, v2, . . . , vm2−1} \ {um1
2
, vm2

2
}. Then dG(v, v′) 6

m1

2
+ m2

2
− 1 and eG′(v) > bm1+m2−1

2
c = m1+m2−2

2
= m1

2
+ m2

2
− 1 > dG(v, v′) = eG(v).

For v ∈ {um1
2
, vm2

2
}, eG(v) = m1+m2

2
. We have

eG′(um1
2

) >

⌊
m1 +m2 − 1

2

⌋
=
m1 +m2

2
− 1 = eG(um1

2
)− 1

and

eG′(vm2
2

) >

⌊
m1 +m2 − 1

2

⌋
=
m1 +m2

2
− 1 = eG(vm2

2
)− 1.
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As |V (H)| > 2, there exists w′ ∈ V (H) different from w such that

eG′(um1
2

) + eG′(vm2
2

) + eG′(w) + eG′(w
′) > eG(um1

2
)− 1 + eG(vm2

2
)− 1 + eG(w) + 1

+ eG(w′) + 1

= eG(um1
2

) + eG(vm2
2

) + eG(w) + eG(w′).

Therefore, ε(G′) > ε(G) and this completes the proof.

Now we count the total eccentricity index of the graph Cn
m1,m2

, where m1 +m2 −

1 = n. There are four cases depending upon whether m1 and m2 are even or odd.

Let us consider the case when m1 and m2 are both even. We label the vertices

of Cm1 and Cm2 in Cn
m1,m2

as Cm1 : wu1 · · ·um1
2
−1um1

2
um1

2
+1 · · ·um1−1w and Cm2 :

wv1v2 · · · vm2
2
−1vm2

2
vm2

2
+1 · · · vm2−1w. Without loss of generality, assume that m1 >

m2. Take m1 = m2 + k, so k > 0 is even. Then

• for i = 1, 2, . . . m2

2
, e(vi) = e(vm2−i) = i+ m1

2
;

• e(w) = m1

2
;

• for j = 1, 2, . . . k
2
, e(uj) = e(m1 − j) = m1

2
;

• for k
2

+ 1 6 j 6 m1

2
, e(uj) = e(um1−j) = j + m2

2
.

So,

ε(Cn
m1,m2

) = e(w) +

m2−1∑
i=1

e(vi) +

m1−1∑
j=1

e(uj)

= e(w) + 2

m2
2
−1∑

i=1

e(vi) + e(vm2
2

) + 2

k
2∑
j=1

e(uj) + 2

m1
2
−1∑

j= k
2

+1

e(uj) + e(um1
2

)

=
1

2
(m2

1 +m2
2 +m1m2 −m1).
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For the other three cases the total eccentricity index of Cn
m1,m2

with m1 +m2− 1 = n

can be counted similarly. Based on these calculations, we have

ε(Cn
m1,m2

) =



1
2
(m2

1 +m2
2 +m1m2 −m1) if both m1 and m2 are even,

1
2
(m2

1 +m2
2 +m1m2 −m1 −m2) if m1 is even and m2 is odd,

1
2
(m2

1 +m2
2 +m1m2 − 2m1 + 1) if m1 is odd and m2 is even,

1
2
(m2

1 +m2
2 +m1m2 − 2m1 −m2) if both m1 and m2 are odd.

Next we count the total eccentricity index of Up
n,g where 3 6 g 6 n− 1. Suppose g

is even. Let w1, w2, . . . , wn−g be the pendant vertices of Up
n,g and Cg : v0v1 · · · vg−1v0

such that deg(v0) = n− g + 2. Then we have

• for j = 1, · · · , n− g, e(wj) = 1 + g
2

• for i ∈ {0, 1, . . . , g − 1} \ {g
2
}, e(vi) = g

2

• e(v g
2
) = g

2
+ 1.

So, ε(Up
n,g) = (n − g)(1 + g

2
) + (g − 1)(g

2
) + (g

2
+ 1) = ng

2
+ n − g + 1. Similarly

ε(Up
n,g) can be counted when g is odd and we get

ε(Up
n,g) =


ng
2

+ n− g + 1 if g is even,

n(g−1)
2

+ n− g + 2 if g is odd.

In particular for g = n− 1, Up
n,n−1

∼= U l
n,n−1 and

ε(U l
n,n−1) =


n(n−2)

2
+ 3 if n is even,

n(n−1)
2

+ 2 if n is odd.

(6.3.1)
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Based on these calculations we have the following lemma.

Lemma 6.3.8. Let m1 > m2 > 3 and n > 5.

(i) If m1 + m2 − 1 = n then ε(Cn
m1,m2

) 6 ε(U l
n,n−1). Furthermore the equality

happens if and only if m1 is even and m2 = 3.

(ii) For 3 6 g 6 n − 2, ε(Up
n,g) 6 ε(Up

n,g+1) and equality holds if and only if g is

even.

