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1. Introduction

We denote the space of modular forms and the subspace of cusp forms of

weight k for SL2(Z) by Mk and Sk, respectively. Suppose f ∈ Sk and g ∈ Sl

with Fourier coefficients a(n) and b(n), respectively. For a positive integer

n, define a Dirichlet series

Lf,g;n(s) =
∞∑
m=1

a(m+ n)b(m)

(m+ n)s
. (1)

Then Lf,g;n(s) is absolutely convergent for Re(s) >
k + l

2
. Kohnen [21] con-

structed certain cusp forms, whose Fourier coefficients involve special values

of the Dirichlet series (1). More precisely, he proved the following:

Theorem 1. [21] Let k > 2, l > 0 and f ∈ Sk+l and g ∈ Sl with Fourier

coefficients a(n) and b(n), respectively. Then

T ∗g (f)(z) :=
∞∑
n=1

nk−1Lf,g;n(k + l − 1)qn ∈ Sk.

In fact, the map Sk+l → Sk defined by f 7→ Γ(k + l − 1)

Γ(k − 1)(4π)l
T ∗g (f) is the adjoint

of the map Tg : Sk −→ Sk+l, h 7→ gh, with respect to the Petersson scalar

product.

There are many interesting connections between differential operators and

modular forms and many interesting results have been found. Rankin [31, 32],

gave a general description of the differential operators which send modular

forms to modular forms. Cohen [10] explicitly constructed certain bilinear
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operators using differential operators and obtained elliptic modular forms.

Zagier [38, 37] studied algebraic properties of these bilinear operators and

called them Rankin–Cohen brackets. Explicitly, for a given f ∈Mk, g ∈Ml

and an integer n > 0, the n-th Rankin-Cohen bracket [f, g]n ∈ Mk+l+2n and

in fact, [ , ]n : Mk × Ml −→ Mk+l+2n is a bilinear map. Also, the 0-th

Rankin-Cohen bracket of f and g is the usual product of f and g. Recently,

the work of Kohnen has been generalized by Herrero [14], where he computed

the adjoint of the map constructed using Rankin-Cohen brackets instead of

the product map Tg : Sk −→ Sk+l, h 7→ gh, for a fixed cusp form g ∈ Sl.

More precisely, for a fixed g ∈ Ml and an integer n > 0, he considered the

linear map Tg,n : Sk −→ Sk+l+2n defined by Tg,n(f) = [f, g]n and computed its

adjoint map with respect to the Petersson scalar product. This map involves

special values of certain Dirichlet series of Rankin-Selberg type similar to

(1) with additional factors arising due to binomial coefficients appearing in

the Rankin-Cohen bracket. The result of Kohnen has been generalized to

other automorphic forms (e.g., Jacobi forms, Siegel modular forms, Hilbert

modular forms, etc.). The main objective of this thesis is to extend the work

of Herrero to the case of Jacobi forms, Siegel modular forms of genus two and

modular forms of half-integral weight, which are discussed in Chapters 2, 3

and 4 respectively. In Chapter 5, we give some remarks on Rankin’s method

for certain automorphic forms.
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2. Jacobi Forms

Let k,m be fixed positive integers and ΓJ = SL2(Z) n Z2. We denote the

space of Jacobi forms and the subspace of Jacobi cusp forms of weight k

and index m on ΓJ by Jk,m and J cuspk,m respectively. Choie, Kim and Knopp

[5] constructed Jacobi cusp forms whose Fourier coefficients involve special

value of certain Dirichlet series of Rankin type. More precisely, for a fixed

φ ∈ Jl,0, they considered the linear map Tφ : J cuspk,m −→ J cuspk+l,m, ψ 7→ φψ

and computed its adjoint with respect to the Petersson scalar product. The

Fourier coefficients of the image of a cusp form ψ under the adjoint map

involves special values of certain Dirichlet series of Rankin type attached

to φ and ψ. Sakata [33] also constructed Jacobi cusp forms with similar

Fourier coefficients and generalized the result of Choie, Kim and Knopp by

computing the adjoint of the map Tφ for φ ∈ Jl,n. Rankin-Cohen brackets

for Jacobi forms were studied by Choie [6, 7] by using the heat operator

Lm := 1
(2πi)2

(
8πim ∂

∂τ
− ∂2

∂z2

)
. For ν > 0, φ ∈ Jk1,m1 and ψ ∈ Jk2,m2 , the

ν-th Rankin–Cohen brackets [φ, ψ]ν ∈ Jk1+k2+2ν,m1+m2 and [ , ]ν : Jk1,m1 ×

Jk2,m2 −→ Jk1+k2+2ν,m1+m2 is a bilinear map.

2.1. Statement of the Theorem

For a fixed ψ ∈ J cuspk2,m2
and an integer ν ≥ 0, consider the map Tψ,ν : J cuspk1,m1

→

J cuspk1+k2+2ν,m1+m2
defined by Tψ,ν(φ) = [φ, ψ]ν . Then Tψ,ν is a C-linear map be-

tween two finite dimensional Hilbert spaces and therefore has an adjoint map
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T ∗ψ,ν : J cuspk1+k2+2ν,m1+m2
→ J cuspk1,m1

such that 〈φ, Tψ,ν(ω)〉 = 〈T ∗ψ,ν(φ), ω〉, ∀ φ ∈

J cuspk1+k2+2ν,m1+m2
and ω ∈ J cuspk1,m1

. In the main result, we exhibit the Fourier co-

efficients of T ∗ψ,ν(φ) for φ ∈ J cuspk1+k2+2ν,m1+m2
. These coefficients involve special

values of certain Dirichlet series associated to φ and ψ. We first prove the

following lemma to ensure the convergence of Dirichlet series which appears

as Fourier coefficients.

Lemma 1. Let k1 > 4, k2 > 3,m1 and m2 be natural numbers. Let ψ ∈ J cuspk2,m2

with Fourier expansion

ψ(τ, z) =
∑

n1,r1∈Z,
4m2n1−r21>0

a(n1, r1)qn1ζr1 ,

and φ ∈ J cuspk1+k2+2ν,m1+m2
with Fourier expansion

φ(τ, z) =
∑

n2,r2∈Z,
4(m1+m2)n2−r22>0

b(n2, r2)qn2ζr2 .

Then the sum

∑
γ∈ΓJ∞\ΓJ

∫
ΓJ\H×C

| φ(τ, z)[e2πi(nτ+rz) |k1,m1 γ, ψ]νv
k1+k2+2νe

−4π(m1+m2)y
2

v | dVJ

converges. Here dVJ =
dudvdxdy

v3
with τ = u + iv and z = x + iy, is an

invariant measure under the action on ΓJ on H× C.

We now state the main theorem.
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Theorem 2. [17] Let k1 > 4, k2 > 3,m1 and m2 be natural numbers. Let

ψ ∈ J cuspk2,m2
with Fourier expansion

ψ(τ, z) =
∑

n1,r1∈Z,
4m2n1−r21>0

a(n1, r1)qn1ζr1 .

Then the image of any cusp form φ ∈ J cuspk1+k2+2ν,m1+m2
with Fourier expansion

φ(τ, z) =
∑

n2,r2∈Z,
4(m1+m2)n2−r22>0

b(n2, r2)qn2ζr2

under T ∗ψ,ν is given by

T ∗ψ,ν(φ)(τ, z) =
∑
n,r∈Z,

4m1n−r2>0

cν(n, r)q
nζr,

where

cν(n, r) =
(4m1n− r2)k1−

3
2

πk2+2ν

(m1 +m2)k1+k2+2ν−2

mk1−2
1

Γ(k1 + k2 + 2ν − 3
2
)

Γ(k1 − 3
2
)

×
ν∑
l=0

Al(k1,m1, k2,m2; ν)(4m1n−r2)l
∑

n1,r1∈Z
4m2n1−r21>0

4(m1+m2)(n+n1)−(r+r1)2>0

(4m2n1 − r2
1)ν−la(n1, r1)b(n+ n1, r + r1)

(4(n+ n1)(m1 +m2)− (r + r1)2)k1+k2+2ν− 3
2

,

and

Al(k1,m1, k2,m2; ν) = (−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2.
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Remark 1. Fix ψ ∈ J cuspk2,m2
and suppose that J cuspk1,m1

is one dimensional space

generated by f(τ, z). Then T ∗ψ,ν(φ)(τ, z) = αφf(τ, z) for some constant αφ

and for all φ ∈ J cuspk1+k2+2ν,m1+m2
. In particular, for ψ = φ10,1 = 1

144
(E6E4,1 −

E4E6,1) ∈ J cusp10,1 and k1 = 12,m1 = 1 (J cusp12,1 = 〈φ12,1〉, φ12,1 := 1
144

(E2
4E4,1 −

E6E6,1)), we have

ν∑
l=0

Al(12, 1, 10, 1; ν)(4n− r2)l
∑

n1,r1∈Z
4n1−r21>0

8(n+n1)−(r+r1)2>0

(4n1 − r2
1)ν−la(n1, r1)b(n+ n1, r + r1)

(8(n+ n1)− (r + r1)2)22+2ν− 3
2

= αφc(n, r)

for all n, r ∈ Z such that 4n − r2 > 0, where a(p, q), b(p, q) and c(p, q) are

the (p, q)-th Fourier coefficients of φ10,1, φ and φ12,1 respectively. If we take

ν = 0 in the above example, we have

∑
n1,r1∈Z

4n1−r21>0

8(n+n1)−(r+r1)2>0

a(n1, r1)b(n+ n1, r + r1)

(8(n+ n1)− (r + r1)2)
41
2

= αφc(n, r).

3. Siegel Modular forms

We denote the space of Siegel modular forms and the subspace of Siegel

cusp forms of weight k and genus g on Γg := Sp2g(Z) by Mk(Γg) and Sk(Γg)

respectively. Lee [25] constructed Siegel cusp forms of genus g by computing

the adjoint map of the product map by a fixed Siegel cusp form of genus g
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with respect to the Petersson scalar product. In the proof, he used Poincaré

series of two variables and the holomorphic projection operator developed by

Panchishkin [28]. Let F ∈ Sk(Γ2) and G ∈ Sl(Γ2) with Fourier coefficients

A(T ) and B(T ) respectively. For a fixed positive definite 2× 2 matrix S and

a non-negative integer m, define a Dirichlet series LF,G;S,m as

LF,G;S,m(σ) =
∑
T>0

det (T )mA(T + S)B(T )

(det (T + S))σ
. (2)

Then LF,G;S,m(σ) converges for Re(σ) > k+l
2
−m+ 5

18
. We construct certain

Siegel cusp form of genus two whose Fourier coefficients involve special val-

ues of the series (2). The Rankin-Cohen type operators for Siegel modular

forms of genus two were studied by Choie and Eholzer [3] explicitly and the

existence of such operators for general genus were established by Eholzer and

Ibukiyama [12].

3.1. Statement of the Theorem

For a fixed G ∈ Sl(Γ2) and an integer ν ≥ 0, consider the map TG,ν :

Sk(Γ2) → Sk+l+2ν(Γ2) defined by TG,ν(F ) = [F,G]ν , where [F,G]ν is the

ν-th Rankin-Cohen bracket of F and G. Then TG,ν is a C-linear map be-

tween two finite dimensional Hilbert spaces and therefore has an adjoint map

T ∗G,ν : Sk+l+2ν(Γ2) → Sk(Γ2) given by 〈F, TG,ν(H)〉 = 〈T ∗G,ν(F ), H〉, ∀ F ∈

Sk+l+2ν(Γ2) and H ∈ Sk(Γ2). We compute the Fourier coefficients of T ∗G,ν(F )

in terms of the special values of Dirichlet series defined in (2). We prove the
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following lemma.

Lemma 2. Let k > 6, l be natural numbers and ν ≥ 0 be a fixed integer. Let

G ∈ Sl(Γ2) with Fourier expansion

G(Z) =
∑
T1>0

A(T1)e2πi(tr(T1Z))

and F ∈ Sk+l+2ν(Γ2) with Fourier expansion

F (Z) =
∑
T2>0

B(T2)e2πi(tr(T2Z)).

Then the sum
∑

M∈∆\Γ2

∫
Γ2\H2

|F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2ν |dZ

converges.

Theorem 3. [18] Let k > 6, l be natural numbers and ν ≥ 0 be a fixed

integer. Let G ∈ Sl(Γ2) with Fourier expansion

G(Z) =
∑
T1>0

A(T1)e2πi(tr(T1Z)).

