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iv §1. Introduction

1 Introduction

In this thesis, we work in two directions in the area of order theoretic functional
analysis (commutative and non-commutative). On the one hand, we concentrate
on the representations of C*-ordered operator spaces and operator system using
continuous affine functions. More preciously, if {K,} is an L!'-matrix convex
set, then by giving proper bi-module action and linear and order structure on
{Ao(K,}), we show that every C*-ordered operator space can be characterized as
{Ao(K,)} for some suitable L'-matrix convex set {K,}. This is a generalization
of a program initiated by Kadison [1951| and later independently by Asimov
[1968|, Choi-Effros [1977]|, Ruan [1988], Blecher-Ruan-Sinclair [1990], Webster-
Winkler [1999] and Karn [2010].

On the other hand, we study the order theoretic properties of M-ideals in
non-unital ordered Banach spaces as well as C'M-ideals in (non-unital) ordered
operator spaces. Note that in a non-unital ordered Banach space, the state
space may not be compact and convex. However, we know that the quasi state
space is compact and convex. Keeping this in mind, we introduce the notion of
split faces of the quasi state space, and that of L!'-matricial split faces in the
matricial version. We characterize M-ideals and in terms of split faces of the
quasi state space and similarly for CM-ideals in terms of L'-matricial split faces
of the quasi state space. Note that the notion of an M-ideal is compatible with
order smooth oo-normed spaces and that of an L-ideal is compatible with order
smooth 1-normed spaces. We generalize these notions to smooth p-order ideals in
order smooth p-normed spaces. We study their duality. It may further be noted
that the notion of smooth oo-order ideals may be also seen as a generalization

of the Archimedean ideals studied by Stgrmer [1968|.
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There are six chapters in this thesis. Chapter 1 is the introduction of the
thesis. In Chapter 2, we recall some basic definitions and properties of order
normed spaces, affine function spaces, M-ideals and concept of ordered operator
spaces etc. This is needed in the rest of the chapters. Now we discuss the

contents of the other four chapters in the following sections.

2 Quantization of Ay(K)-space

In 2001, Karn [40] proved that an (abstract) C*-ordered operator space is pre-
cisely an (abstract) x-operator space which can be “order embedded” in a C*-
algebra. We prove a ‘quantized’ functional representation of C*-ordered operator

spaces. Main definitions and results in this context are the following:

Definition 2.1 (C*-ordered operator spaces) [0/ A matriz ordered space
(V.AM,(V)T}) together with a matriz norm {|| - ||.} is said to be a C*-ordered
operator space if (V,{||-||n}) is an abstract operator space and V' is proper such

that for each n € N, the following conditions hold:

1. * is isometry on M,(V);
2. M,(V)" is closed;

3. If f,9,h € My(V)sa such that f < g < h, then ||g|ln < max{[|f|ln, [|A]l},

(In other words, M, (V)s, satisfies (O.00.1) property).

Let K be a compact convex set in a locally convex set F such that 0 € ext(K).
An element k € K is called a lead point of K (k € lead(K)) if k = ak; for some

ki € K with o € [0, 1], then o = 1.

Definition 2.2 (L!'-matrix convex set) Let V be a *-locally convex space.

Let {K,} be a collection of compact conver sets K, C M,(V)s, such that
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0 € ext(K,) for all n. Then the collection {K,} of sets is called an L'-matrix

convex set if the following conditions hold:

L, Ifu € K,, and v; € M, ,,, such that Zle viyi < Iy, then @lefy;"u% €

KZ§:1 ng’

U1 Uiz
Ly If u € Ky, so that u = for some uyy,u € K, and up €

Uty Usz
M, (V), then uiz + ujy € co(K, U —K,).

Ul U2
Ly Letu € K, withu = so that w1y € K, usn € K, and uys €

*
Uy U22

My (V) and if uyy = oqtny, uss = Qogling with uyy € lead(Ky,), Uz €

lead(K,), then oy + ag < 1.

With the help of this definition, we arrive the following characterization.

Theorem 2.3 (Ao(K1, V), {M,(Ao(K1, V)" 1Al - ln}) is a C*-ordered opera-

tor space.

We introduce the concept of regular embedding in the L!'-matrix convex set to

characterize the operator systems among the C*-ordered operator spaces (see

Theorem 2.5).

Definition 2.4 Let {K,} be an L'-matriz convex set in a *-locally convex space
V. Then {K,} is called regularly embedded in V' if L, is reqularly embedded in

Viea. In other words,
1. Ly is compact and convex; and

2. X Vsa = (A(L1)%,)ws 15 a linear homeomorphism.
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Here x(w)(a) = Aa(u) — pa(v) for all for all a € A(L1)sq if w = Au — pv for

some u,v € Ly and A\, u € RT.

Theorem 2.5 Let {K,} be a regularly embedded, L*-matricial cap in V. Then
Ao(K1, V) has an order unit, say e so that (Ao(K1,V),e)} is a matriz order unit

space.

3 M-ideals in non-unital ordered Banach spaces

We recall that closed subspace W of a real Banach space V' is said to be an

L-summand if there exists a unique closed subspace W’ of V' such that
V=Wao W.

A closed subspace W of a real Banach space V' is said to be an M-ideal if

W+ (the annihilator of W) is an L-summand of V*.

Definition 3.1 Let V' be a normed space and let K be a non-empty, closed,
convex set in V. A proper face F of K is said to be a split face of K if F¢
is a proper face of K such that K = F @, F§. Here F¢ = U{facerx(v) : v €
K and facex(v) N F =0} and by K = F &, F$, we mean that for each v € K

there exist unique u € F,w € FY and X € [0,1] such that v = u + (1 — \w.

Theorem 3.2 Let V' be a complete order smooth oo-normed space and let W
be a closed subspace of V. Then W is an M-ideal in V if and only if W'+ is

/7
convex and V*t =W+t g, W+,

Proposition 3.3 Let V' be a complete order smooth co-normed space and let W

be a closed subspace of V. Then W is an M-ideal in V if and only if WNQ(V)
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is a split face of Q(V).

3.1 M-ideals and adjoining of an order unit

Let V be an order smooth co-normed space. Consider V =V @ R. If we define
Vt ={(v,a) : ly(v) < a} where ly(v) = inf{||u|| : v,u4v € V*t}, then (V, V)

becomes a real order unit space.

Theorem 3.4 Let V' be a complete order smooth co-normed space. Then V is

an M-ideal in V if and only if V is an approzimate order unit space.

4 ('M-ideals in Ordered operator spaces

Let 1 < p < co. An LP-matrically normed matrix ordered space (V, {||-||.}, {M,(V)*})
is said to be matricially order smooth p-normed space, if || - ||,, satisfies (O.p.1)
and (O.p.2) conditions on M, (V)s, for each n € N.

A projection P of an operator space V' is called a C' M -projection if ||v||,, =
max{|| P, (v)|n, |(I — P)n(v)||.} for all v € M, (V).

Let V be an operator space and let W be a closed subspace of V. Then W
is called a C'M-summand if W = P(V') for some C'M-projection P of V. Let V'
be an operator space and let W be a closed subspace of V. Then W is called a
CM-ideal in V if W+ is a CM-summand in V**,

4.1 Characterization of C'M-ideals

Let V be an operator space and P be a projection of V*. We call P as C'L-
progection if || flln = |Pu(f)|ln+ [|(I = P)n(f)||n for all f € M, (V*). Let W be a
subspace of V. Then W+ is called C' L-summand of V* if there is a C'L-projection

P of V* such that P(V*) = W,
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Proposition 4.1 Let (V,{|| - ||.}) be an operator space. Let P be a CM-
projection of V**. Then there exists a unique C L-projection L of V* such that
Ly =P, for alln € N.

Corollary 4.2 Let V' be an operator space and W be a closed subspace of V. If
W is a C'M-ideal in V, then there exists C'L projection L of V* onto W+ and

W+ is an CL-summand of V*.

Proposition 4.3 Let V be a matricially order smooth oo-normed space and let
W be a self-adjoint subspace of V. Let P be the CL-projection of V* onto W+.
Then P,(f*) = P,(f)* for all f € M,(V*).

Theorem 4.4 Let V be a matricially order smooth oco-normed space and let W
be a closed self-adjoint subspace of V. Then W is a CM-ideal in V if and only
if My, (W )sa ts an M-ideal in M, (V)s, for each n € N.

We assume that V' is a matricially order smooth co-normed space and we denote

K, = M,(V*)sa N M, (V*); for each n € N.

Proposition 4.5 Let V' be an matricially order smooth co-normed space. If

f e K, and~; €M, ,, such that Zle Yivi < I, then ®F_ v fv; € K E

Theorem 4.6 Let V' be a matricially order smooth co-normed space and W be
a self-adjoint subspace of V. If L is an CL-projection of V* onto W+. Then L

1s a CP-map.

Definition 4.7 [32] Let V' be a matricially order smooth oco-normed space.
Then a collection {D,,} of sets with D,, C M, (V*)s, and 0 € 0.(D,,) is called an

L'-matrix convex set if the following conditions hold:

1. If f € D, and v; € M, such that Zle viyi < I, then ®F v fv €

A o)
i=1 "4
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2. If f € D, so that f = fu iz for some fi1, foo € D, and fi5 €
fia fa2
M, (V*), then then fis + ffy € co(D, U —D,);
. Jin o Jfi2
3. Let f € D,,,, with f = so that fi1 € Dy, and fag € My, (V*)
fia fa2

and if fi11 = Ozl]/fl\l and foa = ang\g with ]71\1 € lead(D,,) and J/”Q\Q €

lead(D,,), then we have a; + ay < 1.

We note that if V' is a matricially order smooth co-normed space. Then {Q,,(V)}
is an L'-matrix convex set. Let V' be a matricially order smooth oo-normed
space. Then an L'-matricial convex set {D,} of V* such that D, C Q,(V) is

called an L'-matricial split face of {Q,(V)} if for each n, D,, is a split face of
Qn(V).

Theorem 4.8 Let V be a matricially order smooth co-normed space and W
be a self adjoint subspace of V.. Then W is a C'M-ideal of V if and only if
{M, (W) N Q,(V)} is an L*-matricial split face of {Q.(V)}.

5 Smooth p-order ideals

Theorem 5.1 Let (V,V7* |.||) be an order smooth p-normed space and W be a
subspace of V. Let ow : V = V/W and @i, : V* — V* /W be the natural

homomorphisms. Then we have the following duality:

1. (W, W |I.Il) is an order smooth p-normed space iff (V* /W, (V* /W) 1)

is an order smooth p'-normed space satisfying (0S.p'.2).

2. (V/W,(V/W)* |l.||) is an order smooth p-normed space if and only if

(W WL L) is an order smooth p'-normed space satisfying (OS.p'.2).
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Theorem 5.2 Let (V,V*|.||) be an order smooth p-normed space and W be a
subspace of V. Let oy : V = V/W and @y : V* = V*/WL be the natural

homomorphisms. Then we have the following duality:

1. (WH W) is an order smooth p'-normed space if and only if
(V= /WS (V JWEE) L)

is an order smooth p-normed space satisfying (OS.p.2);

2. If (VWL (V*/WH)T|I.I) is an order smooth p'-normed space, then

(WAL WL L) ds an order smooth p-normed space satisfying (OS.p.2);

3. Assume that @y (V) = oy (V**)w*. If (WA WL L)) s an order
smooth p-normed space, then (V* /W= (V*/W)* |I.]|) is an order smooth

p'-normed space.

Definition 5.3 If (V,V*|.||) is an order smooth p-normed space. Then a sub-
space W s called smooth p-order ideal in V if W satisfies the following condi-

tions:

*

1oowr (V') = owa (VA1)
2. (W, W |.|) is an order smooth p-normed space;

3. (V/W,(V/WHT ||.|) is an order smooth p-normed space.

5.1 Smooth oco-order ideals

Theorem 5.4 Let (V,V*t |.||) be an order smooth oo-normed space and W be

a subspace of V.. Then the following are equivalent:

1. (V/W), (V/W)* .]]) is an order smooth co-normed space;
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2. WH WLl satisfying (0S.1.2);

8. lv+ W =sup{[f(v)] : f € W) nWH},

4o F+WH = sup{[§(f)] - f € WH)nWHE;

5. (VWAL (Ve /WL |L|) s an order smooth co-normed space.

Proposition 5.5 Let (V,V* ||.||) be an order smooth co-normed space and let
W be a subspace of V.. If W is an M-ideal, then (V/W),(V/W)* |.||) is an

order smooth oco-normed space.

Theorem 5.6 Let (V,V* |.]|) be an order smooth co-normed space and W be

a subspace of V.. If W is an M -ideal, then following are equivalent:
1. (W, W |.]]) is an order smooth co-normed space;

2. if f € W*t, then there is a g € V** such that gy, = f;

)

*

3. 1f owr (V') = owe (V)
4. 1fll =sup{f(w) :w e WrNW} V fe W,

Theorem 5.7 Let V't ||.||) be an order smooth 1-normed space, satisfying (0S.1.2)
and let W be a subspace of V.. If W is an L-summand, then W is an smooth

1-order ideal in V.



CHAPTER

Introduction

Order structure is an important aspect of functional analysis. Its roots can
be traced in late 30’s in the work of Kantarovich [45]. In 1941, using lattice
structure, Kakutani characterized Cr(K) (K is a compact and Hausdorff space)
as AM spaces [46]. Therefore, following Gelfand-Naimark Theorem [31], the
self-adjoint part of every commutative C*-algebra is a Banach lattice. In 1951,
Kadison proved a representation theorem for the self-adjoint part of an arbitrary
unital C*-algebra A as the space of continuous real valued affine functions on
the state space of A [39]. This appears to be one of the early corner-stone in the
order-theoretic (non-commutative) functional analysis. In this seminal paper,
he observed that the same result holds for the self-adjoint part of any unital
self-adjoint subspace of A (that is, a concrete operator system in A). Let K
be a compact and convex set in a locally convex space E, and let A(K) be the
space of all real valued continuous affine functions on K. Then A(K) is an order
unit space. In particular, the self-adjoint part of an operator system is an order

unit space.

A nice duality theory of ordered Banach spaces was developed during 1950’s

and 60’s in the works of Bonsall, Edwards, Ellis, Asimov and Ng and many

1



others [6, 7, 15, 16, 30]. For example, in 1964, D. A. Edwards introduced the
notion of base normed spaces [23| and A. J. Ellis studied duality between order
unit spaces and base normed spaces [30]. For more details one may refer to [2]

and [37] and references therein.

In 1968, Asimov introduced the notion of a universal cap (say, K) of a cone in
a real ordered vector space and studied Ay(K) as a non-unital prototype of A(K)
(also see, [48]). However, the functional representation theorem of Kadison (and
the work that followed) was limited to self-adjoint elements only. Subsequently,

the order theoretic functional analysis was limited to only real scalars.

After a long gap, in 1977, Effros |29] observed the following relation between
the norm of an arbitrary element of a C*-algebra A and the order structure in
My (A):

lla|| <1 if and only if b > 0.
a* 1
Following this, in 1977, Choi and Effros introduced matrix ordered spaces and
proved a generalization of Kadison’s order unit spaces [18]. More precisely, they
proved that every (concrete) operator system is exactly a matrix order unit
space. This theory is also known as a beginning of quantization of functional

analysis. In this sense, the Choi-Effros realization of an operator system as a

matrix order unit space is a quantization of order unit space.

On the other hand, an emerging area of the theory of operator space was
conceived in Ruan’s Thesis in 1988 and was initially nurtured by Effros and
Ruan and also by Blecher and Paulsen besides many others. The completely
bounded maps of C*-algebras, studied by W. B. Arveson in the late 1960s, are
the proper morphism in the category of operator spaces (see e.g [5]). This can

be described as a non-commutative generalization of Banach spaces. To be



precise, Ruan studied LP-matricially normed spaces (1 < p < oo). He proved
that L*-matrically normed spaces characterize operator spaces [54], also (see
e.g. [27]). A characterization of (concrete) operator algebras as L*-matricially
normed algebra was given by Ruan, Blecher and Sinclair in 1992 [14]. For
more properties of LP-matricially normed space one can see [28, 61, 62]. For
tensor products and duality of operator space one can see work of Blecher and
Paulsen [12, 13|. The non-commutative Hahn Banach Theorem was given by
G. Wittstock in 1981 [64] (also see e.g. [28]). A quantization of A(K)-space
appeared in the work of Webster and Winkler [60] in 1999. They proved an
operator space version of the Krein-Milman theorem. For more literature on

operator space theory (see also, |24, 25, 63]).

The non-unital matrix ordered spaces were studied by Schreiner in 1998 as
“matrix regular operator space” [55] and independently by Karn and Vasudevan
as “matricially Riesz normed spaces” [43, 44|. In 2007, Blecher and Neal studied
ordered aspect of TROs [10] (see also, [9, 11]). Also one can see the works of

Paulsen, Todorov and Tomforde in 2011 [49].

In 2007, Blecher and Neal [10] showed that the operator space dual of a C*-
algebra can not be order embedded in any C*-algebra. In 2011, Karn [40] showed
further that if a matrix ordered space is order embedded in a C*-algebra, then
its operator space dual can not be order embedded in any C*-algebra. Thus the
operator space duality fails to work in the context of ordered operator spaces.
In 2010, Karn proposed a pair of axioms (O.p.1) and (O.p.2) for 1 < p < oo and
renewed the study of a matrix ordered space with a (matrix) norm, in which
the matrix norm is related to the (matrix) order. He called it a (matricially)
order smooth p-normed space. The advantage of studying these spaces over

LP-matricially normed spaces is that every matricially order smooth co-normed



space can be order embedded in some C*-algebra. Here, he also showed that if
V' is a matricially order oo-normed space, then an order unit can be adjoined
to it so that the resulting space V is an operator system (of co-dimension one).
(A similar theory can be found in the work of Werner [62]. The two approaches
are independent and lead to different directions.) This theory goes naturally
with the matrix duality and thus extends “Choi Effros-Ruan”program of matrix
ordered matricially normed spaces [18, 54].

In 1957, J. Dixmier [21] characterized the closed two sided ideals of a von
Neumann algebra as unitary invariant order ideals of the algebra. In 1963, E.
G. Effros |22] showed that order ideals of a C*-algebra may be characterized as
one sided ideals of it. More preciously, if A is a C*-algebra and Z is a norm

closed subspace of A, then the following forms are equivalent:
1. Z" is an order ideal of A;
2. 7T is a left ideal of A;
3. left invariant subspace of its dual A*.

Following the representation of self-adjoint part of a unital C*-algebra A
as affine function space A(K) by Kadison [39] and study of order ideals in
C*-algebra by Effros [22], many mathematicians got interested in the study of
ideals in partially order vector spaces and in affine function spaces of compact
convex sets during 1960s and 1970s. The order theoretic properties of ideals and
its connection with faces of compact convex sets was one of the main interest
for them. For example, in 1954, F. Bonsall [16] studied sub-linear functionals
and generalized the Krein Milman’s Theorem. Further, in 1956 he studied [15]
regular ideals in ordered normed space and proved certain types of monotone

extension theorem. Also, one can see work of Asimov [6, 7] in this direction.



In 1966, E. Stgrmer [57| studied the Archimedean ordered vector spaces
which have a strong order unit and are complete in the order norm. He intro-
duced the notion of Archimedean ideals and Archimedean faces of a compact
convex set. A norm closed order ideal W of V' is an Archimedean ideal if W is
positively generated and V/W is Archimedean. He proves that if Z is a closed
subspace of C*-algebra, then Z,, is an Archimedean ideal if and only if Z is a

two sided ideal.

In 1970, E. M. Alfsen and T. B. Andersen studied the split faces of compact
convex sets (see e.g. [3]). In this paper, they discussed the extension properties
of split faces of compact convex sets. An Archimedean ideal W of A(K) is
said to be ‘near lattice ideal’ if the corresponding (quotient) homomorphism
o+ A(K) — A(K)/W satisfies the following property: For every e > 0 and

ai,as € A(K)", one has

[0,p(a1)] N[0, p(az)] C @([0, a1 + €] N[0, az +€]).

They showed that W is a near lattice ideal in A(K) if and only if WL N K is a
split face of K. In 1971, T. B. Anderson studied the order bounded extension
properties of continuous affine functions of split faces of compact convex sets [4].

For extensive literature see |2].

In 1972, E. M. Alfsen with E. G. Effros wrote twin papers “ Structure in real
Banach spaces I and 117 (see e.g. [1]). The central theme of the paper was the
investigation of certain subspaces of V' called “M-ideals”, which are analogous
to the self-adjoint parts of closed two sided ideals in a C*-algebra. Also, they
prove in particular that W is an M-ideal in A(K) if and only if W+NK is closed
split face of K. This way, the notion of lattice ideal in A(K) was generalized as

M-ideal in Banach space context.



In this thesis, we work in two directions in the area of order-theoretic func-
tional analysis (commutative and non-commutative). On the one hand, we con-
centrate on the representations of C*-ordered operator spaces and operator sys-
tems using continuous affine functions. More precisely, we introduce the notion
of an L'-matrix convex set in a x-locally convex space E. We show that if {K,}
is an L'-matrix convex set, then by defining appropriate proper bi-module ac-
tion and linear and order structure on {A(K,)}, every C*-ordered operator
space can be characterized as (Ag(K1, E), { M, (Ao(K1, E))"}{|l - ||.}) for some
suitable L'-matrix convex set {K,}. This is a generalization as well as a quan-
tization of a the functional representation of operator systems by Kadison in

1951.

