Study of Rydberg blockade in thermal
atomic vapor

By
Arup Bhowmick
PHYS11201204007

National Institute of Science Education and Research
Bhubaneswar

A thesis submitted to the
Board of Studies in Physical Sciences

In partial fulfillment of requirements
For the Degree of

DOCTOR OF PHILOSOPHY
of
HOMI BHABHA NATIONAL INSTITUTE

February, 2019



Homi Bhabha National Institute!

Recommendations of the Viva Voce Committee

A.s merr-lbers of the Viva Voce Committee, we certify that we have read the
dissertation prepared by Arup Bhowmick entitled “Study of Rydberg blockade in

therrpal atomic vapor” and recommend that it may be accepted as fulfilling the thesis
requirement for the award of Degree of Doctor of Philosophy.

Pornthenly  iyfsfrors

Chairman — Prof. Bedangadas Mohanty Date: /
’(3“6"“4?—‘2‘———— I4[o2.]2019
Guide / Convener — Dr. Ashok K. Mohapatra Date:
Co-guide - Date:
\
\}\,\,\/«,&& I3 14
Examiner — Prof. C. S. Unnikrishnan Date:
Z;:Jrvd'bgb Red 1402209
Member 1- Dr. Ritwick Das Date:
\]uL\wa\' AL o welva Il-frl——zorc]

Member 2- Dr. V\. Ravi Chandra Date:

X% 14|54 20149
Member 3- Dr. Rajan Jha Datet

Final approval and acceptance of this thesis is contingent upon the candidate’s
submission of the final copies of the thesis to HBNL

I/We hereby certify that 1/we have read this thesis prepared under my/our
direction and recommend that it may be accepted as fulfilling the thesis requirement.

Date: “.”02'.2_0 19 &“’1’!‘__%.__’

Place: Jalani Dr. Ashok K. Mohapatra

! This page is to be included only for final submission after successful completion of viva voce.

Version approved during the meeting of Standing Committee of Deans held during 29-30 Nov 2013



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced
degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made

available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided that
accurate acknowledgment of source is made. Requests for permission for extended quotation
from or reproduction of this manuscript in whole or in part may be granted by the Competent
Authority of HBNI when in his or her judgment the proposed use of the material is in the

interests of scholarship. In all other instances, however, permission must be obtained from the

author.

B

(Arup Bhowmick)



DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me. The

work is original and has not been submitted earlier as a whole or in part for a degree/diploma

at this or any other Institution/University.

b BRowmicld

(Arup Bhowmick)



List of Publication arising from the thesis

Journal:

1. “Optical nonlinearity of Rydberg electromagnetically induced transparency in thermal
vapor using the optical-heterodyne-detection technique”, Arup Bhowmick, Sushree S. Sahoo,

and Ashok K. Mphapatra, Phys. Rev. A, 2016, 94, 023839 1-7.

2. THigh-sensitivity measurement of Rydberg population via two-photon excitation in
atomic vapor using optical heterodyne detection technique”, Arup Bhowmick, Dushmanta

Kara, and Ashok K. Mphapatra, arXiv:1709.07750, 2017. [Accepted in Pramana]

3. "Study of Rydberg blockade in thermal vapor”, Arup Bhowmick, Dushmanta Kara, and
Ashok K. Mphapatra, arXiv:1802.06599, 2018. [Communicated|

Conferences:

1. International school and conference of Atomic Physics and Quantum Optics, 2012, Goa,

arranged by IISER, Pune, India.

2. School and workshop on physics of cold atom, 2013, HRI, Allahabad. India. The title of
the poster presentation is ”Study of optical non-linearity of Rydberg-EIT system using optical

heterodyne detection technique™ by Arup Bhowmick, and Ashok K. Mohapatra.

3. School and discussion meeting on frontiers in Light-Matter interaction, 2014, TACS,
Kolkata, arranged by ICTS, Bangalore, India. The title of the poster presentation is "Rydberg
blockade mediated optical non-linearity in thermal vapor using optical heterodyne detection

technique” by Arup Bhowmick, and Ashok K. Mohapatra.
4. The International School and Conference on Quantum Information (IPQI), 2014, 10P,
Bhubaneswar, India. The title of of the poster presentation is "Study of Rydberg blockade in

thermal vapor” by Arup Bhowmick, and Ashok K. Mohapatra.

5. APS March meeting, 2016, Baltimore, USA. The title of the oral presentation is "Study



of Rydberg blockade mediated optical non-linearity in thermal vapor” by Arup Bhowmick,
and Ashok K. Mohapatra,

Other journal pulications:

1. "Polarization rotation of light ptopagating through a medium with efficient four-wave
mixing and cross-phase modulation”, Sushree S. Sahoo, Arup Bhowmick and Ashok K. Mo-

hapatra, J. Phys. B: At. Mol. Opt. Phys., 2017, 50, 055501 1-9.

2. "Rydberg interaction induced enhanced excitation in thermal atomic vapro”, Dushmanta
Kara, Arup Bhowmick, and Ashok K. Mohapatra, Scientific Reports, 2018, 8, 5256 1-9.

3. Study of the effect of Multi-atom decoherence in super-atom model of the Rydberg

blockade. [Under preparation]

e Bhoumel

(Arup Bhowmick)



1o my Mother, & Father




ACKNOWLEDGEMENTS

First I like to show my sincere gratitude to my Ph.D. supervisor Dr. Ashok K. Mohapatra.
It has been an honor and privilege to be his first Ph.D. student. He taught me, both consciously
and unconsciously, how nice experimental physics can be done and how deep the level of un-
derstanding can be driven. I appreciate his contribution of time and ideas which makes my
Ph.D. experience adventures, productive and stimulating. His enthusiasm and optimistic point
of view towards the work was contagious and motivational for me, even during tough times in

the Ph.D. pursuit.

I am thankful to my lab members Dushmanta Kara, Sushree S. Sahoo, Snigdha S. Pati,
Tanim Firdoshi, Akshaya Sahoo and Sujit Garain for maintaining nice research environment
and their friendly attitude towards me. Specifically, Dushmanta and Tanim are also part of the
project I was involved with. We had a number of nice and prompt discussions during the course
of my Ph.D.

I would like to thank the former M. Sc. students and project students Sabyasachi Barik,
Surya N. Sahoo, Gaurav Nirala, Gentle Dash, Ananya Sahoo, Titash, Sreya Bagchi, Piyalee
Pattanaik, Soumen Mandal. We used to have nice discussions. All of them are always very

friendly to me and we spent a great time together.

I would like to thank my wife for giving me wonderful life and support me one of the most

difficult days of my life.

I like to thank my batch-mates Sougata, Avenendra, Srijani, Rita, Pratick, Koushik, Mukesh,
Samir, Kishora, Vantari, Sony, Shrikant for their psychological support throughout the time. I
also like to thank my four best friends Subhajit Das, Sandeep Chaubey, Debadrita Dutta and

Eeshita Manna for always being my side.

I want to thank my siblings Anindia, Tiyasha, Rima, Riku, Sushmita, Rashmita and Souvik

to make my life beautiful.

Last but not the least, I like to thank my mother for everything and patiently experiencing

my ups and downs of my Ph.D. life.

vii



Contents

Table of Contents . . . . . ... ... ..

Listof Figures . . . . . . . ... ... ..
Listof Tables . . . . ... ... ... ..

1 Introduction

1.1 Rydberg blockade and enhanced optical non-linearity . . . . . . ... ... ..

1.2 Review of the study of Rydberg blockade in cold atoms . . . . . . . ... ...

1.3 Motivation to study of Rydberg atoms in thermal vapor . . . . . . . . ... ..

1.4 Review of the Rydberg excitations in thermal atomic ensemble . . . . . . . ..

1.5 Contribution of the thesis . . . . . . . ..

1.6 Layoutofthethesis . ... ... .....

2 Rydberg atoms and Rydberg interactions
2.1 Quantumdefect . . . .. ... ... ...
2.2 Scaling laws of Rydberg atoms . . . . . .
2.3 Interacting Rydberg atoms . . . . .. ..
2.3.1 van der Waals interaction . . . . .
2.3.2 Dipole-dipole interaction . . . . .
2.3.3 Rydberg blockade interaction . .
2.3.4 Rydberg anti-blockade interaction
24 Conclusion . ... ............
3 Atomic properties and atom-light interaction
3.1 Atomic properties . . . . . ... .. ...
3.1.1 Fine structure splitting . . . . . .
3.1.2  Hyperfine structure splitting . . .
3.1.3  Zeeman effect on hyperfine states

3.2 Atom light interaction . . . . . . . . ...

X

13
14
15
17
17
18
19
21
23



32.1 2-levelsystem . . . . ... 32

322 Forthecase, A |Q| . .. .. .. 33
323 Forthecase, A=0. . . . . . . . . .. 34
3.2.4  Optical Bloch equation for 2-level system . . . . . ... .. ... ... 34
3.2.5 Optical Bloch equation for 3-level system . . . . . . ... . ... ... 35
3.2.6 Large probe detuning in two-photon resonance process . . . . . . . . . 39
3.27 Adiabatic elimination of intermediate state . . . . . .. .. .. .. .. 39
3.2.8 Optical Bloch equations for effective 2-level system . . . . .. .. .. 40
3.3 Hyperfine pumping spectroscopy (HPS) . . . .. .. ... ... ... ... .. 42
3.4 Laserstabilisationusing HPS . . . . . . ... ... o000 45
Study of Rydberg EIT using OHDT 50
4.1 Rydberg-EIT . . . . . . . . 50
4.2 Optical heterodyne detection technique . . . . . . . . . . ... ... ... ... 53
4.2.1 Measurement of absorption and dispersion of a probe field . . . . . . . 56
4.2.2 Demonstration of Rydberg EIT using OHDT . . . ... ... ... .. 57
43 Model of EITusing OHDT . . . . . . ... ... ... .. .. ... .. 60
4.3.1 Construction of master equation . . . . . . . . .. ... ... ... .. 62
432 OthorderOBE . . . .. ... . . . .. .. .. .. 62
433 IstorderOBE . . . . . ... .. 63
4.3.4 Calculation of susceptibility . . . . . ... ... ... ... ... .. 65
435 ReducedOBE. . . . . .. ... .. 67
4.4 The EIT peak of the weak probe dressed by the strong probe beam . . . . . . . 69
4.5 Study of Optical nonlinearity of Rydberg-EIT medium . . . . ... ... ... 70
4.5.1 Nonlinearity measurement from transmission . . . . . . . . . ... .. 70
452 SPMatweak probe limit . . . . . ... ... L 71
4.5.3 Measurement of nonlinearity . . . . . . . .. ... .. ... ... ... 73
4.6 Conclusionandoutlook . . . . . .. . ... Lo 74
Study of two-photon Rydberg excitation using OHDT 79
5.1 OHDT to observe two-photon Rydberg excitation . . . . . . ... ... . ... 79
5.1.1 Atomiclevel scheme . . . . . .. ... ... .. ... ... ... ... 80
5.1.2  AOM setup to generate OHDT probes . . . . . . . .. ... ... ... 81
5.1.3 Experimental realisation of two-photon Rydberg excitation . . . . . . . 82



5.2 Model for two-photon Rydberg excitation . . . . . . . ... ... ... .. .. 85

5.2.1 Calculation of susceptibility . . . . .. ... ... ... ... ..., . 87
5.2.2 Lineshape of dispersion . . . . . . .. ... ... ... .. ... ... 87
5.3 Intensity dependent dispersion . . . . . ... ... 89
5.4 Calibration of phase sensitivity of the electronic wave-form mixer . . . . . . . 91
5.5 Sensitivity and the precision of the measurement . . . . . . . . ... ... .. 93
5.6 Precision of the Rydberg population measurement . . . . . . . . ... ... .. 95
5.7 Comparison between OHDT and direct absorption measurement (DAM) . . . . 96
5.8 Conclusion . . . . . ... 98
Study of Rydberg blockade in thermal vapor 103
6.1 Initial experiment to realise Rydberg blockade . . . . . .. ... ... ... .. 104
6.1.1 Classical model of Rydberg blockade . . . . . ... ... ... .... 105
6.1.2 Intensity dependent dispersion . . . . . . . .. .. ... ... 106
6.1.3 Population dependent dephasing . . . . . . . ... ... ... 107
6.2 Superatom model of Rydberg blockade . . . . . ... ... ... ... ... 108
6.2.1 Many-body superatom equation (MSE) of Rydberg blockade . . . . . . 111
6.2.2 Dephasingmethod . . . . .. ... ... ... ... ... 113
6.2.3 Superatomdephasing . . . . . . ... ... 113
6.3 Analysis of density dependent phase-shift measurement using MSE . . . . . . 115
6.3.1 Gain of the OHDT experiment . . . . . . ... ... ... ....... 115

6.3.2 Density dependent phase shift and the evaluation of Rydberg blockade
radius 7,(n) « . .o 118
6.3.3  r} scaling with respect to the principal quantum number n* . . . . . . . 123
6.4 Conclusion and application . . . . . . . . . . ... oL 124
Experiment towards Ultra-cold atoms 131
7.1 Designof cold-atomsetup . . . . . .. ... ..o 132
7.2 Opticalsetup . . . . . .. L 132
7.2.1 Generation and stabilisation of repump laser. . . . . . .. ... .. .. 134
7.2.2  Stabilisation of TA-SHG-Pro . . . . . . . ... ... .. ... ..., 135
7.3 Vacuumssetup . . . . . ..o e e 136
7.3.1 Design of vacuum chamber and flange multiplexer . . . . .. ... .. 137
7.3.2 Integrated mechanical design for vacuumsetup . . . . . . . .. .. .. 139

X1



7.3.3 Opto-Mechanical cage systemdesign . . . . ... ... .. ......

8 Summary and future plan

Appendix A Design of a fast photo-detector

Appendix B Electronic design of AOM driver

Appendix C Fitting of a function numerically and goodness of fitting

C.1 3-fitting . . ... ..

C.2 Goodness of the fitting

Xii

146

152

154



Synopsis

Study of Rydberg atoms has decades of history. When the highly excited Hydrogen atom
was first studied in atomic spectroscopy for the Balmer series, it became the foundation of
Bohr’s atom modelling [1,2]. These early studies prompted then the research going towards
the high resolution absorption spectroscopy [3,4]. The exotic properties of Rydberg atoms
such as scaling laws [5] and high sensitivity of external electric field [6, 7] of Rydberg atoms
make the physics very rich. The dynamical properties of Rydberg atoms explored the rela-
tionship between the stationary description of quantum wave function and the classical orbital
dynamics of electron wave packets around the atomic ion [§—10]. Later on the long lifetime
and the huge dipole moment of Rydberg atoms inside a high-Q cavity allowed the quantum
nondemolition photon state measurement [11, 12]. With the advent of laser cooling and laser
trapping, a new era of Rydberg interaction studies has been introduced. The strong interac-
tion between two Rydberg atoms gives rise to many body collective behaviour [13, 14]. This
collective behaviour of ultra-cold Rydberg atoms enhances Kerr type nonlinearity at the single
photon level [15-17]. This area of study introduces the historical foundation of strong photon-
photon interaction and naturally address a fundamental question, that is using this phenomenon
is it possible to entangle photons which could lead to building of quantum computer using
photons [18]. The nature of Rydberg nonlinearity is fundamentally different because of the
Rydberg blockade phenomenon [19]. In an ensemble of dense gas, the many-body Rydberg
state is shifted outside the line-width by a single Rydberg excitation within a particular length
scale. The phenomenon is called Rydberg blockade and the length scale is called Rydberg

blockade radius. Rydberg blockade can increase Kerr nonlinearity to a great extent [16,20].

The objective of this thesis is to inspect the existence of Rydberg blockade due to strong
van der Waals interaction in thermal atomic vapor. The strength of the interaction, Cy increases
with principal quantum number of Rydberg excited atom as n*!!, where n* = n — d(n) with
d(n) is the quantum defect. The Rydberg blockade radius is defined as the length scale where
the interaction shift is equal to the line-width of the excitation. For van der Waals interaction,
Rydberg blockade radius for cold atom system is defined as réCA) = {*/% and that of thermal

(TA) _ 6/ Cs

atoms is 1, nr;» Where (2 is the Rabi frequency and I'; is the doppler width. The ratio

,(CA)

between these two radii is given by, 7 = v/ % ~ 2.5 for ) = 5 MHz and I'; = 1 GHz.
Tp
This calculation shows that the Rydberg blockade radius in thermal atoms is in the range of

2-3 factor lesser than that of cold atoms. This simple inspection motivates the investigation



of Rydberg blockade in thermal atomic ensemble. In cold atomic system the Rydberg block-
ade interaction has been studied by detecting Rydberg excited atom using micro-channel plate
(MCP) [21]. In the thermal vapor cell, it is difficult to pursue experiment with MCP because
of the presence of surface charges. We developed the optical heterodyne detection technique
(OHDT) to observe the Rydberg excitation in thermal vapor and first use the technique to study
Rydberg EIT (electromagnetically induced transparency).

In this technique, two light fields are generated from an external cavity diode laser (ECDL)
and a frequency offset of 50 MHz was introduced using acousto-optic modulators (AOM).
Both of the beams were superimposed using a polarising beam splitter (PBS). The interfer-
ence beat signals of the light fields were detected using two fast photo detectors by intro-
ducing polarisers at both output ports of PBS. The beat signal directly measured at one out-
put port of the PBS is called reference beat. The other beat signal was detected after pass-
ing the probe fields through a magnetically shielded rubidium vapor cell of 5 cm length and
is called as signal beat. A coupling laser beam derived from a frequency doubled diode
laser operating at 478-482 nm counter-propagates the probe beams through the vapor cell.
Since the frequency offset between the probe fields is larger than the line-width of the Ry-
dberg EIT resonance in thermal vapor [24], they undergo different phase shift and absorp-
tion while scanning the coupling laser through EIT resonance. Since the signal and reference
beats are from the same interferometer, the noise due to vibration or acoustic disturbances is
strongly suppressed. The intensity of the superimposed probe fields at the signal detector is,
I, o | By Pe *otmIX @) 4| By 2o~ kolImix(@ )] 19| B, || By |e =Rt mIX@)IHX@HI] cos (5t 4-pg+dog 1)
Ey and E; are the electric-field amplitudes of the strong and weak probes respectively. The
length of the rubidium vapor cell is given by [. ¢, = %Re[ng(w) — xsr(w +9)] and @orf
is the phase difference of the probe beams in the absence of the coupling field. We define the
susceptibility due to two photon resonance of two probes as, x3z,(wp) = X(wp) — X2r(wp) and
Xar(wp +0) = x(wp + 0) — x2r(wp + 6), where xy, is the susceptibility of probe in absence
of coupling laser. The signal detected in the detector in presence of a high-pass filter, D, =
Age F Imlor (@) -xsr(+0)] cosOr+dstd0ss) where A, o 2|E1||Ey|. The beat signal detected at
the reference detector, D, = A, cos(dt + ¢,.), where A, and ¢, are the amplitude and the phase
of the reference beat. The two beat signals are multiplied by an electronic waveform mixer and
pass through a low pass filter which gives, S}, = 2147»/456_%] mbar @@ cog(d, + dr ).

Assuming ¢, to be small and setting ¢,,;y = 0, the signal S, becomes sensitive to the amplitude

Xiv



of probe beams and hence gives the information about transmission. By setting ¢, = 7/2, Sy,
becomes strongly sensitive to ¢, and hence the refractive index of the probe due to Rydberg-EIT
can be measured. The signal becomes, 57 ~ QASATe_%I’”[X?’L(“’HX?’L(“*‘S)}gbs. The observed
dispersive signal depends linearly on ¢, and proportional to Re|x3.,(w)— x3r(w+3)]. In the ex-
periment, the phase ¢, has been changed optically to work with the absorption and dispersion
regime. The absorption and dispersion signal observed in the experiment can not be explained
by standard EIT model consists of a single probe laser and a coupling laser. In order to explain
the experimental data, a model of two probe fields and one coupling field in a three level system
has been presented. In the model a frequency offset of  was introduced between the probes.
The Hamiltonian of the system is given by, H = 2[2(A, — kyv)|e)(e] + 2(Ay — Akv)|r)(r| +
{(Q1 + Qae™ @) [e) (g] + Qelr){e| + c.c.}], where 1, Q5 and (), are the Rabi frequencies of
the strong probe, weak probe and the coupling beams respectively. &, (k) is the wave-vector of
probe (coupling) and Ak = k, — k.. The two photon detuning is given by Ay = A, + A, where
A, (A,) is the probe (coupling) laser detuning and v is the velocity of the atoms. The optical
Bloch equation for the system, p = —%[H, p] + Lp(p), where Lp(p) is the Lindblad operator
which takes care of the decoherences of the system. The steady state density matrix equations
were solved perturbatively. A similar approach has been applied to calculate four wave mixing
(FWM) in 2-level atoms as discussed in [25]. The density matrix of the system can be ex-
panded as, p = p@ + p(Me=  p(=1ei* neglecting higher order terms. The density matrix
equations for pg-]) Vi, 7 does not contain any higher order of density matrix elements, hence can
be solved independently. The first order density matrix contains few zeroth order matrix ele-
ments. The solution of the zeroth order matrix elements substituted in first order equations and
solved for ,0%). The susceptibilities of the strong and the weak probes are respectively given
by, x(w,) = %ﬁ fj;o P e~/ dy and X(wp +6) = %ﬁ%}p fjoooo p%)e—ﬂ/v%dv.
Here v, is the most probable speed of atoms, /N is the density and /i, is the dipole moment of
the transition |g) — |e). The calculated susceptibilities using the model matches with experi-
mental observation quite well as presented in reference [22]. We also presented an analysis of
the experimental observation which gives the estimation of the third order (y(*)) and fifth order
(x®)) nonlinear susceptibility [23]. This technique can also be used to measure the cross phase

modulation of a light passing through the highly dispersive medium.

OHDT can also be used to study Rydberg blockade. Here we have used the technique to

study blockade in thermal ensemble of atoms [22]. In the experiment, the probe beam was
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stabilised at 1.3 GHz blue detuned to the D2 line of ®Rb. With this detuning, absorption of
the probe beams is negligible due to interaction with the D2 line at 130°C. The coupling laser
frequency was scanned to observe the dispersion of the signal probe beam by measuring its
phase shift due to the two-photon excitations to the Rydberg state. The polarisation of the cou-
pling beam is chosen to be 0" and the probe beams to be o+ and o ~. The probe beam with o
polarisation can not couple the two-photon transition, 5S;/, — nS;/, and doesn’t go through
any phase shift due to two-photon process. We use it as the reference beam. However, the
other beam with ¢~ polarization can couple the same two-photon transition and hence, goes
through a phase shift due to two-photon excitation to the Rydberg state. We have modulated
the intensity of the coupling laser beam and lock-in detection was done in order to improve the
signal to noise ratio of the dispersion signal. Here the 2-photon resonance peaks corresponding
to the transitions, 'Rb: 5S; ;F= 2 — 5P; /5 — nS;; and ¥Rb: 5S; pF=2 — 5Py ;5 —»
nS; /2 are observed and used to normalise the frequency axis. The dispersion peak correspond-
ing to the ®Rb: 5S;,F= 3 — 5P, — nSy/ transition was analysed for further study
of Rydberg excitation. In the experiment, an absorptive like dispersion profile is observed in
the regime €2, > (2.. In order to explain such unusual profile a model has been formulated.
We have calculated Re(p.,) from 3-level system with the approximation A, > I'.y, €, and
pee ~ 0 and found that, Re(p.,) = 2%; Prr — X—;Re(pgr). The 3-level system was also approx-

imated as an effective 2-level system by adiabatically eliminating the intermediate state [26]

2Ap Aeff
Qp Qeyy

ing and effective Rabi frequency of the approximated 2-level system respectively. The total

to calculate p,, to find Re(py,) = prr- Here A.pp and Q. are the effective detun-
susceptibility of the system can be expressed as x = Xar + Xsr- Xa2r 1S the susceptibility of
the 2-level system (in absence of coupling laser) appeared due to the interaction of the probe
laser with the transition 55/, — 5P3/5. X3z is the susceptibility experienced by the probe

laser in the presence of coupling laser. Using this model, the dispersion can be expressed as

Re(xsr) = Nt IOA;lI2 [ 2_9Ap; _ g_p é—:fﬂlf] prr- Since dispersion is proportional to the Rydberg population,
the suppression of population due to Rydberg blockade interaction can lead to suppression of

dispersion.

In a further study, the sensitivity of the OHDT was determined. This technique is sensitive
enough to measure a minimum phase shift of 3.3 urad with given experimental parameter. We
have used a suitable model of two-photon excitation on a 3-level system to show that the mini-

mum phase shift measured in our experiment corresponds to the probe absorption of the order

XVvi



of 10~7. We observed that the direct probe absorption is not reliable in our experiment at this
level. The effects due to polarisation impurity in the polarisation optical elements may have
obscured this small absorption. Whereas the OHDT is insensitive to polarisation impurity in
the probe and coupling laser beam and hence, provides reliable measurement of the Rydberg

population.

In order to study Rydberg blockade, the experimental observation of suppression of disper-
sion and hence the Rydberg population with the increment of 2-photon Rabi frequency has to
be modelled. We have formulated a model based on statistical analysis. Let us consider N,
atoms inside the blockade sphere. The probability of n atoms out of N, atoms simultaneously

Ny!

getting excited to the Rydberg state is £, = e o8 (1 — ppp) Vo)

, where p,., is the Ryd-
berg population. Because of the blockade interaction, only one excitation out of 7 is allowed,
then the effective Rydberg population will be modified as pg}) =P+ Zf’ b %. The dispersion
of the probe due to Rydberg blockade interaction can be calculated by replacing p,, by p,(f})
in the expression of Re(y3;,). This model qualitatively explains the suppression of dispersion.
This model also gives a quantitative prediction of Rydberg blockade radius for n = 60 which
is found to be 2.2 ym. However the model is based on classical statistical counting problem.
The quantum collective effect is not considered anywhere in the model. In this study, we also
confirmed that the amount of suppression observed in the dispersion can not be due to the pop-
ulation dependent dephasing or interaction induced dephasing. This model study only confirms
that the Rydberg blockade effect can be observed in thermal atomic vapor. A many-body quan-

tum model with thermal averaging is required to get an insight to study of Rydberg blockade in

thermal vapor.

We first studied the model with 2-interacting atoms. From the model it has been observed
that the atoms with same velocity can only participate in blockade interaction. If they are
having different velocities, then the thermal effect obscures the blockade interaction. Using the
symmetry in the density matrix elements of blockade interaction for N-interacting atoms, in
strong blockade regime, the system can be reduced to effective 3-level system. We have also
performed a calculation for 3-interacting-atom and hence generalised to N-interacting-atom
model. The detailed calculation has been done by D. Kara et al. in [28]. However, super-
atom model [29] is used where many-body Rabi oscillation [15] occurs with Rabi frequency

V/NyQess. Then we can have an empirical formula for Rydberg population as, p,,(V,) =

XVvil



1 (VNpQeyp)?
Ny AAZ, +2NyQZ 4 412

3-atom and 10-atom model [28]. All the atoms inside the blockade volume participating in

. This formula matches with the population calculated from exact 2-atom,

cooperative blockade process collectively are called as a single superatom. The average number
of atoms inside the blockade sphere can be found as N, = nyVj, where ng is the density of the
atomic vapor and Vj is the blockade volume. The number of atoms present in each blockade

sphere follows the Poisson distribution which is characterized by N,. The distribution can be

— Vo —N
written as, P(N,, N,) = M% Then the total susceptibility of the probe can be represented
as
X = Z P(Nb: Nb)Xsup(Nb) (1)
Np=1

Here ., (IV;) is the susceptibility experienced by the probe due to a superatom containing /N,

number of atoms inside the blockade sphere.The y,,(/NV}) is calculated by using MSE.

As we have seen from Eq. (6.15), the number of atoms present in each superatom follows

the Poisson distribution. Therefore, the p,,, can also be calculated as
Pavg = Z P(Nln N)prr(N) (2)
N=1

Where P(N,, N) is a Poisson distribution function. It is observed that due to the wave-vector

mismatch, all the atoms present in the blockade sphere cannot contribute to the Rydberg block-

Qesy
2Ak

the Rydberg blockade process, where v is velocity of atoms which resonantly interact with

contribute to

ade process. The atoms within the velocity range from v — 235 to 0 +

the probe and the coupling laser. ¢ can be found from the equation A.;;(?) = 0, which

2_02
gives, U = ﬁ A, + A+ %]. The number of atoms per blockade can be calculated as,

Ny = Fringf(0) (szcf ) The fitting function for the density dependent phase-shift is given

by,

V. = Gng / E() £ (0) pang 3)

For the fitting, we need to construct the Gradient vector and Hessian matrix as discussed in
Appendix C. Here, 7} is a fitting parameter. Therefore, it is required to find a differentiation
of the fitting equation with respect to r}. The average number of atoms N, contributing to the
Rydberg blockade process strongly depend on 7. The transit time decay due to transverse ve-

locity of atoms I, is a function of Rydberg blockade radius 7;. Hence, the Rydberg population
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prr also depends on 7, but it is a slowly varying function of r, and hence the r, dependance of

prr can be neglected [67]. Then, the differentiation of pg,, with respect to 7} is given by,

0 - 47 - Qeff > N
o3 Pave) = 3o f (0) 3 N:l(Nb

1) P(Ny, N)ppr(N) 4)
Eq. (6.18) is used to construct the Hessian matrix for y2-fitting of the experimental data.