Then the image of any cusp form F ∈ Sk+l+2ν(Γ2) with Fourier expansion

F (Z) =
∑
T2>0

B(T2)e2πi(tr(T2Z))
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under T ∗G,ν is given by

T ∗G,ν(F )(Z) =
∑
T>0

C(T )e2πi(tr(TZ)).

Here

C(T ) = α(k, l, ν)
∑

r+s+p=ν

Cr,s,p(k, l)(det T )k+r−3/2 LF,G;T,s(k+l+2ν−(p+3/2)),

with

α(k, l, ν) =
(−1)νΓ2(k + l + 2ν − 3

2
)

2
√
πΓ(k − 3

2
)Γ(k − 2)(4π)2(l+ν)

,

and

Cr,s,p(k, l) =
(k + ν − 3/2)s+p

r!

(l + ν − 3/2)r+p
s!

(−(k + l + ν − 3/2))r+s
p!

,

where

(x)m =
∏

06i6m−1

(x− i),

and the Gamma function Γ2(σ) is defined as

Γ2(σ) =

∫
Y
e−trY (det Y )σ−3/2dY, for Re(σ) > 3/2,

where Y = {Y ∈M2×2(C) | Y t = Y > 0} .
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4. Modular Forms of Half Integral Weight

Let k ∈ Z and Γ = Γ0(4). We denote the space of modular forms and the

subspace of cusp forms of weight k + 1
2

and Dirichlet character χ for Γ by

Mk+ 1
2
(Γ, χ) and Sk+ 1

2
(Γ, χ)respectively. Consider the following three linear

maps:

(I) Tg,ν : Sk+ 1
2
(Γ)→ Sk+l+2ν+1(Γ, χ2χ), defined by Tg,ν(f) = [f, g]ν , with g ∈

Ml+ 1
2
(Γ, χ2),

(II) Tg,ν : Sk(Γ)→ Sk+l+2ν+ 1
2
(Γ, χ2χ), defined by Tg,ν(f) = [f, g]ν , with g ∈

Ml+ 1
2
(Γ, χ2),

(III) Tg,ν : Sk+ 1
2
(Γ)→ Sk+l+2ν+ 1

2
(Γ, χ2χ), defined by Tg,ν(f) = [f, g]ν , with g ∈

Ml(Γ, χ2).

We compute the adjoint of these maps with respect to the Petersson in-

ner product. We exhibit explicitly the Fourier coefficients of T ∗g,ν(f) for

f ∈ Sk+l+2ν+1(Γ, χ2χ) and these coefficients involve special values of cer-

tain Dirichlet series of Rankin-Selberg type associated to f and g. We now

state the result for the map in (I).

Theorem 4. [19] Let k and l be natural numbers and ν > 0. Let g ∈

Ml+ 1
2
(Γ, χ2) with Fourier expansion

g(z) =
∞∑
m=0

b(m)qm.
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Suppose that either (a) g is a cusp form and k > 2, or (b) g is not a cusp

form and l < k− 3
2
. Then the image of any cusp form f ∈ Sk+l+2ν+1(Γ, χ2χ)

with Fourier expansion

f(z) =
∞∑
m=1

a(m)qm

under T ∗g,ν is given by

T ∗g,ν(f)(z) =
∞∑
n=1

β(k, l, ν;n)Lf,g,ν,n(γ)qn,

where γ = k + l + 2ν, β(k, l, ν;n) =
Γ(k + l + 2ν) nk−

1
2

Γ(k − 1
2
)(4π)l+2ν+ 1

2

, and Lf,g,ν,n is the

L-function associated with f and g, defined by

Lf,g,ν,n(s) =
∞∑
m=1

a(n+m)b(m) α(k, l, ν, n,m)

(n+m)s
, s ∈ C

with

α(k, l, ν, n,m) =
ν∑
r=0

(−1)ν−r
(
ν

r

)
Γ(k + ν)Γ(l + ν)

Γ(k + r)Γ(l + ν − r)
nrmν−r.

Remark 2. We have similar results for the map in (II) with

γ = k + l + 2ν − 1
2
, and β(k, l, ν;n) =

Γ(k + l + 2ν − 1
2
) nk−1

Γ(k − 1) (4π)l+2ν+ 1
2

,

and for the map in (III) with

γ = k + l + 2ν − 1

2
, and β(k, l, ν;n) =

Γ(k + l + 2ν − 1
2
) nk−

1
2

Γ(k − 1
2
) (4π)l+2ν

,
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with the assumption that either (a) g is a cusp form and k > 3, or (b) g is

not a cusp form and l < k − 2.

Remark 3. Consider the linear map T ∗g,ν◦Tg,ν on Sk(Γ) with g(z) ∈Ml(Γ, χ2).

If λ is an eigenvalue of T ∗g,ν ◦ Tg,ν , then λ > 0. Suppose that Sk(Γ) is a one-

dimensional space generated by f(z) =
∞∑
m=1

a(n)qn. Then T ∗g,ν ◦ Tg,ν(h) =

λf, ∀ h ∈ Sk(Γ). In particular, T ∗g,ν ◦ Tg,ν(f) = λf with λ > 0 and if we

write T ∗g,ν ◦ Tg,ν(f) =
∑
n

c(n)qn then

c(n) =
Γ(k + l + 2ν − 1)

Γ(k − 1)

nk−
1
2

(4π)l+2ν

∞∑
m=1

aTg,ν(f)(n+m)b(m) α(k, l, ν, n,m)

(n+m)k+l+2ν−1
,

where aTg,ν(f)(n) is the n-th Fourier coefficient of Tg,ν(f) = [f, g]ν . If a(m0)

is the first non-zero Fourier coefficient of f then we have

λ =
Γ(k + l + 2ν − 1)

a(m0)Γ(k − 1)

m
k− 1

2
0

(4π)l+2ν

∞∑
m=1

aTg,ν(f)(m0 +m)b(m) α(k, l, ν,m0,m)

(m0 +m)k+l+2ν−1
> 0.

Further, if we take l = 0, k = 6, ν = 0 with g(z) = θ(z) =
∑
n

qn
2
and

∆4,6(z) =
∑
n

τ4,6(n)qn ∈ S6(Γ0(4)) in map (II), then

∞∑
m=1

aTθ,0(∆4,6)(m+ 1)b(m)

(m+ 1)
11
2

> 0. (3)

Now aTθ,0(∆4,6)(m+ 1) is the (m+ 1)-th Fourier coefficient of θ(z)∆4,6(z) and

equals to
m+1∑
r=1

b(r)τ4,6(m + 1 − r). Putting the value of aTθ,0(∆4,6)(m + 1) in
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(4.4.1), we have

∞∑
m=1

(
m2+1∑
r=1

τ4,6(m2 + 1− r2)

)
(m2 + 1)

11
2

> 0.

5. Remarks on Rankin’s Method

Rankin [30] showed that for any normalized eigenform f ∈ Sk with Fourier

coefficients a(n) and any even integer l with k
2

+ 2 6 l 6 k − 4, one has the

following identity

L∗f (l)L
∗
f (k − 1) = (−1)

l
2 2k−3Bl

l

Bk−l

k − l
〈f, ElEk−l〉,

where L∗f (s) = (2π)sΓ(s)Lf (s) with Lf (s) =
∞∑
n=1

a(n)

ns
.

Zagier generalized the result of Rankin by taking any modular form instead

of Eisenstein series i.e., he computed 〈f, gEl〉, for f ∈ Sk+l and g ∈ Mk. He

also considered the Rankin-Cohen bracket instead of product and proved the

following theorem.

Theorem 5. [37] Let l > k + 2 > 2 and ν > 0 be integers. Let f ∈ Sk+l+2ν

and g ∈Mk with Fourier coefficients a(n) and b(n) respectively. Then

〈f, [g, El]ν〉 =
Γ(k + l + 2ν − 1)Γ(l + ν)

(4π)k+l+2ν−1Γ(l)

∞∑
n=1

a(n)b(n)

nk+l−1
.

To prove it he writes [g, El]ν as a linear combination of Poincaré series and
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then computes the Petersson scalar product. We observed that the method

of Herrero can be used to give a different proof of Theorem 5. We prove a

similar theorem for the case of Siegel modular forms of genus 2.

Theorem 6. Let k > 4, l be natural numbers and ν ≥ 0 be a fixed integer.

Let G ∈ Sl(Γ2) with Fourier coefficients A(T ) and F ∈ Sk+l+2ν(Γ2) with

Fourier coefficients B(T ). Then

〈F, [G,E(2)
k ]ν〉 =

(−1)νΓ2(k + l + 2ν − 3
2
)
∑

r+p=ν

Cr,0,p(k, l)

(4π)2(k+l+ν− 3
2

)

∑
T>0

A(T )B(T )

(detT )k+l+ν− 3
2

.
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Chapter 1

Preliminaries

In this chapter we give basic definitions and some properties of modular

forms, Jacobi forms and Siegel modular forms.

1.1 Notations

Let N, Z, Q, R and C be the set of natural numbers, integers, rational

numbers, real numbers and complex numbers, respectively. For z ∈ C, Re z

denotes the real part of z and Im z denotes the imaginary part of z. For any

complex number z and a non-zero real number c, we denote by ec(z) = e2πiz/c.

If c = 1, we simply write e(z) instead of e1(z). Let H = {τ ∈ C : Im τ > 0}

be the complex upper half-plane. We denote by q = e(τ), for τ ∈ H. For a

complex number z, the square root is defined as follows:

√
z =| z |

1
2 e

i
2
arg z, with − π < arg z 6 π.

19
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We set z
k
2 = (

√
z)k for any k ∈ Z. The full modular group SL2(Z) is defined

by

SL2(Z) =


 a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 .

For a positive integerN, we denote the congruence subgroup Γ0(N) of SL2(Z)

as follows:

Γ0(N) =


 a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 .

1.2 Modular forms for SL2(Z)

The group GL+
2 (R) =


 a b

c d

 : a, b, c, d ∈ R, ad− bc > 0

 acts on H

via fractional linear transformations, i.e., for γ =

 a b

c d

 ∈ GL+
2 (R) and

τ ∈ H

γ · τ :=
aτ + b

cτ + d
.

Let k ∈ Z and γ =

 a b

c d

 ∈ GL+
2 (R). For a complex valued function f

define the slash operator as follows:

(f |k γ) (τ) := (det γ)
k
2 (cτ + d)−kf(γ · τ).
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Definition 1.2.1. A modular form of weight k for SL2(Z) is a holomorphic

function f : H −→ C satisfying

1. f |k γ = f, ∀γ ∈ SL2(Z), i.e.,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀ γ =

 a b

c d

 ∈ SL2(Z) and ∀τ ∈ H.

2. f is holomorphic at infinity, i.e., f has a Fourier series expansion of

the form f(τ) =
∞∑
n=0

a(n)qn.

If we further have a(0) = 0, then f is called a cusp form.

We denote the space of all modular forms of weight k for SL2(Z) and the

subspace of all cusp forms of weight k for SL2(Z) by Mk and Sk, respectively.

For f, g ∈Mk such that at least one of them a cusp form, the Petersson

scalar product of f and g is defined as:

〈f, g〉 =

∫
SL2(Z)\H

f(τ)g(τ)(Im(τ))kd∗τ,

where SL2(Z) \ H is a fundamental domain and d∗τ =
dudv

v2
(τ = u+ iv) is

an invariant measure under the action of SL2(Z) on H.

Example. Let k be an even integer greater than 2. The normalized Eisen-

stein series Ek of weight k for SL2(Z) is defined as:

Ek(τ) :=
1

2

∑
(m,n)∈Z2−{(0,0)}

(m,n)=1

1

(mz + n)k
.
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Then Ek is a modular form of weight k for SL2(Z) with Fourier expansion

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where σk−1(n) =
∑
d|n
dk−1 and Bk’s are Bernoulli numbers defined by

x

ex − 1
=

∞∑
k=o

Bk
xk

k!
.

The Fourier expansions of Ek for k = 4, 6, 8, 10 and 12 are as follows:

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn,

E6(τ) = 1− 504
∞∑
n=1

σ5(n)qn,

E8(τ) = 1 + 480
∞∑
n=1

σ7(n)qn,

E10(τ) = 1− 264
∞∑
n=1

σ9(n)qn,

E12(τ) = 1 +
65520

691

∞∑
n=1

σ11(n)qn.