On the other hand, we study the order theoretic properties of M-ideals in
non-unital ordered Banach spaces as well as C'M-ideals in (non-unital) ordered
operator spaces. Note that in a non-unital ordered Banach space, the state
space may not be compact and convex. However, we know that the quasi state
space is compact and convex. Keeping this in mind, we introduce the notion
of split faces of the quasi state space and that of L'-matricial split faces in the
matricial version. We characterize M-ideals in terms of split faces of the quasi
state space and similarly for C'M-ideals in terms of L'-matricial split faces of
the matricial quasi state space. Next, we generalize the notion of M-ideals by
smooth p-order ideals in order smooth p-normed spaces. We study their duality
relation. It may be noted that the notion of smooth oo-order ideal may be seen

as a generalization of the Archimedean ideals studied by Stgrmer in 1968 [57].
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1.1 Arrangement of the remaining chapters

In the second chapter, we recall the basic definitions and properties of ordered
normed spaces, affine function spaces, M-ideals, and some other notions related

to ordered operator spaces.

In the third chapter, we prove a ‘quantized’ functional representation of C*-
ordered operator spaces. The quantized functional representation of abstract
operator systems was given by Webster and Winkler (see e.g. [60]). They rely
on matrix convex sets. However, we consider matrix (Choi-Effros) duality and
introduce the notion of L'-matrix convex sets. We show that if V' is a C*-ordered
operator space and @, (V) ={f € M, (V*)* : ||f|| < 1} (in the matrix duality),
then {Q,(V)} is an L'-matrix convex set. We show in Theorem 3.1.2 that if
V' is a C*-ordered operator space, then V' is complete isometric, completely
order isomorphic to (Ag(Q(V), V*), { M, (Ao(Q(V), V*))"}, {ll.lln})- Conversely,
we show in Theorem 3.2.5 that if {K,} is an L'-matrix convex set in a *-
locally convex space E, then (Ao(K1, E), {M,(Ao(K1, E)*} Al - ||.}) is a C*-
ordered operator space. Further, we introduce the matricial version of regularity
embedding property of an L!'-matrix convex set {K,} and the matricial version
of universal cap of an L'-matrix convex set. Using the concepts of a universal cap
and regular embedding property of an L!'-matrix convex set, in Theorem 3.3.4,
we give a characterization of all abstract operator systems among all C*-ordered

operator spaces.

In the fourth chapter, we study order theoretic properties of M-ideals in
order smooth oo-normed space. We obtain an order-theoretic version of the
‘Alfsen-Effros’ cone decomposition theorem [1, Theorem 2.9| for order smooth

I-normed spaces satisfying condition (OS.1.2). As an immediate application of
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this result, we sharpen a result on the extension of bounded positive linear
functionals on subspaces of order smooth co-normed spaces [41, Theorem 4.3].
In Proposition 4.3.13, we give a characterization of M-ideals in order smooth
oo-normed spaces by extending the notion of split faces of the state space to
those of the quasi-state space. This result is a generalization of its counterpart
for order unit spaces studied by Alfsen and Effros [1]. At the end of the chapter,
we prove (in Theorem 4.4.7) that an order smooth oco-normed spaces V' is an
M-ideal in V if and only if it is an approximate order unit space. Here V is the

order unit space obtained by adjoining an order unit to V.

In the fifth chapter, we discuss some of the order theoretic properties of
a C'M-ideals in matricially ordered smooth co-normed spaces. We prove the
duality between C'M-ideals and C'L-summands in the matrix duality set up.
This result was proved for operator spaces in the operator space duality setup
by Poon and Ruan in [52]. To be more specific, in Corollary 5.2.2, we show that
if W is closed subspace of matricially order smooth oo-normed space, then W
is a C'M-ideal in V if and only if W+ is a C'L-summand of V*, where V* is the
matricial dual V. In 1994, Effros and Ruan proved that W is a C'M-ideal in V'
if and only if M,,(W) is an M-ideal in M, (V') for each n [26]. Thus, our result
is the counterpart of this result in self-adjoint case. We show in Theorem 5.2.2
that if W is closed self-adjoint subspace of matricially order smooth oco-normed
space, then W is a C'M-ideal in V if and only if M, (W) is a CL-summand
of M, (V*) for each n. We introduce the notion of an L'-matricial split face of
matrical dual of the matricially order smooth co-normed spaces. We characterize
C'M-ideals in terms of L'-matricial split faces of matricially ordered smooth co
normed spaces in Theorem 5.4.4. This result is the non-commutative non-unital

generalization of the result that W is an M-ideals in A(K) space if and only if
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W+ N K is split face of K. Also, this result extends to all (abstract) operator
systems.

In the last chapter, we introduce the notion of smooth p-order ideals in
order smooth p-normed spaces for 1 < p < oo. We show in Theorem 6.1.5
and Theorem 6.1.8 that smooth p-order ideals respect duality. In Proposition
6.2.7 and Theorem 6.2.8, we show that in order smooth oo-normed space, every
smooth oco-order ideal is an M-ideal under certain condition. It may be noted
that every M-ideal in complete order unit space is an order smooth oc-order
ideal. In Theorem 6.2.9, we show that every smooth order 1-order ideal in order
smooth 1-normed space is L-summand. Thus the smooth p-order ideals may be

seen as the (possible) interpolation spaces (ideals) of M-ideals and L-summands.






CHAPTER

Preliminaries

In this chapter, we recall some of the basic concepts of ordered normed spaces,
ordered operator spaces, and M-ideal theory which is useful to understand the
subsequent chapters. In the first section, we discuss the notions of M-ideals
in Banach spaces. In the second section, we discuss some basic definitions and
some properties of ordered normed spaces such as order unit spaces, approximate
order unit spaces, base normed spaces, and their duality. Also, we discuss the
representation of order unit spaces. In the third section, we describe the notions
of (abstract) operator systems, (abstract) operator spaces. We discuss their

matricial dual, and operator space dual and representation theorems.

2.1 M-ideals in Banach spaces

Let V' be a Banach space. A projection P on V is called an M -projection if

[0l = max{[|P(v)[], [lv = P(v)][}

11
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for all v € V. A projection P on V is called an L-projection if

[oll = 1P()[| + [lo = P()]

for all v € V. Any two M-projections (L-projections) on V' commute with each
other. Let W be a closed subspace of a Banach space V. If W is the range of an
L-projection, it is called an L-summand; if W is the range of M-projection, it
is called an M -summand; and if W+ is an L-summand of V*, then W is called
an M-ideal in V. Note that W is an M-ideal in V if and only if there exists a

unique closed subspace W' of V* such that

VE=Wtae, wt.

For more details on L-summands and M-ideals see [1, 20]. For extensive litera-

ture on M-ideals and its properties, please refer to [36] (also see e.g. [59]).

A non-empty convex subset F' of a convex set K in a real vector space V is

called a face of K if for any u,v € K with

A+ (1—=ANveF

and some 0 < A < 1, we have u,v € F. A subset C of a real vector space V is

called a cone if

au+ v € C whenever u,v € C and a € R,

If K is a convex subset of V, then

cone(K) = Uy>oAK
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is the smallest cone containing K.

Let S be a non-empty subset of a convex set K. Then facex(S) is the

smallest face of K containing S. Thus
facex(S) =nN{F : F is a face of K containing S}.

If S = {v}, we write, facex(v) for facex(S).

Now, let V' be a (real) normed space and let V; be the closed unit ball of V.
We say that a cone C'in V' is facial if C'= {0} or C' = cone(F') for some proper

face F' of V1. Note that any facial cone is a proper. If v € V with v # 0, then

v
w € facey, (m)

if and only if
v

— =Aw+ (1 - MNu

o]

for some A € (0,1) and u € V4. For v # 0, we define

C(v) := cone(facey, (”%”)) (2.1.1)

for the smallest facial cone containing v. We define C'(0) = {0}.

For a cone C in V', we write
C'={veV:CnC(v)={0}}. (2.1.2)

It may be noted that C’ may not be convex in general. Let u,v € V. Then we
say u < v if

[oll = [lull + [lo = u]|.
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These notions and facts can be found with details in [1, Part I, Section 2.

Lemma 2.1.1 [1, Lemma 2.3] Let V be a normed space and let vy,--- ,v, € V.

Then the following facts are equivalent:
1. U1y " 5 Un EC(Ul+'-'+Un);
2. Xyl = B [l

Theorem 2.1.2 [1, Part I, Theorem 2.9] Let V' be a Banach space and let

C CV be a norm closed cone. Then each u € V admits a decomposition
u=v+w, and [lul| = [jv]| + [Jw],

where v € C, and w € C'. Given ug with ug < u, one can choose uy < v.

Theorem 2.1.3 [1, Part I, Proposition 3.1] Let W be a closed subspace of a

Banach space V.. Then W is an M-ideal in V' if and only if W' is convex.

2.2 Ordered vector spaces

Let VT be a cone in a real vector space V. We define an order relation < in V
by u < v if and only if v—u € V*. If v € VT, we say v is positive. We note that
< is reflexive and transitive. Further, if u < v for some u,v € V, then Au < A\v
and u+w < v+ w for all w € V and A > 0. Conversely, if V is a real vector
space and if < possesses these properties, then V* = {v € V : v > 0} is a cone
in V. A real vector space V together with a cone V' is called an ordered vector
space and is denoted by (V,; V™). In what follows, in an ordered vector space,

its cone and the corresponding order structure is identified with each other.
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The cone V' of an ordered vector space (V, V) is proper, it VTN—V+ = {0}.
We say that VT is generating, if V = V* — V. We note that VT is proper if

and only if the corresponding vector order < is anti-symmetric.

Let (V, V™) be an ordered vector space and W C V. Then W is called directed
upward if for any two elements uq,us € W, there is an element uz € W such

that uy, us < us.

Let (V;, V") be the ordered vector spaces for i = 1,2 and let ¢ : V; — V4 be

a linear map. We say that ¢ is positive if

S(Vi") € V"

Moreover, ¢ is called an order isomorphism if ¢ is a linear isomorphism and
¢, ¢! are both positive. Let (V,V ') be an ordered vector space and let W be
a subspace of V. Then W is called an order ideal if u,v € W and w € V with

u < w < v implies w € W. For more details of ordered vector space see [37].

An ordered topological vector space is a triple (V,V*, P) such that V is a
topological vector space with respect to topology P and V' is an ordered vector
space with respect to the cone V*. It may be noted that there may not be any
relation between the cone V' and the topology P. An ordered topological vector
space (V, V1 P) is called an ordered convex space if V' is a locally convex space
with respect to topology P. An ordered topological vector space V' is an ordered

normed space, if the topology is given by a norm on V.

Let (V,V*||.|l) be an ordered normed space. Then its Banach dual V* is

also an ordered normed space with the dual cone

Vit ={feV*:flv)> 0VveVT}L
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Let (V, V") be an ordered vector space. Then VT is called Archimedean if

nu > v, VYn € N for some v € V implies u > 0.

Let (V, V™) be an ordered vector space. Then e € VT is called order unit if for

any u € V, there is a A € Rt such that

e <u<)e.

An ordered vector space (V,V*) with an order unit e is called an order unit
space if VT is proper and Archimedean. An order unit space (V, V™, ¢e) admits
a norm

ol = inf{r > 0: —re <v <re} (2.2.1)

satisfying

—|lv]le < v < ||v]le. (2.2.2)

Let (V;, V" e;) be the order unit spaces for i = 1,2, and let ¢ : V; — Vj
be a linear map such that ¢(e;) = es. Then ¢ is positive if and only if ¢ is
bounded and ||¢|| = 1. Let (V,V*,|.||) be an ordered normed space. Then a
linear functional f : V' — R is called a state if f is positive and || f|| = 1. The set
of all state of V is called as state space of V' and denoted by S(V). If (V, VT e)
is an order unit space, then a linear map f : V' — R is a state of V' if and only if
f is positive and f(e) = 1. If f,g: V — R are two positive linear maps, where

V' is an order unit space, then

1F =+ gll = [IF 1+ lgll = f(e) + g(e).
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If (V,V*,e) is an order unit space, then S(V') is convex.

Let (V, V™) be an ordered vector spaces. Then a net {e, : A € A} in V1 is

called approximate order unit if

A< Ay = ey, < ey,

and for any v € V| there are r € RT and A € A such that

—rey < v < rey.

Let (V, VT, ].|l) be an ordered normed space such that V't is norm closed. Then
V' is called an approximate order unit space if there is an approximate order unit

{ex: A € A} in VT such that

|v]| = inf{|r| : —reyx < v < rey}

forallv e V.

Now, we describe another class of ordered Banach spaces which generally
occur as the dual of order unit spaces and that of approximate order unit spaces.
Let (V,V™T) be an ordered vector space such that V' is generating. Then a
convex subset B of a vector space V' is radially compact if BN L is closed and
bounded for every line segment L passing through origin of V. A convex subset
B of a hyperplane H not passing through the origin of an ordered vector space
(V, V1) is called base for the cone VT if for each v € VT v # 0, there exists a

unique k£ > 0 and v € B such that v = ku.

Let (V, V™) be an ordered vector space such that V' is generating. Let B

be a base for a cone VT such that co(BU —B) is radially compact, then V' is an
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ordered normed space with norm

||| = inf{r > 0:v € rco(BU —B)}. (2.2.3)

In this case, V is called a based normed space and we denote it by (V, B). If
co(B N —B) is compact with respect to some Hausdorff topology P, then V is
||.||-complete (see e.g. |2, p.-76]).

Let (V, B) be a base normed space. Then there is a linear functional

eg: V>R

such that

ep(u) =1

for all u € B. Also the linear functional eg has property that

ep(u) = lull

for all u € V*. Further, for any u € V, there are v,w € V' such that

u=v-—uw, lull = ol + flwll

If (V,V™*,e) is an order unit space, then (V*, S(V)) is a base normed space,
where the base norm is the usual norm of V* considered as Banach dual of V
with the order unit norm. Conversely if (V) B) be a base normed space, then
(V*,ep) is an order unit space, where order unit norm is the usual norm of V*

considered as Banach dual of V' with the base norm (see e.g. |2, 30]).

Theorem 2.2.1 [65, p.-94] Let (V,V*,|.]|) be an ordered Banach space and let
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(VX VL) be the Banach dual. Then following are equivalent:
1. (V,V* | is an approximate order unit space;

2. (VX V* |I.Il) is a base normed space.

2.2.1 Functional representations of ordered Banach spaces

Let K be a compact convex set in a locally convex space F. A functiona : K — R

is called affine if

a(Au+ (1 = XN)v) = da(u) + (1 — Na(v)

for all u,v € K and 0 < A < 1. We define

A(K) ={a: K — R | ais continuous and affine}.

Let K be a compact convex set containing 0. We define

Ao(K) = {a € A(K) : a(0) = 0}.

Let (V,V*,e) be an order unit spaec. If ||.|| is complete order unit norm, then
(V, V't e) is isometrically order isomorphic to A(S(V)), where S(V) is the state
space of V.

Let (V,V*,P) be an order convex space. A compact convex set K C V7 is
called a cap of V1 if VT \ K is convex. A cap K of V7 is called a universal cap

if VT =U\>0AK (see e.g. |8, 65]).

Theorem 2.2.2 [65, p.-98] Let (V,V* |.||) be an ordered Banach space with a

closed cone V*. Then the following are equivalent:
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1. (V,V* .| is an approximate order unit space;

2. there exist a universal cap K of the cone V** such that (V,V*,|.||) is

isometrically order isomorphic to Ag(K).

Let K be a compact convex set in a locally convex space FE. Let H be a hyper-
plane containing K such that Span(K) = E and 0 ¢ K. Then for each point u

in K determines a unique linear functional x(u) on A(K) by defining

for all u = Av — pw for some v,w € K and \, u € RT.

It can be easily checked that the map u — x(u) is linear. In general, x(u)
may not be continuous on A(K). We say that K is reqularly embedded in E if
the map u — x(u) is a topological isomorphism (see e.g. |2, p. 80]).

Let K be a compact convex set in locally convex space E. Let A(K, E) be
the vector space of all real valued continuous affine functions on K which has a

continuous affine extension to E.

Proposition 2.2.3 /2, Corollary 11.2.3] Let K be a compact convez set in a
locally convex space E. If K is reqularly embedded E, then A(K,FE) = A(K).

Most of the ideas of this section has been taken from |65] (also see |2, 37]).

2.2.2 Order smooth p-normed spaces

Now, we recall some definitions and facts about (non-unital) ordered normed

spaces studied in [41].

Definition 2.2.4 [41] Let (V,VT) be a real ordered vector space such that the

cone V't is proper and generating. Let |.|| be a norm on V such that V7' is
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closed. For a fized real number p,1 < p < 0o, consider the following geometric

conditions on V :

(O.p.1) Foru,v,w inV with u < v < w, we have

B =

[oll < ([[ul]” + lw]]")?.
(O.p.2) Forv eV and e >0, there are vi,vy € V' such that
1
v =1v1 — vy and ([|[v1||? + ||v2]|P)? < ||v]| + €.
(OS.p.2) Forv €V, there are v1,v € VT such that
1
v =wv1 — vy and (o] + [|lva[[")» < [lo].

For p = oo, consider the similar conditions on V :

(0.00.1) Foru,v,w inV with u < v < w, we have

[oll < max([Jull, wl).
(0.00.2) Forv eV and e > 0, there exist v1,vo € VT such that

v=1v; — vy and max(|lve]|, |[va]]) < [Jv] + €.

(0S.00.2) Forwv €V, there are vi,vy € VT such that

v =1 — vy and max([lv,[], fvz]]) < fv]l-
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Definition 2.2.5 [/1] Let (V,VT) be a real ordered vector space such that the
cone V1 is proper and generating. Let |.]| be a norm on V such that V7' is

closed. For a fired p, 1 < p < oo, we say that V is an order smooth p-normed

space, if ||| satisfies the (O.p.1) and (O.p.2) on V.

Note that order unit spaces and approximate order unit spaces are order
smooth oco-normed spaces, and base normed spaces are order smooth 1-normed

spaces. Moreover,

Proposition 2.2.6 [65] Let (V,V*,||.||) be an ordered normed space such that
Vs norm closed and let U = {v € V : ||v|| < 1}. Then the following statements

are equivalent:
1. 'V 1s an approximate order unit space;
2.V satisfies (O.00.1) and U is directed upward;
3. U is an order ideal and directed upward in V.

Now, we consider other types of order smooth p-normed spaces. Let H be a
complex Hilbert space. Let B(H) denote the set of all bounded linear operators
on H. An element T' € B(H) is self-adjoint if T'= T*. The set of all self-adjoint

elements of B(H) is denoted by B(H )sa. A self-adjoint element 7' is positive if

(Tx,2) >0V x e H.

The set of all positive elements of B(H) is denoted by B(H)*. It easy to check
from the definition that T*T is always positive for all T € B(H). We note that

every positive element 7' € B(H) has a unique square root i.e. there is a unique

S € B(H)*t such that T = S? and we write T2 = S. For all T € B(H), the
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absolute value of T is denoted and defined by
e L
T = (T°T)*%.

Let H be a Hilbert space and let {e,} be an orthogonal basis of H. If T € B(H),

then trace of T is denoted and defined by

tr(T) = (T(ea), eq)-

07

For fixed p (1 < p < o),
To(H)sa ={T € B(H)sq : tr(|T|") < 00},

is an order smooth p-normed space [41]. Let K(H) be the set of all compact
operators on the Hilbert space H. Then K(H) is an order smooth oo-normed
space satisfying (OS.1.2). In general, if A is a C*-algebra, then Ay, is an order
smooth oo-normed space (see e.g. [41]). For more details of positive elements,
and positive linear functionals of C*-algebras, one can see [38|. Next, we note

that (O.p.1) and (O.p.2) enjoy the following duality.

Theorem 2.2.7 [/1] Let (V,V*) be a real ordered vector space such that the
cone V't is proper and generating. Let ||.|| be a norm on V such that V't is

closed. For each p,1 < p < 0o, we have

1. |||l satisfies (O.p.1) condition on 'V if and only if ||.||* satisfies the condition

(OS.p'.2) on the Banach dual V*.

2. ||.|| satisfies the condition (O.p.2) on V if and only if ||.||* satisfies the

condition (O.p'.1) on V*.
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Theorem 2.2.8 [/1] Let (V,V*) be a real ordered vector space such that the
cone V1 is proper and generating. Let |.]| be a norm on V such that V7' is
closed. For a fized p,1 < p < o0, V is an order smooth p-normed space if and

only if its Banach dual V* is an order smooth p'-normed space satisfying the

condition (OS.p'.2).

2.3 Ordered operator spaces

If V is a complex *-vector space, we denote V,, to be the set of self-adjoint
elements of V. We say that (V, V1) is a complex ordered vector space if (Vyq, V)
is a real ordered vector space, that is, V™ is a cone in V,,. More details of

complex ordered vector space can be found on the paper [50].