The empirical formula given by the super-atom picture expected to explain the Rydberg
blockade phenomenon in thermal atoms. In the experiment we observed a dramatic suppres-
sion of Rydberg population in thermal atoms which is similar to the experimental result of
Rydberg blockade in cold atom system [30-33]. The suppression of Rydberg population has
been observed in terms of suppression of dispersion since it is proportional to Rydberg popula-
tion. In our experiment, the dispersion spectrum contains both the contributions from Rydberg
blockade as well as anti-blockade interaction. In the picture of two atoms excitation process,
in presence of repulsive Rydberg interaction the two atom excited state will shift to the blue
detuned side of the resonant peak of the non-interacting atoms. On the blue detuned side of
the 2-photon resonance peak the Rydberg population will be enhanced due to interaction which
is known as anti-blockade. Anti-blockade in thermal vapor has been studied in details and re-
ported in [34].The contribution of the anti-blockade is negligibly small in the red detuned side
of the resonance peak and the blockade will dominate. Hence, pursued the density dependent
dispersion measurement at the red detuned side of the resonance peak. The same study was
repeated for different principal quantum number states, n = 35, 40, 45, 50 and 53. It has
been observed that the suppression of dispersion is stronger with increase in principal quantum
number states. In order to fit the experimental density dependent dispersion data the expression,
Re(xar) (G, 1) = G [ [5az — Qe 2ot O] pef £ ev® /07 g1y was used, where pff/ is calculated

28p(v)  Qp Qegy
from the empirical super-atom model. G accounts for the overall gain in the experiment. The

experimental data of density dependent dispersion has error in both density and dispersion mea-
surements. Normal distributions of density as well as of dispersion were generated by taking
respective errors as full width half maxima (FWHM). Using the scaling law for Rabi frequency
Q o« n/2, same two-photon effective Rabi coupling was maintained in the experiment with
all principal quantum number states. Moreover, all the experimental parameters were also kept
same, hence G should be same for all the experimental data. x2-fitting of the dispersion data
was done for low densities of n = 35 where Rydberg blockade interaction is expected to be

negligible. The fitting has been done in order to generate the statistics for the parameter G

Xix



which is found to be (G) = 0.39 V/mrad with the error ¢ = 0.047 V/mrad. Then y\>-fitting
of dispersion as function of density was done for all the principal quantum numbers by taking
73 as a fitting parameter. Further, the statistics of r; was generated for all the quantum number
states. Using these statistics, we have generated the normal distributions of r} was generated
for different n*, where n* = n — § with § being the quantum defect. y>-fitting for all the data
of r} as function of n* was done to find the scaling as, r} ~ n*>470-3_ The scaling exponent

found from the fitting is consistent with the usual scaling of Cs within 6% error.

Similar experiments to be pursued with ultra-cold atomic ensemble, I was involved in de-
signing the ultra-high vacuum (UHV) and optical setup for magneto optical trap (MOT). The
ultra-high vacuum design includes UHV chamber with other vacuum accessories and also the
mechanical set up to support the vacuum system. The optical setup includes the planning of
AOM alignments to generate the beams for laser cooling and magneto optical trap, sub-Doppler
cooling, optical pumping, probe beams for heterodyne detection in ultra-cold sample and also
blue laser for Rydberg excitation. Also, the electronic circuits for the AOM devices were de-

signed.

XX
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Chapter 1

Introduction

The building of useful and controllable quantum system is always an outstanding challenge in
the field of research of the atomic, molecular and optical (AMO) physics. It encourages the pro-
gressively increasing technological interests towards the experimental realization of a perfect
quantum system, quantum computer, and quantum simulator. It requires complete isolation
of the system from the surrounding world and precise control over the interaction between
quantum particles of the system. In the linear optical medium, photons do not interact with
each other whereas the non-linear optical medium facilitate strong photon-photon interaction.
Strong interaction for single photons are essential for building the quantum devices like single
photon switch, optical transistor, photonic phase gate and deterministic source for single pho-
ton. It triggers the search of the nonlinear optical system in order to introduce the interaction

between photons and control the interaction via non-linear medium.

Rydberg quantum optics is one of the field which is expected to address all these fun-
damental questions. By coupling the Rydberg excited state via electromagnetically induced
transparency (EIT) a large self phase modulation (SPM) [1-18] and cross phase modulation
(XPM) [19-24,29] is observed. These phase modulation processes posses large intensity de-
pendent nonlinearity for the Rydberg interacting systems. The state-dependent interaction me-
diated by the Rydberg blockade enhances optical non-linearity which essentially can be used to
introduce correlation between photons while studying atom-light interaction for the system. In
the advent of the technique to slow down and trap an ensemble of atoms in the magneto-optical

trap (MOT) [30-32], a number of possible studies on photons using atoms have emerged.



1.1 Rydberg blockade and enhanced optical non-linearity

Rydberg states are the highly excited state with very large principal quantum number. The Ry-
dberg excited electron is loosely bound to the core nucleus and hence the interactions between
the atoms in Rydberg states are orders of magnitude larger than the atoms in the ground states.
The typical interaction is van Der Waals type in the absence of any electric field and can be
repulsive or attractive in nature depending on the orbital angular momentum of the Rydberg
state. Strong Rydberg-Rydberg interaction makes the system very unique while an ensemble of
atoms are excited using monochromatic light field. In a dilute vapour where the average inter-
atomic separation is of the order of micron, the ground-ground state or ground-Rydberg state
interactions can be safely neglected whereas the Rydberg-Rydberg interaction is appreciable.
If one Rydberg atom is excited by a resonant monochromatic laser field, it shifts the energy
level of the Rydberg state of the neighbouring atoms making them out of resonance from the
same laser field and hence can not be excited. This phenomenon is called Rydberg blockade
which allows a single excitation of an ensemble of atoms inside a macroscopic volume called as
blockade sphere. The radius of the blockade sphere can be a few micron which is related to the
van der Waals interaction strength and the probability of Rydberg excitation which is related
to the Rabi coupling of the laser field. All the atoms inside the blockade sphere collectively
participate in the single Rydberg excitation. As a result, the coherently driven system becomes
and interesting quantum many body system. Also the Rabi coupling is enhanced by v/N where
N is the number of atoms in a single blockade sphere. Comparing the system with a cavity,
where the Rabi coupling of a single photon with a single atom is also enhanced by v/ N where

the NV is the number multiple reflections it goes through the cavity.

The development of a high finesse cavity boosts the study of optical nonlinearity due to
atom-photon interaction using cavity. The interaction of a field with a single atom trapped
inside a cavity [33, 34] is studied which helps to make all-optical switch [29]. It is also used
to study photon blockade [35] and photon turnstile dynamics [36]. The interaction of a single
photon with a single trapped atom inside a cavity is studied which has significant application
towards to design of the scalable architecture for quantum computation. Study of the interaction
of few photons with an ensemble of cold Rydberg atoms trapped inside a cavity [37-39] has

very important application in designing of photonic phase gate.



1.2 Review of the study of Rydberg blockade in cold atoms

The suppression is experimentally observed in a frozen ensemble of atoms having van der
Waals interaction [40—42]. Since all the atoms in the blockade sphere are identical, the system
falls in many-body entangled state [43,44]. The net susceptibility experienced by a photon
while passing through the medium is not the simple addition of the susceptibility due to all the
individual atoms. In the presence of the blockade interaction, the number of atoms inside the
blockade sphere contributes to the susceptibility collectively. The coherent collective effect due
to Rydberg excitation is also experimentally observed in the frozen ensemble of atoms [45,46]
and between two individually trapped atoms [47,48]. The many-body effect due to dipole
blockade interaction among Rydberg atoms is also experimentally investigated [49,50]. A pre-
cision measurement of van der Waals interaction strength is done by using two trapped atoms
interacting strongly via Rydberg blockade interaction [51]. In presence of the Rydberg block-

ade interaction, the frozen ensemble atoms show crystalline structure [52].

The Rydberg atoms claimed to be an efficient system to build quantum phase gate which
can be used for quantum computation. The optical nonlinearity observed in the system is not
only large but also different in nature due to the state-dependent interaction property of the
Rydberg blockade [53]. The idea of building the controlled NOT gate using photons require
large nonlinearity mediated by Rydberg-Rydberg interaction. In this regard, a very basic ques-
tion that asked was that even if the Rydberg interaction induces large optical nonlinearity is it
sufficient to build a quantum computer [54]. In order to address the question, the researchers
continue the experiments towards the Rydberg blockade in a frozen ensemble of atoms and
found large optical nonlinearity at the single photon level [6,55]. Optical © phase-shift is
measured for single photon which is mediated by Rydberg blockade [56]. It is also observed
that the multi-atom coherence due to the superatom formation in cold-atoms enhances single
photon nonlinearity significantly [25-27,44,46]. Rydberg blockade in electromagnetically in-
duced transparency (EIT) medium posses strong single photon nonlinearity for the atoms in
MQOT [6,7], the atoms in cavity [S7] and two atoms trapped separately by optical tweezers [58].
It has wide application in quantum simulation [59, 60] with photons and all-optical quantum
information processing (QIP) [14,53,54,61-63].



1.3 Motivation to study of Rydberg atoms in thermal vapor

For van der Waals interaction between the atoms, the Rydberg blockade radius is defined as,
Ry, = [£8]'/8, where v = maz{T'y,Q}. Here, I'y is the Doppler width of the transition and
(2 is the Rabi frequency of the Rydberg excitation. The Rydberg blockade for the cold atomic
system is given by, R\" = [€5]1/6, since the Doppler width is very small compared to the
Rabi frequency of the transition. The Rabi coupling of the Rydberg transition can be taken as,
(2 = 5 MHz. In case of the thermal atoms, the Doppler width of the transition dominates over
the Rabi frequency of the Rydberg excitation. So, the blockade radius for the thermal atoms
can be defined by, R((fh) = [%] 1/6 [64]. The typical Doppler width of the transition is given by
I'; = 1 GHz. The ratio between the cold atom and the thermal atom blockade radius is given
by, %:Z; = [%]1/ 6 ~ 2.5. This implies that the blockade radius in thermal atoms should be 2-3
factor smaller than that of the cold atom. The Rydberg blockade radius for cold atomic system
for the Rydberg excited state with principal quantum number n = 60 is 6 m for s-state and 8
pm for d-state [4,28,46]. Then, the Rydberg blockade radius for the thermal atomic ensemble

is expected to be ~ 2 pum, which is a detectable number if the experiment is performed.

1.4 Review of the Rydberg excitations in thermal atomic en-
semble

The study of cooperative phenomena due to Rydberg-Rydberg interaction in thermal vapor has
growing interest because of the technological simplicity in comparison with the cold atoms
and hence, it is easily realizable. Detection of coherently driven Rydberg excitation assisted
by dipole interaction is detected in thermal atomic vapor [1, 12]. Unlike usual atomic sys-
tem, the system is found to be extremely sensitive to the electric field which leads to giant
electro-optic effect [11]. The multi-wave mixing process due to the Rydberg dressing is also
studied [65-67]. A sensitive measurement of Rydberg population due to a coherent driving in
electrically contacted rubidium vapor cell is also reported [68]. Optical bistability is observed

in thermal atomic vapor in presence of dipole-dipole Rydberg interaction [69].

In order to study the Rydberg blockade interaction in EIT regime, it is required to prepare
the ensemble in high density. Here, the single photon resonance causes strong absorption of
the probe laser. The optical path of the probe laser can be reduced by using micron size vapor

cell where the strong Rydberg blockade interaction is found to be significant while driven by



continuous optical field [64, 65] and pulsed laser [17,70]. A correlated single photon source is

demonstrated using the cooperative Rydberg blockade interaction in thermal vapor [71].

The many-body effect mediated by Rydberg-Rydberg interaction is also studied. Van der
Waals interaction driven coherent Rabi oscillation is found in thermal vapor [17]. A partial
suppression of Rydberg excitation is observed in atomic beam [72]. In presence of Rydberg
interaction, a correlated growth of Rydberg aggregates is also found [73]. The dissipative phase

transition driven by the Rydberg blockade interaction is extensively studied [69, 74-76].

1.5 Contribution of the thesis

The thesis is dedicated to study the Rydberg blockade due to van der Waals interaction.

(A) An all-optical detection technique based on optical heterodyne is established to study
Rydberg-EIT.

e Using the optical heterodyne detection technique (OHDT) the absorption and the disper-

sion of a probe beam passing through a dispersive medium can efficiently be measured.

e A model of EIT involving 2 probes with a frequency offset and a coupling laser in a

three-level system successfully explain the experimental observation.
(B) OHDT is used for two-photon excitation to Rydberg state is done.

o The sensitivity in phase shift measurement is found to be as small as 3 prad and the

Rydberg population to be of the order of 1077,

e The technique is also found to be insensitive to small polarisation fluctuation which is

found to be advantageous over direct absorption measurement.

(C) Study of Rydberg blockade is done using OHDT. The many-body model based on
superatom formation due to Rydberg blockade interaction is constructed and used to explain

the experimental observation.

e The suppression of Rydberg population due to Rydberg blockade interaction is observed
in the experiment while driving a thermal ensemble of atoms by the continuous probe

and coupling laser field.



e The analysis of experimental data using a many-body model of Rydberg blockade verifies
the scaling law of van der Waals interaction strength (C) with the principal quantum

number.

(D) A design of cold atom setup is also mentioned in the thesis. The prime objective of

building the cold-atom setup is to study Rydberg quantum optics.

1.6 Layout of the thesis

The thesis contains seven chapters except for introduction and three appendices. The flow of

the thesis is briefly described as follows.

In chapter 2, the basic properties of Rydberg atoms such as the scaling laws of physical
quantities with the principal quantum number will be discussed. The two types of Rydberg in-
teractions namely the van der Waals and dipole-dipole interactions will also be discussed. The
Rydberg interaction leads to cooperative phenomena in atom-light interaction. Contextually,

the Rydberg blockade and Rydberg anti-blockade interactions are also discussed in the chapter.

In chapter 3, some of the atomic properties of alkali atoms are described. The discussion
is restricted to rubidium atom. Basic atom-light interactions such as the steady-state optical
Bloch equation (OBE) of 2-level and 3-level atom in presence of external optical field are also
discussed. A very specific discussion on the adiabatic approximation to reduce 3-level system
to an effective 2-level system has also been done which will be used in later chapters as a tool

to measure dispersion from Rydberg population.

In chapter 4, optical heterodyne detection technique (OHDT) will be discussed to measure
the absorption and the dispersion of a probe field while passing through a dispersive medium.
The OHDT is established in the Rydberg electromagnetically induced transparency (EIT )
medium for a Doppler broadened optically thick atomic system. A model of EIT based on
the perturbation theory can explain the experimental observations and hence the nonlinearity
of the system is estimated. This limitations and the application of the technique will also be

discussed.

In chapter 5, the dispersion spectrum-shape will be explained for a two-photon resonance

to the Rydberg excited state using a model of the three-level atom in presence of a probe and

6



a coupling laser field. The probe laser is detuned 1.3 GHz away from the intermediate atomic
state but using a coupling laser it satisfies the two-photon resonance condition. The precision of
the measurement of the phase shift due to the dispersion and the measurement of the Rydberg
population will also be described in the chapter. A comparative study of OHDT with direct
absorption measurement (DAM) of the probe will be done to demonstrate the higher sensitivity
of OHDT.

In chapter 6, the Rydberg blockade in thermal atomic vapor will be demonstrated exper-
imentally by two-photon resonance to the Rydberg excited state using OHDT. A model of
Rydberg blockade based on classical counting will be presented. The model confirms the ex-
istence Rydberg blockade and rules out other possible artifacts. A many-body model based on
superatom will be used to explain experimental data for better estimation of physical quantities
such as Rydberg blockade radius and the interaction strength. A very precise verification of
scaling of the van der Waals interaction strength with the principal quantum number of Ryd-

berg state will be demonstrated by fitting the model with the experimental data.

In chapter 7, the electronic, optical and vacuum design for ultra-cold atom setup will be

demonstrated.

In chapter 8, the summary of the thesis will be presented and some prescription will be

suggested for the future experiments in order to carry out research in the same field.

In appendix A and B we will describe the electronic design of a fast photodetector and the
electronic driver of the acousto-optic modulator (AOM) respectively. These electronic devices
are used in OHDT experiment. Appendix C will describe the y2-fitting process and a way to
judge the goodness of the fitting. This will be widely used in chapter 6.
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Chapter 2

Rydberg atoms and Rydberg interactions

The Rydberg atom is any simple atom with one or more electrons being promoted to very large
principal quantum number [1]. The Rydberg atoms were discovered in space around 1965 and
also later on reported in [2]. It is first reflected in Bohr’s original paper on Hydrogen atom were
showed that the atom can be excited to very high principal quantum number state. But during
that time Rydberg atoms were not prepared in the laboratories. After the invention of the laser,
researchers were able to prepare and detect the Rydberg atoms [3]. This finding gives pedolog-
ical interest to the atomic physicist in the direction of the study of Rydberg atoms. The atoms
in the Rydberg state possess exotic physical properties, for example, large dipole moment, high

sensitivity to the external electric field etc.

In this chapter, properties of Rydberg atoms are discussed, i.e., scaling behaviour of Ryd-
berg atoms governed by the natural laws. Also, the different types of Rydberg interactions and
related cooperative phenomena like Rydberg blockade and Rydberg anti-blockade interaction

are discussed. The discussion is restricted to the alkali atoms.
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2.1 Quantum defect

< ——>

55 ]

Figure 2.1: Schematic atomic level diagram of rubidium Rydberg atoms. The top most marked
states are Rydberg excited states. As quantum number increases they become close to contin-
uum.

The schematic energy level diagram of an alkali atom is depicted in fig. (2.1). Rubidium atom
has one valence electron in 5s; /o state which behave like hydrogen like atoms. However the
core electrons screen the Coulomb potential and hence the the Hydrogen like energy levels are

corrected by introducing quantum defect [4—7] as which is given by,

1
E,=————/#9—} 2.1
2m(n — 0;)? @D

Where m is the mass of the atom. We introduce an effective quantum number n* = n—¢; [4-8].
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Table 2.1: Quantum defect of the alkali atoms for [ = 0 — 3.

[l [l | Na LK | Rb | Cs |
s 0.40 1.35 2.19 3.13 1.06
P 0.04 0.85 71 2.66 3.59
d 0.00 0.01 0.25 134 2.16
f 0.0 0.0 0.0 0.01 0.02

The quantum defect is found for many atomic species. Particularly for alkali atoms, o; is
found to be very slowly varying with n for a given value of /. Thus, the energy-level diagram for
such an atom can be split into different series of states, each series corresponding to a different
value of 9;. The excited states of such an atom is depicted in fig. (2.1). It also shows that,
for a given principal quantum number, the higher angular momentum states are more nearly
hydrogenic than the lower angular momentum states. Table (2.1) [4] is a listing of the quantum
defects for the first few angular momentum states of the alkali atoms. This table clearly shows
the dramatic decrease in §; with increasing angular momentum. Experimentally, the quantum

defect [9] is measured with much higher accuracy up to a relative uncertainty of 10~7 [10].

2.2 Scaling laws of Rydberg atoms

Due to the excitation to the large quantum state of a Rydberg atom, the electron are loosely
bound to the atom. Unlike Hydrogen atom, the required electric field to completely remove the
outermost electron from the atoms is 10 V/Cm for n = 100. Here n is the principal quantum
number of the Rydberg excited state. The scaling laws of the physical properties of the Rydberg
atoms with principal quantum number 7 is introduced in Tab. 2.2. The ionisation field for the
Rydberg electron scales as n~%. That is why it is easier to pull out the outermost electron easier
than the ground state electron. Therefore, ionisation of the Rydberg atoms are easier [11-14].
Also, the size of the atom goes as n?, which means if one prepares the atom in n = 100 the size

of the atom will be 10, 000 times the ground state atom which is mesoscopically large in size.
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Table 2.2: Scaling of physical properties of the Rydberg atoms with principal quantum number

Property n dependance Typical number
/ application
Size n? Few 100 nm
Binding energy n=* 0.1eV
Life time n? Long lived 100
psec for n > 40
Dipole moment n? Strong dipolar in-
teraction
Polarisability n’ Giant Kerr effect
Tonising field n~* Detection
van der Waals in- || n'! Collective inter-
teraction strength action and QIP
(Cs)

Because of the large size of the Rydberg atom it has large dipole moment. The enormous
dipole moment of the Rydberg atoms triggers strong interaction between atoms and hence leads
to a physical phenomenon which is known as dipole blockade [15, 16]. The Rydberg excitation
of one atom can be controlled by other atom’s excitation via dipole blockade interaction which
can serve as basic building block of quantum computation [17, 18] and quantum information
processing (QIP) [19-23]. As an application of the ionisation property of the Rydberg atoms
(ionising field ~ n~%), a detection technique is developed to detect the Rydberg excited atoms.
The technique is called micro channel plate (MCP) detection [24—33]. This technique is widely
used for the detection of the Rydberg atoms in cold atomic system. The Rydberg atoms also
have large polarisibility which obeys the scaling law as n”, which making them highly sensi-
tive to the external electric field. One can use the Rydberg atoms to measure the electric field
whereas normal atoms are very weakly effected by the external electric field. This phenomenon
encourages the study of electrometry using the Rydberg atoms. Recently, a giant electro-optic
effect which is million fold larger than any other material, is demonstrated using the Rydberg

atoms [34].

Rydberg interaction is also demonstrated in the van der Waals interaction regime [35-38].
The excitation of one atoms to the Rydberg state gets suppressed by another Rydberg excited
atom via van der Waals interaction potential, which has the form V (r) = f—g [38—40]. The van

der Waals interaction strength (Cy) scales with the principal quantum number of the Rydberg
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excitation as n'!. In the case of rubidium, the ground state principal quantum number is given
by n = 5. If one excites the atom to n = 50, then the interaction strength is increased by 10!!
times the ground state interaction. This strong interaction induces the many-body effect in the

system and also leads to the van der Waals blockade interaction.

2.3 Interacting Rydberg atoms

In the absence of the external electric field, vacuum induced dipole interaction between Ryd-
berg atoms leads to van der Waals type interaction. On application of an external electric field,
the Rydberg atom gets polarised. These atomic dipoles interact with each other strongly and the
interaction is called dipole-dipole interaction. These interactions of the Rydberg atoms leads to

cooperative phenomena [41-46] such as the Rydberg blockade and the Rydberg anti-blockade.

2.3.1 van der Waals interaction

In order to understand the origin of van der Waal interaction [47] between two Rydberg atoms,

let us consider an interaction Hamiltonian which can be described as,
2 — 3 (7 7)
|r|?

Let us choose 7" to be along z axis. The orientation of the dipoles are depicted in fig. (2.2).

(FA.FB)|T

H =k +O(r|™) (2.2)

The total Hamiltonian of the system can be written as, Hy + H;, where H, is the unper-
turbed Hamiltonian which consists of the coulomb interaction between nuclei and the va-
lence electrons. Then the first order energy shift due to the interaction can be expressed as
AE = #(MF 4.7 — 3zazp|1h), neglecting higher order terms in multipole expansion. The
energy eigenstate of the exact Hamiltonian can be represented as |¢)) = |A) ® |B). Since
there are rotational symmetry in the system and the states |A) and |B) are parity eigenstates,
the states will follow (A|r4|A) = 0 and (B|rg|B) = 0. So the first order energy correction

vanishes, i.e., A E = 0.

The second order energy correction can be given by,

)2
AyE = Z | ‘%|H1|¢y |
z;ﬁj

_ Z | Uil(Fa.Ts — 3zazp) 1)) |?
E, - E

%
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Figure 2.2: Schematic representation of van der Waals interaction between two Rydberg atoms.
The nuclei of the Rydberg atoms are separated by the distance r. The respective nucleus to
electron distances are symbolised by 74 and 75.

[(il(Fa 7B —32428)|15)|?
i#j B,-F;

difference (E; — E;) scales as n~3. Since the size and the dipole moment of the Rydberg atom

The strength of the energy shift is given by, Cg = —k? >

. The energy

. . 2,2\2
scales as n?, the interaction energy strength scales as, Cg o % =nltl

2.3.2 Dipole-dipole interaction

On the application of an external electric field the Rydberg atom polarises which triggers the
dipole-dipole interaction between them. The interaction between two dipoles [48] is given by
the Eq. (2.2). Here the externally applied electric field Fis stronger than all all other fields
present in the system. Hence, all the atomic dipoles will align along the externally applied
electric field. In terms of dipole moment the two-body interaction potential can be rewritten as

(using Eq. (2.2)), Vis = K’ ﬁl’ﬂ2_3(f§'ﬁ)(ﬁ2'ﬁ). Let us define an angle 6 such that cos ) = (ﬁf),

then we have,

k iy pia(1 — cos? )

r3

_ G (2.3)

3
Here the dipole interaction strength is given by, Cs = & j1415(1 — cos? #). For Rydberg atoms

the dipole moment, . < n?, then the dipole interaction strength, C3 o< n.
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2.3.3 Rydberg blockade interaction

In order to understand the Rydberg blockade, let us consider a simple picture of two identical
atoms interacting via Rydberg excited states. On the application of a resonant monochromatic
laser field, one of them can be excited to the Rydberg state but the doubly excited state (|rr))
is shifted due to the interaction between the atoms and becomes off resonant to the applied
laser field. The interaction between the atoms can be either van der Waals type (%) or the

dipole-dipole (%) interaction, where R is the relative distance between the atoms.

Figure 2.3: Schematic representation of Rydberg blockade interaction. The excitation field is
resonantly interacting with the single Rydberg excitation states (|rg) and |gr)). (a) The relative
distance between the atoms is below the blockade radius. Here the interaction between the
atoms are strong enough to shift the two-atom Rydberg excited state beyond the line-width
of the excitation. (b) The relative distance between the atoms is large enough to neglect the
Rydberg interaction between them and hence the 2-atom Rydberg excited state will be resonant
to the excitation field.

Here |rr) is a doubly excited state. The state dependent Rydberg interaction start playing

role in |rr) state. In fig. (2.3b), the distance between the atoms is such that they cannot intro-
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duce any interaction shift to the doubly excited state |rr). In this case, the applied laser field is
resonant to the Rydberg transition of the individual atoms and hence the single (|rg) & |gr)) as

well as the doubly (7)) Rydberg excitation can take place.

In fig. (2.3a), the distance between the atoms is such that the interaction shift of doubly
excited state (|rr)) is outside the line-width of the excitation. However, the single Rydberg ex-
citation (|rg) & |gr)) can take place. For the van der Waals pair interaction, Rydberg blockade
radius is defined as, R = (%)1/ 6, where 2 is the Rabi coupling of the applied laser field with
the atoms. The definition of the Rydberg blockade radius is valid if and only if 2 > T", where
I' is the dephasing rate of the system.

915, gN)

Figure 2.4: (a) A representation of superatom formation due to Rydberg blockade. The big
sphere represents the superatom where only the central atom (depicted in red colour) is Rydberg
excited. The other atoms inside the superatom are not allowd to get excited in the Rydberg state.
Here R, represents the blockade radius which also defines the size of the superatom. (b) Atomic
level scheme for single Rydberg excitation out of N atoms present in blockade sphere. Here
many-body ground state is represented by |gi, ...... ,gn)- The single excited state is defined as
|91, ey iy vy g ). Here ith atom is excited to the Rydberg state.

In the strong blockade interaction regime, only one atom is allowed to be excited to the
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Rydberg state. Therefore, the state of the system becomes the superposition of single excited
state (|rg) & |gr)) which can be represented as, |¢),) = \/%(h“g) + |gr)). This is also known
as entangled state. The accessible states of the 2-atom Hilbert space can be written as |gg),
lgr), |rg) and |rr). The subspace consists of the states |gr) and |rg) can be transformed to new
basis, [¢1) = \/%(|rg) + |gr)). The dipole matrix element which couples the ground state and
the Rydberg excited state is given by y,, = (g|f1|r). For two atom state, (gg|i|{.) = V2,
and (gg|i|tr—) = 0. Therefore, when both the toms are driven in the blockade regime the Rabi
coupling in enhanced by v/2 [49-55]. The enhancement of the Rabi frequency is the signature

of the existence of cooperative behaviour in the system.

It can be generalized for N-atoms interacting via the Rydberg blockade interaction. In this
case, the suppression of the multi-atom excitation leads to many-body entangled state which
can be represented as, |¢)) = LN > i lg1-...mi-..gn). A schematic transition for N-atom Rydberg
excitation is depicted in fig. (2.4b). In the entangled state basis, the Rabi coupling modifies as
v/NQ. Based on the enhancement of Rabi frequency due to multi-atom coherence, a model is
constructed namely the superatom model [56,57]. A representation of superatom is depicted in

the fig. (2.4a).

2.3.4 Rydberg anti-blockade interaction

In fig. (2.5), the two-atom states are depicted where the nature of the interaction between atoms
are repulsive in nature. That is why the energy shift due to the interaction is positive. In fig.
(2.5), R is the relative distance between the atoms and the interaction is proportional to %.
Therefore, for larger distance the interaction shift is negligible as shown in fig. (2.5.b). For
R < Ry, the energy shift is significantly larger than the line-width of excitation as depicted in
fig. (2.5.a). If the frequency of the laser is chosen such that it is outside the line-width of the
single atom Rydberg excited state, then no Rydberg excitation is expected from the system. If
the laser is blue detuned then the frequency can be set such that the doubly excited state can be
resonant to the applied laser. This is called the Rydberg anti-blockade [37,43, 58—60]. Anti-
blockade happens for blue detuned laser for repulsive interaction whereas it happens for red-
detuned for attractive interaction. Fig. (2.5.a) shows that for repulsive Rydberg interaction |rr)
shifts above the non-interacting |rr)-state. According to the energy conservation, the applied
laser can be resonant to the interacting |rr) if and only if it must be blue detuned from the

individual atomic resonance. On the other hand, if the Rydberg interaction is considered to be
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attractive then the shift of the |rr) state is below the single atom resonant frequency. With the
similar argument using energy conservation, it can be showed that for attractive interaction the
applied laser must be red detuned from single atom excitation frequency in order to satisfy two
atom excitation. The schematic atomic transition for the process is depicted in the fig. (2.5a).
By increasing the interatomic distance the Rydberg interaction can be made absent which is

depicted in fig. (2.5b). In this situation, no Rydberg excitation will be found in the system.