Example. The Ramanujan delta function is defined as

∆(τ) :=
1

1728
(E4(τ)3 − E6(τ)2).
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∆ is a cusp form of weight 12 for SL2(Z) with Fourier expansion

∆(τ) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

where τ(n) is called the Ramanujan tau function.

Example. Let n be a be a positive integer. The n-th Poincaŕe series of

weight k for SL2(Z) is defined by

Pk,n(τ) :=
∑

γ∈Γ∞\SL2(Z)

e2πinτ |kγ, (1.2.1)

where Γ∞ :=

±
 1 t

0 1

 : t ∈ Z

 . Pk,m is a cusp form of weight k > 2

for SL2(Z) with Fourier expansion

Pk,m(τ) =
∞∑
n=1

gm(n)qn,

where

gm(n) = δm,n + (−1)
k
2

+1
( n
m

) k−1
2
π
∞∑
c=1

Kc(m,n)Jk−1

(
4π
√
mn

c

)
,

and Kc(m,n) is the Kloosterman sum defined by

1

c

∑
d (mod c)

dd−1≡1 (mod c)

e
2πi

nd+md−1

c


,
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and Jk−1(x) is the Bessel function of order k−1. The Poincaŕe series has the

following property: If f ∈ Sk with Fourier expansion f(τ) =
∞∑
m=1

a(m)qm,

then

〈f, Pk,n〉 =
Γ(k − 1)

(4πn)k−1
a(n). (1.2.2)

We now define Hecke operators which send modular forms to modular

forms. Let n be a positive integer. For f(τ) =
∑
m

a(m)qm ∈ Mk, the n-th

Hecke operator is defined by

(Tnf)(τ) :=
∑
m

an(m)qm,

where an(m) =
∑

d|(m,n)

χ(d)dk−1a(mn
d2

). If f ∈ Mk (or Sk), then Tnf ∈ Mk (or

Sk). The family {Tn : n ∈ N} of Hecke operators is commuting. The Hecke

operators Tn acting on Sk are self-adjoint with respect to the Petersson inner

product.

Definition 1.2.2. A cusp form is said to be an eigenform if it is simultaneous

eigenfunction for all the Hecke operators.

In the space of cusp forms Sk, there exists an orthonormal basis consisting

of eigenforms of all the Hecke operators Tn.

Let f(z) ∈ Sk, with Fourier expansion f(τ) =
∞∑
n=1

a(n)qn. We associate a

L-function to f defined by

Lf (s) :=
∞∑
n=1

an
ns
. (1.2.3)
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This series converges for Re s > c+ 1, where c = k
2

+ ε. Define Λ(s) by

Λ(s) :=
1

(2π)s
Γ(s)Lf (s),

then Λ(s) extends to an entire function of s, and satisfies the functional

equation

Λ(s) = ± Λ(k − s).

Further, if f is an eigenform with Fourier coefficient a(n) then Lf (s) has an

Euler product

Lf (s) =
∏
p

(1− app−s + pk−1−2s)−1.

1.3 Modular forms for Γ0(N)

Definition 1.3.1. Let k be an integer and χ a Dirichlet character modulo N.

A holomorphic function f : H −→ C is said to be a modular form of weight

k, level N and character χ if

1. (f |k γ) (τ) = χ(d)f(τ), ∀ γ =

 a b

c d

 ∈ Γ0(N), i.e.,

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ), ∀ γ =

 a b

c d

 ∈ Γ0(N).

2. f is holomorphic at all the cusps of Γ0(N).

Further, we say f is a cusp form if f vanishes at all the cusps of Γ0(N).
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We denote the space of all modular forms and the subspace of all cusp

forms of weight k, level N with character χ on Γ0(N) by Mk(Γ0(N), χ) and

Sk(Γ0(N), χ), respectively. If χ is the trivial character, then we denote the

spaces as Mk(Γ0(N)) and Sk(Γ0(N)), respectively.

For f, g ∈Mk(Γ0(N), χ) such that at least one of them a cusp form, the

Petersson scalar product of f and g is defined as:

〈f, g〉 =
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f(τ)g(τ)(Im(τ))kd∗τ,

where Γ0(N) \ H is a fundamental domain for the action of Γ0(N) on H.

The following lemma tells about the growth of the Fourier coefficients of

a modular form.

Lemma 1.3.2. [16] If f ∈Mk(Γ0(N), χ) with Fourier coefficients a(n), then

a(n)� |n|k−1+ε,

and moreover, if f is a cusp form, then

a(n)� |n|
k
2
− 1

4
+ε.

For more details on the theory of modular forms of integral weight, we

refer to [16, 20].
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1.4 Modular forms of half-integral weight

Let Γ = Γ0(4). For k ∈ Z + 1
2

and γ =

 a b

c d

 ∈ Γ define the slash

operator as follows:

(
f |̃kγ

)
(τ) :=

( c
d

)(−4

d

)k
(cτ + d)−kf(γ · τ),

where
( c
d

)
is the Kronecker symbol.

Definition 1.4.1. Let k be an integer and χ a Dirichlet character modulo 4.

A holomorphic function f : H −→ C is said to be a modular form of weight

k + 1
2

and character χ for Γ if

1.
(
f |̃k+ 1

2
γ
)

(τ) = χ(d)f(τ), ∀ γ =

 a b

c d

 ∈ Γ.

2. f is holomorphic at all the cusps of Γ.

Further, we say f is a cusp form if f vanishes at all the cusps of Γ.

We denote the space of all modular forms and the subspace of all cusp

forms of weight k + 1
2

with character χ on Γ by Mk+ 1
2
(Γ, χ) and Sk+ 1

2
(Γ, χ),

respectively. The Petersson scalar product on Sk+ 1
2
(Γ, χ) is defined as follows:

〈f, g〉 =

∫
Γ\H

f(τ)g(τ)(Im(τ))k+ 1
2d∗τ.

The space Sk+ 1
2
(Γ, χ) is a finite dimensional Hilbert space.
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Definition 1.4.2. Let n be a be a positive integer. The n-th Poincaŕe series

of weight k + 1
2
, where k ∈ Z is defined by

Pk+ 1
2
,n(τ) :=

∑
γ∈Γ∞\Γ

e2πinτ |̃k+ 1
2
γ. (1.4.1)

It is well-known that Pk+ 1
2
,n ∈ Sk+ 1

2
(Γ) for k > 2 . This series has the

following property:

Lemma 1.4.3. Let f ∈ Sk+ 1
2
(Γ) with Fourier expansion

f(τ) =
∞∑
m=1

a(m)qm.

Then

〈f, Pk+ 1
2
,n〉 =

Γ(k − 1
2
)

(4πn)k−
1
2

a(n). (1.4.2)

The following lemma tells about the growth of the Fourier coefficients of

a modular form.

Lemma 1.4.4. If f ∈Mk+ 1
2
(Γ, χ) with Fourier coefficients a(n), then

a(n)� |n|k−
1
2

+ε,

and moreover, if f ∈ Sk+ 1
2
(Γ, χ) is a cusp form, then

a(n)� |n|
k
2

+ε.
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For more details on the theory of modular forms of half-integral weight,

we refer to [20, 34].

1.5 Jacobi forms

The Jacobi group ΓJ := SL2(Z) n (Z× Z) acts on H× C by


 a b

c d

 , (λ, µ)

 · (τ, z) =

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Let k,m be fixed positive integers. For a complex valued function φ on H×C

and γ =


 a b

c d

 , (λ, µ)

 ∈ ΓJ define

(φ|k,mγ) (τ, z) := (cτ + d)−ke
2πim

−c(z + λτ + µ)2

cτ + d
+λ2τ+2λz


φ(γ · (τ, z)).

Definition 1.5.1. A Jacobi form of weight k and index m on ΓJ is a holo-

morphic function φ : H× C→ C satisfying the following:

φ|k,mγ = φ, ∀γ ∈ ΓJ

and having a Fourier expansion of the form

φ(τ, z) =
∑
n,r∈Z,
r2≤4nm

c(n, r)qnζr (q = e2πiτ , ζ = e2πiz).
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Further, we say φ is a cusp form if c(n, r) 6= 0 =⇒ r2 < 4nm.

We denote the space of all Jacobi forms and the subspace of all Jacobi cusp

forms by Jk,m and J cuspk,m respectively. The Petersson scalar product of φ, ψ ∈

J cuspk,m is defined as :

〈φ, ψ〉 =

∫
ΓJ\H×C

φ(τ, z)ψ(τ, z)vke
−4πmy2

v dVJ ,

where dVJ =
dudvdxdy

v3
is an invariant measure under the action on ΓJ on

H×C with τ = u+ iv, z = x+ iy and ΓJ \ H ×C is a fundamental domain

for the action of ΓJ on H× C. The space (J cuspk,m , 〈, 〉) is a finite dimensional

Hilbert space.

Example 1.5.1. Let k > 4 be an even integer. The Jacobi Eisenstein series

of weight k and index m is defined as

Ek,m(τ, z) =
1

2

∑
c,d∈Z

(c,d)=1

∑
λ∈Z

(cτ + d)−kem
(
λ2aτ + b

cτ + d
+ 2λ

z

cτ + d
− cz2

cτ + d

)
,

where a and b are such that

 a b

c d

 ∈ SL2(Z). Then Ek,m is a Jacobi

form of weight k and index m for ΓJ .

Example 1.5.2. Let m,n and r be fixed integers with r2 < 4mn. The (n, r)-
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th Jacobi-Poincaré series of weight k and index m is defined as

Pk,m;(n,r)(τ, z) :=
∑

γ∈ΓJ∞\ΓJ
e2πi(nτ+rz)|k,mγ. (1.5.1)

Here ΓJ∞ :=



 1 t

0 1

 , (0, µ)

 : t, µ ∈ Z

 . It is well-known that Pk,m;(n,r) ∈

J cuspk,m for k > 2 (see [13]).

This series has the following property:

Lemma 1.5.2. Let φ ∈ J cuspk,m with Fourier expansion

φ(τ, z) =
∑
n,r∈Z,
r2<4nm

c(n, r)qnζr.

Then

〈φ, Pk,m;(n,r)〉 = αk,m(4mn− r2)−k+ 3
2 c(n, r), (1.5.2)

where

αk,m =
mk−2Γ(k − 3

2
)

2πk−
3
2

.

The following lemma tells about the growth of the Fourier coefficients of a

Jacobi form.

Lemma 1.5.3 (Choie, Kohnen [9]). If φ ∈ Jk,m and k > 3 with Fourier

coefficients c(n, r), then

c(n, r)� |r2 − 4nm|k−
3
2 ,
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and moreover, if φ is a Jacobi cusp form, then

c(n, r)� |r2 − 4nm|
k
2
− 1

2 .

For more details on the theory of Jacobi forms, we refer to [11].

1.6 Siegel modular forms

Let Hg := {Z = X + iY ∈ M2g(C) | Zt = Z, Y > 0} be the Siegel upper

half-plane. Let Γg be the symplectic group Sp2g(Z) of genus 2g defined as

Γg := {M ∈M2g(Z) : MJ2gM
t = J2g} , J2g =

 Og −Ig

−Ig Og

 , where Og

and Ig are zero matrix and identity matrix of order g × g, respectively. If

M =

 A B

C D

 ∈ Γg with A,B,C,D ∈ Mg(Z), then ABt = BAt, CDt =

DCt, ADt −BCt = Ig. The group Γg acts on Hg via

 A B

C D

 · Z = (AZ +B)(CZ +D)−1.

Let k be a fixed positive integer and M =

 A B

C D

 ∈ Γg. For a complex

valued function F on Hg, define the slash operator

(F |kM) (Z) := det(CZ +D)−kF (M · Z), Z ∈ Hg.
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Definition 1.6.1. A Siegel modular form of weight k and genus g is a

holomorphic function F : Hg → C satisfying F |kM = F, ∀M ∈ Γg i.e.,

F ((AZ + B)(CZ + D)−1) = (det(CZ + D))k F (Z) and having a Fourier

expansion of the form

F (Z) =
∑
T≥0

A(T )e2πi(tr(TZ)), (1.6.1)

where the summation runs over positive semi-definite half-integral (i.e., 2tij, tii ∈

Z) g × g matrices T.

We denote the space of Siegel modular forms of weight k and genus g on

Γg by Mk(Γg). Further, we say F is a cusp form if the summation in (1.6.1)

runs over positive definite half-integral matrices T. We denote the space of

Siegel cusp forms by Sk(Γg).

