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Summary

Hardy inequalities are of fundamental importance in many areas of mathematics
and theoretical physics. Since their discovery a rich theory has been developed
on Hardy inequalities and it became a broad area of mathematical research. The
original inequality on positive real numbers extended to N-dimensional Euclidean
space and more general domains. Several versions and improvements of classi-
cal Hardy inequality are available in the literature. Many of these Hardy type
inequalities have been studied in the Dunkl setting recently. S. Thangavelu, Y.
Xu, 0. Ciaurri, F. Soltani, B. Amri, D. V. Gorbachev and A. Velicu are a few of
the authors studied about such Hardy type inequalities.

The Dunkl operators was first introduced by C. F. Dunkl in 1989. The Theory
of Dunkl operators in the study of special functions with reflection symmetries
is very young. In recent years this operator have found considerable attention
in various branches of mathematics and Physics. Dunkl transform is an ex-
tension of Fourier transform which defines an isometry on the weighted space
L*(RY, dug(x)). Tt enjoys many similar properties of classical Fourier transform.
The Dunkl Laplacian associated to a multiplicity function k& on fixed root system
R and reflection group G is defined by Ay = Zjvzl Tj2 where T;’s are the Dunkl
operators. Also the Dunkl gradient is defined as Vy = (11,75, ...,Txn). If the
multiplicity function £ is identically equal to zero the operators T}, Ay and Vy,
reduce to J;, A and to V respectively. We denote v, = > k(a), dp = N+2;
and dyy(x) as the Dunkl weighted measure.

The main theme of this thesis is to study different type of Hardy inequalities
associated with the Dunkl operators. We will establish Hardy inequalities, trace
Hardy inequalities and Stein-Weiss inequalities associated to Dunkl operators for
the Euclidean space, half-space and cone. We begin with Hardy type inequalities
for the L? space. We prove classical Hardy inequality for G-invariant function.
Using this result we proved certain classical Hardy inequalities for half-space and
cone.

Let R be a root system on RY and k be a multiplicity function on R. Define a
root system R, on RY™ as Ry = R x {0}. Also define the multiplicity function &,

aER4
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Contents

on Ry as ki(,0) := k(). Now with this root system on RY*! the Dunkl gradient
is given as V, = (Vi, Ozyy,)- To establish a Hardy inequality on the half-space
we always consider this Euclidean extension of the root system. Similarly to
establish a Hardy inequality on Rﬁ , we fix a root system on Rﬁ which is actually
an extension of a root system on RY~!. That is, if R is a root system on RV~ then
extend the root system R to a root system R’ of R}Y by defining R’ := {(,0) €
RY : z € R}. Also the multiplicity function k¥ on R can be extended to &k’ on
R' by k'(x,0) = k(z). Now if V} is the Dunkl gradient on RY~!, with this root
system R’ we can write the Dunkl gradient on ]R{X as Vi, = (Vp, #M, - %).

For 0 < s < 1, the fractional Dunkl Laplacian (—Ay)® is defined using Dunkl
transform, that is Fp((—Ax)*f)(§) = [¢|°Fr(€). Caffarelli and Silvestre[2006]
developed an idea of Drichlet to Neumann map to study about the fractional
Laplacians. We extended this idea to the Dunkl setting and proved some trace
Hardy type inequalities by identifying proper extension problems. As a corollary
to this we also obtained fractional Hardy inequalities for the Dunkl Laplacian.
Also we found an independant method to prove fractional Hardy inequality for
Dunkl fractional Laplacian.

Using ground state substitution technique Frank and Seiringer [2008] proved
fractional Hardy inequalities for LP space. Also he proved an improved Hardy
inequality for p > 2. The symmetry of the kernel |z — y|~V+P%) plays a vital role
in proving these Hardy inequalities in Euclidean setting. Note that this kernel
is nothing but the translation of the function |z|~(N*7%). To work with Dunkl
case it is essential to consider the kernel which is Dunkl translation of |z|~(+rs),
Motivated by an article by Gorbachev|2019], we define the kernel ®4(x,y), which
is actually Dunkl translation of |z|~(%*9) with § # —d,. Extending Frank’s idea
to the Dunkl setting we first establish a Dunkl fractional Hardy inequality on
RY. Also we proved these results for upper half space and cone.

Since this Hardy inequality is strict for all non zero functions in Cg°(RY) the
natural question to ask is whether the inequality can be improved on the com-
pletion of C§°(RY), that is, whether some positive term can be added to improve
the inequality. For p > 2, the answer is affirmative and there are many articles
investigated on different types of improved Hardy inequalities. We also obtain an
improved Dunkl type Hardy inequality in the case p > 2. Abdellaoui et al.[2014,
2016, 2017] proved a version of improved fractional Hardy inequalities where the
reminder term again is a norm of fractional gradient. We also proved such im-
proved fractional Hardy inequalities for fractional Dunkl Laplacian. We proved
certain types of Stein-Weiss inequalities and fractional Stein-Weiss inequalities
by extending the same technique.



Chapter 1

Introduction and Preliminaries of

Dunkl Theory

1.1 Introduction

The main theme of this thesis is to study different type of Hardy inequalities
associated with the Dunkl operators. We will establish Hardy inequalities, trace
Hardy inequalities and Stein-Weiss inequalities associated to Dunkl operators for
the Euclidean space, half-space and cone. Hardy inequalities are of fundamental
importance in many areas of mathematics and theoretical physics. Since their
discovery a rich theory has been developed on Hardy inequalities and it became
a broad area of mathematical research. The original inequality on positive real
numbers extended to N-dimensional Euclidean space and more general domains.

The original Hardy inequality is first discussed by G. H. Hardy in [20] and it

/OOO W (2)|Pdw > G/OOO @)l (1.1.1)

[P

is of the form

where 1 < p < oo and u € C§°(0,00). The inequality is strict for any non zero

b}



§1.1. Introduction

function v and C' = (p — 1)/p is the best constant. Later it is generalized to
higher dimensions. For 1 < p < oo the higher dimension analogue of (1.1.1) can

be stated as
|u(x)[P

/RN |Vu(z)[? = XN, p) /RN BT dx, (1.1.2)

where u € C5°(RN). Let H'?(RN) be the completion of C5°(RY) with the norm

lull g1 := ||[Vull,. The inequality in (1.1.2) can be extended to H'?(RN). The

best constant A(V,p) of (1.1.2) is obtained by

fRN |Vu(x)|Pdx

A(N,p) = inf
)= (@)l
LD o e

When N > 2 and p = N the Hardy inequality does not hold. That is we can

find functions f in C5°(R™) such that the integral [py |J£|SE|3V|N dzr diverges. For

instance, choose f such that 0 < f(z) < 1for all x € RY and f(x) = 1 inside the
ball B(0,7/2) and f(xz) = 0 outside the ball B(0,r). Now a simple calculation

‘f‘(j?\LN dx = oco. For p = 2 the Hardy inequality (1.1.2) is also

will give us fRN
known as uncertainty principle. One can also understand the Hardy inequality
as a continuous embedding of H'*(RY) in LP(RY) with respect to a weight |z~
This embedding is known as Hardy-Sobolev embedding. For N > p the best
constant A(N, p) is never achieved in the space H'?(RY), that is, there does not
exist a non zero function u in H'?(RN) such that the equality in (1.1.2) holds.
But still we can find a minimizing sequence in H'?(RN) for the best constant.

P+

_N-p
For € > 0, consider the functions u. := |z|” 7 " and we can see that

A(N, p) = lim Jon [Vuc(@)Pdz (N —p\”
7p - EHO IuE(x)lpd - p .
Jan M da

||

N—p

P 1S

All u/’s are elements of H'"?(RY), but the limiting function u(z) = ||~

6



§1.1. Introduction

. N—
not in HP(RY). It is interesting to see that u(z) = |z|~ # is a solution of the

following equation
N — p
—div(|VulP2Vu) = (Tp) P!

in the sense of distributions. The expression on the left hand side is called
p—Laplace operator and denoted by Ayu = div(|Vul[P~2Vu). When p = 2,
A, reduces to the classical Euclidean Laplacian A. Since the inequality (1.1.2) is
strict for all non zero functions in H'?(RN) the natural question to ask is whether
the inequality can be improved, that is whether some positive term can be added
on the right hand side of (1.1.2). For p > 2, the answer is affirmative and there
are many articles in which the authors investigated on different types of improved
Hardy inequalities. We would like to refer the article by Frank and Seiringer(see

[16]) .

The theory of Dunkl operators was first introduced in [11]. Dunkl Fourier
transform is an extension of the classical Fourier transform which defines an
isometry on the weighted space L?(RY, duy(x)). It enjoys many similar properties
of classical Fourier transform. The Dunkl Laplacian associated to a multiplicity
function k on a reflection group G is defined by Ay = Zjvzl TjZ, where Tj’s are
the Dunkl operators. Also the Dunkl gradient is defined as Vy, = (T3, T, ..., Tn).
If the multiplicity function £ is identically equal to zero the operators 7}, Ay and
Vi reduce to 0;, A and to V respectively. From the physical science point of

view, the Dunkl transform has applications in quantum many body problems.

We discuss all the necessary preliminaries for this thesis later in this chapter.

In Chapter 2 we will discuss certain Hardy inequalities in Dunkl setting with

p = 2. We need to fix a root system R and a multiplicity function k£ on R. Also

7



§1.1. Introduction

associated to the root system R we define v, = ) k(a), d = N + 2, and

acR4

M = (dy —2)/2. An L? analogue of (1.1.2) for the Dunkl gradient V is stated

as follows.

Theorem 1.1.1. Let d;, > 3. Let u be a G-invariant function such that u €

CSP(RY). We have the following inequality

u
/R (VeuPdus(z) > /  Ersdin(a). (1.1.3)

where \; is the optimal constant.

Forl <p<oo,1<I< N anda+! >0, amore generalized Hardy inequality

of the form

/ Vu(@)Ply|*Pde > C / () Py d, (1.1.4)
RN RN

(a+D)P
pP

where r = (y,z) € R! x RV~ with the optimal constant C' = , Was given
by Simone Secchi et al. in [28]. Now for fixed root systems R; and Ry with
multiplicity functions k; and ks corresponding to the spaces R' and RV~ respec-
tively. We define a root system R on RY and a multiplicity function k on R. If
1 <1< N and if z € RY we can write 2 = (y,2) where y € R' and z € RV L.

Now the following theorem is a generalization of the Theorem 1.1.1.

Theorem 1.1.2. Let [ + 2, — 2 > 0, then for each G-invariant u € C§°(RY),

we have the following inequality:

[ Vs () > (””T‘Q) /. [Py ().

|y|?

Moreover the constant appearing above is optimal.

8



§1.1. Introduction

The half-space is defined as the set RY = {(z1,...,2n) € RY : 2y > 0}. A

Hardy inequality on the upper half-space can be written as

1 2
/ |Vu(z)? doe > —/ Mda:.
RY 4 RY TN

Later in [39], J. Tidblom proved that, for all u € C§°(RY) the following inequality

1 2 1 2
/ |Vu(x)|*dr > —/ |u(§)| dx + —/ %dw.
RY 4 RY TN 4 RY Tyt Ty

Using the above Hardy inequality (1.1.4), Jing-Wen Luan et al. proved the

holds:

following Hardy inequality for half-space in [23].

1 2 [ —1)? 2
/ Vul?d > -/ [l gy 20 / Mg s
RY 4 RY TN 4 RY TNy T T TN

(-1
where -

® is the best constant.

Now we prove a generalized version of Hardy inequality on the half-space in
Dunkl setting. Let R be a root system on RY and k be a multiplicity function on
R. Define a root system Ry on RY ™ as Ry = Rx {0}. Also define the multiplicity
function k; on R as k;(z,0) := k(z). Now with this root system on RY ™! the

Dunkl gradient is given as Vj = (Vi, 0

$N+1)'

Theorem 1.1.3. Let V}, be the gradient on RNt as mentioned above. For | €

{1/2,1,3/2,2,...,N/2,..} and for any G-invariant u € C3°(RYH),

2
. u(x
/N |V dpg (2)daj oy + (1 — 1)/ | g ) dpg(x)drn
R++1 R<]|Y+1 IN+1
N +2 20 — 1)? 2
2 (W 2% + ) [u()] duy(r)dr N1,
4 R+ |z|?

N+2v;,+21—1)2
4

where 15 optimal.



§1.1. Introduction

If we put | = % and k£ = 0 in the above theorem we get the classical Hardy
inequality for half-space.

A cone is a subset of RV and is a generalization of upper half-space. It is
denoted by R{X for 1 <1 < N and defined by Rﬁ: ={(z1,.2n) ERY 12N _111 >
0,2n_142 > 0..,zy > 0}. In 2012, in [34], Dan Su et al. found the sharp Hardy
inequality for the cone. Their result states that, for N > 3 and u € C’{)’O(Rﬁ ),

N — 2 2
/ Vulds > < 24+ 2! / g (1.1.6)
R

N
Lt

and the constant % is sharp. Using a similar method used in the proof of
Theorem 1.1.3 we can extend the result to cone. To establish a Hardy inequality
on R{X , we fix a root system on ]Rﬁ which is actually an extension of a root system
on RV=!. That is, if R is a root system on R™~! then extend the root system R
to a root system R’ of R} by defining R’ := {(x,0) € RV : z € R}. Also the
multiplicity function k on R can be extended to k&’ on R’ by k'(z,0) = k(z). Now

if Vj is the Dunkl gradient on RV~!, with this root system R’ we can write the

Dunkl gradient on Rﬁ as Vi = (Vy, 72 )

Oxn_j417 """ 0N

Theorem 1.1.4. Let N + 2v;, > 3. Let u € CSO(R{X) and G—invariant. Then

the following inequality holds:

/N ]@ku|2d,uk (JJ)dQZN,lJrl...dZCN
R

Lt

N+20+27 -2 [ |uf?
R ||

(N+21427;,—2)2

1 18 sharp.

where the constant

Fractional powers of linear operators appear in many areas of mathematics. In

10



§1.1. Introduction

particular fractional powers of Laplacian are nowadays classical objects. In recent
years fractional powers of non local equations of fractional order, in particular,
fractional Laplacian, gained a lot of attention from partial differential equations
and harmonic analysis. For 0 < s < 1 the fractional power of Laplacian (—A)® is
defined as (—/AF F(€) = [€[2 f(€). There are many more equivalent definitions for
fractional Laplacian. One of the references to understand the different equivalent

definitions is [24].

Using the classical Laplacian A, the Hardy inequality in the equation (1.1.2)

can also be written as

(—A)u,u) > (%)Q/RN u@)P,, (1.1.7)

]?

Analogous to (1.1.7) a Hardy inequality for the operator (—A)® is stated as fol-

lows. For the functions u such that u, (—A)*u € L*(RY),

((—A)Su,u>>45F(N4+S>2/ @), (1.1.8)

DY Jas TP

L(&)?

D(A0)?

The constant 4°

is sharp and never achieved. The left-hand side of the

equation (1.1.8) can be written as

4T(N/2+s) y)|?
—A)? ————"dxdy. 1.1.
=8y =gt [ MO ey (g

In view of this we can see that the fractional Hardy inequality in equation (1.1.8)

is equivalent to the inequality,

)P pDCEP T [ )P
/RN/RN |x— |N+2 T =g dedy > 2 D(A2)2T(N/2 + 5) /RN | |2 de.
(1.1.10)

11



§1.1. Introduction

Another version of this Hardy inequality, in which the homogeneous weight |z|~2*

is replaced by (6% + |x[*)7%, is of the form

s P<N;S) 2s |u<x>|2

N—s

where the constant is sharp since it is achieved for the functions (6% + |z|*)™ 2
Similar to the case of fractional Laplacian, the fractional powers of Dunkl

Laplacian can also be defined through Dunkl Fourier transform. For 0 < s < 1,
the fractional Dunkl Laplacian is defined as Fi((—Ag)*f)(€) = |E[*Fr(€) for

suitable function f.

Theorem 1.1.5. F Let N > 1 and 0 < s < 1 be such that dy/2 > s. Then for
f € CP(RN) we have

(B, 1) 2 4@—:;) [ YO gy,

The fractional Hardy inequality in the half-space has been investigated by
many authors. For suitable functions, a fractional Hardy inequality for the half-

space Rf is stated as

(v)|* / Ju(z)|?
L 2 dady > Do dz, 1.1.12
/RN/RN Ia:— |N+2 r e RY Y ) ( )

where the constant Dy o s, given by

_ (14 2s)/2) dr
D .= 2 (N l)/2 / 1 28 1 /2
N,2, ™ N—|—28 /2 | | (1 _ T)1+25

is optimal. For further reading and improvements of fractional Hardy inequalities

we refer to [6, 8, 12, 15, 14, 16, 40]. To obtain a fractional Hardy inequality on

12



§1.1. Introduction

RN

¥, as we discussed above, we fix the root system Ry = R x {0} on RY which

is an extension of the root system R on R¥~!. With this root system the Dunkl

gradient Ay, on RY looks like Ay, = A, + %.
N

Theorem 1.1.6. Let u € C°(RY), 0 < s <1 and N/2+ v, > s. We have

<(_A7€2)S/2u7 U>Rf >

F(%JF%)/ u(z, ry)*
RY (

— dpg(x)dx .
DT 4y S (T [ + a3 )

Let A;Q = A, + Z;V:N—H—l 88722 be the Dunkl Laplacian on Rﬁ with the root
J
system Ry = R x {(0);} defined on RY which is an extension of the root system

R on RV,

Theorem 1.1.7. Let 0 < s < 1 and N/2 + v > 5. Foru € C*(R)Y) the

following inequality holds

(A, ), u)y

>

2

u
/C s d xT d.f _ d.CC ,
" /R;i (T4 |z + 2% + ... +a2%)s pu(2)de N —i11...dzy

D(A2EEe 4oy
where C,yk,s = W

We have already defined fractional Laplacian earlier. Since it is a non local
operator there are a lot of technical difficulties to deal with. In a recent paper [9]
in 2007, Caffarelli and Silvestre studied about fractional Laplacian through the
Dirichlet to Neumann map. Their idea is to relate fractional Laplacian to a local

operator by adding a new variable ‘p’. For any function f, the extension problem

13



§1.1. Introduction

can be stated as follows.

div(p' "V pu(, p)) =0, (z,p) € RY™

u(z,0) = f(z),

the energy of which is given by

= [ [ 0V pute.p)Pdudp.
o Jry
Then the authors of [9] established that

—ol 2 AP f(2). (1.1.13)

ou
1- 1—2s —
g, (x,p)

Using this idea many authors studied trace Hardy type inequalities on different
domains by identifying proper extension problems, for instance [13, 33, 36]. For

0 < s < 1 and suitable functions on RY x R_, the trace Hardy inequality states

that
x DL~ 5/2) (T + /D) [ (0P
/o [ 9t iy 2 (52) (r<<N—s>4>) I o
(1.1.14)

Also the trace Hardy inequalities with non-homogeneous weight (624 |x|?)*, which

are of the form

. (L= s/ T((N +5)/2) o [ lulz.0)
[ o iy 2 M52 TV —52) " L. @+ a2y

(1.1.15)

with 6 > 0, have also been studied.

We also use the idea of Dirichlet to Neumann map for the fractional Dunkl

14



§1.1. Introduction

Laplacian after identifying a proper extension problem.

Theorem 1.1.8. Let 0 < s < 1 and u € C(RY™), then

[ L Wte o dntaldp > Clsib) [ Dt

If we choose the function §(z) = (1 + |z|?)® we get the trace Hardy in-

equality with non-homogeneous weight and the optimal constant C(dg,s,d) =

P(1-35) P(M3°+)
(3 T4y

2

Similarly, when §(z) = |z|® we get a trace Hardy inequality

2
s N2~ +s
with homogeneous weight with a constant C(dy, s,d) = 20’11“(”_)2) (F(NH‘;:S)) :

By a suitable choice of f, we can prove the following Hardy inequality for (—A;)*/2.
Analogous to (1.1.13) we establish a relation between the extension problem and

fractional Dunkl Laplacian and obtain a Hardy inequality for fractional power of

Dunkl Laplacian.

Corollary 1.1.9. For f € L2(RN, h2(z)) for which A*f € L*(RY, dyug(z)),

oo JEE ) [ f@)P
(=80721.0) 2 2 )/RN o)

Further the fractional Hardy inequality for Dunkl Laplacian for upper half
space and the cone with both homogeneous and non-homogeneous weights are
also proved in Chapter 2.

We will discuss in the next chapter certain Hardy inequality for Dunkl Lapla-
cian for L?(2), where Q is RN, RY or ]R{ﬁ . In chapter 3 we are interested to prove
these Hardy inequalities for the space LP(Q2) where 1 < p < oo. First we give a

proof of the following classical I” Hardy inequality in the Dunkl case.

Theorem 1.1.10. Let 1 < p < oo. Let u be a real valued G— invariant function.

For u € C°(RY) when di, > p or u € CC(RN \ {0}) when dy < p, the following

15
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inequality holds

dy —p

p/ @l . (1.1.16)

[P

|1Vt pdin @) >
R
The constant ‘%‘p given in the inequality s optimal.

We also obtain an improved Hardy inequality in the case p > 2

Theorem 1.1.11. Let 2 < p < oo. Let u be a real valued G—invariant function.
For u € C°(RY) when dy, > p or u € CP(RN \ {0}) when dy < p, the following

inequality holds

dk—Pp/ |ul? / Vo]’
ViulPd — —d > d o (1.1.17
[ IVedrdinta) = (22|t > 6 [ i), (1117
where ¢, is given by
= mi 1—71)P —7P p=1y 1.1.18
o=, (L= = dpr) (1.1.18)

When p = 2 the equality holds and with co = 1.

Further we are also interested to prove a fractional weighted L Hardy in-
equality for the Dunkl Laplacian.

The equality in (1.1.9) allows us to write the L? fractional Hardy inequality
as in (1.1.10). But when p # 2 one cannot have the equivalence of ||(—A%/2)ul[?
and fRN f]RN %—}V‘(ﬁ?ydxdy. There are many studies in the literature regarding

the fractional Hardy inequality of the form

ju@)[”

v fale

H(_AS/Q)uHi P C<N7S’p)/IR

for instance Herbst, in [21] calculated the sharp constant in the above inequal-

16
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ity. In case of fractional LP Hardy inequality, instead of our Euclidean Lapla-
cian A, we are interested in a more general Laplace operator called p—Laplace
operator. The p—Laplace operator is denoted as A, and is defined as A,u =
div(|VulP~2Vu). For 1 < p < oo and u is smooth enough, the fractional power

of p—Laplacian,(—A);, is defined as

(—A)SU(:E) -— lim ]u(:r;) — u(y)‘p—Q(u(x) — u(y))dy

p N
=0 JRN\ B, () |z — y|NFPs

In this thesis we are interested in the fractional Hardy inequalities of the form

)P : / |u(@)”
———=dxd C'(N ——d
/]RN /IR;N ’m — ’Ners i y ( 7S7p) BN |$|ps X

in the Dunkl setting. The basic study of fractional power of Dunkl Laplacian can
be done in a similar fashion to the Euclidean case. We adopt the ideas of Frank
et al. used in [16] in proving fractional Hardy inequality. The authors of [16] used
the technique of ground state substitution to establish the inequality. In general,

the idea is to find a Hardy inequality for the functional Elu|, which is given by

/ / y)Ph(z, y)dedy
RN JRN

where k(x,y) is a non-negative measurable function on RY x RY which is sym-
metric in z and y. The Euler-Lagrange equation of the functional Ffu| is given

by
2 /RN w(z) — wy)|P*(w(z) — wy))k(z, y)dy = V(z)w(z)’". (1.1.19)

for some real valued function V on RY. A positive function w satisfying (1.1.19)

17
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is known as ‘virtual ground state’ corresponding to the energy functional Ffu] —
Jan V]uPdz. In our case we are interested in the kernel k(z,y) of the form
k(z,y) = |z — y|~™N*P%)_ Since it is singular on the diagonal = y, to overcome
the divergence of integral we have to use some regularization of principal value

of integrals.