Let (V;,V.") be the complex ordered vector spaces for i = 1,2 and let ¢ :

Vi — V5 be a self-adjoint linear map. We recall that ¢ is positive if
o(V1") S V3"

Moreover, ¢ is an order isomorphism if ¢ is an isomorphism and ¢, ¢~! both are
positive. Let V' be a complex vector space. If the matrices o € M, ,, [v; ] €

M, ,(V), B € M, ,, then matrix product awf € M, ,(V') is given by

avfl = [Z Oéi,kvk,lﬁz,j]
k,l

1EM,jEN

Further, if V' is a x-vector space, then M, (V) is also *-vector space with

[vi ] = [v},].
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A complex #-vector space V is called matriz ordered if
M, (V)" C Myu(V)sa
is a cone for each n such that
Y My (V)Ty € Mo (V)"

whenever v € M, ,,. A matrix ordered space (V,{M,(V)"}) with an order unit
e is called a matriz order unit space if V'* is proper and M, (V)" is Archimedean
for each n |18, Choi, Effros|. Let ¢ : V; — V5 be a linear map of complex vector

spaces. Then n-amplification of ¢ is given by

On([vig]) = [B(vij)]

for all [v;;] € M,(V). Let V be a linear space and let V¢ be the dual space
of the linear space V. It may be noted that M, (V) and M, (V4) are also linear

spaces. The scalar pairing and matriz pairing between M, (V) and M, (V4) are

denoted and defined by

n

(i) [fid]) = D (g fig) = > figvig) (2.3.1)

ij=1 ij=1

and

([visls [fpa)) = (i, foa)] (2.3.2)

for all [v; ;] € M, (V),[fi;] € M, (V).

Let (V,{M,(V)"}) be a matrix ordered space, and let V' be a self-adjoint
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dual of V. Then V¢ becomes a matrix ordered space under the scalar pairing (

see e.g. |18, Lemma 4.2|). The cone in M, (V%),, is given by

M,(VHT ={f € M,(VY o : fv) >0 Yo e& M,(V)}.

A concrete operator system is a unital x-subspace of B(H) for some Hilbert

space H.

Theorem 2.3.1 [18, Choi, Effros| Let (V,{M,(V)"},e) be a matriz order unit
space. Then there is a Hilbert space H and a concrete operator system S C B(H)
and a complete order isomorphism ¢ : V. — S such that p(e) = I, where I is

the identity operator on H.

Due to the above representation theorem, we call a matrix order unit space as
an abstract operator system. An L*°-matricially normed space (V. {|| - ||.}) is a
complex vector space V' together with a sequence of matrix norms {|| - ||,,} such

that
1. (M,(V), || - |ln) is a normed space for all n;
2. ||v® w|prm = max{||v||n, ||w]|m} for all v € M, (V),w € M,,(V);
3. lavB|ln < lal||v]l]|B]| for all a € ML,,v € M, (V), and 8 € M, (V).

Every abstract operator space is completely isometric to some closed subspace
of B(H)(concrete operator space) for some Hilbert space H (see e.g. [54]). An
L*-matricially normed space is called an abstract operator space.

For fixed p (1 < p < 00), an LP-matricially normed space (V,{|| - ||»}) is a
complex vector space together with a sequence of matrix norms {|| - [|,} such

that
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1. (Mn(V), ] - |ln) is a normed space for each n;
2. v @ wlipy = [0l + l[w], for all v e My (V),w € My(V);

3. [|avBlln < llallvllallB] for all & € My, v € M,(V), and 8 € M, (V).

We know, by [54, Theorem 5.1|, that if V' is an L*-matricially normed space,
then its matricial dual V* is an L'-matricially normed space under the scaler
pairing (see e.g. [54]). The following notion introduced by Karn to study non-

commutative order in L*°-matricilly normed space.

Definition 2.3.2 (C*-ordered operator spaces) [/0] A matriz ordered space
(V.AM,(V)T}) together with a matriz norm {|| - ||.} is said to be a C*-ordered
operator space if (V,{|| - |l.}) is an abstract operator space, and V't is proper

such that for each n € N the following conditions hold:
1. * is isometry on M, (V);
2. M,(V)* is closed;

3. M, (V)sq satisfies (0.00.1) property i.e.

£l < max{{[glln, 12},

whenever f < g < h with f,g,h € M,(V)sa for each n € N.

We know that every abstract operator system is a C*-ordered operator space. Let
¢ : Vi — V5 be a linear map between two operator spaces. Then ¢ is completely

isometry if ¢, is isometry for each n € N, where ¢,, is the n-amplification of ¢.

Theorem 2.3.3 [40] Let (V,{M,, (V)" },{||-|l.}) be a C*-ordered operator space.
Then there exists a completely order isometry ¢ : V — A for some C*-algebra

A.
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For details properties of C*-ordered operator space one can see [40].



CHAPTER

Quantization of Ay(K )-space

In this chapter, we discuss a quantization of the space of continuous affine func-
tions vanishing at 0. In the first section, we study the matricial dual of C*-
ordered operator space. We find some properties of the quasi state spaces. In the
second section, we introduce and study L!'-matrix convex sets in *-locally con-
vex spaces. We show that every C*-ordered operator space is complete isomet-
rically, completely order isomorphic to (Ag(Ky, E), {M,(A¢(K1, E)*} Al - |n})
for a suitable L'-matrix convex set {K,}. In the third section, we generalize the
notion of regular embedding of a compact convex set to L!-regular embedding
properties of L!-matrix convex set. Using L!-regular embedding of L!-convex set
{K,}, we find conditions under which (Ag(K;, E), {M,(Ao(K1, E))"} Al - I2})

is an abstract operator system.

3.1 Convexity of matricial quasi state spaces

Let (V {l|-lln}, {M,(V)T}) be a C*-ordered operator space. Then its matricial
dual (V* {|l.|l.}, {M,(V*)T}) is an L'-matricially normed space with an invo-

lution * such that  is isometry on M, (V*). Also (V*,{M,(V*)*}) is a matrix

29
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ordered space such that M, (V*)" is norm closed for each n. We put

Qn(V) ={f € Mu(V") - f 2 0, [Iflln < 1},

and call it the quasi state space of M, (V). We note that Q,(V) is a compact
convex set with respect to w*-topology (see e.g. [40]). Throughout this chapter,

we assume that V' is a C*-ordered operator space.
Lemma 3.1.1 M,(V*)s N M,(V*); = co(Q,(V) U —=Qn(V)).

Proof. Let f € M,(V*)s. Since M, (V), satisfies (0.00.1), by Theorem 2.2.7,
M, (V)* satisfies (0S.1.2) on M, (V*)s. Thus there are g,h € M,(V*)" such

that

f=g—hand [[flln = llglln + Al

Therefore M, (V*)sa N M,(V)1 C co(Qn(V) U (—=Q,(V))). Since £Q,(V) C
M, (V*)sa N M, (V)y and M,,(V*)se N M, (V); is convex, we have co(Q, (V) U
(—Qn(V))) g MN(V*)sa N Mn(v)l L]

Now, we describe a ‘quantized’ functional representation of a C*-ordered

operator space V.

Theorem 3.1.2 Let (V,{M, (V)" },{||-ll.}) be a C*-ordered operator space. For
v eV, definev: V¥ — C giwen by v(f) = f(v) (f € V*) and set |gr) = 0.
Thenv : Q1(V) — C is an affine, w*-continuous map with v(0) = 0 such that v is
the unique extension of v to V* as a w*-continuous linear functional. We write,
Ap(Q1(V),V*) for the space of all w*-continuous affine mappings from Q1(V)
into C vanishing at 0 and having a unique w*-continuous linear extension to V*.
Thus v — ¥ determines a surjective x-isomorphism ' : V' — Ag(Q1(V),V*). We

can transport a matriz order and a matriz norm on it so that it becomes a C*-
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ordered operator space and I' turns out to be a complete isometric, complete

order isomorphism.

Proof. Note that v is the unique extension of v on V* as a w*-continuous linear
functional for V** = Ugenk@:1(V) and V** spans V*. Further, we note that
v — ¥ determines a linear *-isomorphism from I" : V' — Ay(Q1(V),V*). Also,
as w*-dual of V* is identified with V', we may conclude that I' is surjective. For

v eV, set (0)* = (v*) so that

for all f € V*. In particular for v € V,, and f € V7, (0)*(f) = o(f) € R.
Similarly, if v € V' and f € V** then o(f) > 0. In fact, as v € VT if and only

if f(v) > 0 for every f € Q(V). We may conclude that

P(VT) ={¢ € A(Qu(V),V")sa : 6(f) 2 0Vf € Qu(V)}
= Ao(Ql(V), V*>+

In other words, I' is an order isomorphism. Now using matrix duality, we may

further conclude that

Ly Mn(v) = AO(Qn(V)v Mn(V*))

given by
Lo(vig]) = [vis]s [vis] € Ma(V)

is a surjective order isomorphism for each n € N. Now, if we identify Aq(Q,(V'), M, (V"))

with M, (Ag(Q1(V),V*)) for each n € N, then I' : V' — Ap(Q1(V),V*) is a sur-
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jective order isomorphism.

Next, we describe a norm on Ay (Q,,(V), M, (V*)). Let F' € Ag(Qn(V), M,,(V*)).
Then there is a unique v € M, (V) such that F' =T',(v) = v. We define

-
| Flloom =sup 4 || 0 N feQumin) ¥ (3.1.1)
,U*

0 v
As v € M,(V), we have € My, (V)sq. Since x is isometry in V', using

v* 0
Lemma 3.1.1, we have
. -
0 v 0 v . .
= sup R ()] f € My (V*)sa N M, (V)
v* 0 v* 0
n \| L
D -
0 v
= supq || [ ()] fe@uV)
v* 0
\| L |
Also as « is isometry and {|| - |,} is an L*°-matrix norm, we have ||v|, =
so that [|v]|, = ||]|cn- O

v 0
2n
In what follows, we deduce some of the geometric properties of {Q,(V)} to

present an intrinsic version of Theorem 3.1.2.

Definition 3.1.3 [2/] Let W be a vector space. A collection {K,} with K, C

M, (W) is called a matrix convex set if
k
Z Y wivi € Kin

i=1

whenever w; € M, (W), and ~; € M, (1 < i < k) satisfy Zle Vv = I
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The notion of matrix convexity introduced by G. Wittstock [63] in 1984. We
note that if V' is an L*°- matrically normed space (abstract operator space), then
{M,(V);} is a matrix convex set (see e.g. [54, p. 101-103)]). Here M, (V) :=
{ve M,(V); :|v]| <1}. In particular, if V' is a C*-ordered operator space, then
{M,(V){} is a matrix convex set. However, {Q,(V)} is not a matrix convex
set. To see this, let f € Q(V) with ||f|| = 1. Then ||f @& f|l = 2 so that
f@&f ¢ Qy(V). Since in a matrix convex set {K,}, we have K; & K; C Ko,
we deduce that {Q,(V)} is not a matrix convex set. Nevertheless, it has some

interesting properties which we illustrate in the following result. Put

Sn(V) ={f € @u(V) : [flln =1}

Proposition 3.1.4 Let V' be a C*-ordered operator space and let f € Qpin(V)

so that
fir fie

fia for

for some f11 € My,(V*), fao € M,(V*)" and fi12 € My, (V*). Then

f=

(i) fi1 € Qu(V) and for € Qu(V);

0
(i) fu e € Qumn(V) for any 0 € R;

efy fa

0 fi Jui fi2 fuiu O fir fio
(111) < ,
iz 0 Jia [ 0 fa Jia [

m—4n m+n m—4+n

(iv) If m = n, then

Siz + fiy € co(@n(V) U (=Qn(V))).

m4+n
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v) Let f € Qn(V) and let v; € M, ,,, such that ’?: vivi < I,. Then
[RAZ% =1 (]

(vi) Let f € Quin(V) with f = fu he so that f11 € Qum(V), faz € Qn(V)

fia f
and fio € Mo(V) and let fi1 = anfi1, fas = Qoz fan With fi1 € Sm(V), faz €

Sp(V). Then ay + ag < 1.

Proof. We know that if « € M, ., f € M,(V*) and V is an abstract operator

space, then we have

lecf ol < Nl [Lf -

Since V* is a matrix ordered space, for f € M, (V*)" and o € M, ,,, we have

afa* € M, (V*)" (also see e.g. [18, Lemma 4.2]). Using this argument, we

can prove (i) and (ii) if we choose o = |1, 0,1 @ = |0, ]n] and o =
eI, 0 ) . i *fie
respectively. In particular, < 1. Now
0 I £ S N

: —fia 2

fu 0 fu S N fuu —fi
0 fa Tia fa

and

fia 0 fa fa

O f12 B fll f12 _ fll _f12
—fla  J2



§3.1. Convexity of matricial quasi state spaces 35

Thus (iii) follows from the triangle inequality. Next, as

fia 0 _ 0 I, 0 fio < 0 fio <1
0 Jfi L, 0 |fis O o 0
2n 2n 2n
we have
* * f1*2 0
[ f12 + fralln < [ fialln + [ frzlln < <1
0 fi
2n
Since fio + f1y € M, (V*)s, by Lemma 3.1.1, we may conclude that
Ji2 + fiy € co(Qn(V) U (—=Qn(V))).
(V) As f € Qu(V) C M,(V*)* and v; € M, ,,,, we have v} f~; € M, (V*)T for

1 <i<k Thus & v fv € My o, (V*)*. We show that || @, v/ ful < 1.
Let v € (MZ n (V)sa)1 and say v = [v;;] where v;; € M,, . (V) and v ; =

Vj.is 1< Z,j < k. Then

{@; fr,v)| = |Z<v;‘f%-,vii>|
- |Z f /7 Uz Z’Yz

IS AT for £ € QuV).
=1

Since Zle vivi < I,, we have

k T
g
=1

Thus ), YTyl < I,. Since ||vi;|n, <

*T T *
Vi

||v||2§:1ni < 1for 1 <i < k and since
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{(M(V)sa)1} is a matrix convex set, we find that || S v 7v; ;77| < 1. Thus
@iy 7 frll < 1so that &% fvi € Qs (V).
i fie

(vi) Let f = € Qmin(V). Then by (iii), f11 € M, (V*)" and
Fio fao

far € M, (V*)* and we have || fi1 [+ fozlln < 1. Find fiy € S (V), foz € Sa(V)

such that f1; = an”mf;l and fao = HfQZan;Q. Thus (vi) holds. O

3.2 A quantized Ay(K)-space

3.2.1 Ll-matrix convex sets.

Definition 3.2.1 Let K be a compact convex set in a locally convex set E such
that 0 € ext(K). An element k € K is called a lead point of K (k € lead(K))

if k = aky for some k; € K with a € [0, 1], then a = 1.

We observe that ext(K) \ {0} C lead(K).

Proposition 3.2.2 For each k € K \ {0}. There are unique o € (0,1] and
ke lead(K) such that k = ak.

Proof. Without any loss of generality, we may assume that k € K \ lead(K).
Then by the definition of lead, there isan o € (0,1] and k£ € K such that k = ak;.
Thus the set Rx = {f > 1: Sk € K} is non-empty. As K is a compact, Ry is
bounded and we have 3y = sup Rx € Ri. Let ko = Bok € K so that k = 3, k.
We show that ky € lead(K). If possible, assume that ky & lead(K). Then by
the definition of lead, there is a § € (0,1) and k¥’ € K such that ky = GK'.
But, then 87'8yk € K, where 3713, > 3, which contradict 8y = sup Rx. Thus

ko € lead(K). Next, we prove the uniqueness of ky. Let k& = ayk; for some
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ki € lead(K) and a7 € (0,1]. We see that k; = a;'Boko. Thus a;'fy = 1 and
hence ay = Sy, k1 = ko. O

By a x-locally convex space, we mean a locally convex space E together with
an involution * which is a homeomorphism. In this case, M, (FE) is also a *-

locally convex space with respect to the product topology.

Definition 3.2.3 (L'-matrix convex set) Let E be a x-locally convex space.
Let { K.} be a collection of compact convex sets K,, C M, (E)s, with 0 € ext(K,)
for alln. Then {K,} is called an L'-matrix convex set if the following conditions

hold:
Li Ifu€ K, andy; € M, with 35 %v; < I, then

Dy uy € Ky,

Uil Ui2
Ly If u € Ky, so that u = for some uyi,usn € K, and ujs €
ujy U2
M, (E), then
Ura + ujy € co(K, U—K,).
. Uy Uiz
Ls Let w € K,y with u = so that w11 € Kp,,un € K, and
ujy Uz

U2 € My n(E) and if upy = a1y, Uss = Qooliny with ty; € lead(K,y,), s €

lead(K,), then aq + ag < 1.

Remark 3.2.4 Let V' be a C*-ordered operator space. Then by Proposition
3.1.4, {Q.(V)} is an L*'-matriz convex set with lead(Q,(V)) = S, (V). In par-

ticular, M,,(T(H)){ is an L'-matriz conver set.
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3.2.1.1 Quantized Ay(K)-spaces

Now, we describe the converse of Theorem 3.1.2. Let E be a x-locally con-
vex space and let {K,} be an L'- matrix convex set in E. We assume that

M,(E)*t := U rK, is a cone in M, (FE)s, for all n. Using Ly, we get that

(E,{M,(E)*"}) is a matrix ordered space such that E* is proper. We further

assume that ET is generating too. For each n, we define

Ao(Kp, My,(E)) := {a : K,, — Cla is continuous and affine; a(0) = 0; and

a extends to a continuous linear functional a : M, (E) — C}.

Let a € Ao(K,, M,(E)). Since {K,} is an L;-matrix convex set and since K,
spans M, (E), for v € M,(E), we have v = Y37 \jvj + >, Nyv, where
vj,v; € Ky, and A, A; € R. Thus a(v) = > 77, Aja(vy) +4 >, Aja(vy). There-

fore, such an extension is always unique.

We consider the following algebraic operations:

1. For a € M, ,,, B € M,,,,, and a € Ag(K,,, M,,(E)), we define
aaBv) = a(a’vp?) for all v € K,,.

Then aaf € Ay(K,,, M,,(E)). In fact, the map v +— aZv3? from M,,(FE)
to M, (E) is continuous so that the map v — a(aTvp?) from M,,(E) into
C is also continuous. Thus 0/4;1/5 : M,(F) — C is continuous and hence

aaf € Ag(K,, M,(E)).

2. For a € Ay(K,, M, (F)) and b € Ao(K,, M., (E)), we define

(a ®b)(v) := a(vy1) + b(vae)
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V11 V12
for all v € K,,1,, where v = with v € K,,,v99 € K,,,, 012 €

Uy U2
Mym(E). Then a @b € Ag(Knim, Mnim(E)). In fact, the maps v — vy

from K,,,, into K, and v + vy from K,, ., into K,, are continuous so

that v — a(vyy) + b(vyy) is also continuous. As a®b = a @ b, we see

that a @b is also continuous from M,,.,(F) — C. Therefore, a ® b €

AO(Km-i-na Mm-i-n(E))

For a € Ao(K,, M,(FE)), we define a*(u) = a(u) for all v € K, so that

a*(u) = a(u*) for all w € M,(E). Then a — a* is an involution. We set
Ag(Kpy, My(E))sa = {a € Aog(Ky, M,(E)) : a® = a}.
We put
Ao (K, M (E))" = {a € Ag(Ky, My(E))sa : a(f) 20 Vf € Ky}
Next, for a € Ay(K,,, M, (FE)), we define

0 a
l|a||oon := sup (w)| :u € Koy, p for a € Ag(K,, M,(E)).
a* 0
Finally, for each n € N, we define ®,, : M,(Ao(K1, E)) — Ao(K,, M,(E)) as
follows: Let a;; € Ag(Ky, E) for 1 <14, j <n. Define

n

@, ([ayj]) : K, — C given by @, ([ay])([vi]) = > a5;(viy) for all [vy] € K.

ij=1

Now, it is routine to show that ®,([a;;]) € Ao(K,, M,(E)). (Note that @, is an

amplification of ®,. That is, ®,([a;;]) = [®1(aq;)], if [ai;] € M,(Ao(K7, E)).) In
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this identification, we note that [a; ;]* = [a],] is an involution in M, (Ao(K1, E))
so that @ is a x-isomorphism.

For each n € N, we set
Mn(AQ(Kl,E>>+ = {[aij] c Mn<A0(K1,E))sa . Z @(vi’j) Z 0 for all [Uz',j] S Kn}
1,j=1

and transport the norm

@i jllln = [1®n([ai;])loon
for all [a; ;] € M,,(Ao(K7, E)). Under these notions, we have

Theorem 3.2.5 (Ay(K1, E), {M,(Ao(K1, E))T}All - ln}) is a C*-ordered oper-

ator space.

Proof. We prove the theorem in several steps.
It is easy to deduce from the definition that (aaf)* = [*a*a* and that

(a®b)" =a* ®b".

1. Let o € My, 0, a € Ag(K,, M, (E))T and let v € K,,. Without any loss of
generality, we may assume that ||a|| < 1. Then, by the definition of an L!-
matrix convex set, we have o’ va® € K,. Thus a*aa(v) = a(a” val) >0

so that a*aa € Ag(K,,, M, (E))™.

2. Let a € Ag(Kp, M\y,(E))T,b € Ag(Kp, M,,(E))" and let u € K4, with
U1 U12

U= , for some uyy € K, upe € K, and ujp € My, ,(E). Then
Ujy  Uso

(@ ®b)(u) = alun) + b(uz) > 0
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so that a ® b € Ag(Kpin, Myin(E))T.

Now, it follows from (1) and (2) and the construction of M, (Ay(K;, E))
that the sequence of cones { M,,(A¢(K7, E))} is a matrix order on Ay (K7, E).

Also, it is easy to verify that Ay(K;, E)* is proper.

3. It is routine to verify that || - ||s.n is & semi-norm on Ay(K,, M,(E)). We

show that it is a norm. Let a € Ay(K,,, M, (F)) such that ||a|l, = 0. Let

u € K, and a = [\%]m\%ln]. Thena*a < I, and therefore, a*ua =
€ Ks,. Also, then € Ky,. Thus, as ||a]/cc,, = 0, we
get
0 a 5 iy i < —iu i —i
0= =a(7) +a*(——) = sa(u) + —-a(u)
X o w 2 2 2 2
a O _ZE 5
Similarly,
0 0 a 5 5 :a(2U) +a(2u).