We now restrict to the case g = 2. If Z ∈ H2, then Z =

 τ z

z τ ′


with τ, τ ′ ∈ H, z ∈ C, and T =

 n r
2

r
2

m

 with n, r,m ∈ Z, n,m > 0,

and r2 6 4nm. Write F (τ, z, τ ′) for F (Z) and A(n, r, m) for A(T ), then

Fourier expansion of F becomes

F (τ, z, τ ′) =
∑

n,r,m∈Z
n,m>0

4nm−r2>0

A(n, r, m)e2πi(nτ+rz+mτ ′).
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Theorem 1.6.2. Let F be a Siegel modular form of weight k and genus 2

and write the Fourier expansion of F in the form

F (τ, z, τ ′) =
∞∑
m=0

φm(τ, z)e2πimτ ′ .

Then φm is a Jacobi form weight k and index m, for each m.

One has the following estimate for the Fourier coefficients of Siegel cusp

forms of genus 2.

Theorem 1.6.3. [22, 23, 1] Let F be a Siegel cusp form of weight k and

genus 2 with Fourier coefficients A(T ). Then

A(T )�F,ε (det T )k/2−13/36+ε (ε > 0). (1.6.2)

The Petersson scalar product on Sk(Γ2) is defined as

〈F,G〉 =

∫
Γ2\H2

F (Z)G(Z)(det Y )kdZ,

where F, G ∈ Sk(Γ2), Z = X+ iY and dZ = (det Y )−3dXdY is an invariant

measure under the action of Γ2 on H2. The space (Sk(Γ2), 〈, 〉) is a finite

dimensional Hilbert space.

Example 1.6.1. Let k > 4 be a fixed even integer. Then the Eisenstein
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series of weight k and genus 2 is defined as

E
(2)
k (Z) :=

∑
M∈∆\Γ2

1|kM.

Here ∆ :=


 I2 S

0 I2

 : S ∈M2×2(Z), St = S

 is a subgroup of Γ2. It is

well-known that E
(2)
k ∈Mk(Γ2).

Example 1.6.2. Let k > 6 be a fixed positive integer and T be a fixed

symmetric positive definite half-integral 2×2 matrix. Then the T -th Poincaŕe

series of weight k and genus 2 is defined as

Pk,T (Z) :=
∑

M∈∆\Γ2

e2πi(tr(TZ))|kM. (1.6.3)

Then Pk,T is a Siegel cusp form of weight k and genus 2.

The Poincaŕe series has the following property:

Lemma 1.6.4. [24] Let F ∈ Sk(Γ2) with Fourier expansion

F (Z) =
∑
T>0

A(T )e2πi(tr(TZ)).

Then

〈F, Pk,T 〉 = ck(det T )−k+ 3
2A(T ), (1.6.4)
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where

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2).

For basic theory on Siegel modular forms, we refer to [2, 27].

1.7 Rankin-Cohen brackets

There are many interesting connections between differential operators, and

modular forms and many interesting results have been found. Rankin [31, 32]

gave a general description of the differential operators which send modular

forms to modular forms. Cohen [10] explicitly constructed certain bilinear

operators using differential operators and obtained elliptic modular forms

with interesting Fourier coefficients. Zagier [38, 37] studied algebraic prop-

erties of these bilinear operators and called them Rankin–Cohen brackets.

Let k and l be real numbers and ν ≥ 0 be an integer. Let f and g be two

complex-valued holomorphic functions on H. Define the ν-th Rankin-Cohen

bracket of f and g by

[f, g]ν :=
ν∑
r=0

(−1)ν−r
(
ν

r

)
Γ(k + ν)Γ(l + ν)

Γ(k + r)Γ(l + ν − r)
DrfDν−rg, (1.7.1)

where Drf =
1

(2πi)r
drf

dτ r
and Γ(x) is the usual Gamma function.

Remark 1.7.1. We note that the 0-th Rankin-Cohen bracket is the usual

product, i.e., [f, g]0 = fg.
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Remark 1.7.2. One has the following property:

[f |kγ, g|lγ]ν = [f, g]|k+l+2νγ, ∀γ ∈ Γ. (1.7.2)

Theorem 1.7.1 (Cohen [10]). Let ν ≥ 0, be an integer and f ∈ Mk(Γ, χ1)

and g ∈Ml(Γ, χ2). Then [f, g]ν ∈Mk+l+2ν(Γ, χ1χ2χ),

where χ =



1, if both k, l ∈ Z,

χk−4, if k ∈ Z and l ∈ Z + 1
2
,

χl−4, if k ∈ Z + 1
2
and l ∈ Z,

χ = χk+l
−4 if both k, l ∈ Z + 1

2
.

Moreover, if ν > 0, then [f, g]ν ∈ Sk+l+2ν(Γ, χ1χ2χ). In fact, [ , ]ν is a

bilinear map from Mk(Γ, χ1)×Ml(Γ, χ2) to Mk+l+2ν(Γ, χ1χ2χ). Here χ−4 is

the character defined by χ−4(·) =

(
−4

·

)
.

1.7.1 Rankin-Cohen brackets on Jacobi forms

Rankin-Cohen brackets for Jacobi forms were studied by Choie [6, 7] by using

the heat operator. For an integer m, we define the heat operator

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
− ∂2

∂z2

)
.
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Let k1, k2,m1 and m2 be positive integers and ν ≥ 0 be an integer. Let φ

and ψ be two complex-valued holomorphic functions on H × C. Define the

ν-th Rankin-Cohen bracket of φ and ψ by

[φ, ψ]ν :=
ν∑
l=0

(−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2L

l
m1

(φ)Lν−lm2
(ψ).

(1.7.3)

We note here that x! = Γ(x+ 1).

Remark 1.7.3. Using the action of heat operator, one can verify that

[φ|k1,m1γ, ψ|k2,m2γ]ν = [φ, ψ]|k1+k2+2ν,m1+m2γ, ∀γ ∈ ΓJ . (1.7.4)

Remark 1.7.4. If ν ≥ 0 and φi ∈ Jki,mi (or J cuspki,mi
), i = 1, 2 then

[φ1, φ2]ν ∈ Jk1+k2+2ν,m1+m2 (or J cuspk1+k2+2ν,m1+m2
),

and if ν > 0, then

[φ1, φ2]ν ∈ J cuspk1+k2+2ν,m1+m2
.

In fact, [ , ]ν is a bilinear map from Jk1,m1 × Jk2,m2 to Jk1+k2+2ν,m1+m2 .

Remark 1.7.5. We note that the 0-th Rankin-Cohen bracket is the usual

product of Jacobi forms i.e., [φ, ψ]0 = φψ.
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1.7.2 Rankin-Cohen brackets on Siegel modular forms

of genus two

Rankin-Cohen brackets for Siegel modular forms of genus two were studied

in [3] explicitly and existence of recursion formula in [12] for general genus.

Let k, l be positive integers and ν ≥ 0 be an integer. Let F and G be

two complex-valued holomorphic functions on H2. Let D be the differential

operator defined by

D := 4
∂

∂τ

∂

∂τ ′
− ∂2

∂z2
, for Z =

 τ z

z τ ′

 ∈ H2.

Define the ν-th Rankin-Cohen bracket of F and G by

[F,G]ν :=
∑

r+s+p=ν

Cr,s,p(k, l) Dp(Dr(F )Ds(G)), (1.7.5)

where

Cr,s,p(k, l) =
(k + ν − 3/2)s+p

r!

(l + ν − 3/2)r+p
s!

(−(k + l + ν − 3/2))r+s
p!

,

and

(x)m =
∏

06i6m−1

(x− i).
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Remark 1.7.6. One has the following relation

[F |kM,G|lM ]ν = [F,G]|k+l+2νM, ∀M ∈ Γ2. (1.7.6)

Remark 1.7.7. If F ∈Mk(Γ2) and G ∈Ml(Γ2), then

[F,G]ν ∈Mk+l+2ν(Γ2).

Moreover, if ν > 0, then

[F,G]ν ∈ Sk+l+2ν(Γ2).

In fact, [ , ]ν : Mk(Γ2)×Ml(Γ2) −→Mk+l+2ν(Γ2) is a bilinear map.

Remark 1.7.8. The 0-th Rankin-Cohen bracket is the usual product i.e.,

[F,G]0 = FG.



Chapter 2

Adjoint of some linear maps on

Jacobi forms

2.1 Introduction

Let k and l be positive integers. Let f(τ) =
∑
m

a(m)qm ∈ Sk and g(τ) =∑
m

b(m)qm ∈ Sl. For a positive integer n, define a Dirichlet series as follows:

Lf,g;n(s) :=
∞∑
m=1

a(m+ n)b(m)

(m+ n)s
. (2.1.1)

Using Deligne’s estimate one can see that the series Lf,g;n(s) is absolutely

convergent for Re(s) > k+l
2
. Using the existence of adjoint map and prop-

erty of Poincaŕe series, Kohnen [21] constructed certain cusp forms whose

Fourier coefficients involve special values of the Dirichlet series (2.1.1). More

41
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precisely:

Theorem 2.1.1 (Kohnen [21]). Let k and l be a positive integers with k >

l + 2. Let f ∈ Sk+l and g ∈ Sl with Fourier expansions

f(τ) =
∞∑
m=0

a(m)qm and g(τ) =
∞∑
m=0

b(m)qm.

Then the function

T ∗g (f)(τ) :=
∞∑
n=1

nk−1Lf,g;n(k + l − 1)qn

is a cusp form of weight k for SL2(Z). In fact, the map Sk+l → Sk defined by

f 7→ Γ(k + l − 1)

Γ(k − 1)(4π)l
T ∗g (f) is the adjoint of the map Tg : Sk −→ Sk+l, h 7→ gh,

with respect to the Petersson scalar product.

Recently the work of Kohnen has been generalized by Herrero [14], where

he computed the adjoint of the linear map constructed using Rankin-Cohen

brackets instead of product by a fixed modular form. More precisely, for a

fixed g ∈Ml and an integer ν > 0, consider the linear map

Tg,ν : Sk −→ Sk+l+2ν ,

defined by

Tg,ν(f) = [f, g]n.

Herrero computed the adjoint map of Tg,ν with respect to the Petersson scalar
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product which involves special values of certain Dirichlet series of Rankin-

Selberg type similar to (2.1.1) with additional factors arising due to the

binomial coefficients appearing in the Rankin-Cohen bracket.

Theorem 2.1.2 (Herrero [14]). Let k > 6 and l be natural numbers and

ν > 0. Let g(τ) =
∞∑
m=0

b(m)qm ∈Ml. Suppose that either (a) g is a cusp form

or (b) g is not cusp form and l < k − 3. Then the image of any cusp form

f ∈ Sk+l+2ν with Fourier expansion f(τ) =
∞∑
m=1

a(m)qm under T ∗g,ν is given

by

T ∗g,ν(f)(τ) =
∞∑
n=1

β(k, l, ν;n)Lf,g,ν,n(γ)qn,

where γ = k + l + 2ν − 1, β(k, l, ν;n) =
Γ(k + l + 2ν − 1) nk−1

Γ(k − 1)(4π)l+2ν
and Lf,g,ν,n

is the L-function associated with f and g, defined by

Lf,g,ν,n(s) =
∞∑
m=1

a(n+m)b(m)α(k, l, ν, n,m)

(n+m)s
, s ∈ C (2.1.2)

with α(k, l, ν, n,m) =
ν∑
r=0

(−1)ν−r
(
ν
r

) Γ(k + ν)Γ(l + ν)

Γ(k + r)Γ(l + ν − r)
nrmν−r.

Remark 2.1.1. The result of Kohnen (Theorem 2.1.1) and Herrero (Theo-

rem 2.1.2) can be generalized to modular forms for congruence subgroups.

The work of Kohnen (Theorem 2.1.1) has been generalized by Choie, Kim

and Knopp [5] and Sakata [33] to the case of Jacobi forms. Choie, Kim and

Knopp [5] constructed Jacobi cusp forms whose Fourier coefficients involve

special values of certain Dirichlet series of Rankin type. For a fix φ ∈ Jl,0
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(modular form of weight l), consider the linear map

Tφ : J cuspk,m −→ J cuspk+l,m,

defined by

Tφ(ψ) = φψ.

Choie, Kim and Knopp [5] computed the adjoint of Tφ with respect to the

Petersson scalar product. The Fourier coefficients of the image of a cusp form

ψ under the adjoint of Tφ involves special values of certain Dirichlet series of

Rankin-Selberg type attached to φ and ψ.