For n = 3, the path P3 is the only graph with one cut vertex. For n = 4, the star

K1,3 and U l
4,3 are the only two graphs with one cut vertex and ε(K1,3) = ε(U l

4,3) = 7.

So we consider n > 5.

Theorem 6.3.9. Let n > 5 and G ∈ Cn,1. Then ε(G) 6 ε(U l
n,n−1).

Proof. Suppose G is not isomorphic to U l
n,n−1. If G has no cycle then G ∼= K1,n−1

and ε(G) = ε(K1,n−1) = 2n− 1 < ε(U l
n,n−1), by (6.3.1). Suppose G has some cycles.

Since G has a unique cut vertex, so all the blocks of G are pendant blocks. Let w

be the cut vertex in G and let B1, B2, . . . , Bk be the blocks of G with atleast three

vertices. Construct a new graph G′ from G by replacing each Bi, 1 6 i 6 k with a

cycle on same number of vertices. Then G′ ∈ Cn,1 and by Lemma 6.1.6, ε(G) 6 ε(G′).

If G′ has exactly one cycle, then G′ is isomorphic to Up
n,g for some g > 3. The result

follows from Lemma 6.3.8 (ii).

Suppose G′ has at least two cycles. Let Cm1 and Cm2 be two cycles in G′. If

m1 + m2 − 1 = n, then G′ ∼= Cn
m1,m2

. So, by Lemma 6.3.8 (i), ε(G′) 6 ε(U l
n,n−1) and

the result follows. If n > m1 +m2−1, then there are at least three blocks sharing the

common vertex w in G′. Replace the blocks Cm1 and Cm2 by the cycle Cm1+m2−1 in

G′ to get a new graph G′′. Note that G′′ ∈ Cn,1 and by Lemma 6.3.7, ε(G′) 6 ε(G′′).
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If all the blocks of G′′ are cycles, then repeat this process(if necessary) until we

get a graph G̃ on exactly two blocks. By Lemma 6.3.7, ε(G′′) 6 ε(G̃) and G̃ ∼= Cn
m,m′

where m+m′ − 1 = n. Now the result follows from Lemma 6.3.8 (i).

If G′′ contains K2 as block then repeat the above process (if necessary) until we

get a graph Ḡ having exactly one cyclic block. Note that Ḡ ∈ Cn,1 and Ḡ ∼= Up
n,g for

some g > 3. By Lemma 6.3.8 (ii), ε(Ḡ) 6 ε(U l
n,n−1) and this completes the proof.

The path Pn is the only graph in Cn,n−2. We will now obtain a graph which

maximizes the total eccentricity index over Cn,n−3.

Theorem 6.3.10. Let n > 5 and G ∈ Cn,n−3. Then ε(G) 6 ε(U l
n,3).

Proof. Suppose G is not isomorphic to U l
n,3. If G is a tree then it has exactly one

vertex of degree 3. Using grafting of edges operation sequentially (if necessary), we

get the tree T (2, 1, n− 3) from G and by Lemma 6.1.2, ε(G) 6 ε(T (2, 1, n− 3)). Let

v1 and v2 be the two pendant vertices of T (2, 1, n−3) such that d(v1, v2) = 2. Form a

new graph G′ from T (2, 1, n− 3) by joining v1 and v2 with an edge. Then G′ ∼= U l
n,3.

Since ε(T (2, 1, n− 3)) = ε(U l
n,3) so the result follows. If G is not a tree then it must

be a unicyclic graph with girth 3 and the result follow from Proposition 6.2.2.

6.4 Future works

We have obtained the graphs which maximize the total eccentricity index over Cn,s

for s = 0, 1, n − 3 and n − 2. Also the total eccentricity index of these graphs are

known. Based on our observation, we conjecture the following for 2 6 s 6 n− 4.

Conjecture 6.4.1. Let n > 6 and 2 6 s 6 n− 4. If G ∈ Cn,s then ε(G) 6 ε(U l
n,n−s).

In many classes of graphs, the extremal graphs for the total eccentricity index

and the Wiener index are same. For example, over trees on n vertices, the path Pn
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maximizes both the total eccentricity index and the Wiener index, and the star Kn

minimizes both these indices. But it is not necessary that for two graphs G1 and G2,

if W (G1) < W (G2) then ε(G1) < ε(G2). For that, we have the following example.

Example 6.4.1. W (G1) = 13,W (G2) = 14, ε(G1) = 10, ε(G2) = 9

G1 G2

Figure 6.3: Two graphs G1 and G2 with W (G1) < W (G2) but ε(G1) > ε(G2)

A detailed study may be required to understand the relation between the Wiener

index and the total eccentricity index. In [10], the authors have studied some relations

between total eccentricity index and Wiener index in graphs. In particular, they have

given some bounds on Wiener index in terms of total eccentricity index and also

studied the difference W (G) − ε(G). It will be interesting to study such relations

between the total eccentricity index and the Wiener index over Hn,k and Cn,s.
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