Therefore a(u) + a(u) = 0 for all v € K,, and consequently a(u) = 0 for

all u € K,,. Hence a = 0.

V11 V12 _ | v
4. Further, note that € Ky, if and only if € K,, and
Uiy U2 V12 Vg2
0 a V11 V12 0 a* V11 /UT2
a* 0 UTQ V22 a 0 V12 V22

fora € Ay(K,, M,,(E)).

Thus ||a*||co.n

|la|loon for all a € Ag(K,, M, (E)).
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5. Next, we show that if a € Ag(K,, M,,(E))sqa, then

lallcon = sup{la(v)|: v € K,}.

In particular, we have

lalloon =

00,2Nn

for every a € Ay(K,,, M, (E)).

To see this, we put r,(a) = sup{|a(v)| : v € K,}. Since Ky, is a compact
0 a V11 V12

set, we have ||al|, = (v)| for some v € Ky,. Let v =
a 0 Uiy U2

Since { K, } is an L'-matrix convex set, we have vy +v}, € co(K,U(—K,,)).
As K, is convex, there are v,w € K,, and A € [0,1] such that v + vj, =

A — (1 — A)w. Thus

lallcom = la(vi2) + a(viy)| = |a(viz + viy)]
= la(Au = (1 = Mw)| = [Aa(u) — (1 = Ma(w)|

< Arp(a) + (1 = N)rp(a) = rm(a)

Again as K, is a compact convex set, we have r,(a) = |a(v)| for some
)
vov
. : . 2
v € K,. Since {K,} is an L'-matrix convex set, we have € Ks,.
v v
2 2
Therefore,
0 a LA
2 2
ra(a) = < al|oon
v v
a 0 5 3
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6. In particular, for a < b < ¢ in Ag(K,, M, (F))sq, we have

HbHoom < maX{HaHOO,m HCHOOJL}-

To prove this, let a < b < ¢ in Ag(K,, M,,(F))sq- Then a(u) < b(u) <
c(u) for all u € K, so that |b(u)] < max{|a(u)|,|c(u)|}. Thus by (5),
we get |b(u)| < max{||al/comn; ||b]|oon} for all u € K, so that ||blc, <

maX{HaHoo,m HCHoo,n}

7. Now, we prove that ||a @ bllcomtn = max{||allcom;||b]lccn} for all a €

Ao(Kyy My (E))sq and b € Ag(Kp, My (E))sa-

Let a € Ag(Ky, My (E))sq and b € Ag(K,, My, (E))sq- Now for every v €
K,,, we have

|a(v)] = [(a® b)(v @ 0)].

Since {K,} is an L'-matrix convex set, we have v & 0 € K,,,, whenever
v € K,,. Therefore by (5), we may conclude that ||a||c.m < ||a ® b||so.mtn-

Similarly, we can show that [|b]|eo.n < [|la @ b]loomn-

V11 V12 —~ =~
Conversely, let v = € Kyin- Then there exist 017 € lead(K,,), Vag €

Uiy Va2
lead(K,) and oy, ay € [0,1] with aq + ap < 1 such that v1; = o017, v22 =

Qial95. Thus

[(a® b)(v)] = |a(viy) + b(var)]
= |a1a(011) + azb(vg)]
< O‘1||a||oo7m + a2||b||00,n

< max{||a||co.m; |b]|con }
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Therefore ||a @ b|oom+n = max{||al|coml||bllcon}-

. Next, we prove that for a € Ay(K,, M,(E))s. and o € M, ,, we have

lo*ac|oom < lled*flallscn-

Let a € Ag(Km, Mp(E))se and o € M,,,, such that [|of < 1 and let

v € K,,. Since {K,} is an L'-matrix convex set and o*Ta® < I,,,, we have

a’"va® € K,,. Also, we know that

[(aac)(v)] = |a(a” va”)|.

Since a is self-adjoint, by (5), we have ||a*a|con < ||@|con for a =a*. In

particular, if m = n and if @ € M, is unitary, then ||a*aa|oom = ||a@||co.m-

Also, in general, for a € Ay(K,, M, (E))se and o € M, ,,, we have

loaclocn < [lerl*llaflsc.n-

I, 0 0

0O 0 I, O
. Leta € Ag(Ky, M (E)) and b € Ag(K,,, M, (E)). Put v =

0 I, 0 O

0O 0 0 I,

Then v € My,,,19, is a unitary and

§ 0 adb 0 a 0 b
Y v = &5
a* D b* 0 a* 0 b* 0
so that
0 adb 0 a 0 b
= ®
a* db* 0 a* 0 b* 0

00,2m—+2n 00,2m—+2n
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by (8). Thus by (5), we have

0 a®b
|a @ bl[min =
a*®dbt 0
00,2m—+2n
0 a 0 b
= ®
a* 0 b* 0
4 lloo,2m+2n
0 a 0 b
= max s
a* 0 b* 0
00,2m 00,2n

= maX{||a||oo,ma Hb”oo,n}-

10. Let a € M, 0, a € Ao(K, M, (E)) and 5 € M, ,,. Then by (5), we have

aaf
|aaB|loom =
Bra*a 0
00,2m
For t € R* \ {0}, we have
ta 0 0 al| |ta® O 0 aaf

Thus,

0 0 a
|aaBloom <
26" a* 0 0 8

00,2n

Lo
< max{{ftall, | 5[} [[aloc.n

1
= max{t*[la*, [18]*Hlal|oo.n-
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Taking infimum over ¢ € Rt \ {0}, we may conclude that |[aaf|ecm <

lellllallso.n 1Bl

This completes the proof. 0

Remark 3.2.6 Let {K,} be an L'-matriz convez set of E. Then by [40, The-
orem 1.7] there is a complete order isometry ¢ : Ao(Ky,E) — A for some

C*-algebra A.

3.3 Completely regularaity

In this section, we propose a matricial version of regular embedding of L!-matrix
convex sets and the notion of L'-matricial caps. We prove that if {K,} is
a regularly embedded, L!'-matricial cap in a *-locally convex space £, then

Aop(K, F) has an order unit so that (Ay(K;, E), e) is a matrix order unit space.

Definition 3.3.1 Let {K,} be an L'-matriz convex set in a *-locally convex
space E and let L, be the lead of K,, for eachm. We call {L,} the matricial lead
of {K,}. We also assume that M,(E)t = U2 rK, is a cone in M,(E)s, for
all n (so that (E,{M,(E)*}) is a matriz ordered space) such that E* is proper

and generating. We call {K,} an L'-matricial cap of E if
(1) Ly is conver; and

V11 V12
(2) if v € Ly with v = for some vy; € K,,,v0 € K, and

*
Vg V22

V1o € Mm,n(E) and if vi1 = @101, V20 = Q203 for some Uy € Ly, 03 € Ly,

and aq,ap € [0,1], then aq + ag = 1.

Theorem 3.3.2 Let {K,} be an L*-matricial cap of E. Then L, is convex for

every n.
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Proof. We prove this result in several steps.

Step 1. L, is convex.

v v wy w
Letv = | Jw = S S Ly and let A € [0,1]. Then by

*
Uiy U2 Wiy Wi
Definition 3.3.1(2), we have v;; = a10;, v92 = as0y with oy + ay = 1, for some
01,03 € Ly, and wyy = frwy, wey = Pows with B1 + fo = 1, for some wry, w; € L.

Now

Avip + (1= Nwip Aviz + (1 — Nwse
=M+ (1= Nw= € Ks.
ATy + (1 = Nwfy Avag + (1 — N wae

U1 U2 R A
Let v = so that u1; = Avyp + (1 — Mwyp = daqor + (1 — N)frwg

ujy Uz
and ugy = Avgg + (1 — Nwag = Aagts + (1 — X)Baws. Since Ly is convex, we get
l/L\l = ()\Oél -+ (1 — A)ﬁl)_lun < L1 and ’12\2 = ()\042 -+ (1 — )\)ﬁg)_llbgz € Ll- Put
MU Uig
(A1 + (1= X)B1) =71 and (Aag + (1 — X)S2) = 72, then u = and
Ujy Yol
M+72 = AMag+az)+(1=N)(B1+52) = A+(1—A) = 1. Let u = yu, where u € Lo
R T11 T12
and v € [0,1]. We show that v = 1. Let u = . Then 11,790 € K,
Tiy Too

with v, = 11, Y292 = ugy. Thus x1; = Y 'y and x99 = 7 1921. Now by
Definition 3.3.1(2), we get 1 = v 1y, +7 199 =y ! so that v = 1. Thus u € Lo,

and hence L5 is convex.
Now, by induction, we may deduce that Lon is convex for every n.
Step II. For m,n € N, we have L,, is convex if L,, ., is convex.

First, we show that v +— v & 0 maps L,, into L,,.,,. Let v € L,,. Then
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v® 0 € Ky so that v ® 0 = aw for some w € Ly, and a € [0, 1]. Thus

I,
where w; = [[n ()mm} w € K,,. Now, as L,, is the lead of K,,, we have

Om,n

a=1and w; =v. Thus v®0 =W € Ly yp.

Fix m € N. Let v,w € L,, and « € (0,1). As Lom is convex, we get
(av+(1—a)w)®0=a(v®0)+ (1 —a)(wd0) € Lom.

Put v = av ® (1 — a)w. Then u € K, so that u = A\u for some u € L,, and
A€ [0,1]. Asu € L, we get that t 0 € Lam. Now A(u @ 0) = u @0 € Lom s0

that A\=1and v =u € L,,. Thus L,, is also convex. O

When L, is compact and convex, by A(L;) we denote the set of all complex
valued continuous affine functions on L;. Then A(Lj)s, is an order unit space
so that A(L;)%,, the ordered Banach dual of A(L;)s,, is a base normed space

sa?

(see e.g. [2, 37]).

Definition 3.3.3 Let {K,} be an L'-matriz convex set in a x-locally convex
space E. Then {K,} is called regularly embedded in E if Ly is reqularly embed-

ded in E,,. In other words,
1. Ly is compact and convex; and
2. X Eso = (A(L1)%,)ws is a linear homeomorphism.

Here x(w)(a) = Xa(u) — pa(v) for all a € A(Ly)sq with w = Au — pv for some

u,v € Ly and \,u € RT.
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We note that y(w) is well defined. To see this, let w = A\juys — p1v1 = Agtg — figvo

for some u;,v; € Ly and \;, u; € R for i = 1,2. As Ly is convex and

A1+ o (/\1U1 + /~02U1) _ Aotz + 11V
Ao+ fiy AL+ o Ao + 11y

by Proposition 3.2.2, we have A\; + ps = Ay + p1. So if a is an affine function on
Ly, then

Ara(uy) + ppa(vy) — 4 (Alul + M2U2> . ()\2U2 + M1U1> _ Aga(ug) + pra(vy)
A1+ o A1+ o Ao + i1 Ao + 1y '

Thus Aa(uy) — pra(vy) = Asa(ug) — poa(ve) so that y(w) is well defined linear

functional on A(Ly),, for all u,v € L, and A\, u € RT.

Theorem 3.3.4 Let {K,} be a reqularly embedded, L*-matricial cap in E. Then
Ao(K1, E) has an order unit, say e, so that (Ao(K1, E),e)} is a matriz order

unit space.

Proof. As L is the lead of Kj, there exists a mapping e : K; \ {0} — (0,1]
given by e(k) = « if k = ak for some k € L; and o € (0,1]. Since a and k are
uniquely determined by k& € K \ {0}, e is well defined. We extend e to K by
putting e(0) = 0. Since L, is convex, we may conclude that e : K; — [0,1] is
affine. Again since K spans E, we can extend e to a self-adjoint linear functional
¢ : F — C. Following this way, for each n € N, we can construct a self-adjoint
linear functional é, : M,,(E) — C such that é,(v) =1 for all v € L,,. (We write
e, for é,z, )

We show that ¢ is continuous. It suffices to show that ély,, is continuous at
0. Let {\ata — ftaVa} be a net in E, for some uy,v, € L1 and \,, i € RT

such that A\yuq — ftave — 0. Since {K,,} is L'-regularly embedded in F, we get
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X(Aatla — fiaVa) = 010 (A(L1)%,)ws. Let I, be the constant map on L; such that
I, (v) =1for all v € Ly. Then I, € A(L1)sq. Thus x(Aata — ta¥a)(r,) — 0

so that é(Ayua — aVe) —> 0. Now it follows that e € Ag(K, F).

Next, fix n € N and consider " € M,,(Ay(K1, E)) so that by Theorem 3.2.5,
ey = D, (") € Ay(K,, M,(E)). We show that e = e,. Let [v;;] € L, so that
v;; € Ky for i =1,...,n. Let v; = a;0, for some «a; € [0,1] and ©; € L,,. Since

{K,} is an L'-matricial cap, we have Y "' | o; = 1. Thus

so that eg(v) = e,(v) for all v € L,. Since L, is the lead of K,, and since K,

spans M, (FE), it follows that €, = ey and that e, € Ay(K,, M,(E)).

Note that ||e||coq = 1. We show that e is an order unit for Ay(K;, E)s,. To
see this, let a € Ag(K1, E)sq. Then |a(k)| < ||al|co1 for all k € K. Let k € K.
If £ =0, then a(0) = 0 so that

—llalloc.1e(0) = 0 = [a]|oc,1¢(0).

Let k # 0. Then there exists a unique kel and ac (0, 1] such that k = ok.

Now

~ ~

~Jlalloc,ie(k) = =llalloes < a(k) < llallocs = llallwae(k).

so that

—llalloc.re(k) < alk) < llallore(k)

for all k € K. Thus we have —|[al|c 16 < a < ||a||c1€ for all a € Ag(K7, E)sq.
In other words, e is an order unit for Ay(K7, E)s, which determines || - ||oo1 as an

order unit norm on it. Similarly, we can show that for each n € N, ¢,, is an order
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unit for Ay(K,, M, (F))s, which determines || - || as an order unit norm on it.
Again, being function space, Ay(K,, M, (E)) is Archimedean for every n. Hence
(Ao(K1, E),e) is a matrix order unit space. Next, we prove the completeness

Of (A()(Kl, E),e).

Proposition 3.3.5 Let {K,} be an L'-matriz convex set in a *-locally convex

space E. Then Ao(Kp, My (E))sa = Ao(Ky)sa for every n € N.

Proof. By the definition, Ay(Ky, My(E))sa C Ao(Kpn)sa- Also, since Ag(K,)sq

is norm complete, we get Ag(K,, M, (E))sa C Ao(K,)sa- Conversely, let a €
Ao(Ky)se and € > 0. Then G, (a) and Gk, (a + €) are compact convex set in

M, (E)s x R, where

G, (b+ ) = {(k,b(k) + \) : k € K,,}

with b € Ag(K,)se and A € [0,00). Thus Gk, (a)NGk, (a+€) = 0. Therefore, by
the Hahn Banach separation theorem, there are f € (M, (E)s)* (= (Mn(E)*)sq)

and X\ € R such that

(fy M) (u,a(u)) < (f, A)(v,a(v) 4+ €) Yu,v € K,.

Simplifying this, we get

f(u) + Aa(u) < f(v) + Aa(v) +€) Vu,v € K,.

In particular, when v = v = 0, we get A > 0. Similarly, for u = 0 and v = 0

separately, we have

A (u) 4+ a(u) < e and AHF(v) + a(v) > —€ Yu,v € K,,.
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Let us put a; = —A7'f, then a; € Ag(K,, M,,(E))sa and |a;(u) — a(u)| < € for
all u € K,,. Now, by (5) of the proof of Theorem 3.2.5, we have [|a; — a||oon < €.

This completes the proof.

Proposition 3.3.6 Under the assumptions of Theorem 3.5.4, Ao(Kyn, Mp(E)) =
Ao(K,) for each n € N.

Proof. We know that Ag(Ky, E) C Ag(K;). Let a € Ag(K4) so that a = ay +ias
for some ay,a; € Ag(K7)se and let {A\yuq — pava} be a net in Ey, for some
U, Vo € Ly and Ay, p1o > 0 such that A\yu, — pave — 0. Since K generates
E, a; has a unique linear extension a; for i = 1,2. Since {K,} is L'-regularly

embedded in E, x(Aata — faVe) —> 0 in (A(L1)%,)ws- Thus

a;(Aala — faVa) = Aa@i(Ua) — fai(Vy)
= )\aai‘Ll(ua) - Naai’M(UOé)

= X(Aaua - Nava)(ailLl) —0

Put @ = aj +iay. Then a|x, = a and a(Ayuq — laVe) — 0. Thus @ is continuous
on F and consequently, a € Ay(Ky, E). Therefore we have Ay(K;) = Ao(K1, E).
It follows that Ag(Ky, E) is || - ||i-complete so that (Ag(K,, M,(E)) is || - |lson-

complete. Since Ag(Kp, M (E))sa = Ao(Ky)sa, by Proposition 3.3.5, we may

conclude that

AO(Kn) = AO(Kna Mn(E)) = AD(Km Mn(E))

for Ag(K,, M, (E)) is || - || con-complete.

Remark 3.3.7 Under the assumptions of Theorem 3.3.4, L, is compact for

each n € N. To see this, let {u,} be a net in L,. Since L, C K, and K, is
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compact, u, has a subnet {ug} that convergent uy € K,. Since e, € Ay(K,).

Therefore 1 = e, (ug) — en(ug) so that e,(ug) = 1. Hence ug € Ly,.

Proposition 3.3.8 Ay(K,) is order isomorphic to A(L,).

Proof. Tt suffices to prove that the map a — aly, from Ag(K,) into A(L,) is
surjective. Let a € A(L,). Since L, is convex, there is an affine map b on K,
such that b|,, = a and b(0) = 0. Let u, be a net in K,, such that u, — ug
in K,. Since e, € Ao(K,), en(us) — en(up), by Proposition 3.2.2, we have
Uy = Aol for some u, € L, and A\, € [0,1]. If ug = 0, then \, = A\ye,(ta) =
en(uq) — €(0) = 0. Therefore, b(u,) = Apa(ta) —> 0 = b(0). Again if uy # 0,
then by Proposition 3.2.2, we have uy = Agtp for some A\g € (0,1] and gy € L,,.
Thus Ay = Aaen(ta) = en(ua) — en(ug) = Ao so that u, — wg. Since

b(us) = Aaa(Ug), we have b(us) — Aoa(ug) = b(ug).






CHAPTER

M-1deals 1n non-unital ordered

Banach spaces

In this chapter, we investigate order theoretic properties of M-ideals in order
smooth oo-normed spaces. In the first section, we recall the notion of M-ideals
and L-summands. We characterize approximate order unit spaces among order
smooth oco-normed spaces. In the second section, we prove the cone decomposi-
tion properties which is beneficial for the rest part of the chapter. Also, as an
application of cone decomposition theorem, we prove positive norm preserving
extension theorem of all bounded positive functionals of a certain class of sub-
spaces of order smooth oo-normed spaces. In the third section, we characterize
the M-ideals of an order smooth oo-normed space in terms of split faces by
extending the notion of split faces of the state space to those of the quasi-state
space. In the last section, we characterize approximate order unit spaces as
those order smooth co-normed spaces V which are M-ideals in V. Here V is the

order unit space obtained by adjoining an order unit to V.

25
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4.1 Introduction

Let us recall that the closed subspace W of a real Banach space V' is said to be

an L-summand if there exists a unique closed subspace W’ of V such that

V=Waog W.

A closed subspace W of a real Banach space V is said to be an M-ideal if
W+ (the annihilator of W) is an L-summand of V*. The following proposition
characterizes an approximate order unit space among order smooth oco-normed

spaces.

Proposition 4.1.1 [65, Proposition 9.5] Let (V,V*,||.]|) be an ordered normed
space such that ||.|| is additive on V* and V satisfies (0S.1.2). Then V is a

base normed space.

Proposition 4.1.2 Let V' be an order smooth oco-normed space. Then V is an

approzimate order unit space if and only if S(V') is conver.

Proof. 1f (V,{e,}) is an approximate order unit space, then S(V') is convex. In
fact, for any f € V** we have || f|| = sup,{f(ex)}. Conversely, let V' be an order
smooth oo-normed space for which S(V') is convex. Then the norm is additive
on V*T. Notice that if f,g € V**\ {0}, then fo = ||f||7*f, 90 = ||lg]|~*g € S(V).
Now, by the convexity, (/]| + Ilgl)~" (Il f[lfo + [lgllgo) € S(V). Thus

1 =+ gl = [IALf1]fo + llgllgo) | = ILA1 + llgll-

Next, as V' is an order smooth oco-normed space, by Theorem 2.2.8, V* satisfies

(0S.1.2). It follows from Proposition 4.1.1 that V* is a base normed space.
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Now, by Theorem 2.2.1, V' is an approximate order unit space. [l

4.2 Cone-decomposition property

In this section, we prove an order-theoretic version of (the ‘Alfsen-Effros’ cone de-
composition) Theorem 2.1.2 for order smooth 1-normed spaces satisfying (0.S.1.2).
We recall that if W is a subset of an ordered vector space (V,V7), we write

Wt=wnvt,

Theorem 4.2.1 Let V be a complete order smooth 1-normed space satisfying
(0S.1.2) and let W be a closed cone in V. Then for any v € VT, there are

w e WT and w' € W'F such that
v=w+w and |l = [w] + [lv].

We use the following fact to prove Theorem 4.2.1.

Lemma 4.2.2 Let V' be an order smooth 1-normed space satisfying (0S.1.2). If

u >0, then facevl(m) cC V.