The symmetry of the kernel |z — y|~(V+P%) play a vital role in proving these
Hardy inequalities. Note that this kernel is nothing but the translation of the
function |z|~(N+P%). To work with Dunkl case it is essential to consider the ker-
nel which is Dunkl translation of |x|~(%*P%) Motivated from Gorbachev et al.
(see [17, Lemma 2.3]) we define the kernel ®,4(z,y), which is actually Dunkl

translation of |z|~(%+9) as

5(,y) :Zm/jsdwl k(=P (2)ds 6 # —dp. (1.1.20)

The fractional Hardy inequality in Dunkl setting is stated as follows:

Theorem 1.1.12. Let dy > 1 and 0 < s < 1. Foru € W;(RN) when 2 < p <

dp/s oru € WPS(RN \ {0}) when p > di/s, the following inequality holds;

/RN /RN Y Pps(, y)dpn(z)dpn(y) = Caysp /RN ‘u(m)‘pduk(x),

[P
where ®,4(z,y) is given in ( 1.1.20) and

1
Caposp = 2/0 rp5_1|1 — r(dk_ps)/p|p<I>N,s7p(r)dr,

18
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with

B 5 /Tr sind =20 g N
ﬁr(dkg_l) 0 (1 —2r cos 9+r2)dk;ps T

Dy sp(r) == (rf(l.ld”ps) +TET(|.’dk+ps))(1), N=1. (1.1.21)

The constant Cy, s, @s sharp. If p = 1, equality holds iff u is proportional to a
symmetric decreasing function. If p > 1, the inequality is strict for any function
0#uce W;(RN) or W;(RN \ {0}), respectively. Further for p > 2 the following

inequality holds.

L, [ @) = u)P (e ) o)da)
2 Caysp /RN ‘u(x)’pdﬂk(x)

P dp () dpg(y)
+Cp/RN /RN (@) — v(y) [P Pps(, )‘:U| (d—ps)/2 ‘y’ de—ps))2 (1.1.22)

where v = |z|(%"P)/Py and c, is given in (1.1.18). ¢y = 1 and the equality holds

m p =2 case.

As in the case of classical Hardy inequality we will consider extended root

system to establish fractional Hardy inequalities on half-space and cone.

Set Gs(u) as

y)P / |u(z)[?
————2dxdy — C(N d
\/I%N /RN |m _y|N+pS xray ( P, 3) o |I’|ps X,

where the constant Cly, 5 is the sharp constant in the fractional Hardy inequality

obtained by Frank et al in [16]. For p > 2, 0 < s < 1 and ¢, R.L Frank and R.
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Seiringer have proved the sharp Hardy inequality with a remainder term in [16].

Y|P dx dy
Gl = | |:1c— |N+ps 2| P92 [y [ (NP1

where v := |z|(NP*)/2y. The result is true for all u € C?(RY) if ps < N and for

all u € Cg°(RY \ {0}) if ps > N and the inequality turns out to be an equality if
p = 2. Combining three different articles [3, 1, 2] due to B. Abdellaoui et al. we
can get an improved fractional Hardy inequality for 1 < p < oo. The combined
statement is as follows: For 0 < s < 1, ps < N and Q C R”Y be a bounded
domain we have:

Gs(u) > C’(N,q,s,Q)/ Mdmdy. (1.1.23)

alJa |v—y|Nte

The result is true for all 1 < ¢ < p < oo and for all functions u € C§°(€2).
Note that this inequality is true for all 1 < p < oo and the remainder term
here is a p—norm of a fractional gradient. The inequality in (1.1.22) gives an
improved fractional Hardy inequality for p > 2 in the Dunkl setting. We look
for an improved term which is p—norm of a fractional Dunkl gradient for all

1 <p<oo.

Theorem 1.1.13. Let Q C RY be a bounded domain and let 1 < ¢ < p < 0.
Then for all u € C§°(Q)

J[ 1) = )P )it in(s) = A [ (o

| |Ps
RN xRN

e / () — () PBs (7, y) () dpa ), (1.1.24)

QxQ
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where
1
Adk,s,p — 2/ 7aps—1|1 _ T(dk—ps)/P|p<p(T)dr’ (1_1_25)
0
with
F(dk sindt—29
S or N > 2
(‘I)(r) = fr(dk 1)) fO (1—2Tcos€+r2)dk% f

(7H(L ) 75, (L5 2)) (1) for N =1
and C' is a positive constant depending on €2, dy, q and s.

Stein-Weiss inequality is one of the most important inequality in mathematics.
It states that for every 0 < 8 < N and for every p € L?(R") there exists a positive

constant such that

px)ply
/(/ 5 (@)(y) Fdxdy < Cllo[3. (1.1.26)
BV JRN |z|2]7 — y[NPy|2

N-By\ 2
Moreover the authors of [21] have found the optimal constant C' = <£E N“H,;) .

We prove a more generalized version this inequality in the Dunkl setting.

Theorem 1.1.14. Let 0 < 3 < dy. Then for every ¢ € L*(RY duy(z)) the

Stein- Weiss inequality is given by

P@)e) g o . 1 (T(EE)N? o (o

where the constant appearing on the right-hand side is optimal.

Let H $(RY) denotes the fractional homogeneous Sobolev space equipped with

the norm

o, = — 5 / / 2P ) g (1.1.28)
Pl = Sarrmrer 1—3 o Jan |x— ez 424y 1
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§1.2. Preliminaries of Dunkl Theory

In [25] V. Moroz and J. V. Schaftingen proved a fractional Stein-Weiss inequality
on H $(RY). They adopted the ground state substitution techniques developed
by Frank et al. in [16]. the following theorem is the Stein Weiss potential for the

fractional Dunkl gradient estimate.

Theorem 1.1.15. Let s € (0,1), s < di/2 and B < d,. The for all p € W*2(R")

the following inequality holds

=R
=[] M@ o, ) () () (1.1.29)

and the constant is optimal.

1.2 Preliminaries of Dunkl Theory

In this section we give some basics on Dunkl theory which we will be using in this
thesis. We suggest readers [11, 27, 35, 38| to get more details of Fourier analysis
related to Dunkl operators. For o € R \ {0}, we denote o, as the reflection in
the hyper plane (a)t orthogonal to «, that is

(@, )
|o?

oo(x)=20—2

9

where |a| := /(a, a).

Definition 1.2.1. Let R C RV\{0} be a finite set. Then R is called a root
system, if

(1) RNRa = {£a} forall a« € R

(2) 0u(R) = R for all @ € R.
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A root system can be written as the disjoint union of R, U(—R,) and Ry and
(—Ry) are separated by a hyper plane passing through the origin. R, is called as
the set of positive roots of the root system. The subgroup G = G(R) C O(N,R)
which is generated by reflections {0, : @ € R} is called reflection group (or
Coxeter-group) associated with R.

For any root system R in RY, the reflection group G = G(R) is finite and the
set of reflections contained in G(R) is exactly {o,,« € R}. For the convenience of
the calculations we assume that R is normalized, that is (o, a) = 2 for all « € R.
A function k£ : R — C is said be a multiplicity function if it is invariant under
the natural action of G on R. In this thesis we consider only the multiplicity
functions from R to (0, 00).

Fix a root system R and a multiplicity function & on R. Then for ¢ € RY,

the Dunkl operators T¢ is defined by

Tef(x) = Ocf(2) + Eef (), fe€CHRY)

where

Fef(r) = 3 K(a)a, 8L —S1%2)

acER
Here O: denotes the directional derivative corresponding to . Since k is G-
invariant T¢ does not depend on the choice of R, . For the standard basis vector

we use the abbreviation 7; = T,,. For each ¢, T; has the following properties:
i) LT, = T/T.

ii) For f,g € CYRY), Te(fg) = Te(f).g + f.Te(g), provided at least one of

them is G-invariant.

The Dunkl Laplacian Ay is defined by Ay = Zjvzl Tj2 which can also be expressed
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as

(a,z) (o, x)?

Arf(x) = Dof(x) +2 3 K(a

acER

(Vof 7)) f(ff:)—f(%(f’f))) (1.2.1)

where Ag and Vi are the usual Euclidean Laplacian and gradient operators on

R respectively.

For a fixed reflection group G and the multiplicity function k, the weight

function hy is defined by

hi(z) = [] &, )@, z e RN,

acERy

This is a positive homogeneous function of degree v, :== > k(a) and is invariant
under the reflection group G. Throughout this paper jviR;ssume that k(a) > 0
we denote the weighted measure h}(z)dz by du(z). By the G—invariance of k
we have k(a) = k(—a) for all @« € R and hence hi(z) does not depend on the

choice of R,.

For f € C}, the space of bounded functions of class C1, and g € S(RY), the

space of Schwartz class functions,

/ T, (2)g()dpus (a / (@) Tg(@)dpunl).

RN

We use the notations dy = N + 27, and A\, = % + v whenever required.

Using the spherical polar coordinates = ra’, where 2’ € S¥~1, we can write

/f )k (z //fm dp(z")do (2" )r® D dr

0 §N-1

24



§1.2. Preliminaries of Dunkl Theory

and deduce that
il = / e 2y (2) = 24T (N + 1)a; !, where a; ' = / hii(')(«')do (2').
RN SN*l

It is known that for any y € RY, there exists a unique real analytic solution
f=Ei(-,y) of system T; f = y; f 1 < i < N satisfying f(0) = 1. Ex(z,y) is called
the Dunkl kernel and it is a generalization of the exponential function e<*¥>. We

list some of the important properties of Ey(x,y) below:
i) Ei(r,y) = Ei(y, v).
i) Ex(A\x,y) = Ex(x, \y) where A € C.
iii) Ex(ox,0y) = Ex(x,y) for all o € G.
iv) |By(z, )| < e
v) |Ep(iz,y)| < 1 for all z,y € RY,

Dunkl Fourier transform is a generalization of classical Fourier transform and
it is defined in terms of the Dunkl kernel. For f € LY(RY, dux(x)), it’s Dunkl

Fourier transform is defined by
Frf(&) =c.* / f(z)Ep(—i&, x)dug(x). (1.2.2)
RN

It possess many analogous properties of Fourier transform.

i) Dunkl Fourier transform is a topological automorphism of the Schwartz
space S(RY).

ii) (Plancheral formula) Dunkl Fourier transform can be extended to a unitary
operator on L?(RY, duy(z)).
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iii) (Inversion formula) If 7 f € LY(RY, duy(z)) then f(z) = Fi(Frf)(—x).

Dunkl translation operator 7,f is defined by Fi(7,f)(&) = Ex(iy, §)Fif(§) and
it makes sense for all f € L*(RY dug(r)) as Ex(iy,€) is a bounded function.
But forf € S(RY) the above equation makes sense pointwise. The property
1,f(x) = 7_, f(—y) of the translation operator will be used later. Dunkl trans-
lation operator is bounded on L*(R", dux(x)) . However, LP boundedness of the
Dunkl translation operator is not known. We define Dunkl convolution of f, g in

Schwartz space by

f o gle) = / T F(—)g ()i (y). (1.2.3)

RN

Convolution operator is associative and commutative and it satisfies the following

properties:
i) For f,g € S(RY), fx, g € S(RY) and Fi(f *1 g) = Fiu(f)Fr(9).

ii) Let 1 < p,q,7 < oosuch that 2 =1+ 1—1and f e LP(RY, du(x)),g €

141
P q

LYRY duy(z)) is radial then f #, g € L"(RM, dug(x)) and moreover it

satisfies

1 = gllr < 1 fllpllgllq- (1.2.4)

The Riesz potential in the Dunkl setting is defined by S. Thangavelu and Y. Xu
in [38]. Let a be a real number such that 0 < o < dy, then for every u € S the

weighted Riesz potential I*u is defined as

Fu(e) = (07" [ rbuta)lal o). (1.2
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where F = 207%/20(a/2) /T ((dy, — ) /2).
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Chapter 2

Hardy and Trace Hardy

Inequalities for L2(RY, du(z))

In this chapter we will study Hardy inequality, trace Hardy inequality, fractional
Hardy inequality for Dunkl operators. We start with the optimal classical Hardy
inequality for Dunkl gradient in the space L*(RY, duy(x)). Using this result
we prove the optimal Hardy inequalities for the half-space and cone. Later we
will establish a trace Hardy inequality and fractional Hardy inequality using the
technique of extension problem developed by Caffarelli and Silvestre in a well

celebrated paper [9].

2.1 Introduction

For N > 3 and u € C§°(RY), the classical Hardy inequality states that

/RN |Vu(z)|*de > (%)7@ %dx, (2.1.1)
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where V is the classical gradient on RY and the constant (%)2 is sharp. For

l<p<oo,1<I<Nand a+1 >0, amore generalized Hardy inequality of the

form

[ vuaryris = [ ju@plls (2.12)
RN RN

(atDP
pp

where x = (y,z) € R! x RV~ with the optimal constant C' = , Was given

by Simone Secchi et al. in [28].

Let RY = {(z1,...,2n5) € R¥|zy > 0} be the half-space. A Hardy inequality

on the upper half-space can be written as

1 2
/ |Vu(2)|)? dov > —/ de.
RY 4 RY Th

Later in [39], J. Tidblom proved that, for all u € C§°(RY) the following inequality

1 2 1 2
/ |Vu(x)|*de > —/ \u(§)| dx + —/ %dw
RY 4 Jry N 4 Jry vy T2y

Using the above Hardy inequality (2.1.2), Jing-Wen Luan et al. have proven the

holds:

following Hardy inequality for half-space in [23].

1 2 (-1 2
/ \Vul2de > —/ @da:ju( ) / - 4 _dz,  (2.1.3)
R 4 Jry Ty 4 Jry Ty gt Ty

N
+

where (l_41)2 is the best constant. Later in 2012, in [34], Dan Su et al. found the

sharp Hardy inequality for the cone R{X ={(z1,..,xn) :xn_11 > 0,...,xy > 0},

1 <1< N. Their result states that, for N > 3 and u € C3*(R})),

N —2+20)? 2
/ \Vul?dr > ( +2) / [u dx (2.1.4)
R R

4 Nz
Ly

N
Lt
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(N—2+20)2

) is sharp.

and the constant

For the classical Laplacian A = Z i1 0; 2 the Hardy inequality in the equa-

tion (2.1.1) can be also written as

(Au,u) > (%)2/}1@ %dm. (2.1.5)

There are many results regarding the Hardy inequalities of fractional powers
of Laplacian. For 0 < s < 1, a Hardy inequality for A®, the fractional power of

Laplacian, is stated as

(A%, ) >45F(N4+8)2/ @, (2.1.6)

N ‘x’23

L(&)?

for the functions u such that u, A*u € L*(RY). The constant 4° is sharp

D(572)?

and never achieved. Another version of this Hardy inequality, in which the ho-

mogeneous weight |z| 2% is replaced by (6% + |z|*)7%, is of the form

r N+s 2
(A°u,u) > (s )528/ de’ d >0, (2.1.7)
RN

F(NQ_S) 52_|_ |JI|2)S

where the constant is sharp since it is achieved for the functions (6% + |x]2)_N77

The left-hand side of the equation (2.1.6) can be written as

4T(N/2+s) y)?
A? . 2.1.
(A, ) = z\r 2T (=s)[7N2 /RN /RN FE |N+2s T — g W (2.18)

In view of this we can see that the fractional Hardy inequality in equation (2.1.6)
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is equivalent to the inequality

2 (N2 |p(— 2
/ / N+2| drdy > 2m™N/? ( 45)2 )] / |u(x2)| dz.
RN JRN |95 — y|Nt2s D(A2)2D(N/2 +5) Jpn |2f?

) (2.1.9)

The fractional Hardy inequality in the half-space has been investigated by many
authors. For suitable functions, a fractional Hardy inequality for the half-space

RY is stated as

() / Ju(z)[”
A I dz, 2.1.10
/RN/RN !fﬂ— !N” . BY TN ) ( )

where the constant Dy 5 s given by,

(14 2s)/2) dr
Dnos=2 (N—l)/2 / 1 — p2s=1)/2
N2, T N + 28 /2 | | (1 _ 7”)1+2S

is optimal. For further reading and improvements of fractional Hardy inequalities
we refer to [6, 8, 12, 15, 14, 16, 40]. For 0 < s < 1 and suitable functions on

RY x R, the trace Hardy inequality states that

. D1 5/2) (T((N + )/ [ Jue,0)p
[ e iy 2 (5/2) (r<<N—s>4>) /. O
(2.1.11)

Also the trace Hardy inequalities with non-homogeneous weight (62+|z|?)*, which

are of the form

* L= /TN +9/2) o, [ [l 0P
[ oy 2 M52 (N —5)2)" /. @+ o)

(2.1.12)

with § > 0, have also been studied. The inequalities in (2.1.11) and (2.1.12) are
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obtained by means of the solution of an initial value problem, for 0 < s < 1

(—A+ 07+ ?@)U(x,p) =0, z RN, p>0; v(z,0) = f(x).
(2.1.13)
The initial value problem given above is known as the extension problem for the
Laplacian. Caferalli and Silvestre studied about the solution of the extension

problem in [9] and they established the relationship

T(1 - s/2)

12 F(2). 1.
Foa A @) (2.1.14)

lim "0y, p) = 277
Their techniques have been used in many papers to study the different extension
problems and certain types of trace Hardy type inequalities; we refer for instance
(13, 33, 36].
This chapter is organized as follows. In Section 2.2 we will prove the Hardy
inequality and a few uncertainty principles and in Section 2.3 we will prove Hardy
inequalities for half-space and cone. In Section 2.4 our idea is to prove the trace
Hardy inequalities and Hardy inequalities for the Dunkl fractional Laplacian.
To obtain the above we solve the extension problem related to Dunkl fractional
Laplacian and establish the connection between the solution of the extension
problem and fractional Dunkl Laplacian. In Sections 2.5 and 2.6 we prove the

fractional Hardy inequalities on half-space and cone.
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2.2 Hardy Inequality and Uncertainty Princi-

ples

In this section we will first prove a general theorem which offers Hardy inequality,

uncertainty principle and a few other theorems as corollary.

Theorem 2.2.1. Let w be a positive radial function and let V' be a function

satisfying —Apw + Vw > 0 in RN, Then for all G-invariant u € C}(RYN)
/ (|Veul® + V0u|?)duw(x) > / |V (w ) Pwdp (). (2.2.1)
RN RN

Proof. Let u = wv and w is a radial function. Then we have

[ i

RN

— / |wV v 4+ vV w|Ad ()
RN

- / (|Vkv|2w2 +v?|Vw|? + 2wv g ijTjw) dug(x).  (2.2.2)
RN -
j

We will consider each of the integral separately and finally substitute it in the

original equation and get the inequality. First we consider the following integral

/RN v TywTjwdpy ()

—_ /RN wT; (v*Tyw)dpu ()

_ /R (@) + B) (v 0w)dp(x)

_ /RN wo P wdp(z) — /RN wE;(v*d;w)dpu () _/ 2wvdvdjwdiy ()

RN
= — /RN wvzﬁfwduk(x) —/ ij(UQwir)

RN

xj)dpg () — /RN 2wvdjvdjwdpy(x)
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= —/ wvz(‘)]?wd,uk(x)—/ ks (T>Ej(v2xj)d,uk(x)—/ 2wvojvojwdpy(x)
RN RN

RN r
= —/ wo* O wdpy,(x) — 2/ wvd;vo;wdy () —/ wu'(r) X
RN RN RN T
?
{02(Jaac) Z k(a)@}duk(x).
ac€RL

Taking the summation over j,

/ Zv2Tijjwduk(1’) = —/ wv? Adwdypy, () —2/ vwV . Vovwdpg(x)
RN j RN RN

o, /R ) ww;(T)UQ(x)d,uk(x). (2.2.3)

Since w is radial and v is G-invariant, we have

ZijTjw = Z 0;v0;w. (2.2.4)
J J
Substituting (2.2.3) and (2.2.4) into (2.2.2) we get

/ WV v + vV w2 du, ()
RN

:/ |Vkv|2w2d,uk(:c)—/ vaAowd,uk(x)—2/ vwVov.Vowdpy(x)
RN RN

RN

—2%/ wwl(r)vg(:v)duk(x)+2/ wouVov.Vowdpg(x)

RN T RN

:/ Vi w?dp(z) —/ wv? Agwdpu () —2%/
RN RN RN

Mv2 (x)dug(z).

Simplifying, we get

/ \VieuPdpg(z) = / |Vkv|2w2duk(x)—/ wv? Apwdp(z). (2.2.5)
RN RN

RN
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§2.2. Hardy Inequality and Uncertainty Principles

By substitution —Azw + Vw > 0, we get the desired inequality

/ ]Vku|2d,uk(a:)>/ Vv |*widpg (z) — Vulrdpg(z).
RN RN

RN

2.2.1 Applications of the Theorem

In this section we will assume that the function w is G—invariant and u €
Ce°(RY). By using the above theorem we can prove some important theorems

by simply choosing the appropriate functions w and V.

Hardy Inequality

Assume that Ay = Y52 4+ 7, > 0. Choose w(z) = |z|~ . Since it is a radial
function we can directly calculate the Dunkl Laplacian of the function w(z). The
Dunkl Laplacian for the radial function is given by

_8_2 20, +1 0
Or? r  Or

Ay

So,

Ayw = MM + 1)|x’_()\k+2) — 2\ + 1)()\k)|17|_(>\k+2)

o

Now choose the function V as V(z) = —A%|z|~? so that the equality —Ayw+Vw =

0 holds. Substituting in the Theorem 2.2.1, we obtain

u
/R VP dpe(a) > 4 /R | Ldin(a). (2.2.6)
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§2.2. Hardy Inequality and Uncertainty Principles

Remark 2.2.2. The optimality of the Hardy inequality in the Euclidean case for
N > 1 has been done by I. Peral and J.L. Vazquez in [26]. We can adapt the
similar technique in the case of Dunkl setting too. Use the following sequence of

radial functions, U,

14]\/7€ 1f0<|l’| <1

A e =F 7wt ] > 1,

where Ay, = 2/(N — 2 + 27, + 2¢), and proceed as in the proof Lemma 4.1 of
26].

Heisenberg Uncertainty Principle

Now let

Using the Dunkl Laplacian for radial functions and get
|| ||

oz _alz? oz
Aw = o*rfe ™2 —ae 2 — (20 + Dae @2

||

2
= e 2 (a?x]* — 2\ + 2)a) = (o?]z]* — (20 + 2)a)w(x).
So we choose V (z) = o?|z|* — (2\, + 2). Using the Theorem 2.2.1

/ IV eul2dp(z) > —/ (a2lf? — a2\ + 2) [uldus(x).
RN

RN

Now optimizing for a we get

([, |vku|2duk<x>)l/2( L |x|2|u|2duk<x>)l/2 > (252) [ Pt
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§2.2. Hardy Inequality and Uncertainty Principles

Hydrogen Uncertainty Principle

In this case let us choose

then the Dunkl Laplacian of w is given by

«

Ayw(z) = a?e™@l# —(2), + 1)| |e_a|z‘
x
—alz| 2 o
e a” — (2  + 1)|?| w(x).
So we choose
Viz)=a?— %mk 1)

and using the Theorem 2.2.1 to obtain the inequality,

[ Vsl > = [ (@2 = 2 @n o+ D) uPduto)

RN ||

Now optimize for o we get

1/2 1/2 2
2 0 + 1 U

([ waran) ([ obanw) > 2 [ g,
RN RN 2 RN |.T‘

Linear Sobolev Inequality

Let N + 27, > 2 and let

w(e) = (1+|z)~"F % = (1+|z) "

37



§2.3. Hardy Inequality on the Half-Space and Cone

Ayw(z) = (1 + |z]*) 72 (4t(t + D)|z)* = (1 +|z?) (2t + 22\, + 1)t)>
identify that A\ is nothing but ¢. Then by replacing A\, by t we get

Apw(z) = (14 |z]*)"2 <4t(t + )|z —4t(t +1)(1 + |x|2)>
= —4t(t+1)(1+ |z)*)" 2

= (1+|z>)" ((1 + |z)?) 2 (4t (t + 1)).
Substituting the value of ¢ and simplifying we get
Bue) = (14 )57 (= (V4 22 = 24 20)(1+ o))
and now choose
V(z) = =(N +2%) (N = 2+ 29%) (1 + [2*) 2,

to satisfy the equation Ayw(z) = V(x)w(x). By substituting in the Theorem

2.2.1 we obtain

/RN \Viul?dpg(2) = (N + 29) (N — 2 + 2%)/

2.3 Hardy Inequality on the Half-Space and Cone

Let Ry and Ry be root systems and ki, ko be multiplicity function corresponding
to the space R' and RV~ respectively. Then R = (R; x (0)x—;) U ((0); X Ry)

will be a root system on RY. Let us define the multiplicity function k£ on R by
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§2.3. Hardy Inequality on the Half-Space and Cone

natural extension of k; and ky. Let z = (y,2) € Rl x RV=! then it is easy to
observe that hj(x) = hi (y)hi,(2).
If1 <1< N andif x € RY we can write z = (y, z) where y € R! and

z € RN

Theorem 2.3.1. Let | + 2v;, — 2 > 0, then for each G-invariant u € C§°(RY),

we have the following inequality:

/RN V() Pdp(z) > (M+_2)2/RN |U|Ef|;|2dﬂk($)-

Moreover the constant appearing above is optimal.