Theorem 2.1.3. [5] Suppose that k > 5 and l > 0 and φ(τ, z) ∈ J cuspk+l,m with

Fourier expansion

φ(τ, z) =
∑
n,r∈Z
r2<4nm

a(n, r)qnζr,

and g ∈ Jl,0 with Fourier expansion

g(τ) =
∞∑
n=1

b(n)qn.

Then

T ∗g (φ) :=
∑
n,r∈Z
r2<4nm

c(n, r)qnζr,
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is a Jacobi cusp form of weight k and index m, where

c(n, r) =
(4mn− r2)k−3/2mlΓ(k + l − 3/2)

πlΓ(k − 3/2)

∑
i>1

a(i+ n, r)b(i)

(4nm+ 4im− r2)k+l−3/2
.

Sakata [33] generalized Theorem 2.1.3 by computing the adjoint of the map

Tφ for any Jacobi form φ. More precisely:

Theorem 2.1.4. [33] Suppose that k1 > 4 and k2 > 3 and m1,m2 ∈ N. Let

φ1(τ, z) ∈ J cuspk1+k2,m1+m2
with Fourier expansion

φ1(τ, z) =
∑

n1,r1∈Z
r21<4n(m1+m2)

a(n1, r1) qnζr,

and φ2(τ, z) ∈ J cuspk2,m2
with Fourier expansion

φ2(τ, z) =
∑

n2,r2∈Z
r22<4n2m2

b(n2, r2) qnζr.

Then

T ∗φ2(φ1)(τ, z) :=
∑
n,r∈Z

r2<4nm1

c(n, r)qnζr

is a Jacobi cusp form of weight k1 and index m1, where

c(n, r) =
(4m1n− r2)k1−3/2(m1 +m2)k1+k2−2Γ(k1 + k2 − 3/2)

πk2mk1−2
1 Γ(k1 − 3/2)
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×
∑

n1,r1∈Z
r21<4n1m2

(r+r1)2<4(m1+m2)(n+n1)

a(n+ n1, r + r1)b(n2, r2)

(4(m1 +m2)(n+ n1)− (r + r1)2)k1+k2−3/2
.

In this chapter, we generalize the work of Herrero to the case of Jacobi forms,

which generalises the work of Sakata [33]. First we state the theorem and

prove a lemma which is needed for the convergence and then we give a proof

of the main theorem.

2.2 Statement of the result

For a fixed ψ ∈ J cuspk2,m2
and an integer ν ≥ 0, consider the linear map

Tψ,ν : J cuspk1,m1
→ J cuspk1+k2+2ν,m1+m2

,

defined by

Tψ,ν(φ) = [φ, ψ]ν ,

where [φ, ψ]ν is the ν-th Rankin-Cohen bracket of φ and ψ defined in (1.7.3).

Then Tψ,ν is a C-linear map between two finite dimensional Hilbert spaces

and therefore has an adjoint map

T ∗ψ,ν : J cuspk1+k2+2ν,m1+m2
→ J cuspk1,m1
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such that

〈φ, Tψ,ν(ω)〉 = 〈T ∗ψ,ν(φ), ω〉, ∀φ ∈ J cuspk1+k2+2ν,m1+m2
and ω ∈ J cuspk1,m1

.

We exhibit the Fourier coefficients of T ∗ψ,ν(φ) for φ ∈ J cuspk1+k2+2ν,m1+m2
. These

coefficients involve special values of certain Dirichlet series associated to φ

and ψ. Now we state the main theorem.

Theorem 2.2.1. [17] Let k1 > 4, k2 > 3,m1 and m2 be natural numbers.

Let ψ ∈ J cuspk2,m2
with Fourier expansion

ψ(τ, z) =
∑

n1,r1∈Z,
r21<4m2n1

a(n1, r1)qn1ζr1 .

Then the image of any cusp form φ ∈ J cuspk1+k2+2ν,m1+m2
with Fourier expansion

φ(τ, z) =
∑

n2,r2∈Z,
r22<4(m1+m2)n2

b(n2, r2)qn2ζr2 ,

under T ∗ψ,ν is given by

T ∗ψ,ν(φ)(τ, z) =
∑
n,r∈Z,
r2<4m1n

cν(n, r)q
nζr,
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where

cν(n, r) =
(4m1n− r2)k1−

3
2

πk2+2ν

(m1 +m2)k1+k2+2ν−2

mk1−2
1

Γ(k1 + k2 + 2ν − 3
2
)

Γ(k1 − 3
2
)

×
ν∑
l=0

Al(k1,m1, k2,m2; ν)(4m1n− r2)l

×
∑

n1,r1∈Z
r21<4m2n1

(r+r1)2<4(m1+m2)(n+n1)

(4m2n1 − r2
1)ν−la(n1, r1)b(n+ n1, r + r1)

(4(n+ n1)(m1 +m2)− (r + r1)2)k1+k2+2ν− 3
2

,

and

Al(k1,m1, k2,m2; ν) = (−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2.

Remark 2.2.1. Using Lemma 1.5.3 (as given in Remark 3.1 in [33]) one can

show that the inner sum of the series converges for k1 > 4 and k2 > 3.

2.3 Proof of Theorem 2.2.1

We need the following lemma to prove the Theorem 2.2.1.

Lemma 2.3.1. Using the same notation as in Theorem 2.2.1, we have

∑
γ∈ΓJ∞\ΓJ

∫
ΓJ\H×C

| φ(τ, z)[e2πi(nτ+rz) |k1,m1 γ, ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v | dVJ

converges.
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Proof. Changing the variable (τ, z) to γ−1.(τ, z) and using Remark 1.7.3, the

sum equals to

∑
γ∈ΓJ∞\ΓJ

∫
γ.ΓJ\H×C

| φ(τ, z)[e2πi(nτ+rz), ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v | dVJ

and using Rankin unfolding argument, the last sum equals to

∫
ΓJ∞\H×C

| φ(τ, z)[e2πi(nτ+rz), ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v | dVJ .

Now replacing φ and ψ with their Fourier expansions and using the definition

of Rankin-Cohen brackets, the last integral is majorized by

ν∑
l=0

Al(k1,m1, k2,m2; ν) Il(k1, k2,m1,m2, ν;n, r),

where

Il(k1, k2,m1,m2, ν;n, r) =

∫
ΓJ∞\H×C

∑
n2,r2∈Z,

r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

|(4m1n−r2)l(4m2n1−r2
1)ν−l

× a(n1, r1)b(n2, r2)e2πi((n+n1+n2)τ+(r+r1+r2)z) | vk1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

Now it suffices to show that the integral Il(k1, k2,m1,m2, ν;n, r) is finite for

each l. We choose a fundamental domain for the action of ΓJ∞ on H × C
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which is given by ([0, 1] × [0,∞]) × ([0, 1] × R) and integrating over it, we

have

Il(k1, k2,m1,m2, ν;n, r) ≤ 4(m1 +m2)k1+k2+2ν−2Γ(k1 + k2 + 2ν − 3/2)

πk1+k2+2ν−3/2

×
∑

n2,r2∈Z,
r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

(4m1n− r2)l(4m2n1 − r2
1)ν−l|a(n1, r1)b(n2, r2)|

(8(m1 +m2)(n+ n1 + n2)− (r + r1 + r2)2)k1+k2+2ν−3/2
.

Using the growth of the Fourier coefficients given in Lemma 1.5.3, the above

series converges absolutely, which proves the lemma.

We now give a proof of Theorem 2.2.1. Write

T ∗ψ,ν(φ)(τ, z) =
∑
n,r∈Z,

4m1n−r2>0

cν(n, r)q
nζr.

Now, we consider the (n, r)-th Poincaŕe series of weight k1 and index m1 as

given in (1.5.1). Using Lemma 1.5.2, we have

〈T ∗ψ,νφ, Pk1,m1;(n,r)〉 = αk1,m1(4m1n− r2)
3
2
−k1cν(n, r),

where

αk1,m1 =
mk1−2

1 Γ(k1 − 3
2
)

2πk1−
3
2

.

On the other hand, by definition of the adjoint map we have

〈T ∗ψ,νφ, Pk1,m1;(n,r)〉 = 〈φ, Tψ,ν(Pk1,m1;(n,r))〉 = 〈φ, [Pk1,m1;(n,r), ψ]ν〉.
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Hence we get

cν(n, r) =
(4m1n− r2)k1−

3
2

αk1,m1

〈φ, [Pk1,m1;(n,r), ψ]ν〉. (2.3.1)

By definition, 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals

∫
ΓJ\H×C

φ(τ, z)
[
Pk1,m1;(n,r), ψ

]
ν
vk1+k2+2ν e

−4π(m1 +m2)y2

v dVJ

=

∫
ΓJ\H×C

φ(τ, z)[
∑

γ∈ΓJ∞\ΓJ1

e2πi(nτ+rz) |k1,m1 γ, ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v dVJ

=

∫
ΓJ\H×C

φ(τ, z)
∑

γ∈ΓJ∞\ΓJ
[e2πi(nτ+rz) |k1,m1 γ, ψ]νv

k1+k2+2νe

−4π(m1 +m2)y2

v dVJ

=

∫
ΓJ\H×C

∑
γ∈ΓJ∞\ΓJ

φ(τ, z)[e2πi(nτ+rz) |k1,m1 γ, ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

By Lemma 2.3.1, we can interchange the sum and integration in 〈φ, [Pk1,m1;(n,r), ψ]ν〉.

Therefore 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals to

∑
γ∈ΓJ∞\ΓJ

∫
ΓJ\H×C

φ(τ, z)[e2πi(nτ+rz) |k1,m1 γ, ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

Using the change of variable (τ, z) to γ−1 · (τ, z) and using Remark 1.7.3,
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〈φ, [Pk1,m1;(n,r), ψ]ν equals

∑
γ∈ΓJ∞\ΓJ

∫
γ.ΓJ\H×C

φ(τ, z)[e2πi(nτ+rz), ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

Now using the Rankin-Selberg unfolding argument, 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals

∫
ΓJ∞\H×C

φ(τ, z)[e2πi(nτ+rz), ψ]νv
k1+k2+2νe

−4π(m1 +m2)y2

v dVJ

=

∫
ΓJ∞\H×C

φ(τ, z)
ν∑
l=0

(−1)l
(
k1 + ν − 3

2

ν − l

)(
k2 + ν − 3

2

l

)
mν−l

1 ml
2

× Llm1
(e2πi(nτ+rz))Lν−lm2

(ψ)vk1+k2+2νe

−4π(m1 +m2)y2

v dVJ

=
ν∑
l=0

Al(k1,m1, k2,m2; ν)

∫
ΓJ∞\H×C

φ(τ, z)Llm1
(e2πi(nτ+rz))

× Lν−lm2
(ψ)vk1+k2+2νe

−4π(m1 +m2)y2

v dVJ . (2.3.2)

The repeated action of heat operators Lm1 and Lm2 give

Llm1
(e2πi(nτ+rz)) = (4m1n− r2)le2πi(nτ+rz),

Lν−lm2
(ψ) =

∑
n1,r1∈Z

4m2n1−r21>0

a(n1, r1)(4m2n1 − r2
1)ν−le2πi(n1τ+r1z).
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Now replacing φ and ψ by their Fourier series in (2.3.2), 〈φ, [Pk1,m1;(n,r), ψ]ν〉

equals

ν∑
l=0

Al(k1,m1, k2,m2; ν)

∫
ΓJ∞\H×C

∑
n2,r2∈Z,

r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

(4m1n− r2)l(4m2n1 − r2
1)ν−l

a(n1, r1)b(n2, r2)e2πi(n2τ+r2z)e2πi(n1τ+r1z)e2πi(nτ+rz)vk1+k2+2νe

−4π(m1 +m2)y2

v dVJ

(2.3.3)

=
ν∑
l=0

Al(k1,m1, k2,m2; ν)
∑

n2,r2∈Z,
r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

(4m1n− r2)l(4m2n1 − r2
1)ν−la(n1, r1)

b(n2, r2)

∫
ΓJ∞\H×C

e2πi(n2τ+r2z)e2πi(n1τ+r1z)e2πi(nτ+rz) vk1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

(2.3.4)

Putting τ = u+ iv, z = x+ iy, 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals

ν∑
l=0

Al(k1,m1, k2,m2; ν)
∑

n2,r2∈Z,
r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

(4m1n− r2)l(4m2n1 − r2
1)ν−la(n1, r1) b(n2, r2)

∫
ΓJ∞\H×C

e−2πv(n2+n+n1)e−2πy(r2+r+r1)e2πi(r2−r−r1)xe2πi(n2−n−n1)uvk1+k2+2νe

−4π(m1 +m2)y2

v dVJ .