Proof. Let u € V. Without any loss of generality, we may assume that [|u|| = 1.
Let v € facey, (u). Then by the definition of facey, (u), there exists w € V] such
that

u=+(1—-Nw

for some A € (0,1). Since [Ju]| = 1, we have ||v|| = 1 = ||w]|. Also, as V satisfies
(OS.1.2), there exist vy, v9, w1, ws € VT such that v = v; — vy and w = wy — wy
with ||v]| = [Jv1]| + ||ve|l and |Jw|| = ||Jwi|| + |Jwe|. Thus v = u; — uy where

u; = Av; + (1 — MNw; for i = 1,2. Since 0 < u < wu; and since V' is an order
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smooth 1-normed space, we have

L= Jull < flwl]
< v+ (1 = M|
< Alonll + (1 = A fwn ]
< Alloall + flo2l) + (1 = A) (]| + [wal])
< Aol + (1 =M fw] = 1.
Thus vy = 0 = wy so that v,w € V. O

Proof of Theorem /.2.1. Let W be a closed cone of V and u € V*. Then by
Theorem 2.1.2, we have u = v + w with ||ul| = ||v|| + ||w]|| for some v € W and

w € W'. Now, by Lemmas 2.1.1 and 4.2.2, we conclude that v and w € V. [J

A quick consequence of Lemma 4.2.2 is the following;:

Corollary 4.2.3 Let (V, V") be a complete order smooth 1-normed space satis-
fying (OS.1.2). Then

u u
f‘lCGVl(m) = facevl+(m)

and C(u) C VT whenever u € V*. Here Vi =V, NV,

We also have the following:

Corollary 4.2.4 Let (V,V*) be a complete order smooth 1-normed space satis-

fying (OS.1.2). Then we have (=V ) =V (V) =-VT.

Proof. We only prove (—V 1) = V' as similar arguments are valid for the other
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case. Put C' = —V* and let u € V. By Theorem 4.2.1, we have, u = v+w with
|lul] = [Jv]| + ||w]| for some v € CT,w € C"*. But CT =CNVT =-VTNVt=
{0} so that u =w € C'*.

Conversely, let v € C" := (=V*)". Then by the definition, C'(v) N (=V*) =
{0}. Since V satisfies (0S.1.2), there are vy, vy € VT such that v = v; — vy and
lvll = |lvi|l + [|v2]]. By Lemma 2.1.1, —vy € C(v). But C(v) N (=VT) = {0} so

that v = v, € V. O

We apply Theorem 4.2.1 to sharpen [41, Theorem 4.3]. Actually, we prove
positive and norm preserving extensions of positive bounded linear function-
als without the assumption that the order smooth subspace be ‘strong’ (|41,

Definition 3.4]).

Theorem 4.2.5 Let W be an order smooth subspace of an order smooth oco-
normed space (V,V*,||.||). Then every positive bounded linear functional on W

has a positive norm preserving extension on V.

Here by an order smooth subspace W of an order smooth p-normed space V', we
mean that W is also an order smooth p-normed space when the order and the

norm of V is restricted to W.

Proof. Let f be a positive bounded linear functional on W. By the Hahn Banach
theorem there exists f € V* such that ||f|| = ||f||. We prove that f is positive.
Since V* satisfy (0S.1.2), by Theorem 2.2.8, there are fi, f2 € V** such that
f=fi = fo with |[f| = |If1l| + || f2]]. Since fi, fo € V*t and V* is complete,
by Theorem 4.2.1, there are fi1, far € WLt and fia, for € W'+ such that f; =
Fir+ frz with | Al = || fuall + [ frzll and fo = for + foo with || o] = || ful| + [ fo2 -
Now f = fi1 — for + fiz — faa, where fi1, for € W+ and fia, for € W'+ such

that |[fll = [1full + I forll + L fizll + 1 Foell- XE fis = fig o, forallé,j & {1,2}.



60 §4.3. M-ideals in order smooth co-normed spaces

Then f1; = fo; = 0 so that f = fi5 — fos. Further, as f is positive, we have

0 < f < fi2. Thus by (O.1.1) property of V* we get || f|| < || fi2]|. Therefore,

I <l fizll
< LAl + I Pl + N Fazll + 11 fez
= IIfl =171
and consequently, fll = fgl = fgz = 0. Hence f = flz e V*t. O

4.3 M-ideals in order smooth oco-normed spaces

We begin with a characterization of M-ideals in a complete approximate order
unit space due to Alfsen and Effros (see e.g. [1]). First, we recall the following

notion.

Definition 4.3.1 Let V' be a normed space. Let K be a non-empty, closed and
conver set in V. A proper face F of K is said to be a split face of K if FY is a

proper face of K such that K = F @, FY. Here
FE = U{facex(v) :v € K and facegx(v) N EF = (B}

and by K = F @, FY, we mean that for each v € K there exist unique u €

F,we F¢ and X\ € [0,1] such that
v=2Au+(1-X\w.

Theorem 4.3.2 [1, Corollary 5.9, Part II] Let (V,VT,{ex}) be a complete ap-

prozimate order unit space and let W be a closed subspace of V.. Then W is an
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M-ideal in V if and only if W+ N S(V) is a closed split face of the state space

S(V).

In this section, we prove an analogue of this result for complete order smooth oo-
normed spaces. We noted in Theorem 4.1.2 that in general, in an order smooth
oo-normed space V', the state space S(V) may not be convex. To overcome
this situation, we present an alternative form of Theorem 4.3.2. For brevity, we
adopt the following convention: Let V' be an order smooth 1-normed space and

let C' and D be subsets of V. We write

V+:CEB1D,

if for v € C' and w € D, we have

[o +wl| = [lvff + [[wl]

and if every element u of V't can be written uniquely as

Uu=7v-+w

with v € C and w € D.

Proposition 4.3.3 Let V be an approximate order unit space and let W be a
closed subspace of V. Then W N S(V) is a split face of S(V') if and only if the

following conditions hold:

! .
1 W+ is convex;

2 Vet = Wt @ W
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Proof. Let us observe that
(W N S(V)§wy =W NS(V). (4.3.1)

To see this, we let f € WX *NS(V). Then C(f)NW+ = {0} with || f|| = 1. Then
by the definition of C'(f) (also see equation (2.1.1)), we have facey, (ﬁ) NWt =
(0. Then by Corollary 4.2.3, we may deduce that facego(f) N W+t = 0. Thus
few+n S(V))g(v). Now tracing back the proof, we may conclude that

(4.3.1) holds.

Now first, we assume that W+ N S(V) is a split face of S(V). We show that
conditions (1) and (2) hold. Now, we prove (1). For this let f,g € W*'* and
a € (0,1). Then ||f|I7*f, |lgl ‘g € W+ N S(V). Thus by the convexity of
WETNS(V) = (W N S(V))G ), we get

(@l /1l + (= a)llgl)"Hall A7) + (L= a)llgli (gl 9)} € W nS(V).

Therefore, of| fI[([1£]I7*f) + (1 = &)llgll(lgll~"g) € W™ so that (1) holds.

To prove (2), let f € V**\ {0}. Then || f||71f € S(V). Since W+t N S(V)

is a split face of S(V'), we have
S(V) =W nSV) @ (W nS(V)§) =W nSV) e (W ns((v).

Thus there exist a unique go € W++NS(V) and hy € WH+NS(V) and X € [0, 1]
such that || f||71f = Ago + (1 — A)hg. Then f = g+ h where g = A||f|lgo € W
and h = || f||lho € W+,

Next, assume that conditions (1) and (2) hold. We show that F' = W+t n

S(V) is a split face of S(V). Put G = W'+ N S(V). Since W+, WL+ are faces
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of V** by Proposition 4.3.6, we get that F' and G are faces of S(V'). Also, since
W nwt = {0}, we may conclude that F NG = (. We prove that S(V) =
F®.G. Tt suffices to show that S(V) C F@.G. Let f € S(V)\FUG C V*F. By
(2), there exist unique go € W+ and hy € W'+ such that f = gy + ho. Thus

g=rqog € h= ||Z_8H € G. Also ||go||+|lhol| = 1 so that ||go|lg+||hollh € F&.G.

Therefore, S(V) C F &.G = F &, FSC(V) by (4.3.1). O

Remark 4.3.4 Let V be a complete approzimate order unit space and let W be
a closed subspace of V. Then W s an M-ideal in V if and only if W satisfies

the following conditions:
(i) W+ is convex.
(i) V*t =Wt @, W'+,
Now, we prove the main result of this section.

Theorem 4.3.5 Let V' be a complete order smooth oo-normed space and W be
a closed subspace of V. Then W s an M-ideal in V if and only if W satisfies

the following conditions.
(i) WL+ is conven.
(i) V¥ =Wt @ W,

We use the following results to prove Theorem 4.3.5. We begin with the following

observation.

Proposition 4.3.6 Let V' be an order smooth oco-normed space and let W be a

closed subspace of V' such that following conditions hold:

(i) WL+ is conver;
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(”) V*+ — WJ_Jr P, WJ.’*F'
Then Wt and WY+ are faces of V**.

Proof. Let fi, fo € V** with f = afi + (1 — a)fy € Wt for some o € (0,1).
By assumption (ii), we have f; = g1 + hy and fo = go + hy for some unique
91,92 € Wt and hy, hy € WH*. Put g = agi+(1—a)gs and h = ahi+(1—a)hs.
Since WL+ and W+'* are convex, we have g € W+ and h € W+'*. Then
f = g+ his a decomposition of f in Wt @, W+, As f € W**, by the
uniqueness of decomposition, we may conclude that h = 0. Thus h; = 0 = hy so

that W is a face of V**. Now, by symmetry, W'+ is also a face of V**+. O

For the next result, we use the following notion defined in [1]. Let V be a

normed space. For u,v € V we define u < v, if

[oll = llull + flo = u]|.

Form Lemma 2.1.1, we can write u < v if u € C'(v) . A subspace W of V is said

to be hereditary if v € W with u < v implies u € W. This relation is transitive.

Proposition 4.3.7 (i) Let (V, B) be a complete base normed space and let
W be a closed subspace of V. If W is hereditary, then W N B is a face of

B, or equivalently, W NV is a face of V|".

(ii) Let V' be a complete order smooth 1-normed space and let W be a closed

subspace of V.. If W NV is a face in V. Then W is hereditary.

(11i) Let W be a hereditary subspace of a complete order smooth 1-normed space

V. If V satisfies (0S.1.2), then so does W.

Proof. (i): Let uj,uy € B such that u = au; + (1 — a)ug € W N B for some

a € (0,1). Then auy, (1 — a)us < u. Since V' is a base normed space, we get
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|lul] = [Jous ||+ ||(1 — @)uz||. Thus auy < u, (1 —a)uy < u. Since W is hereditary,
we have auq, (1 — a)ug € W. Thus uy,us € W so that uy,us € W N B. Hence
W N B is a face of B.

(ii): Let v € W and u € C(v). We prove that u € W. By (0S.1.2) property
of V, we have u = u; — ug with |Ju|| = ||u1]| + ||uz|| for some uy,uy € V. Thus
u; < u < v. Since W is a cone in V, by Theorem 2.1.2 , we have v = v + vs,
with ||v|| = ||v1]| + ||Jve]| and w; < vy where v; € W+ and v, € W', Since
u; < v1, we also have v; — u; < v1. Then v; —uy € C(v;). By Corollary 4.2.3,
we have C'(v1) C V™' so that vy —uy € V. Since ||vy|| = ||us]| + ||v1 — w1]|, the

right hand side of the expression

v | ( (L} ) o1 — ] < v — Wy )
= +
oil]  [Joal] \ [ ] [|v1]] o1 — |

is a convex combination of pi, M=t in V)", Since W N Vi" is a face of Vi

ug
flua |l

show that us, € WT. Hence u € W.

and since

€ WnV, we have u; € W*. By a similar argument, we can

(iii): Let w € W, then by (0S.1.2) property of V, there are u,v € V' such
that w = v — v and ||w| = ||u|| + ||v||. Therefore u, —v < w, so by definition
of hereditary subspaces, u, —v € W. Thus u,v € W™ so that W also satisfies

(0S.1.2). O

Proof of Theorem 4.3.5.

Let W be an M-ideal in V. Then W+ is an L-summand of V* so that W+’
is also an L-summand of V* with V* = W+ &, WL'. Thus Wi+ = w+ ny*t
is convex. Also, by the order cone decomposition Theorem 4.2.1, condition (ii)
holds.

Conversely, assume that conditions (i) and (ii) hold. Let f € V**. Then by
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condition (ii), there exist unique g € W+ and h € W+'* such that f = g+ h
with ||f]| = |lg|| + ||||. Let us write Lo(f) = g. Then by the uniqueness of
decomposition Ly : VT — VT is well defined and Lo(af) = aLo(f) for all
a > 0. Now, let fi, fo € V. Again applying condition (ii), we can find unique
91,92 € W and hy, hy € W+ such that f; = g; + h; and || fi]| = |lgsl| + [|h]]
for i = 1,2. Then fi + fo = (g1 + g2) + (h1 + hg), where g1 + g € WA+ and
hy 4+ hy € WL+ by the condition (i). Thus by the condition (ii), we have
[f1+ fall = /(g1 + g2)[| + [[(h1 + h2) || so that Lo(fi+ f2) = Lo(f1) + Lo(f2). Now,
let f € V*. By the condition (0S.1.2) in V*, there are fi, fo € V** such that
f = fi— fowith || f]| = || f1l] + | f2ll- Let us write L(f) = Lo(f1) — Lo(f2). As
Ly is additive on V**, it is routine to check that L : V* — V* is a well defined,
positive linear mapping with L(V*) C WL, We prove that L is an L-projection
onto Wt. Let f € V*, then by (0S.1.2) in V*, there are g, h € V** such that

f=g—hwith [[f] = [lgll + [[|A]]. Now

A < NEHT+ 1L = L

= |IL(g) = LW + [lg = h — L{g) + L(R)||

< LI+ ILM+ llg = Lig)l + 1 = L(h)|]
IZo(Il + [lg = Lo(g) D) + (I Lo()[| + 1A = Lo(R)])

= gl + Al =171

so that ||L(f)||+||f — L(f)|| = ||f|| for all f € V*. Next, we show that L(f) = f
for all f € W+. To see this, let f € W+, Since by Proposition 4.3.7, W+ satisfies
(0S.1.2), there are fi, f» € W+ such that f = f; — fo with ||f]| = || fil| + || f2]|-
Now, by Theorem 4.2.1, f; = ¢;+h;, where g; € W++ and h; € WL+ fori=1,2.

As fi,gi € WHT, we have h; € W+ N WL+ = {0}. Thus by the construction,
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g1 = Lo(f1) and g5 = Lo(f2) so that L(f) = Lo(f1) — Lo(f2) = g1 — g2 = [ if
f € Wi, Thus for any f € V*, we have L*(f) = L(L(f)) = L(f). Hence L is an

L-projection of V* onto W+ and therefore W is an M-ideal in V. U

If we attempt to get a prototype of Theorem 4.3.2 for order smooth oo-
normed spaces, we need to replace the “state spaces” by the “quasi-state spaces”
as the quasi-state space of an order smooth oo-normed space is always convex.
Accordingly, we need to ‘adjust’ the definition of split faces as well.

First, let us note that if V' is an approximate order unit space, then there is
a bijective correspondence between the class of faces of S(V') and the class of

non-zero faces of Q(V') containing zero. These correspondences are given by
FCSV) = co(FU{0}) CQ(V)

and

GCQV)—GnS(V)CSV).

Lemma 4.3.8 Let V' be an approximate order unit space and let F' be a face of

S(V'). Then we have
S(V) N (cone(co(F U{0}))) = Fg(\/)-
Proof. Let f € S(V). Then

f € (cone(co(F U{0}))) < C(f) Neco(FU{0}) = {0} (4.3.2)

& co(facesvy(f) U {0}) Neco(F U {0}) = {0}.
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Now as, faceso(f) € S(V) and F C S(V), we get that faceso(f)NF = 0.
Thus f € Fg(v). Therefore we have S(V') N (cone(co(F U {0})))" C FSC(V).

Conversely, let [ € FSC(V). Then f € S(V) and facesay(f) N F = 0. By
equation (4.3.2), it suffices to show that co( facesq)(f)U{0})Nco(FU{0}) = {0}.
Let g € co(facesq(f)U{0}) Nco(FU{0}). Then there exist g; € facesw)(f),
go € F and A\, € [0,1] such that g = g1 = pga. As g1,92 € S(V), we get
A = p. Now, if X # 0, then g = g2 € facesa)(f)NF =0 so that A\ =0 = p

and consequently, g = 0. Hence S(V') N (cone(co(F U{0}))) = Fg(v). O

Definition 4.3.9 Let V' be an order smooth oco-normed space. Let G and H be

any two faces of Q(V') containing zero such that GN H = {0}. We define
G H= g+ (1-Nh:geGhe gl = b, A e 0.1},

For a face G of Q(V') containing zero, we say that G is a split face of Q(V),
if Gy = (cone(G)) N Q(V) is also a face of Q(V)) (containing zero) and if

every element in Q(V') has a unique representation in G ., Gé?(V)'

Remark 4.3.10 By the definition of a split face, we get that || f|| < |lgl| = ||2||-
But we can show that these norms are equal. To see this, let f € Q(V) \ {0},
Then fi = ||fII7Yf € Q(V). Thus there exist unique gg € W N Q(V),hy €
(Win QV))gwy with [lgill = ||l such that fi = Agr + (1 — A)hy for some
A€ [0,1]. Now

L= |lAll < Mgl + (1 = N[[h]] < 1.

Thus we have f = \g + (1 — Nh, where g = [|fllgg € WENQ(V) and h =
1£llP € WENQV ),y with [lgl = I = IRl

We show that this notion is an extension of a split face of S(V') as follows:
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Theorem 4.3.11 Let V' be an approximate order unit space and let F' be a face
of V. Then F is a split face of S(V') if and only if co(F U {0}) is a split face of
Q(V) that is

Q(V) = co(F U{0}) @1 co(F U{0})gw)

Proof. Let F' be split face of S(V'). Since co(F"U{0}) ) = co(F§, sy U{0}) and
since Fs(*j(V) is a face of S(V'), we conclude that co(F'U{0})fyy is a face of Q(V).
Let f € Q(V)\{0}. Then | f||~*f € S(V). Since F is a split face of S(V'). There
exist an unique element gy € F, hg € F§y such that [ f[|7'f = Ago + (1 = A)hg
for some A € [0,1]. Put g = || fllgo, h = ||f||ho. Then f = Ag + (1 — A\)h where
lgll = 4] = [£]] and g € co(FU{0}) and h € co(FS.y, U{0}) = co( FU{0} oy,
To prove uniqueness, let g; € co(FS(V) U {0}) and hy € co(F U {0})fy such
that g1 = [l = 7]l and £ = igs + (1 — i for some s € [0, 1]. Then we
have || fI|71f = pllfl7tgr + (1 — w)|| £ 7H|1]]- Now by uniqueness of split face
we have ||f||7'g1 = go = ||f]|"*9. Thus we have g; = ¢ and similarly, we have
hy = h. Hence co(F U {0}) is a split face of Q(V).

Conversely, let co(FU{0}) is a split face of Q(V'). We have to show that F'is
a split face of S(V). Since co(F'U{0}) is a split face of Q(V'), co(F'U{0})¢y 18
also a face of Q(V). But co(F'U{0}) ) = co(Fg(V) U{0}). Thus Fg(v) is a face
of S(V) as well. Let f € S(V) C Q(V) = co(F'U{0}) @1 co(FU{0})g5yy- Then
there exist unique pair g € co(F U {0}),h € co(FC U {0}) with |lg]| = ||h|| =
|fll =1 (so that g,h € S(V)) such that f = Ag + (1 — A\)h for some \ € [0, 1].
Thus g € co(FU{0})NS(V) = F and h € co(Fg,,)U{0})NS(V) = Fg,,. Thus

feF®, FS(V) O

Lemma 4.3.12 Let V' be a complete order smooth oo-normed space and let W

be a closed subspace of V. Then W+ nQ(V) =W nQ(V).
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Proof. Since cone(W+NQ(V)) = W+, we have
(WHNQV))gw) = (cone(W+NQ(V))) NQ(V) = W nQ(V).

We show that W+ NQ(V) = W+ nQ(V). If f € Q(V), then C(f) C V**,
by Corollary 4.2.3. Thus C(f) N W+ = C(f) N W+, Since Wt = {f € V*:
C(f) N W = {0}}, it follows that W+ NnQ(V) = W nQ(V). O

Proposition 4.3.13 Let V be a complete order smooth oo-normed space and
let W be a closed subspace of V. Then W is an M-ideal in V if and only if
WLnQ(V) is a split face of Q(V).

Proof. First, let us assume that W is an M-ideal in V. Then by Theorem 4.3.5,
WLt is convex and V** = Wt @, W't. Also, by Lemma 4.3.12, we have
WENQ(V))gw) = W+ NQ(V). We show that W' NQ(V) is a face of Q(V).
Let f1, fo € Q(V) be such that f = af; + (1 —a)fy, € W N Q(V) for some

€ (0,1). As V*t = Wt @, WL, there are unique g1, g0 € W+F, hy, hy €
W+'* such that f; = g; + hy, with ||fill = |lg;l| + ||hsll, for i = 1,2. Then
f=(ag + (1 —a)ga) + (ahy + (1 — @)hy) = g + h, where g = agi + (1 — a)g2
and h = ah; + (1 — a)hy. As W*F and W+'F are convex, we get that g €
WLt h € W+, Next, as W is an M-ideal in V, W' is an L-summand of
V* so that W+ —w++ C W, Thus g = f—h € WHH —wtH+ c wt
so that ¢ € WY N WL = {0}. Therefore, gy = g = 0 and consequently,
fi = hi, fo = hy € WHT N Q(V) so that (W N Q(V))gw is a face of Q(V).
Similarly, we can prove that W+ N Q(V) is also a face of Q(V).