Proof. For u € Cg°(RY) we have

|u(z)[* _ 2 (s lu(z)|?
/RN ly|? d’uk(x)_/RN_l hi, (2)d /]Rl y[2 hi, (y)dy.

Using the Hardy inequality we get

ul\xr 2 4
/ L () < / lhiQ(z)d'z/ Ve yu(y) PR (y)dy
RN R *

PE 0+ 2y, =27
4
/ V() P (@),
RN

(l + 27]61 - 2)2

The last inequality hold since |Viu(z)| = |Vi, 4u(y)].

To prove the constant (%)2 is optimal, consider u(y,z) = v(y)w(z),

where v € Cg°(R!) and w € C°(RYN ). Tt is clear that

[P i) = [ (V0@ o) + V@R o) Fldu )

RN

Consider the convex function from [0, 00) % [0,00) to [0, 00) defined as, (s,t) —
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§2.3. Hardy Inequality on the Half-Space and Cone

(s? +t?). Now by the convexity we have

(2 +12) < (1= N)"1s? + 2712

for all s,£ > 0 and 0 < A < 1. By using this relation we obtain,

Jen [Viu(z)Pdp(z)

Jar 2 dp ()
o (VR0 @) P() P + [Vigw(2)Plo(y) P dyae()
Jor B2 dp ()
1 Jey [Vio(y )P w(2)[*dp () ,1fRN |V, w(2))?v(y) |2 dg ()
< (1-2) I quqi?' dn(@) + A ™ |z¢|<72| (o)
(o T PR Wy o 9GO () fy o) P )y
Jer BB R, (w)ely S [w(2) 212, (2)dz [ O R2 (y)dy

Since w is radial we have

Jan—i [Viw(2) PR, (2)dz Jan—i |Vow(z)*dz _

inf = inf
wecg";RN—l) Jani w(2)|?h}, (2)dz wecf‘;:(éR”—l) Jani [w(2)[?)dz
w0 w#0

Hence for 0 < A < 1, by the optimality of the Hardy inequality on R! with the

root system R;, we get

Jor V(@) Pdp () <(1=N" inf Ju Vo) PR, (y)dy

oo | $)|2 o lv(y)®
ueCL?#E)RN) fRN () vecv‘gééRl) = lyZ"IQ h; (y)dy

-2 2
<(A-X" (kal)-

Letting A — 0 and we get the constant (— + fykl) in Theorem 2.3.1 is optimal.
O
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§2.3. Hardy Inequality on the Half-Space and Cone

2.3.1 Hardy Inequality on the Half-Space RY ™

A straight forward calculation gives the following relations which will be used to

prove the next theorem.

» 1

2 2
8mN+1 45 4

)(Vansig(z))

= —Apg(z) — ( A Jg(x).  (23.1)
= Lg\T ax?\“_l o 83’;N+1 glr). .O.

(\/IN+1)_1( — Ap —

N
_ 0? I(1—1
_le+1(ZTj2+ 2 (2 )>IZN+1g(x)

axN-{-l TN

(ZT2 axNHJF Lo )g(:c). (2.3.2)

TN41 0T N1

- ﬂﬂxi—l(NZ_ZTer i 88—;) ﬁ zig(x)

i=N—I j=1 j=N—-l4+1 "3/ i=N—i+1
N—I N
0? 2 0
= — Zng(JZ) — Z (@ + x—%)g(w) (233)
Jj=1 j=N—I+1 J J =

Extend the root system R of RY to RV by Rx{0} and extend the corresponding
multiplicity function to RN*! by k(z,0) = k(z), where z € RN, Let V, =
(Vi, BzN —2% ) be the gradient on RY¥*! where V}, is the Dunkl gradient on RY.
With this notation we have the following theorem which can be considered as a

Hardy inequality in the upper half space.

Theorem 2.3.2. write & = (v,xy541). Let u € CPRYTY) such that u is G-
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§2.3. Hardy Inequality on the Half-Space and Cone

mvariant. Then

/ ¥u(®) dpn () ey
Rf“
(@)

1
A 2
4 RYHL Tyy

N 2 2 5\ 2

>

=

dp(2)dx N4

Proof. Let V = (V, Vo) be the gradient on RY x ]Rz where V, be the Dunkl
gradient on RY and V, be the Euclidean gradient on ]R?QJ. Using the optimal

Hardy inequality given in the equation (2.2.6) for v € C5°(RY x Ry):

(N + 27;)° / v(z, y)°

@vx, 2dug(z)dy > du(z)dy.
/]RNXR2| ( y)| ,Uk( ) 4 4 N «R2 x%+...+x?\,+y%+y§ 'uk( ) y

Let v(x,y) = v(x, |y|) and using the above relations we get

[ o))y
RY xR2

02 1 o
- Ay + + v(x,y).v(z,y)dug(x)d
/Ryxueg/( g 0%, Tnm 8xN+1> (2, y).v(z, y)dux(z)dy

_ 0? 1
= —/ (VZN+1) 1<_Ak+ T 1 )mm, ly|).v(z, [yl)dur(x)dy
R xRS TNi1  ATnq
-1 82 1 21
T /N (” TNt) (_ Akt O0x2 42 )vaHU(-fE’ ly)v(z, ‘?J’)-??NH/ de.
Ry TN+1 Tyt 0
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§2.3. Hardy Inequality on the Half-Space and Cone

Using the above relation (2.3.1) and substituting u = /Ty, v we obtain

[ 19t Pdia)dy
RN xR2

v 1 u(x,x 2 27
B </ Viu(z, o) = 1 / '(gﬂ) / a9
Rﬁ“ Ri\_fﬂ $N+1 0

> (N+2’m)2/ [v(z, y)I”
>
4 RY xR T+ o + 2% T yi + 3

_ (N+2%)2/ |u(2, Ty 1))
4 R

dp(w)dy

2 2T
duk(ac)de+1/ do.
0

2 2
N+ XY Ty

So we have the inequality

- 1 u(z, 2
/N Viu(z, zy)[* - ZL/ Hzﬂdﬂk<x)dl’]\f—i—l
RYH RY T TN+1

S (N+27k)2/ u(z, 2y 1)
- 4 RY+1 e S

dpg(z)dr Ny .

]

Now we can prove a slightly generalized version of above theorem. If we put
l= % in the following lemma we will get the above result and the [ = 1 case will

be used to prove the Hardy inequality for the cone.

Lemma 2.3.3. Let Vj be the gradient on R¥T! as mentioned earlier. For | €

{1/2,1,3/2,2,...,N/2,..} and for all G-invariant u € C§*(RY ™),

2
~ u(x
/N (V| dp(2)do oy + 1(1 — 1)/ [u(z) dpg(z)dz N1
R++1 R$+l ,Z'N+1
N + 2v;, + 2] — 1)? u(z)|?
> ( 7]94 ) / %dﬂk(l’)dl’N#&;
RYT! ||

where w is sharp.

Proof. Let V = (Vj, Vo) be the gradient on RY x RZ*! where V}, is the Dunkl
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§2.3. Hardy Inequality on the Half-Space and Cone

gradient over RY and V is the Euclidean gradient over R2"!. From the Hardy

inequality (2.2.6) it follows that, for v € Cg°(RY x R2*),

/ So(e, y) Pdps()dy
RY xR

N + 2y, + 20 — 1)? v(x,y)?
4 RN xR2HL T + oo+ TR + [y
(2.3.4)
Consider the functions with v(z,y) = v(z, |y|) and write zx4+1 = |y|. Then, we

have

Lo I9ote )Pty
z X Y
241 9

= L (8 g ot o

0? 20 0
- / I+ (Ak + * >U(xa lyl)-v(z, ly|)dpk(z)dy.
RY xR

2
0r%1  TNg10TN4

Substituting u = zly, ;v in the above equation and using the relation (2.3.2) we

obtain

/ |@v[2duk(x)dy
RY xRZH1

_ 0? I(1—1
[t g+ e o o)y
xX Y

2 2
Iryy Ty

20+1 0 I(1-1) l l
=S | N — Ay — + 93N+1U($, $N+1)-$N+1U(5L‘7$N+1)dﬂk(iﬂ)dl’N+1
+

0x31 TR
~ U 2
s [ a1 -1) [ A ) de@)danas
RY T RYT TN 4q
(2w g CRI T,
- 4 RV xR2HL BT+ o+ 2R+ [yl

N + 2y, + 21 — 1)? u(z, x 2
= H|SQH1H( T ) / (2, n11) dpy(v)dz N1
R

4 N |z]? + 2844
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§2.3. Hardy Inequality on the Half-Space and Cone

Hence the required inequality

Jul?

. u
/ |Viu(x, zng)|® + 11 — 1)/ s—dpu(x)dry 41
R

RYT TN 41

< (N + 2y, + 20 — 1)? / |u(x, zy41)]?
4 RY+ |z]? + 2%,

dpg(z)dr Ny . (2.3.5)

Since the the Hardy inequality in (2.3.4) is sharp, the constant in (2.3.5) is sharp.

O
2.3.2 Hardy Inequality on the Cone R}"
+

Let V= (Vi, ﬁ%, ey %) be the gradient on RY. Now we are going to prove

Hardy inequality for the cone using the Lemma 2.3.3.

Theorem 2.3.4. Let N + 2y, > 3. Let u be a G-invariant function and u €

C’é’o(Rﬁ). Then the following inequality holds:

/N Vot 2d gy (2)dan_141...da

R
b

>

= A —duk(w)de,lH...de,

N |z
Ly

(N+21+27k—2)2/ |u|?
R

¢ (N+2142v,—2)2 .
4

where the constan 1s sharp.

Proof. As in the previous cases, without abusing the notation, we use V =
(Vi, Vo) where V is the Dunkl gradient on RY~! and V, is Euclidean gradi-

ent on Rzl. The sharp Hardy inequality for v € C§°(RY ! x Rzl ) is given by

Lo (Va0 + Vo)) )y
Ry T xRS

- (N+2l+2’yk—2)2/ |v]?
- 4 rY - xga |7+ |y[?

hig (@) i (y) dwdy,
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where z € RY ™" and y € RY. Set

N1 = A\/YT Y5 T Y3 AN = \/ it yRtys, o an = \/ygl—Q + Y51 + 3

and let v(z,y) = v(zy,..xy). Consider the integral

3l
82
o /MZXRgl (Ak t2 3_yz)v(x’ y)-v(z, y)dp(z)dy

7j=1 J

Yoo 200
- /RN_lngl (Ak * - @ - _8_%>v(x7y)v(xay)dﬂk(l’)dy

T

For convenience we will denote the operator A, + Zjvz Nelt1 6872_ by M; and the
J

surface area measure of S* by ||S?||. Now using the relation (2.3.3) and putting

N
u= (HjN_lJrl xj)v we have

Lo oPdu oy
T X Yy

N N
_ -1
= —/R;V—lxR H x; My H zjv(xy, -, an)o(x, - on)dug()dy

¥ j=N_i+1 j=N—l+1

N
—1s [, TL

RN+1 .

+  j=N-l+1
N
I zw@n- - an) vl an)dus()doy e - - dey

j=N—I1+1

= —||S3||Z/RN Vot 2dpg (2)den_141 - - - dey

L
N 420 + 27, — 2)? v|?
Z ( e = 2) / %dlﬁk(iﬁ)dy
4 Ri\f*lngl |I‘| + |y|
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

= IS’

s dp(r)dry 141 -+ - doy.

(N+2l—|—2’yk—2)2/ |u?

4

Hence the theorem. O

Remark 2.3.5. The proof of Theorem 2.3.2, Lemma 2.3.3 and Theorem 2.3.4 are
mainly based on the Hardy inequality proved in the Subsection 2.2.1. The proof
of all these theorems are given in such a way that the optimality follow from the

optimality of the Hardy inequality.

2.4 Trace Hardy Inequality and Fractional Hardy
Inequality

The Hardy inequality for the upper half space is stated as

1 2
/ \Vul*dz > —/ @ x
RY 4 Jry Ty

for u € C°(RY) and RY = {(z1, 22, -+ ,2n) : zx > 0} and 1 is the best possible
constant. In the recent times a lot of attention is given to the analysis of fractional
power of Laplacians. Fractional Laplacian, (—A)®, for s € (0,1) can be defined

using Fourier transform as (—/A? F(€) = |€]*f(€). Tt also can be expressed as

s (z) = [ (§)
(=A) f(z) = ensPV. o md&
where
SQ‘SF(%)

CN,;s = m
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Similarly in the case of Dunkl setting we can define the fractional power of Dunkl
Laplacian in a number of ways. For 0 < s < 1, the fractional power of Dunkl
Laplacian is defined as Fi((—Ax)*£)(€) = [£**Fr(f)(€). One of the other equiv-

alent definitions that we will use is

(80 ) = 7 [ () = )

Our aim is to prove the trace Hardy inequality in Dunkl case. In order to do this

we first calculate

o0 U
/0 /]RN Vit — ;Vkvpv|2pad,uk(x)dp,

where Vi, := (Vj,0,) and we assume that v and v are real valued and u is

G-invariant. Now consider the integral

u U2 u
[ (= S0P dita) = [ (T + S (T50)? = 22T dya(a).

Let us consider terms of the right hand side of the equation separately. Assume

that v is radial and use the integration by parts formula for Dunkl operator given

48



§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

in Section 1.2,

/RN Z_E(ij)Qd,uk(I) = /RN Z—zajv(ij)duk(x) =— /RN 3j(%)u2ijduk(x)
—— [ T = [ 6T

[ s

RN U

—(0; + E;)(u?8;v)dpuy,(x)

Il
—

RN VU
1 /

u W V)
= /RN (2;8ju8jv + 78]21) + - Ej($ju2))d,uk(x).

By applying the definition of F; and summing over j we get
N
Y Ei(wp®) = > k(o)W (@) + u(0ax)).

Using this, we can arrive at

u? 5
y F!V,{v! dp ()
R
u u?
:/ 2—V0u.V0vduk(x)+/ —Agvd g ()
R RN U

" /RN % > k(a)(u(x) + uP(00))dp(z)

acRy
2

/
:/ QEVOu.Vovd,uk(x)qL/ %onduk($)+2%/ Mﬁ(z)duk(m).
R RN R

N U N TU
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On the other hand

_Q/RN UTuTvduk( )
_ 9 /RN —(0; + E)(u)0;vdpug ()

=2 /]RN ;@'uajvd,uk(x) — Z/RN ;8 v Z k(o uogsa(m)ozjduk(x).

acR

Summing over j gives

RN v
U
_— y —~Vou.Vovdyu(r) - /RNU , > k() (u(x) = u(oaw))dp(x)

The above two simplified expression will lead to

U2 2 u
/N F|vkv‘ dug(x) — 2 —Vku.vkvduk(x)
R

]RN

_ 2/RN i v Z k(o) u(onz)dus () + /RN “;onhz(x).

Finally we obtain

u
/ Vi — =V Pdpg ()
RN (%

N /RN |V | dpg () + 2 uvir) Z k(a)u(oax)dpg(x) +/R U—onduk(x).

N U
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Using the G-invariance of u and the expression of Dunkl Laplacian for radial

function, we obtain

/ |Viu — Evkv\Qduk(a:)
RN (%

w? o' (r u?
</ |V | dpg(2) +27k/ w )d,uk(x) +/ — Agudpg ()
RN RN v T RN v

2
u

:/ |Vku|2d,uk(:v)+/ — Agvdpg(x).
RN RN U

On the other hand doing a similar calculation with p-derivative gives

*(ut v, _ududv\ ,
[ (G 25, )
*u? 9, v u(z,0)]?
L[y, )
0

78_p P 6_p lim (p*9,v)(z, p).

v(x,0) p=0

We can write

> u
/0 /RN (Vipu — ;Vk,pv|2p“dpk(x)dp

N
- ) U — E )2 % — II_L@ 2| a
B /0 /RN |:Z(T]u UTJU) + (ap v ap) P d,uk(l")dp.

=1

Now substitute the above equations and adding up we get

> u
/0 /RN Vit = =Vl p*dpus(x)dp

o] 00 2
</ / |Vku|2,0“d,uk($)d,0+/ / u—p“Lkavhi(z)dxdp
0 JRN 0o JrN U

+/R Mlim(pa%)(w,o)dﬂk(x)7

N v(z,0) p=0
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

where Ly, is the differential operator
Li, = Ay + 0%+ 20, (2.4.1)
p

Therefore, if v satisfies the equation L,v = 0 on RJI *1 then the above inequality

reduces to

[ [ Wessteioriiaisdp> - [ 0D v 2 o, phtno

(2.4.2)

Now we are interested in solving L; v = 0 with a given initial condition, say

v(x,0) = f(x). This is actually the extension problem for Dunkl Laplacian. We

use the techniques developed by L. Caffarelli and L. Silvestre in [9] to obtain the

solution of the extension problem for the Dunkl Laplacian and relation of the

extension problem with the fractional power of Dunkl Laplacian.

When a = M — 1 is a positive integer, note that Ly, is given by the action of

Ay + Ag on RY*M on functions v(x,y) which are radial in the y variable.

M—-1
(Ak,m + AO)U(xa y) = Ak,zv + (ai +

9p)v(z,y)

with |y| = p. Then the solution of Ly, v = 0 can be obtained by considering the

fundamental solution of Ay, + Ay on RV*M. That is, the function

_ N+M
v(z, p) = (p° + [xf*)” 7
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solves Ly, v = 0 even if a is not a positive integer. The choice a = 1 — s leads to

the solution
o, p) = (0 4 [a?) T T = NI (L g p )T
Define 1), for any a > 0 by ¢, (z) = (1 + |z|*)~®. Then we can see
v(w, p) = p~ NI p 2wt = o (VO g (07 ).

By taking convolution we see that f s p~(NFT27=)y) Nes o (p~1.) also satisfies the

extended equation (2.4.1) with a = 1 —s. The function p~(N+2%=5)q)

;S+7k (pil'l‘)

does not give an approximate identity as ¢x-s, is not integrable. Hence the
2

convolution f p_(N“W‘S)@D%Mk (p~!.) does not converge to f as p — 0. It

can be observed that

_N

P+ e[ T = N (07 ), (2.4.3)

and this function satisfies the equation (2.4.1) with a = 1 — s. It also defines an

approximate identity. Therefore, we have

f *k P_Nw%w ()= f

as p— 0. 1f 0 < s < N/2+ 1, the function ¢hn_s € L*(RY duy(z)) and so we

can talk about ]:k(w%ﬂk)'

Theorem 2.4.1. For 0 < s < N/2+ 7

__9s 2
B T
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Proof. This relation can be proved by calculating the Dunkl transforms of 1 Nes o,

and Yﬁ% + - The gamma integral

1 o
a = —/ e dt, a>0, a>0
I'(a) Jo
gives
1 Oo T4|2|2)t, NS 4y —1
q/;N;SJr%(a;):m/o P L e e e e I 3
2

We know that

) ) 1 .
e e = Cp, I/RN We 4t Ek(-Ta_Zg)duk(x) (244)

Using the definition of Dunkl Fourier transform

]_ > 2 N+s
Frnes (€)= cl—/ / e~ WY=L Ey (0, —i€) dpue () dL.
k ;’ +’Y( ) h F(%‘i_’ﬁc) =y Jo ( ) ( )

Using the equation (2.4.4) we calculate

2*(/\k+1)

Fipage £:—/ et 2l 431,
3 +7() F(%—Fﬁyk) ;

Now apply the change of variable ¢ — £ |¢|* to obtain

27()\k+1)275|§|s 0o

—L|g]2 —ty—s/2—-1
e 2l e dt.
D52+ %) Jo

Fitbnge ,,(€) =

Hence we conclude that

D(852 + )
D55 + )

2

Fithage 0, () =277 €1 Froave 1, (€).
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Since Fi(f *x g) = Fi(f)Fr(g) we obtain

—sF(N_S + ’Yk) s/2
Frthngs iy, =2 mAk fruns,, . (2.4.5)

2

Now we let
s/ .2 N—NEs 0 _N-—2y -1
Usp(x) = p*(p” + [x]7) "2 T =p Ungs o, (p7 )

and using the change of variable we get

(B2 + )

D& + )

Fr(vsp)(€) = Fr(thnga ) )(p€) =277 PPIEL Fr(thn—s ., )(06).

Therefore, it follows that

[ vsp(x) =27°

D52 4 ) /2
e T AS —N—2v+s .
P55 + ) (( k) s v

) @)

Since ,0‘<N+27’“_5)ww;s+% (p~'z) satisfies the equation Ly, u =0, vs, and f xj vs,

also satisfies the same equation. Since v, , is an approximate identity we obtain
lim f %, vs, = an(s)f
p—0
in LP(RY h(z)), 1 < p < oo, where
oxs) = [ (1 Jof) e
RN
We are going to calculate ay(s) explicitly. In fact

[o.¢]
an(s) = a,;l/ (1+ 7’2)_%_%7"]\[_1“%617“.
0
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Changing the variable to 7 by substituting r? = ¢ we obtain

-1

ax(s) = %= /0 (14 6) 5w F gy, (2.4.6)

In view of the formula

* b [(a)T'(b— a)
T4ty o tgp = 2/
favo (o)
ay(s) can be written as
S DT s)
an(s) = % F(1\72+27k+s)2 : (2.4.7)
2
Therefore,
a;' (5 +w)I(G)
lim £ 5 v p(2) = 22 TIE ) g
Since
(,02+ |:L‘|2)_ 37 Tk _p—N—27k+s¢ 275+%(p lx)7

we have

— 1758 9—s 2 AS/Q —N—27j,+s . ,1.
e S R A ST} [

TEFE 4 %) (N —s s s _N+@-s)
= —21 F(Ni—s n Wk) ( 5 + /Y,Ig> (Ak/Qf) *, p2 (p2 + |ZL‘|2) > Yk
2
75F(N_s +9%) (N —s
=2 g (T ) G )
2

56



§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Consequently it yields

(55 + )
U552 4 )

(%57 o Jantz = 081D,

})IE)% pl—sap(f . Us,p) — _21—3 5

Using the explicit values of ay(s) and an(2 — s) we get

i P00 e vsp) o1 D= 5) (A7)
im — =2 5 .
20 s, O

Now using these results we get the following inequality:

[ [ sttt -nitaydsdp
r

1—s (1_§> |U((L’,0)|2 /2
> 2 /. A @), @24

The choice of f(z) = (14 |z|2)~ 2"~ leads to the following theorem

Theorem 2.4.2. Let 0 < s < 1 and u € CF(RY™) and G-invariant, then

| [t o dnalde
0
I'(1

( —%)F(%ﬂL%)/ |u(,0)]*
PG TEF + ) Jav (1A [2?)°

=2 dpe ().

