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Summary
In this thesis, we look into the near-equilibrium dynamics of two very familiar systems with well-

known thermodynamic properties: black holes and fluids. Part I explores the effect of reparametriza-

tions of the horizon’s null generators on the entropy production on the horizon of a black hole in

Einstein-Gauss-Bonnet theory. Part II attempts to understand the relationship between stability

and causality in two well-known stable-causal models of relativistic hydrodynamics: the Müller-

Israel-Stewart (MIS) model and the Bemfica-Disconzi-Noronha-Kovtun (BDNK) model, first by

Lorentz transforming to ultra-high boosted frames, and then by field redefinitions of the thermo-

dynamic variables. In all the cases, analysis was performed up to the linearized order in amplitude

dynamics.

Recent advances in the second law of black hole thermodynamics for higher-derivative gravity

theories have shown that there exists an entropy density and an entropy current on the dynami-

cal horizons of black holes of these theories, which, by construction, have a total non-negative

divergence for linearized amplitude perturbations about a stationary solution. However, the for-

mulation of this entropy density and current depends on the spatial slicing of the horizon along its

affinely-parametrized null generators.

In the first work 3 of Part 1, we study the non-trivial changes in entropy density and current

under a local reparametrization of the affinely-parametrized null-generators to another family of

affinely-parametrized null-generators. We find that the entropy density and entropy current change

such that their divergence, and hence the net entropy production on the horizon, remain invariant.

In the second work 4, we dualize this entropy density and entropy current to an entropy cur-

rent for a fluid residing on the boundary of an asymptotically AdS Einstein-Gauss-Bonnet black-

brane solution. The boundary coordinates used to describe the fluid’s entropy current correspond

to a non-affine parametrization of the null generator on the horizon. Although the Gauss-Bonnet
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coupling doesn’t lead to any corrections to the fluid entropy current in the first order in boundary-

derivative expansion, there are non-trivial corrections in the second order dependent on the horizon-

to-boundary mapping functions, which aren’t necessarily expressible solely in terms of fluid vari-

ables. Hence, we conclude that for generic situations, the boundary entropy current thus obtained

doesn’t admit a derivative expansion.

One of the most difficult challenges in relativistic hydrodynamics has been to formulate hy-

drodynamic theories that admit perturbations about local equilibrium that are causal (i.e., do not

exit the light cone) and stable (i.e., decay down with time). The decades-old MIS and the recently

developed BDNK are two such formalisms with some regions in their parameter space where the

theories are stable and causal.

The first work 5 of Part 2 investigates the connection between stability and causality properties

using these two theories as case studies. Here, we utilize linearized stability analysis to obtain the

causality criteria for these two theories unambiguously. We find that the regions of the parameter

spaces of both these theories which are stable at an ultra-high boost (i.e., boost velocity = speed

of light), are stable at all other boost velocities and, hence, causal. The causality criteria thus

obtained from a low-wavenumber analysis match the asymptotic causality criteria performed at a

high-wavenumber of the theories.

In the second work of this part 6, we rewrite the conformal BDNK stress tensor in the “Lan-

dau frame” by redefining the temperature and velocity fields. We show that to maintain stability

and causality in the “Landau frame”, one either has to have an infinite number of derivative cor-

rections or has to include new ‘non-fluid’ variables in the formalism. Moreover, we find that this

incorporation of ‘non-fluid’ variables is a non-unique procedure.
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Chapter 1

Introduction
To understand the thermodynamic properties of any system, its equilibrium is often a safe harbor

from which to start venturing from. Akin to a sailor starting his adventures from close to the

coastline, the proverbial theoretical physicist often limits their analysis to the linearized regime of

dynamics only, where extraction and interpretation of analytic results are less complicated.

From a historical perspective, the field of thermodynamics has emerged to understand the re-

lationship between the different phenomenological quantities that label the state of a system in

and around its thermodynamic equilibrium. These physical quantities are called macroscopic state

variables and comprise different quantities like the system’s pressure, volume, energy density, tem-

perature, the number density of constituent particles etc., and thermodynamic equilibrium refers to

the situation where there is no flow of energy or particles between two systems in contact. The

four laws of thermodynamics were developed out of experimental observations in the eighteenth

and nineteenth centuries, and works by the likes of Carnot, Gibbs, Thomson, Clausius, and Boltz-

mann in these directions further went on to shape the course of science as well as the history of

humankind in the form of the industrial revolution.

Classically, the laws of thermodynamics establish relationships between the macroscopic vari-

ables without getting into the microscopic details of the system. Besides, they also function as

no-go theorems, restricting the possibility of unphysical phenomena from occurring. However, the

pursuit of understanding the underlying microscopic structures and constructing models consistent

with the observed macroscopic behavior of the systems has led to the formulation of kinetic theory.