Now, we show that W+NQ(V) is a split face of Q(V'). For this, let f € Q(V).
Since Q(V) C V** = W+ @, W'+ there are unique gy € W+ hy € W'+

such that f = go + ho and |[f[| = llgoll + [lholl. Put g = [Iflllgol =" g0, b =
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I£1llho] = ho. Then g € WHNQ(V) and h € WHNQ(V)) = (WNQ(V))g

and consequently,

£ = UgolllFI75g + (Rl FIITHR € W N Q(V) @ex (W N Q(V))gqw)-

Hence W+ N Q(V) is a split face of Q(V).

Conversely, assume that W+ N Q(V) is a split face of Q(V). We show that
W'+ is convex and that V*t = Wit @, WL+, Let f,g € W+ and a € (0,1).
Put h = af + (1 —a)g. If we put A = max{||f|,[lgll}, ho = A"'h, fo = A7'f
and gy = A7'g, then fo, g0 € W N Q(V) with hy = afy + (1 — a)go. Since
W+NQ(V) is a split face of Q(V), W+ NnQ((V) = (W+n Q(V))gv) is convex.
Thus hy € W' NQ(V) and consequently, h € W'+, Therefore, W+'* is convex.

Finally, let f € V*T\ {0}. Then f; = ||f[|7'f € Q(V) = W+ N Q) &
W+ NQ(V). Thus there exist unique g; € W+ N Q(V), hy € W NnQ(V) and
a € [0,1] such that f; = agi + (1 — «)hy with ||g1]] = ||h1]| = || /1]l = 1. Then
f=g+h, where g = a| f|lg € W+ and (1 — )| f||hs € WH*. Also

11l =llg + hll < llgll + 1Al < ol £1] + (1 = ) F1] = 1]

so that || f]| = ||lg|| + [|2||. This completes the proof. O

4.4 M-ideals and adjoining of an order unit
Let V be an order smooth oo-normed space. Consider V =V @ R. If we define

Vt={(v,a):ly(v) < a}
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where

lv(v) = inf{|jul| : u,u +v € V*}

then (V,V*) becomes a real ordered vector space. In this case, (0,1) acts
as an order unit and V7 is Archimedean so that (V,(0,1)) is an order unit

space. Moreover, v — (v,0) is an isometric order isomorphic embedding of V' in

(V,(0,1)). Further, (V,(0,1)) is determined uniquely by V upto a unital order

isomorphism in such a way that V' is a normed closed order ideal of (V/,(0,1))
with co-dimension 1. For a detailed information, one can see [41, Section 4]. In
this section, we obtain the conditions under which V is an M-ideal in V. The
following result (due to Alfsen and Effros) is used for this purpose. Throughout

this section, we assume that all order normed spaces are (norm) complete.

Theorem 4.4.1 [1, Theorem 6.10] Let (V,e) be an order unit space and let W

be a closed subspace of V. Then following sets of statements are equivalent:
1. W s an M -ideal.

2. W satisfies each of the following conditions:

(a) W is positively generated;
(b) W is an order ideal;
(c) (V/W,@(e)) is an order unit space;

(d) Given v,w € V't and e > 0, one has

©([0,2]) N ([0, w]) C w([0,v + ee] N[0, w + €e])

where [u,v] :=={w eV :u<w<wv} foru<vinV.

Here p : V. — V/W is the canonical quotient mapping.
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We apply this result to characterize approximate order unit spaces as those order
smooth oo-normed spaces which are M-ideals in order unit spaces obtained by

adjoining order units to these spaces. First, we prove the sufficient condition.

Theorem 4.4.2 Let (V,V* {ex}rep) be an approximate order unit space and
let (‘N/, ‘N/J“) be the order unit space obtained by adjoining an order unit to V.

Then'V is an M-ideal in V.

We prove this result in several steps.
Proposition 4.4.3 Let V be an order smooth co-normed space and let V be the
order unit space obtained by adjoining an order unit to V. Then

(1) V is positively generated.
(ii) V is an order ideal in V.

(iii) (V/V,$((0,1))) is an order unit space.
Here ¢ : V> f//V 18 the natural quotient mapping.

Proof. Condition (i) follows from the definition of V' and condition (ii) follows
from the construction of V (see e.g. [41, Theorem 4.1]). To prove (iii), first note
that the natural quotient map ¢ : V — V/V is positive and that ¢(0,1) is an
order unit for V/V. We show that (V/V)* is Archimedean. Let ¢(u,a) € V/V
such that @(u, ) < 15(0,1) for all n € N. Then $(0, £ —a) = p(—u, £ —a) >0

so that % —a > 0 for all n € N. Consequently, ¢(u, a) = @(0, ) < 0. O

Lemma 4.4.4 Let V be an order smooth oo-normed space and let V be the
order unit space obtained by an order unit to V. If ¢ : V- V/V 18 the natural

quotient map, then for all (u, \) € V+, we have

2[(0,0), (u, A)] = {p(0, 1) : 0 < < A}
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Proof. Let us consider the order interval [(0,0), (u, \)], where (u,\) € V*. Now

for any p € [0, A], we have 0 < (§u, 1) < (u, A). Thus

~ ~ M ~
Conversely, let (z,u) in V such that 0 < (z, 1) < (u,\) in (V,V*). Then we

have 0 < p < A. Now the observation @(z, 1) = @(0, ) completes the proof. [

Proof of Theorem 4.4.2.

Let (u;,7;) € V* for i = 1,2 and let € > 0. We show that

2(((0,0), (ur, m)]) N &([(0,0), (uz,72)])

C ¢([(0,0), (ur, 7 + €)] N[(0,0), (ug, 72 + €)])-

Since (u;,7;) € V1, we have Iy (u;) <, for i = 1,2. Thus as € > 0 and as {e,}
is an approximate order unit for V', there exist A such that u; + (v; +€)ey, € VT

for i = 1,2. Put v = min{v;,72}. Then for i = 1,2 we have
u et (u—vteex=u+(teeneV’

so that Iy (u;4+7e)) < 7 —7+e, or equivalently, (u;+vex,v; —y+¢€) € V. Thus
(—vex,y) < (ug,vi+e€) for i =1,2. As |lex]| < 1, we have 0 < (ey,0) < (0,1) so
that (—vey,7y) € V*. Hence (—=vex,y) € [(0,0), (ug,v1+€)]N[(0,0), (ug, v2+€)].

Now the result follows from Proposition 4.4.3. O

Remark 4.4.5 Let X be a Banach space and let Y be a closed subspace of X
such that'Y # 0. It follows from [1, Proposition 2.2] that the M -ideals of Y are

precisely the M -ideals of X contained in'Y. Thus each M -ideal in an approximate
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order unit space (V,{ex}) is an M-ideal in (V, V7).

Now, we proceed to prove the converse of Theorem 4.4.2. More precisely, we
aim to prove that a complete order smooth oo-normed space V' is an M-ideal in

V, only if V is an approximate order unit space.

Lemma 4.4.6 Let V be an order smooth co-normed space and consider V, the

order unit space obtained by adjoining an order unit to V. Then S(V') is affinely

homeomorphic to Q(V).

Proof. Let g € Q(V). Define j(v,a) = g(v) + a for (v,a) € V. If (v,a) € V*,

then for € > 0, there exist u € V" such that u +v > 0 and ||u]| < « 4+ €. Thus

9(v,a) = g(v) + @ = —g(u) + a = —flul| + a > —e.

Since € is independent of g, we see that § is a positive linear map on V with
3(0,1) = 1. So § in S(V). Further, if h € S(V) is any extension of g, then
h(0,1) =1 = g(0,1) so that g = h. Thus each g € Q(V') has a unique extension
ges (f/) and consequently, we obtain a well defined and bijective map ¢ :
Q(V) = S(V) by ¢(f) = f, where f(v,a) = f(v) 4+ o. Now, it is routine to

check that ¢ is affine as well as w*-w* homeomorphism. U
Theorem 4.4.7 Let V be a complete order smooth oo-normed space. Then V
is an M-ideal in V if and only if V' is an approximate order unit space.

Proof. If V is an approximate order unit space, then by Theorem 4.4.2, V' is an
M-ideal in V. Conversely, assume that V be an order smooth co-normed space

such that V is an M-ideal in V. Note that

Vi={fe (V) : f(v,0) =0 forall v € V} = R0



76 §4.4. M-ideals and adjoining of an order unit

where 0 € S(V) with 0(v, @) = a (as described in the proof of Lemma 4.4.6).
Thus V- NS(V) = {0}. Since V is an M-ideal in V, by Theorem 4.3.2, we may
conclude that {0} is a split face of S(V).

Next, we show that {0}?07) = ¢(S(V)) so that ¢(S(V)) is also a (split) face

of S(V') where ¢ : Q(V) — S(V) is the affine homeomorphism described in the

proof of Lemma 4.4.6. In fact

{0}5) = {9 € S(V) : facegqpry(9) N {0} = 0}
—={g€S(V):0¢ faceg(9)}
={o(f) : f € Q(V),0 ¢ facequ)(f)}
={o(f): F€S(V)}
= o(S(V)).

Thus S(V) is convex. Now by Proposition 4.1.2, V' is an approximate order unit

space. [



CHAPTER

C'M-ideals in ordered operator

spaces

In this chapter, we investigate the order theoretic properties of C'M-ideals in
ordered operator spaces. In the first section, we discuss the notion of C'M-ideals
in operator spaces and matricially order smooth p-normed spaces. In the second
section, we characterize the notion of C'M-ideals in an operator space in terms of
C L-projections on the matricial dual of the space. In other words, we investigate
the notion of C'L-projections in matricially order smooth 1-normed spaces. We
characterize the notion of C'M-ideals in terms of M-ideals in the self-adjoint
part of each level of the given operator spaces which is one of the main theorem
of this chapter. In the last section, we introduce the notion of an L!'-matricial
split face. We show that W is a C'M-ideal in V if and only if {W+NQ,(V)} is

an L'-matricial split face of {Q,(V)}.

7
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5.1 Some basic facts

A projection P on an operator space (V,{||.|[»}) is called a C'M -projection if

[0l = max{ ]| By (o) [, [1(1 = P)uv)lln}

for all v € M, (V), where P, is the n-amplification of P. Let W be a closed
subspace of V. Then W is called a CM-summand if W = P(V') for some C'M-
projection P on V.

If V' is a matricially order smooth oo-normed space, then by Theorem 5.1.4,
we see that VV** is also a matricially order smooth oco-normed space. Thus V**

is an operator space.

Definition 5.1.1 Let V' be an operator space and let W be a closed subspace of
V. Then W is called a CM-ideal in V if W+t is a CM-summand in V**.

We recall that if T : V; — V5 be a linear map of complex vector spaces, then

n-amplification of T is a linear map

defined by

for all [v; ;] € M,,(V4).

Definition 5.1.2 [41] Let 1 < p < oo. An LP-matricially normed matriz or-

dered space (V,{|| - [|n}, {Mn(V)T}) is said to be matricially order smooth p-
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normed space, if || - ||, satisfies (O.p.1) and (O.p.2) conditions on M,(V)s, for

each n € N.

Example 5.1.3 1. FEvery C*-algebra is a matricially order smooth oco-normed

space [41].

2. Fvery matrix order unit space 1s a matricially order smooth oco-normed

space [41].

3. Every approzimate matriz order unit space (V,{M,(V)T},{ex}) is a ma-

tricially order smooth oo-normed space [/1].

4. Every matricially base normed space is a matricially order smooth 1-normed

space [41].

Theorem 5.1.4 [/1] Let 1 < p < oo. Then an LP-matricially normed matriz
ordered space (V,{|| - [|n}, {Mn(V)T}) is a matricially ordered smooth p-normed
space if and only if (V*,{|| - [|n}, {Mn(V*)T}) is a matricially order smooth p'-

normed space, where % + z% =1.

5.2 Characterization of CM-ideals

Let V be an operator space and consider its matricial dual V*. For a projection

P on V*, we call P a CL-projection if

[ lln = (12l 4 1T = Pl

for all f € M,(V*). Let W be a closed subspace of V. Then W+ is called C'L-

summand of V* if there is a C'L-projection P on V* such that P(V*) = W+,
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Ruan and Poon [52, Theorem 5.1 characterize the C'M-ideals in a given
operator space V in terms of CL-projections on operator space dual. In the
next proposition, we characterize the notion of C'M-ideal of a given operator

space V' in terms of C'L-projection on matricial dual V*.

Proposition 5.2.1 Let (V. {]| - |l.}) be an operator space. Let P be a CM -
projection on V**. Then there exists a unique C L-projection L on V* such that

Ly =P, for alln € N.

Proof. Let P be a C'M-projection on V**. Since P, is an M-projection on
M, (V**), P, is a w*-continuous linear projection (see e.g. [36, Theorem 1.9]).

For f € V*, we define ¢ : V** — C by letting

for all g € V**. Let {g.} be a net in V** such that g, — g in w*-topology for
some g € V**. Since P is a w*-continuous linear projection, P(g,) — P(g) in
w*-topology. Thus ¢(g.) — ¢¢(g) whenever g, — g in w*-topology. Therefore
@5 is a w*-continuous linear functional on V**, thus ¢, € V* for all f € V*.
Now we define a map @ : V* — V* by Q(f) = ¢ for all f € V*. To show that
@ is linear, let fi, fo € V* and A € C. Then we have

g(QAA T+ f2)) = Pa)(Mf1+ f2)
= AP(g)(f1) + P(a)(f2)
= 2a(Q(f1)) +9(Q(f2))
= g(AQ(f1) + Q(f2))

for all g € V**. Thus we have Q(Af1 + f2) = AQ(f1) + Q(f2) for all fi, fo € V*
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and A € C. Now, let f € V* then

lg(@UDI = 11P(a) (N
< [P/
< llallllA|
< [If

for all g € M, (V**);. Thus ||Q(f)|| < ||f]| for all f € M,(V*). Therefore
@ : V* — V* is a bounded linear operator. Similarly for each n, we can

construct bounded projection Q" : M,,(V*) — M, (V*) given by

9(Q"(f)) = Pule)(f)

for all g € M, (V**) and f € M, (V*). We claim that Q™ is the n-amplification
of Q). Let @, be the n-amplification of (). We show that @), = Q" for all n € N.
Let [fi;] € M, (V*). For [g; ;] € M,(V**), we have

[0:,;1(Q"([fi5]) = (PulgiD([fis])
=[P (gZ])K[fZJ])

= Z P(gi;)(fij)

ijl

:Zg’L] fzg

2,7=1

= [8:;1([Q(fi)])
= [8:5)(Qn((fi4]))-
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Therefore Q™ = Q,,. Let f € M, (V*). We show that

Let € > 0, then there exist g1, g2 € M, (V**); such that ||Q,(f)|l.—€ < Qn(f)(g1)

and [[(1 — Q)n(f)|ln — e < (1 = Q)n(f)(g2). Thus we have

Bu(g0)(f) + (1= P)ulg2)(f) = 8(@n(f)) + 8((1 = @)n(f))
> @n()lln + (1= @) (F)lln — 2¢

and

Po(91)(f) + (1 = P)u(92)(f) < || Palg1) + (1 = P)n(g2)Inll flIn
< max{ || Pu(g1) ln, (1 = P)nl@2) ln I I

<[ flln-

Therefore ||Qn(f)|ln+ [[(1 —Q)n(f)|ln —2€¢ < || f|ln. Since € is arbitrary, we have
1Qn ()l + (1= Q)n(NHlln < Iflln- Therefore by the virtue of the triangle

inequality, we get [|@n(f)[ln + (1 = Q@)n(F)lln = [ f]ln- H

Corollary 5.2.2 Let V' be an operator space and let W be a closed subspace of
V. If W is a CM-ideal in V|, then there exists a C'L projection L from V* onto
W+ and W+ is a CL-summand of V*.

Proposition 5.2.3 Let V be a matricially order smooth oo-normed space and
let W be a self-adjoint subspace of V. Let P be the C L-projection from V* onto

WL, Then P,(f*) = P,(f)* for all f € M, (V*).

Proof. Let P be the CL-projection from V* onto W=. Let L : V* — V* be a
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map defined by L(f) = P(f*)* for all f € V*. Then L is a linear map such that

LA(f) = L(P(f*)") = (P*(f))" = P(f")" = L(f)

for all f € V*. Thus L is a projection. Since W is self-adjoint, W+ is also
self-adjoint. We show that ran(L) = ran(P)(= W+). Let f € V*, then L(f) =
P(f*)* € W+, Thus we have ran(L) C ran(P). Conversely, let f € ran(P).
Since W is self-adjoint, f* € W+ so that P(f*) = f*. Thus we have L(f) =
P(f*)* = f and W+ C ran(L). Therefore we have ran(P) = ran(L).

Let f € V*. Then we have

ILON 11 = LOI = 1P+ 11 = P
= [[PUI+ 1 =PI
= [l = 111

Thus L is an L-projection on V* such that ran(P) = ran(L)(= W+). By the
uniqueness of an L-projection, we have L = P so that P(f*) = P(f)* for all
fev

Since W+ is self-adjoint, M, (W) is also self-adjoint. Since P, is an L-
projection from M, (V*) onto M, (W), we have P,(f*) = P,(f)* for all f €
M, (V*). O

Theorem 5.2.4 Let V' be a matricially order smooth oco-normed space and let
W be a closed self-adjoint subspace of V. Then W is a CM-ideal in V' if and
only if M,(W)s, is an M-ideal in M, (V)s, for each n € N.

We need the following results before proving this theorem.

Lemma 5.2.5 Let (V{|| - ||}, {M,(V)*}) be a matricially order smooth co-
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normed space and let W be a self-adjoint subspace of V. If L™ is an L-projection

from M, (V*) s, onto M,(W),, for eachn, then we have the following properties:

(i) L"(o* fa) = o*L"(f)a for all f € M,(V*)s and for all unitary matriz

a e M,;

(ii) L*(f11 @ faa) = L™(f11) ® L"(fa2) for all fi1, faz € My(V*)sa.

Proof. (i) Let a € M, be a unitary. Let us define P"(f) = aL™(a* fa)a* for all
f e M,(V)ss. Then P*: M, (V*)so — M,(V*)s, is a linear map such that for
f € M,(V*)s,, we have

(P"2(f) = PM(aL™(a" fa)a”)
= aL™(a*aLl™(a* fa)ata)a
= (L") (a* fa)a®
= aL"(a* fa)a*

= P"(f).

Thus P" is a projection. We claim that ran(P") = ran(L™)(= M,(W')..).
Let f € M,(V*)sa. Then L"(a*fa) € M,(W+),. Thus we have P"(f) =
aL,(a* fa)a* € M,(W')s, so that ran(P") C M,(W+) = ran(L"). Con-
versely, let f € M, (W), then P*(f) = aL™(a* fa)a* = a*afaa* = f. Thus
we have M, (W) C ran(Pm™), and therefore ran(P™) = ran(L"). Now we show
that P" is an L-projection. Let f € M, (V*)s,. Since L™ is an L-projection on
M, (V*)sq. Therefore we have

le*folln = [[L"(a” fa)lln + [l” fo = L™(a” fa)[n.
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Since « is unitary matrix, we have

[flln = llaL™(a" fa)a™[ln + |If — oL (a" fa)a™||n

Thus P", L™ are two L-projections on M, (V*) such that ran(P") = ran(L").
Therefore by the uniqueness of L-projection, we have P"* = L™. Hence L"(a* fa) =

a*L"(f)a for all f € M,(V)s, and for all unitary o € M.

(ii) Let f11 € My, (V*)se and foo € M, (V*)sa. Since f11 @ foo € Myin(V*)sa
and since L™ is an L-projection from M, ,(V*)sq onto M, (W), we

g11 912
have L™ (f11 & fas) € Myin(WH)ga. Let L™ (f1; @ for) = for

Gi2 922
some gi1 € Mm(WL)sa and 922 € Mn(WJ_)sa and 912 € Mm,n(WJ_> Put o =

I, O
. Then « is a unitary matrix such that o*(f11 ® fa2)o = f11 @ foo.

0 -1,
Thus by (i), we have

n . | 911 Gi2 g1z —012
L? (fi1® fo) =« =
Gia G2 —Gi2 Y22
) gu 0 . . .
Thus g12 = 0 so that L*"(f11 & fa2) = . Since V* is a matricially order
0 go2

smooth oo-normed space and since

1f11 @ foollmin = [|911 @ g22|lmsn + [|(f11 — 911) @ (f22 — g22) [t
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we have

[ fiillm + N f22lln = [lg12llm + llg22lln + |1z — g10) I + [|(f22 — g22) |-

Therefore we have || fi1llm = [[g11llm + [|(fi1 — 911)lm and || faolln = [lgo2lln +
I(fo2 — g22)||n, Where g1 € Mm(WL)sa,gQQ = Mn(WL)Sa. Since L™ is an L-

projections from M,,(V*),, onto M,,(W=),, we get L™(f11) = gi11. Similarly

Ln(fQQ) = (g22. Hence we have Lm+n(f11 2, f22) = Lm(fll) 2, Ln(f22> |

Let L™ : M,(V*)se — M,(W+),, be a linear map. We extend L" to In -
M,(V*) = M,(W+),, by

Lr(f) = L"(g) +iL"(h)
whenever f = g+ ih and g,h € M, (V*)s,. It is customary to check that In is
a linear map and ﬁ(f*) = ﬁ(f*) for all f € M, (V*).