By a suitable choice of f we can prove the following Hardy inequality for Az/ 2,

Corollary 2.4.3. For f € L*(RY h2(x)) for which AY?f € LXHRY dpy(z)),

vy T 00 [ If@)?
ey ] e

)sduk(x).
Proof. Since u = f * v, , satisfies

1—
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

with u(z,0) = an(s)f(z) integrating (Ag + 97 + %)u with p variable and then

integrate with x variable we get

| [ Vel duordo == [ ute.0) (e *0,0)(z p)ds(z).
0o JRY RN p—0

Now use the above theorem and simplify to get

F(%2 4+ %) N —s o2

F(%%—’yk)( 5 +Yk)an (2 — s)ay(s) /RN AV f(2) f(x)dp(x)

M- PPy 4w o lf@F
1"(%) F(N2—s+7k)aN(3 /RN dﬂfk( )

> 2

(14 [z[?)*

Therefore, we arrive at the inequality

N+s

o g TCE ) [ f@P
SN2 REE G L T )

Theorem 2.4.4. For 0 < s <1 and u € C*(RY™Y) and G-invariant, then

| [ 19euta otz
0

5 91 TL=3) (F(N”zﬁﬂ)z / [u(@. 0P, .

L5 A=) |z[*

Proof. From the above trace Hardy inequality for non-homogeneous weight we

have,

= 2 1-512 F<1_%) |U($a0)|2 s/2
[ et ot hi e > 2t | R )
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

For any ¢ € C°(RY) we take f = ¢ *, u_, s5(x) where

uss(x) = (62 +|z2)" T %, —1<s<l.
Then
A5/2fx :AS/2¢* U_s5)(T) = 25 —2——285(0 *1, Uug ) ().
Y f(@) W (o *pu_ss) () (5= 1 ) (¢ *1 us5) ()

Hence we have

| [ 19wt e ita)dady

r'@ —§)F(N+s+7k)/ 2

) W2z, 0) 8% *g us 5(T)

© *p U_g 5(T)

dpg ().

Now we take p(z) = ¥ (z)|z|™", 0 < r < N + 27, ,where ¢ € C*(RN \ {0}).
Then as 6 — 0

0% xi Us 5 (1) = an(s)p(x) = an(s)P(@)|z]™",

where ax(s) is given by (2.4.7)

Let 9 has the further property that 0 < ¢ < 1 and ¥ = 1 on the support of
u(z,0). On the other hand

(lsi_I% © *p U_g 5()
= [ @R ot )y

< /N Iyl_’"ry(|.|_N_27’“+8)(—x)hi(y)dy _ |l‘|_r i, |{E|_N_27k+5,
R
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§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Now using the Plancheral theorem and Lemma 4.1 of [38]

lim @ *p u_g5(x) < f,;l (]:k (|-|_T *k H_N_MHS)) (z)
6—0
N —7r
_ -Fk_l ( F(—CjT’W;)F(S/Q) |‘|—N—2fyk—('r—s)) (ZL’)
2T (N BT (1 2))
= Dy(N,r, s)|x|_(7"_5),
where
=%~ (=) (N2 = (&
Dk(N’ T S) - N+2y,— E - )) (N+22’yk—s) (27") ' <249)
D) (==2)0(3)

Using this now we have

D= ) D% +9) _ax(s)
U(3) D52 + k) Dr(N,r,s)
/ Jule, 0Pl )y

|x|—(7“—s)

[ [t ot oydud > 2
0

Choose r = W and use the fact that ¢» = 1 on the support of u(x,0), we

get the desired inequality

/ / Vi pu(z, p)]* o' dpg () dp

D0 =3) (TEEEONT [ Ju(@ o)
220h 1—\(%) (F(N+2Zk—5)> /R;N |.T|S dﬂk( )
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

Remark 2.4.5. If we put f = u_ss in equation (2.4.8) we will get,

| 19t o ia)dndy
r

(1= PET + %) o  Uss(@)
> 2 Q) F(N2_8+7k)5 /RN lu(z,0)| uﬂ’é(gj)d,uk(x).

It can be verified that the function f(x) = u_,s(x) will optimize inequality. Using
the above inequality and the Theorem 2.4.2 we get the following type of Hardy

type inequality with non-homogeneous weight,

oy s EOE ) flaf
s U RS ros

The constant is sharp since we obtain the equality for the functions f = u_g.

2.5 Sharp Fractional Hardy Inequality for the

Dunkl Laplacian with Homogeneous Weight

We have already proven the Hardy inequality for Dunkl fractional Laplacian with
non-homogeneous weight as a corollary of trace Hardy inequality. In this section
we will prove the fractional Hardy inequality for Dunkl Laplacian when the weight

function is homogeneous. We adopt the techniques from [35].

Let z € RY and t > 0 let G¥ denotes the Dunkl heat kernel on RY, that is,

1 — |z
@0z

Gi(x) =

For a function good enough the heat semigroup e ** is defined as the convolution
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

G¥ %y, f(x). Now,

et f () /f Y7, GE(—2)dpu(y)

and also e t2%1 = 1.

For 0 < s < 1. We define another kernel G; by

’/ GF(x)t™*1dt.

gk

Let 0 < o < N/2 + ~;, and we define

1 a2
k
r) = —— € 4t
9a() F(a)Q%”’“ /o

Lemma 2.5.1. Let N > 1. Let o € R be such that 0 < o < N/2 + .. We write

for any v € RY
k(:L‘) o P(N/2+7k )’ ‘Qa 2y — N
T T2

Then G* can be expressed as,

4°T (N/2+7k+3)| |—25 2y —N

e T

Also by using Lemma 4.1 of [38] we get Fy(g%)(&) = [€]72~.

Proposition 2.5.2. Let N > 1 and 0 < s < 1. Then, for all f € S, we have the

following point wise representation

ML) = PV [ (1) = F0)nG. (=) )y
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

Proof. Using the definition of e7*** and the fact that e ***1 = 1 we have
e B f(x) = fx) = e B f(a) — fx)e 1 ()

= [ A6 @)~ ) [ 76,

Recall the definition of fractional power of Laplacian motivated by the numerical

identity

1 o dt
N= -1 A > 0.
F(_S)/O (e )t1+s’ >0

Now we have

—_

M) = <4Mﬂ> f(»j@

G ()~ f@)dyr

zrhﬁégﬂw—ﬂw(me@<)ﬁiﬁM@>

Lemma 2.5.3. Let N > 1 and 0 < s < 1 be such that N/2 + v, > s. Then, for
f e G (RY)

@i =3 [ [ 15 = PRt ),
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

Proof. Since 7,Gs(z) = 7_,Gs(—y), it follows that

AL ) = / AL () (@) dpue(a)

/RN /]RN y))1yGs(—2) f (x)dpn(y)dpy (z)
/RN /RN )7y Gs(—2) f (y)dpur(x)dpx(y)
- % /RN /RN )27, G (—2) dpur () dpg. (y).

Let the corresponding ground level representation H¥[f] for f is given by

HES = (8 0) = B | ‘ﬁ?j Qi ().

where Ey , is given by

Now, if we prove H¥[f] is positive then it is done.

Theorem 2.5.4. Let 0 < s < 1,5 < N/2 4+ and a > s. Ifu € CF(RY) and

v(x) = u(z)(gs(x)) " Then
_ %/RN /]RN lv(z) — v(y) >, G5 (2) gk (x) gk (y) d s (x) dpr (y).

Proof. Polarize the expression given in Lemma 2.5.3 and obtain for any f,g €

Coe(RY),

@) =3 [ [ (@)= 0 0t) =~ s nGE )i (w)dia()-(25.1)
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

We take g(x) = ¢"(z) and f(z) = |u(x)|*(¢¥(x))"t. By Lemma 4.1 of [38] and
Plancheral theorem for the Dunkl transform, the left hand side of the above

Equality (2.5.1) become,

@ife) = [ IEPRDOFDOdun
= | FDEIE* " dun(8)
= | f(2)ga_(2)dpi(x)

- /RN () Ple==®) ). (2.5.2)

g4 ()

Substituting f and ¢ in the right hand side of (2.5.1) and see that,

%/RN /RN(f(:c) — F))(g(z) — 9()) 7, GF (=) dpsge () dpur (1)

5 [ [ (o) =t -

u(r)  u(y)

ga(x)  9&(y)

g§<x>g§<y>) G (=) () dpn ).

(2.5.3)

Now we use the Equations (2.5.1), (2.5.3), Lemma 2.5.1 and Lemma 2.5.3 to get

the required result. O

Corollary 2.5.5. Let N > 1 and 0 < s < 1 be such that N/2+~, > s. Then for
[ € C(RY) we have

By | @ 4 ) < (821, 5,

O

where the constant E s ts given above.
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§2.6. Fractional Hardy Inequality for Half-space and Cone

Proof. By Lemma 2.5.1 and Theorem 2.5.4 we can write, for o > s,

@ir.0 = [ 1P
LT 0 £ ) [ e

T(a—s)O(N/2 4+, —a) Jan |z ().

Now choose a = & + 2 + £ and obtain the Hardy inequality. O

Remark 2.5.6. It is easy to see from the ground state representation H¥[f] that

the constant Ey, is sharp. The sharpness in the classical Euclidean case is

2s
—Vk

discussed in [14]. Considering the functions which are converging to |z|=" 2
and applying the limit in Theorem 2.5.4, we obtain the optimality for the Dunkl

case.

2.6 Fractional Hardy Inequality for Half-space
and Cone

Let (z,y) € RY~! x R3 and R be a root system on R¥~1. Now let R; and R, be
two root systems on R¥*2 and RY respectively defined as R; = {(z,0) € RVN*2:

z € R} and Ry = {(2,0) € RN : 2 € R}. Let A, be the Dunkl Laplacian on

3 o2

R~ xR} according to the root system Ry which given by Ay, = Ap+ D el B2
J

where A}, is the Dunkl Laplacian on RY~!. Similarly the Dunkl Laplacian on RV

with respect to the root system R, is given by AkQ = Ay + 88722.
N

Theorem 2.6.1. Let u € Cg°(RY) and G-invariant. Also let 0 < s < 1 and

N/2 4+ v > s. We have

D522 4 y) / u(z, zy)?
R

AS/2u,u =
o oty 2 P8 ) oy (U 1+ 2%

)Sd,uk(x)de.

N
+
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§2.6. Fractional Hardy Inequality for Half-space and Cone

Proof. Let us begin with the following calculation

/RN_ AYPo(,y).o(z, y)di () dp(y)

~ » dt
[ ( mhv(m,y)—v(x,y>)v<x,y>duk<x>dy—1+s
0 RN—lng £

0 AT, 25) dt
- ( 5, y) — v<x,y>)v<x,y>duk<x>dzf
0 RY-1 e

Y

> CHA 422 D
=/ / <6 Serag xNaxN)v(fc,y)—v(x,y))
0 JRY'xR3
dt

v(x, y)dﬂk@)d?/m-

We can directly calculate that

0? 2 0 \" 2 \"
Ap+ 5= + v(x,y) = a5 [ Ak + — | znv(z,y).
Oxx,

ZL‘N@IN 8IEN

for every m € N. So

92 2 9
A )

2
—1 _t(Ak""aiz)

e v(z,y) =zye N e yv(T, y).

Further, assign that v(z,y) = v(x, y]), ly| = N, u = u(z1,....,2Nn) = zyV(T, ZN)

and use the fractional Hardy inequality given in the Corollary 2.4.3 to obtain the
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§2.6. Fractional Hardy Inequality for Half-space and Cone

desired Hardy inequality for the half-space.

/RN 1 AS/Z (l’ y) (x y)dﬂk(x)dy

_t(A +-22) dt
M 023, rnv(z,y) —znv(z,y) |v(e, y)dug(x)dy 1+2
RN 1 t +2

3 A’“+ai22 )
= |I$7| Y TN (e N aNv(Z1, s TN) — ZNU(T1, e, TN)
+
dt

v(xy, ..., xN)dpk(x)d:cNtlT%

9% \*?
= ||IS?| /RN (Ak + ﬂ) anv(21, ooy TN) ZNV(T1, ooy TN ) dpg (2)da
+

= |IS?| /]RN AZQZU(xl, s TN)U(T L, ooy N ) At (1) d
+

L D=+ ) / v, y)°
= —S 5
F(N+2 + fyk> ]RN IXRS (1 + |,CL’|2 + |y|2)

dpg(z)dy

F(N+2+S +,Y 2
> ||S? / d d
|| HF<N+2 3_'_7) 1—|—|$|2+ZL’ ) ,uk:( ) TN
F(N+2+s _|_,Y) $ xN
= ||S? d dry.
IV oy T o (0

Let (z,y) € RV x R3 and R be a root system on RY~!. Now let R; and
Ry be two root systems on RM*2 and R respectively and defined as R, =
{(,0) € RN*? . 2 € R} and Ry = {(z,0) € RN : 2 € R}. Let A;, be
the Dunkl Laplacian on RY = x Rgl according to the root system R; which is
given by A, = Ay + Zj . 322, where Ay is the Dunkl Laplacian on RV
Similarly the Dunkl Laplacian on RY with respect to the root system Rj is given

~ 2
by Ay, = AHZ] N—i+1 aax

Theorem 2.6.2. Let 0 < s < 1 and N/2+ v, > s. For any G-invariant function
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§2.6. Fractional Hardy Inequality for Half-space and Cone

u such that u € C{)’O(R{X), the following inequality holds

N S/2
<Aké U, u>]RlN
+

F(%Jr%)/ u?
R{i(

— d,uk(x)dx]v_l 1...de.
T (M2 ) U+ a2+ 2% oy + o+ 2%)° +

Proof. Let v € Co(RY=! x Rgl),

Lo Bt )b ) dady
PRI
= —tA,, dt
= ez, y) — oz, y) |u(@,y)du(r)dy =
0o JRY'xRY 2
o (At TE, 25) dt
:/ / (6 L (@, y) —U(ﬂij))v(%y)duk(ﬁ)dyﬁ
0 RY ~! xRS tiTz

o0 ANy 2 52
-/ e A A )
0 JRY'xRS
dt

U(%?/)dlﬁk(f’f)dym-

As in the previous theorem by taking the positive integer powers of Ay + % +
N

2 9

=2— we can verify that
TN OTN

N 92 ) N N 52
—t(Ak+3 N1t aa:2.+z% azj) _q AR SN 5p2)
e i v(z,y) = | | T; i

; € (l’,y),

i=N—-Il+1

where 0(z,y) = <H£\LN—I+1 zv(x, y)) Assume that v(z,y) = v(z, 2N _131, -, TN)

with zy_i4; = \/y§j72 + itz for 1< <L

Furthermore, put u = u(zy,...,xyx) = Hi]iN_lH x;v(xq, ..., xy) and use the Corol-
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§2.6. Fractional Hardy Inequality for Half-space and Cone

lary 2.4.3 for the functions in RY~! x Rgl.

/JRN IxR3 AZ{%}(%y).v(x,y)duk(x)dy
X

i dt

- / » ( i) ~ 0(o.0) ot ) dn(o)y

Ry TIxRY - z+1 e

S3 l Akg d d _dt

= [|S*|] H T (@, y) = 0(z,y) Jvle, y)du(x)dy o
l i=N— l+1

N
||S3||l/ AS/2( H xvxl,...,x]v). H zv(T1, .y oy )dpg(x)dey ... dey

i=n—I+1 i=N—[+1

— ||SS||I/N Aifu(xl, ey )u(xy, oy o n ) dpg(2)dey g ...doy

Lt

T N+2l+s _i_,y v(z, 2
: ¥ D) )y
RY-!xrat (

=
F(NJer s +7k> 1+|x’2+‘y’2)s

S N
F(N+;l+ +Yx) / v(w, y)2 [Tien_ l+15’7
RN (

D (A= 4 ) L[z + 2}y +2%)°

d,uk( )de_l+1...d.TN.

> |Is°)f

We have proven Hardy inequality for fractional Dunkl Laplacian on the Half
space and cone in the non-homogeneous case. We can prove the Hardy inequality
in the homogeneous case with exactly similar arguments by using the Hardy
inequality for the fractional Dunkl Laplacian in the homogeneous case.

We will just state fractional Hardy inequality for Dunkl Laplacian with homo-
geneous weight on the half-space and cone without proof. The same arguments
used for non-homogeneous case can be applied. Instead of using the Hardy in-
equality with non homogeneous weight given in the Corollary 2.4.3 use the homo-
geneous version given the Corollary 2.5.5 in the proof. Also since the G-invariance
is not assumed in Corollary 2.5.5 we don’t assume it here either.

Let AkQ be the Dunkl Laplacian on RY defined above in the beginning of the
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§2.6. Fractional Hardy Inequality for Half-space and Cone

Section 2.6.

Theorem 2.6.3. Let u € C°(RY) and N/2 + v, > s. Then for 0 < s < 1 we

have

~ + 5)\?
(A u, u)ygn > 45( 2 )
2 + F<_+ + %k _ %)
As in the Theorem 2.6.2 we use the same notation Ay, for the Laplacian on

Rﬁ with the corresponding root system R, explained there.

Theorem 2.6.4. Let u € C°(RY) and N/2 + v, > s. Then for 0 < s < 1 we

have

- F(M+7_k+§) 2 lu(z, 2y )2
(A u,u)gy = 4s< 4 =2 ) / —————dug(x)dzry.

k2 R P+ % —3) R
Remark 2.6.5. From the Remark 2.4.5 it is clear that the constants in the The-
orem 2.4.2, Corollary 2.4.3 are optimal. By the construction of the proof, this
optimality is carried to the constants of Theorem 2.6.1 and the Theorem 2.6.2.
Also since the constant in the Corollary 2.5.5 is sharp, and so constants appearing

in the Theorem 2.6.3 and the Theorem 2.6.4 are optimal.
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Chapter 3

LP Hardy Type Inequalities and
Stein-Weiss Inequalities for

Dunkl Operators

In this chapter we discuss LP Hardy inequalities, fractional Hardy inequalities
and Stein-Weiss inequalities for the Dunkl gradient. We will first prove a classical
L? Hardy inequality for G-invariant functions with weighted measure. We will
adopt the techniques of R. frank and R. Seiringer used in the article [16] to prove
fractional Hardy inequalities. As in [16] we also obtain an improved inequality
for p > 2. We extend this result to half space and cone by choosing suitable
root systems. Also we will prove some Stein-Weiss inequalities in this chapter by

using some ‘ground state substitution’ techniques.
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§3.1. Introduction

3.1 Introduction

Hardy inequality is of fundamental importance in many areas of mathematical

analysis and mathematical physics. A general Hardy inequality is of the form

_ p p
/ \VulPde > [N —pl / |u(z)| de,
RN D RN |T|P

for u € C(RY) or u € CF°(RY \ {0}) respectively with respect to 1 < p < N

or p > N. It is known that the constant ('P%p')p is sharp and never attained in
the corresponding spaces I/Vp1 (RM) or I/Vp1 (RN \ {0}) respectively. A lot of work
concerning fractional Hardy inequality has been developed in the literature. A
remarkable work on the same is done by R.L Frank and R. Seiringer in [16].
They have proven the sharp Hardy inequality with sharp constants as follows:

forp>1,0<s<1andue CERY)

u(y)[? / ()|
2 A dedy > Cys dz,
// \x—ywﬂw T2 CNep [ T

where the constant Cy s, is sharp. Also they proved the fractional Hardy in-

equality with remainder term. That is, for p > 2 and u € Cg°(RY)

u(y) [P / ()|
—r— " daxdy — Cys, —d
// |x—y|N+ps A A

y)IF  de dy
> % RN JRN |I— |N+p5 || (N=P8)/2 || (N—ps)/2”

where v := |z|VP9)/2y and ¢, is as in (3.2.19).

The same authors of [16] have proven the fractional Hardy inequality in
half-spaces RY with and without remainder terms in [16], where RY = {z =

(21,22, ...,25) € RY : 2y > 0}. They have proven that, for some sharp constant
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DN,;D,S

u(y)[” / Ju(z) P
) = WY gy > Dy I g
/RN /RN |~"C— |N+ Mt S

for all u € W3(RY) with ps # 1. Similar to the case of RY they obtained an

improved fractional Hardy inequality which states for p > 2

u(y)? / ()P
) 2L dvdy — Dy s AN
// |w— |N+p8 TN fon e

(y)|P dx dy
Z D [y Jon |:L’—y|N+P8 REETIE Y

where v := xg\l,_ps)/pu and ¢, is given in (3.2.19).

Our aim in this chapter is to prove both Hardy and fractional Hardy inequality
in Dunkl setting. We cite few papers in which authors studied some of the related
inequalities in Dunkl setting. Pitts inequality for fractional Dunkl operator is
studied by D. V. Gorbachev et al. in [18]. F. Soltani et al. have proven certain
inequalities, namely Stein-Weiss inequality, Hardy-Littlewood-Sobolev inequality,
uncertainty principles and some Pitts inequalities in the Dunkl setting in the
papers [29, 30, 31]. In [10] Oscar Ciaurri et al. studied the Hardy-type inequalities
for Dunkl Hermite operator. We mainly adapt the techniques used in [14] to prove

the Hardy and fractional Hardy inequalities.

The chapter is organized as follows. In Section 3.2 we prove a generalized
version of the classical LP Hardy inequality in the Dunkl setting. We use the
‘eround state substitution’ technique to achieve it. For p > 2 we obtain an
improved version of Hardy inequality in (3.2.21). In Section 3.3 we obtained an
optimal fractional Hardy inequality for the Dunkl Laplacian. As in the Section

3.2 we obtain a fractional Hardy inequality with a remainder term for p > 2. The
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§3.2. LP Hardy Inequality

Section 3.4 and Section 3.5 deals with similar type of fractional Hardy inequalities

on half-space and cone respectively.

3.2 [? Hardy Inequality

In this section we prove optimal LP Hardy inequality for 1 < p < oo and an im-
proved Hardy inequality for p > 2 for G— invariant real valued smooth function
having compact support. Also we will prove a generalized LP Hardy inequality
with optimal constant for the same function space. However we can relax the
condition G— invariant function for certain case. We define the p—Dunkl Lapla-
cian Ay, by Ay, f = divg(|VifIP2Vif), where divg(fi, fo,-- , fn) = %lﬂfj
We will compute Ay ,w for a radial function w which is needed to provjeiHardy

inequality. For a radial function w

divg(|Vw|P 2V yw)

WE

DT ([ )P (r)7) =

=1

(0 + By) (|o/ ()2 (r)2)

1

)2

<
Il

<.
Il

I
WE

(@—nmvw*wwx

=&

1

.
Il

+ |w/(7“)|p_2w'(r)(% - r%f«_j)) * L ZEj(xj)

N -1

= (p = D' ()P w"(r) + (= + 2 [/ (") 2w (7).

Hence for a radial function w we have

di —1

Amw:@—mwmw%mm+( )mww*wm. (3:2.1)

Theorem 3.2.1. Let 1 < p < oo. Let u be a real valued G-invariant function.
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§3.2. LP Hardy Inequality

Ifu € CPRYN) if dy > p and u € CP(RN \ {0}) if d < p then the following

inequality holds:

dp —p

p/ @) ). (3.2.2)

[P

[ 1V d(a) >

dk—p‘p

> given in the inequality is optimal.

The constant ‘

Proof. Let w be a positive radial function and let v be a G-invariant real valued
function with v = vw. Use the inequality for real numbers a and b and for p > 1,

la + b|P > |a|? + pla|P~2a.b, we obtain

|Vku|p = |Vk(vw)|p (323)
= |[vViw + wViol?

> || Viw[P + ploP72|Vew]P 20wV Viw.