Figure 2.5: Schematic representation of the Rydberg anti-blockade interaction. The frequency
of the excitation field is such that it is outside the line-width of the single Rydberg excitation
states (|rg) and |gr)). (a) The relative distance between the atoms is below the blockade ra-
dius. The applied laser is blue detuned to the single Rydberg excitation. Since the atoms are
inside the blockade radius, the Rydberg interaction assists the two-atom excited state to satisfy
resonance condition. (b) The relative distance between the atoms is large enough to neglect
the Rydberg interaction between them. Here neither single Rydberg excitation nor multiple
Rydberg excitation will occur.
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2.4 Conclusion

The scaling laws followed by the physical properties of the Rydberg atoms makes it a distin-
guished interesting system. Due to the large intrinsic dipole moment of the Rydberg atom, it
has very strong state-dependent interaction nature. This strongly interacting system gives rise
to many-body effect in the system. In cold atom system, Rydberg blockade mediated many-
body effects are already established. This phenomenon has significant application in the field
of Rydberg quantum optics in low light level. In this thesis, the Rydberg blockade interaction

in the thermal atomic ensemble will be investigated.
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Chapter 3

Atomic properties and atom-light
interaction

Interaction of light with atoms is the basis for many aspects of quantum optics and atomic
physics. A simple model of a two-level system interacting with the light field can explain many
fundamental as well as applied quantum mechanical phenomena such as quantum sensing [1],
Rabi oscillations [2, 3] and atom trapping by light field [4—7] which based on the principle of
mechanical force experienced by an atom due to the light field. Study of atom-light interac-
tion also has significant importance in the field of nonlinear optics to study cross phase [8, 9]
and self-phase modulation [10, 11]. Light fields cannot interact with each other in free space
but can interact via an atomic dispersive medium. A probe photon propagating through the
atomic medium, in presence of a control field, can experience phase-shift due to the dispersive
medium. The control laser field polarises the atomic medium and there is a back action of
the atomic medium on probe polarisation. This is possible if and only if the response of the

medium is beyond the linear dependence of the electric field of the applied laser.

In this chapter, we will discuss basic atomic properties and laser-atom interactions using
two and three level system. It is to be noted that the discussion is restricted to rubidium atom.

Also the saturation spectroscopy is used for the frequency stabilisation.

3.1 Atomic properties

The transition wavelength from the ground state to the first excited state for rubidium is in
infrared regime which is advantageous because it can be driven by an optical field. The lasers
for the transition is commercially available which allows the neutral rubidium trapped in a

magneto optical trap (MOT). The rubidium atoms are good candidate to study Rydberg physics
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which is the prime objective of the thesis.
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Figure 3.1: (a) D, transition for 8°Rb. (b) D, transition for 8°Rb. The transition wave-lengths

for Dy and D, transitions are ~ 795 nm and ~ 780 nm respectively [12]. The atomic transitions
are governed by the dipole selection rule AF' = 0, +1.

3.1.1 Fine structure splitting

Fine structure splitting occurs due to the spin-orbit coupling i.e., the degeneracy of the orbital
angular momentum is lifted due to the coupling with the spin angular momentum. The total
angular momentum j is defined as j = [ + s. For the ground state of rubidium, [ = 0 as it
is S-state. From the addition of angular momentum, the possible states of j can be predicted
as |l — s| < j < |l + s|. The j-value of the state is given by j = 0+ 1/2 = 1/2 since the
spin angular momentum quantum number s is 1/2. The ground 55/, state is singlet under
fine structure coupling. For P-state, [ = 1, then the j-values are j = 1 — 1/2 = 1/2 and
j = 14 1/2 = 3/2. Here the transition between the levels is governed by the fine structure
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dipole selection rule, Al = £1. The ground state transitions for rubidium, 52.5; 2 = 52P /2

and 525/ — 5% Py, are known as D; and D, transition lines respectively.

3.1.2 Hyperfine structure splitting
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Figure 3.2: (a) D, transition for 8’Rb. (b) D, transition for 8’Rb. The transition wave-lengths

for Dy and D, transitions are ~ 795 nm and ~ 780 nm respectively [13]. The atomic transitions
are governed by the dipole selection rule AF' = 0, £1.

Hyperfine splitting occurs due to the coupling of the magnetic moment of the nuclear spin
angular momentum / with the magnetic moment of the total angular momentum of electron
j. The total angular momentum F of the atom is defined as, I’ = I + j. For ®°Rb and 87RDb
isotope the nuclear spins are respectively given by [ = 5/2 and I = 3/2. From the addition of
angular momentum the possible states of F can be predicted as |[j — I| < F < |j + I|.
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The degeneracy of the ground state 5251, of **Rb is lifted by the states |F' = 5/2 4 1/2 =
3) and |F = 5/2 — 1/2 = 2). Here, the hyperfine states are represented using the basis rep-
resentation | ' = I + j). The hyperfine levels of 5P, are |F' = 5/2+1/2 = 3) and |F =
5/2 —1/2 = 2). The 5*P;, manifold contains |F = 5/2+3/2 =4), |F = 5/2+1/2 = 3),
|F=5/2—1/2=2)and |F =5/2—3/2 = 1). For ®Rb, the hyperfine states with respective
energy splittings are depicted in the fig. (3.1).

The degeneracy of the ground state 5251 5 of *'Rb is lifted by the states |F' = 3/2 4 1/2 =
2) and |FF = 3/2 — 1/2 = 1). Here, the hyperfine states are represented using the basis
representation |F' = I + j). The hyperfine levels of 5P, j, are |F' = 3/2+1/2 = 2) and |F' =
3/2 —1/2 = 1). The 5*P;, manifold contains |F' = 3/2+3/2 =3), |[F =3/2+1/2 = 2),
|F=3/2—1/2=1)and |F = 3/2— 3/2 = 0). For Rb, the hyperfine states are depicted in
the fig. (3.2). The atomic transitions are governed by the dipole selection rule AF = 0, +1.

3.1.3 Zeeman effect on hyperfine states

The number of Zeeman sub-levels for a hyperfine state with total angular momentum quantum
number F'is given by 2F' 4 1. The quantum number for the Zeeman sub-levels is given by mp
which has the range mp = —F)...,—1,0,+1,....,+F. The Zeeman states are characterised
by |F,mp. In the absence of the magnetic field, the Zeeman sub-levels are degenerate. On
application of an external magnetic field (B), the degeneracy is lifted. The Hamiltonian of the
system is given by, H = Hy + H;, where H is the unperturbed Hamiltonian of the atom and
the interacting Hamiltonian is given by, H; = — ﬁ.g, the magnetic dipole moment is given by

= gF,uBf, where (15 1s the Bohr magneton and g = g, F(F+1);L;§§:1l))—l(l+1)' The Lande g

factor is given by,

J(T+1)+S(S+1)— L(L+1)

=1 3.1
gr=1+ 2T 1) 3.1)

Then the first order energy correction due the external magnetic field perturbation is,
AEmF = —gF,uBmFB (32)

This is called energy shift due to linear Zeeman effect. This approximation does not hold true
when the energy shift due to the perturbation becomes comparable to the hyperfine splitting.

This is the effect of quadratic Zeeman effect.
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3.2 Atom light interaction

Basic atom-light interaction for two and three level system are discussed in this section.

3.2.1 2-level system

Let us consider a two level atom, with resonant frequency wy driven under the influence of an
external light field of frequency w;, as shown in figure (3.3) [14,15]. The atomic Hamiltonian of
the system is given by, H4 = Twy|e)(e|. The applied electric field is given by, & = gje Lt +

c.c, with £'being the electric field amplitude of the applied laser.

¥—1|g)

Figure 3.3: Two level system in presence of an external field.

The interaction Hamiltonian can be written as, H; = —&'fi = —&(jge|g) (€] + fegle) (g]).
Under suitable unitary transformation the Hamiltonian, A 4+ H; can be made time independent.
Using rotating wave approximation (RWA), the time independent Hamiltonian can be expressed
as, H = —L[2Ale)(e| + Q*|g)(e] + Q|e)(g]]. Here 2 is the Rabi frequency which is defined

as, () = 260%, where i, is the dipole matrix element which is defined as (e|ji|g). The energy

eigenvalues are given by, By = —2(A+ /A% + |Q|*). Corresponding energy eigenstates are,
0 . 0
[+) = sin—e “|g) + cos <|e)
2 2
0 . 0
|-) = cos~e"|g) — sin §|e>

2
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Here we have substituted A = ' cosf and |)] = ¥ sinf. The effective Rabi frequency is

defined as, ' = (/A2 + |Q|°. Here, tanf = % and ¢ is phase due to the laser field. The
phase ¢ can be set to zero without losing any generality.
0 0
|[+) = sin §|g> + cos §|e> (3.3)
0 0
|—) = cos §|g> — sin §|e> (3.4)

Here |+) and |—) are known as dressed states.

3.2.2 For the case, A > |(}|

For A > || the energy eigenvalues can be approximated as £, = —h(A + %) and
E_ = h%. The bare ground state and excited state energies are £, = 0 and £, = —hA
respectively. The ground state contain atomic ground state energy and a single photon energy.
The excited state energy contains only the atomic excited state, since the singnle photon is ab-
sent. Therefore, the energy content of the ground state is higher than that of excited state. The
energy shift of the individual levels in presence of the laser field are depicted in fig.(3.4) and

mathematically are given by,

il
AEg - E, - Eg - K (35)
RO
AE, = E,—-E, = TN (3.6)

Figure 3.4: Light shift of atomic levels. The ground state contains atomic ground state with a
single photon state and the excited state is the atomic excited state in the absence of the single
photon state. The left side of the figure represents the bare states and the right side of the figure
represents the light shifted states (|4)).
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Since the energy shift is proportional to the intensity of the light and is called as light shift.

The energy eigenstates for (2| < A are simplified as,

Q
)~ e+ )

)~ 19— ey

3.2.3 For the case, A =0

The energy eigenvalues can be given by, £/, = —@ and F_

due to dressing are given by,

AE, = E_—E,= —h|29|
AE, = E+—Ee:—@

— N9

(3.7)

(3.8)

5 Then the energy shifts

(3.9)

(3.10)

® & o _

Figure 3.5: Dressing of atomic levels when applied field is close to the atomic resonance.

The dressed energy levels are depicted in fig.(3.5).

The energy eigen states are given by,

) = Sslle)+1e)
1
=) = S5lla) ~1e)

S-S

3.2.4 Optical Bloch equation for 2-level system

(3.11)

(3.12)

The master equation for the system can be written as, ifip = [lﬁl )+ ikl p(p). Where H is

the Hamiltonian derived in the previous section and Lp (p) is the Linblad operator which takes
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care of all the decay and decoherence time scales of the system.
T r p _ﬁp e
Lot = ([ 2
- Tg/)eg Feg/)ee

In this system we have only one decay channel I'., (decay:le) — |g)). Optical Bloch

equations for the system are given by,

{

pee = 2(Q/)ge - Q*peg) - 1—‘eg/)ee (313)
. i Le
Peg = E[Q(l = 2pee) + 28] — Tgpﬁg (3.14)

The steady state solution of the coherence term of the density matrix is given by,

(A —it2)Q
Peg = — 9 9 2, (315)
2A% + Q) + =
Q2
Pee = (316)

A2 4202 1 12,

The susceptibility of the system is given by, y = %ﬁ Peg [14]. Here ny is the density
of non-interacting identical atoms. The real part of the susceptibility gives the dispersion and
the absorption of laser field due to the medium can be found from the imaginary part of the
susceptibility as, I = Ioe ™) [ and I are the intensities of the incident and transmitted
beam intensities respectively. Here k = 27”, A is the wave-length of the laser beam and [ is the

length of the sample.

3.2.5 Optical Bloch equation for 3-level system

Consider a 3-level atom in presence of two laser fields as shown in fig (3.6). The transi-
tion |g) — |e) and |e) — |r) are dipole allowed whereas the direct transition |g) — |r) is
not a dipole allowed transition. The atomic Hamiltonian of the system, Hy = hwe,|e)(e| +
T(weg + wer)|7) (r|. The dipole interaction Hamiltonian H; = —Ej,(juge|g){e| + pegle)(g]) —
Eo(ier|e)(r] + pire|r){e]). The probe and coupling electric fields respectively are given by,

My
I

= —iwpt
» Epp€ 7 +c.c

—

g = Ege @l 4.

Here, £, and &, are the electric field amplitudes of probe and coupling laser field respectively.
wp and w, are the frequencies of the probe and the coupling laser field respectively. The total

Hamiltonian is i = H 4 + H;. The atomic level scheme is depicted in the fig. (3.6). The probe
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and the coupling detuning of the laser fields from the atomic transitions are respectively given

by, A, = wp — Weg and A; = we — we,.

lg

Figure 3.6: Energy level diagram of 3-level atom in presence of two laser fields.

Using the rotating wave approximation (RWA), the time independent Hamiltonian in a suit-
able rotating frame takes the form, H = —A[A|e) (e| +6|r) (r[] — 2[Q, |e) (g] + Qc|r) (e| + h.c.].
Here the Rabi frequencies are given by, (), = 2“6% and Q). = 2“*;;—500 The two-photon de-
tuning is defined as, = A, + A.. In this system, the transition |g) — |r) is carried out by
two dipole allowed single photon transitions. The detunings of respective transitions (A, and
A,) have to be chosen such that the two-photon detuning 6 = ( which is the condition of two-
photon resonance. The master equation for the system can be written as, p = %[p7 H|+ Lp(p).

The Linblad operator L (p) accounts for the decoherences in the system and takes the form as,

(Fegpeer'i' Frgprr) _%pge _%(Fre + Frg)pgT
LD (p) = _%peg (Freprr - Fegpee) _%(Feg + Fre + Frg)per
_%(Fre + Prg)prg _%(Feg + Fre + Frg)/)re _(Fre + Frg)/)rr

I'c, is the population decay from the state |e) to the state |g). For rubidium, the typical decay
rate (5P — 551 /2) is 6 MHz. T',. is the decay rate from the state |r) to the state |e). I, has
one contribution from relative laser noise between probe and coupling laser fields and another

contribution appeared due to transit time. In the steady state, the OBE of the system are found
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to be,

l

5 ppeg — Qrpge) + Legpec + Lrgprr = 0 (3.17)
L1002+ i) = Oy = (Xt + 2y p0)] =~ = 0 G.19
%[Qpper — Qepge — 20pg,] — %(Fre + Lrg)pgr =0 (3.19)
(b — Qupre) — (T + Tyl = 0 (320)

i 1
E[Qppgr + Qc(prr - pee) - 2Acper] - é(reg + Pre + Frg)per = 0 (321)

This system of equations can numerically be solved for the density matrix element p., which
gives the information about the transmission and dispersion properties of the probe field due to

the medium.

For low probe limit, the populations p.. = 0 = p,, and since the excited and Rydberg level
are barely populated, the coherence associated with them will vanish i.e, p., = 0. Assuming

the Rabi frequencies to be real, the equations (3.18) and (3.19) will have the form,

r.

Qp + Qepgr + (24, + 7‘9);)96 =0 (3.22)
Pre + Pr

Qupge +[20 — %]pgr =0 (3.23)

The solution of the above pair of equations are given by,

B (26 +iTy)
Pea = 02 —AA,A, + Toley + 2i(AgTey + A,T)

(3.24)
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Figure 3.7: EIT transmission (a) and refractive index (b) for cold atom system. Typical density
and the optical path length of the cold atom are taken as 10'° c.c. and 1 mm respectively. The
curves are generated for probe and coupling Rabi frequencies 100 kHz and 5 MHz respectively.
The dephasing rates for the calculation are taken as I',, = 10 kHz, I',;, = 100 kHz and I',; = 6
MHz. The probe detuning A, is taken to be zero and coupling laser is scanned over the two
photon resonance. The points (e) are generated from the numerical solution of 3-level OBE in
EIT regime and the solid lines (—) are generated from the exact solution of OBE using EIT
approximation.

2n0|pteg |2

The susceptibility of the probe field is given by, x = ey Pea: The refractive index of
the probe due to the medium is given by, n = 1 + ReT(X). The transmitted intensity of the
probe field from the medium is given by, I = Iye™*!/"™(X) where I is the incident intensity
of the probe laser beam, [ is the length of the sample, k, is the probe wave vector and [ is the
optical length of the atomic sample. This gives the transmission information of the probe field
in presence of the coupling laser. From Fig.(3.7), it can be observed that at the vicinity of the
two-photon resonance, the probe light is getting transmitted instead of getting absorbed. This

is called electromagnetically induced transparency (EIT) [16-19].
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3.2.6 Large probe detuning in two-photon resonance process

Let us consider that the probe laser is stabilised well outside the line-width of the single-photon
resonance. Then the two-photon resonance can be satisfied by varying the coupling laser fre-
quency. An interesting phenomenon is observed in the absorption and the dispersion spectral
shape in this regime. If the probe Rabi frequency increases, then the dispersion spectrum takes
the shape of absorption and also absorption spectrum takes the shape of dispersion, as shown
in fig.(3.8). It is also observed that the spectrum with higher Rabi frequency experience a fre-
quency shift. This is because the contribution from the light-shift (as discussed in section 3.2.2)

gets significant with the increment of the probe Rabi frequency.
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Figure 3.8: The curve in (a) and (b) are the transmission and refractive index signal respectively.
The probe detuning is taken as A, = 200 MHz. The dephasing rates for the calculation are
taken as I',, = 10 kHz, I',;, = 100 kHz and I'.; = 6 MHz. The coupling Rabi frequency
is taken as 2, = 20 MHz. The blue curves are the signals corresponding to the probe Rabi
frequency €2, = 6 MHz and the red curves are the signals corresponding to the probe Rabi
frequency (2, = 60 MHz. Typical density and the size of the cold atom are taken respectively
as 1019 c.c. and 1 mm.

3.2.7 Adiabatic elimination of intermediate state

For, A, > €, and I'.,, the three level system can be approximated to an effective two-level
system. For further simplicity let us define the average detuning as, A = %(Ap — A.) and two-
photon detuning as, 6 = A,+A,. If we use the translation to the Hamiltonian H = —H — gl 0,

the Hamiltonian will be,

-5
H=-1 Q, 2A @
2 _
0 Q 4
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Consider any arbitrary time dependent state in the same Hilbert space which can be ex-
pressed as, |1)) = Cy(t)|g) + Ce(t)|e) + C,(t)|r). Then the time-dependent Schrédinger
equation can be written as, ih%w)(t» = H|+(t)). Using the fact of linear independence

of orthonormal set of basis, the relations of complex coefficients can be expressed as,

0

25 Cy(t) = —0C,(t) + QC.(1) (3.25)
2@'%06(15) = Q,C,(t) + 2AC,(t) + Q. (¢) (3.26)
zz%a(t) = Q.C.(t) + 5C, (1) (3.27)

If A, > €, and T'.,, then the population corresponding to the intermediate state (|e)) will
not change with time. Hence, the slowly varying approximation or adiabatic approximation
of the population (2C.(t) = 0) can be used [20]. Therefore from equation (3.26), C.(t) =
—?—gCg(t) - %C’r(t). On substitution in equation (3.25) and (3.27), an effective two level
Hamiltonian can be constructed which is given by,
12| 0582
P R
AR (R = S S+ Fil
2A 2A
Hamiltonian of a two-level atom in presence of a laser field is given by, H = —2[Q*|g)(r| +
Q|r)(g] + 2Al|r)(r|]. Comparing the effective Hamiltonian matrix with the Hamiltonian of a
2-level atom, we can define an effective Rabi frequency as, Q.¢; = e and detuning as,

2A
Q|2 Q2 Qe2—0Q,)2
Aef _( 5 |2|) (5 |22| )_ ‘36 ( |2 |)

3.2.8 Optical Bloch equations for effective 2-level system

The master equation of the effective 2-level system can be written as, p = %[p, H.sf] +
Lp.ss(p). The quantity Lp .¢¢(p) is called the Linblad operator, which can be expressed as,
Lpers(p) = Trgllg){glor — 5(r)(r|p + p|r)(r])]. Here, T4 is the decay rate due to transit
time and the relative laser noise. The optical Bloch equations (OBE) for the effective 2-level

system [20] can be written as,

Peg = _i(QefprT - Q:ffprg) + Frgprr (3.28)

. . FT
Prg = —i(Deppprg + Qepp(20, — 1)) — TQPTQ (3.29)
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In steady state the equation (3.28) and (3.29) give the set of equations,

L,
Im(pfrg) = 2ijprr (3.30)
A,
Re(pyy) = Q—:p (3.31)
402,
- eff (3.32)

2A§ff +8ngf +12,

0.00

-0.02 1

eg)

Re(p

-0.04 -

505 -500 495
A ——l

515 510

Figure 3.9: The grey data points (e) are generated from the numerical solution of OBE for
large probe detuning and the green curve (—) is the solution of the effective 2-level OBE. The
probe detuning is taken as A, = 500 MHz. The dephasing rates for the calculation are taken as
I'ye = 10kHz, I',; = 100 kHz and I'.; = 6 MHz. The coupling and the probe Rabi frequencies
are taken as (2, = 6 MHz and (2, = 80 MHz respectively.

By comparing the solutions (3.30) and (3.31) with equations of exact 3-level system at

steady state (specifically 3.17 and 3.18) we can get,

Q, O Qe Teolry

— ——Re(pyr) + ZAPQPMT

—_ P 4, °P
Relpeg) == 50+ 50w = 5a, (3.33)
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The first term of the equation (3.33) is the contribution from two level system (|g) — |e)).
Similar to the other terms, the third term is also proportional to the population p,.. (from equa-
tion 3.31). Therefore, the dispersion of the probe field is proportional to the population of the
most excited state, |r). In other words, if a three-level system can be reduced to 2-level system
as discussed then the population, p,, can directly be calculated from dispersion whereas the

dispersion of the probe field is a experimentally measurable quantity.

3.3 Hyperfine pumping spectroscopy (HPS)

The atomic spectroscopies serve as a reference for laser frequency used in the experiment. The
velocity of the atoms is governed by the Maxwell-Boltzmann velocity distribution correspond-
ing to the temperature of the ensemble of atoms. The random velocity of atoms broadened the
atomic transition line-width which is known as Doppler broadening. The hyperfine pumping
spectroscopy is based on the velocity selective saturation of a Doppler-broadened atomic tran-

sition [21]. The experimental setup for HPS is depicted in fig. (3.10).
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Figure 3.10: Experimental setup for hyperfine pumping spectroscopy.

An external cavity diode laser operating at the wavelength of 780 nm is used to observe ru-
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bidium D2 transition lines (fig.3.1(b) & 3.2(b)). The optical isolator (OI) is used to restrict
the optical feedback from other optical elements used in the experiment. The %-plate and the
polarising beam splitter (PBS) is used to control the power which has to be used in SAS. A par-
allel window is used to derive a pair of probe beams by the 4% reflection of the incident laser
beam from the front and the rare face of the window. The transmitted light from the parallel
window is used as the pump beam for saturation absorption. These two probes pass through
a rubidium vapor cell and detected by the detectors PD1 and PD2 respectively. One of the
probes experiences the counter-propagating pump beam while passing through the medium. A
differential detection is performed using the electronic signal of PD1 and PD2 and the output is
observed using an oscilloscope. The details of the photodiode operation and design is described

in Appendix. A.
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Figure 3.11: Doppler broadened absorption lines of D2 rubidium transition.

If the aperture 1 and 2 are closed then it is just a doppler spectroscopy. The spectroscopic

signal is depicted in the fig. (3.11). The respective doppler broadened transition manifold is
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mentioned in the figure. But the individual transition lines for a particular manifold cannot be

observed in Doppler spectroscopy.

If aperture 1 is open but 2 is closed, the individual lines of each manifold is observed due
to the selective saturation by the pump laser beam as shown in fig. (3.12). In order to have
doppler free hyperfine pumping spectroscopy signal the aperture 1 and 2 both has to be kept
open. The probe detected in PD1 is a signal depicted in fig. (3.11) which gets subtracted from
the signal detected in PD2 fig. (3.12) gives doppel free spectroscopy signal. The doppler free
HPS signal for individual transition manifolds ’Rb: F = 2 — [, Rb: F = 3 — F’, ®*Rb:
F=2— F'and®"Rb: F = 1 — F" are respectively depicted in fig. 3.13(A, B, C & D).
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Figure 3.12: Hyperfine pumping spectroscopy signal.

As we can see from fig. (3.1.b & 3.2.b) that each manifold should have three dipole allowed
transitions, but each panel of fig. (3.13) has six transition lines. Three of them are atomic

transitions and rest of them are the cross-over transition lines. If the laser frequency is exactly

44



0.35

0.30

0.25

0.20

Absorption

0.15

0.10

0.05

- =1

%
7
C
-

TS

2= F'=2
=3

2 —~F

\

50

—T
100

T
150

A | T T T 1 7
200 250 300 350 400 450 500 550

Frequency, v (in MHz)

0.50

0.45

0.40

0.35

Absorption

0.30 4

0.25

0.20

0.15

2-->F

-“.

1
s
I\
el
2-->F

F=

.

\

g

=2-->F

,’—'
=3

/j "

L B BN S s e e e o I B e m e
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Frequency, v (in MHz)

0.35
0%
0.25
0.20
0.154
0.10

0.05

=2

3->F

F=

»
-

el

F=
-
(
o

3.>F
T—. -
PRSI o

3-->F=4

F=

0.000

T
53.617

T T
107.234 160.851

Frequency, v (in MHz)

T
214.468

0.48 o
0.468 —-
0.44
0.42
0.40

0.38

036

0.34 4

0.32 4

=2

1->F

T
50

T
100

T T T T
150 200 250
Frequency, v (in MHz)

Figure 3.13: Spectroscopy signal for individual transition manifold.

T
300

at the middle of two dipole allowed hyperfine transition lines then a particular non-zero velocity

class of atoms can be resonant to both the transitions and hence the crossover transition line

is observed. Since the crossover transition line has the contribution from both the adjacent

hyperfine lines, the signal strength is expected to be stronger than both. But it also depends

on the frequency difference between the adjacent levels. The crossover signal strength can

decrease with the frequency difference of those hyperfine levels because the number of atoms

for higher velocity class decreases since they follow Maxwell Boltzmann velocity distribution.

3.4 Laser stabilisation using HPS

Hyperfine pumping spectroscopy can be used for laser frequency stabilization. The stabilization

of laser on an atomic spectral line reduces the laser frequency noise typically below 100 kHz.

A schematic block diagram representation is given in fig. (3.14) for HPS signal of rubidium.
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An external cavity diode laser (ECDL) of Toptica DL-100-Pro is used to generate a laser beam
for the experiment. The rotation of the grating stage of the laser is controlled by a piezoelectric
material. The piezoelectric is driven by a ramp voltage generated from an external scan control
module (SC-110). The HPS optical signal is detected by an FPD (fast photo-diode) and the
electronic signal of FPD is taken to an external PID-controller module called Digilock module
(Digilock-110). The control output of Digilock-110 is connected to SC-110. The example of
HPS spectrum given in fig. (3.14) corresponds to the transition ¥Rb:F' = 2 — F’ (same
as shown in fig. (3.13a)). In fig. (3.14), the laser is stabilized at the side of a cross-over

fringe. According to the locking point frequency, a control signal is generated by the Digilock-
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Figure 3.14: Block diagram represents the laser frequency stabilization using HPS.

110. The control voltage decides a dc voltage of the SC-110 which corresponds to a particular

frequency of the laser. The frequency (the setpoint frequency) of the laser may change due to
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any mechanical or acoustic or electronic disturbances. In that case, Digilock-110 decides the
control voltage accordingly in order to bring back the setpoint frequency. The drawback of the
working with Digilock-110 is that it can not lock the laser at the top of the fringe. The laser

frequency can also be stabilized on an atomic transition line.
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Chapter 4
Study of Rydberg EIT using OHDT

Electromagnetically induced transparency (EIT) involves three atomic states coupled by a
probe laser field and a coupling laser field. In the presence of a coupling laser resonantly drive
an atomic medium, for the frequency of the weak probe laser the medium becomes transparent
at the single-photon resonance in the process of EIT. In this system, Coupling to a Rydberg
state with EIT gives self phase modulation (SPM) [1-18]. The phase of the probe field can
also be varied by changing the intensity of the coupling laser. This phenomenon is called
cross-phase modulation (XPM). This process is proposed [19] and demonstrated using the EIT
medium [20-25]. Therefore, EIT becomes an interesting system to study the optical nonlinear-

ity in atomic vapor.

In this chapter, we will demonstrate a technique based on optical heterodyne to study trans-
mission and dispersion of a probe beam in Rydberg-EIT medium. We will also discuss some
technical issues which has to be taken care while using this technique. A suitable model of
EIT will be presented in order to explain the experimental data. The optical nonlinearity due to
SPM in Rydberg-EIT medium in the non-interacting regime also is presented. While propagat-
ing through a Rydberg-EIT medium, a probe laser field goes through a large nonlinear phase
shift due to SPM which is induced by the Rydberg blockade interaction.