Lemma 5.2.6 Let (V. {||.|l.},{M,.(V)"}) be a matricially order smooth oo-
normed space and let W be a self-adjoint subspace of V. If L™ is an L-projection
from M, (V*),, onto M, (W), for each n, then we have the following proper-

ties:

(i) ﬁ(a*foz) = a*ﬁ(f)oz for all f € M,(V) and o € M,;;

(ii) [m+n S 0 = L) /0\ for all f11 € My (V), fao €
0 fa 0 L(fa2)

M, (V).

Proof. (i) Let f = g + ih for some g,h € M,(V*)s. Also, let o € M, be a
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unitary matrix. Then we have

b

ﬁ(a*foz) = ﬁ(a*ga +ia*ha)

= L"(a"ga) +iL" (o ha)
=a"'L"(g)a+ia"L"(h)«

= a*(L"(g) +iL"(h))

=" L"(f)a.

(i) Let f11 = g11 +thi1 with g11, b1y € M, (V*)se and fog = goo + ihoy where

922, hao € M, (V*)s,. Then

W fuu 0 _ W g11 + thyy 0
0 fo 0 G22 + thao
TS N N
0 g2
L™(g11) 0 L™ (han)
= —|— VA
0 L"(gn) 0
B ﬁ(911 + ihy1) 0
0 ﬁ(ggz + ith)
B L7 (fur) 0
0 L'(fx)

hll 0
0 hgg
0
L™ (hag)

Lemma 5.2.7 Let V' be a matricially order smooth co-normed space and let W

be a self-adjoint subspace of V.. If L™ is an L-projection from M,(V*)s, onto
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M, (W), for each n, then

—~

L 07 = 0 L for all f € M,(V").

—

fr0 Le(f)yr 0

Proof. Let f = g+ ih € M,(V*) where g,h € M, (V*)s,. Since L™ is an L-

projection on M, (V*),,, we have

g1l = 1" (@)l + lg = L™(9) -

Since V* is a matricially ordered smooth 1-normed space, thus

= 2[lglln

2n

= 2([1L"(9)lln + llg = L"(g)[In)

B 0 L'(g) N 0 9—L"(g)
L'(g) 0 g—L"(9) 0
2n 2n

Now we have

0 g | 0 L"g) N 0 9-L"(9)

g 0 L*(g) 0 g—L"(g) 0

0 L"(g)

where € My, (W),
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So by the uniqueness of the decomposition of the L-projection, we have

0 g 0 L"(g)

Again since h € M, (V*)4, and since L,, is an L-projection, we have

1Pl = 201L™ (W)l + 1A = L™ (R)[2)-

Since V* is a matricially order smooth 1-normed space,

0 1 . .
= [[ih]ln + | — iR,
—th 0
2n
= [[iL"(W)[ln + liCh — L™ (h))|ln + || = L™ (A)|[n + [| — i(h — L™ (R))]]n
0 iL"(h) 0 i(h — L"(h))
= +
—iLr(h) 0 —i(h — L)) 0
2n 2n
0 iL"(h)
As € My, (W), we have
iLh(h) 0
0 ih 0 iL"(h)
L2n =
—th 0 —iL”(h) 0
Therefore
— 0 0 0 h
LG f LQn + ZL2n

0 g 0 —h 0
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oove] oo rw
L"(g) 0 k)0
- [ L*(g + ih)
Ln(g — ih) 0
| o T
(/)0

Lemma 5.2.8 Let V' be a matricially order smooth co-normed space and let W

be a self-adjoint subspace of V. If L™ is an L-projection from M,(V*)s, onto

Mn(WJ_)sa fOT‘ each n, then fQ\n fll f12 = Ln(fll) Ln<f12)
fa1 fo L™ (fa1) L"(f22)
fir fi2 .
Proof. Let € M, (V*) where f;; € M, (V*) for i,j = 1,2. Now we
for fa
can write
fia+f3 fi2—f3
fll f12 _ fll 0 4 0 ) % —|—Z 0 ) 122—221 (521>
for fa 0 foo fatiiy 0 fa-tip 0
2 21

Thus by using Lemma 5.2.6 and Lemma 5.2.7, we have

fz\n f11 f12 _ ﬁ(fH) ﬁ(fu)

for o L (fn) L'(fa2)

Lemma 5.2.9 Let V' be a matricially order smooth 1-normed space and let W
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be a self-adjoint subspace of V. If L™ is an L-projection from M,(V*)s, onto

M, (W), for each n, then In = fﬁn (ﬁn is the n-amplification ofﬁ ).

Proof. Using induction on Lemma 5.2.8, we have 7 = ﬁQn for every n € N.

Now, let n € N and f € M,(V*). Then we have

—

L'(f) ®0 =L (f ® 0)( Lemma 5.2.6)

— Ll (fe0)
= L1, (f) ®0.
Therefore, we have In = Z\ln for every n. O

Proof of theorem 5.2.4. Let V' be a matricially order smooth co-normed space
and let W be a closed self-adjoint subspace. Now if W is a C'M-ideal in V. Then
there is a C'L-projection L from V* onto W+. Since Banach dual of M, (V),, is
M, (V*)sq. Therefore it is sufficient to show that M, (W), is an L-summand
of M,,(V*)s. Now by Proposition 5.2.3, we have L, (M,(V*)s) C M,(W)sa.
Since L, is a projection from M, (V*) onto M, (W), thus for all f € M, (W),
we have f = L,(f). Therefore L, (M,(V*)sa) = M,(W+)s. Since L, is an L-

projection, Ly|(ar,(v+)..) is the L-projection from M, (V*)s, onto M, (W),.

Conversely, let M, (W),, be an M-ideal in M,,(V), for all n € N. Thus let
L™ be an L-projection from M, (V*),, onto M, (W), for each n. Now let Ln
be its linear extension to M, (V*). Now by the construction of ﬁ, we have
ran(L") C M,(W2). Also if f € M, (W), then there exist g, h € M,(W21),,
such that f = g + ih. Now ﬁ(f) = L"(g) +iL"(h) = g +ih = f. Therefore
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Tan(ﬁ) = M,(W+). Again,

0 f
21l =
f* 0 2n
f* 0 2n f* 0 f* 0 2n
B A A I A B B )
Z VS B I O A B PRV i I

= | Z2(F)ln + 122+ 1 = 2+ 15— ZP(F)
Thus we have
£l = 122l + 1 = L)

forall f € M, (V*). Now by Lemma 5.2.9, we know that L™ is the n-amplification
of ﬁ, therefore L1 is the C'L-projection from V* onto W+. Let P be the adjoint
map of LT. We can prove that P is the C' M-projection on V**. Therefore 1 — P

is a C'M-projection on V** such that
ran(I — P) = ker(P) = ranL? =W-.

Hence W is a CM-ideal in V. O
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5.3 ('L-projections and C' P-maps

In the rest of the sections of this chapter, we assume that V' is a matricially

order smooth co-normed space and we write
K, = M,(V*)sa " M, (V")

for each n € N. Then K, is a compact convex set in w*-topology. It follows
from the Proposition 3.1.4 (v) that {K,,} is an L'-matrix convex set in V*. Note
that K, is the closed unit ball of the real Banach space M, (V*),, for each n.
Thus the following discussions and the statements are restated from the paper

[1, Part I, Section 2|. Hence we omit the proof.

Let D, be a subset of K, for each n, we define faceg, (D,,) is the smallest

face containing D,,. Therefore
faceg, (D,) = {F, : F, is a face of K, D,, C F,,}.
In particular, if D,, is a convex subset of K,,, we can prove that
facek, (D) ={g € K, : A\g+ (1 — \)h € D, for some h € K,,A € (0,1)}.
If f e K,, wewrite faceg, (f) for facek, ({f}). Let
Fo=A{F:Fisafaceof K, and 0 ¢ F}.

Then F, has a maximal element. If F' € F, is a maximal element, then F' is

closed. Note that if F' € F,,, then f € F implies ||f||, = 1. Also for f € K,\{0},
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we have faceKn(”fJ;‘n) C Fn. We define

f

Cn(f) = U)\Z())\faCGK" (m

A cone C' C M,,(V*)q, is called facial cone if C' = cone(F') for some face F' € F,
or C'= {0} where cone(F) = Uy>oAF.

Lemma 5.3.1 LetV be a matricially order smooth co-normed space. Let fy, fo,- - -

fr € M, (V*)so. Then the following are equivalent:

(i) f1, fas- -+, [r € cone(F) for some F' € Fp;
(i) fi,for - fr€C(fi+ fo+ -+ fr);

(i) [[fr+ fat -+ folln = Lfalln + [ f2lln + - + 1 el

If f,g € M,(V*)sa, we say that f and g are co-directional (we write f | g)
if |f 4+ 9glln = [flln + [|glln. More generally fi, fo, -, fr € M,(V*)s are co-
directional if || fr+- -+ frlln = | filln +- -+ | felln- I fo 9 € Mp(V)sa, we write
f=gitlgll=1fl1=lg—fl-

Proposition 5.3.2 Let f1, fo, - fr and g1, G2, g» € M, (V*)s, such that f; <
gi fori=1,2.--- r and gy, - g, are co-directional, then fi, fo, -+, f. are co-

directional and fi + -+ f, < g1+ -+ g,.

Proposition 5.3.3 Let V' be an order smooth co-normed space and let f &

M, (V*)sa. Then
Co(f)={g9 € M,(V*)sq : g < af for some o > 0}.

Let V be a matricially order smooth oco-normed space and let C,, be a cone

in M, (V*),, for each n € N. Then the complementary set C’;l of C,, is the set
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defined by
C, ={f € My(V*)so: Cu(f) N C, = {0}}.

Note that C, may not be a cone in general.

Theorem 5.3.4 Let V' be a matricially order smooth-oo-normed space and let
C.,, be a cone in M, (V*)g,. Then for each f € M, (V*)s,, there exist g € C,, and
h € C) such that

f=g+hand |[flln = llglln + [l

Theorem 5.3.5 Let V' be a matricially order smooth oco-normed space and let
C., be a closed cone of M, (V*)sq. Then for any f € M, (V*)*, there are g € C;f

and h € C.F such that

f=g+h, and ||f[ln = llglln + [[2]n.

Proof. Since V' is a matricially order smooth oo-normed space, M, (V*),, is an
order smooth 1-normed space satisfying (0S.1.2) for each n. Then the result

follows from Theorem 4.2.1. O

Lemma 5.3.6 Let V' be a matricially order smooth oo-normed space. Then

facerw, (ILF1I5"f) © Ma(V*)*

for all f € M,(V*)*\ {0}.

Proof. As M, (V*)s, is an order smooth 1-normed space satisfying (0S.1.2) and

K, is the closed unit ball of M, (V*), the result follows from Lemma 4.2.2. [
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Theorem 5.3.7 Let V' be a matricially order smooth co-normed space and let
W be a self-adjoint subspace of V. If L is a CL-projection from V* onto W=.

Then L is a CP-map.

Proof. Let f € M, (V*)*. Since P is a C'L-projection, therefore || f||,, = || Ln(f)||»
+|f = Ln(f)|ln- Thus by Lemma 5.3.1, we have L, (f), f — L,(f) € Cp(f). Since
f € M,(V*)*, we have C,(f) C M, (V*)*. Hence L,(f) > 0. O

5.4 L'-matricial split face and C'M-ideal

Let K be a compact convex set in a locally convex set V' such that 0 € ext(K).
An element k € K is called a lead point of K (k € lead(K)) if k = ak; for some
k1 € K with « € [0,1], then o = 1. We observe that ext(K) \ {0} C lead(K).
For each k € K \ {0}, there is a unique o € (0,1] and ky € lead(K) such that
k= ak;.

The notion of an L'-matrix convex set has been discussed in Chapter 3. We

recall the notion for a quick reference.

Definition 5.4.1 Let V' be a matricially order smooth oco-normed space. Then
a collection {D,} of sets with D,, C M,(V*)s, and 0 € ext(D,) is called an

L'-matrix convex set if the following conditions hold:

(a) If f € D, and ~v; € M, ,, such that Zle vivi < I, then ©F v fvi €

DZle n;’

(b) If f € Dsy, so that f = fu fia for some fi1, foo € D, and fi2 €

Jio [fa2
M, (V*), then fio + f1y € co(D, U —D,);
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(c) Let f € Dpyy with f = fu he so that fi1 € Dy, and fa € M, ,,(V*)

[z foo
and if fi1 = oq]/‘ﬁ and foo = ozgj/‘;g with E € lead(D,,) and j?g €

lead(D,,), then we have a; + as < 1.

Notice that if V' is a matricially order smooth co-normed space, then by Remark
3.2.4,{Q,(V)} is an L'-matrix convex set. We introduce the notion of split faces

of the L'-matrix convex set {Q,(V)}.

Definition 5.4.2 Let V' be a matricially order smooth co-normed space. Then
an L'-matricial convex set {D,} of V* such that D, C Q,(V) is called an

L'-matricial split face of {Q,(V)} if for each n, D, is a split face of Q.(V).

Note that the above definition may be stated for general L' -matrix convex sets.

Lemma 5.4.3 Let V' be a matricially order smooth co-normed space and let
W be a self-adjoint subspace of V.. If W is a CM-ideals in V, then C,(f) C
M, (W) whenever f € M,(W+),.

Proof. Let f € M,(W+'),,. Without loss of generality, we assume that ||f], =
1. Let g € facek,(f). Then there exist h € K, and A € (0,1) such that
f=Xg+ (1 —A)h. Since ||g]|, ||h]] < 1, it is follows from the triangle inequality
that [|g|| = 1 = ||k||. Also, by Theorem 5.3.4, there are g, hy; € M, (W), and

g2, ha € M, (W), such that

9=01+02 g1l = llgalln + llg2lln

h=hi+hy 1Plln = A lln =+ llhalln-

We can write as —Aga = (f — (Ag1 + (1 — A)hq1)) + (1 — A)he where f — (Ag1 +
(1 = Nhy) € M,(Wh),, and (1 — AN)hy € M, (W).,. We know from Theorem
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5.2.4 that M, (W), is an L-summand of M,,(V*),,. It follows that | — Aga||, =
I(f — (Ag1 + (1 — N)ho))|ln + [(L = A)hal|,,. Similarly, we can show that ||(1 —
Ml = 10 = i+ (L= A)h) o+ [Agalln. Consequently, f = Agy+(1— A,
Since ||g1||n, [|P1lln < 1. Thus by virtue of the triangle inequality, we have
lgilln = [|h1]ln = 1, and therefore g, = 0 = hy. Hence faceg, (f) C M,(W),,
and C,,(f) C M,(W+),,. O

Now, we characterize C'M-ideals in terms of L!-matricial split faces.

Theorem 5.4.4 Let V' be a matricially order smooth co-normed space and let
W be a self-adjoint subspace of V.. Then W is a CM-ideal in V if and only if
{M, (W) N Q,(V)} is an L*-matricial split face of {Q,(V)}.

Proof. We show that the conditions (a), (b) and (c) of Definition 5.4.1 hold.

(a) Let f € M,(WH)N Qu(V) and 7; € M, ,,, such that S_F  ~;4 < I,. Then
B i fvi € M le(WL). Since {Q,(V)} is an L'-matrix convex set,
B v fvi € QZLM(V)' Therefore we have ®F_ vF fv; € MELI(WL) N
Qs (V).

(b) Let f € Mop(WL) N Qon(V) and f = T fe) e {Qn(V)} is an

fia o
L'-matrix convex set, thus fis + fiy € co(Q,(V) U —Q,(V)). Thus we

have || fi2+ fi]ln < 1. Since M,,(V*), satisfies (0S.1.2), there are gy, g» €
My (V*)sa such that fis + fiy = g1 — g2 and || fiz + fs[ln = llg1lln + l|92]ln-
Thus by Lemma 5.3.1, we have g1, —gs € C,(fi2 + fi5). Also by Lemma
5.4.3, we have g1, go € M,(W+). Hence fio+ fiy € co(M,(W)NQ,(V)U
—M (W) N Qu(V)).

(¢) Since Q,(V) is an L'-matrix convex set and lead(M, (W) N Q,(V)) =
M, (WH)n S, (V). Thus M,,(W+)N@Q,(V)) is an L'-matrix convex set.
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Since W is a C'M-ideal in V, it follows from Theorem 5.2.4 that M, (W), is an
M-ideal in M, (V*)s.. Then by applying Proposition 4.3.13, we may conclude
that M, (W), NQ,(V) is a split face of @, (V) for each n. This completes the

proof. O






CHAPTER

Smooth p-order ideals

In this final chapter, we discuss the notion “smooth p-ordered ideals” in or-
der smooth p-normed spaces which generalizes the notion of M-ideals in order
smooth oco-normed spaces. In the first section, we discuss the order structure
of subspaces, and of quotient spaces of ordered normed spaces. In the second
section, we show that given an order smooth p-normed space V', and its closed
subspace W, we have W is a smooth p-ordered ideal in V if and only if W+ is
a smooth p’-order ideal in an order smooth p’-normed space V* if and only if
W+t is a p-order ideal in order smooth p-normed space V**. In the last section,
we show that if W is an M-ideal in order smooth oco-normed space V', then W
is a smooth oc-order ideal in V' under certain condition. If W is an L-summand

of an order smooth 1-normed space, then W is a smooth 1-order ideal.

101
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6.1 Smooth p-order ideals

Let (V, V1) be a real ordered vector space, and V* be a dual of V. We recall

that V* is an ordered vector space with the cone
Vit ={feV*: flo) >0V eV}

If W is a subspace of an ordered vector space V', then W is also ordered vector
space together with cone W™ =W N V™. Let oy : V — V/W be the canon-
ical homomorphism. Then V/W is also an ordered vector space with the cone
ew (V).

We note that V** is a w*-closed set in V*. In particular, if V' is a cone in
ordered normed space V', then V** is a norm closed cone in V*. Let (V, VT, |.|)

be an ordered normed space. We define another cone V, on V' by
Vi={veV:flv)>0VfeV**}

Similarly, we define cones for V' and V*. The following result connects these

cones.

Proposition 6.1.1 Let (V,V ' |.||) be an ordered normed space. Then we have

the following:
(1) if V' is norm closed, then V™ =V, ;
(ii) V*t =V,
(ii) V¥ =V,

Proof. By the definition, V* C V. If possible, let v € V. \ V. Then by the

Hahn Banach Separation theorem, there is a f € V* such that f(v) < 0 and
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f(w) >0 for all w € VT so that f € V**. Since v € V,, and f € V**, we have
f(v) > 0 which is a contradiction. Hence V* =V/,.

Now (7i) and (ii7) follow from (i). O

Let V be a Banach space, and let V* be its Banach dual. If W be a closed

subspace of V', then we have the following Banach space isometries:
Q) (V/W)s 2w,
(ii) W* = VW,
(iil) W* = (V*/Wh)* =2 Wk,
(iv) (V)W) 2 (W) = yee s,

Let V be an ordered normed space with closed cone V' and let W be a closed
subspace of V. Then W, W+, and W+ are also ordered normed spaces with

closed cone given by

Wr=wnvt, wtt=wtny**

and

WJ_J_-i- — WJ_J_ N V**+

respectively. Let oy : V — V/W, oo : V* — V*/WL and opor - V™ —
V** /W+L be the natural homomorphisms. Notice that ¢y (V+) may not be a
closed cone in V/W. Similarly, oy (V*T) and o0 (V**T) may not be closed
in V*/W+ and V**/W++ respectively. In this direction, we have the following

result.

Proposition 6.1.2 Let V' be an ordered normed space and let W be a closed

subspace of V. Let pw,pwi and oy be the natural homomorphisms. Then
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we have the following cone relations:

(i) pw (VI = ow (V)"

(ii) oy (V*T) oL (V*Jr)u}; and

w

(i) e (V) =y (V)

Proof. Tt is sufficient to prove (i), for similar arguments may be used to prove

(i1), (i13). Let v+ W € @w(V*) . Then there exists a sequence {v,} € V*

such that v, + W convergent to v + W in the norm. so that v, + W — v+ W
[

in w-topology. Therefore gy (V)" C o (V).

Conversely, if possible let v+W € goW(VJ“)w\gOW(V*)”'H. Then by the Hahn
Banach separation theorem, there is a f € W+ such that f(v) < 0 and f(u) >0
for all w € V*. Thus f € V**. Since v + W € o (V*+)", thus there exists
a net {v, + W}, where v, € V* such that v, + W — v + W in w-topology.
Thus we have f(v,) — f(v). Since f(v,) > 0, we have f(v) > 0, which is a

M o

contradiction. Hence ¢y (V1) ‘. O

However, the cones in the dual spaces are expected to be w*-closed. So, we

adopt the following definition.

Definition 6.1.3 Let V' be an ordered normed space, and let W be a closed
subspace of V. Let oy -V — V/W, oyr : V¥ = V*/WL and pyr : V* —
V** JWEL be the natural homomorphisms. Then we define order structure on

V/W,V* /WL and V** /WL as

————lIl
)

(i) (V/W)T = ow(VT)

(it) (V*/WH)* = oo (V)

(iii) (V=W = o (Vo)
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Now onwards, we assume that all order normed space V' are norm complete,

and W is a closed subspace of V.

Lemma 6.1.4 Let (V,V*,|.|)) be an order smooth p-normed space and let W
be a subspace of V. Let oy : V — V/W and @},, : V* — V* /W be the natural

homomorphisms. Then
(i) {f + W+ f(w) 20 Vw e WH} = (V*/WH)F;
(ii) {f e W f(lv) >0Vo+W € (V/W)+} =W,

Proof. Let (V,VT) be an order smooth p-normed space, and W be a subspace
of V.