(2.3.5)
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A fundamental domain for the action of the group ΓJ∞ onH×C is given by

([0, 1]× [0,∞])× ([0, 1]×R). Integrating over this region, 〈φ, [Pk1,m1;(n,r), ψ]ν〉

equals

ν∑
l=0

Al(k1,m1, k2,m2; ν)
∑

n2,r2∈Z,
r22<4(m1+m2)n2

∑
n1,r1∈Z
r21<4m2n1

(4m1n− r2)l(4m2n1 − r2
1)ν−l

× a(n1, r1) b(n2, r2)

∫ 1

0

∫ ∞
0

∫ 1

0

∫ ∞
−∞

e−2πv(n2+n+n1)e−2πy(r2+r+r1)e2πi(r2−r−r1)x

× e2πi(n2−n−n1)uvk1+k2+2ν−3e

−4π(m1 +m2)y2

v dudvdxdy.

Integrating on x and u, 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals

ν∑
l=0

Al(k1,m1, k2,m2; ν)
∑

n1,r1∈Z
r21<4m2n1

(r+r1)2<4(m1+m2)(n+n1)

(4m1n− r2)l(4m2n1 − r2
1)ν−lb(n+ n1, r + r1)

a(n1, r1)

∫ ∞
0

∫ ∞
−∞

e−4πv(n+n1)e−4πy(r+r1)vk1+k2+2ν−3e

−4π(m1 +m2)y2

v dydv.

Integrating over y, we have

∫ ∞
−∞

e
−4π

(
(r1+r)y+

(m1+m2)y
2

v

)
dy =

√
v e

π
(r + r1)2v

m1 +m2

2
√
m1 +m2

. (2.3.6)
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Substituting the value on (2.3.6) and integrating over v, we have

∫ ∞
0

e−4πv(n+n1)vk1+k2+2ν−3

√
v e

π
(r1 + r)2v

m1 +m2

2
√
m1 +m2

dv

=
1

2πk1+k2+2ν− 3
2

(m1 +m2)k1+k2+2ν−2Γ(k1 + k2 + 2ν − 3
2
)

(4(n+ n1)(m1 +m2)− (r + r1)2)k1+k2+2ν− 3
2

.

(2.3.7)

Putting the value of integral (2.3.7) in (2.3.6), 〈φ, [Pk1,m1;(n,r), ψ]ν〉 equals

(m1 +m2)k1+k2+2ν−2Γ(k1 + k2 + 2ν − 3
2
)

2πk1+k2+2ν− 3
2

ν∑
l=0

Al(k1,m1, k2,m2; ν)

×
∑

n1,r1∈Z
r21<4m2n1

(r+r1)2<4(m1+m2)(n+n1)

(4m1n− r2)l(4m2n1 − r2
1)ν−la(n1, r1)b(n+ n1, r + r1)

(4(n+ n1)(m1 +m2)− (r + r1)2)k1+k2+2ν− 3
2

.

(2.3.8)

Now substituting 〈φ, [Pk1,m1;(n,r), ψ]ν〉 from (2.3.8) in (2.3.1), we get the re-

quired expression for cν(n, r) given in Theorem 2.2.1.

2.4 Applications

In this section we give some applications of Theorem 2.2.1. Fix ψ ∈ J cuspk2,m2

and suppose that J cuspk1,m1
is one-dimensional space generated by f(τ, z), then

applying the above theorem we get T ∗ψ,ν(φ)(τ, z) = αφf(τ, z) for some con-

stant αφ and for all φ ∈ J cuspk1+k2+2ν,m1+m2
. Now equating the (n, r)-th Fourier

coefficients both the sides, we get relation among the special values of Rankin-



56 CHAPTER 2. JACOBI FORMS

Selberg type convolution of the Jacobi forms φ and ψ with the Fourier coeffi-

cients of f(τ, z). For example, taking ψ = φ10,1 = 1
144

(E6E4,1−E4E6,1) ∈ J cusp10,1

and k1 = 12,m1 = 1 (J cusp12,1 is one-dimensional space generated by φ12,1) where

φ12,1 := 1
144

(E2
4E4,1 − E6E6,1), we have the following relation:

ν∑
l=0

Al(12, 1, 10, 1; ν)(4n− r2)l
∑

n1,r1∈Z
4n1−r21>0

8(n+n1)−(r+r1)2>0

(4n1 − r2
1)ν−la(n1, r1)b(n+ n1, r + r1)

(8(n+ n1)− (r + r1)2)22+2ν− 3
2

= αφc(n, r)

for all n, r ∈ Z such that 4n− r2 > 0, where a(p, q), b(p, q) and c(p, q) are the

(p, q)-th Fourier coefficients of φ10,1, φ and φ12,1, respectively. In particular

taking ν = 0 in the above example, we get the special value of Rankin-Selberg

type convolution of φ10,1 and φ in terms of Fourier coefficients of φ12,1, i.e.,

∑
n1,r1∈Z

4n1−r21>0

8(n+n1)−(r+r1)2>0

a(n1, r1)b(n+ n1, r + r1)

(8(n+ n1)− (r + r1)2)
41
2

= αφc(n, r).



Chapter 3

Adjoint of some linear maps on

Siegel modular forms

3.1 Introduction

The work of Kohnen [21] has been generalized by Lee [25] to the case of

Siegel modular forms to construct certain Siegel cusp forms. Lee computed

the adjoint map with respect to the Petersson scalar product of the product

map by a fixed Siegel cusp form. The proof uses Poincaŕe series of two

variables and the holomorphic projection operator developed by Panchishkin

[28].

Theorem 3.1.1. [25] Let F ∈ Sk+l(Γg) with Fourier expansion

F (Z) =
∑
T>0

B(T )e2πi(tr(TZ)),

57
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and G ∈ Sl(Γg) with Fourier expansion

G(Z) =
∑
T>0

A(T )e2πi(tr(TZ)).

Then

T ∗G(F ) =
∑
T>0

C(T )e2πi(tr(TZ)),

with C(T ) =
(det(T ))k−

g+1
2 Γg(k + l − g+1

2
)

(4π)g(l−(g−1)/2Γg(k − g+1
2

)

∑
S>0

A(S + T )B(T )

(det(S + T ))k+l−g ,

is a Siegel cusp form of weight k and genus g, where

Γg(σ) =

∫
Y
e−trY (det Y )σ−(g+1)/2dY, for Re(σ) > (g + 1)/2, (3.1.1)

and Y = {Y ∈Mg×g(C) | Y t = Y > 0} .

In this chapter, we generalize the work of Herrero [14] and Lee [25] to the

case of Siegel modular forms of genus two.

Let F ∈ Sk(Γ2) and G ∈ Sl(Γ2) with Fourier coefficients A(T ) and B(T )

respectively, then for a fixed positive definite 2 × 2 matrix S and a non-

negative integer m, define the Dirichlet series LF,G;S,m as follows:

LF,G;S,m(σ) =
∑
T>0

det (T )mA(T + S)B(T )

(det (T + S))σ
. (3.1.2)

The above series converges for Re(σ) > k+l
2
−m + 5

18
. We use the Rankin-

Cohen bracket of Siegel modular forms of genus 2 and special values of the
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above series to construct Siegel cusp forms. First, we state the theorem and

give the proof, then we give some applications.

3.2 Statement of the result

For a fixed G ∈ Sl(Γ2) and an integer ν ≥ 0, consider the map

TG,ν : Sk(Γ2)→ Sk+l+2ν(Γ2),

defined by

TG,ν(F ) = [F,G]ν ,

where [F,G]ν is the ν-th Rankin-Cohen bracket of F and G defined in (1.7.5).

Then TG,ν is a C-linear map between finite dimensional Hilbert spaces and

therefore has an adjoint map

T ∗G,ν : Sk+l+2ν(Γ2)→ Sk(Γ2)

given by

〈F, TG,ν(H)〉 = 〈T ∗G,ν(F ), H〉, ∀F ∈ Sk+l+2ν(Γ2) and H ∈ Sk(Γ2).

We explicitly compute the Fourier coefficients of T ∗G,ν(F ) in terms of the

special values of Dirichlet series defined in (3.1.2).

Theorem 3.2.1. [18] Let k > 6, l be natural numbers and ν ≥ 0 be a fixed
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integer. Let G ∈ Sl(Γ2) with Fourier expansion

G(Z) =
∑
T1>0

A(T1)e2πi(tr(T1Z)).

Then the image of any cusp form F ∈ Sk+l+2ν(Γ2) with Fourier expansion

F (Z) =
∑
T2>0

B(T2)e2πi(tr(T2Z)),

under T ∗G,ν is given by

T ∗G,ν(F )(Z) =
∑
T>0

C(T )e2πi(tr(TZ)),

where

C(T ) = α(k, l, ν)
∑

r+s+p=ν

Cr,s,p(k, l)(det T )k+r−3/2 LF,G;T,s(k+l+2ν−(p+3/2)),

with

α(k, l, ν) =
(−1)νΓ2(k + l + 2ν − 3/2)

2
√
πΓ(k − 3

2
)Γ(k − 2)(4π)2(l+ν)

.

Remark 3.2.1. Using the estimate given in Theorem 1.6.3, one can show that

the above series converges absolutely.

3.3 Proof of Theorem 3.2.1

We need the following lemma.
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Lemma 3.3.1. Using the same notation as in Theorem 3.2.1, the sum

∑
M∈∆\Γ2

∫
Γ2\H2

|F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2ν |dZ

converges.

Proof. The proof is similar to Lemma 2.3.1.

Now we give a proof of Theorem 3.2.1. Write

T ∗G,ν(F )(Z) =
∑
T>0

C(T )e2πi(tr(TZ)).

Using Lemma 1.6.4, we have

〈T ∗G,νF, Pk,T 〉 = ck(det T )−k+ 3
2C(T ),

where

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2).

On the other hand, by the definition of the adjoint map we have

〈T ∗G,νF, Pk,T 〉 = 〈F, TG,ν(Pk,T )〉 = 〈F, [Pk,T , G]ν〉.

Hence we get

C(T ) =
(det T )k−

3
2

ck
〈F, [Pk,T , G]ν〉. (3.3.1)
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By definition,

〈F, [Pk,T , G]ν〉 =

∫
Γ2\H2

F (Z)[Pk,T , G]ν (Z) (det Y )k+l+2νdZ

=

∫
Γ2\H2

∑
M∈∆\Γ2

F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ.

By Lemma 3.3.1, we interchange the sum and the integration in 〈F, [Pk,T , G]ν〉,

which gives

〈F, [Pk,T , G]ν〉 =
∑

M∈∆\Γ2

∫
Γ2\H2

F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ.

Using the change of variable Z to M−1 · Z in each integral and using Re-

mark 1.7.6, we get

〈F, [Pk,T , G]ν〉 =
∑

M∈∆\Γ2

∫
M ·Γ2\H2

F (Z)[e2πi(tr(TZ)), G]ν(Z) (det Y )k+l+2νdZ.

Using the Rankin-Selberg unfolding argument,

〈F, [Pk,T , G]ν〉 =

∫
∆\H2

F (Z)[e2πi(tr(TZ)), G]ν(Z) (det Y ))k+l+2νdZ

=

∫
∆\H2

F (Z)
∑

r+s+p=ν

Cr,s,p(k, l)Dp(Dr(e2πi(tr(TZ)))Ds(G(Z))) (det Y )k+l+2νdZ
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=
∑

r+s+p=ν

Cr,s,p(k, l)

∫
∆\H2

F (Z) Dp(Dr(e2πi(tr(TZ)))Ds(G(Z))) (det Y )k+l+2νdZ.

(3.3.2)

The repeated action of the operator D gives

Dr(e2πi(tr(TZ))) = (4πi)2r(det T )re2πi(tr(TZ)),

Ds(G(Z)) = (4πi)2s
∑
T1>0

A(T1)(det T1)se2πi(tr(T1Z)).