4.1 Rydberg-EIT

Electromagnetically induced transparency with Rydberg atoms gives the provision to probe
strong interaction among probe photons. Suppression of EIT transmission due to cooperative
Rydberg interaction can lead to strong many body effects [26]. Dark state polaritons is observed

in Rydberg-EIT [27] and also dark state resonance is observed with a line-width less than 100
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kHz [28]. Rydberg-EIT is studied in thermal vapor cell [18,29,30]. The Rydberg-EIT can be

0.8 - . |
0.7- '
10.52 Qc
> 0.6/
0.5

-200 0 200 20 -10 0O
A, (MHz) A_ (MHz)

i

Figure 4.1: The transmission and dispersion due to Rydberg-EIT for probe laser scanning is
given in (a) and (b) respectively. (c) and (d) are the same for coupling laser scanning. The
atomic level scheme is depicted in (e). The experimental realisation of Rydberg-EIT is depicted
in (f). The Rydberg-EIT signal is observed for (2, = 2.4 MHz and (2, = 600 kHz. The optical
path length inside the medium is taken to be 5 cm. The dephasing rates are taken as I'; = 6
MHz, I',, = 100 kHz and I';, = 200 kHz. At the room temperature the signals are averaged
over the Maxwell Boltzmann velocity distribution and the Rydberg-EIT linewidth is found to
be 6 MHz.

modelled by a probe and a coupling laser field in a three level system as shown in fig. (4.1).
The Hamiltonian of the 3-level atom in presence of a probe and coupling laser field with the
respective Rabi frequencies (2, and €2, can be given by H = —h[|e)(e|(A,—kyv)+|r) (r|(A,+
A.— Akv)|—h(|g)(e|Q,+|e)(r|Q.+h.c.). Here, Ak = k,— k., where the probe and coupling
laser wavevectors are defined as &, and k. respectively. The probe and coupling laser detunings
are respectively given by, A, and A.. The probe and coupling Rabi frequencies are defined
as, ), = % and €2, = <= respectively. The probe and the coupling electric fields are
respectively defined as, £, = g, “r'+c.c.and E. = e.6 "' +c.c.. p,e and i, are the dipole
moment for the transition |g) — |e) and |e) — |r) respectively. The optical Bloch equation for
the system can be written as, p = — % [H, p]+Lp(p), where p is the density matrix of the system.
The Lindblad operator Lp(p) is defined as, Lp(p) = >_;; Fif(Cipr;f - %{O;foif, p}), where
Cir = |f)(i|. |i) and |f) signify the initial and the final state of decay respectively. It is
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calculated for the system as,

_ T
(Fegpeer+ F?"gprr) 2g pge 1_%(1—‘“3 + Frg)pgr
LD (p) = _%peg (Freprr - Fegpee) _Q(Feg + Fre + Frg)per
_%(Fre + Frg)prg _%(Feg + Fre + Frg)/)re _(Fre + Frg)/)rr

Here, the decay rate I'., is typically taken to be 2 x 6 MHz. The Rydberg state to the inter-
mediate state decay is taken as, I',, = 27 x 10 kHz. The Rydberg state to the ground state
decay is mostly dominated by the thermal transit of the atoms through the laser beam. When
an excited atom leaves the laser field, it can be regarded as a decay of atoms from excited state.
This phenomenon is equivalent the to decay of an excited atom to ground state due to thermal
transit and hence, the decay process is called transit time decay. This is the consequence of

the transverse component of velocity of atoms with respect to the laser propagation direction.

The transit time is defined by, T ansic = D tl’;am, where Dycan, s the diameter of the beam and v,
is the most probable velocity of the atoms determined from the Maxwell Boltzmann velocity
distribution corresponding to a particular temperature of the system. If the temperature of the
vapor is 80°C, then the most probable velocity of atoms, v, ~ 260 ms~'. For the beam diam-
eter Dyearn = 2 mm, the transit time dephasing rate is given by 130 kHz. The dipole between
the states |r) and |g) dephases due to the relative laser frequency noise between the probe and

the coupling laser.

The optical Bloch equations (OBE) at steady state is given by,

%peg — %pge —ilegpec — tl'rgprr =0 4.1)
s — S pre Ty = 0 (42)
(Ap pU — i 2") Pge — %(QPee +prr— 1) + %pgr =0 (4.3)
(A2 Aky ZF;) o= e+ g = 0 (4.4)
(A + kev —i— ) Per — %(/JW — Pec) — 7;/1(” =0 (4.5)

This set of equations are solved for p., and velocity-averaged over Maxwell Boltzmann ve-

locity distribution to evaluate the susceptibility. The susceptibility x is related to p., as,

2 . . .
X = Z‘;'ri‘ég ° Peg» Where nyg is the density of the atomic vapor.

52



In thermal atomic ensemble, the atoms are in motion. The velocity of the atoms fol-

low the Maxwell Boltzmann (MB) velocity distribution which is given by the expression,

2

flv) = ﬁ{@, Here v, is the most probable velocity of the ensemble of atoms corre-
p

sponding to a particular temperature 7" which is given by, v, = % Let us consider that a
laser field is applied to the system of atoms in the z-direction. The applied laser frequency seen
from the atomic reference frame is given by the relation, Apgppler = K .U, where the laser field
wave-vector is given by, |E | = 27” Here )\ is the wavelength of the applied laser field. There-
fore, the susceptibility has to be averaged over the Maxwell-Boltzmann distribution. The EIT

“kptIm(x)) and dispersion (3 Re(x)) which are also averaged over MB velocity

transmission (e
distribution are shown in fig. (4.1a & c) and fig. (4.1b & d) respectively, where [ is the length

of the vapor cell.

4.2 Optical heterodyne detection technique

In this section, we will discuss an all-optical detection technique namely optical heterodyne
detection technique (OHDT). Using the technique absorption and dispersion of a probe laser
field can be measured [31]. Also, the phase shift of the probe light due to SPM and XPM can
also be measured [23,24,32,33] using OHDT.

In this technique, a laser beam is generated from an external cavity diode laser (ECDL) and
split into two parts using a %-plate and a polarising beam splitter (PBS). An optical isolator
(O]) is placed in front of the ECDL in order to prevent any optical feedback from the optical
elements used in the experiment. One part of the laser beam is taken to double pass through
AOM1 setup and another is taken to AOM?2 setup as shown in fig. (4.2). The AOM1 operating
at 80 MHz is driven by a commercial AOM driver (here frequency shift is fixed). Therefore,
the double pass AOM shifts the light frequency by 160 MHz. The output of the AOM1 setup
partially is taken to saturation absorption spectroscopy (SAS) to stabilize the laser to a 'Rb
transition line as discussed in Sec. 3.4. The rest of the AOM1 output is taken to OHDT exper-
iment and marked as frequency w in fig. (4.2). The AOM?2 is also operating at 80 MHz but is
driven by a handmade AOM driver (Appendix B). Here, the frequency shift of the laser can be
controlled by changing the dc control voltage of a voltage controlled oscillator of AOM-driver.
The output of the AOM2 setup is taken to OHDT experiment which is symbolized as w + 0.
The frequency of AOM?2 is set such that the frequency offset between the heterodyne beams
should be 50 MHz (¢). The ¢ is an order of magnitude greater than the Rydberg-EIT linewidth
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in thermal vapor, which is typically 6 MHz as shown in fig. (4.1c & d).

TRF

]

T"_
[ Aom2

experiment

Optical heterodyne

Figure 4.2: Optical set up to generate heterodyne probe beams.

The generated beams are superimposed on a PBS as shown in fig.(4.3a). The beams are
termed as heterodyne probes. A part of the superimposed beams propagating through the dis-
persive medium undergoes different phase-shift in presence of a counter-propagating coupling
laser. The phase shift experienced by the probes are different because they cannot be on res-
onance simultaneously while scanning the probe laser frequency. The differential phase shift
appears in the beat signal which is measured by a fast detector (FPD) as shown in fig. (4.3a). At
the other side of the PBS, the superimposed beam is directly detected by another FPD, which
is used as a reference. An electronic arrangement is done to measure the differential phase
shift. The measurement procedure is based on the differential detection technique, hence any
acoustic disturbances cannot affect the experimental observations. Similarly, an all-optical in-
terferometric technique is extensively used for the measurement of absorption and dispersion
of coherent two-photon transition in an atomic ensemble, anomalous dispersion due to Zeeman

coherence in 2-level atom [34] and for the study of SPM and XPM (23,24, 32].

The electric fields of the incident laser lights to the medium can be expressed as, E}(w) =
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Figure 4.3: (a) OHDT setup to measure absorption and dispersion. A PBS is used to superim-
pose two incoming beams. One of the output of the PBS is directly taken to a detector after
passing OPS. The other output passes through a dispersive medium and a polariser to a detec-
tor. Atomic level diagram is depicted in (b). (c) and (d) are the transmission and dispersion
signal respectively measured by OHDT. The probe and the coupling Rabi frequencies used in
the experiment are 500 kHz and 2.5 MHz respectively.

Ere ™ + c.c. and Fi(w + ) = Eye lwo)t+doi]l 4 ¢ ¢ respectively, where ¢oq is the rela-
tive phase difference between two probes which is a constant quantity if laser frequency kept
constant during the experiment. The electric fields of transmitted lasers from the medium
are given by, Ff(w) = F1e {@=%) 4 c.c. and Ff(w + 0) = Fye lwtditéon] 4 ¢ ¢ respec-
tively. Since the electric field corresponding to the laser frequency w is resonant to the atom,
it experiences a phase shift of ¢;. While passing through the medium the probes also suffer

absorption. The transmitted electric fields are respectively expressed as, £y = Ere~ 2 Im(@)
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and Ej = E2€_%Im[X(w+5)]- Therefore, the intensity detected by the detector is given by,
I = |E~Ile—i(wt—¢s) + E2€—i[(w+5)t+¢off] |2

— |E1|2e—kllm[x(w)] + |E2|2€—kl1m[x(w+5)]
2| || Eylem T @@l cog (5t + ¢y + o) (4.6)

Here ¢ = % Re[xs1(w) — x3r(w + 0)]. The total susceptibility of the each probe can be
expressed as, Y = Xar + X3z Where x5y is the probe susceptibility of the 2-level transition,
lg) — |e) and x3;, is the probe susceptibility corresponding to the 3-level transition, |g) —

|e) — |r) as shown in the atomic level diagram depicted in fig. (4.3b).

4.2.1 Measurement of absorption and dispersion of a probe field

In this section, we will discuss regarding the measurement of the absorption and dispersion of a
probe light using OHDT. Since, there is an ac filter connected to the detector [, the measured
signal will have only time varying function. Therefore, all the dc part of Eq. 4.6 will not appear

in the detection. So, the detector signal will have the form,
D, = Ase—%lm[X3L(w)+xSL(w+5)] cos(8t + ¢ + bogr)

The beat signal detected after the medium is called the signal beat (measured by the detector
Dy) and the beat signal detected without any medium is called the reference beat (measured
by the detector D,). The amplitude of the signal beat, A, o 2|F;||E;|. Similarly the beat
signal at the reference detector has the form, D, = A, cos(dt + ¢,.), where A, and ¢, are the
amplitude and phase of the beat signal of the reference detector. These two beat signals are
multiplied externally by using an RF wave-form mixer (Mini-Circuits ZAD-6+) and passed
through a low pass filter (LPF) (Mini-Circuits BLP-1.9+). The dc part of the multiplied signal
is allowed by the LPF which has the form, S;, = 24, A e~ 2 mXar@)Hxac @) cog(g, + ¢p),
where ¢ = ¢, + Qopr-

¢o can be controlled optically by an optical phase shifter (OPS) as depicted in the setup of
fig.(4.3a). ¢, can be controlled electronically which requires expertise in RF electronics. Sim-
plest way to change the phase is cable length but it can not be varied continuously. In case of
OPS, the phase from 0 to 7 without compromising the change in amplitude. The optical phase
shifter (OPS) can be realized as a combination of a %-plate and a polarizer as is depicted in fig.
(4.4), which is used to control the phase ¢,. If a pair of orthogonal linearly polarised light pass-

ing through the %-plate, thus become circularly polarised light o* and o~ It can be expressed
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Figure 4.4: Optical phase shifter (OPS).
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Polariser

as, |o%) = \/%(|H ) +e*2|V)). If only | H)-polarised light is transmitted by the polarizer, then
the phase difference between the beams falling on the detector is zero, whereas in case of the
|V')-polarised light the phase difference between them becomes 7. Hence, by rotating the optic

axis of the polarizer, the phase ¢, of the beat signal can be continuously varied between 0 to 7.

If ¢ is set to zero by OPS then the signal S; becomes sensitive to the amplitude of probe
fields. Therefore, S|, gives the probe transmission signal. The form of the transmission signal

after subtracting the signal offset is given by,

S, ~ 2ATAS[6_%1m[X3L(W)+X3L(W+5)] — 1]

The transmission signal is depicted in fig.(4.3c).

For ¢y = 7, Sy is sensitive to the phase ¢,, which is proportional to the refractive index
of the probe field in presence of the dispersive medium. Then, the measured signal will have
the form, S;, &~ 2A, Age~ 2 Imbor@txac@toly  Here, ¢y o Re[xsr(w) — xar(w + 0)]. The
dispersion signal is depicted in fig. (4.3d).

4.2.2 Demonstration of Rydberg EIT using OHDT

In this section, we will describe the realization of Rydberg-EIT using OHDT for the vapor of
rubidium 87 isotope. The frequency of probe and coupling beam is chosen such that the two-
photon resonance will be satisfied in order to observe Rydberg-EIT for 8"Rb. The atomic level

scheme is depicted in the fig. (4.5b).
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Figure 4.5: (a) Schematic of the experimental setup. (b) Atomic-level scheme of Rydberg EIT
for 8°Rb isotope.

The experimental setup based on OHDT is depicted in fig. (4.5a). Two probe beams of 780
nm with a frequency offset 50 MHz are generated from an external cavity diode laser (ECDL).
The frequency offset is generated by using two acousto-optic modulators. The typical EIT
line-width of Rydberg-EIT signal in thermal atomic vapor is found to 5 to 6 MHz [18]. The
frequency offset is chosen such that the Rydberg-EIT signal corresponding to the individual
probes should not overlap. Both the probes are superimposed using a polarising cube beam
splitter (PBS). The interference beat of the probes is detected using two fast photo-detectors by
introducing polarisers at both the output ports of the PBS. The probe beams coming out of one
of the output ports of the PBS propagate through a magnetically shielded rubidium vapor cell.
The length of the rubidium vapor cell is 5 cm. The coupling beam is derived from a frequency-
doubled diode laser operating at 478 — 482 nm and it is counter-propagated to the probe beams
through the vapor cell. The beat detected at the other output port of the PBS was used as a
reference. The 1/¢? radius of the probe and the coupling are respectively given by 0.7 mm and
1.2 mm. The frequency offset between the probes is chosen such that it is an order of magni-
tude larger than the line-width of Rydberg-EIT. That is why the probes experience a different

phase shift while scanning the coupling laser through the EIT resonance. The measurement of
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Figure 4.6: (a) The transmission and (c) the dispersion of the probes due to Rydberg-EIT
with Rabi frequency 600 kHz each. (b) The transmission and (d) the dispersion signals due to
Rydberg-EIT of both the probes with Rabi frequencies, 600 kHz, and 6.5 MHz, respectively.
The coupling Rabi frequency is set to 2.5 MHz in all the cases. The spectrum is observed with
respect to the variation of the coupling laser frequency while probe laser frequencies are kept
constant. The offset of all the spectrum are zero because the OHDT is sensitive to two-photon
transition only. Normally, the offset intensity for transmission is 50% of the total transmission.

the differential phase shift is done by comparing the phase of the signal beat with the phase of

the reference beat.

The transmission and dispersion spectrum measured using OHDT are depicted in the fig.(4.6).
The measurement is carried out by using the process as discussed in the section 4.2.1. From
the fig. (4.6), it can be observed that the frequency difference of the spectrum corresponding to
both the probes in all the cases (fig.4.6a, b, ¢ & d) is more than 50 MHz. The associated fre-
quency difference of the finite velocity classes of atoms resonating with the EIT resonances for
both the probes is scaled by the factor ',j—; with the frequency offset between the probes. Here,

k, and k. are the wave vector of the probe and the coupling laser respectively. Additionally, it
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can also be observed that a small signal appears almost at the probe frequency offset which is

50 MHz when one of the probes has higher Rabi frequency.

. . . . . 2
The probe Rabi frequencies are estimated using the relation, T{n = 2'?5 =,

intensity of the probe laser. For 8°Rb, I,,; = 1.64 mW/cm? and T’ = 27 x 6 MHz. Coupling

where [ is the

Rabi frequency is estimated by fitting the Rydberg EIT signal with a weak probe beam without

focusing and then scaling it with the intensity of the beam.

4.3 Model of EIT using OHDT

A model of EIT using one probe beam and a single coupling beam in a three level atomic sys-
tem as discussed in Sec. 4.1, can explain the individual EIT spectrum corresponding to both

the probes. But, it can not explain the appearance of the intermediate small signal.

Figure 4.7: Energy level diagram for Rydberg EIT in 8’Rb. Two probe beam couple the transi-
tion 551 /2, F' = 2(|g)) — 5P32(|e)). The coupling laser couples the transition 5P5/5(|e)) —
nS1/2(|)). The probe detuning is A,; and frequency offset between the probe beams is 9.

In order to explain the complete spectrum of observed transmission (fig.(4.6a & b)) and dis-
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persion (fig.(4.6¢c & d)) including the small signal, we consider an EIT model consisting two

probes and a coupling laser fields.

The atomic Hamiltonian of a three level system is given by,
Ha = hwgele) (€] + Mwge + wer) 1) (]

One coupling and two probe electric fields are given by,

E. = g7 +cc.
E, = ge ' +ce.
Epn = ge ™ +ce.

Here, I/, and F,, are the electric fields corresponding to the probes. ¢ and ¢; are the respective
electric filed amplitudes. F. is the coupling electric field and €. is the electric field amplitude

of the coupling field. Total probe electric field can be defined as,
E=E s+ E;= ge” Wt 4 ¢,

Where ¢ = g + £, % and wp2 — wp1 = 0 is the frequency offset between the probes. The
model transition scheme is depicted in the fig.(4.7). The laser-atom interaction Hamiltonian

can be written as,

Hy = —(pgelg) (el + pigele) (g E — (per|€) (r| + pic,|7)(e]) Ex

With proper unitary transformation and rotating wave approximation (RWA), the total Hamil-

tonian will be,

5 0o 0
H= 5 Q 28, O
0 Q. 2A,
Where, () is the total probe Rabi frequency which is given by,
2p
0 = =<
P
24
= /;ig(gg—l—é e ")

The coupling Rabi frequency is defined as, 2. = 2“%—5“ 21 and 5 are the Rabi frequencies
of stronger and weaker probe respectively. Ay = A, + A,, where A,; and A, are the probe

and coupling laser detuning.
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4.3.1 Construction of master equation

The density matrix equation of motion can be constructed as, p = %[H ,p] + Lp(p). The

quantity Lp(p) is called the Lindblad operator which is defined as,
1
Lp(p) =Y Ti(CigpCl, — §{CJfCif7P})
if

Where C;; = | f)(i| and I'; are the decoherence and decay time scales for the system Vi and j.

The Lindblad operator for the system can be evaluated as,

(Fegpeer'f' F'rgpﬁ") _%pge _%pgr
Lp(p) = - Igg Peg (Lreprr — Fegpee) =3 Per
— %3 Prg _%pre —Laprr

Here,I', =I';c + ',y and I's = I',; + I', + I';,. The population decay rate of the channels,
|r) — |e) is denoted by I',. and |e) — |g) is denoted by I'.y. In our model, the decay time

scales are used are I',;, = 10 kHz, I'.; = 6 MHz. The corresponding dipole dephasing rate

Ty
2

+ I'ye; = 100 kHz is taken in our model, where I',.; is the relative frequency noise of the
probe and the coupling laser. The system of atoms are in thermal motion where the velocity
of the atoms is governed by the Maxwell Boltzmann velocity distribution corresponding to the
temperature of the system. In order to interact with the atoms having same velocity the probe
and coupling detuning has to be modified as, A,y — Ay — kyv and A, — A, + kv, where v

is the velocity of atoms.

4.3.2 O0th order OBE

We have used the perturbative method to solve the density matrix equation in steady state.
Similar approach is used to calculate the 4-wave mixing in 2-level atoms as discussed in refer-

ence [35]. The density matrix elements of the system can be expanded as,

0 1) —¢ —-1) 4
pii = P50+ 5 e 4 pl e
For all 2 and j. In order to characterise the density matrix elements, we have taken the com-
plex conjugate of the above equation and by subtracting the above equation from it we get,
(0)x (0) (1= 1)y —ist (=1)= (=1)y st _ . .
(pi; = pji) + (pi; = pji))e ™ 4+ (p; " — pij ')e® = 0. For unperturbed density matrix
element, pj; = pj;, because the density matrix is hermitian. {1, e*t} forms complete set of or-
thonormal basis if higher order terms are neglected. Using the property of linear independence
of the basis state, we can draw the following relations, pgg)* = pg.?) and pl(.;.—Ll)* = ﬁl). For first
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order density matrix, we have to compute all the matrix elements.

Similarly the diagonal matrix elements can be expanded as, p;; = p.°) 4 p\) e =10t 4 pl= 1 gidt.
The diagonal elements of the unperturbed density matrix signify the population of the individ-
ual states. Hence, all p; are real quantity. Using the condition Im(p;) = 0 in the above
equation we get, Im(pg?)) + [Im(p) + Im(p81)] cos 6t + [Re(p ") — Re(p\}))] sin 6t = 0.
{1, cos dt, sin 6t} also forms orthonormal basis set. Using the condition of linear independence
it can be concluded that only zeroth order diagonal density matrix elements are real quantities

whereas the first order diagonal density matrix elements are not strictly real quantity.

The perturbative expansion of density matrix can be substituted in the master equation.

Equating the coefficients of e~** with § = 0 gives the zeroth order equations at steady state as,

ot 9 S0 T — i) = 0 (*.7)
%* pl) - g pl) +ilapy) =0 (4.8)
<Ap — kv — Z%) Py — %(2/)62 +p) = 1)+ 92 pe) =0 (4.9)
<A2 Akv — F;) plO — 92 PO 4 % Pl =0 (4.10)
(A + kv — z%) Pt = % (0 = pl)) - QQ’” py) =0 (4.11)

Where Ak = k, — k.. This set of equations can be solved exactly for strong probe beam.

4.3.3 1st order OBE

As we have seen that the first order density matrix is not hermitian, therefore, all the matrix

elements has to be computed. Equating the coefficients of e~ gives the first order equations,

which can be solved if the 2nd order terms are neglected. Hence, this model is valid if one of
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the probe beam is weak. The first order equations at the steady state are given by,

Leg Qe

22 (000 4 49— 1) =0

O
= (20 + o)

Qo 0y Do gy D2 g

Iy
Ay +06— Ak ) =0
( 2+ U+Z2)p +2peq 2 re 9 Ire
.F3 1 Q 1 Q 1 1
<AC -+ 1) + ]i? v+ 2_2 ) vae) - 2 p1(”g) 2 (pg“r) p.(ee)) =0

r Q.
(Ap — 0 — kyv — iﬁ) /)gﬁ) + /)é,,) “2L2pM 4+ py =

2 2 2
Ty Q. Q

Ty Q, Qo o
<Ac — 6+ kv —27) P+ o = o)) = o) = =) =

Q0
(k= p)) = 0ply) —ilaply) =0
Q0 Qo
- L () — pl) + ) (P — pD) + : —22p0 — 5pll)

STy T =

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

The solution of the zeroth order equations are substituted in the first order equations and are

solved numerically. Then, the solutions are averaged over the Maxwell Boltzmann distribution

of the atoms corresponding to the given temperature.
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4.3.4 Calculation of susceptibility
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Figure 4.8: Imaginary (a) and real (b) part of x5, (w,) and x5, (w,+0) as a function of coupling
laser detuning. The parameter used in the model are A, = —50 MHz, 6 = 50 MHz, §,; = 5
MHz, 0, = 0.5 MHz and (), = 2.5 MHz. The susceptibilities are Doppler averaged over
Maxwell Boltzmann velocity distribution corresponding to the temperature of the atomic vapor
which is given by, 7" = 300 K. The blue dashed (- - -) and red solid lines (—) are susceptibilities
of the strong and the weak probe beam, respectively. The open circles (o) are the approximated
susceptibility of the weak probe.

Zeroth order equations are solved numerically in steady state for the zeroth order matrix ele-
ments pg? V i, j and they are substituted in the first order equations. The first order equations
are then solved numerically in steady state to determine p(%). The susceptibility of the strong

probe is averaged over the thermal motion of the atoms which can be calculated as,

2ng |,“eg|2 1 /OO (0) ,—v? /202
Wy) = e U doy
X( p) GOHQpl \/%Up . Peg
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Where n is the density of atoms and /i, is the dipole moment of the transition |g) — |e).

Similarly, the susceptibility of the weak probe can be determined as,

2%0 |/,Leq|2 1 /'OO 1) —p2 2
Wy +0) = : é )6 v /21}de
X ) €ohflp2  +/ 21, . Peg

Heterodyne detection technique is sensitive only to the two-photon transition and hence the

—00

susceptibility of the probe in the absence of the coupling beam can’t be detected. The sus-
ceptibilities of the probes due to two-photon transition are respectively defined as, x37,(w,) =
X (wp) — x2r(wp) and xs(wp +6) = x(wp +0) — x2r(w, + J), where x5 is the susceptibility
of the probes in the absence of the coupling beam. This will help us to compare with the exper-
imental measurement. ys; calculated from the model is depicted in figure (4.8). The frequency
difference between the signal peaks associated with Rydberg-EIT corresponding to different
probes is not exactly equal to the frequency offset between them since the offset is scaled as
,’;’—;5 . The EIT equations easily explains the fact. EIT resonance peak for the strong probe is
observed if Ay — Akv = 0 and A, — k,v = 0. So EIT resonance of the strong probe appears
at A, = —Z‘—;Ap. Similarly, EIT peak for the weak probe is observed if Ay + 6 — Akv = 0 and
A, + 6 — kyv = 0. Hence, EIT peak of the weak probe appears at A, = —,’Z’—; (A, +9). So, the
spectral difference between the EIT peaks, (A.; — A.) is found to be :—;6 . As a similar effect of
wave vector mismatch, spectral difference of Rydberg EIT peaks associated with the hyperfine

transition in rubidium thermal vapor is scaled by (1 — ’Z—f) and is reported in the reference [18].
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Figure 4.9: The red open circles (o) are experimental data points and the black solid lines (—)
is the curve generated by the model. The parameters are same as in fig. (4.6).

It can be seen that the transmission and dispersion of the probe beam calculated from the
model agrees significantly with the experimental data as shown in fig. (4.9). The model data is
generated for the same parameter as in the experiment. The model also matches with the small

signal observed in dispersion as well as for transmission.

4.3.5 Reduced OBE

As shown in figure (4.8), a small peak is observed for the weak probe susceptibility when cou-
pling laser is detuned by 50 MHz from the weak probe EIT peak. In order to get an insight of
the origin of this peak, we use the following approximations to simplify the first order equa-

tions. Since the probe beam is weak, it cannot raise the population in the excited states. Hence,
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pg) R pﬁ) ~ 0. Using this approximations, the first order equations are reduced to

I, Q. Q
(Ap + 06— kv + i—g) pll) + —Sph) =22 (20 4 pW — 1) =0 (4.20)

2 2 e Ty
T Q. Q Q
Ny +6— Akv+i—= ) pll) 4 Z¢ph) 2L, 22 500 — (4.21)
2 ) e Ty e Ty 2
r Q
<AC 0+ ko + 273) P = ol =0 (4.22)

In the absence of the strong probe beam, €2,; = 0 and all the zeroth order matrix elements are
equal to zero and Eq. (4.22) leads to pile) = 0. Under this condition, it can be shown that Eq.
(4.20) and (4.21) exactly give the EIT equations in the weak probe limit. The strong probe
is 50 MHz detuned from the atomic resonance since the low probe is stabilised at the atomic
resonance and the frequency offset between the strong probe and the low probe is 6 = 50 MHz.
Due to the presence of the strong probe the extra term in zeroth order equations is responsible
for the appearance of the small peak. To understand it further, let the weak probe interact with
the zero velocity class of atoms. So, the main EIT peak of the weak probe appears at A, = 0
MHz. The strong probe dresses the same zero velocity class of atoms which are excited to the
|r) state via two-photon resonance, for A, = 50 MHz. Hence, ,07(3) in Eq. (4.20) and (4.21)
are non-zero for zero velocity class of atoms which interact with the weak probe beam and
contribute to x3.,(w, + J). Since, the strong probe beam resonantly interacts with a different
velocity class of atoms, the two-photon resonance for that velocity class is shifted due to wave
vector mismatch and the corresponding EIT peak appears at 81.25 MHz. To show that the
above approximation is valid, we calculated x5/, (w, + 9) using Eq. (4.20) and (4.21), which is
shown in figure (4.8) and the approximation holds very well. Due to the wave vector mismatch
in this case, the small peak is resolved from the EIT peak of the strong probe and a standard
model for EIT with a single probe field and a coupling field can be used to compare with the
experimental data. If the wave vectors are same, e.g. in the case of A EIT in alkali atoms,
the small peak can’t be resolved from the EIT peak of the strong probe and hence, the model
with two probes fields and a coupling field presented here should be used to compare with the

experiment. Alternatively, the small peak can be reduced by changing the offset frequency.

68



4.4 The EIT peak of the weak probe dressed by the strong
probe beam
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Figure 4.10: Theoretical plot for variation of small peak height with beat frequency. The data is
taken for coupling Rabi frequency (2. = 2.50M Hz and four different probe Rabi frequency (2,,.
Solid line corresponds to 2, = 4\ Hz, dashed line corresponds to (2, = 6M H z, big dotted
line corresponds to €2, = 8M H z and small dotted line corresponds to €2, = 10M H z.