(i) We note that Banach dual of W can be identified with V*/W=. We claim
that {f + Wt : f(w) > 0 Vw € W'} is a w*-closed set. Let {f, + W} be
anetin {f + W' : f(w) >0 Vw € W*} such that f, + W+ — f+ W+
for some f € V* in w*-topology. Since W is a predual of V*/W=, we have
falw) — f(w) for all w € W*t. Now f,(w) > 0 for all w € W7, so that
f(w) >0 for all w € W+. Hence {f + W : f(w) > 0Vw € W} is a w*-closed
set. From the definition we note that (V*/W+)* = mw*. Let f e V*t.
Since f(w) > 0forallw € W*. Thus f+W* € {f+W: f(w) > 0Vw € WT}.
Thus we have mw* C{f+Wt: f(w)>0Vwe Wt}

Conversely, if possible let f + W+ € {f + WL : f(w) > 0 Vw € WT}\
W*. Then by the Hahn Banach separation theorem, there is a w € W
such that f(w) < 0 and g(w) > 0 for all g € V**. Thusw € V* so that v € W,
Therefore f(w) > 0, which is a contradiction. Hence {f + W+ : f(w) >0 Vw €
W= (V*/WhHtc{feWt: fo)>0Vv+W e (V/W)*}.

(i) Let f € WLF. Then f € W+ and f € V**. Thus f(v) > 0 for all
v € VT so that f(v) > 0 for all v+ W € pw(V'). We show that f(v) > 0
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forallv+W € o (V*+) . Let v+ W € pw(V+) . Then there is a sequence
v, + W € pw(VT) such that v, + W — v + W in the norm. Since f € W+,
we have f(v,) — f(v). But f(v,) > 0 for all n € N. Therefore we have

f(v) > 0. We know from the definition that (V/W)* = @y (V) Thus
Wit c{fewt: flv) >0, Yo+ W e (V/W)"}.
Conversely, let f € {f € Wt: f(v) >0, Yo+ W € (V/W)*}. Let v e VT,

Then v + W € (V/W)T. Thus f(v) > 0 so that f € V** and f € W, O

Theorem 6.1.5 Let (V,V* |.||) be a order smooth p-normed space and let W
be a subspace of V. Let ow : V. — V/W and o3y, - V* — V* /W be the natural

homomorphisms. Then:

(1) W, W+ |.]|]) is an order smooth p-normed space if and only if

(Vs /W (VW LD

is an order smooth p'-normed space satisfying (0OS.p'.2).

(i) (V/W,(V/W)T|.ll) is an order smooth p-normed space if and only if

(WL WA L) is an order smooth p'-normed space satisfying (OS.p'.2).

Proof. (i) The Banach dual of W is identified with V*/W+ and from (i) of
Lemma 6.1.4, we know that {f + W+ : f(w) > 0 Vw € Wt} = (V*/WH)*T,
Thus by applying Theorem 2.2.7 between W and V* /W, we may conclude that
(W, W+ _||.]|) is an order smooth p-normed space if and only if (V* /W, (V*/W+)*+
,|I.l) is an order smooth p’-normed space satisfying (OS.p'.2).

(ii) The Banach dual of V/W is identified with W+ and from Lemma 6.1.4,
we know that {f € Wt : f(v) > 0 Vo + W € (V/W)T} = W, Thus

by applying Theorem 2.2.7 between V/W and W+, we may conclude that
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(V/W, (V/W)*,|I.]|]) is an order smooth p-normed space if and only if (W, W+,

||I.]|) is an order smooth p’-normed space satisfying (OS.p’.2). O

Proposition 6.1.6 Let (V,V ' |.||) be an order smooth p-normed space and let
W be a subspace of V.. Then oy (V*T) = opa (V*) ) if and only if f € W**

implies there is a g € V** such that g, = f.

*

Proof. First, assume that @y (V*T) = W . Let f: W — R be
a bounded linear functional such that f(w) > 0 for all w € W*. Then by
the Hahn Banach separation theorem, there exists a f; : V — R, a bounded
linear functional, such that fi,, = f and | fi]| = [[f||. Now by Lemma 6.1.4,
fi+ Wt e WW*
fi + W =g+ W+, Therefore fi, = g, -

. Thus by assumption, there is a ¢ € V** such that

Conversely, assume that if f € W*", then there is a ¢ € V** such that
gw = [ Let f+ Wt e mw*. Then there exists a net {g,} in V**
such that g, + W+ — f + W in w*-topology. Thus g,(w) — f(w) for all
w € WT. So by assumption, there exists a g € V* such that gw = fijw and

g € V*T. Therefore g+ W = f + W so that f + W= € oy (V*T). O

Lemma 6.1.7 Let (V,V* |.|)) be an order smooth p-normed space and let W

be a subspace of V. Then we have the following:

{f+ W () 2 0Vf e W} = (V7 /W)™,

Proof. We know from Definition 6.1.3, that (V** /W)t = oy (V)" Tt is
clear from the definition that oy . (V**F) C {F+WLL: F(f) > 0Vf e Wt}
Since {f + W*: §(f) > 0 Vf € Wt} is a w*-closed, we get

PV C {4+ W () > 0 Vf € Wi,
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If possible, let g + WLt € {f+ W :F(f) > 0Vf € WL\ gprer (Vo)™
Since W+ is a predual of V**/W=L. Thus by the Hahn Banach separation
theorem, there exists a g € W+ such that g(g) < 0 and f(g) > 0 for all f+ W+ €
W Since f(g) > 0 for all f € V*** from Proposition 6.1.1, we
have ¢ € W+*. Then g(g) > 0, which is a contradiction. Hence we have

{F+ W f(f) 2 0Vf e WH} = (V2 /W) T O

Theorem 6.1.8 Let (V,V*t ||.||) be an order smooth p-normed space and let W
be a subspace of V.. Let oy : V. — V/W and pyr : V* — V* /WL be the natural

homomorphisms. Then we have the following duality:

(i) WL WL ]) is an order smooth p'-normed space if and only if
(VW (VW)L

is an order smooth p-normed space satisfying (OS.p.2);

(i) If (V*/WL (V*/WH T .1 is an order smooth p'-normed space, then

(WL WL L) is an order smooth p-normed space satisfying (OS.p.2);

(iit) If oy (V) = o (V*+)w* and (WL, WL L) s an order smooth
p-normed space, then (V*/W=L (V*/WHT |.|) is an order smooth p'-

normed space.

Proof. (i) The Banach dual of W+ is identified with V**/W+L. We know from
Lemma 6.1.7 that {f + WL :§(f) > 0Vf € Wt} = (V**/W+L)*. Therefore
from Theorem 2.2.7, we conclude that (W= W=+ |.||) is an order smooth p'-
normed space if and only if (V**/WLL (V**/WLL)* ||.||) is an order smooth

p-normed space satisfying (OS.p.2).
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(i) We have the following cone relation on W+,

{f e W §(f) >0, Vf+ W e (V7 /W)
—{Fe W () 2 0V + W € o (V) )
c{fe W f(f) > 0Vf+ Wt € oy (V) (6.1.1)
={fe W §(f) > 0Vf eV}

:WJ_J_ N V**—}— _ WJ_J_+.

We know that WL+ is proper and closed. Since (V*/W, (V*/W)T,||.||) is an
order smooth p’-normed space, by Theorem 2.2.7, (W++ WL+ ||]]) is an order
smooth p’-normed space satisfying (OS.p.2) with respect to the cone {f € W+t :
f(f) >0, Vf+W e (V*/WHT} Since {f € Wt §(f) > 0, Vf+ W €
(V*/WH)+t} € WAt is a proper closed cone, thus (W4 WA ||]) is also an
order smooth p-normed space satisfying (OS.p.2).

(iii) Let @y (V) = Ww*. Then by equation 6.1.1, we can easily
check that {f € W+ : §(f) > 0, Vf +W € (V*/WH)T} = WL, There-
fore if (WL WLt || ]|) is an order smooth p-normed space, then its predual

(V* WL (V*/WH)* .| is an order smooth p'-normed space. O

Corollary 6.1.9 Let (V,V* ||.||) be an order smooth p-normed space and let W

be a subspace of V. Then

(i) W, W*_|.|) is an order smooth p-normed space if and only if (WL WLLH

I.1l) s an order smooth p-normed space of V** satisfying (OS.p.2).

(i1) If oy (V) = (,OWJ_(V*+>w*, then (V/W, (V/W)T |.I|) is an order smooth
p-normed space if and only if (V** /WL (V=*/WLHT |1]|) is an order

smooth p-normed space satisfying (0S.1.2).
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We summarize this observations in the form of the following notion.

Definition 6.1.10 If (V,V* |.||) is an order smooth p-normed space. Then a
subspace W is called smooth p-order ideal in V if W satisfies following condi-

tions:
(i) owe (V) = our (V)"

(i) (W, W |.]]) is an order smooth p-normed space;

(1i1) (V/W,(V/W)T,|I.ll) is an order smooth p-normed space.

Remark 6.1.11 IfW is smooth p-order ideal, then W, W+, and W+ are order

ideals.

6.2 Smooth oo-order ideals

Let W be an order smooth oo-normed space of an order smooth co-normed space
(V,V*E D). By Theorem 4.2.5, for every f € W**, there is a g € V** such
that g, = f. Thus by Proposition 6.1.6, we may conclude that ¢y . (V*") =
Ww*. Hence, we write a quick corollary for the notion of a smooth oo-

order ideal.

Corollary 6.2.1 Let (V,V*,|.||) be an order smooth co-normed space, and let
W be a subspace of V.. Then W is a smooth oo-order ideal if and only if W

satisfies following conditions:
(1) W, W+ .]|]) is an order smooth co-normed space;

(i) (V/W,(V/W)T,|I.]l) is an order smooth co-normed space.
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Theorem 6.2.2 Let (V,V* ||.||) be an order smooth co-normed space and let

W be a subspace of V. Then the following conditions are equivalent:
(i) (V/W),(V/W)* |I.|l) is an order smooth co-normed space;
(ii) (WE WL L) satisfying (0S.1.2);
(iii) |lv+ W = sup{|f(v)| : f € (WH)1 N W}
(iv) [If + W] = sup{[f(f)| : f € (W) n W}
(v) (V= /WL (V= /WED)* L) is an order smooth oo-normed space.

Proof. Tt is clear that (i), (ii), (v) are equivalent and (iv) implies (iii). Thus it
is sufficient to prove that (ii) = (iii) and (iii) = (ii) and (ii) = (iv).

(i) = (iii): Let v € V, then we have

lv+ Wil = sup{|f(v)] : f € (WF)1}
= sup{|f(v)| : f € co(WT 1 (W) U—(WH 1 (W)}

= sup{|f(v)| : f € WH) nWT}

(iii) = (i): Let (W WLt ||.|) satisfy (0S.1.2). Since (V,V7T,|.||) is
an order smooth oco-normed space. Thus by Theorem 2.2.7, (V* V** |||) is
an order smooth l-normed space satisfying (0S.1.2). Since W+ C V*, thus
W+ satisfying (O.1.1). Since W+ satisfies (0S5.1.2), thus (W- W+ ||.]|) is an
order smooth 1-normed space satisfying (0S.1.2). Therefore by Theorem 6.1.5,
(V/W,(V/W)* |||l is an order smooth co-normed space.

(i) = (iv): Let F' € V**, then we have

I+ W = sup{|[F(f)] : f € (W)}
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=sup{|F(f)|: f € co (W (W) u—(W+Tn (WH))}

=sup{|F(f)|: f € (W) nW}.

6.2.1 M-ideals and smooth oco-order ideals

Lemma 6.2.3 Let (V,V* |.||) be an order smooth 1-normed space satisfying

(0S.1.2) and let W be an L-summand in V. If u € W, then C(u) C W.

Proof. Let w € W\ {0}. Let u € C(w) and without loss of generality we may
assume that ||u|| = 1. Then by definition of C(w), there is a v € V} such that
A4 (1= Av = Tuy for some X € (0,1). By the triangle inequality, ||v| = 1.
Since u,v € V* and let W is a subspace of a complete normed space, there are

uy,v1 € W and ug, ve € W’ such that

u=up +us [l = flull + fluall;

V=014 v [oll = lloall + [Jva]]

Now, mor = Aug + (1 = XN)vg + Aug + (1 — X)vy. We can rewrite it as

w
()\Ul + (1 — )\)1)1 — m) + )\UQ = —<1 — )\)’02,

i) + (1 - )\)Ug = _)\UQ.

(Aup + (1 — Aoy —
1 C

Since Auj + (1 — Ay v e W and ug, v, € W', and W is an L-summand,

[[wl]
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from last two equations, we get the following norm equalities:

w
[Aur + (1 = Aoy — — || + AJua|| = (1 = A)[val,
[Jw]
w
[Aug + (1 = Aoy — m” + (1 = Nv2]| = AfJva]l,

Now, it follows that Auj + (1 — X)vy = 2. Since ||luq]|, |v1]| < 1, by the triangle

[[w][*

inequality, ||uq]| = 1 = |Juz|| so that ug = 0 = vy. Hence C'(w) C W. O

The following result can be proved on the lines of Theorem 5.3.7.

Lemma 6.2.4 Let (V,V* |.||) be an order smooth 1-normed space satisfying

(0S.1.2). If L is an L-projection of V*, then L is a positive linear map.

Lemma 6.2.5 Let (V,V*,|.||) be an order smooth co-normed space and let W
be an M-ideal in V so that V* = Wt @ W', where W' is the complemented
subspace of W, If g (V*) = g (V)" then (V< /W4, (V' /WY, L))

is isometrically order isomorphic to (W' WL+ ||.]]).

Proof. Let P be the L-projection of V* onto W+. We define a map ¢ :
VWL — W by

p(f + W) = P(f)

for all f € V*. Let f € V* such that P(f) = 0. Then f € W+ so that
f+WL =W Hence ¢ is well defined. Let f € V*. We show that || f+ W] =
|P(f)||. Since f — P(f) € WL, we have f + W+ = P(f) + W+, Since P is
an L-projection on W', thus ||P(f) + g|| = |P(f)|| + |lg| for all g € W,
Thus ||P(f)|| = ||f + W], so that ¢ is isometry onto W' By assumption,
(V*/WHT = oo (V*F). Let f € V*. Since P is an L-projection, by Lemma
6.2.4, P is a positive map so that P(f) € W+'*. Hence ¢ is a positive map.

Conversely, if g € W+'*, then g € V** and ¢(g + W*) = P(g) = g. Thus
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¢! is also a positive map. Hence ¢ : V' /W+ — W' is an isometrical order

isomorphism. O

Lemma 6.2.6 Let (V,VT |.||) be an order smooth co-normed space and let W
be an M-ideal in V' so that V* = Wt @, WY, where W' is the complemented

subspace of W+, Then (W' WL+ _||||) is an order smooth 1-normed space.

Proof. Since W+ c V**+ W+ satisfies (0.1.1). We prove that W' satisfies
(0S.1.2). Let f € W*'. Since W'’ is an L-summand of an order smooth 1-
normed space V* satisfying (0S.1.2), by Lemma 6.2.3, we may conclude that
C(f) € WF. Since f € V* and V* satisfies (0S.1.2), there are g,h € V',
such that f = g — h and ||f|| = ||g|| + ||2]|. By [1, Lemma 2.3, part I|, we have
g,—h € C(f) so that g,h € W+*. Thus W' is an order smooth 1-normed

space satisfies (0S5.1.2). O

Proposition 6.2.7 Let (V,V T |.||) be an order smooth co-normed space and
let W be a subspace of V.. If W is an M-ideal, then (V/W),(V/W)T|.|l) is

an order smooth oco-normed space.

Proof. Let f € W+, Since V* satisfies (0S.1.2), there are g, h € V** such that
f =g—nh,and ||f]| = |lg|]| + ||h]]. Thus by Lemma 2.1.1. we have g, —h €
C(f). Since W+ is an L-summand, and f € W+, we have g,—h € C(f) so
that g,h € W+T. Hence W+ satisfies (0S.1.2). Therefore by Theorem 6.2.2,

(V/W,(V/W)* ||.|]) is an order smooth oco-normed space.

Theorem 6.2.8 Let (V,V*t ||.||) be an order smooth oo-normed space and let

W be a subspace of V.. If W is an M -ideal, then following are equivalent:
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(i) W, W |.|l) is an order smooth co-normed space;

it) For f € W*T, there is a g € V** such that g, = f;
lw

*

(iii) ow (V™) = o (V*4) " ;
() || f]] = sup{f(w) : w e WTnNWi} forall f € W*T.

Proof. We note the following;:

(i) = (ii): It follows from Theorem 4.2.5.

(ii) = (iii): It follows from 6.1.6.

(iii) = (i): Since W is an M-ideal, by Lemma 6.2.6, (W', W+ ||.||) is an
order smooth 1-normed space satisfying (0S.1.2). As @y1 (V*H) = mw*,
thus by Lemma 6.2.5, we have (V*/W= (V*/W+)* |.||) is an order smooth 1-
normed space satisfies (0S.1.2). Hence by Theorem 6.1.5, (W, W* |.||) is an
order smooth co-normed space.

(iv) = (ii): Let f be a positive bounded linear functional on W. By the
Hahn Banach Theorem, there exists a g € V* such that g, = f, and ||g|| = || f]]-
We claim that g is positive. Since V* satisfy (0S.1.2), there are g, g2 € V**

such that

g=g1— g2 with |[[g|l = [|g1]| + [|g2]]-

Since ¢, g2 € V**, and V* is complete, by Theorem 4.2.1, there are gi1, go1 €
W and gi3, g22 € W such that g1 = g11 + g12 with [|g1]| = l|lgu1l|+ [|g12]| and
g2 = g1 + g2 With ||ga| = [[ga1]| + [|g22- Now g = g11 — g1 + g12 — goo, Where
911,921 € W and gi2, g22 € W' such that ||g|| = [|gu1]|+ [l g21[|+ || grzl| -+ || g22] |-
If fij = gijly for all 4,5 € {1,2}. Then fi; = for = 0 so that f = fi2 — fo.
Further, as f is positive, we have 0 < f < fi5. Let € > 0, then by assumption,

there exist w € W+ N W such that ||f|| — e < f(w). Since 0 < f < f, thus
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we have 0 < f(w) < fia(w). Now || f]| — € < || fi2|| and € is arbitrary, we have

I/l < |l fi2ll- Therefore,

£l < |l fazll
< lguall + llgzull + [[gazll + llg22l

= llgll = 1171

and consequently, g1; = ga1 = go2 = 0. Hence g = g1 € V*T.

(i) = (iv): Let f € W**. Let € > 0, then there exist w € W and ||w]|| < 1
such that ||f| — € < f(w). Since W is an order smooth oco-normed space,
there exist wy,wy € W7 such that w = w; — wy and max{||w ||, |Jwe||} < 1 .
Since wy, wy > 0, we have f(wy), f(wz) > 0. Now we have ||f]| —e < f(w) <
f(wy) < sup{f(w) : w € WH N W;}. Since ¢ > 0 ia an arbitrary, we have

I fIl = sup{f(w):w e WTrnNW,} for all f e W**. O

Theorem 6.2.9 Let (V,V ' |.||) be an order smooth 1-normed space satisfying
(0S.1.2) and let W be a subspace of V.. If W is an L-summand, then W is a

smooth 1-order ideal in V.

Proof. To prove W is an order smooth 1-normed space, it suffices to show that
W satisfies (0S.1.2). Let w € W. Since V satisfies (0S.1.2), there are u,v €
VT such that w = v — v and ||w| = |Ju]| + ||v||. By Lemma 2.1.1, we have
u,—v € C(w). Also by Lemma 6.2.3, we have v, —w € W. Thus W satisfying
(0S.1.2).

We claim that oy (V*F) = W Let f : W — R be a positive linear
functional. Let P be the L-projection of V onto W. Then by Lemma 6.2.4, P

is a positive linear map. Let g(v) = f(P(v)) forallv € V. Theng:V — Ris a
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positive linear map such that for all w € W, we have g(w) = f(P(w)) = f(w).
Hence by proposition 6.1.6, we have @y (V*T) = W

Since W is an L-summand, there is a unique subspace W' of V such that
V =W @ W' Since W' is also an L-summand of V', (W', W'* |.||) is an order
smooth 1-normed space satisfying (0S5.1.2). We define a map ¢ : V/W — W'
by

pv+W)=Q(v)

for all v € V, where Q is the L-projection of V onto W'. It is easy to check
that ¢ is an isometry onto W'. We claim that @ (V1) = W”ﬂ. So let
v, € V1t such that v, + W — v + W for some v € V. Since ) is an L-
projection, by Lemma 6.2.4, @ is a positive linear map. Thus Q(v,) € V7 is
positive. Since ||Q(v,) — Q(v)|| = ||v, —v+ W] — 0, we have Q(v) > 0. Since
v— Q) € ker(Q)(= W), we have v + W = Q(v) + W. Therefore oy (V") =
o) (= (V/W)H). Let v+ W € (V/W)*. Since (V/W)* = o (VF), with
out loss of generality, we may assume v € V. Since @ is an L-projection, @ is
a positive map. Since v € VT, we have (v + W) = Q(v) > 0. Therefore ¢ is a
positive map.

Conversely, let v € WF. Now ¢(v+ W) = Q(v) = v, ¢! is also a pos-
itive linear map. Since ¢ : V/W — W' is an isometrical order isomorphism,
and (W', W'+, ||.|) is an order smooth 1-normed space satisfying (0S.1.2), thus
(V/W), (V/W)T,].]|) is an order smooth 1-normed space which satisfies (0S.1.2)

property. 0
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