Since w is radial we write w(z) = w(r) with r = |z| and denote the derivatives

as w'(r) = 2 and w’(r) = ‘227"‘2”. First we will prove an inequality of the form

/ |Vku|pduk(x)>/ V0ulPdug(x) (3.2.4)
RN RN

for the given radial function w and a function V', where w is a weak solution of

the following equation
dz’vk (|ka]p_2vkw> + pr_l =0. (325)

After proving the inequality (3.2.4) for the functions which satisfy (3.2.5), we will
look for some explicit V' and w which provide us the Hardy inequality.

In order to estimate the integral [,y |Vi(u)[Pdpu(x) we estimate the integral
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§3.2. LP Hardy Inequality

of each term in the right hand side of (3.2.3).

We start with
N
[ bevPant) = [ opi9al (Y nute)due) 620
j=1
N
= > [ Rl T wd @)
j=1 7R
N
S O I (e T )
=1

Let Vg be the Eucledian gradient. Calculating T (|v[?|Viw[P~*Tjw) separately,

we obtain
T; <|U|P|vkw|P—2Tjw> = (0, + E;) (|U|P|v0w|f’—28jw) (3.2.7)
= (p|v|p_laﬂ)) |V0w|p_28jw + |v|p8j (|ng|p_28jw)
!
v, (o))
r
Since M is radial we can write

jw'(r) [P~ (r) [w'(r) [P~ (r)

gy (1 g ) = PO oy, (325)

Using the definition of F; and reflection one can easily calculate
N

ZE] olPz;) = > k() [Jo(@)P + [v(oa(x))”]. (3.2.9)

acRL

Substituting (3.2.7), (3.2.8) and (3.2.9) in (3.2.6) and denoting the Euclidean
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§3.2. LP Hardy Inequality

divergence as divy,

/ 0P|V ew|Pd () (3.2.10)
RN
= —p/ wv|PHVow P2V v. Vowduy, (1)

RN

—/ wv|Pdive(|Vow|P 2 Vow)dpuy(z)

_ Z k: / |w ( 2|p /(T) (|U(l,>|p + |U(Uo‘l’>|p)d/~bk($)‘

Since radial functions and the Dunkl measure are invariant under reflection, a

change of variable in the third integral on the right-hand side gives us

/ PV wlPdp () (3.2.11)
RN
= —p/ wv|P 20| Vow P2V ov. Vowdpuy, ()
RN
—/ wv|Pdive(|Vow|P*Vow)dpuy(z)
RN

o, /RN ‘w/(rﬂp_le(r)w(T)|v(x)|pduk(x).

r

Since w is radial we can write from (3.2.1)

/ p—2,,,/
divy (|ka|p_2vkw> = divg <|Vow‘p_2V0w> + 2y () , v (T)

Now we can write the above equation (3.2.11) as

[ 19l diaa)

RN

= —p/ wlv|P" 2oV ov. Vow|Vow [P~ 2 duy ()
RN

_ /R _w(@)lo()Pdiv (Vi Viw)dp ().
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Consider the second term on the right-hand side of (3.2.3) and integrating

P / [0[P2 | Viw [P 20wV po. Viwdpg, (1)
RN

:p/ [v[P~2 |V w [P 20wV ov. Vowduy (z)
RN

+p/ [0[P~2(Vowl?~ 20 2] (ZE x]>duk ).

Using the definition of E; we find that

Z E;(v)x; = Z k(o) (v(z) — v(oaz)).

Since v is G—invariant we can write

p/ [0[P2|Vw [P 20wV v Vgwdp, (1) (3.2.12)
RN

:p/ [v[P2|Vow|P 20wV ov. Vywduy, (z)
RN
-2 —2 w’(r)
+p/ 0P~ Vow|PPow——= > (k(a)(v(z) — v(00z))dps(z)
RN r CMGR+

:p/ [v[P2|Viw [P 20wV ov. Vowduy (z).
RN

Substituting all the above calculated estimations and integrals to the inequality

(3.2.3),

/ |Vi(vw)|Pdpg(z) > —p/ wlv|P2uVow. Vv |Vow P~ 2d ()
RN RN

- /R _w(@)o(x)Pdivg (|vkw|p—2vkw> dpug ()

+ p/ [0[P2 |V w [P 20wV ov. Vowduy, (z).
RN
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§3.2. LP Hardy Inequality

That is, we end up with

/RN Vi(vw) Pdpi(x) > / ) w(x)\v(x)\pdwk(\vkw\p2vkw) diu(2).
(3.2.13)

Now if w is a weak solution of the equation
divy, (|ka|p2vkw> +VuwPr =0
for some function V', the above inequality (3.2.13) becomes

/ Vil dpue(z) > / VuPdu(z).
RN RN

Now we will choose a w and V' explicitly to obtain the desired Hardy inequality.

Let us choose w(x) = |z|~(@*~P)/P_ that is w(r) = r~(%~P)/P_ By a straightfor-
ward calculation we get w'(r) = ——(d’“;p)r_(dk_p)/p_l and w”(r) = (—(d’“;p)) (—(d’“;p) +

1)7"_((dk ~P))/P)=2_ Using the Dunkl p-Laplacian for radial functions given in (3.2.1)
we find that for r £ 0

A/apw(r) = -

dy — p"’r((“"“p”)(w)w).
P

Choose V(z) = |%|p|x|’p then w is a weak solution of Ay,w = —VwP™! .

Substituting V" and w in (3.2.4) and obtain the desired Hardy inequality

Pl ful?
d .
/RN 2P Mk(x)

To prove the optimality consider the functions u. below and take the limit as

dy —p

/RN \ViulPdug(x) >
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§3.2. LP Hardy Inequality

e — 0;

1, ifjz] < 1

ldi—pl

—€

, if |z > 1.

Remark 3.2.2. 1. We assumed that the function v in the Theorem 3.2.1 is
G—invariant. Assume that u € C°(RY \ {0}) and u = vw with some v and

a radial function w with w'(r) > 0. Now by using the Holder’s inequality

we obtain

!/

[ o utaiutons) D D)

_ /R ) op2u(@yw(r) OO ()

r
y

_ /R ) ('w'“)'p_zw'(”w(”)plv(;c)w? (3.:2.14)

T ( [w'(r) [P~ (r)w(r)

r

) 0(0a)dp(z)

p—1

< ( / N%W(fﬁﬂpduk(%)) p

(/RN \w'(r)\z;_lw(r) |v(aax)|pd,uk;($)) p'

Therefore we conclude that

w(r)w'(r

[Pt L Gy a)

< [ o)

r
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Using this we can rewrite the equation (3.2.12) as

p/ [0[P72|Viw [P 20wV oV wd (z) (3.2.15)
RN

2p/ [v[P2|Vw [P 20wV gv. Vowduy (z)
RN

w'(r
- / o 2e2(@(e) ol (o)
RN
w'(r
g e s
RN

:p/ [v[P2|Vw [P 20wV ov. Vowdu, (z).
RN

Now by repeating exactly same steps of the proof for Theorem 3.2.1 we get

the generalized Hardy inequality

/ VP dyun(a) > / ViuPdus ()
RN RN

with some function V' and w satisfies (3.2.5).

dp—p

2. Let w(z) = |z|” 7 with dy < p. Then w'(r) > 0 and by using the Remark

3.2.2(1) we get the Hardy inequality

[ Vsl a) >

d . P
: p] [ (o)
p RN

The above inequality is optimal and it is true for all u € C5°(RY \ {0}).

3. If w'(r) < 0 the Equation (3.2.15) will be of the form

p/ [0[P2|Vw [P 20wV oV wdpg (z) (3.2.16)
RN

(3.2.17)
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§3.2. LP Hardy Inequality

}p/ [v[P~2 | Vw [P 20wV gv. Vowdu, (z)
RN

w'(r) \Viw[P~2dpy ()

o [ o)

g e O s
RN

r

:p/ [v[P~2 |V w [P 20wV ov. Vowduy (z)
RN

w'(r)

Viw P dp ().

w2 [l @ut)

Now using (3.2.11) and (3.2.16)

[ 9w (o)
RN
> —/ wv|Pdive(|Vow[P > Vow)duy ()
RN

+ 29(p — 1) /

R

w'(r)

r

Viewl"*dp ()

o/ ()70 (r)

r

ol (@)

= — /RN wlvfP (divo(|V0w|p_2Vow) —2(p—1) )dﬂk(w)‘

If w is a weak solution of the equation L,w + VwP~! = 0 where

jw'(r) [P~ (r)

/ p—2 /
= divg(|Vow|P~2Vow) — 2%]3'”‘” ()] - v (”,

Lyw := dive(|Vow[P2Vow) — 2y(p — 1)

we have the Hardy inequality

/RN Vi (w)Pdpg(x) > /RN VulPdp ().

dp—p

dp—p
4. Let u € CP(RY). Let w := |x|” » with d > p and v = |a:|kTu Now
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using the calculation carried out in (3.2.1) we can write

dinn((VorP2Fu) = (0= Dl ()P40 () + =Dty p-2urr

_ <dk - p)p—l (dk P _ 2%> (A2 p1y4p)
p

p

Using this and the expression for L, we can write

L = (%2 (B 1)) (52,

p

p p

p—1
Now for V(z) = — <M> (dk—_p — 2v(p — 1)) |z| 7P we have the Hardy

inequality

/RN (Vi () [Pdpg(z) > (dkp— p)P_l <dkp— P 2ye(p — 1)) /RN :%Zdﬁ‘k(“’)‘

We don’t know about the sharpness of the constant appearing in (3.2.18).

Recall the algebraic inequality given in [16, Equation 2.13]; for p > 2
la + 0P > |al? + plal’"%a.b + c,|b]?,
where a and b are real numbers and constant ¢, is given by

e = 0<r£1i111/2 (Q=7)P = 7P+ prPh) (3.2.19)

and is sharp for this inequality. Using this the inequality (3.2.3) can be written
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§3.2. LP Hardy Inequality

as

(Viul? = [Vi(vw) [P = 0P| View]? + ploP~? | Viw P 20wV . Viw + cp|w]? | Vi P.

(3.2.20)
For radial function w and reflection invariant function v such that v = vw €
Cs°(RY) if we use the inequality (3.2.20) instead of (3.2.3), the inequality (3.2.13)

turns out to be

/R Vi(ow)Pdpu(z) > - /R N w(x)|v(g;)|1’div(|ka|p_2vkw) dpux ()

e, / WPV o Pdue ().
]RN

This improves the following Hardy inequality with a remainder term for p > 2.

Corollary 3.2.3. Let 2 < p < 0o. Let u be a real valued G— invariant function.
If u € CMRN) ifd, > p and u € C(RN \ {0}) if d, < p then the following
inequality holds:

di, —p
p

p p p
/ [u dug(x) = cp/ Md,uk(x), (3.2.21)
R R

v Jal? w [zl dr

/]RN |V iulPdug(x) —

where ¢, is given by (3.2.19). When p = 2 the equality holds and with co = 1.

Remark 3.2.4. By observing the Remark 3.2.2 we can make another remark on

dp—p

the Corollary 3.2.3. If w(x) = |z|” " » with dy < p, we obtain the following

improved Hardy inequality for all u € C$°(RY \ {0})

_ P p
d p\ [ iz [ 0
RN R

D N ’x‘dk*p

/ VP dyan(z)
RN

d—p

Also if u € C(RY) and if w := |z|” » with dy > p and v = |x|dkT_pu Now
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again by the Remark 3.2.2, we obtain the following improved Hardy inequality

de —p\""' (dr—p / Jul?
P - —2y(p—1 1er
[ pan) - () (B =) [ )
VivlP
o [ st

Now we will prove a generalized Hardy inequality which generalize the The-

orem 3.2.1. Fix 1 <1 < N, we write z € R as 2 = (y,z) with y € R and
z € RV~ Let R, be a root system on R!, and k; be multiplicity function on
Ry. The Dunkl weight function associated with Ry and k; is given by hf (z) =
[Tocr, , Iz, a)|?1(2) " Since k; is G—invariant we have k;(a) = k;(—a) and thus
the choice of any arbitrary positive subsystem R; ; does not make any impact
on the weight function. Now similarly for a root system Rs and a multiplicity
function k; on RV™!, we have the weight function hf (z) = [Tocr, . Iz, o) |22,
Define a root system on RY as R := (R1 X (O)N_l) U ((O)l X Rg). Also define
the multiplicity function k on R as, k(y,0) = k1(y) and k(0, 2) = ka(z), where y
and z belongs to R; and R, respectively. It is straightforward to check that R
is a root system on RY and k is a multiplicity function from R to positive reals.
Corresponding to this R and k& one can see that the Dunkl weighted measure
on RY denoted by dug(x), is nothing but the product of the Dunkl weighted

measures on R! and RY=!, That is,

dpug () = dpu, (y)dpn, (2) = hip(x)dw = hi (y)hi, (2)dydz.
With this preparation we state the following theorem.

Theorem 3.2.5. Let 1 < p < oo andlet1 <1 <1 < N. Let u be a real

valued G—invariant function. Assume that u € CP(RY) if dy, > p and u €
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CP (RN \ {0}) if dp, < p. Then the following inequality holds

dkl - D b
p

|u(@)?

RN |y’p

/R V() () >

dpg (). (3.2.22)

The constant ‘ ’p given in the inequality s optimal.

Proof. The root system R with which we started allows us to write

[ e e = [ ) [ 2 ) (32.23)

ly|P |ly[P

Let Vi, , and Vy, . be the Dunkl gradient on R! and RV~ respectively. It is
easy to see that |Vy, yu(y, z)| < |Viu(x)|. By applying Theorem 3.2.1 to (3.2)
we obtain the inequality (3.2.5). Now by using Lemma 3.2.1 and following the

arguments from [28] we can prove that ‘dk ‘p is optimal. [l

Remark 3.2.6. Remark 3.2.2 can be extended to the Theorem 3.2.5 similarly.

3.3 Fractional Hardy Inequality for L’(RY du(z))
We have already seen that

Au(x) =C P.V. /RN %d%

for some constant C. Using the symmetricity of the kernel |z — y|~(N*2%) with a

constant C’

2
(%22 = / L o ‘NHJ dedy,  (33.1)
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and thus the fractional L? Hardy inequality takes the form

y)l? [ ule)f?
) = YT 1edy > C(N, T
// \x— \N+2 wdy > CN,s) | Tape

the constant depends on N and s. One of the references to see the explicit calcu-
lation of this L? fractional Hardy inequality is [35, Appendix A]. However when
p # 2 one cannot have the equivalence of || (—=A*2)u||? and [oy [on dedy
which we stated for p = 2 in (3.3.1). There are many studies done in the literature

regarding the fractional Hardy inequality of the form

I

a2l > cv.s.p) |

for instance Herbst in [21] calculated the sharp constant in the above inequality.
But in this paper we are interested in the fractional Hardy inequalities of the

form

/ / ‘pd dy > C”(N,s,p)/ Mdas (3.3.2)
RN JRN ’95_3/’N+p3 RN |[PS

in the Dunkl setting.

The basic study of fractional power of Dunkl Laplacian can be done in a similar
fashion to the Euclidean case. The kernel |z — y|~™*7%) in (3.3.2) is actually the
translation of the function |z|~V*P). We are motivated to consider the kernel
which is Dunkl translation of |z|~(%+P%)  taking the idea from [17, Lemma 2.3]

we define the kernel ®4(x,y) as

Ds(w,y) = m /000 ey k( sl |2)(x)ds di, # 0. (3.3.3)
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Theorem 3.3.1. Letdy, > 1 and 0 < s < 1. [quWS(RN) when 2 < p < di/s

oru € WP (RN\ {0}) when p > di./s, the following inequality holds;

/RN /IRN | (I)ps(l' y)d,uk( )dﬂk<y) > Odk,s,p /RN %duk(m),
(3.3.4)

where ®,4(z,y) is given in ( 3.5.8) and

1
C’dk@p — 2/ 7,va—1|1 _ T(dk_ps)/p‘pq)N,s,p(T)dT, (3'3'5)
0
with
(%) T sin®™—20
s p(r) = g / e do, N > 2,
Vrl(%57) Jo (1 —=2r cos 041r2)"2

Dy 5 p(r) = (Tf(|.ldk+ps) + r’_“r(|.|dk+m))(1), N=1  (3.3.6)

The constant Cy, s, is sharp. If p = 1, equality holds iff u is proportional to a

symmetric decreasing function. If p > 1, the inequality is strict for any function

0#uce W;(RN) or W;(RN \ {0}), respectively. Further for p > 2 the following

inequality holds.

/RN /RN DI Cps (2, y)dpux () dp ()
|u(z)”
2 Cdk,S,P /]RN |:L’|p5 dﬂk(I)

» dug(z)  dug(y)
—I—cp/RN /RN |U($) ( )| P, ( )|x|(dk —ps)/2 |y| dp—ps)/2’

(3.3.7)

where v = |x|\ =Py Cy o is given by (3.3.5) and c, is given in (3.2.19).

co = 1 and the equality holds in p = 2 case.
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Remark 3.3.2. The case when we choose the multiplicity function £ = 0 the Dunkl
case will reduce to the classical case. So in that case we get the main results in
[16] as a corollary of above theorems. That is [16, Theorem 1.1] and [16, Theorem

1.2] are obtained as a corollaries to Theorem 3.3.1.

Here is an auxiliary lemma which is proven in [16].

Lemma 3.3.3 (R. Frank, R. Seiringer). Let p > 1. Then for all 0 <t < 1 and

a € C one has
la —tP > (1 — t)p_1(|a|p -1). (3.3.8)

For p > 1 this inequality is strict unless a =1 ort = 0. Moreover, if p > 2 then

for all0 <t <1 and all a € C one has
la—t]P = (1 —t)" " (Ja]? —t) + cpt??la — 1]P, (3.3.9)

with 0 < ¢, < 1 and ¢, is given in (3.2.19). Forp =2, (3.8.9) is an equality with

co=1. Forp>2, (8.3.9) is a strict equality unless a =1 ort = 0.

For N,p > 1, let ®.(x,y) be symmetric positive real-valued functions defined
on RY x RY such that &, — ®,s as € = 0 with &, < ®,,. Let us define the

energy functional Efu| as
Bl o= [ [ lute) = u0) P )i (v)
RN xRN

where ®,5(x,y) is the kernel given in (3.3.3). Let us define the functions V; and
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V as

Ve(z) = 2w(z) 7" /RN(U)(%) —w(y))lw(@) —wy)["*c(z, y)dp(y) (3.3.10)

and [on V fdpr () == limeyo [on Vefdu(x) for every f € C3°(RY). Following a
similar argument as in the proof of [16, Proposition 2.2, Proposition 2.3| gives us

the following two lemmas.

Lemma 3.3.4. Let u € CP(RY). If E[u] and [ V|ulP are finite we have

Elu] > /RN V(z)|u(x)|Pdug(x). (3.3.11)

Lemma 3.3.5. Let p > 2 and u € Cg°(RYN). If Elu], [V|u|P are finite and

[ o) = ol u@) )i el () < 0. (3312)

then we have

2 ¢p /RN () — v(y)Pw(z)2w(y) 2 p(x, y)dus(z)dur(y), (3.3.13)

where ¢, is as in (3.2.19). If p=2, (3.3.11) becomes an equality with co = 1.

dp. —ps
We will prove the following lemma which states that w(x) = |z|~ " solves

the Euler-Lagrange equation related to the equation (3.3.4). For convenience in
calculations we write o := (dj, — ps)/p. Let &, = Pps X|jx|—|y||>e» then s are
positive symmetric real valued functions which converges to ®,s, with 0 < ®, <
d

ps-
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Lemma 3.3.6. Let w(z) = The following limit converges uniformly

for any compact subsets of RV ;

2lim (w(z) = wy))lw(@) —wy)["~* (e, y)du(y) = %w(m)w-

—0
¢ [l —yl[>e

Proof. Let |x| = r and |y| = p and write z = rz’ and y = py’. Using polar

coordinates we obtain;
/ll ol (w(z) — w(y))w(z) — wy) > ps(z, y)du(y) (3.3.15)
T|—|y||>€
= ) )
lp—r|>e JSN—1
where doy,(y') = hi(y')do(y') with do(y') is the (Euclidean) surface measure on
the sphere SN, If p < r we use the fact from [17, Lemma 2.3] that ®,4(rz’, py') =
rm TP (2, By') we get
[ )~ w)te) o) (e el 3.3.10)
z y||>€

_ —a _ .—a|p—1
/ / Sgn p r )’p r | @ps(x/’ By/>p2)\k+1d0k(y,)dp, )
lp—r|>e N-—1 r

rdit+ps

Similarly, if » < p from [17, Lemma 2.3] it follows that

/ e (w(z) — w(y))|wx) — wy) [P Pps(z, y) dux (y) (3.3.17)
- sgn(p® = o = T Moy
_/p r|>e /Nl plps (I)pS(p Y )doy(y')dp,
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It follows from [17, Lemma 2.3] that

F(d—’“) 4 sin®™—26
O, (r2’, py)dor(y') = 2 / —df
/SNl g VAl Jo (r2 —2rp cos 0 + p2)dk;
(3.3.18)

Using (3.3.16), (3.3.17) and (3.3.18) we can write (3.3.15) as

/| . (w(z) — wy)|w(@) — wy) P20, (z, y)du(y)  (3.3.19)

1 sgn(p® — r*)
= I U d
T e Sl

where ¢(p, r) is given by

—a _ .-« de=1(1 — 2)Hpsp o (2) ifp<r

P —r _ P r N,s,p\ /s p )
elpr) == ——F g (3.3.20)

rde=1(1 — %)1+pSCI>N75’p(%) if p>r,

with @y, is given in (3.3.6).
We need to show the convergence of the integral
/ Mw(p, r)dp. (3.3.21)
|p—r|>€ |p - 7" P

It is enough to show that the function ¢(p,r) is Lipschitz continuous as a
function of p at p = r. Writing ¢t = p/r it is sufficient to show the function
(1 —t)1*Ps®y ,(t) and its t-derivative is bounded at ¢ — 1—. As N = 1 it is

trivial we do it for N > 2. The identity in [19, 3.665] states that

sin**xdx 1 1 1
:B< —>F( — At =t 2), 3.3.2
/RN(I-I—Qacosvaaz)V b nY u+2u+2a ( )

where F' is a hypergeometric function with Re p > 0 and |a| < 1. Using (3.3.22)
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we can write

I(% dp —1 1 d 2 d
Dyt = 02 gL L tps ps 2 di ) g g0
- NGNS 2 2 2 2 2

Using the property that both (1—2)*"*=¢F(a, b, c; z) and its derivative has a limit
at z = 1— if a+b—c > 1 we conclude (1 — )PPy () and its t-derivative is

bounded at ¢t — 1—.

Continuing the same argument from [16] we get (3.3.14) with

sgn(p® — 1)
WSO(P; 1)dp.

Cap.sp = 21im |
lp—1|>e P

e—0

Now we will prove that this constant coincides with the constant given in (3.3.5).

. sgn(p® — 1)
21im = 0(p, 1)dp
e—0 lo—1|>€ |p - 1|2—p(1—s)

1—e o)
: sgn(p” — 1) sgn(p” — 1)
= 2lim / = 0(p, l)dp+/ = o(p, 1)dp
0 [ o |p—1[FPl=e) 11 [p = 127P0=9)

1 Sgn(pa — 1) 1 Sgn(l o pa)p—p(l—s) .
e 2 [\/0 (1 _ p)Q—p(l—S)w(p7 1)dp +/ (1 _ p)2—p(1—s) (;O(p , 1)dp

0

1 (,—p(1—s) -1 .
B e e

dp.
A straightforward calculation gives

(PP Po(p 1) = (p, 1)) = [1— p*|PH (1 = p™) P s p(p) (1 — p)> P07

and it follows that

1
Copop =2 / P = By (0)dp.
0
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3.3.1 Proof of the Theorem 3.3.1

Now the Hardy inequalities (3.3.4) and (3.3.7) will follow by repeating the argu-
ments of [16]. In case of the strictness, p > 2 due to the positive remainder term
in (3.3.7), it is immediate that the inequality in (3.3.4) is strict. With similar

arguments used to obtain [16, (2.18)], in our case we obtain

Elu] =/RN - %(x,y)fl)ps(w,y)duk(w)duk(y)+/

V0uPdug(x),  (3.3.24)
RN

for all u € C°(RY \ {0}) with

Pu(@,y) =[w(z)v(z) —w(y)v(y)l”

— (w(@)o(@)" = wy) )" (wz) - wy)w(z) —wy)

It can be proven easily that ¢, > 0 (see [16]). This can be extended to WP (RN \
{0}) when d;, < ps and to WP*(RY) when dj, > ps by approximation.