In order to explore the good working regime of the technique, the transmission peak height is
studied with respect to the frequency offset for different probe Rabi frequencies using the model
presented, as shown in figure (4.10). It is observed that the peak height of the EIT transmission
due to dressed atoms reduces exponentially for beat frequency much larger than the probe Rabi
frequency. In this regime, the effect due to the dressed atoms will have a negligible contribution
and hence, the simple EIT model consisting of a single probe beam and a coupling field can
be used to model the system accurately and also the quantification of the nonlinear absorption

coefficient and nonlinear refractive index will be accurate.
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4.5 Study of Optical nonlinearity of Rydberg-EIT medium

The intensity dependent non-linearity can be measured for the Rydberg-EIT system. From fig.
(4.9), it can be observed that the transmission (fig. 4.9a to b), as well as dispersion (fig. 4.9¢ to
d) of the probe field, are suppressed as corresponding probe Rabi frequency increases. In this

section, we will discuss the nonlinear measurement using EIT transmission signal.

4.5.1 Nonlinearity measurement from transmission

1.6 1

peak height

Normalized probe transmission

00 T T ! | ! | ! | ! | ! I

. (MHz)

Figure 4.11: The transmission peak height is studied with the variation of probe Rabi frequency
while the coupling Rabi frequency is fixed at 2.5 MHz (o) and 800 kHz (LJ). The curves
depicted in the figure as the solid line (—) and the dashed lines (- - -) are generated using the
model for the same experimental parameters.

It is observed from fig. (4.9a) to fig. (4.9b) that the low probe transmission signal is unaffected
while changing the Rabi frequency of the other probe. We kept low probe transmission signal

as the reference of nonlinear transmission peak height measurement. The transmission peak
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height data as a function of probe Rabi frequency is normalized with respect to the EIT peak
height corresponding to the low probe (which is kept fixed throughout the peak height measure-
ment). In order to resolve the small signal due to the dressed atom from the signal due to the
strong probe, the frequency offset between the probes is set accordingly. The study of normal-
ized peak height with the variation of the probe Rabi frequency is depicted in fig. (4.11). The
model generated curves for the same parameters as in the experiment, matches significantly
with the experimental data which is clearly observed in fig. (4.11). In this regard, it has to be
noted that for the system where probe and coupling wave vectors are the same, the small signal
will not get resolved from EIT peak. In that case, the choice of frequency offset has to be large

enough (as discussed Sec. 4.4) in order to carry out nonlinear measurement accurately.

For better estimation of the nonlinear susceptibility, we have analysed the transmission peak

height data in weak probe regime.

4.5.2 SPM at weak probe limit

To determine the contributions of the higher order susceptibilities to the EIT peak, we do the
following analysis.

The EIT peak height of weak probe is given by,

Py = Sp(A:=0)
= 2A,A, [6_%Im’[X3L(w+5)] 1

Similarly, the EIT peak height of the strong probe beam is given by,

P, =Sp(A. = % )

P

- 2145147“ [6_%Im[X3L(w)] - 1]

Py~ _Imxsp(w)]

~

Assuming y37,(w) and x5z (w + J) to be small, the ratio is

Py Im[xsr(w+d)]’
The Taylor expansion of the susceptibility is given by,
1 [0*xs 2
X3 = [X3L]Qp:0 + = [ Q

20 092 Q=0 P

1 {84X3L] 4

+— | = Q)+ ..
40 o8 Q=0 P

Since y3; is an even function of (2p, all the odd order terms in the expansion are zero. y3; can
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be expressed as,

Xar = Xoi +XSPER xS B+

(1) ()h

h
= Xs3L +X3L[2M ] Q4

292
1202 4+ x§) [2u

Where L, is the probe electric field. Comparing both the equations, we get XglL) = x35() =

0), Xo) = &[22 [a;%] o0 W) = L2 [%] o Since the Doppler broadening is
= =0

much larger than the offset frequency 0, it is assumed that x5 )( )~ Xé 7 (w+9). Also for the

weak probe beam, the higher order terms are assumed to be negligible. So the normalized EIT

peak height of the strong probe beam can be written as

P, I (3) Im (5)
=1+ m("?ﬁ)szg + (Xf’f))sz‘* ¥ (4.23)
w Im(xs.,) Im(xs;)
We use Eq. (4.23) to match with experimental low probe data. The parameters EX(”) and
m{X

(5)
% will give the estimation of the non-linear susceptibilities.
m{X3L
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4.5.3 Measurement of nonlinearity
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Figure 4.12: Normalized EIT peak height as a function of Qf). The circles are the experimental
data with (a) €2, = 2.5 MHz and (b) €). = 0.8 MHz. The solid lines are the linear fitting with the
function 1 4 a$2? with a as the fitting parameter.

In principle, the polynomial function (Eq. 4.23) can be used to fit the transmission peak height
data, as shown in figure (4.11), to determine the higher order non-linearities. Though the exact
solution of the EIT fits the data very well, keeping a few terms in the above polynomial function
doesn’t fit the data equally well mainly due to large contributions of the higher order terms at

higher probe Rabi frequencies. Therefore, we selected the first four data points of figure (4.9)
Im(xgi)

to fit with a function 1 + aQ?,, where a = ; and gives information about the self phase

Im(xglL)

modulation (Xg?’L)) of the probe light.
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Table 4.1: Fitting with 1 4- a£22

Q. in MHz a in MHz 2 da in MHz 2
2.5 -0.02 0.004
0.8 0.076 0.006

The fitting parameter and the corresponding error are described in table 4.1 and the theoret-
ical matching of experimental data in the low probe regime is depicted in the fig. (4.12). X:(),BL)
determined using the above analysis reasonably match with the theoretical calculation. The
little discrepancy appears mainly due to the non-zero contribution of higher order terms. A
number of data points below 1 MHz may give a better measurement for X?). Higher order
non-linearity cannot be determined accurately as the series diverges very fast by increasing the

probe Rabi frequency for this system.

4.6 Conclusion and outlook

We have demonstrated a technique based on optical heterodyne. The technique is established
for the Rydberg-EIT medium. A suitable model of EIT consisting of two probes and one cou-
pling fields is able to accurately measure the optical non-linearity (self-phase modulation) of a
probe beam while propagating through the dispersive medium. The limitation of the technique
due to the appearance of a dressed atomic state is discussed. The small signal due to the dress-
ing of atomic state can be avoided by using higher frequency offset which is also prescribed.
The technique can also be used to measure the cross phase modulation of the light field prop-
agating through a highly dispersive medium. The technique can be extended to measure the
optical nonlinearity of Rydberg EIT in blockade interaction regime in thermal vapor as well as

in ultra-cold atoms.

We are interested to investigate Rydberg blockade interaction in the thermal atomic ensem-
ble in EIT regime. In order to observe Rydberg interaction, one has to increase the density of
the vapor. The rubidium vapor cell length we have used for the Rydberg-EIT experiment is 5
cm. In the case of EIT, the probe field satisfies single photon resonance. At high vapor density,
the probe will be completely absorbed for optical path length of 5 cm. Therefore, sufficient
probe light cannot be transmitted through the medium in order to perform the experimental
measurement. One of the possible solutions is to use micro vapor cell where the optical path

length of the probe field is in micron order. In that case, the absorption of the probe field will
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be small enough to perform the experiment. Another way to get the Rydberg excitation is to
satisfy two-photon resonance to the Rydberg excited state without satisfying single photon res-
onance by the probe. In the next chapter, we will use OHDT to detect Rydberg excited atom
where the Rydberg excitation will take place via two-photon resonance. The probe field will

be stabilized outside the Doppler-broadened spectrum in order to minimize the absorption.
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Chapter 5

Study of two-photon Rydberg excitation
using OHDT

The two-photon Rydberg excitation is experimentally studied in cold atoms [1] and also in ther-
mal vapor [2—4]. In EIT medium, two-photon resonant process is also demonstrated to simulate
coherent and dissipative quantum many-body system [5]. Using two-photon resonance to the
Rydberg state, Rydberg blockade [4,6-21] and anti-blockade [3] phenomena are studied. The
application of the phenomena are to simulate quantum many-body system [21], preparation of

entangled state [24] and to study quantum engineering [2,22,23,25-28].

In this chapter, we will describe a process of two-photon Rydberg excitation using OHDT in
a doppler broadened atomic medium. The dispersion spectrum of a probe beam due to Rydberg
excitation will be measured and explained. We will also discuss the sensitivity of the Rydberg
population measurement using OHDT. In this context, a comparative study of OHDT and direct

absorption measurement (DAM) will also be discussed.

5.1 OHDT to observe two-photon Rydberg excitation

Optical heterodyne detection technique (OHDT) is used to measure dispersion of a probe laser
beam while passing through an atomic medium due to two-photon resonance to the Rydberg
state. Earlier, Rydberg atoms were detected by opto-galvanic detection using large linear stark
effect of Rydberg atoms [33]. After development of micro-channel plate (MCP), it is conven-
tionally used for Rydberg atom detection in cold atomic system [7,12,29-32,34-37]. Though
it is not trivial to put electrodes for MCP in thermal atomic vapor experiment, an electrically
conducted thermal vapor cell is specially made to detect Rydberg atoms [38]. Channeltron has

also used to detect Rydberg excitation [39—41]. All optical techniques are relatively easier to
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detect Rydberg excited atoms in thermal vapor experiment. Previously, this kind of technique is
used in EIT medium in thermal atomic vapor [?,42] and also in microcell [43]. The technique
is also used to observe cross phase modulation (XPM) of a probe and a control beam in an N

system using cold atoms [44—46].

5.1.1 Atomic level scheme

An atomic level scheme is depicted in fig. (5.1) for Rydberg excitation via two-photon resonant
process using OHDT. Two probe beams at 780 nm wavelength are generated from same laser
with frequency offset 4. The polarisation of the probes are o+ and o~ respectively. The probe
laser couples the states |g) (5s1/2) and |e) (5ps/2). A coupling laser of the wavelength 480 nm

of o polarisation is introduced to couple |e) (5ps/2) to |r) (ns1/2).

o w o

Figure 5.1: Energy level diagram for two-photon transition to the Rydberg state. Two probe
beams with 0% and o~ polarizations couple the transition 5s1/2, F= 3 (|g)) — 5ps3/2 (le))
of Rb. The coupling laser with o+ polarization couples the transition 5ps/» (|e)) — nsy/2
(7). The probe detuning is A, and frequency offset between the probe beams is ¢.

Since the two-photon process happens from 5s; /5 t0 ns; 2, only one of the probes will
contribute. The net transfer of angular momentum has to be zero in order satisfy angular mo-
mentum conservation for the two-photon process. Therefore, only o~ probe laser along with
o coupling laser couple the two-photon transition to the Rydberg state and o™ will not partic-

ipate in two-photon process but serves as a reference beam for OHDT.
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5.1.2 AOM setup to generate OHDT probes

The heterodyne probe and reference beams are generated from same external cavity diode laser

(ECDL) and a frequency offset is introduced by an acousto optic modulator (AOM).

3.0+

2.5-

Main laser
OHDT reference

2.0-

Spectroscopy laser

1.5- <

Absorption (a.u.)

1.0-

-2 -1 0 1 2
A (GHz)

Figure 5.2: Saturation absorption spectroscopic (SAS) lines representing the stabilisation fre-
quencies of the probe and the reference laser. The main laser is used as the probe in heterodyne
experiment. The laser for spectroscopy is generated using AOM1 and the heterodyne reference
is generated by using AOM2 and AOM3.

The main laser is 1.3 GHz blue shifted from the locking point as shown in fig. (5.2).
The frequency shifting is done by using AOM1 (Brimrose: GPF-1500-1000-795) as shown
in fig. (5.3). The frequency stabilisation of the laser is done by using saturation absorption
spectroscopy (SAS). The main laser is shifted towards blue detuned side by 800 MHz by se-
quentially using AOM2 and AOM3 (Intraaction: ATM-2001A2) in double pass configuration
which is also shown in fig. (5.2). The AOM2 and AOM3 shift the frequency of light by 200

MHz for single pass configuration. Here, AOMs are used in double pass configuration in order
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to shift the frequency of light by 400 MHz by each one.

experiment

Optical heterodyne

[ Aoms | | Aom2

Figure 5.3: AOM setup for the generation of reference and probe beam for OHDT two-photon
Rydberg excitation experiment. The spectroscopy laser is generated while main laser passes
through single pass AOM1. The OHDT reference is generated wile main laser passes through
double pass AOM?2 and double pass AOM3 setup.

The main beam is used as probe and the 800 MHz shifted light is considered as reference
for the OHDT experiment of two-photo resonance to the Rydberg excited state. These two

beams are taken to the OHDT experiment.

5.1.3 Experimental realisation of two-photon Rydberg excitation

The schematic experimental setup for two-photon Rydberg excitation using OHDT is depicted
in fig. (5.4). The probe and reference beams derived from the AOM setup are superposed by
a polarising beam splitter (PBS). One part of the superposed beam is detected using a detector
(MenloSystems: FPD 310-FV) after passing through the OPS. The interference signal detected
by the detector serves as a reference to the OHDT. The other part of the superimposed beam is
passed through a ’Z\-plate in order to prepare a pair of o and o~ probe and reference beams.
A coupling laser of 480 nm is generated from TA-SHG-Pro and the polarisation is made to be

o™. Using a dichroic mirror, the coupling beam is overlapped and counter propagated to the

82



superposed 780 nm lights in a magnetically shielded and temperature controlled rubidium vapor
cell. The vapor cell is heated by resistive heater (Thorlab: HT15W) and a sensor (Thorlab:
TH10K) is used to measure the temperature of the cell. A PID controller (Thorlab: TC200) is

used to stabilise the vapor cell at desired temperature.
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Figure 5.4: Schematic of the experimental set up for two-photon Rydberg excitation using
OHDT. The red and blue arrow-lines are 780 nm and 480 nm laser. The dashed lines signify
the electrical flow of signal. The density is controlled by using a resistive heater and thermal
sensor. They are connected to an external PID temperature controller. The signal to noise ration
of the dispersion spectra is very small. In order to improve the signal to noise ration a Lock-in
detection is done by using intensity modulation of the blue laser. The intensity modulation is
done by using a beam chopper.

After passing through the vapor cell, the superimposed probe and reference beams are trans-
mitted through the dichroic mirror and a polariser is introduced before the detector (MenloSys-

tems: FPD 310-FV) to observe the beat signal. It is to be noted that the probe and reference
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beams (780 nm) gets transmitted through the dichroic mirror and the coupling laser of 480 nm
gets reflected from the dichroic mirror. The electronic beat signals are monitored by an oscillo-
scope in order to keep track of their relative phase. The output of the detectors are multiplied by
an electronic wave-form mixer (MiniCircuit: ZLW-2H+) and passes through a low pass filter
(MiniCircuit: BLP-1.9+) which essentially measures the difference in phase shift between the

probe and the reference beam due to the dispersive medium.
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Figure 5.5: Typical dispersion spectrum of a probe beam due to two-photon resonance to the
Rydberg state. The spectrum is observed by scanning the coupling over 5 GHz. The induced
phase shift in probe is measured due to two-photon coupling to the Rydberg state with principal
quantum number n = 33. The coupling and the probe Rabi frequencies are taken as 24 MHz
and 400 MHz respectively. The peaks corresponding to the transitions **Rb 5s1 o(F = 2, 3) —
5p3/2 and 8TRDb 55, /2(F = 3) — 5pyo are depicted here. The relevant energy levels of rubidium
and respective dispersion peaks are depicted.

In order to improve the signal to noise ratio, a mechanical chopper is used to modulate
the intensity of the coupling beam at a rate of 6 kHz. A similar electronic signal is generated

from the chopper controller which is used as the reference to the lock-in amplifier. The output
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of the Lock-in amplifier is monitored using an oscilloscope to measure the phase shift due to
two-photon excitation to the Rydberg state. The signal of the wave-form mixer also depends
on the amplitude of the beat signals. During the adjustment of the relative phase between two
beat signals using OPS, the amplitude may change. In order to compensate the variation, we
have used RF-attenuator (MiniCircuti: ZX73-2500-S+) right after each of the detectors (the

attenuators are not shown in main setup fig. (5.4)).

The coupling and the probe beams were focused inside the cell using lenses of focal-length
200 mm. The Rayleigh range and minimum beam waist of the coupling laser are given by 12
mm and 35 pum respectively. Also, the Rayleigh range and minimum beam waist of the probe

laser are given by 10 mm and 50 pm respectively. The variation of the probe and the cou-

: . : . Qo

pling Rabi frequencies over the Rayleigh profile can be expressed as, ,(z) = ——2-— and
P /1+(§)2

Q.(2) = % respectively. Here, €2,y and €2, are the peak probe and the peak coupling

VI

*R
Rabi frequencies calculated at the center of the Rayleigh profile. The accumulated phase-shift

due to the dispersion experienced by the probe laser field is the average effect of the individual

Rayleigh profiles of the probe and the coupling Rabi frequencies inside the rubidium vapor cell.

A typical dispersion spectrum is depicted in the fig. (5.5). All the transitions are explained
in the figure caption. It is to be noted that the spectral shape of the dispersion looks like
absorptive. In order to understand the nature of the dispersion spectrum, a model is developed

as follows.

5.2 Model for two-photon Rydberg excitation

Let us consider a three-level system with a probe and a coupling laser beam. The Hamiltonian
of the system in a suitable rotating frame is given by, H = —2[(,]e)(g] + Q|r)(e]) + h.c.] —
R[(A, —Ekpv)|e)(e| + (Aqy+ Akv)|r)(r|], where Ak = k. — k,. Here the probe and the coupling
Rabi frequencies are defined as, (), = Q‘LET"EP and €, = 2’%& respectively. ¢, and ¢, are the
probe and coupling electric field amplitudes respectively. The probe and coupling detunings
are given by, A, and A, respectively. The schematic level diagram is the same as fig. (5.1).
The density matrix equation of the system can be given by, p = —%[H ,pl + Lp(p). The
Lindblad operator and the optical Bloch equations (OBE) for cold atoms in the steady state
is given in Sec. 3.2.5. For the thermal atoms, Doppler shifts in the detuning are included as,

A, = A, — kv, Ay = A, + kv and Ay — Ay + Ako in the Eq. (3.17, 3.18,3.19, 3.20 &
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3.21). Here v is the velocity of the atom interacting with both the laser fields. The steady state
OBE:s for the thermal atoms are given by,

l

5(@ppeg = Lpge) + Tegpec + Trgpre = 0 (5.1)
02+ pre) = Oy — (U + 2By — b)) — Lo = 0 (52)
s — Qupye — 20037) — 5(Tre + Lrghpgs = 0 (53)
£ (©per — ) — (T + T =0 (5.4)

l

1
2 [Q;pyr + Qc(prr - pee) - Z(Ac + kcv)per] - _(Feg + Fre + Frg)pm' =0 (55)

2

The dephasing rate I, is the natural line-width of 551/, — 5p3/» transition of rubidium which
is 2m x 6 MHz. The decay rate [, is taken to be 27 x 0.01 MHz, which is the natural line width
of the Rydberg state. The dipole matrix element of the states |¢) and |r) dephases at the rate
F—gﬂ + Yret- I'yg 1s due to the transit time decay of atoms and ~,; is the relative laser frequency
noise between the probe and the coupling laser. Here, both the decay rates are of the order of
27 x 500 kHz. The susceptibility of the probe field is proportional to the density matrix element
peg- The dispersion of the probe field which is proportional to the #(p.,) can be obtained from
Eq. (5.1) and (5.2) as,

B Q, Q, Q.
’loeg) = 2(A, — kyv) T 2(A, — k:pv)pw 2(A, — k?pv)g}%(prg)
Leglg
rr 5.6
T 2,B, o (56)
L,
S\S(peg) = Q_gprr (57)
»

The probe laser is 1.3 GHz detuned from intermediate state. Therefore, it will stay unpopulated
which allows us to remove the state adiabatically as explained in Sec. 3.2.6 and Sec. 3.2.7. The

optical Bloch equation for the effective 2-level system is given by,

Pgg = —i(Qeprpgr — Q:ff/)m) + Dogprr (5.8)

. . ]_—‘7‘
prg = —iBessprg + Qers(2pm = 1) = —Fprg (5.9)

Here the effective Rabi frequency and the effective detuning are respectively defined as, (2.7 =

2,0 . 122 —2|2 .
A=Ak, ke and Acrr=2(A,+A) + 2Akv + A A (horgy- BY solving Eq. (5.8) and
2Aeff

Eq. (5.9), we get R(p,y) = 5 e The Rydberg population p,, is given by,

Qesy
erf + 202, + T,

rr = 1
p X (5.10)
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Therefore, the p,, and :(p,4) calculated from effective two-level system can be used to evaluate

R(peg) and F(peq) by using Eq. (5.6) and Eq. (5.7) respectively.

5.2.1 Calculation of susceptibility

Let us consider that x is the susceptibility of the probe. The refractive index of the probe can

be written as, n = 1 + %?R( X). by considering x to be small. The susceptibility is related to p.,

2no|peg |2

contry Peg: The total susceptibility is expressed as, x = x2r + X3z. The susceptibility

as, y =
X2, 18 due to the interaction of the probe laser with the transition 5s; /2 — 5p3 /2 in the absence
of the coupling laser. In the presence of the coupling laser, the interaction of the probe laser

with the transition 5s,/, — m.s1/2 via two-photon process gives the susceptibility x3r.

The first term of Eq. (5.6) is the contribution due to the coupling of the probe with the
transition |g)(5s1/2) — |€)(5ps/2). Therefore, we can define as R(p2H) = —%. Due
to large probe detuning A, — kv > Iy, I, and in the regime, €2, > I'.;, we can neglect the
last term of the Eq. (5.6). Then, the Eq. (5.6) takes the form,

1
R(pBLY = 0
(peg ) 2( A » kpv) [ pPrr QcéR(prg)] (51 1)

%(pﬁfi,”) is the contribution only due to the of the probe participating in two-photon resonance
in presence of coupling laser. The Doppler averaged susceptibility of the probe due to two-

photon resonance is given by,

- 2n0|peg|* 1 /'oo p(gL)e_%dv (5.12)
ohSl, v, | L '

Here, ny is the density of the vapor and ., is the dipole coupling strength for the transition

19)(5s1/2) = |€) (5psy2).

5.2.2 Lineshape of dispersion

As we have mentioned earlier, OHDT is only sensitive to the probe dispersion due to the two-
photon transition 551/, — n.51/2. The measure phase shift due to the change in refractive index
of the probe due to two-photon process is proportional to R (x3L). The comparison between the
experimental data and the model is depicted in fig. (5.6). In the experiment, the probe and the
coupling laser were focussed inside the atomic medium by using a pair of lenses. Therefore,
the probe and the coupling laser has Rayleigh profile inside the medium and hence the Rabi

frequencies of the respective lasers follow the same. The peak coupling Rabi frequency is kept
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fixed at 24 MHz. The model matches with the profiles for peak probe Rabi frequencies €2, = 60
MHz (fig. (5.6)a) and 2, = 400 MHz (fig. (5.6)b). For fig. (5.6), the density is kept constant
at 2.5 x 102 cm™3. The data is taken for the principal quantum number of the Rydberg state
n = 33.

0.2
0.0
(SP
o
= -02
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T 4
3F
2F
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N
o

c (GHz)

Figure 5.6: (a) Refractive index of the signal probe beam propagating through the medium with
coupling scanning over the two-photon resonance. The peak Rabi frequencies of the coupling
beam was 24 MHz and of the probe was 60 MHz (a) and 400 MHz (b). The lasers are coupled
to the Rydberg state with principal quantum number, n = 33. Open circles (o) are the refractive
index measured in the experiment, solid circles () are the calculated refractive index using the
exact model of a three-level atom interacting with a probe and a coupling beams. Solid lines
are the calculated refractive index using an approximate model by considering the three-level
atom as an effective 2-level atom. A multiplication factor accounted for the overall gain in the
experimental data was used to compare with theory. The refractive index due to the interaction
of the probe with the D2 line (2, ) is subtracted to show the effect of the two-photon resonance
only.

It is observed from the fig. (5.6) that, at the low probe Rabi frequency, the refractive index
line-shape looks perfect dispersive whereas, at the higher probe Rabi frequency, the line-shape

looks more like absorptive but it is actually a dispersion spectrum. Since the model calculation
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matches with the profile in both the regime, hence the above argument is also supported by the

model presented. Referring to Eq. 5.12, R(p.,) contributing to dispersion has a centre p,, and

Pyr-

In fig. (5.6), it is observed that the dispersion curves deviate from the model at low coupling
detuning regime. The reason behind the mismatch is the presence of the dark state near the

resonance.

5.3 Intensity dependent dispersion

In order to study the intensity dependent dispersion, we kept peak coupling Rabi frequency
fixed at 2. = 24 MHz and dispersion peak height is measured by varying the peak probe Rabi
frequency up-to 600 MHz. The spectral peak heights are normalised by the spectral height
corresponding to the lowest peak probe Rabi frequency of the experiment (100 MHz). The
study is done for the densities 2.5 x 102 cm™2, 1.25 x 10" cm™2 and 3.0 x 10'3 cm~3. The
normalised peak height as a function of peak probe Rabi frequency for all the above densities

are depicted in fig. (5.7a). The theory generated profile also matches well for each densities.
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Figure 5.7: (a) Measured dispersion peak height as a function of peak Rabi frequency of probe
while coupling to the Rydberg state n = 33 with atomic vapor densities 2.5 x 1012 cm™3 (o),
1.25 x 101 cm™3 (o) and 3.0 x 10 cm ™2 (). The peak Rabi frequency of the coupling beam
was 13.8 MHz. The solid lines are the fitting using the theoretical model and a multiplication
factor is used as the only fitting parameter which can be accounted for the overall gain in the
experiment. (b) Dispersion peak height normalized to the peak height of a weak probe beam.

From Eq. (5.12), %(inf = L‘; %l T oo R( peg Je %dv, which is independent of the
density ng. In the experiment, the dispersion data for each density is normalised by the low
probe dispersion of the respective density. Due to the normalisation by low probe dispersion,
the density dependance in the dispersion is cancelled as the dispersion linearly varies with den-
sity. Therefore, the curves of intensity dependent refractive index for the individual densities
should be superposed. As we can see in fig. (5.7b), the experimental data for all densities
are superposed with less than 5% error. The observation suggest that the interaction plays a

negligible role in this regime of the experiment.
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5.4 Calibration of phase sensitivity of the electronic wave-
form mixer

2.3

Figure 5.8: Setup for calibration of phase measurement of electronic waveform mixer.

It is required to calibrate the wave-form mixer (MiniCircuit ZLW-2H+) in our experiment to
determine the absolute measurement of the nonlinear phase acquired by the probe in the OHDT
measurement. In order to do the measurement, we did heterodyne experiment without the
atomic medium. The optical and the electronic set up is depicted in the fig. (5.8). Two laser
field with frequency offset 0 superposed on a PBS. One part of superposed beam is passes
through the OPS and detected by a FPD and another part of the superposed beam passes through
the polariser and is detected by another FPD. The OPS is used to control the relative phase
(¢o7¢) between the beat signals detected by the detectors. These two electronic beat signals
are monitored by an oscilloscope and the relative phase between the beam is measured from

the oscilloscope as shown in fig. (5.8). The electronic beat signals are multiplied by the wave-
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form mixer (MiniCircuit ZLW-2H+) and made to pass through a low pass filter (MiniCircuit:

BLP-1.9+) which allows only dc signal. The dc signal is monitored by an oscilloscope.

200
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o
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-200—m—m7m™@™m8™ ™ 77—
1.0 1.2 14 16 18 20 22
0 ——el

Figure 5.9: Calibration of phase sensitivity of wave-form mixer. The experimental data is linear
fitted with the equation V' = n,,, x 0 + V.

Since the phase sensitivity of the mixer depends on the beat amplitude, both the beat ampli-
tudes are kept constant approximately at 800 mV. The relative phase between the probe and the
reference is changed from —Z radian to +7Z radian with approximately 0.1 radian interval and
the dc shift is measured in the oscilloscope. The variation of the phase is done where the phase

difference between two beat signals is 7 which is the phase sensitive regime of the experiment.

In order to explain the above statement let us consider the form of the beat signal measured
in both the detectors are S; = A; cos(wt) and Sy = A, cos(wt + @) respectively. After multi-
plying S; and S; using an waveform mixer, it passes through a low pass filter to give the signal
of the form 422 cos(¢). We know that at ¢y = Z, cos(¢) = 0. In this regime, it becomes
most sensitive to phase. That is why the phase sensitivity measurement is done for ¢y = 7 with

small range of variation from —Z to +7.
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During the change of the relative phase between the probe and the reference beam, the beat
amplitudes and the relative phase between the beats is changed. The relative phase kept same
by adjusting OPS and the amplitudes are kept constant by using the RF-attenuator (MiniCir-
cuti: ZX73-2500-S+) connected at the output of the each detector as shown in fig. (5.8). The

calibration curve is shown in fig. (5.9).

The fitting parameters are given by, V5 = —617 £ 25 mV and 7,, = 385 + 16 mV/rad.
Therefore, the phase sensitivity of the wave-form mixer is found to be 385 mV/rad with beat
amplitudes to be 800 mV each. It is to be noted that the mixer sensitivity also includes the gain

of the mixer and the low pass filter.

5.5 Sensitivity and the precision of the measurement

In OHDT experiment for two-photon Rydberg excitation, the lock-in amplifier is used to im-
prove signal to noise ratio. Therefore, the mixer sensitivity along with the gain of the Lock-in

amplifier can be represented by the block diagram as shown in fig. (6.7).