Now replacing F and G by their Fourier expansions in (3.3.2), we have

〈F, [Pk,T , G]ν〉 = (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∫

∆\H2

(∑
T2>0

B(T2)e2πi(tr(T2Z))

)

×

(∑
T1>0

(det T1)s(det(T + T1))pA(T1)e−2πitr(T+T1)Z

)
(det Y )k+l+2νdZ

= (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1)B(T2)

×
∫

∆\H2

e2πi(tr(T2Z)) e−2πitr(T+T1)Z(det Y )k+l+2νdZ

= (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1)B(T2)

×
∫

∆\H2

e2πi(tr(T2−(T+T1))X)))e−2π(tr(T2+T+T1)Y )(det Y )k+l+2ν dXdY

det (Y )3
. (3.3.3)

We know that the set F := {Z = X + iY ∈ H2 | X ∈ X, Y ∈ Y} is a funda-
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mental domain for the action of ∆ on H2, where

X =

X =

 u x

x u′

 :
−1

2
6 u 6

1

2
,
−1

2
6 x 6

1

2
,
−1

2
6 u′ 6

1

2

 ,

and

Y =
{
Y ∈M2×2(C) | Y t = Y > 0

}
.

Integrating over this fundamental domain, 〈F, [Pk,T , G]ν〉 equals

(4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1)B(T2)∫
X

∫
Y
e2πi(tr(T2−(T+T1))X))) e−2π(tr(T2+T+T1)Y )(det Y )k+l+2ν−3dXdY .

Integrating on X first, 〈F, [Pk,T , G]ν〉 equals

(4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T1>0

(det T1)s(det(T + T1))p A(T1)B(T + T1)∫
Y
e−4π(tr(T+T1)Y )(det Y )k+l+2ν−3dY. (3.3.4)

Now integration over Y gives

∫
Y
e−4π(tr(T+T1)Y )(det Y )k+l+2ν−3dY =

Γ2

(
k + l + 2ν − 3

2

)
(det (4π(T + T1)))k+l+2ν− 3

2

.

(3.3.5)
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Substituting the value from (3.3.5) in (3.3.4), 〈F, [Pk,T , G]ν〉 equals

(−1)ν
Γ2

(
k + l + 2ν − 3

2

)
(4π)2(k+l+ν− 3

2
)

∑
r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T1>0

(det T1)sA(T1)B(T + T1)

(det(T + T1))k+l+2ν−(p+ 3
2

)
.

(3.3.6)

Now substituting 〈F, [Pk,T , G]ν〉 from (3.3.6) in (3.3.1), we get the required

expression for C(T ) as given in Theorem 3.2.1, which completes the proof.

3.4 Applications

Fix G(Z) ∈ Sl(Γ2) and suppose that Sk(Γ2) is the one-dimensional space

generated by F (Z). Then by Theorem 3.2.1, T ∗G,ν(H)(Z) = αGF (Z) for some

constant αG and for all H ∈ Sk+l+2ν(Γ2). Now equating the T -th Fourier

coefficients both the sides, we get a relation among the special values of the

associated Dirichlet series LH,G;T,m (3.1.2) with the T -th Fourier coefficients

of F (Z). For example taking G = χ10 the Igusa cusp form of weight 10

(see [15], p.195) and H = χ2
10, then T ∗χ10,0

(χ2
10) = αχ10χ10 for some constant

αχ10 and then equating the T -th Fourier coefficients on both sides, we get a

relation among the special values of the associated Dirichlet series Lχ2
10,χ10;T,0

with the T -th Fourier coefficients of χ10. Similarly taking G = χ10 and H =

Υ20 (the Hecke eigenform of weight 20, see [35], p.390) then T ∗χ10,0
(Υ20) =

βχ10χ10 for some constant βχ10 and then equating the T -th Fourier coefficients

on both sides, we get a relation among the special values of the associated

Dirichlet series LΥ20,χ10;T,0 with the T -th Fourier coefficients of χ10.



Chapter 4

Adjoint of some linear maps on

modular forms of half-integral

weight

4.1 Introduction

The modular forms of half-integral weight was developed by Shimura [34]

and the Rankin-Cohen bracket was studied by Cohen [10]. In this chapter

we extend the result of Herrero to the case of modular forms of half-integral

weight. We first state the main theorem and give a proof, then we give an

application to the non-vanishing of special values of certain Rankin-Selberg

convolution of modular forms.

66
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4.2 Statement of the result

Let Γ = Γ0(4), g ∈ Ml+ 1
2
(Γ, χ2) and h ∈ Ml(Γ, χ2) Consider the following

linear maps:

(I) Tg,ν : Sk+ 1
2
(Γ)→ Sk+l+2ν+1(Γ, χ2χ), defined by Tg,ν(f) = [f, g]ν ,

(II) Tg,ν : Sk(Γ)→ Sk+l+2ν+ 1
2
(Γ, χ2χ), defined by Tg,ν(f) = [f, g]ν ,

(III) Th,ν : Sk+ 1
2
(Γ)→ Sk+l+2ν+ 1

2
(Γ, χ2χ), defined by Th,ν(f) = [f, h]ν ,

(IV) Th,ν : Sk(Γ)→ Sk+l+2ν(Γ, χ2) defined by Th,ν(f) = [f, h]ν ,

where [ , ]ν is the ν-th Rankin-Cohen bracket defined in (1.7.1).

Herrero [14] computed the adjoint of the map in (IV) for Γ = SL2(Z) and χ2

the trivial character. We exhibit explicitly the Fourier coefficients of T ∗g,ν(f)

for f ∈ Sk+l+2ν+1(Γ, χ2χ) in (I). The analogous results for the maps in (II)

and (III) are given in remark 4.2.1. These involve special values of certain

Dirichlet series of Rankin- Selberg type associated to f and g. We now state

the theorem for the map in case (I).

Theorem 4.2.1. [19] Let k and l be natural numbers and ν > 0. Let g ∈

Ml+ 1
2
(Γ, χ2) with Fourier expansion g(τ) =

∞∑
m=0

b(m)qm. Suppose that either

(a) g is a cusp form and k > 2 or (b) g is not cusp form and l < k− 3
2
. Then

the image of any cusp form f ∈ Sk+l+2ν+1(Γ, χ2χ) with Fourier expansion

f(τ) =
∞∑
m=1

a(m)qm,
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under T ∗g,ν is given by

T ∗g,ν(f)(τ) =
∞∑
n=1

β(k, l, ν;n)Lf,g,ν,n(γ)qn, (4.2.1)

where

γ = k + l + 2ν, β(k, l, ν;n) =
Γ(k + l + 2ν) nk−

1
2

Γ(k − 1
2
)(4π)l+2ν+ 1

2

and Lf,g,ν,n(γ) is defined in (2.1.2).

Remark 4.2.1. We have the similar results for the map in (II) with

γ = k + l + 2ν − 1

2
, and β(k, l, ν;n) =

Γ(k + l + 2ν − 1
2
) nk−1

Γ(k − 1) (4π)l+2ν+ 1
2

,

and for the map in (III) with

γ = k + l + 2ν − 1

2
, and β(k, l, ν;n) =

Γ(k + l + 2ν − 1
2
) nk−

1
2

Γ(k − 1
2
) (4π)l+2ν

,

with the assumption that either (a) g is a cusp form and k > 3

or (b) g is not cusp form and l < k − 2.

Remark 4.2.2. Using Lemma 1.3.2 and Lemma 1.4.4 one can show that the

series appearing in (4.2.1) converges.

4.3 Proof of Theorem 4.2.1

We need the following lemma to prove Theorem 4.2.1.
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Lemma 4.3.1. Using the same notation in Theorem 4.2.1, we have

∑
γ∈Γ∞\Γ

∫
Γ\H

| f(τ) [e2πinτ |̃kγ, g]ν (Im(τ))k+l+2ν+1 | d∗τ

converges.

Proof. The proof is similar to Lemma 1 in [14].

Now we give a proof of Theorem 4.2.1. Put

T ∗g,ν(f)(τ) =
∞∑
n=1

c(n)qn.

Consider the n-th Poincaré series of weight k + 1
2

as given in (1.4.1). Then

using Lemma 1.4.3, we have

〈T ∗g,νf, Pk+ 1
2
,n〉 =

Γ(k − 1
2
)

(4πn)k−
1
2

c(n).

On the other hand, by the definition of the adjoint map we have

〈T ∗g,νf, Pk+ 1
2
,n〉 = 〈f, Tg,ν(Pk+ 1

2
,n)〉 = 〈f, [Pk+ 1

2
,n, g]ν〉.

Hence we get

c(n) =
(4πn)k−

1
2

Γ(k − 1
2
)
〈f, [Pk+ 1

2
,n, g]ν〉. (4.3.1)
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By definition,

〈f, [Pk+ 1
2
,n, g]ν〉 =

∫
Γ\H

f(τ)
[
Pk+ 1

2
,n, g

]
ν

(τ) (Im(τ))k+l+2ν+1 d∗τ

=

∫
Γ\H

f(τ) [
∑

γ∈Γ∞\Γ

e2πinτ |̃k+ 1
2
γ, g]ν(τ) (Im(τ))k+l+2ν+ 1 d∗τ

=

∫
Γ\H

f(τ)
∑

γ∈Γ∞\Γ

[e2πinτ |̃k+ 1
2
γ, g]ν(τ) (Im(τ))k+l+2ν+1 d∗τ

=

∫
Γ\H

∑
γ∈Γ∞\Γ

f(τ) [e2πinτ |̃k+ 1
2
γ, g]ν(τ) (Im(τ))k+l+2ν+1 d∗τ.

By Lemma 4.3.1, we can interchange the sum and integration in 〈f, [Pk,n, g]ν〉.

Hence we get,

〈f, [Pk+ 1
2
,n, g]ν〉 =

∑
γ∈Γ∞\Γ

∫
Γ\H

f(τ) [e2πinτ |̃k+ 1
2
γ, g]ν(τ) (Im(τ))k+l+2ν+1 d∗τ.

Since g ∈ Ml+ 1
2
(Γ, χ2), g|̃l+ 1

2
γ = χ2(d)g, for every γ =

 a b

c d

 ∈ Γ.

Therefore, 〈f, [Pk+ 1
2
,n, g]ν〉 equals to

∑
γ∈Γ∞\Γ

∫
Γ\H

f(τ)[e2πinτ |̃k+ 1
2
γ,

1

χ2(d)
g|̃l+ 1

2
γ]ν(τ) Im(τ)k+l+2ν+1d∗τ

=
∑

γ∈Γ∞\Γ

(
(−4
d

)k+l+1

χ2(d)

)∫
Γ\H

f(τ) [e2πinτ |k+ 1
2
γ, g |l+ 1

2
γ]ν(τ) Im(τ)k+l+2ν+1d∗τ.
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Using the change of variable τ to γ−1 · τ in each integral, 〈f, [Pk+ 1
2
,n, g]ν〉

equals

∑
γ∈Γ∞\Γ

(
(−4
d

)k+l+1

χ2(d)

) ∫
Γ\H

f(γ−1 · τ) [e2πinτ |k+ 1
2
γ, g |l+ 1

2
γ]ν(γ−1 · τ)

× (Im(γ−1 · τ))k+l+2ν+1 d∗(γ−1 · τ).

Since f ∈ Sk+l+2ν+1(Γ, χ2χ), f(γ−1 · τ) = χ2(d)χ(d)(cz + d)k+l+2ν+1f(τ), for

every γ ∈ Γ. Therefore 〈f, [Pk+ 1
2
,n, g]ν〉 equals

∑
γ∈Γ∞\Γ

(
(−4
d

)k+l+1

χ2(d)

)∫
Γ\H

χ2(a)χ(a)(−cτ + a)k+l+2ν+1f(τ)(−cτ + a)k+l+2ν+1

× ([e2πinτ |k+ 1
2
γ, g |l+ 1

2
γ]ν |k+l+2ν+1 γ−1)(τ)

(
Im(τ)

| − cτ + a|2

)k+l+2ν+1

d∗τ.

Now using Remark 1.7.2, 〈f, [Pk+ 1
2
,n, g]ν〉 equals

∑
γ∈Γ∞\Γ

(
(−4
d

)k+l+1

χ2(d)

)
χ2(a)χ(a)

∫
γΓ\H

f(τ) [e2πinτ , g]ν (Im(τ))k+l+2ν+1 d∗τ.