Suppose Efu] = [ V]ulPdu(x) for some u € WP*(RY \ {0}). Then it is
true for |u|. Observing that @), > 0 and ®,,(x,y) is positive in (3.3.24) we can
see that @}, = 0. From the Lemma 3.3.3 we obtain that v is a constant function
and since v = w™lu we conclude that u = 0. This gives that for any non-zero
u € WP (RV\{0}) in case dj, < ps or u € WP*(RY) in case dj, > ps the inequality
(3.3.11) is strict.

Now for p = 1, we shall prove that the equality of (3.3.4) holds if and only if
u is proportional to a symmetric decreasing function. Let x; be the characteristic

function of a ball centered at origin with radius R(t). Define u = fooo xtdt. Then
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for p =1, we can write right hand side of the inequality (3.3.4) as

SN—l ()
[ BB [ g,
gy 7] dy—s Jo

where ||SV71|;. is the surface measure of S¥~1 with Dunkl weighted measure;

one can calculate |[SY 7| = ¢, 1/( ~UI(dg/2)). Now the left-hand side of the

same inequality (3.3.4) can be written as

L, L @) = u)P o) @)

-2 ] |t

{lzl<[yl}

- /// &, )y () dpn () dt

{lz|<R(@®)<|yl}

=2 [[ e ndn@in) [ Ro"

{lel<1<[y[}

Ppsdpr(v)dpx(y)

It gives the equality of (3.3.4) for the function u and p = 1.

The sharpness of the constant Cy, s, can be proved by the same arguments
n [16]. But for the completion we give the proof here. To prove this, we will use

the trial functions u,, and will show that, as n — oo,

Jen S [un (@) = un(y) Pz, y)dp () dpu (y)
Jan [un () [Pl Podp ()

< Cap(1 4+ O(1)).

Let us define the functions u,, for dj > ps first. Let

I ={xcRY:0< 2| <1}
M, ={zecRY:1<|z|<n}
O, ={reR":|z|>=n}.
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Define
)
1—n"9, ifexel,
Un(2) = 9 |z|~* — n—° if x € M,, (3.3.25)
0 if x € O,,

where o = @ Multiply the integrand of (3.3.14) with w,(z) and integrate

with respect to z. Using the symmetricity of ®,(x,y) we obtain as € — 0,

/R . /R (un(@) = un(y))(w(z) —w(y))|w(z) - w(y) P20, (2, y) dpu (@) dpss ()

= Cusp /R ) (@@ . (3.3.26)

[P

Write

/RN /R () = un(y))(w(z) —w(y))|w(z) - w(y) P20, (x, y) dpue (@) dpag ()

- /RN - i () — () [P®s (2, ) dp () dpir (y) + 2R,

where

Ro = / ) / =) () —w ) - (- w)y )

Dps (0, y)dp () dpr(y)

i /meMn /yeon (w(z) = n~*)((w(z) — wy))’ " — (w(z) —n=*)P")

Dps(, y)dpu () dpr(y)

" /xEI /yeon(l —n" ) ((w(z) —w(y)P~ = (1= NP

Dy (, y)dpw () dpag(y).-
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Since all the terms within all the three integral are non-negative, we have R > 0.

Divide the right-hand side of (3.3.26) by Cy, s, and add and subtract U to the

|z[Pe

integrand we obtain

/N %dﬂk(x) + Ri + Ra, (3.3.27)

where
R, = /[(1 —n ) (w(x)P — (1 - n_a)p_ldmif) (3.3.28)
Ro = / (w(zx) — n_a)(w(ﬁ)p_l — (w(x) — n—a)p—l)dka—éf). (3.3.29)

n

Observe that the integrands on both of the integrals are non-negative and we will

show that Ry + Ry = O(1) as n — oc.

Jan Jan [tn(@) — un(y) P Cps (2, y) dpue () dpii (y)
Jr Tun (@) Pla| o dpug ()
RiRs 2R
N Cd’“’s’p<1 T Iun(x)lplﬂ"’sdﬂk(ﬂ?)) e lun(@)Pla]rdpu(z)
< Gy sp(1 +0(1)).

(3.3.30)

Now we need to prove that Ry +Ra = O(1) as n — oo. See that the integrand of

R, is bounded by |2|*~% and it allows us to write Ry < f|$|<1 |z|*= 4 dyy, (z) < oo.

Observe that 1 — (1 — )P ' <tfor 1 <p<2and 1 — (1 —¢)P ! < (p— 1)t for

p > 2, where 0 < ¢t < 1. Using this we can write
(w(z) = n=*) (w(@)P™! = (w(z) —n~*)PH) < Cpn~w(z)P™',  (3.3.31)

where C), =1 for 1 < p <2 and C, = p — 1 for p > 2. Now it is not hard to see

that Ry < C), flw\<1 2| dug(x) < co. The case di < ps can be treated similarly
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using the sequence of trial functions described in [16] taking o = (dy — ps)/p.

3.4 Fractional Hardy Inequality for Half-Space

Let R; be a root system on R¥~! and a k; be a multiplicity function on Rj.
Extend R; to a root system R of RY as R = Ry x {0} = {(z,0) : * € R;}.
Clearly it is a root system on RY and the multiplicity function k; can be extended
to k which acts on R by k(xy,xe,..xx_1,2n) = ki(z1, 22, ..xy_1). Let Ry
be a positive subsystem of Ry with By = Ry U (—R; ). Then we can write
R = R, U (—R,) where the positive subsystem R, of R given by R, = {(x,0) :
x € Ry 1} v, remains the same as v, = 3 cp, k() = 3 cp, , k1(¥) = Yk, The
Dunkl measure corresponding to the root system R and the multiplicity function

k will be

di(e) = ] I, v)*da

V€R+
= H ’< >’2k1 dZL‘ d{EN = dﬂlﬁ( ,)dfl?]v,
veERy

where x = (2, zy) € RY.

Theorem 3.4.1. Let N > 1, 1 < p < oo, and 0 < s < 1 with ps # 1. Then for
all w € WP(RY)

u p
/ / DPD () s (@) (y) = Doy / P ),
RN RN Ri’

TN

where

. o lg=A (1+ps)/2) pos=D/pp___ T
DN,'yk,P,s =G, 2 ’“1 dk T /2 |1 | ( )1+ps (3.4.2)
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and the constant Dy, ps s optimal. If p=1 and N = 1, equality holds iff u is
proportional to a non-increasing function. If p=1 orif p =1 and N > 2, the
inequality strict for any non zero function in W;(RN) Further for p > 2 we also

have

/RN /RN Y Cps (2, y)dpx () dp () (3.4.3)

s+ D, [ 1
= N,vk,p,s ps ok (ZL’)

D, (, ) dp(x) — dpx(y)
RY RN (2 |72 [y [EP9)2

where v = o\ PPy, © s as in (8.3.3), Dy~ ps 05 given in (3.4.2) and ¢, is

giwen in (3.2.19). co =1 and the equality holds in p = 2 case.

Proof. Let © = (2',xx) and y = (v/,yn) are elements of RY. Choose w(z) =

|2n|EP/P and V(x) = Dy, ps|2n| 775, Since for the fixed root system R
TH(e ™M) (2) = emslew ik (e=sk Py (o).

the definition of ®,4(z,y) in (3.3.3) takes the form

1 o detPs 1 L/ |12
ps(:Y) 1= F((dk-l—pS)/Q)/o sl s
1

_ > APy slen—yn|2 k1 (|2 (.
— s 2 e T e z')ds.
L' ((dx +p8)/2)/o A )

We start with the Euler - Lagrange equation corresponding to (3.4.1) and let us
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verify that w(z) = |xy|~ = solves it.

/ (w(z) = wy))lw(z) = wy) P> Sps(z, y)dp(y) (3.4.4)
|x1\?f]§5|>e
1 s
= Tt p9)/2) / (w(w) — w(y))w(z) — w(y)P? x
IIN*y;be

/ sy (e ) ) dsdpay)

_ —w\y))|wxr) —wy 2
dk —l—ps /RN 1/|ﬂfN yN\>6 ( ))I ( ) ( >|
/ s sl Bk () (o dsdyndpu, ().
0

Property of translation of a radial function[37, Theorem 3.8] gives that

/]RN_1 751(@_5|"2)($')dﬂk1 () = / e—sly’lzall%1 (&) (3.4.5)

RN-1

From the definition of Gamma function we get

1 S L N N L)

s 2 e ST ds 3.4.6

r<<dk+ps>/2>/ (3:46)
1

d
(Jon —yw]? + y'2) 2"

Applying (3.4.5) and (3.4.6) to (3.4.4 we find

/ (w(z) — w(y)|w(z) — w(g) P> By, y)dpa(y)

yeRY,
|z n—yn|>e

- / (w(x) — w(y))w(z) — wly) P>

(Jon —ynl? + |y'[2) 2™

yeRY,
|z N —yn|>e
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Let us calculate the following integral separately for convenience, and let us call

m = |zy — yn|* and keep in mind that dy, = dj — 1

1 > 1
duly) =SV / 2y
/RN—l (m2 4 ‘y"Q)dk;p 1 0 (m2 N 712)%;;7

S k s d
1 m1+ps 0 (1 t2) dk;P

_ HSN—QH 1 F((dk — 1)/2)F((1 +p3)/2)
“omte T((dy+ps)/2)

Now come back to the the equation and use the [15, Theorem 1.1] for N =1 to

conclude. Also substitute the value of [|[S¥72[|,, = (¢;'27*1)/T(d, /2). We use

the same notation w for the function w(xy) = |zy|~1—P)/P;

(w(x) — w(y))|wz) —w(y)|P~?
/yeRf,|g;N_z,,,\,|>E (|lzn — yn |2 + v/ [2)2/2 dpr(y) (3.4.7)
G 27MI((1+ps)/2)
 T((ds+ps)/2)
/ (wlzy) — wlyn))lwlzy) —wyol> ,
|eN—yn|>e ‘ZL‘N — yNlerps

From [15, Lemma 3.1|, considering zy,yy € R, we can write

Cl D5

’];N’psw(:rN)p_1 (3.4.8)
_ _ p—2
— 9lim (wlzy) —wlyn)[lwlzy) —wlyx)= ,
1+ps y
€0 o5 — yn [P

R7
llen|—lyn||>e

- / (w(ew) — wlyn)lw(zy) — wly)P?

1
dyy.
(’fl’N — yn|P + |y + yN’1+pS) o

102



§3.4. Fractional Hardy Inequality for Halt-Space

This gives the constant in [15, Theorem 1.1] as

1
1 1
_ _ (1-ps)/p|P
Clps —2/0 ‘1 r ‘ ((1—7’)”1’3 + (1+r>1+ps>dr. (3.4.9)

But in our case we are only interested in the case yny > 0, so (3.4.8) and (3.4.9)

implies that

o0

2lim / (w(ax) — wyy))LEN) Z WOV, )

e—0 Y |ng — yN’H‘pS
‘xN*y’N|>€
_ Cl,p,s (ZE p—l’
|z [P
where
- 1 |1 _ 7«(1—175)/17|p
Ol,p,s = 2/0 (1 — T)lers dr. (3.4.11)

Now by using (3.4.10) and (3.4.7) we can conclude

: (w(@) —w(y))|lw(x) —wly) P>
21lim 5 a2
0 JyerY oy —yn|>e (lzn —yn? + |y'[?)"
_ 01;112*)%1*1]?((1 +ps)/2) Cy s Wz,
I'((dy +ps)/2) |z NP

dpi(y) (3.4.12)

,12—)\19

c “D((1+ps)/2) ~
We can see that the constant appearing in (3.4.2) and - e /)

T((dx+ps)/2) Cup.s

are sarne.

The Hardy inequalities (3.4.1) and (3.4.3), the strictness for p > 1 and the
equality in case of p = 1 follow from the proof of [16, Theorem 1.1]. Optimality

comes from the optimality of the Theorem 3.3.1. [
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3.5 Fractional Hardy Inequality for Cone

For 0 <1 <l a cone Rﬁ is defined as a subset of RY which is precisely the
set {x = (z1,...oy) € RY : oy_41 > 0,...,zy > 0}. In the case of half-
space we extended a root system of RV~! to a root system of RY and we found
a corresponding multiplicity function and Dunkl weighted measure on Rﬂ\: . In
the case of cone we write RV = RV~! x R! and we extend a root system of
RY-! to RY. For an element z € RY we write © = (2, Zn_141, TN 142, ---TN)
where 2/ € RV, Let R; be a root system on RN~ and ki, dug, = hi(2')
be the corresponding multiplicity function and Dunkl weighted measure. Define
R = {(z,0) € RN : x € Ry}. It is easy to verify that R is a root system on
RY. Now as in the case of upper half-space extend the multiplicity function
to k of RY as k(2’,0) = ki(z) and the corresponding Dunkl weighted measure
dug () = dpg, (2')dxy_141...dey. For the convenience of the calculations we write

r € RN as z = (2/,2”) with 2/ € R¥"! and 2” € R%.

Theorem 3.5.1. Let N € N, 1 < p < oo. Further 0 < s < 1 with a condition

ps # 1. Then for all u € Wf(R{X) the following inequality holds:

/RN /RN u() = u(y)[PCps(, y)dp () dp(y)

Ju(z)[?
2 Dy, ,s/ duy(x)(3.5.1)
1, Vk P Rﬁ $?\771+1+"'+x?\7

Here

—lo—X 1
e 27 ((1+ ps)/2) ;) B .
D g =2 ps=11] — p=ps)/P P, (r)d 3.5.2
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with

. 1 i
Di s p(r) = /sl—l ’~—~d0(y),
Lt

T — Ty|l+ps

where T € Sﬁ:l and Sﬁ:l = §i-! HRL. The constant Dy, ~, p.s s optimal. If p =1
and N =1, equality holds iff u is proportional to a non-increasing function. Also

for p = 2 the following inequality holds:

/RN /RN w(y) [P Pps (2, y) dpar () dpe(y)
> Dy, 7kps/ W@l )

|ZE” |ps

dpg(z)  dpw(y)
/]RN /RN |p¢ ( )| //| (1— ps)/?‘y//| (1—ps)/2° (353)

where v = |2"|P)/Py, @ is as in (3.3.3), Dnnyps i8 given in (3.5.2) and c, is

given in (3.2.19). Moreover co =1 and the equality holds in p = 2 case.

Proof. The proof is very similar to that of Hardy inequality of the half-space.
Similar steps will lead to the desired conclusion. In order to find a positive solution
of the Euler Lagrange equation corresponding to (3.5.1) we set w(z) = |2”|~(=p%)/2

and V(x) = Dy, ps|2”| 7. The @, (z,y) given in (3.3.3) will take the form

]. & dk+P5 2
Q) s - —-1_k( —s|| d
P (x,y) F((dk—l—pS)/?) /0 s 2 Ty (6 )(QJ) S
1 o dk+P5_1 _ ZN | 2 _ 2
= s 2 e 5 2uj=N—-1+11%] Y5l (e s|.| x ds’
T((di +ps)/2) / v (€)@

since

T: (e—SI-P) (z) = e XN |1’J'—yj|27y/ (e—s\.l2)(x/)
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with our root system R on RY.

Repeating the same arguments as in the proof of the Theorem 3.4.1 we obtain

/ (w(z) — wy))w(z) — w(y) P> ®ps(x, y)dpw(y)
ol >

_ / (w(z) — w(y))|w(z) — wy)|">

d .
TR

yeRY
" _ 75
[z =y ||>€

We evaluate [,y Wduk(y’) as in the previous proof with m = |2” — |

and find

/ 1 4y (I +ps)/2) 1
RN-1 (‘l’”

ps d:uk (y,) =TT !
—y P+l P) L((ds + ps)/2) [ =y [

where dy, = N — [ + 27;,,. Now the Euler Lagrange equation corresponding to
(3.5.1) is of the form

2 lim / (w(z) — wy))|w(@) — wy) P> @ps(z, y)du(y)

e—0
yeRN |
[[z"]=y"||>e
G 27T (14 ps)/2)
L((dy, + ps)/2)

| (w(z") = wly")lw(") = wly")P?
o / (2" =y P+ dy',  (354)
yeR]
[z |=y"||>e

with w(z”) = ||~ (=P)/p,

If Sﬁ:l =SSN RL, the polar decomposition of right-hand side integral of
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(3.5.4) can be written as

lim / <w(x”) — w(y”))|w(x’/) — w(y”)’p_Q dy”

e—0 (|QZ” _ y//‘)l—i-ps

yeR! |
" j;
[z |=]y"||>€

o p—a oo p—a p—2 ~
= / / ( - ) T | do(g)dp,
lp—r|>€ Si;l |’I“$ - py|

where 2" = rZ, ¥y’ = pg and o = (I — ps)/p. using similar steps in the proof of

[15, Lemma 3.1] we can prove that

21lim (w(x”) _ w(y”))|w(:1;") — w(y//)’p—Qd "n_ Cl-s-,s,pw(x//)p—l’
0 Rl ’x// _ y//‘ +ps ’xlllps
+

(3.5.5)
where for [ > 2
~ 1 ~
Clsp = 2/ rp5_1|1 — r(l_ps)/p|p®l+,svp(r)dr
0
with

- 1
P sp\T") = #da y
Ly, ,p( ) /Stl ‘l’ _ Ty’lerS (y)
and when | = 1 then (), ,, = C}, given in equation (3.4.11). The constant
Cy, ., is different from the constant C; ,,, given in [15, Theorem 1.1] since instead
of integrating over the whole sphere S'~! we are only integrating over the points

on the sphere which intersect with the cone, that is only on Sﬁ:l.

—1a—A
ck112 k1T ((14ps)/2) ~

Define Dy, ~, p.s i= F((dk+ps)/2)) )Cl+,s,p7 from (3.5.4) and (3.5.5), we get w

107



§3.6. Stein-Weiss Inequality and Some Related Inequalities

as the positive solution of the Euler Lagrange equation corresponding to (3.5.1);

2lim / (w(x) — wy))w(z) — w(y) P2z, y)du(y)

e—0
RN
yeRryY ,
2|~y ||>¢

Dy p.s -1
- Doy
Proof of the Hardy inequalities (3.5.1) and (3.5.3) and the proof of optimality of
the constant Dy, -, , (it follows from the optimality of C, ..sp) can be obtained

by the same techniques used in the proof of [15, Theorem 1.1, Theorem 1.2]. [

do () explic-

Remark 3.5.2. Since we could not calculate the integral [ W
Lt

itly, the expression of the constant Dy, -, » s in the Theorem 3.5.1 is not explicit

compare to the constants given in Theorem 3.3.1 and Theorem 3.4.1 .

3.6 Stein-Weiss Inequality and Some Related In-
equalities

In [32], Stein and Weiss have proven the following inequality which is known as
Stein-Weiss inequality.
For every 0 < 3 < N and for every ¢ € L?(R") there exists a positive constant

such that the following inequality holds:

w\xr)ply
[ =22y < el (3.6.1)
RV JRN |7|2 |7 — y[N Pyl

N=By\ 2
Moreover, it has been proven in [21], that C' = 2%(;5@;) is the best con-
4
stant. We will prove the following Dunkl version of (3.6.1) using the ground state

representation technique.
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Theorem 3.6.1. Let 0 < 8 < di. Then for every ¢ € L*(RY du(z)) the

Stein- Weiss inequality is given by

p(@)e(y) 1 (T(EE)N? ,
/RN /RN |x’§|y’§ s (@, y)dp(r)dpi(y) < 28 (F(dk+5)> /RN ()| “dpn (),

where the constant appearing on the right hand side is optimal.

Proof. Let w(zx) = |x|_d7k Then by using Lemma 4.1 and Proposition 4.2 of [38§]

we have

/]R Mw(z)dﬂk(u@) = 2% <%>2w(y). (3.6.3)

Mo} |2 |y|2 INCTS)

Multiply the left hand side by the test function ¢?/w and integrate over R to

obtain

N |2 [y| w

! Cs(@9) (P W) @) i
=5 o fo ot (e S it
= [ L ety

1 _p(z,y) p(r)  oly) N
+2 RN /]RN m%,mg () (y)(w(x) w(y))d’uk( )y (y).

(3.6.4)

Similarly multiply the right hand side of (3.6.3) by ©?/w and integrate. Then

2%@:2;)/ w5 = 2%@:2)/ (). (365)
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Now by putting the equations (3.6.3), (3.6.4) and (3.6.5) together, we get

7 (T / e
/RN /RN 2l ‘y’ (@) (y) dpuw () dpa ()
/RN /RN \x] ‘y’ x>w<y)<%_%>2duk($)duk(y)

/ / () () dpn () dpin(y)
RN JRN |$| |?/|

2 Q‘P )
+3 )] = |x|dk+£|yldk;3 el % ) ~ Iy

(z)dp(y).

(3.6.6)

Since the second integral on the right hand side of (3.6.6) is positive we obtain

the Stein-Weiss inequality stated in (3.6.2).

To obtain the optimality it is sufficient to prove that

p(@)ey) 1 (T(%2)
Sup / / _g(w, y)dpy(x)dux(y) = —
eeL2(RN) JRN JRN |x|§|y|§ 28 I‘(dkzrﬁ)

lella<1

To deduce (3.6.7) from (3.6.6) we will find a family functions {u; };>; in L2(RY, dug(x))
such that

f]RN fRN %‘Ut ]x\ 2 — u(y |Z/| | dp () dpur(y)
13

su ] —0. (368
o Jen |ud|dp(z) (368)

Let t > 1 and n € C((0,00);[0,1]) be such that n =1 on (0,1), n =0 on (2,00).

Define uy(z) := n(F)n(;5) —5-. First we will show that the numerator of (3.6.8)

¢ i
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is finite. We find

/ / dk+ﬁ dk+5 uy( )‘:L" 3 —uy(y !y\ | dpg(z)dp(y)
o Ja Jof %

®_p(z,y)
</ Wdﬂk( x)dpiy(y)
R2N\(B;\Bj 4)? (Bl/QtU]RN\Bgt)Q lz| 72 |y| 2

Y)
< 2/ / dk+[3 dk+ﬁ dﬂk( )d:uk<y)
By JRN\B; |:1c| ly| 2

_Pop(zy)
+2/ / NI dpy,(2)dpy.-
By RN \B1/2¢ |fl3‘ ‘ ’

To prove that the right hand side is finite, by scale invariance, we need to realize

that the integral

/BQ/RN\B1 W=z ’dk)md pok () dpar (y)

is finite. Since it is sufficient to do for any ¢ > 1 we arrive the conclusion that

w [ 5 %w %w u) el — ()l ()i () < oo
t>1 RN JRN |£L’|

Dividing both sides by [,y |u/|* and using the fact that

lim luy|? = oo,
t—o00 RN

we arrive to the proof of the Theorem. O

In 2008, W. Beckner found the optimal constant for the Stein Weiss potentials

with gradient estimate, [7]. The author has proved that, for every N > 3 and

111



§3.6. Stein-Weiss Inequality and Some Related Inequalities

0 < B < N the following inequality holds:

p()e(y) 1 ( P (Y=2) )2 )
drdy < - (3.6.9
/RN /RN |I|¥|x_y|N—5|y|¥ Y 98—2 (N_2)F(N+5) HSDHHl ( )

i)

2
m) 1S optlmal The Space

where ¢ € H'(RY) and the constant (
H'(R™) is the homogeneous Sobolev space with the norm ]2, = Jan [Vepl?da.

Now we state the corresponding result in the Dunkl setting.