Waveform mixer Lock-in amplifier < LIA WM — —pe
é """""""" > LA TTTTTees >

Figure 5.10: Schematic block diagram of electronic operation of beat signals. The objective
of the setup to measure the relative phase shift between two incoming electronic beat signals.
The incoming beat signals are multiplied by an electronic waveform mixer and the phase-shift
information is extracted. Then the signal for the phase shift is amplified using lock-in amplifier.

The mixer sensitivity is found to be 7, = Ay M% = 385 mV/rad. The lock-in am-
plifier (Stanford Research Systems: SR830) output voltage can be calculated as, V, 174 =
(m — of fset) x Exzpand x 10 V, where V;,, represents the input voltage to the lock-in
amplifier. In the experiment, the lock-in sensitivity is set to 10 mV, the offset is set to 0 V
and the expand is set to 1. Therefore, V, 114 = 103 x Vi, = ApraVin. The lock-in amplifier

gain is found to be Ap;4 = 103. Therefore, the phase shift measured in the experiment can
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be represented as, ¢ = where V, is the output dc voltage of the experiment which is

Nm 4L1A
measured in the oscilloscope as shown in fig. (5.8). Using this equation, the experimentally

measured voltage is converted to phase as shown in fig. (5.11b).

The phase shift (¢g) due to the two-photon process measured using the heterodyne detection

technique is related to the susceptibility ®(x3.) = iﬁ;, where [ length of the rubidium vapor

cell. Therefore the phase shift can be calculated from the model using Eq. (5.12) as,

kyl ”Ome | 3L v
.= el [ Rl Rao (5.13)

We have measured the phase shift at the peak of the dispersion profile which corresponds to
the zero velocity class of atoms. Therefore, the probe and the coupling lasers are resonantly
interacting with the zero velocity class of atoms. At the two-photon resonance , the two-photon

detuning A, will vanish and hence R(p,,) = 2A€f ~ppe = 0. Then R(pEM) = 5 A"p prr for zero

velocity class of atoms. In that case, Eq. (5.13) and (5.12) will respectively have the form,

kyl ”0|,“eg|2 Qeyy

. = o 14

¢ Ju,  eh 28KA," G149
N ”0|Neg|2 Qery

Rar) = = 0 Jro MkB, P (5.15)

The velocity of the atoms falling within a velocity width "'f L around the zero velocity, will
contribute to the two-photon excitation to the Rydberg level. It is to be noted that the phase
shift as well as the dispersion of the probe depends on the Rydberg population p,.,..

A gaussian fitting is done for the experimental data for phase shift using the formula
y = yo + Ae” T wz;) as shown in fig. (5.11b). The fitting parameters are found to be
Yo = 3.5+0.014 prad, . = —1.36 9.6 x 10~* MHz, w = 0.16 41073 MHz and A = 174+0.08
prad. The phase shift at the top of the fringe is found to be ~ 17 prad and that at the noise
level is ~ 3 prad. It can be stated that, the minimum phase shift can be measured using this

technique is 3 prad (precision of the phase-shift measurement).

We have seen that the phase shift is proportional to the Rydberg population. The Rydberg
population can be evaluated by the Eq. (5.10) where (22 7 < P, the coupling laser power. The

formula can be rewritten in terms of coupling laser power F. as, ¢, = The coupling

k1+k2P
where A, = 7rw2 the cross-section of the

kpl “0|Meg| 1 _ Qp
Vv, coh  2BkA, and o = VA(Ap—Ag)

Rabi frequency can be represented as, €2, = A ,

coupling laser beam. Let us define few quantities 3 =
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Figure 5.11: Measurement of phase shift of the probe due to two-photon resonance. (a) Using
the equation, ¢, = nmX"L — the phase-shift of the probe at the peak of the dispersion spectrum
as a function of the coupling power. Open circles correspond to the measured phase shift using
heterodyne detection technique and the solid line is the fitting using the model discussed in
the text. (b) Observed dispersion spectrum by scanning the coupling laser over the 5s; /o (F =
3) — nsy /o transition of **Rb with coupling laser power being 1 mW. The signal is fitted with

a gaussian function to determine the phase shift at the peak of the spectrum.

1
N
o
N

2

. r
Then, the constant k£ and ks are respectively defined as, ky = %‘2 and ky = /';9. For vapor

cell length [ = 5 cm and density ng = 2.5 x 10'2 cm~3, the parameters are found from the

calculation to be k; ~ 10~ * and k, ~ 10~2. The fitting of the experimental data in fig. (5.11a)
gives k1 = 1.6 x 107* £3 x 10 % and ky = 5.6 x 1072 & 2.6 x 103, which matches with the

orders of £y and k, calculated theoretically. This verifies the originality of the measurement.

5.6 Precision of the Rydberg population measurement

Using Eq. (5.14), the minimum Rydberg population measured using the setup (corresponding
to ¢s = 3 urad) is p,, ~ 1077, In contrast with precision of Rydberg population measurement

in cold atom system where p,, ~ 1072 [47], OHDT gives better precision.
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5.7 Comparison between OHDT and direct absorption mea-
surement (DAM)

To compare OHDT with DAM we setup an experiment as depicted in fig. (5.12). A circularly
polarised probe beam passes through the atomic medium and transmitted through the dichroic
mirror and splitted by a polarising beam splitter (PBS) and detected by two detectors placed at
the output ports of the PBS. A coupling beam with opposite circular polarisation with respect
to the polarisation of the probe is counter propagated to the probe beam through the atomic

medium using the dichroic mirror.

Figure 5.12: Experimental setup for direct absorption measurement (DAM) of probe.

The direct absorption of the probe can be compared with the imaginary part of the suscep-
tibility which is calculated by using Eq. (5.7) as,

C\( ) _ Qeff 1o |ﬂ€9|2 F’"Q (5 16)
S\sL) = VTAkv, el Q2 Prr '

is From Eq. (5.16) and Eq. (5.15), the relation between probe absorption and probe dispersion

can be derived as, S(x3) = ZF;{QA" R(x3r,). For I',; = 1 MHz, the probe detuning A, ~ 1
P

GHz and the probe Rabi frequency, €2, = 250 MHz the phase shift due to the dispersion

(kIR (xs1)) will be two orders of magnitude larger than the absorption (k,/R(x3)). For the
phase shift ¢, = 17 urad, the absorption is found to be ~ 1075, The phase shift at the noise
level is ¢, = 3.3 prad. The absorption at the noise level would be 1077,

A comparison of the direct absorption measurement (DAM) of the probe with OHDT is

depicted in the fig. (5.13). A lock-in amplifier was used to get similar signal to noise ratio for
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Figure 5.13: Comparison study of DAM and OHDT. (a) The measured phase shift of the probe
using heterodyne detection technique. (b) Observed signal from direct probe absorption mea-
surement with coupling being o™ and probe being o~. The solid and the dashed curves corre-
spond to the absorption of linear polarization component in vertical and horizontal directions
respectively. The dotted curve corresponds to the total absorption of the probe light.

DAM as OHDT. It is seen from the experiment that DAM is extremely sensitive to the polari-
sation of the probe light. The absorption of two orthogonal linear polarisation component (H
and V') of o~ probe light are opposite in sign which can be observed in fig. (5.13b). The signs
of the absorption signals corresponding to different hyperfine states of the same spectrum are
opposite to each other. The total absorption of o~ polarised light is also shown in the figure.
The total absorption of H and V' polarised light is found to be smaller than that of o~ light.
Therefore there is some polarisation sensitivity issue for DAM which is affecting the measure-

ment process.

The behavior of the absorption spectrum observed from direct probe absorption measure-
ment can only be explained by the small polarisation rotation of the probe field due to the

impurity in the circular polarisation of the coupling laser beam. We have seen that for the min-
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imum phase shift ¢, ~ 3 prad, the Rydberg population, and the absorption are respectively
given by 107° and 10~7. Such a small absorption can easily be obscured in the polarisation
rotation of the probe due to their small polarisation impurity due to non-ideal optical com-
ponents. Hence, direct probe absorption measurement, in this case, cannot provide a reliable
measurement of the Rydberg population for very small absorption. It is to be noted that a small
signal is observed at 250 MHz away from the main signal (¥ Rb F' = 3 — F’). This is the

contribution from the nearby 8" Rb ' = 2 — [ transition.

In contrast, the signal observed in the heterodyne detection technique as shown in fig. (5.13)
is only sensitive to the relative phase between the probe and the reference beams but is insensi-
tive to any small change in their power or polarisation. Hence, the observed dispersion signal

giving the information about Rydberg population becomes robust and reliable.

5.8 Conclusion

OHDT is an efficient technique to experimentally measure the phase shift due to the dispersion
of the probe beam and hence the Rydberg population. The dispersion spectral shape measured
in OHDT is explained by the simple non-interacting model presented. Due to less sensitivity
of the light polarisation of OHDT, it is expected to give a reliable estimation of the measurable
quantities, for example, phase-shift and the Rydberg population. This technique can also be
used to detect the Rydberg blockade in cold atoms as well as in thermal atomic vapor. In the

next chapter, we will be using OHDT to observe the Rydberg blockade phenomenon.
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Chapter 6

Study of Rydberg blockade in thermal
vapor

Strong Rydberg-Rydberg interaction induced cooperative atom-light interaction opens up wide
range of applications in quantum simulation of many-body system [1-10], realisation of single
photon source [11, 12], enhanced Kerr nonlinearity for single photons [13—16] and Kerr non-
linearity for classical light [17]. It also provides scope to do quantum information processing
using photons [2, 18, 19]. In a dense ensemble of atoms, a coherently driven Rydberg excita-
tion by a laser, leads to Rydberg blockade phenomenon which is extensively studied in cold
atoms [20-28], Bose-Einstein condensation (BEC) [29-33] and BEC in optical lattice [34].
The presence of the Rydberg blockade interaction in an ensemble of atoms, the system forms
a many-body entangled state [35, 36] which is useful for the emerging study of interest for
quantum computation with Rydberg atoms [2,19,20,37-42]. Contextually, the optically driven
Rydberg blockade interaction and Rydberg anti-blockade interactions are studied in dissipative
system [43]. In presence of dissipation, the Rydberg blockade induced many-body effect is
studied theoretically [44—46]. Another theoretical study recently reported that the presence of
dissipation leads a pure quantum system involving Rydberg blockade interaction to a classical
system [47]. An experimental study of dissipative Rydberg interaction in cold atoms is also

been reported [48].

Recent developments in thermal atom experiments of Rydberg excitation generates huge
technological interests due to less complexity in comparison with the cold atomic system.
An experiment with thermal atoms of Rydberg excitation in mean field regime shows a non-
equilibrium phase transition [49-52]. Coherent Rabi oscillation driven by van der Waals in-

teraction in thermal vapor in presence of dephasing is observed [53]. The strongly correlated

103



growth of the Rydberg aggregates due to interaction is also observed [54]. Here, the atomic
ensemble is considered to be frozen and driven by a pulsed laser field. A partial suppression of

Rydberg excitation is observed in an atomic beam [55] where multi-atom coherence is absent.

In this chapter, we will discuss the observation of the Rydberg blockade using OHDT. A
simplified classical model explains the existence of the Rydberg blockade in the thermal atomic
ensemble. But, the model is not good enough to precisely evaluate fundamental quantities, for
example, the interaction strength and the blockade radius. This leads us to the construction
of a quantum many-body model of the Rydberg blockade based on superatom. We will also
discuss the many-body model which will be used to analyze the experimental data. The analysis
confirms the existence of van der Waals blockade in the thermal vapor. A verification of the
fundamental scaling of van der Waals interaction strength (Cs) with the principal quantum

number will also be mentioned.

6.1 Initial experiment to realise Rydberg blockade
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Figure 6.1: A simplified schematic of the experimental setup (a). The atomic-level diagram
to explain the observed dispersion signal (b). The resonance peaks corresponding to the two-
photon resonances of °Rb and "Rb are depicted.
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The detailed experimental setup to study Rydberg blockade interaction in thermal atomic va-
por is depicted in fig. (5.4). A simplified version of the experimental setup is given in fig.
(6.1.a). The coupling laser frequency is scanned to observe the dispersion signal of a probe
beam due to two-photon Rydberg excitation while the probe beam is passing through the ther-
mal atomic ensemble as shown in fig. (6.1.b). The dispersion signal corresponding to the
transition 55y 5(F = 3) — bp3js — nsyp of 85Rb (the orange shaded area) is used for
the analysis of the Rydberg blockade using the classical model. The signal is observed for the
Rydberg excited state corresponding to the principal quantum number n = 60 and the density

of the vaporis 3 x 103 c.c.”!.

The asymmetry of the main signal appears due to strong Rydberg blockade action at the red
detuned side of the two photon resonance. Here dispersion of the probe is strongly suppressed
due to the Rydberg blockade. At the other side of the two photo resonance the Rydberg block-
ade interaction is negligible. The asymmetric nature of the dispersion signal is the signature of
strong Rydberg blockade interaction which is shown in fig. (6.1). The dispersion at the peak
of the spectrum (for the orange shaded transition 5s1/2(F = 3) — 5psj2 — nsy/, of *Rb
in fig. (6.1)) is taken to study intensity dependent dispersion as shown in fig. (6.2) using the

classical model.

6.1.1 Classical model of Rydberg blockade

Let us consider the number of atoms per blockade sphere to be N,, which can be evaluated
for the given density of the atomic vapor and the given blockade radius. The probability of
simultaneous multiple excitations of n atoms out of N, atoms to the Rydberg state is given

by the probability distribution as P, = +C,,p" (1 — p,,.) ™™

, where the Rydberg population
prr 18 the solution of OBE of 3-level system with a probe and a coupling laser discussed in
Sec. 3.2.5. For the events of simultaneous multiple Rydberg excitations, only one Rydberg
excitation is taken into account to evaluate the effective Rydberg population p$f,’), which can be
calculated as, pff;) = (P + iji 1 %) prr- Then the dispersion of the probe is determined by
replacing pgi) in equation 5.15. The theoretical curves generated using the model is shown in
figure (6.2). If we consider the blockade radius to be 2.2 ;sm then it fits well with the experi-

mental data.

In strong probe regime, R (pge) = Q?T”p prr» the suppression in dispersion peak height hap-
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pens due to the suppression of Rydberg population, which is the signature of the Rydberg
blockade interaction. The ions inside the cell have negligible effect which was confirmed by

analysing Rydberg EIT for principal quantum number n = 60.

6.1.2 Intensity dependent dispersion
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Figure 6.2: (a) Measured dispersion peak height as a function of peak probe Rabi frequency of
probe beam coupling to the Rydberg state n = 60 with atomic vapor densities 2.5 x 102 cm™3
(0), 1.25 x 10" ¢cm™ (o) and 3.0 x 10'¥/ em™3 (O). The peak Rabi frequency of coupling
beam was 8.5 MHz. The solid lines are the fitting using theoretical model including interaction
induced dephasing and Rydberg blockade. A multiplication factor and blockade radius are
used as the fitting parameters. The dotted lines are generated from the model with interaction
induced dephasing and without blockade. (b) Dispersion peak height normalized to the peak
height of a weak probe beam.
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For the analysis of the intensity dependent dispersion, the peak of the dispersion correspond-
ing to the transition 5s;/5(F = 3) — Bps/2 — nsy1/2 of *Rb (as depicted in fig. (6.1)) is
recorded for different probe Rabi frequencies by keeping both the beat signals of heterodyne
detection experiment same. In this way the gain of the experiment will same for all the intensity
dependent dispersion data. In fig. (6.2a), the dashed curves are generated from the calculation
of population dependent dephasing by taking I'., = 500 MHz (black curve) and 1 GHz (red
curve). It is observed that the dispersion peak height is reduced for higher I',., but the functional
form is monotonically increasing with probe Rabi frequency and doesn’t display any feature
of saturation. Hence the population dependent dephasing cannot explain the experimentally
observed dispersion saturation, whereas the classical blockade model matches well with the

experimentally measured dispersion peak height data.

Fig. (6.2b) is the normalized dispersion peak height for different density which shows the
nonlinear dependence on density. This phenomenon also perfectly matches with the classical
model of the Rydberg blockade.

6.1.3 Population dependent dephasing

In order to exclude the possibility of the suppression in the dispersion peak as an artefact of
the interaction induced dephasing, we introduced a Rydberg population dependent dephasing
of the dipole matrix element p,, similar to the model discussed in reference [53]. Rydberg
population (p,,) decays at the rate I',, and p,, decays at a rate F—;i + Yret + preLrr. Here, vy 18
the relative laser frequency noise between probe and coupling laser and p,..[',, is the population
dependent dephasing. In the presence of the population dependent dephasing, the steady state
OBE of effective 2-level system will be modified as,

_Z(Qeffpgr - Q:ffprg) + Frgprr =0 (61)
. T,
_Z[Aeffprg + Qeff(2prr - 1)] - ( 29 + Yrel + Prrprr) =0 (62)

The dephasing I',.; + 27,; is taken as 1 MHz in this model. Above two equations gives a cubic

equation for Rydberg population which is given by,
Ap}, + Bp;, +Cpry + D =0 (6.3)

The coefficients of the Eq. (6.3) are given by, A = 47Ty, B = 4T} T\, + 16921,
C=8A%; Ty + T3, +802,,(T,y — T',,) and D = —4QZ, T',,,. Looking at the coefficients of

r
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the cubic equation, one can deduce that out of the 3 solutions of p,.., one is positive real and the
other two solutions are either negative real or complex conjugate to each other. The positive
solution of p,.,. is determined by solving the cubic equation numerically and is replaced to deter-
mine p,,. Replacing both of these terms in the Eq. (5.15), the dispersion of the probe beam is

determined. The dispersion peak height is calculated using this model is shown in figure (6.2a).

In conclusion, the Rydberg blockade is demonstrated in thermal vapor and the blockade
radius is measured to be 2.2 um. The van der Waals coefficient (Cg) for the Rydberg state
n = 60 is 140 GHz/pm® [17]. The typical width of the two-photon resonance is about 500 MHz
which can be determined from the figure (5.6). Hence, the Rydberg blockade radius for this
system should be approximately 2.5 pm which differ from our experimental result by less than
15%. The analysis using the model explains that the suppression happens due to the presence
of Rydberg blockade interaction. It is to be noted that we have introduced blockade classically
and a full quantum mechanical model may give a better estimate for the blockade radius and
the van der Waals interaction strength. We have observed that Rydberg population on the blue-
detuned side of the two-photon excitation spectrum to the Rydberg state is enhanced whereas
the red-detuned side is suppressed. Such an asymmetry observed in the spectrum cannot be
explained by the above classical model. So the underlying physics for the whole spectrum

could be more complicated than the above-mentioned model.

6.2 Superatom model of Rydberg blockade

In two-photon resonance signal in fig. (6.1), a small peak is observed at A, = 0 GHz (the
green shaded region) which is explained using a process called Rydberg anti-blockade or in-
teraction facilitated excitation (IFE) [56]. For repulsive van der Waals interaction, it appears at
the blue-detuned side of the two-photon resonance signal as shown in fig. (6.3). The Rydberg
anti-blockade interaction enhances the Rydberg population as explained in Sec. (2.3.4) which
results an asymmetric two-photon resonance signal. In the gray region of fig. (6.3), both the
interactions namely the Rydberg anti-blockade and the Rydberg blockade are present in the
system which would be difficult to model. The red detuned side of the two-photon resonance
signal (the red shaded region of fig. (6.3)) is strongly dominated by Rydberg blockade inter-
action. In this region, the Rydberg anti-blockade has negligible effect. Hence, the red-detuned
side of the two-photon resonance signal is the good region to perform the experiment in order

to demonstrate Rydberg blockade.
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Figure 6.3: Rydberg anti-blockade interaction dominates in the blue shaded region and con-
tributes negligibly in the orange shaded region. Both Rydberg blockade and anti-blockade
interactions have significant contribution in the grey shaded region of the spectrum. The Ry-
dberg blockade interaction dominates in the orange shaded region and contributes less in the
blue shaded region.

In the presence of blockade and anti-blockade interaction, density dependent spectral shift
for the peak corresponding to the 55 7 (F=3) = ns; /2 of 85Rb transition cannot be ruled out.
The Rydberg excitation laser frequency is far detuned for the transition 5s; /2(F =2) = ns /2
of 87Rb. The density of 8"Rb is also three times smaller than the density of °Rb. Hence, the
interactions can safely be neglected for the 5s; /Q(F =2) > ns; /2 of 8TRD transition which is
used as a reference point in the experiment. Dispersion is measured at a point 0.8 GHz blue
detuned to the reference point which is 400 MHz red detuned to the two-photon resonant peak

of interest. The density dependent phase-shift of the probe is experimentally measured for
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different quantum number states of Rydberg excitation (n = 35, 40, 45, 50 & 53, where n is
principal quantum number of the Rydberg excited state) at the same point which is depicted in
fig. (6.4).
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Figure 6.4: Experimental data of density dependent phase-shift. Measurement of nonlinear dis-
persion in the experiment due to the two-photon transition to the Rydberg states with principal
quantum numbers n = 35 (o), n = 40 (), n = 45 (A), n = 50 (¢) and n = 53 (e).

As principal quantum number increases, the blockade radius increases. For a particular
density of atoms, the number of atoms in the blockade sphere NV, increases for higher principal
quantum number states. In the blockade sphere only one atom out of NN, is excited. Since the
phase-shift due to the dispersion of the probe is proportional to the Rydberg population, sup-

pression in the phase acquired by the probe is observed in the experiment.

There is a possibility of spontaneous ion formation due to collision of the Rydberg atoms

with the background gas. The interaction due to spontaneously generated ions will introduce
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the interaction potential as % [57]. Since Cy depends on the polarizability of the Rydberg
state, it scales as n*7. The ionic interaction is attractive for the ns; /2 states of rubidium and
hence the shift in the Rydberg energy level would be expected towards the red-detuned side of
the spectrum. The dephasing due to the ions would broaden the spectrum. If the ion would be
present in our system, then the associated dephasing and shifting of the spectrum will enhance
the Rydberg population in red-detuned side whereas it would be suppressed in the blue-detuned
side of the spectrum. In the experiment, we observe exactly the opposite and hence we safely
rule out the presence of the ion in the system. The ionization cross-section of the Rydberg
atoms due to collision with the background gas depends on Rydberg density which is found to
be two orders of magnitude smaller than the Rydberg density where the effect of the ions are
observed in the Rydberg-EIT system in thermal vapor as reported in the reference [57]. The ob-
servation of suppression in Rydberg population in the red detuned side of the spectrum clearly

suggest the Rydberg blockade due to the repulsive van der Waals interactions of s-orbital states.

In order to explain the density-dependent phase shift of a probe as observed in fig. (6.4), we
constructed a quantum many-body model based on superatom formation due to the Rydberg

blockade interaction. It is observed that in the thermal ensemble of atoms a certain velocity

Xei ; which resonantly interacting with the probe and

the coupling laser, contribute to the Rydberg blockade process. Using this observation, the

class of atoms within a velocity width

superatom model of Rydberg blockade is constructed.

6.2.1 Many-body superatom equation (MSE) of Rydberg blockade

Let us consider /N identical atoms interacting via Rydberg interaction. The many-body Hamil-

tonian of the system can be written as,

N N
H=Y T"10HD @I+ 3 Vilr)lr)(rli(r); 6.4)

i=1 i<j

where H is the Hamiltonian of the ith atom which is given by,

; h 0 Q
HO = _— ( ) eff ) )
2\ pp Aepy

I represents a rank 2 identity matrix [17] and V;; represents the strength of the van der Waals
interaction between atom ¢ and atom j which is given by V' = % where R;; is the distance
»
between the atom ¢ and atom j. The master equation of the system can be written as,
i

p= ﬁ[H, pl+Lp (6.5)
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Here, p represents total density matrix of /N-atom system. The decays and decoherences of the

system can be incorporated in the Lindblad operator given by

L, = LDl®P(2)®“'®[)(N)+p(1)®LD2@"'/)(N)
+ "'+P(1)®P(2)®"‘®LDN (6.6)

Here, Lp; and p¥ represent the lindblad operator and the density matrix of ith atom respec-
tively [58]. The schematic level diagram for /N-interacting Rydberg atoms is depicted in fig.
(6.5).

r7...T)

Figure 6.5: Schematic energy level diagram of N-interacting atoms.
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The dephasing processes accounted by ILp are the population dephasing I',,. The transit

Ly

time decay of atoms through the laser beam is

. The relative laser frequency noise between
probe and the coupling laser is symbolised as 7,; which is typically taken as ~ 300 kHz. The

superatom dephasing I'; is introduced in the dipole matrix elements of single excited states.

6.2.2 Dephasing method

The transit of the atom through the beam is given by, I',, = ;’—5} The most probable velocity
for the experiment in room temperature is of the order of 250 ms~! and the beam waist is ~ 75
pm. Then the transit of the atom through the beam is I',; ~ 1.5 MHz. The population decay is

negligible with respect to dephasing due to atom transit through the beam.

6.2.3 Superatom dephasing

Superatom dephasing (I's) is the combination of the transit time dephasing due to transverse
velocity of atoms (I',,(r;)) and the dephasing due to the difference in longitudinal velocity

(Cairp)as Ty =Ty, (1) + Taisy-
Transit time dephasing due to transverse velocity of atoms, I, (1)

The transit time decay through the Rydberg blockade due to the transverse velocity of atoms is
given by I',,(rp) = %, where 7y, is the blockade radius. For the principal quantum number of
Rydberg excited state n = 53 the Rydberg blockade radius 7, is ~ 5 pm. Then for typical most
probable velocity v, = 250 ms~!, the dephasing rate due to the transit through blockade is ~ 20
MHz. For smallest blockade radius the transit through blockade is 80 MHz. When the effective
Rabi frequency is smaller than the dephasing rate then the transit rate through the blockade
does not change much. In order to model the experimental data, we took the dephasing through

blockade ~ 50 MHz.
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Dephasing due to the difference in longitudinal velocity of the atoms, I';;

[
A 4

1AkR,

Figure 6.6: The phase difference due to atoms in different longitudinal velocity.

Qesy
Ak

tribute to the blockade process. They are also different in position which are symbolised as

The atoms with different longitudinal velocity falling within the velocity width will con-
Ry and R, corresponding to the velocities v, and v, respectively as depicted in fig. (6.6). The

phase acquired by the atoms are Ak R; and Ak R, for the velocities v; and v, respectively.

The phase difference can be calculated as, A¢ = AkAR. The dephasing rate, lima,_,q ﬁ—‘f =

% = Aklima; % = AkAwv. The difference in the velocities can be approximated as,
Q

Av = Qg‘—’;f. Therefore the dephasing rate I'g; sy = % = Akl = Qg

Optical Bloch equation for N-interacting Rydberg atoms

The optical Bloch equation (OBE) for 2, 3 and 4-interacting Rydberg atoms are calculated.
Using method of mathematical induction, the OBE for N-interacting atoms are derived. The
detail of the calculation can be found in [59,60]. The many-body superatom equation (MSE)
of Rydberg blockade for N-interacting Rydberg atoms can be derived from steady state master

equation as,

Qepsll —{(N+1)+ (N - 1)1;:: tpaz + (N = Dpra] + 28¢57p12

+2i(N — 1)Tygpos — i(Lrg + 27%et) pr2 = 0 (6.7
2Qcsrp12 — 20 (N = 3)pas + 2[(N = 1)Acyy + 2V — i(T'rg + 27r1)] 14 = 0(6.8)
QerS(p12) + Lrgpae =0 6.9
Qegp(1+ h)ﬂm = Qepppra +2(Acy +2V)pas — (305 + 2%e)poa =0 (6.10)

['q
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Here, I'y = Iy + 27, +1's. These four equations can be solved to find the Rydberg population
and hence the dispersion of the probe field.

6.3 Analysis of density dependent phase-shift measurement
using MSE

The nonlinear phase shift of probe propagating through the medium with density ny and path
length [ can be written as,

Vs = Gos (6.11)
The R(x31) can be expressed as,

R(xsL) = no /_ N £() f(v)pyrdv (6.12)

where p,, is the Rydberg population and f(v) = \/%Up e’/ with vy, being the most probable

velocity of the atoms. The vapor density was determined from the temperature of the vapor
and the respective errors were determined from the uncertainties in the measurement of the
u2 kpl .
2€0h(Agp—kp’U) Wlth
k, being the probe wave vector. The fitting function depends on the overall gain (G) of the

temperature. In the regime, €2, > (). as used in the experiment, {(v) =~

experiment and the blockade radius (7). All the experimental parameters are kept constant
during the study of density dependent phase-shift for different principal quantum number states
of Rydberg excitation. The coupling Rabi frequency scales with principal quantum number of

the Rydberg state as, n®/?

. For the study of density dependent phase-shift in the different
quantum number states the coupling power are adjusted in order to keep same coupling Rabi
frequency for all the data. The probe Rabi frequency was kept same for all the data. Since the
Rydberg population does not change appreciably in the non-interacting regime, the argument of
the integration is a constant which will help to find gain of the experiment. In the measurement
of density dependent phase-shift, the gain parameter can be evaluated in non-interacting regime

as follows.

6.3.1 Gain of the OHDT experiment

The phase-shift experienced by the probe due to the dispersion is given by ¢ = %”—l%( X3L)-

Therefore the phase-shift can be evaluated as,

k.l "0
6= "2y [ £ @) (6.13)
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Comparing Eq. (6.11) and (6.13), we get,

v, = Gyl / £()f (0)prrd] (6.14)

In Eq. (6.14), the term inside the third bracket does not depend on density in non-interacting
regime. Therefore the slope of the density dependent OHDT signal due to the dispersion gives

the value of gain.