We note that the term appearing before integral is equal to 1 for all

 a b

c d

 ∈
Γ∞ \ Γ. Therefore we get

〈f, [Pk+ 1
2
,n, g]ν〉 =

∑
γ∈Γ∞\Γ

∫
γΓ\H

f(τ) [e2πinτ , g]ν (Im(z))k+l+2ν+1 d∗τ.
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Now using Rankin-Selberg unfolding argument, 〈f, [Pk+ 1
2
,n, g]ν〉 equals to

∫
Γ∞\H

f(τ) [e2πinτ , g]ν (Im(τ))k+l+2ν+1 d∗τ

=

∫
Γ∞\H

f(τ)
ν∑
r=0

Cr(k, l; ν) Dr(e2πinτ )Dν−r(g)(Im(τ))k+l+2ν+1 d∗τ

=
ν∑
r=0

Cr(k, l; ν)

∫
Γ∞\H

f(τ) Dr(e2πinτ )Dν−r(g)(Im(τ))k+l+2ν+1 d∗τ. (4.3.2)

Now replacing f and g by their Fourier series in (4.3.2), 〈f, [Pk+ 1
2
,n, g]ν〉 equals

ν∑
r=0

Cr(k, l; ν)

∫
Γ∞\H

(∑
s

a(s)e2πisτ

)
nre2πinτ

(∑
m

mν−rb(m)e2πimτ

)
Im(τ)k+l+2ν+1d∗τ

=

∫
Γ∞\H

∑
s

∑
m

α(k, l, ν, n,m)a(s)b(m) e2πisτ e2πinτ e2πimτ (Im(τ))k+l+2ν+1 d∗τ

=
∑
s

∑
m

α(k, l, ν, n,m)a(s)b(m)

∫
Γ∞\H

e2πisτ e2πinτ e2πimτ (Im(τ))k+l+2ν+1 d∗τ.

Putting τ = u+ iv, 〈f, [Pk+ 1
2
,n, g]ν〉 equals

∑
s

∑
m

α(k, l, ν, n,m)a(s)b(m)

∫
Γ∞\H

e2πi(s−n−m)ue−2π(s+n+m)vvk+l+2ν+1dudv

v2
.

A fundamental domain for the action of Γ∞ on H is given by [0, 1]× [0,∞).
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Integrating over this region, 〈f, [Pk,n, g]ν〉 equals

∑
s

∑
m

α(k, l, ν, n,m)a(s)b(m)

∫ 1

0

∫ ∞
0

e2πi(s−n−m)ue−2π(s+n+m)vvk+l+2ν−1dudv.

Integrating on u first, 〈f, [Pk,n, g]ν〉 equals

∑
m

α(k, l, ν, n,m)a(n+m)b(m)

∫ ∞
0

e−4π(n+m)vvk+l+2ν−1dv. (4.3.3)

Integrating over v, we have

∫ ∞
0

e−4π(n+m)vvk+l+2ν−1dv =
Γ(k + l + 2ν)

(4π(n+m))k+l+2ν
. (4.3.4)

Putting the value of integral (4.3.4) in (4.3.3), we have

〈f, [Pk+ 1
2
,n, g]ν〉 =

Γ(k + l + 2ν)

(4π)k+l+2ν

∑
m

a(n+m)b(m)α(k, l, ν, n,m)

(n+m)k+l+2ν
. (4.3.5)

Now substituting 〈f, [Pk+ 1
2
,n, g]ν〉 from (4.3.5) in (4.3.1), we get the required

expression for c(n) as given in Theorem 4.2.1.

4.4 Applications

Consider the linear map T ∗g,ν ◦ Tg,ν on Sk(Γ) with g(τ) ∈ Ml(Γ, χ2). If λ is a

eigenvalue of T ∗g,ν ◦ Tg,ν , then λ > 0. Suppose that Sk(Γ) is one-dimensional
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space generated by f(τ) =
∑

m a(n)qn. Then T ∗g,ν ◦ Tg,ν(h) = λf, ∀ h ∈

Sk(Γ). In particular, T ∗g,ν ◦ Tg,ν(f) = λf with λ > 0 and if we write

T ∗g,ν ◦ Tg,ν(f) =
∑

n c(n)qn then

c(n) =
Γ(k + l + 2ν − 1)

Γ(k − 1)

nk−
1
2

(4π)l+2ν

∞∑
m=1

aTg,ν(f)(n+m)b(m) α(k, l, ν, n,m)

(n+m)k+l+2ν−1
,

where aTg,ν(f)(n) is the n-th Fourier coefficient of Tg,ν(f) = [f, g]ν . If a(m0)

is the first non-zero Fourier coefficient of f then by comparing the Fourier

coefficients in T ∗g,ν ◦ Tg,ν(f) = λf, we have

λ =
Γ(k + l + 2ν − 1)

a(m0)Γ(k − 1)

m
k− 1

2
0

(4π)l+2ν

∞∑
m=1

aTg,ν(f)(m0 +m)b(m) α(k, l, ν,m0,m)

(m0 +m)k+l+2ν−1
> 0.

In particular, if we take l = 0, k = 6 and ν = 0 with g(τ) = θ(τ) =
∑
n

qn
2

and the unique newform ∆4,6(τ) = η(2τ)12 =
∑

n τ4,6(n)qn ∈ S6(Γ0(4)) in

the case (II), then m0 = 1, α(k, l, ν,m0,m) = 1, and

λ =
Γ(11/2)

Γ(5)2
√
π

∞∑
m=1

aTθ,0(∆4,6)(m+ 1)b(m)

(m+ 1)
11
2

> 0,

or equivalently
∞∑
m=1

aTθ,0(∆4,6)(m+ 1)b(m)

(m+ 1)
11
2

> 0. (4.4.1)

Now aTθ,0(∆4,6)(m+ 1) is the (m+ 1)-th Fourier coefficient of θ(z)∆4,6(τ) and

equals to
m+1∑
r=1

b(r)τ4,6(m + 1 − r). Putting the value of aTθ,0(∆4,6)(m + 1) in
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(4.4.1), we have

∞∑
m=1

(
m+1∑
r=1

b(r)τ4,6(m+ 1− r)
)
b(m)

(m+ 1)
11
2

> 0,

equivalently

∞∑
m=1

(
m2+1∑
r=1

τ4,6(m2 + 1− r2)

)
(m2 + 1)

11
2

> 0.



Chapter 5

Remarks on Rankin’s method

5.1 Introduction

In this chapter we give some remarks on Rankin’s method for modular forms,

Jacobi forms and Siegel modular forms of genus 2. Rankin [30] showed that for

any normalized eigenform f ∈ Sk and any even integer l with k
2
+2 6 l 6 k−4

one has the following identity:

L∗f (l)L
∗
f (k − 1) = (−1)

l
2 2k−3Bl

l

Bk−l

k − l
〈f, ElEk−l〉, (5.1.1)

where L∗f (s) = (2π)sΓ(s)Lf (s) is the completed L-function. Zagier general-

ized the result of Rankin by considering any modular form instead of Eisen-

stein series and computed the Petersson scalar product 〈f, gEl〉, for f ∈ Sk+l

and g ∈Mk. Further more, Zagier also computed the Petersson scalar prod-

76
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uct 〈f, [g, El]ν〉 (where [g, El]ν is the ν-th Rankin-Cohen bracket of g and El)

and expressed in terms of special values of Rankin-Selberg type L-function

associated with f and g. More precisely:

Theorem 5.1.1. [38] Let l > k + 2 > 2 and ν > 0 be integers. Let f ∈

Sk+l+2ν with Fourier expansion

f(τ) =
∞∑
n=1

a(n)qn,

and g ∈Mk with Fourier expansion

g(τ) =
∞∑
n=0

b(n)qn.

Then

〈f, [g, El]ν〉 =
Γ(k + l + 2ν − 1)Γ(l + ν)

(4π)k+l+2ν−1Γ(l)

∞∑
n=1

a(n)b(n)

nk+l+ν−1
.

To prove the above theorem one writes [g, El]ν as linear combination of

Poincaré series as follows:

[g, El] =
Γ(l + ν)

Γ(l)

∞∑
n=0

nνb(n)Pk+l+2ν,n

where Pk+l+2ν,n is the n-th Poincaré series of weight k + l + 2ν, and then

use the characterization property of Poincaré series given in Lemma 1.2.2 to

compute the inner product 〈f, [g, El]ν〉.
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Remark 5.1.1. If we take ν = 0 in the above theorem, we have the following:

〈f, gEl〉 =
Γ(k + l − 1)

(4π)k+l−1

∞∑
n=1

a(n)b(n)

nk+l−1
. (5.1.2)

Remark 5.1.2. In particular, if we take g = Ek (the Eisenstein series of weight

k) in (5.1.2), we get Rankin’s identity (5.1.1).

Remark 5.1.3. Following the proof of Theorem 2.1.2 (Herrero [14]), one can

give a different proof of Theorem 5.1.1 by evaluating the integral

∫
SL2(Z)\H

f(τ)[g, El](Im z)k+l+2νd∗τ

explicitly using Rankin-Selberg unfolding argument.

Choie and Kohnen [9] generalized the work of Zagier to the case of Jacobi

forms and computed the Petersson scalar product 〈φ, [ψ,Ek2,m2 ]ν〉 in terms

of special values of a certain Rankin-Selberg convolution of Jacobi forms φ

and ψ.

Theorem 5.1.2. [9] Let k1 > 3, k2 > k1 + 3 and ν > 0 be integers. Let

φ ∈ J cuspk1+k2+2ν,m1+m2
with Fourier expansion

φ(τ, z) =
∑
n,r∈Z,

r2<4(m1+m2)n

a(n, r)qnζr,
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and ψ ∈ Jk1,m1 with Fourier expansion

ψ(τ, z) =
∑
n,r∈Z,
r2≤4m1n

b(n, r)qnζr.

Then

〈φ, [ψ,Ek2,m2 ]ν〉 = ck1,k2,m1,m2;ν

∑
n>1,r∈Z
r264m1n

(4m1n− r2)νa(n, r)b(n, r)

(4(m1 +m2)n− r2)k1+k2+2ν− 3
2

,

where ck1,k2,m1,m2;ν = 22ν−1mν
2(m1+m2)k1+k2+2ν−2

(
k2+ν− 3

2
ν

)Γ(k1 + k2 + 2ν − 3
2
)

πk1+k2− 3
2

.

Following the method of Zagier, one writes [ψ,Ek2,m2 ]ν as a linear com-

bination of Jacobi-Poincaré series as follows:

[ψ,Ek2,m2 ]ν = ck2,m2;ν

∑
n,r∈Z,r264m1n

(4m1n− r2)νb(n, r)Pk1+k2+2ν,m1+m2;n,r,

where ck2,m2;ν = (2π)2νmν
2

(
k2+ν− 3

2
ν

)
, and then use the characterization prop-

erty of Jacobi-Poincaré series given in Lemma 1.5.2 to compute the inner

product 〈φ, [ψ,Ek2,m2 ]ν〉.

Remark 5.1.4. Following the method of proof of Theorem 2.2.1, one can give

a different proof of Theorem 5.1.2 by evaluating the integral

∫
ΓJ\H×C

φ(τ, z)
[
ψ,Ek2,m2;(n,r)

]
ν
vk1+k2+2ν e

−4π(m1 +m2)y2

v dVJ
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using Rankin-Selberg unfolding argument.

Similar results have been studied for Jacobi forms of higher degree [29],

Hilbert modular forms [8] and other automorphic forms.

5.2 Rankin’s method on Siegel modular forms

In this section we generalize the result of Zagier to the case of Siegel modular

forms of genus 2, following the method of Herrero.

Theorem 5.2.1. Let k > 4, l and ν ≥ 0 be natural numbers and E
(2)
k be the

Siegel Eisenstein series of weight k and genus 2. Let G ∈ Sl(Γ2) with Fourier

expansion

G(Z) =
∑
T>0

A(T )e2πi(tr(TZ)),

and F ∈ Sk+l+2ν(Γ2) with Fourier expansion

F (Z) =
∑
T>0

B(T )e2πi(tr(TZ)).

Then

〈F, [G,E(2)
k ]ν〉 = α(k, l, ν)

∑
T>0

A(T )B(T )

(detT )k+l+ν− 3
2

(5.2.1)

with

α(k, l, ν) =

(−1)νΓ2(k + l + 2ν − 3
2
)
∑

r+p=ν

Cr,0,p(k, l)

(4π)2(k+l+ν− 3
2

)

and Cr,0,p(k, l) is the coefficients Cr,s,p(k, l) with s = 0 as in (1.7.5).
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Proof. Following the method of proof of Theorem 3.2.1 one can explicitly

compute the integral

∫
Γ2\H2

F (Z)[G, E
(2)
k ]ν(Z) (det Y )k+l+2νdZ.
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