Theorem 3.6.2. Let d, > 3 and 0 < [ < di. Then for every G-invariant

© € H' (RN, dug(z)) the following inequality

1 L% i 2
< g gy ) L, esdna) (3.6.10)

holds for all @ for which right hand side is finite. Also the constant appearing on

the right-hand side of the inequality is optimal.

Proof. Let w(z) = \x|’dk;2
O_g(z,y) 1 F(d’“zﬁ) S|
—Fm —rmw(@)du(r) = o3 7 (3.6.11)
/RN\{O} ] %y P2 )™

Using the following expression of Dunkl Laplacian for radial functions,

_82 2)\k+12. )\k:dk—Q

A, = 2
F 3r2+ r  or’ 2
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we can calculate

Axwly) = (M)! -5 ((dk - 1)d’“2_ 2),%(‘““;2)

dy, — 2 1
:_( . ) o= (3.6.12)
Yy

Using the expressions (3.6.11) and (3.6.12) together and Integrating both over

the test function ¢*/w, we obtain

1 ( F(d’zﬁgﬁﬁ )2AN(—Ak)w(x).i((§)>dﬂk(x)

1
2
Y Yy
/ / fz ﬁLw@:) Ay () dpn (). (3.6.13)
RN JRN\{0} |z| 2 w

By similar calculations as in (3.6.4) the right-hand side of (3.6.13) become

W) N

fii |m\ﬁ“|y|ﬁ“ TR
/ / ﬂ+2 /3+2 o(r)p(y)dpg(z)dpn(y)
RN JRN || 72 !y\

! S p(z,y) \ (@) o)\,
+ Q/RN /RN ‘x|6+2|y‘5+2) (z) (y)(w(m) w(y))d'uk( Vg (y).

Using the G-invariance of ¢ and the equations (3.2), (3.3) and (3.4) of [4] for the
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functions w and p/w, we get

AN

2
/ V| dpu(x / !Vk(— )Pw?dpg () / d
R

y waAk@Ud,Uk(x)
e o

N Ava<§)<x>.vkw<x>duk<x>. 3.6.15

The inequality in (3.6.15) allows us to write

Slﬁé

1 (%" o ¢’ (2)
26-2 <(dk . 2)F(dk+5>> /RN< Ak)w(‘r) UJ(LL’) dljlk(x)

2

w2(ar)duk(x)>. (3.6.16)

Now using the identities in (3.6.13) and (3.6.14) i

n (3.6.16) and substituting the
expression of w gives

1 ((dk —(2);(3 ))2

([ Vbt [ i) <x)2duk<x>)

|$|dk72
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=[5 |$|ﬂ+2|y|ﬁ+2 A0y
ﬁ+2 ﬁ+2) w(z)w(y) olw) _ ly) dpg () dpg ().
3 o o (o vt

(3.6.17)

S

g

Since the second integral on both left and right hand side of (3.6.17) are positive

we obtain the combination of Stein-Weiss and Hardy inequality stated in (3.6.10).

The optimality can be obtained similar to the idea of Theorem 3.6.1. Choose

t and n as in Theorem 3.6.1. Define

k=2

As in Theorem 3.6.1, we get

lim |Viu? = oo
t—o0 RN

and

d
t>1 /RN / ’“w

Also, see that

2

/RN ‘Vk(!x‘\x’;t;t(x)) duk@):/B Mduk(@

2\Bi tQ‘.’L"dk 2

t (t/|])?
B1/¢\B1/2t ‘:L"

A change of variable for |z|/t gives the right hand side of the above equation

independent of ¢ and conclude as in the Theorem 3.6.1. O
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The classical version of the Stein-Weiss inequality for the fractional gradient
is proven by Moroz and Schaftingen in [25]. Their result states that
for0<s<1l,s<N/2and 0 < < N

/ P@eW) o <F<N;28>P<NTB>)2W
R yN Ay 2HEAD ()RR ) T
(3.6.18)

holds for every ¢ € H*(RN). Here H*(RY) denotes the fractional homogeneous

Sobolev space equipped with the norm

loll?. = SF ) / / WL g (3.6.19)
Pl = o= N/2F1—s v ]:z:—y]N”s v >

The statement of the Stein-Weiss potential with the Dunkl fractional gradient is

as follows:

Theorem 3.6.3. Let s € (0,1), s < dg/2 and 0 < B < di. Then for all

Y E WS’Q(RN) the following inequality holds

/RN/ ol )|* Pos (2, y)dpsw () dp (y) (3.6.20)
—w@/) . N
> /RN /RN ’SL"% y‘%q)_ﬁ( 7y)d/”“€< )d:uk(y)

2
r(% 2% d—b . ‘
FEdkiQ%FEW;) s optimal.

4

and the constant Cj, s = 251+S (

Proof. Let w(z) = —g—. By the definition of fractional power of Dunkl Lapla-

2|2
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cian and by Plancheral theorem for Dunkl transform we can write

/R ) / N@(m) — o)) (w(x) — w(y) Bz, y)dps () dpa ()
/ Fo(@) )€1 Fi(w) () dpun(€)
- dk+25) / Mduk(gj)_ (3.6.21)

- F(dk;ZS)Q N |x|dkJr2S

Now by the semi group properties of Dunkl Riesz potential one can write

dp+B8 di,—F\2
ly| > (™ 1 ) 1
—®_g(x, y)dur(y) =277 - 3.6.22
/R‘{N |x|ﬁ+2 5( ) k( F(d ot ) |I|dk+2 ( )

Now combining the equations (3.6.21) and (3.6.22) will allow us to write

(3.6.23)

Integrating again the integral on the right hand side of (3.6.23) after multiplying

with ©? /w, we get

/ / H+28

RN JRN |x|
/ / B+28
RN JRN |1:\

ﬁ+2s

117



§3.6. Stein-Weiss Inequality and Some Related Inequalities

/ / ;ms m; o) (y)dp(x)dpg (y)
RN JRN Irvl Iyl

/R . /R . |x|5+25]y|5+25 w(z)w(y) (% - %)Zduk(x)duk(y).

(3.6.24)

Using the equation (6.3) of [4], we have

/RN /]RN (w(z) —w(y)) () = (y)P-s(z, y)dur(x)duk(y)
= [ ] 1@ — o ~126) ~ L@ o) e (@)

Combine the equations (3.6.23), (3.6.24) and (3.6.25) we get the following equal-

ity:

1 dy,— 25>F(dk46>
2,8+s< ( )F(de‘B)) /RN /RN | D_p(z, y)dur(w)dux(y)
s(x )

/RN o ’;)g e(@)e(y)dp(x)dpw(y)

AL
RN JRN |x|

dk 23)F<dk4,3)
+ 26+s F(dk+2$ F(d k06

/]RN RN ]3 _g >|2w($)w(y)@—ﬁ(x,y)duk(x)d,uk(y),

Q

) w(@)uly) (m - M) Ay (@) dpus(y)

wz)  w(y)

(3.6.26)

Since the second and third integrals on the right-hand side of (3.6.26) are positive
we arrive at the inequality given in (3.6.20).

To prove the optimality, as in the proof of previous theorems we will consider
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a family of function {u,};>1 in H*(RY) whose homogeneous fractional norm con-
verges to infinity as t goes to infinity. Then if we prove that second and third
integrals on the right-hand side of (3.6.26) are finite we are done with the proof

of optimality.

Define the functions u; for t > 1 as

wio= o (i) e

|z]

where the function 7 is continuous from the positive reals to the closed interval

0, 1] with n(z) = 1 when 0 < x < 1 and it vanishes if z > 2.

For 0 < 8 < dj,

dy,—2s
/RN /RN dk+6 dk+a |UA(37)|(E|kT —ut( )\y[ ‘ duk( )duk(y)
E

Y)
d d
/th /]RN\Bt| |dk+ﬂ‘ N dy 15 (@) dpx (y)

+2/ / ————— 5 (v dp ().
Bl/t RN\Bl ‘x|dk+ﬁ| |dk+,3

(3.6.27)

Since

Y)
——————dpg(x)dug(y) < oo
/B2 /]RN\B |x|dk+ﬁ| ‘dk+l3 ( ) k( )

it deduces that the left-hand side of (3.6.27) is finite.

Now to finish the proof, we will prove that the following integral is finite. Let
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us compute the integral

e |:cr S —u(y)ly TP
dk 2s d,uk(x)d,uk(y)
RN JRN xT

—p(@,y)lyl
1
g/ / di—2s dk 2s d,u(l’)dﬂk(y)
Bat JRN\ B, ‘I|7q) ,B('ray)|y‘

/ / I dpg)dpu(y) (3.6.28)
By JRN\B, s, ‘3;| ( )|yl ™2

Observe that

1
/ / g s k(%) dpn(y) < 00 (3.6.29)
Bz JRN\By |2] 72 @_p(x, y)ly|

and the right-hand side of (3.6.28) is bounded by the integral of the form (3.6.29)

which is independent of ¢ and finite. Finally note that the H* norm of u,

ggo//| ) = () 2, ) () dpie ()

= ot 1

dk 2s - dk 2s dl’[/k( )d/’l/k( ) .
|
Now it can be concluded that

=yl

o(x)e(y
sup / / %fb—ﬁ(x,y)dﬂk@)duk(y)
peHs(RN) JRN JRN |z 72 |y| 2

Il s <1
_ 1 (F(deQS)F<dk4ﬁ))2
2B+s F(deQS)F(deﬁ)
which gives the optimality of (3.6.20). O
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Chapter 4

Improved LP Fractional Hardy

Inequalities in the Dunkl Setting

In this chapter we improve the fractional Hardy inequalities discussed in the last
chapter. We will establish improved Hardy inequalities in this chapter which are
true for 1 < p < oo as well as the improvement term is coming from a norm

associated to a fractional Dunkl gradient.

4.1 Introduction

In a remarkable paper [16], Frank and Seiringer have proven the sharp Hardy
inequality with a remainder term. Their result is as follows: for p > 2 and

0 < s <1 and for some positive constants Cy s, and ¢,

i / [u)|”
————v—dxdy — Cn d
\/]RN /IRN |.I — |N+ N7 P RN |I|ps T
y)[P dx dy
= Cp /[RN /RN ]m — ’N+ps ‘:L” (N—ps)/2 |y’ (N—ps)/2° (4.1.1)
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where v 1= |z|(NP9)/2y. The result is true for all u € C°(RY) if ps < N and for
all u € C°(RN \ {0}) if ps > N. The same authors proved a similar fractional
Hardy inequality on half-space in [15], which states that: for p > 2,0 < s < 1
and ps # 1

y)P / |u(z)[?
) = WV o dy — Dy iy
/]RN/RN \33— \N“’S T RY TN ’

Y|P dx dy
4.1.2
> % /RN /RN |z — y|N+P8 2P ps)p? (4.12)
where Dy, and ¢, are positive constants and v := z\y "*/Pu. A more generalized

version of (4.1.1) and (4.1.2) in the Dunkl settings are proven in [5]. Combining
the results due to Abdellaoui et al. in [1, 2, 3] we can get an improved fractional

Hardy inequality for 1 < p < oo which is stated below.

Let 0<s<1,ps<N,1<q<p<ooandQ CRY bea bounded domain.

Then we have

)P / [u(z)]”
2 dady — Ongs | ed
/RN/RN \x—y\]“ NP Jon Jalr

> C/ [ol@) = @) ) 4, (4.1.3)

|z — y|Ntas

for all functions u € C§°(£2). The constant Cy ¢ is the sharp constant in the
fractional Hardy inequality obtained by Frank et al. in [16] and the constant C
is positive and depends on N, ¢, s and the domain Q. Unlike in [16] the result is
true for all 1 < p < oo and the remainder term here is a p-norm of a fractional

gradient.

In the proof of fractional Hardy inequalities mentioned in (4.1.1), (4.1.2) and

(4.1.3), various properties of the kernel of the form |z — y|~™*9 with § > —N
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play an important role. When it comes to the Dunkl case we use a generalized

kernel ®s, 6 > —dj, which is defined in (4.2.1).

4.2 Fractional Sobolev Spaces and Some Auxil-
iary Lemmas

We begin the section by stating three algebraic lemmas which we will use later

to prove the main theorems.

Lemma 4.2.1. [22, P. Lindquist] For any 1 < p < 2 there exist a positive

constant ¢ depending on p such thar for all a,b € RN we have:

lal” = [b” — plo["~*(b,a — b) > S e b‘i_
(laf + |o])*=»
and for p > 2
P bl — b2 a5 > 12O
al? — B~ ploP(b,0 ) >

Lemma 4.2.2. [2, B. Abdellaoui, F. Mahmoudi] Let 1 < p <2 and 0 <t < 1
and a € R. Then for some positive constant ¢ depending only on p we have the
following inequality:

la — 1]t

—tP— (1=t (laP —t) > :
|a | ( ) (|(1| )/C(‘a_t‘_i_‘l_t’)Q,p

4.2.1 Weighted Sobolev Spaces

We recall that &5 with § # —dy given by the integral

Ps(z,y) == m /000 sdk;é_lT;(e_S"V)(:v)ds. (4.2.1)
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If the multiplicity function is identically zero, that is k& = 0, then the kernel
®s(z,y) reduces to the Euclidean kernel |z — y|~¥=%. From this understanding

we define fractional Sobolev space in the Dunkl setting by using ®s(x,y).

Let 2 be an open subset of RY containing origin. Let s € (0,1) and 1 < p <

00. Then we define the fractional Sobolev space W,;*”(Q2) with the kernel @, as

Wir(Q)

= {ue @) [[ o) - uo) PO e ) duo)din(y) < o0},

QxQ
and the norm is given by
lalhogoior = [ 1)+ ([ o) = wt)P e ase)dint)
QxN

Let C§°(2) be the compactly supported smooth functions on 2. We define the

Sobolev space W, 7(§2) as the completion of C§°(2) with the norm ||.[[yysr(q).

Proposition 4.2.3. Let Q C R be open and G-invariant. Let u € W P(Q) and
let A C Q such that A is compact and u is supported in A. Define an extension
@ on RN as a(z) = u(x) when x € Q and a(x) = 0 when x € RYN \ Q. Then

belongs to W, P(RN) and

[l ny < C(Q, A, di,p, s)|[ullws»(q).

Proof. By the definition of @ it is clear that @ € LP(RY, dug(z)). Since @, is
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symmetric on x and y, we can write

/RN /RN P Pps(x, y)dpr(z)dpg ()
//'“ — u(y)[PPps (2, y)dpur () dp(y)

/Q(/RN\Q‘ (@) Pps (2, y)dpue(y ))duk( )- (4.2.2)

Since u € WP (Q)

/Q/Q u(@) — u()["Pps (2, y)dp(x)dp(y < oo

Also u is supported in A and hence for any y € RV \ Q

[w(@)[POps (2, y) = |u(@) [ xa (@) Pps(, y)-

Now by [17, Lemma 2.3]

_ dj, +ps

0,2, y) = 2+ ly = 2(y,m)) " dug(n),
L. )

where pf is a probability Borel measure whose support is contained in Co(G),
the convex hull of G-orbit of x in RY (see also [27]). It is easy to see that for any
n € Co(QG)

1
(\fffl2 +1yl* ~ 2<?Jﬂ7>> " > min oy — zl.
oeqG
Using this and the fact that pf is a probability measure we get

—(dg+ps)

(I)s ) << 1 - )
P (7,y) < glelglay |

Since ) is G-invariant we find that y € RN \ Q implies oy € RY \ Q for

125
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any 0 € (G. Using the fact that A is compact and and €2 is bounded we have
dist(cy, 0A) > dist(9Q,0A) >0 for all 0 € G and y € RV \ Q.

But mingeq |oy — | = minyeq(dist(oy,0A)) and hence we can write

/ ( / IU(w)Ip%s(m’,y)duk(y)>duk(w)
Q \JRM\Q
dpw(y)
< lull? _ WY
S ez 0. /RN\Q dist(09, 0A)

Since dist(0€2,0A) > 0 and dy + ps > dj, the integral

1
/RN\Q distoa, o) W)

is finite. Finiteness of the above integral together with (4.2.2) we find that

llwer@ny < Cldy, p, 5, A, Q)lJullwerq)

Forl<p<oocand 0 < < @ we define the kernel Kf as

q>ps<x> y)

Kﬁ(x,y) = )
P |z [P y[?

We also define the weighted fractional Sobolev space W, ” h (Q) with 0 € Q as

Wi (@)

= {we 00 L8 ¢ [ ) s KJ e dis(ainty) < o)

OQAxQ
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endowed with the norm

el ) = (/‘ |pd/ﬁk‘2ﬁ )
T (//|u(x) —U(y)|”K§(a:,y)duk(x)dﬂk(y))’1’_

QxQ

For 1 < g <pand0<j < %% we define the space WP (Q)as follows:

Wi ()

= {ue L”(Q duk / u(z) — u(y)|P K (2, y)dpur(z)dpur(y) < oo},

QxQ

where the norm is given by

d#k
I (/| 1 )

( J[ 1) = wt P e >duk<y>);. (123

QxQ

Let us denote W,f”g’q’ﬁ (©) be the completion C§°(2) with respect to the norm of

WP o (Q).

Using the similar arguments of Proposition 4.2.3 we can say that, if u €
C§°(R2), with a compact support A C €2, then there exist an extension function «

of u belongs to W,f:g’q’ﬂ(RN) such that
oy < Cllllzrasey e

where (2 is G-invariant and C' = C(, A, d, p, q, ) is a positive constant.

If Q is a bounded domain of RY we can attach W;{ P(Q)) with an equivalent
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norm [l

il s = ([ 100) = a7 s ) )

OxQ

and for positive constants ¢ and C' we can write

ullyzponay < lellraney < Cllullyepas oy (1.2.6)
4.2.2 Picone’s inequality

We are going to prove the Picone’s Inequality for the Sobolev space W,” ()

Now for w € W,f”g’q’ﬁ (RY), we define

L(w)(z) = PV. | Jw(z) —wy) " (w(z) — w(y)) Ky (2, y)du(@)dp(y)

RN

and for v, w € WP (RN), we have

V)
/RN /RN )P (w(x) — wly))(v(@) — v(y) KL (2, y)dp (@) dp(y).

Theorem 4.2.4. Let Q = RN x RN\ (CQ x CQ) and w be a positive function
in W,f,’g’q’ﬁ(Q) with L(w)(z) = 0 for all z in Q. Then for all u € C§°(S2) the

following inequality holds:

leﬁlylﬂ wp
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Proof. Let v(z) = L4u)

[w(z)[P=t>

(w
/ w/\w ()2 (wla) = w(9) K7 )i () dev)

—w(y) P (w(x) — wy)) K} (z,y)du(z)dp(y).

Iw !“

. IB _ ﬁ .
Since K/ (z,y) = K[ (y,r), we can write

(L(w), v)
- ] e, - aar

lw(z) — wy)|P*(w(z) — wy)) KL (z, y)du () dw(y)-

Define the function ¢ = u/w and obtain

(L), v) = §w<wmm—mwwmw>
w(y) P2 (w(z) — wy) K (2, y)dp () dp(y)
l/ () — u(@)? — (e, )] P (o, ) dpus () dp (),
where

oz, y) = lu(z) —u(y) P — (|l9(@)Pw(z) — g(y) Pw(y))|wz) —wy) P> (wlz) —w(y)).

It is enough to prove ¢ > 0 to get the desired inequality

(L)) <5 [ [ lute) = u) P o y)din o) ()
Q
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Since ¢ is symmetric we can assume that w(z) > w(y). Putting t = w(y)/w(z),
a = u(z)/u(y) and applying the inequality (3.3.8) in Lemma 3.3.3, we see that
6> 0. O

Lemma 4.2.5. Let 0 < 8 < @ and let 0 < a < d’“;f]f‘g;zﬂ. For w(x) = |z|™®

we have the following equality for a.e. non zero x in RN

wP~1

L(w) = A(@w»

where A(«) is a positive constant.

Proof. For w given in the statement, we have

L(w)(x) = P-V-/ w(z) — w(y) 7 (w(z) — w(y) Ky (2, y)du(y).

RN

Let r = |z| and p = |y|. Also let x = r2’ and y = py’ with 2/,3/ € S¥~1. With

these setting we can write

o0 P — pm P2 (7Y — D, (ra) — pyf
L(w)(x) :/ / ’ P ‘ ( 3 ﬁp ) q ( py)pQ’\’“Hdak(y')dp.
0 JsN-1 rep

Let t = p/r. Using [17, Lemma 2.3] we have the following properties for ®;
Os(ra’, py) = r~ "0 ®s(2', ty)

and

P(t) / ) (.T/ tyl) (y/) ; / Sindk 29 do
. S 5 dO'k d +as :
SN-1 ! g 1) 0 (1—2t coS 8+t2)dk2
(4-2- ; )
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With these properties we can write

ralp—1) wp_l(ac)

‘x|26+qs ’

L(w)(z) = /OOO |1 — t7P72(1 — )PP P(t)dt = A(a)

r2B+qs

where A(a) = [7 @(t)dt with @(t) = [1 —t7*|P72(1 — ¢t *) > 1P P(t). Now we
need to check the convergence of the integral fooo o(t)dt. With t — % and using

the fact that P(7) = t**%°P(1/t) we can write

1 e’}
/ o(t)dt = —/ (t™ — )P~ 1Pl p(t)dt
0 1
and with this, A(«) becomes
Aa) :/ (t™ — P P(t) (¢ el ) — gfras—l) gy (4.2.8)
1

Observe that P(t) is similar to L7 as ¢ tends to oo and P(t) is dominated by
a constant multiple of m as t tends to 1. Together with this understanding

and using the assumption on « and (3, as ¢ — oo we have

1

(t* — 1P P(t) (¢t Amalml) _ gftasml) o TiEe (4.2.9)
and as t — 1 we have
(t* — 1P P(t) (¢t Amelml) _gftasml) (3 q)pises, (4.2.10)

One can easily see that the similar function written on the right-hand side of

(4.2.9) and (4.2.10) are integrable on the intervals (2, 00) and (1,2) respectively.
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This gives A(«) is finite. Now since 0 < a(p — 1) < di, — qs — 23,

(tdkflf,b’fa(pfl) _ t5+QS71) =~ 0

and hence from the expression of A(«) in (4.2.8) we conclude A(a) > 0. O

We have just proved above that under the given assumptions

-1

wP

Now Picone’s Theorem 4.2.4 for this w gives that

|ul”

wp—1

oa@) [ L bt = (2w 1L

/ () — uly) PEP (@, ) dpn (@) dpa(y). (4.2.11)

RN xRN

Remark 4.2.6. Now choose {2 to be a bounded G-invariant domain containing
origin and let u € C3°(Q2). Then as we described earlier we have an extension
function @ of u € W;P*%(Q). Using (4.2.11) for @ together with the equations

(4.2.3) and (4.2.4) we find

2fa) [ ) < [[ 1) - 2P et

RN xRN

S;Ha”wf%%WRN)ggcﬂuHWf%%ﬁﬂf
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Now by restricting @ to u and using equations (4.2.5) and (4.2.6), we obtain

|u(z)[?
2A(04) AN |SL‘|qS+25 < CHu”WIjP’%ﬂ(Q)

< Cllullgpos o) = C’/ [u(z) = u(y)[ K7 (2, y)dpon(x)dpi (y)
QxQ

(4.2.12)

4.3 Improved Fractional Hardy Inequality on RY

In this section we give the proof of the Theorem 4.3.2. We start with the following

lemma

Lemma 4.3.1. Fiz a = d’“;ps,ﬁ = P2 gnd let w(z) = |z|7*. Let u € C(RY)

and define v(z) = u(z)/w(x). Then for all 1 < ¢ < p < oo and for a given

positive constant C' the following inequality holds:

/’wm—www¢@mmmwww

RN xRN

>c/ () — () Py, ) dpae () dpis ().