A Monte Carlo simulation is done to evaluate the mean and standard deviation of gain from
the experimental data. The mean and the standard deviation of the density, as well as the phase
shift corresponding to the individual data point, are known. We have generated the normal
distribution of the density and the phase shift for individual experimental data points by taking
respective errors as full-width half maxima (FWHM) of the distribution which peaked at the
respective mean experimental values. There are two normal distributions for each experimental
data point with respect to the error in density and the error in phase shift measurement. We
have sampled 1000 points from the density and the phase shift distributions for each of the
experimental data. The x>-fitting (Appendix C) using the formula Eq. (6.14) is done to fit all the
individual density-dependent phase shift profiles to find the statics of the gain parameter. This

process gives a distribution of gain as shown in fig. (6.7a). The distribution with a Gaussian
G=(G) )2
)

oG

function is fitted which is given by, P(G) = Fy + 6G‘f/?e_2(
bl
given in the Table. (6.1).

. The fitting parameters are
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Figure 6.7: Evaluation of overall gain of the experiment. (a) The probability distribution of
gain generated by fitting 1000 sample of possible curves generated due to 1000 times repeated
measurement in the non-interacting regime (for n = 35 in low-density regime). The distribution
is fitted by a Gaussian curve from which mean ((G)) and standard deviation 0G is evaluated.
(b) Fitting of the experimental data for n = 35 at the low-density regime. The fitted line is
generated by using the average gain (G).

Table 6.1: Gaussian fitting of the gain distribution.

| Fitting parameter | Fitted value
= —0.0014 + 0.0004
@ 0399 %10
0G 0.047 £ 0.0004
A 0.004+5 x 1074
FWHM 0.055
Height 0.07

There the gain is found to be (G) = (0.39+0.047) V/mrad. The goodness of the gain fitting

is depicted in fig. (6.8). The number of experimental data points dof = nq — npere = 4 for
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the gain fitting and the number of parameter n,,,, = 1. Then, the degrees of freedom dof = 3
(Appendix C). From the distribution depicted in the fig. (6.8), the most of x?/dof is less than
0.2 and the total distribution situated x?/dof < 1 which signifies that the fitting for gain is
good (Appendix C).
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Figure 6.8: Goodness of the gain fitting.

6.3.2 Density dependent phase shift and the evaluation of Rydberg block-
ade radius r;(n)

In an ensemble of atoms, in presence of the Rydberg excitation field, only one Rydberg ex-
citation is allowed inside the blockade volume. This single excitation suppresses the other
atoms from getting excited inside the blockade volume. Even though the other atoms inside

the blockade volume are not excited, they contribute to the susceptibility collectively. All the
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atoms inside the blockade volume participating in cooperative blockade process collectively
are called as a single superatom. The average number of atoms inside the blockade sphere can
be found as N, = nyVj, where ng is the density of the atomic vapor and Vj is the blockade
volume. The number of atoms present in each blockade sphere follows the Poisson distribution

Ny _
N, e

— — N,
which is characterized by INV,. The distribution can be written as, P(Ny, N}) = ~t+ " Then

the total susceptibility of the probe can be represented as

X=>_ PNy, Ny)Xaup(Ny) (6.15)
Np=1

Here xsu,(IV,) 18 the susceptibility experienced by the probe due to a superatom containing [V,

number of atoms inside the blockade sphere.The x,,(/V,) is calculated by using MSE.

As we have seen from Eq. (6.15), the number of atoms present in each superatom follows

the Poisson distribution. Therefore, the p,,, can also be calculated as
Pavg = Z P(Np, N)pyr(N) (6.16)

Where P(N,, N) is a Poisson distribution function. It is observed that due to the wave-vector

mismatch, all the atoms present in the blockade sphere cannot contribute to the Rydberg block-

ade process. The atoms within the velocity range from o — S}ZZ to 0 + 22‘[ contribute to

the Rydberg blockade process, where v is velocity of atoms which resonantly interact with

the probe and the coupling laser. © can be found from the equation A.;;(0) = 0, which
02-02

gives, v = L[A + A, +m]

The number of atoms per blockade can be calculated as,

Ny = Zring f(0) ( o ) The fitting function for the density dependent phase-shift is given
by,

V, = Gno/ £(v) f (V) pangdv (6.17)

For the fitting, we need to construct the Gradient vector and Hessian matrix as discussed in
Appendix C. Here, r} is a fitting parameter. Therefore, it is required to find a differentiation
of the fitting equation with respect to r}. The average number of atoms N, contributing to the
Rydberg blockade process strongly depend on 7. The transit time decay due to transverse ve-
locity of atoms I, is a function of Rydberg blockade radius 7;. Hence, the Rydberg population
prr also depends on 73, but it is a slowly varying function of r;, and hence the 7, dependance of

prr can be neglected [67]. Then, the differentiation of p,,, with respect to 'rg’ is given by,

o) Qe ~=, N

%[pavg] nOf( ) Ak :l(ﬁb -

1)P(Ny, N)p,r(N) (6.18)
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Eq. (6.18) is used to construct the Hessian matrix for y2-fitting of the experimental data.

The Rydberg population p,..(N) of Eq. (6.16) & (6.18) is calculated by using MSE. The
decay rates are taken to be I',; = 1.5 MHz, v,y = 300 kHz, I'4;;y = 1 MHz and T', (13,) = %
Since 7 is in pm I, (73) is in MHz. We took T',, () = 50 MHz.

A similar Monte Carlo approach and y?-fitting is done for density dependent phase shift
data as we discussed for the fitting process to find the gain. For particular principal quantum
number, we simulate repetitive measurement of density dependent phase shift. Then, sampled
gain from a normal distribution with FWHM §G = 0.047 V/mrad and peaked at (G) = 0.39
V/mrad in order to do x? fitting for 1000 dispersion dependent phase shift profiles to find the
statistics of the parameter 7. We repeat the process for all the principal quantum number states
(n = 35, 40, 45, 50 & 53). For each quantum number state, (r) and dr; determined from the
fitting are shown in Table (6.2). By taking the (r}), the fitted curves and the experimental data

for all the principal quantum number states are shown in fig. (6.9).
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Figure 6.9: Non-linear absolute phase shift of the probe measured in the experiment due to
the two-photon transition to the Rydberg states with principal quantum numbers n = 35 (o),
n =40 (), n = 45 (A), n = 50 (¢) and n = 53 (e). The solid lines are the y?-fitted
curves using the model described in the text. The dotted line is the expected signal for the
non-interacting atomic ensemble.

The goodness of the x? fitting is depicted in the fig. (6.10). The degrees of freedom for the
data corresponding to n = 35, 40, 45 and 50 is 8 since the number of data point is 9 and the
number of parameter to be fitted in 1. For n = 53 the number of experimental data points are

10. Therefore the degrees of freedom is 9.
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Figure 6.10: Goodness of the density dependent phase shift fitting. (a) n = 35, (b) n = 40, (¢)
n =45, (d) n = 50 and (e) n = H3.

It is to be noted that the distribution of x?/dof for all principal quantum numbers are below
2 which is good. From the fitting the principal quantum number dependent statistics of 7} is
given in the Table. (6.2).

Table 6.2: Blockade radius from the statistical analysis of density dependent phase shift data

| n | 7 | or¢ (Error in 1) |
35 28.4 3.0
40 62 6.2
45 130.7 13.6
50 230 24
53 315 36
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6.3.3 r; scaling with respect to the principal quantum number n*
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Figure 6.11: r} as a function of n*. The solid line is the fitting to find, r§ = (1.5 + 0.6) X
10—7 % n*5.47:|:0.3 ,U/mB-

The reduced principal quantum number is defined as n* = n — §, with d, being the quantum
defect [58,61-66]. For our calculation, the quantum defect is taken as 0y = 2.641. We have also
done Monte Carlo simulation and x? fitting of principal quantum number dependent ;. The
data points are plotted in the fig. (6.11) which are directly taken from the Table (6.2). Gaussian
distributions are generated by taking respective 075 (n*) as FWHM and centred at rj(n*). We
sampled 10000 data points for each of the r} and simulated repetitive experiment measurement.
Therefore, 10000 principal quantum number dependent 73 profiles are generated for the same
experimental situation and y-fitting is done in log scale with the equation, log r§ = a log n*+b.
The fitted line is depicted in fig. (6.11). The statistical distribution of the fitted parameters give
a=>547+0.3and b= —15.6 + 1.12.
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Figure 6.12: Goodness of the principal quantum number dependent 77} fitting.

The scaling law of r} with principal quantum number is found to be r} = (1.5 £ 0.6) x
1077 x n*54™03 ;m3  The van der Waals interaction strength is given by, Cs = RS and
hence Cg ~ n*!! with below 6% error. This gives the direct evidence of superatom formation
due to Rydberg blockade interaction in the thermal vapor. The goodness of the principal quan-
tum number dependent 7 fitting is depicted in fig. (6.12). It is to be noted from the distribution
that the x2/dof is less than 1 for all the fitting. Therefore the quality of the fitting is very good.

6.4 Conclusion and application

The experiment and the analysis with MSE confirm that the multi-atom coherence due to the

formation of the superatom is possible in the thermal atomic vapor. The verification of the
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van der Waals interaction scaling law, Cg ~ n*!! confirms the existence of van der Waals type
Rydberg blockade in the thermal vapor. This is the first ever evidence of multi-atom coherence
due to the Rydberg blockade interaction in thermal atomic vapor using continuous wave. The
observation opens up a provision to do quantum engineering and Rydberg quantum optics us-
ing thermal atomic vapor. Using micron size vapor cell and focussing the laser beam tightly to

the order of blockade radius, one can perform the experiment with a single blockade sphere.

It also claims the strong nonlinearity due to the multi-atom coherence at the single photon
level. In order to observe the single photon non-linearity it is necessary to satisfy the condition
Qcrp > Ty, where Q.5p = /Ny and Ty is the total dephasing of the system which is typically
of the order of 3 MHz. The two-photon Rabi frequency (2 is inversely proportional to the
minimum beam waist of the laser beam. For single photon power 0.25 pW [13], the two-
photon Rabi frequency is given by {2 = 3 MHz for minimum beam waist of 100 ym. Then, the
superatom Rabi frequency is given by .5y = v/N,Q2 = 6.15 MHz > T’ for the vapor density
of 10" c.c™!. Therefore the single photon nonlinearity due to multi-atom can be observed.
Therefore the thermal vapor system is a good candidate to do Rydberg quantum optics which

is advantageous for technological advancement towards quantum engineering.
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Chapter 7

Experiment towards Ultra-cold atoms

In atomic physics, the objects of our study are atoms. At room temperature, the atom flies at the
speed of the jet airplane. Historically, the atomic physicists studied atoms which have the speed
of a jet airplane. It would always be better to have an ensemble of atoms which are very slow or
at rest, so that one can perform precision measurement on atoms [1—7]. The first motivation to
have cold atoms is to build atomic clocks [8§—12]. Nowadays the atom clocks are used to main-
tain time and frequency standard. Contextually, the cold atoms are also used to study Rydberg
blockade [13-24]. In thermal atoms, the line-width of a transition is dominated by the Doppler
effect due to the atomic motion, which follows the Maxwell Boltzmann velocity distribution
corresponding to the temperature of the ensemble. Cooling of atoms near the Doppler limit
~ 100 pK helps to get rid of Doppler broadening. In the experiment with thermal atoms (chap-
ter 6), the dephasing of the system is mostly dominated by superatom dephasing and relative
laser frequency noise between the probe and the coupling laser. The relative laser frequency
noise can be reduced by locking the lasers in EIT transition line. The superatom dephasing
consists of the dipole dephasing due to the transverse velocity of the atoms relative to the laser
propagation and the dipole dephasing due to the difference in velocity of the constituent atoms.
In the frozen ensemble of atoms, both the dephasing will be neglected. As a result the multi-

atom coherence will be dominated by superatom Rabi frequency only [17,30-33].

On further cooling by the evaporative cooling process, Bose-Einstein condensation (BEC)
can be reached. The typical size of the cold atom is few mm whereas the typical size of BEC is
few pm. Therefore, for the Rydberg excitation to a large quantum number state (e.g. n = 70),
the Rydberg blockade radius will be larger than the size of the BEC. In this case, the total
BEC collectively participates in the cooperative Rydberg excitation in a single Rydberg block-
ade [25,26]. It is also observed for BEC loaded in the optical lattice [27]. Since the number
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density of the BEC is very high (~ 10'2 c.c.7!), a very strong Rydberg blockade interaction can
be probed. A study of Rydberg excited electron coupled with BEC is also performed [28,29].

The objective of laser cooling and trapping of atoms is not only to increase the spatial
density of atoms but also the phase-space density of atoms. Cooling the atomic sample in
momentum space helps to reduce the micro-motion of atoms inside the spatial trap. It reduces
the decay of the excited state of the atom due to collision or transit-time phenomena which
leads to narrow line-width of the atomic transition. There is a significant application of narrow

atomic transition in the field of precision spectroscopy.

7.1 Design of cold-atom setup

In order to prepare the cold atoms in lab, it is required to have a vacuum chamber which can
sustain ultrahigh vacuum and a magneto optical setup to trap atoms inside the vacuum chamber.
In this section, we will discuss the optical and mechanical designs for cold atom setup. The
objective of having cold atoms is to study Rydberg blockade induced many-body effect and
Rydberg quantum optics.

7.2 Optical setup

A strategic frequency setup is shown in fig. (7.1). Here, we need to have a saturation absorp-
tion spectroscopy to stabilise the laser frequency on a cross-over transition line (as we have
discussed in Sec. 3.3 and 3.4) as shown in the fig. (7.1). AOMI is used to generate the fre-
quency of light where the laser has to be stabilised. AOM?2 is used to generate MOT beams.
In order to generate spin polarise beam, we have used AOM3. Using AOM4 and AOMS ex-
perimental probe lights are generated. AOMBS6 is required to generate the light to be used in
Rydberg-EIT locking in order to reduce relative frequency noise between probe and coupling
laser, which will be used in the heterodyne detection experiment. The optical setup for cold
atom and Rydberg experiment is depicted in fig. (7.2). The laser light is generated from an
ECDL and passes through the optical isolator (OI) to prevent any optical feedback from any
other optical component used in the experiment. The saturation absorption spectroscopy (SAS)
is done in order to stabilise the laser in a particular rubidium spectral line. The optical setup for
SAS is depicted in the sector A in fig. (7.2). In the sector B of fig. (7.2), the laser beams for
optical trap is generated by using AOM2. A repump laser prepared by using a different ECDL,
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Figure 7.1: Frequencies of light required to trap atoms and generation of probe lights for ex-
periment.

is taken to the setup using a fiber. The repump laser is mixed with the MOT beam by using a
PBS and they are splitted into 3 equal powers and coupled with three different fibers. These
lights will be used for optical trap as well molasses cooling. Sector C of fig. (7.2) is designed
to prepare spin polarise light by using AOM3. The probes for optical heterodyne detection
technique are generated in sector D of fig. (7.2). The AOM4 shifts the frequency of the main
laser in such a way that the generated laser will be typically 180 MHz blue detuned from the
atomic transition 554 /5(F = 3) — 5P;3/5(F" = 4) in order to get rid of absorption of probe.
Another probe is generated by taking the output of the AOM4 and made to double pass through
AOMS so that they have the frequency offset around 400 MHz, which is much greater than the

expected linewidth of the two photon resonance signal in cold atom system.
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Figure 7.2: Optical setup to trap atoms and to perform experiment. Note that the beam splitter
which are not marked are PBS.

7.2.1 Generation and stabilisation of repump laser

As we have mentioned in the Sec. ?? that, due to the quadruple decay the population cannot
go to initial state. Therefore, the atoms cannot contribute to the trapping process and may go
outside the trap. In order to avoid the loss, a repump laser is required. An ECDL operating
at the 780 nm is used to derive a laser beam which passes through an optical isolator. Then, a
saturation absorption spectroscopy (SAS) is done as shown in fig. (7.3). The optical signal for
SAS is detected by a FPD (Appendix.A). The electronic signal from FPD is taken to Digilock-
110 which is connected to SC-110. The frequency of the laser is scanned by SC-110. The laser
frequency is locked by Digilock-110 as we described in Sec. 3.4. Here, one part of the laser
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Figure 7.3: Generation and stabilisation of repump laser.

beam is used to lock the laser and another part is coupled to a fiber. The other part of the fiber

is depicted in sector B of fig. (7.2), where repump gets mixed with trapping laser.

7.2.2 Stabilisation of TA-SHG-Pro

The coupling laser for optical heterodyne detection technique has to be derived from Toptica
TA-SHG-Pro. In order to minimise the relative laser frequency noise between probe and the
coupling laser, the coupling laser has to be locked in Rydberg-EIT signal. Then, the phase of the
probe and the coupling laser will be correlated and hence the relative laser noise reduces. TA-
SHG-Pro has a master laser operating at 960 nm, which passes through two tapered amplifier
(TA) to trigger the second harmonic generation (SHG) process by a non-linear crystal placed
inside the cavity as shown in fig. (7.4). The master laser is scanned by an external scan control
module SC-110. The output of the SHG-cavity has wavelength of 480 nm. The output of the
blue laser is splitted into two part. One part is used in OHDT experiment for Rydberg excitation
and rest of it is used to make Rydberg-EIT. Since experimental probe is blue detuned, the
coupling laser has to be red detuned. In order to make the blue laser resonant for the transition
5P3/5 — nS/2, an AOM setup is required to shift the frequency of the blue laser. A double
pass AOM alignment is depicted in fig. (7.4). The frequency shift of the blue laser is such
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Figure 7.4: Setup for stabilisation of blue laser on Rydberg-EIT signal. The blue arrows signify
the laser light of wavelength 480 nm. The red arrows coming out from a fiber coupler has the
wavelength of 780 nm. The red arrows inside the TA-SHG-Pro has the wavelength 960 nm.
The dashed line directs the flow of the electronic signal.

that together with 780 nm laser it will satisfy Rydberg-EIT condition. A dichroic mirror is
placed to counter propagate the blue laser to the 780 nm laser inside the medium. The optical
EIT signal is detected by a FPD (Appendix. A). The electronic signal of the FPD is taken to
Digilock-110 to lock the master laser in EIT-transition line. The similar mechanism has to be

used as described in Sec. 3.4.

7.3 Vacuum setup

In order to prepare cold atom, we have designed a vacuum chamber which can sustain ultra high
vacuum. The mechanical design of the chamber is done such that the trapping optical field and
the lasers involved in OHDT can easily enter into the chamber and exit from the chamber. The
schematic diagram of cold Rydberg experiment is given in fig(7.5). The objective of getting
ultra-high vacuum is to reduce the scattering of rubidium atom from the natural gas elements.
Natural gas contains 78.084% of N, and 20.946% of O,. Rest of the contents are H,, He,
NyO, NOy, COy, C'Hy etc. There are few inert gas, for example Ar, Ne, Kr, Xe etc. The
cold rubidium atom can collide with all these room temperature atoms and molecules and can

acquire kinetic energy. With sufficiently higher kinetic energy, the atoms can easily fly out of
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Figure 7.5: Realisation of experiment on Rydberg excited cold atoms. The red lasers are the
MQOT lasers. The blue and the orange lasers together satisfy the two photon resonance to the
Rydberg exited state.

the trap. Hence the trapping will be inefficient. Our goal is to reach the vacuum of the order
10~ mbar, where the density of natural gas is expected to be almost absent and hence, increase

the stability of cold atom.

7.3.1 Design of vacuum chamber and flange multiplexer

The spherical octagonal vacuum chamber has eight DN40CF flange in each arm of the octagon
and two DN10OCF flange is placed as shown in fig. (7.6.a). The width of the chamber is 2.78
inch. Since we need two experimental probe and one coupling beam to enter the chamber in

order to do Rydberg experiment, we have designed a flange multiplexer. The flange multiplexer
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contains a one DN63CF flange perpendicular to its base and four units of DN40OCF which has
15 inclination with the DN63CF-tube and the base of the multiplexer is DN100CF as depicted
in fig. (7.6.b). The flange multiplexer is designed in such a way that the anti-Helmholtz coil
can be held in its rim. The vacuum chamber along with flange multiplexer is shown in the fig.

(7.6.c). A commercial flange multiplexer is connected to the right end of the vacuum chamber.

Figure 7.6: (a) Spherical octagonal chamber. (b) Flange multiplexer. (c) Flange multiplexer
connected with main chamber.
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7.3.2 Integrated mechanical design for vacuum setup
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Figure 7.7: Pump and gauge assembly with vacuum chamber.

In order to have ultra high vacuum inside the chamber a turbo pumping station and an
ion pump are required. Turbo pumping station (TPS) creates vacuum upto 10~7 Torr from
atmospheric pressure. A pressure gauge is connected with the pumping station in order to
monitor the pressure inside the assembly. The turbo pumping station with DN10OCF inlet
flange is connected to a flexible bellow of DN40OCF via a series of DN100CF to DN63CF
reducer and DN63CF to DN40OCF reducer. The bellow is connected to a DN40CF four-way-
cross via a gate-valve. This four-way-cross is connected to one of the DN40OCF flange of the

vacuum chamber. After reaching the pressure of 10~ Torr by TPS, it has to be switched off and
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the gate valve has to be closed. An ion pump (with DN10OCF inlet flange) brings the pressure
to 107! Torr which is connected to the four-way-cross via a series of DN100CF to DN63CF
reducer and DN63CF to DN40CF reducer. A gate valve is placed between the reducer and the
four-way-cross. An ultra high vacuum gage is connected to the left over port of the four-way-
cross in order to monitor vacuum inside the assembly. Note that, the UHV-gauge has to be
switched on when the pressure of the assembly reaches to 10~7 Torr. The integrated vacuum is

depicted in two different views in fig. (7.7.a) and fig. (7.7.b) respectively.

7.3.3 Opto-Mechanical cage system design
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Figure 7.8: Design of cage adapter.

An opto-mechanical cage system is required to mount and align the MOT beam in vacuum
chamber. The cage system has to be mounted on a cage adapter and the cage adapter should

be connected to the DN40OCF view port of the vacuum chamber. The design of cage adapter
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is depicted in fig. (7.8). The optical cage assembly is connected to the cage adapter. There
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Figure 7.9: Opto-mechanical cage assembly. (a) Assembly for input MOT beam to the chamber.
(b) Assembly for retro-reflected MOT beam.

are two assembly setups that are depicted in fig. (7.9.a & b). fig. (7.9.a) is the design for
input MOT beam. The MOT beams are prepared and taken from the optical setup described
in fig. (7.2) using a fiber. The other end of the fiber is connected to the kinematic cage mount
(threaded) by a terminated fiber mount. Since, the fiber mount does not have any collimator,
the laser starts diverging as soon as it comes out of the fiber. A lens with a cage lens mount
is also placed such a way that the laser light at the output of the lens will have the diameter
of 1 cm. A cage rotation mount with a %-plate is inserted in order to make perfect circularly

polarised light for MOT. All these mounts are connected with one face of a kinematic mount by
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4 cage rods. The other side of the kinematic mount is connected to the cage adapter by using
another set of 4 cage rods. The kinematic mount is used to align whole cage assembly with
respect to the viewport. The kinematic fiber mount aligns the laser with respect to the cage
assembly. fig. (7.9.a) is a similar design without the lens where a mirror with kinematic cage
mirror mount replaces the fiber mount. The assembly is designed to retro reflect the trapping
beam to the chamber. A %-plate is placed is such a way that the polarisation of the incident

circularly polarised light can be flipped.
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Chapter 8

Summary and future plan

The existence of the Rydberg blockade in thermal atomic vapor is found while driving the
atomic ensemble by the continuous optical field. An optical heterodyne detection technique
(OHDT) is developed to investigate the Rydberg blockade experimentally. The OHDT is estab-
lished in the Rydberg electromagnetically induced transparency (EIT) medium. The measure-
ment of absorption and dispersion of a probe beam while passing through the atomic medium is
demonstrated using this technique. A model of EIT involving two probe lasers and a coupling
laser is presented to explain the experimental observations. The nonlinear susceptibility of the
probe beam is estimated from the experiment. To study the Rydberg interaction, it is required
to perform the experiment in the high-density regime of the atomic vapor. But the absorption of
the probe beam is higher in the higher density of vapor because it satisfies the single photon res-
onance condition while studying the Rydberg EIT. In order to study strong Rydberg interaction
in the high density of atomic vapor, the probe laser is stabilized far detuned from single photon
resonance but together with coupling laser, it satisfies two-photon resonance condition to the
Rydberg excited state. The probe laser is stabilized outside the Doppler-broadened hyperfine

transition of ®Rb so that the experiment can be carried out with minimal probe absorption.

The dispersion spectrum of the probe beam observed in this experiment looks like an ab-
sorptive signal. The dispersion fringe shape is explained by using a non-interacting model in-
volving a three-level system with a probe and a coupling laser. It is found that the fringe shape
is dispersive for the low probe Rabi frequency and it becomes absorptive for higher probe Rabi

frequency. This observation is supported by the model presented.

The precision of OHDT for the measurement of the Rydberg population and the phase-shift

due to dispersion is studied. It is found out that the minimum Rydberg population measured
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using the technique is 10~7 and the minimum phase-shift due to the dispersion is 3 pradians.
A comparison study of OHDT with direct absorption measurement (DAM) of the probe is also
studied. Since OHDT does not get affected by small polarisation rotation due to the imper-
fection of the optical component used in the experiment, the sensitivity of OHDT to measure

phase shift and the Rydberg population is much reliable than that of DAM.

The technique is extended to study the Rydberg blockade in the thermal atomic vapor.
A model based on classical counting confirms the existence of the Rydberg blockade phe-
nomenon. A many-body model based on superatom formation due to the Rydberg blockade
interaction is also presented. A suppression of density-dependent phase-shift due to dispersion
is observed in the experiment for strong Rydberg-Rydberg interaction regime. The many-body
model presented agrees well with the observation. A fundamental scaling law of van der Waals
interaction strength (Cs) with the principal quantum number of the Rydberg excited state is
verified by the analysis of the experimental data using the many-body model. This confirms
that van der Waals type Rydberg blockade exists in the thermal atomic vapor. The formation of
superatom in thermal atomic ensemble justifies the first ever evidence of multi-atom coherence
in thermal vapor while driven by a continuous laser field. This opens up the provision to do
Rydberg quantum optics using thermal atomic ensemble such as the design of coherent single

photon source.

A cold atom setup is designed in order to carry out the study of Rydberg blockade with the
frozen atomic ensemble. The OHDT experiment for the Rydberg blockade can also be done
using the cold atom system. Using the technique, the dispersion spectrum of a probe interact-
ing with cold atoms can be studied. It is observed that the transition from non-interacting to
Rydberg blockade is a second order phase transition [1,2]. The Rydberg blockade provides
ordering in the system as shown in fig. (8.1). The cold-atom system is required to study the
phase transition phenomenon more precisely. The anti-blockade interaction can also be studied
here. We have seen that by changing two-photon detuning from red-detuning to blue-detuning
the interaction can be changed form Rydberg blockade to Rydberg anti-blockade. Therefore a
phase diagram can be constructed in terms of two-photon Rabi frequency, two-photon detuning

and the density of vapor.
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Figure 8.1: Ordered phase created by the Rydberg blockade interaction. The superatoms are
arranged such a way that they can from an ordered structure. In order to picturesque the order,
the imaginary green lines are used.

As we have mentioned that the Rydberg-EIT experiment cannot be extended to perform
experiments in high densities in order to study Rydberg blockade interaction. The issue is the
large probe absorption due to larger optical path length inside the rubidium vapor cell. One of
the prescription to get rid of this problem is to reduce the optical path length to the order of
pm range [3] as shown in fig. (8.2). The accumulated phase shift due to the Rydberg block-
ade interaction can be measured fig. (8.2a). On further reduction of the optical path length to
few pm, as shown in fig. (8.2b) which allows performing the experiment with single blockade

sphere.

Due to the Rydberg blockade action, the Rabi frequency is modified as v/ Ny{2. s where IV,

is the number atoms inside the blockade sphere. In our experiment, a very small fraction of
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velocity class of atoms contribute to the blockade sphere due to wave-vector mismatch (Ak)
between the probe and the coupling laser in the two-photon resonance process. Using multiple
photon cascaded process the wave-vector mismatch can be reduced. The all the velocity class
will contribute to the blockade process. In this way, the Rabi frequency can be increased
two order of magnitudes more than our current experiment which is expected to be useful for

Rydberg nonlinear quantum optics at single photon level.

(a)

(b)

Figure 8.2: Rydberg-EIT in the thin atomic vapor cell. (a) Thin vapor cell with optical path
length ~ 100 pm. This kind of vapor cell provides us to work with few Rydberg blockade
sphere. (b) Thin vapor cell with optical path length ~ 10 ym. The typical Rydberg blockade
radius for Rydberg excitation to the state having principal quantum number, n = 100 is 10
pm. Therefore this kind of setup gives us the provision to do experiment with single blockade
sphere.
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The postulate of Kramers Kronig relation for linear optics does not hold true for the sys-
tem. The modification of the causal function due to cooperative Rydberg interaction is another

fundamentally interesting problem to solve.
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Appendix A

Design of a fast photo-detector

Fast photo-detectors (FPD) are frequently used in optics experiment. In our experiment we have
used FPD for monitoring the atomic spectroscopy signal and also stabilising laser frequency on
spectroscopic signal. A circuit design of a FPD has been presented in fig .(A.1) using a pair of
photodiodes (S1223-01, Hamamatsu).
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Figure A.1: Electronic design of fast photodetector circuit.