RN xRN

Proof. Let
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Observing the symmetry of fi(z,y) we define fo(x,y) in the following way

p(%) g¢qs($,y)-

u(z)

w(z)

f2($ay> =

(w(y) — w(@))

((u(x) —uly)) -

Now the integral
()= [ [ o) = o)l K i) disl)
RN xRN
can be written as
Hi(v) :% // (fi(x,y) + fo(,y))dpk(x)dp(y)-

Also let

_ (ww)* o (w@)E | (ew)
s a0 pen=(55) + (58)
It is clear that Q(x,y) < C and Q(z,y)D(z,y) = 1 for all z and y. So for p > 2

we can apply the Lemma 4.2.1 to obtain the following inequality

o) > CQa) (22 : (o) — )PP (o.0)
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and for 1 < p < 2, again by using Lemma 4.2.1, we can write

P

ie.y) > COx.y) (%) 2 [\um —u(y)P ez, y)
u

+plu(@) — u) P Py (@, y) (u(@) — uly),

)

w(y

<

(w(z) —w(y))). (4.3.2)

~—

Now combining equations (4.3.1) and (4.3.2), we can write for 1 < p < oo,

i) > [cQte) (%)gw(x) )Pz
- Qe (42) @) — ) D | o)~ wl
Similarly, we can calculate
Ra) > [cQn (D) ute) = TN
1000 (22 o) w8 o) 20 ) — )|
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Now by using the estimates of f; and f; we obtain

e ff o (22) - (22)
u
e [ [Qxy( w

—u(y))[PPys(, y)dpur () dpr(y)

lu(z) — u(y

u(y)
(y

w(z) — wly >\]duk< V()

T e

u(z) —u(y

o e

Dys(,y

)
)

( w(z) — wly >|} A (@) dpus(y).

\_/

So we have

)= C // u(z (@, y)dpw (@) dp(y)

RN xRN

e // (@.y) + hale, ) dpe(@)dpn(y),  (433)

RN xRN

(o) = Qo) (22 ) ute) = )P )] A5 (o) ~ i)
and
tale) = Qo) (40 ) Tuto) = a0 o) 25 ) i)
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Since hy(z,y) = hao(y, ) we have

// ha(z, y)dpg(z)dp(y // ho(z, y)dug(z)dp(y). (4.3.4)

RN xRN RN xRN

Therefore, it is sufficient to estimate one of the integral. Now by Young’s inequal-

ity we can write

// (e, ) () s (4) / () — u(y) PO (2, y)dp () dpn ()

‘) / / G y)dpun () dpun(y), (4.3.5)

RN xRN
where

p

U ) — ) PR, ).

w(x)

G(z,y) = Q(z,y)p(@)s’

w(y)

The proof will be completed if we can establish

(z,y)dpw(x)dpx(y) < [v(2) = v()I"Ky (2, y)dux(2)dp(y).
/I ¢ ¢/

(4.3.6)

Let us calculate

/ G(x, y)dur(v)dpur(y)

eV w(a) —w(y)|”
/ / p+w(y) )" s (2, ) dpii (x)dpri(y)

RN xRN

2] = [y]ePly]#e-D
/RN u(a) / (afor 1 gl el 9 pay) ()

Let |z| = r and |y| = p with 2 = r2/ and y = py’. Also write t = p/r and
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doi(y') = hi(y')do(y') with do(y') as the Eulidean surface measure on the sphere

SN=1 Then we have

/ / Gz, y)dun(2)dpun(y)

RN xRN

p OO |7104 _palppap(p_1)+2>\k+1 @ / / d / d d
—/RN u(z) /0 (77 T o) /SN1 os(r2’, py')dow(y')dpdpy.(x)

P 0o 1_— o ptap(p—1)+2>\k+1
-/ u(x) / 1] | @l oyt
R SN-1

v ol (L+ )y
o uly
-1 e d(z).

with

00 |1 _ o Ptap(P—1)+2>\k+1
I / 1= P(t)dt.
0

(1 + toryr
Here we set

P = [ @l )l

and used the property of the kernel @ (ra’, py') = r=%=9¢ (', ty’) (see [17,

Lemma 2.3] for a proof). By proceeding with the similar steps used in Lemma

dp.—ps
4.2.5 we get [ is finite. Since we chose w(z) = |z|~ % and u = vw we have

J[ e mim@ant -1 [ S LICH S

N |x|q5+(dk ps)
RN xRN

Set By = %= PR < d’“ f-42% and apply (4.2.11) for v, to get

// (2, )i (2)dpany / o) — o) PE? (@, ) dpn () dun(y).
RN xRN RN xRN

(4.3.7)

Thus we proved our claim in (4.3.6). Now by considering the inequalities (4.3.3),
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(4.3.4), (4.3.5) and (4.3.7) we get the desired inequality

J[ 1ute) = w@) P,y

RN xRN

<c / 0(2) — ()PP (2, y)dpue (2)dpu (y).

RN xRN

Let Q be a bounded G-invariant domain on R™ containing origin. Also let
u € C3°(Q) and @ be its extension to RY as explained earlier (see Proposition
4.2.3). As u = vw we let the extension of v as © and @ = dw. Now using (4.2.4)

and Lemma 4.3.1 together, we get

/ (o(a) — o) K2 (. y)dpun () dpun (9)
QxQ

>0 / / 13(x) — 5(y) PEP (2, ) dpae () dpn ()

> C / / () — Ay)|ys (2 ) dpr () dn ()
>0 / / () — ()PP, ) dps () dp () (43.8)

Theorem 4.3.2. Let Q C RY be a bounded G-invariant domain. Let 1 < q <

p<ooand0<s<1. Then for all u € C§°(Q2)

ju(z)[”

vz

[ 1) = )P )i e)in) = g / dyu ().

RN xRN

>c / / () — () PBgs (2, y) g (2)dpn(y),  (4.3.9)

QxQ
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where

1
Naysp = 2/ rPHT — T(d’“_ps)/p|p(b(7“)dr, (4.3.10)
0

with

Tk) fo sindk729dk+ps do fOT N > 2

5 (1—2rcosO+r2) " 2

(n e (175 () for N =1

o(r) =

and C' is a positive constant depending on 2, dy,q and s.

Proof. The main idea of the proof is to show that

u(@)[”

| [Pe

J[ 1) = sl oo i i) = N [ il

RN xRN

e / / lo(a) — o) )y (@) dpn(y), (43.11)

for some positive constant C'. Then by using Lemma 4.3.1 we reach the desired
inequality. In order to prove (4.3.11) we need to consider two different cases p > 2
and 1 <p < 2.
Case 1: p > 2

From [5], we have

/RN /RN Y)PPps(x, y)dpr(x)dpu(y) — Cayosp /RN |u(x)|Pduk<x)

[P
(o)) ()
RN RN Y || (di=ps)/2 |y| (di—ps)/2

But for @ € RY bounded, we have ®,4(z,y) > C(Q)P,s(x,y) on Q. Using this
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we can write

p d k(x) d k( )
L L o) = Pt s
> C(9) / o) — o) P K () () )

and it gives the claim given in (4.3.11) for p > 2.
Case 2: 1 <p<?2
We define f; and f> same as described in the proof of Lemma 4.3.1. We split the

domain 2 x € in accordance with the values of w(z) and w(y) as

Dy ={(z,y) € 2 x Q:w(y) <w(x)} and Dy = {(x,y) € Q2 x Q:w(x) < w(y)}.
(4.3.12)

Now

() Hav) = / o(2) — v()P KL, y)dpun () dpun(y)
QAxQ

- / fi(z, y)dpg(z)dpg(y)

/ f1 (2, ) dpue () dpunly / folit, ) dpai () dpn ()

= I + L.
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We will first estimate the integral in I;. We can write

Ji(z,y) = |((u(y) — u(z)) — uly) w(z) — w(y))|:v(w(y))

( w
() ) o) @) wt’
|u(l‘) - u(y)‘ + |$((i/:)) (w(x) — w(y>)|(2—p)§ w(x)
(¥)
|

x Ju(z) = uly)| +

Now applying the Holder’s inequality, we obtain
Il < ]171 X 1172. (4313)

Here we denote

— 2 (w(z) = w(y))|" w(y)
L= ) 3 4 4.3.14
(// |u |—i—| ( (x) —w (y))|( P w(w) ( )

w

p
2

¢qs<x,y>duk<w>duk<y>)

and

=4
<
S~—
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From (4.3.8), we get

1% < Gy / () — () Py ) dpss () s ()

X [ ) =~ )P )i )i )
<[] @) = oK o pidun(a)dints) = O Halv).
- (4.3.16)
Thus we arrive at
Ly < CQHG (v). (4.3.17)

An application of Lemma 4.2.2 with ¢ = (—w;, a = % we find for (z,y) € Dy

[((uly) = u(@)) = 22 (w(z) —w@)]” wy)  w@)Plo)Pla— 17

lu(z) — u()| + |22 (w(z) — w(y)|* P @) (a—t+[1 )

w(x)

S w(@) @)l (la =t = (1= t)"" (la]’ —1))

— (el )P (|5 - S~ (1= 2y () - 2

= lu(x)u(y)|? — (w(z) —w P=2(w(z) — w |ux)|p_u(y)|p

= Ju(w)u(u)]” = (w(z) = )" Hw(a) —w() (7505 — L 705)
(4.3.18)
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Further using (4.3.16) and (4.3.18) the first integral [; ; in (4.3.13) becomes

@y

<[] 1)~ )Pt v)diste)din)

—RN/ / (s = S lle) = w2 (w(a) = w)ye o)) ()
=[] @) = ) Pt ins) A [

(4.3.19)

This gives that

[1:/ Ji(z, y)dp(x)dp(y)

Dy

< C(Q)H,® (v)x

(] 1ut0) = )Pt i )in) ~ Ay [ ‘“($>'pduk<x>)g.

ps
RN xRN |$|
(4.3.20)
The same arguments allow us to write
I = // fola, y)dp () dpux(y)
Do
< C()Hy” (v)x
(] 1) = wt e e)dints) = Aace [ i)
RN xRN
(4.3.21)
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Now put (4.3.20) and (4.3.21) together with the fact C'(Q2)Hq(v) = I + I3 to get

)

Ho(v) < C(Q)H,,

( / [u(z) — u(y) [P Pps(z, y)dpr(x)dpk(y) _Adk,&p/R ]u(:c)]?duk(x))é’

| [Pe

RN xRN

and hence

Ho(v) < C(9) / / () — ()P Dpu(r, y) i () dpue(y)

RN xRN
Ju(x)]”
_Adk757p \/IR;N |x‘p5 d/"Lk(J;)'

Now the case 1 and case 2 together provide the claim
|u(x)]”

dp(x

v Jape W)

J[ @) = )l @ i) Ao /

RN xRN

> C(Q)/ [o(2) = o(y) P K (2, y)dux(@)dp(y).  (4.3.22)

OxQ

forall 1 < g <p< oo.

The desired inequality
Ju(x)]”
d
o (z)

[ 1ute) = )Py )i @) ) ~ Ao /

> [ [ lute) = uo) Py (o )i ) ().

QxQ

will be established by using (4.3.22) together with Lemma 4.3.1.
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4.4 Hardy Inequality on Half-space

Let R be a root system on RV~! and k be a multiplicity function from R to
(0,00). Define the root system R; on RY as R; := R x {0}. We use the same
notation G for the corresponding Coxeter group. Also extend the multiplicity
function k to k; by defining k;(z,0) = k(x) where 2 € R. With the root system
R; and the multiplicity function k; on RY we can write the kernel ®,; on RY

with 1 <g<oocand 0 < s <1 as

1  dytas 2 2
D, — —lo=slen—yn|® -k (o=l "ds.
q (x7y> F((dkl +qs>/2) /O 5 2 € Ty (6 )(SE) S

For an element z € RY we write z = (2/,2y) where 2/ € R¥"! and zy > 0.
Using the properties of Dunkl translation and gamma function we can perform

the following calculations

/R N lcbqs(as Ddra(y)

oo dp, +qs
. e—slen—yn|? =12V (4"\ds d /
(dk1+qs /2) /RN 1/ T (e ) (a")ds dpn(y)

/ /Oo dklﬂs_l e~ sz —yn P+ =y'*) g4 dp(y )

" T((dr, +95)/2) Jav—s

_/ dﬂk( )

_ dj;, +4s
RN-1 ( T—yP) e

’xn _yN‘z + ’$

_ * 1 _
= |V 2||k/ kﬁqs FAk=2 g,
o

oy —yn|? +12)

— 82, : / —
|$N _ yN|1+q 0 (1 4 t2) k12+q

_ ||SN_2||k 1 F((d’ﬁ - 1)/2)F((1 + qs)/Z)
TN — yn[HHes I'((de, +¢5)/2) '

(4.4.1)
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Let Q C RY be an open G-invariant subset and let wy € W,i’é”q’ﬁ (Q). Define
Lo(wo)(x) := P.V. /N [wo (@) — wo(y) " (wo () — wo) K o (x, y)dpus (x) dx (y).
R+

Also let © € RY be bounded and we denote Qo = RY x RY \ (CQ x C2). Then
by the same arguments in the proof of Theorem 4.2.4 we can conclude a Picone’s

inequality for half-space, that is

// () = (o)) P > (1), B a42)

Yn Wy

for all functions u € C§°(€2) and for all positive function w € W,7¢ ()}

Let 0 < B< 52, 0<a< 153—25 and wy(x) = ", Then for almost every

non zero x € RY we have
(4.4.3)

for a positive constant Ag(«). The proof of this can be done with similar steps
of the proof of the Lemma 4.2.5. Denoting r = xy, p = yny and using the

calculations in (4.4.1), we get

/ e e G L2 G0
0 rBpBlr — p|ites

p-
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Set t =1/p,

— S r—alp—1)
Lo(wp)(z) = HSN%HkF((dkl 1)/2)T((1 +gs)/2)

L((dg, +qs)/2) r26
o] _ 4—a|p—2(1 _ +—«
/" L—tepra -t
; 11 — ¢|1+es
wP~H(x
= A()(Oé) 2ﬁ+(qs) ’
TN

where the constant

dt.

oviay T = 1)/2)0((1+gs)/2) [ [1— t-opp=2(1 — =)
Aofa) = 82— / i

It remains to show that Ag(«) is positive. Splitting the integral in to two domains;
(0,1) and (1,00) and use the change of variable t — 1/t on (0,1) we can write
Ao(a) as

OO (ta _ 1)])—1 —B—a(p—1 s—1
Ao(a):/l m(t B-alp=1) _ 4B+q )dt.

A repetition of same arguments in the proof of Lemma 4.2.5 will show that Ag(«)
is positive.
Use the identity (4.4.3) and the Picone’s inequality for half-space given in

(4.4.2) together to see that

@, uf?
2ofe) [ s ) = (ool 5)
< / / (@) — u(y) PEP (@, y)dpu(@) dpn (y),
R xRY
where
Pys(,y)
Kﬂ0<x>y) = ! ’ .
“ TRy

Lemma 4.4.1. Fiz o = § = % and let wo(x) = x3*. Let u € C(RY) and
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define v(x) = u(z)/w(x). Then for all 1 < g < p < oo and for a given positive

constant C' the following inequality holds

/ 0(2) — o) I (2 y)dpae () dpasy)

N RN
]R+><]R+

e / () — ) PBos (2, ) dpis () dp ().

NN
I[{7L><]RJr

Proof. We will prove the lemma by following the proof of Lemma 4.3.1. Replacing

K and w by Kj and wy we can define the functions f; and fs as:

p(“’“@))g@qs(x,y);

wo(y) wol)
= u\xr) —u — u<x) w, — W\ T ’ wo—(m) g s
ol o= (@) = ) = ) = )| (250 .

Proceeding with similar steps of the proof of Lemma 4.3.1 we arrive at

/ / G(z,y)dur(z)dpg(y)

N RN
IRerR+

- // ()P (x)P®Vlwy () — w0(9)|pq>qs(13ay)duk(x)duk(y)

(wo(@)? +wo(y)r)”

:/ u(z)? / |x?v_y%|py%p(p_l)q’ (2, y)dp (y)dpy ()
" fo T gy e ’

(4.4.4)
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where

p

610.9) = Qv (2 ) | (o) ol (o0

wo(y) wo ()

By the definition of the root system we can write

1 e dp+as Cslen— 2 L |2
Dys(,y) = W/O sz leslen—unl T, (e Y (2")ds.
2

Using this and the properties of Dunkl translation(see [38, Proposition 2.4]), the

integral become

20 pyapp 1)
/N | N | q)qs(xvy)d:uk(y)
R

(z¥ +y§'\‘/p)
L[l
F(dk+q5) N YN P
/N / dutas g e~ slen—unl® - ( _S|'|2)(:r/)d8dllk1<y/)dy1\/
R 1

- /OO 2% — lepyapp Y
F(dk;qs) 0 (xN + IUN)

/ / Sdk;qs71673|IN7yN|2+|y/|2d8duk1 (y/)dyN.
RN-1J0

(4.4.5)
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Using the polar coordinates and integrating, we have

1
~dpe(y')
/ (o — ywl? + y'[2) 2"

_ > 1 _
= ]|§N 2”"3/ ; i P2 gy
0 (loy —yn>+72)72

1 00 tdk—Q
= ||SV2 / dt
| I oy = yn e Sy (1 4 2) %"

_ 1 I'((d —1)/2)T((1 4 gs)/2
_ HSN 2”k — (( k )/ ) (( q )/ ) (4.4.6)
[on = yn |t I'((de +¢5)/2)
Also by using the gamma function we obtain
1 /Oo Swﬂeﬂ(\xw*yw|2+Iz/*y’\2)d5
L((dk +45)/2) Jo
1
= TR (4.4.7)

(len —yn? + 2" = y/|?) =

Substitute the equations (4.4.5), (4.4.6) and (4.4.7) in (4.4.4) we get the integral

/ / G, y) g () dpa )
- ‘ T((dy + ¢9)/2) '

p [ a5 = Pyl dyydp(x)
N U(CE (:Co(p + ap)p |x _ ’1+qs .
RY 0 N TYN N — YN
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84.4. Hardy Inequality on Half-space

Set t = yn/xy, then

// G(z,y)du(z)dp(y)

N RN
R+XR+

sV T((dy, — 1)/2)T((1 + ¢s)/2)
T T (de + 49)/2)

/ u(z)P / < | — y Py Y dyndp()
RY 0

N ( TN +yN) loy — yn [T
u(x)P
:[/ (qs) dpg (),
RY TN

where

I= sV I((di —1)/2)T((1 4 gs)/2) /oo - ta|ptap<p_1)+2xk+ldt
k f%(dk'+'q5)/2> 0 (1 +_tap)p|1___ﬂ1+qs

Following the similar steps used in proving Lemma 4.2.5 we get

[ e =1 [ 2

N
N

NyRN

R xRy

=C // v(z) — v(y) P KL o(z, y)dp () dp(y)

RN xRN

and the inequality (see the proof of Lemma 4.2.5 and the beginning of Section

4.4 for more understanding)

J[ o) = wtype e pdmteidints) < ¢ [ [ Ko v)dinta)dn o)

RN xRN RN xRN

Theorem 4.4.2. Let Q) C Rf be a bounded G-invariant domain. Let 1 < q <

152
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p<ooand0<s<1. Then for all u € C§°(Q2)

J[ 1) = P i) ints) - 43, [ o

N RN
IR_~_><R+

e / () — ()P, ) dpue () dp(y),  (44.8)

QXN

0 . .
where Ny, s given as

_ (14 ps)/2)
A L, =2 Akl / 1 — s pp____— 4.4.9
di,S,p ° dk +ps /2 | | ( )1+ps ( )

and C' = C(Q,dy, q, s) is a positive constant.

Proof. We follow the similar steps of the proof of Theorem 4.3.2. As in that case
we have two cases p > 2 and p < 2.
Case 1: p > 2

From [5], we have

/RN / P )inl)i(s) — iy [ S (o)

N

d#k@) d#k(y)
te / / o) — o) PP, ) .
 Jass S Pl (2

N

But since  C RY bounded, we have ®,(z,y) = C(Q)®,5(x,y) on 2, and

dp(r) dpe(y)
)P
/RN /RN y)I"®ps (2, 9) (dk —ps)/2 y(dk —ps)/2

c@) [ o) = o)l Koo p)dus(e)dra ).

QxQ

The proof of Theorem 4.4.2 for p > 2 will be completed by applying Lemma 4.4.1.

Case 2: 1 <p<?2
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84.4. Hardy Inequality on Half-space

Let f; and fo be as in the proof of Lemma 4.4.1 and define D; and D, as in

(4.3.12) just by replacing w by wy. Now we have

/ / Ji(z, y)dp(z)dpr(y) + / / fo(@, y)dp(x)dpg(y)
e / l0(2) — v(y) PEB (@, y)dus(2)dpus(y) = C(Q) Hoo(v).

QOxQ

A similar calculations from (4.3.13) to (4.3.19) yield

[ s vam@dn)

< C(Q)Hgp (v)

(] 1) = wt o )i o)is(s) = A, [ ‘““)’pduk@))g,

Ty
RV xRY
(4.4.10)
Similarly for fo
/ / folz, y)dp(z)dp(y)
D1
< C(@Q)Hg (v)
([ o) = stwPoto @t - 25,0, [ 5L )
RN N
foRﬁ
(4.4.11)
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84.4. Hardy Inequality on Half-space

Combining (4.4.10) and (4.4.11) we arrive at

Hao(v) < C9) [ lule) ~ ulu)P el v)die(z)din )

RY xRY
0 |u(z)?
— Aq,, Sp/Rf o dpk().

Now putting both cases together we can write

[ 1) = w Pt i@t - 25, [0

c@ [[ lofa) = o) P Ko @ity (1412

QxN

Now a direct application of Lemma 4.4.1 and (4.4.12) we get the desired improved

farctional Hardy inequality

J[ 1) = e ynterints) - 43, [ S o

N RN
IR+><RJr

¢ [ [ 1) = )P4,y ()0

QxN

By choosing the multiplicity function £ = 0 in Theorem 4.4.2 we obtain the

following corollary.

Corollary 4.4.3. Let 0 < s <1 and ps < N. Also let ) be a bounded domain of

RY. Then for all1 < ¢ < p < oo and for all functions u € C§°(Q) the following
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84.4. Hardy Inequality on Half-space

inequality holds:

y)IP / Ju(z)[”
) = WV gy — Dy, | M
/RN/RN \SU— \N+ Al S

[v(z) = vl
> _— . 4.
> (J/Q oy (4.4.13)

The constant Dy, s is sharp and is given by

(4.4.14)

with ¢,_1 = 275" fRNﬂ e 1124’ The constant C' is positive and depends on

N,q,s and the domain ).

4.4.1 Fractional Hardy inequality for cone

Let 1 <1< N and Rﬁ C RY be a cone, that is ]R{Yr = {(x1,79,...,75) € RV :
xn_1+1 > 0,...,xy > 0}. Let R be a root system on RN=! and k be a multiplicity
function on R. Let Ry := {(x,0) € RY : 2 € R} and we can check easily that
R, is a root system on R¥Y. Similar to the case of half-space we can extend the
multiplicity function k to k; on R; by setting ki(x,0) = k(z) for x € R. Let us
write 7 € RY as x = (2/,2") with 2’ € RV~ and 2” € R'. By using same method
as in the case of half-space we can obtain a Picone’s inequality and the following
theorem for the cone. Since the proof is very similar to that of Theorem 4.4.2 we

state the main theorem without proof.

Theorem 4.4.4. Let Q) C R{X be open and bounded and G-invariant. Also let
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84.4. Hardy Inequality on Half-space

l1<p<q<oo. Then for all u € CSO(R;D the following inequality holds:

o ) d d _ Al ’u(x)|p
[ulw) = uly) " @y, y)dpn(@)dpnly) = Ny | s
RV xRN a
> [ [ 1u(o) = )P4, y) i (@) ),
QX
where A}, is given in [5] as

l — C];lQ_Aklr((l +p$)/2) /1 Tps—1|1 _ ,r,(l—ps)/p|p(i> (’I")d?“
B T ((dy £ 9)/2) et

and C = C(Q,dy, q,s) is a positive constant.
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