The photodiodes are connected to the main circuit in opposite orientation to each other. The
reason behind the setup is to have the provision to do differential optical detection of two optical
fields. The photodiode signals are taken to a OP-AMP inverting amplifier. An AD-708 chip
has been used for OP-AMP. Pin 8 and 4 are used for bias which are given by +v.. and —v,,.
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respectively. Here vee mar = 22 V. If v,4 1s the net photodiode signal, then the output amplifier
signal is given by, vy = —If—fvpd where 7; is the net input resistance and the bridge resistance
Ry can be any one of R, Ry, R3 and R,. The gain of the amplifier, A, = —If—f can varied by
choosing different bridge resistances. In our detector, we have used 10 k€2, 100 k€2, 1 M2 and
10 MS.
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Appendix B

Electronic design of AOM driver

In optics experiment, AOMs are used for frequency shifting, frequency modulation of laser light
and controlling the laser intensities. It is made of single birefringent crystal. In order to drive
the crystal an external radio frequency (RF) source is required. The RF driver is commercially

available and also can be home made.

_—

Figure B.1: Electronic design of an AOM driver.

The AOM RF driver is made of voltage controlled oscillator (VCO) (POS-100, Mini circuit),
an RF attenuator (ZX73-2500-S+, Mini circuit) and an amplifier (ZHL-3A+, Mini circuit).
When 12 V bias is on at the pin 1 of VCO, the variation of input control dc voltage at pin 8
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from 1 to 15 V is able to vary the RF output frequency from 44 to 104 MHz. The output RF
signal appears at the pin 2 of VCO. A low noise dc voltage source has been used to derive
input control voltage for the VCO in our experiment. An RF voltage variable attenuator has
been used at the output of the VCO in order to control the output power of VCO. Pin 2 has
been used to bias the attenuator. A control dc voltage of 0-15 V has been applied to pin 3 in
order to control the RF attenuation from 4 to 40 dB. An RF amplifier has been used to amplify
the output voltage to optimally drive AOM crystal. The voltage regulators LM7824, LM7815,
LM7812 and LM7805 has been used to generate bias and control voltages for VCO, attenuator

and amplifier.
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Figure B.2: VCO characteristic curve.

The VCO characteristic curve is depicted in fig. (B.2). Therefore any desired frequency shift
of the light can be introduced by a particular dc control voltage obtained form the characteristic

curve.
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Appendix C

Fitting of a function numerically and
goodness of fitting

In this appendices we will describe how to fit a data set using a function. In this context, we
explain the methodology of nonlinear x? fitting and weighted x? fitting. We will also discuss a

way to test the goodness of fitting.

C.1 ’-fitting

Let us consider a function F'(a, z) where z is the variable of the function and a = (ay, as, ...),
represents the parameter space of the function F'. Consider a data set with n data point which

can be represented as fi, fa, ....., f,,. Then the \? defiation can be represented as,

() = 37 S~ Fla, ) .

i=1 1
For an arbitrary parameter space, the x? is represented geometrically in the fig. (C.1). The sum
over all the area of the squares in the figure gives the x? value. The objective is to find out a
parameter space where the total area will minimise and hence the x2. The curve for optimised

set of parameters a for which the y? is minimised, depicted by a dashed curve in fig. (C.1).

One of the efficient way of optimising parameter space by constructing the gradient vector
and the Hessian matrix for differential parameter space and solve it iteratively [1]. The gradient

vector and the Hessian matrix of the function is given by,

T | oF
9*x? " 1 9F OF "1 O°F
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F(a,z), f(z)

v

Figure C.1: A representation of x? difference of a set of data points from a function with
an arbitrary parameter space (depicted as a solid line). The dashed line represents the same
function with optimised parameter space which gives minimum y? value.

In the Hessian matrix (Eq. (C.3)), the second term contains r; = -5 (F(a, z;) — f;) which
is small near the optimum parameter space. Hence, it is customary tolneglect this term. The
advantage of neglecting this term is to calculate the Hessian matrix without calculating the sec-
ond derivative of the function F'(a, x).

The Jacobian matrix of the residual is defined as .J;; = g%z. Then we can rewrite the
gradient vector and the Hessian matrix as, g(a) = 2Jr and G(a) = 2JJ? respectively. We
can directly use the Newton’s method which gives the iteration J® J#®)7 5a = — J®)1®) which
has to be solved for da followed by the equation a**!) = a®) 4+ §a. Here the Jacobian
J*) has to be evaluated at a = a(®). The equations which has to be solved in each iteration

are the algebraic equations. The set of algebraic equations can be solved by singular value

decomposition (SVD) [1].

C.2 Goodness of the fitting

The goodness of the fitting is characterised by the quantity x?/dof. dof is the degrees of

freedom which is defined by dof = Naata — Nparameter- Here Ngqy, 18 the number of data point
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present in the data set and Npg,agmeter 15 the number of parameter (dimension of the parameter
space) has to be fitted in the fitting process. There exist a thumb rule for the goodness of -
fitting. For x%/dof < 1, itis the best fitting for x*. If 1 < x?/dof < 2, the fitting is acceptable.
If x?/dof > 2, the fitting cannot be acceptable or it is a bad fitting.
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Optical nonlinearity of Rydberg electromagnetically induced transparency in thermal vapor using
the optical-heterodyne-detection technique
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We discuss the optical-heterodyne-detection technique to study the absorption and dispersion of a probe beam
propagating through a medium with a narrow resonance. The technique has been demonstrated for Rydberg
electromagnetically induced transparency in rubidium thermal vapor and the optical nonlinearity of a probe beam
with variable intensity has been studied. A quantitative comparison of the experimental result with a suitable
theoretical model is presented. The limitations and the working regime of the technique are discussed.

DOI: 10.1103/PhysRevA.94.023839

I. INTRODUCTION

Self-phase modulation (SPM) and cross-phase modulation
(XPM) are at the heart of strong photon-photon interactions
inside a medium which plays an important role in building
quantum gates [1,2], quantum entanglement [3], and nonde-
molition measurement [4] of single photons. Strong XPM of
photons based on electromagnetically induced transparency
(EIT) has been theoretically proposed [5] and demonstrated in
thermal vapors [6—8] as well as in cold atoms [9—11]. Enhanced
SPM of photons mediated by Rydberg blockade interaction in
atomic vapor has been proposed [12—-14]. Rydberg blockade
induced photon-photon interaction has been experimentally
demonstrated for weak classical light [15,16] and single
photons in cold atoms [17,18].

EIT based XPM has been measured using various in-
terferometric techniques [6—10]. Optical heterodyne is one
of such techniques which has been extensively used for
the measurement of absorption and dispersion of coherent
two-photon transition in an atomic ensemble [19], Zeeman
coherence induced anomalous dispersion [20], and enhanced
Kerr nonlinearity in two-level atoms [21]. The technique has
also been used to measure the XPM of a probe and a control
beam in an N system using cold atoms [9,10,22]. The basic
principle of the technique is based on using two probe beams
propagating through the dispersive medium with a frequency
offset larger than the resonance linewidth. Both the beams
cannot be on resonance while scanning their frequencies and
hence they undergo different phase shifts. This differential
phase shift appears in their beat signal which can be measured
by comparing with the phase of a reference beat signal of the
same two beams and gives information about the dispersion.
If the probe beams are sufficiently weak, then the measured
optical nonlinearity using this technique can be compared with
the standard models involving a single probe beam. However,
if the intensity of one of the probe beams is increased, then
the strong probe beam dresses the atoms interacting with the
weak probe beam which leads to the erroneous measurement
of the nonlinearity. If both the probe beams are strong then the
issue is even more serious.

“arup.b@niser.ac.in
ta.mohapatra@niser.ac.in
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023839-1

In this paper, we have demonstrated this technique to
measure the SPM of a probe beam propagating through a
Rydberg EIT medium in rubidium thermal vapor. We show
that the observed probe transmission and dispersion cannot be
explained with the standard EIT theory for the probe beam
with large intensity. We present a model of EIT consisting of a
strong-coupling beam and two probe beams with a frequency
offset to explain the experimental data. The paper is organized
as follows. In the next section, we discuss the theoretical
model. The experimental method of heterodyne-detection
technique is presented in Sec. III followed by the measurement
of optical nonlinearity in Sec. IV.

II. THEORETICAL MODEL

In order to explain the transmission and dispersion of a
probe beam propagating through a Rydberg EIT medium, we
consider a model of a three-level atomic system interacting
with two probe laser fields and a coupling laser field in ladder
configuration as shown in Fig. 1(a). The coupling laser field
with frequency @, counterpropagates the copropagating probe
beams with frequencies @, and w, + 6 through the vapor
cell. The probe field with frequency w, + 6 is considered as a
weak field. In a suitable rotating frame and with rotating wave
approximation (RWA), the total Hamiltonian of the system can
be written as

* * L0t
5 0 » Qb+ Qe 0
H=§ Qp1+sze Z(Ap—kpv) Qc P
0 Q. 2(Ay — Akv)

where Q,,1, 2, and £2, are the Rabi frequencies of the strong
probe, weak probe, and the coupling beams, respectively. k.
and k, are the wave vectors of the coupling and probe lasers
with Ak =k, — k.. The two-photon detuning is given by
Ay = A, 4 A visthe velocity of the atoms in the vapor. The
density matrix equation is given by p = %[H ,p] + Lp(p).
Lp(p) is the Lindblad operator which takes care of the
decoherences in the system. The population decay rate of
the channels |r) — |e) is denoted by I',, and |e) — |g) is
denoted by I'ce. Due to the finite transit time of the thermal
atoms through the cross section of the beams, we include
the population decay rate of the Rydberg state to the ground
state as I'v,. In our model, the decay time scales used are
I'ye =10kHz, I'yy = 6 MHz, and T',, = 200 kHz.

©2016 American Physical Society
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FIG. 1. (a) Energy-level diagram of EIT in ladder configuration.

Two probe fields couple the transition |g) — |e). The coupling laser
couples the transition |¢) — |r). The probe (coupling) detuning
is A,(A.) and the frequency offset between the probe beams is
8. (b) Imaginary (i) and real (ii) part of x3.(w,) and x3.(w, + &)
as a function of coupling laser detuning. The parameters used
in the model are A, = —50 MHz, § =50 MHz, Q,, =5 MHz,
Q2 = 0.5MHz, Q. = 2.5MHz, k. = z;nm™", andk, = =5 nm™

Doppler averaging was done using temperature of the vapor to be
T = 300 K. The blue dotted and red solid lines are susceptibilities of
the strong and the weak probe beam, respectively. The open circles
show the susceptibility of the weak probe beam calculated using the
approximation discussed in the text.

The steady-state density matrix equations are solved
perturbatively. A similar approach is used to calculate the

Q.

(1)
(A +8—kyv+i— > ),oeg—i- 3

lorg

LERNE)
A2+8—Akv+17 Prg +

(A +8+kov+i 2),0;?

e
<Ap —8—kpv—17g>péle) +

I

<A2—8 - Akv—z;)pgr

r Q.
(AC — 8+ kev— i—3>p§i> +—=(pt) -

2 2

Q.
S = olh) -

Qe
B =) + 5

Using the fact that pj; = pj;, it can be shown that ,oi(;.)

M Q_
2

2

Qe
2

Q
1 1
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four-wave mixing in two-level atoms as discussed in [24].
The density matrix of the system can be expanded as
p = pO 4 pWe¥ 1 p(=Deid and substituted in the density
matrix equations. Equating the coefficients of e =% with § = 0
gives the zeroth-order equations:

% @ 92 Pl = iTeeply —iTrepl) = 0. (1)
%o L0 inwo0 @

(8 =k =i )0 - 22 o002 - 1)
+S; P =0, ®)

r, o Q.
0) ) (V]
(Az—Akv—z > )pgr ) L =0 @

T3 Q. 2
(8t ko =12 o2 = F(62 +02) + 0 =0

2
3)

whereI'y = I'ye + T',gand I's = gy + I'ye + T'. The zeroth-
order equations are the same as the equations of EIT for
the probe beam with Rabi frequency €2, and can be solved
exactly. Equating the coefficients of e~ gives the first-order
equations which can be solved if the second-order terms are
neglected. Hence, the model is valid if one of the probe
beams is weak. The first-order equations in the steady state are
given by

(ol + o)~ 22 2p0 + 50 1) =0, ©
—pld = sz 1p§l’—%p§2) =0, ™
Sy = Lty - ) =0, ®
Seoty - L ot + i) =0, ®
+S;p§12 92 Py =0. (10
(1 px)) szz (23) 92 p;lr) 0, (11)
8p'V —imyph) =0, (12)
pg;) 8pL) — i’ +il,.pY = 0. (13)

W — ,o;l._l). Assuming that the system is closed and using

Pgg + Pee + prr = 1, we get eight independent first-order equatlons
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Zeroth-order equations are solved numerically in steady
state for the zeroth-order matrix elements pfg-)‘v’i , j and
are substituted in the first-order equations. The first-order
equations are then solved numerically in steady state to
determine ,0(1) The susceptibility of the strong probe averaged
over the thezr}vlllfllmotlon of the aton;s can be calculated
as x(wp) = han G 2 e /2% dv where v, is the
most probable speed of the atoms, N is the density, and
Meg 1s the dipole moment of the transition |g) — le).
Similarly, the susceptibility of the weak probe can be deter-

2N |pteg | (1) ,—v?/2v3
€0h2pn ~/2nv,, f—oo '0 € dv.

Heterodyne-detection technique is sensitive only to the two-
photon transition and hence the susceptibility of the probe
in the absence of the coupling beam cannot be detected. To
compare with the experiment, we define the susceptibility only
due to two-photon transition as x3.(w,) = x(wp) — x2r(wp)
and x3p(w, 4 8) = x(w, + 8) — xor(w), + 5), where oy is
the susceptibility of the probes in the absence of the coupling
beam. yx3; calculated from the model is depicted in Fig. 1(b).
As shown in the figure, two EIT peaks associated with
both the probe beams are observed. However, the frequency
difference between the EIT peaks does not match with
the offset frequency, but is scaled as ‘8 The scaling can
easily be understood by 1nvest1gat1ng "the EIT equations.
The EIT resonance peak for the strong probe is observed
if Ao—Akv=0and A, — k,,v = O So EIT resonance of
the strong probe appears at A, = A Similarly, the EIT
peak for the weak probe is observed 1f Az + 8 — Akv =0and
A, 48 —k,v = 0. Hence, the EIT peak of the weak probe
appears at A, = —’k‘—:(A p +8). So the spectral difference

between the EIT peaks (A, — A.) is found to be k‘ 8. As

a similar effect of wave-vector mismatch, spectral difference
of Rydberg EIT peaks associated with the hyperfine transition

in rubidium thermal vapor is scaled by (1 — %) and has been
reported in [23]. ‘

As shown in Fig. 1(b), an unexpected small peak is observed
for the weak probe susceptibility when the coupling laser
is detuned by 50 MHz from the weak probe EIT peak.
In order to get an insight of the origin of this peak, we
use the following approximations to simplify the first-order
equations. Since the probe beam is weak, it cannot raise
the population in the excited states. Hence, p{) ~ p{l ~
0. Using this approximation, the first-order equations are
reduced to

mined using x(w, +8) =

r. Q.
(Ap+8 k v+17>p£?+ 5 pﬁ}g)
Q0
+ 22 . (2p(0)+p(0) )=O, (14)
I, Q.
<A2 + 8 - Akv +l7>p£? —+ 2 p;lg)
Qpi m _ Q172 (0)
— =2 ,d =0, 15
2 re 2 lOrL ( )
Ac +8+kv+1r— ph — 21 Zeloh — 0. (16)
2 re 2 rg
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In the absence of the strong probe beam, €2,; = 0 and all the
zeroth-order matrix elements are equal to zero and Eq. (16)
leads to ,0“) = 0. Under this condition, it can be shown that
Egs. (14) and (15) exactly give the EIT equations in the
weak probe limit. In the presence of the strong probe beam
with frequency offset § = 50 MHz, the extra zeroth-order
terms in the equations lead to the appearance of the small
peak. To understand it further, let the weak probe interact
with the zero velocity class of atoms. So, the main EIT peak
of the weak probe appears at A, = 0. The presence of the
strong probe dresses the same zero velocity class of atoms
which are excited to the |r) state via two-photon resonance
for A, =50 MHz. Hence, p© in Egs. (14) and (15) are
nonzero for the zero velocity class of atoms which interact with
the weak probe beam and contribute to x3;(w, + 6). Since
the strong probe beam resonantly interacts with a different
velocity class of atoms, the two-photon resonance for that
velocity class is shifted due to wave-vector mismatch and the
corresponding EIT peak appears at 81.25 MHz. To show that
the above approximation is valid, we calculated x3.(w, + 8)
using Eqgs. (14) and (15) which is shown in Fig. 1(b) and the
approximation holds very well.

Due to the wave-vector mismatch in this case, the small
peak is resolved from the EIT peak of the strong probe and a
standard model for EIT with a single probe field and a coupling
field can be used to compare with the experimental data. If the
wave vectors are the same, e.g., in the case of A EIT in alkali
atoms, the small peak cannot be resolved from the EIT peak
of the strong probe and hence the model with two probes
fields and a coupling field presented here should be used to
compare with the experiment. Alternatively, the small peak can
be reduced by changing the offset frequency. Using our model,
the transmission peak height of the small peak is studied as
a function of the offset frequency which is shown in Fig. 2.
It shows that the small peak height reduces significantly for
higher offset frequency.

-
o
TTILET
1

o
®

o«
IS

Normalized peak height
o
o

o
(S

o
o

20 40 60 80 100 120

FIG. 2. Variation of the EIT transmission peak height due to
dressed atoms as a function of beat frequency. The curves are
generated using the model for the coupling Rabi frequency 2.5 MHz
and for probe Rabi frequencies 4 MHz (solid line), 6 MHz (dashed
line), 8 MHz (big dotted line), and 10 MHz (small dotted line).
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III. EXPERIMENTAL METHOD

The schematic of the experimental setup is shown in Fig. 3.
An external cavity diode laser operating at 780 nm is used
to derive two probe beams. A frequency offset of 50 MHz
was introduced between the probe beams by using acousto-
optic modulators. Both the beams were superimposed using
a polarizing cube beam splitter (PBS). The interference beats
of the probes were detected using two fast photodetectors by
introducing polarizers at both the output ports of the PBS. The
probe beams coming out of one of the output ports of the PBS
propagate through a magnetically shielded rubidium vapor
cell with an optical path length of 5 cm. The coupling beam
was derived from a frequency doubled diode laser operating at
478-482 nm and it counterpropagates the probe beams through
the vapor cell. The beat detected at the other output port of the
PBS was used as reference. Since the frequency offset between
the probe beams is larger than the Rydberg EIT resonance in
thermal vapor [23], they undergo different phase shift and
absorption while scanning the coupling laser through the EIT
resonance. This differential phase shift of the probe beams will
change the phase of the signal beat which can be measured by
comparing it with the phase of the reference beat. Since the beat
signals are the outputs of the same interferometer, the noise due
to vibration or acoustic disturbances is strongly suppressed.

The light intensity falling at the signal detector is

I, x |E1 |Ze—kllm[x(w)] 4 |E§|e—kllm[x(w+6)]

+2|E1|| Eale™ 2 X cos (81 + s + ),

where E; and E, are the electric-field amplitudes of
the strong and weak probes, respectively, ¢, = k—lee
[x3.(w) — x30.(w + 8)], and ¢ is the phase difference of the
probe beams in the absence of the coupling field which remains
constant if the probe frequencies are kept constant during the

(@ (b) —— nSiz
Oscilloscope | . - - -A
' 480 nm|
- R— :
’04 Detector N
/» % ' o
[ g i
kel []
58 i -
S5 Yoo
S - 1 ]
% % . i 5P32
= 1
e
aveform
Polarizer ' Mixer 780 nm
A
1
.l

Polarizer

Detector

Optical
Phase-shifter

58112,F=2

FIG. 3. (a) Schematic of the experimental setup for heterodyne
detection technique to measure the transmission and dispersion of
the Rydberg EIT medium. (b) Energy-level diagram for Rydberg EIT
in ¥Rb. Two probe beams couple the transition 581, F =2 —>
5P;3;,. The coupling laser couples the transition 5 P3;» —> nSi,. The
coupling detuning is A, probe detuning is A, and frequency offset
between the probe beams is §.
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experiment. Using a high pass filter, the beat signal detected
by the signal detector has the form

kl
D, = Age™ 2 Mbet@+00@I co5(81 + ¢y + dofe),

where A; « 2|E||E,|. Similarly, the beat signal at the
reference detector has the form D, = A, cos(§t + ¢,), where
A, and ¢, are the amplitude and phase of the beat signal of
the reference detector. ¢, can be controlled using an external
phase shifter. These two beat signals are multiplied by an
electronic waveform mixer and are passed through a low pass
filter. The output of the low pass filter gives a dc signal of the
form

K
S, = 2ArAse—ilm[sz(w)-FXaL(w-H)] cos (¢ + ¢o),

where ¢g = ¢, + dof. Assuming ¢, to be small and setting
¢o = 0, the signal becomes sensitive to the amplitudes of
the probe beams and hence gives the information about the
transmission of the probe beams through the medium. After
subtracting the offset (in the absence of the coupling laser)
from the signal,

S; ~2AA, [e—%Im[m((v)-*')(u(a)-i—ﬁ)] _ 1]. (17)

If ¢y is set to 7, then S, becomes strongly sensitive to ¢, and
hence the refractive index of the probe beams due to Rydberg
EIT can be measured. In this case,

Sp ~ 2AsAre—%Im[sz(w)+X3L(w+8)l¢s. (18)

It is worthwhile to mention that the observed dispersive
signal depends linearly on ¢; and hence is proportional to
{Re[x3.(w)] — Re[x3(w + )]}

To work in the phase as well as amplitude sensitive regimes,
¢o can be controlled by varying the phase of the reference
beat signal using an electronic phase shifter. However, in our
experiment, the phase is controlled optically and we call it an
optical phase shifter (OPS). To realize the OPS, one 7 plate is
introduced before the polarizer at the output of the PBS The
probe beam transmitted (reflected) by the PBS after passing
through the 2 plate becomes o (o7) and can be expressed
aso® = 1 (|H )y 4 e 3| V). If the polarizer after the %  plate
selects the IH )-polarized component, then the phase difference
between both the probe beams falling on the detector is zero.
Now, if the angle of the polarizer axis is rotated by 90°, then
|V) is selected and the phase difference between the beams
becomes 7. Hence, by rotating the polarizer axis, the phase
of the reference beat signal can be varied between zero and &
without compromising the amplitude.

The typical transmission and dispersion signals of the
probes propagating through the Rydberg EIT medium are
shown in Fig. 4. The probe laser frequency was stabilized
on the atomic transition (5812, FF =2 — 5P;p) of 8Rb
and the coupling laser frequency was scanned through the
Rydberg EIT resonance. The frequency offset between the
probe beams is 50 MHz, which is much greater than the EIT
resonance width (about 3 MHz in thermal vapor [23]). Hence,
two distinct EIT transmission peaks are observed as shown in
Fig. 4(a) when the phase difference between the beat signals
was set to zero. When the phase difference was set to /2,
two respective dispersion signals were observed as shown in
Fig. 4(c). Due to the wave-vector mismatch between the probe
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FIG. 4. Absolute transmission and dispersion of the probe beams
propagating through the Rydberg EIT medium after subtracting
the offset due to their interaction with the 58, F =2 — 5P
transition in the absence of the coupling beam. EIT (a) transmission
and (c) dispersion signals of both the probes with Rabi frequency
600 kHz each. EIT (b) transmission and (d) dispersion signals of both
the probes with Rabi frequencies, 600 kHz and 6.5 MHz, respectively.
The coupling Rabi frequency was 2.5 MHz in all the cases. The red
open circles are experimental data points and the black solid lines
are the curves generated by the model. The absolute transmission and
dispersion were determined from the theoretical calculation for the
given experimental parameters.

and the coupling beams, the frequency difference between the
transmission or dispersion peaks respective to both the probe
beams is scaled by ]':— as discussed in Sec. II. We observe the
frequency difference between these peaks to be 81.25 MHz,
which is consistent with the above scaling. With the increased
Rabi frequency of the strong probe, the small peak at the
beat frequency appears as discussed in Sec. II and shown in
Figs. 4(b) and 4(d). The l/e2 radius of the probe (coupling)
is measured to be 0.7 mm (1.2 mm). The power of the weak
probe used in the experiment was 0.125 ©£W. The strong probe
power was varied in the range of 0.125 to 15 uW. Probe

Rabi frequency is estimated as 2, = I',, #{ For 8’Rb, the

saturation power is Iy = 1.64 mW/ cm?, and lifetime of the
3Py state is I, = 6 MHz. The coupling Rabi frequency is
determined by fitting the EIT transmission peak for a weak
probe beam.

IV. MEASUREMENT OF OPTICAL NONLINEARITY

In order to study the optical nonlinearity, the weak probe
Rabi frequency was set to 600 kHz and the strong probe Rabi
frequency is varied from 600 kHz to 6.5 MHz. The EIT peak
height of the weak probe is used as reference to normalize the
EIT peak height of the strong probe beam. The beat frequency
is chosen sufficiently large such that the peak due to the dressed
atoms is well resolved from the main EIT peak of the strong
probe beam. The normalized transmission peak height of the
probe beam as a function of its Rabi frequency is shown in
Fig. 5. The curves generated using the above model fit well

PHYSICAL REVIEW A 94, 023839 (2016)
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FIG. 5. Normalized EIT transmission peak height as a function
of probe Rabi frequency by keeping coupling Rabi frequency fixed at
2.5 MHz (o) and 800 kHz ((J). The solid and dashed lines are
the curves generated using the model for the same experimental
parameters.

with the experimental data as shown in Fig. 5. In this particular
case, since the main EIT peak is well resolved from the peak
due to the dressed atom, the standard EIT model using a single
probe beam also fits well with the peak height data and shows
very little deviation from our model.

To determine the contributions of the higher-order suscep-
tibilities to the EIT peak, we do the following analysis.

The EIT peak height of the weak probe is given by

Py, = S(A, =0)

=2A,A, [e—%lm[)m(w-‘—ﬁ)] _ 1]'

Similarly the EIT peak height of the strong probe beam is

given by
ke
)
kp

=2AA, [e—%lm[)m(w)] _ 1].

Assuming that x3;(w) and x3.(w + 8) are small, the ratio is
P Mg (@)]
P, " Tmla(@+d]” o

The Taylor expansion of the susceptibility is given by

1

_ [ ] +— 82Xl’»L Qz
X3L = 1X3Lle,=0 | a2 P
P 1g,=0

1 84X?»L 4
* Z[ 924 Gyt
? 1q,=0

Since x3; is an even function of Qp, all the odd-order terms
in the expansion are zero. x3;, can be expressed as

1 3 5
XL = x5, + X5 EL+ s En 4

(1 3| N ? G| N *
3 2 3 4
_X3L+X3L[2_] Qp+X3L[2_] gzp+...
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FIG. 6. Normalized EIT peak height as a function of Qf, The
circles are the experimental data with (a) 2. =2.5 MHz and (b)
Q. = 0.8 MHz. The solid lines are the linear fitting with the function
1+ an, with a as the fitting parameter.

where E, is the probe electric field. Comparing both the equa-

. 1 3 2 ??
tions, we get x5, = x31.(2y = 0), x5 = FIEPITEHT
-
a4
X = %[%]4[%]9 o Since the Doppler broadening is
=

much larger than the offset frequency &, it is assumed that
X3“L)(a)) ~ xélL)(w =+ 6). Also for the weak probe beam, the
higher-order terms are assumed to be negligible. So the
normalized EIT peak height of the strong probe beam can
be written as

b Im(x5,) Q4 Im(x57) S
Po o m(e)) " Im)

In principle, the above polynomial function can be used
to fit the transmission peak height data as shown in Fig. 5 to
determine the higher-order nonlinearities. Though the exact
solution of the EIT fits the data very well, keeping a few terms

PHYSICAL REVIEW A 94, 023839 (2016)

in the above polynomial function does not fit the data equally
well mainly due to large contributions of the higher-order
terms at higher probe Rabi frequencies. Therefore, we selected
the first four data points of Fig. 5 to fit with a function

3)
1 +a§2§) where a = %
self-phase modulation (X3(3L)) of the probe light. From the
fitting as depicted in Fig. 6, we find the value of “a” to be
—0.02 #+ 0.004 and 0.076 + 0.006 MHz~2 with coupling Rabi
frequencies 2.5 and 0.8 MHz, respectively. To compare with

" .
the theory, )(ﬁ) = %[%]z[m was calculated using the

aQ2 ]

r Q,=0
same experimental parameters and the value of “a” was found
to be —0.014 and 0.064 MHz~2 with coupling Rabi frequencies
equal to 2.5 and 0.8 MHz, respectively. X§3L) determined using
the above analysis reasonably match with the theoretical
calculation. The discrepancy is mainly due to the nonzero
contribution of higher-order terms. A larger number of data
points below 1 MHz may give a better measurement for X?(i)
Higher-order nonlinearity cannot be determined accurately as
the series diverges very fast by increasing the probe Rabi
frequency for this system.

and gives information about the

V. CONCLUSION

We have demonstrated a technique based on optical
heterodyne and presented a suitable model to measure the
optical nonlinearity (self-phase modulation) of a probe beam
propagating through a dispersive medium accurately. The
technique can also be used to measure the cross-phase
modulation of the light field propagating through a highly
dispersive medium. Recently, the technique has been used
to demonstrate the blockade in two-photon excitations to the
Rydberg state in thermal vapor [25]. We would like to extend
this technique to measure the optical nonlinearity of Rydberg
EIT in the blockade interaction regime in thermal vapor as
well as in ultracold atoms.
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