With the advent of the atomic picture and, thence, the quantum theory as a possible microscopic

framework, the field of statistical mechanics rose to prominence as a way of connecting these un-

derlying microscopic degrees of freedom to the macroscopic variables like pressure, temperature

4



1 Introduction

etc. Statistical mechanics has since then been applied to a wide range of problems in different areas,

and the essence of any problem then boils down to identifying the microscopic degrees of freedom

of a system and constructing consistent solutions for them. One would then expect the macroscopic

variables corresponding to these solutions to follow the laws of thermodynamics.

In this thesis, we’ll focus on black holes and fluids, two of the most ideal and very potent instru-

ments in a theorist’s toolkit to probe the laws of thermodynamics in a variety of setups in nature.

The dynamics of fluids, alias “Hydrodynamics”, has been an instrumental theory for understand-

ing a wide variety of phenomena, ranging from everyday steady flows of water or air to those in

violent astrophysical plasma or heavy-ion collisions. Einstein’s theory of general relativity, on the

other hand, has enjoyed more than a century’s success in explaining gravitational phenomena, from

black holes to gravitational waves on the extremities, with those in our solar systems somewhere

in between. Though seemingly very different, the dynamics of these two derivative expandable

theories are strikingly similar, and in some particular cases, exact correspondences can be drawn

between them. The Fluid/Gravity correspondence, since its development in the 2000s, has been

instrumental in shedding light on this deep connection between these two theories, often leading to

predictions in one theory from analyses performed in its dual theory. In the following sections of

this chapter, we’ll briefly discuss some of the interesting questions and developments in all these

fields and try to establish the works presented in this thesis in the context of these, with the bigger

picture in the background.

1.1 Black Holes in General Relativity and Beyond

1.1.1 Gravitational theories as derivative expansions

Throughout the centuries, scientists and philosophers have been baffled by the observation that all

massive objects fall towards the surface of the earth. The idea of gravity as an attractive force

had been speculated for centuries by stalwarts like Aristotle and Galileo, among others, until it

reached its culmination in the form of Newton’s law of gravitation. Newton’s law of gravitation

5



1 Introduction

can be considered the earliest attempt at unification, as it connected the laws governing the motion

of celestial bodies with those followed by everyday objects around us on Earth. Another important

breakthrough was achieved by Einstein in the form of the General theory of relativity, which mod-

ified the idea of gravity as a force with the notion of gravity as a curvature in spacetime due to the

presence of matter. Einstein’s equation (actually a set of nonlinear partial differential equations)

of general relativity is a relation between the curvature tensors of spacetime and the stress tensor

of the external matter that causes the curvature. The curvature tensors themselves are functions of

spacetime derivatives of the metric tensor, which defines the line element on a particular spacetime.

In a theory of pure gravity, the metric is the dynamic degree of freedom, and Einstein’s equations

are the corresponding equations of motion. These equations can also be derived from an action

principle, where the corresponding Lagrangian, being a scalar, can contain only an even number of

derivatives. The least non-trivial action, the Einstein-Hilbert action, contains two derivatives and

gives rise to the renowned equation

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.1)

where Rµν , R, Tµν are the Ricci curvature tensor, Ricci scalar and the stress tensor of the external

matter field, respectively. G is Newton’s gravitational constant and c is the speed of light.

Another parallel development has been in understanding the nature of the fundamental con-

stituents of matter, where the advent of quantum mechanics has led to a significant paradigm shift.

The attempt to reconcile the laws of the minuscule and the laws of the gigantic in the form of a con-

sistent quantum theory of gravity has been one of the biggest puzzles in the last century, and a con-

clusive answer still continues to elude us. The problem lies in the fact that, while trying to take loop

corrections into account in a two-derivative theory of gravity, one encounters non-renormalizable

divergences in different physical quantities that cannot be absorbed by redefinitions of the fields

or the coupling constants [4]. Hence, a two-derivative theory of gravity cannot be a UV complete

quantum theory of gravity (a theory valid in all energy scales). On the other hand, an attempt to con-

struct an effective field theory of quantum gravity would inevitably lead to a Lagrangian containing

6



1 Introduction

an infinite number of higher-derivative correction terms, as in an EFT, one must take into account

all terms consistent with the symmetries of the theory (in this case diffeomorphism-invariance).

One needs a UV-complete theory to fix the expansion coefficients of the various higher-derivative

terms, as it is not possible to do so using only an EFT. String theory, one of the leading candidates

of a theory of quantum gravity, also leads to such higher-derivative corrections fixing the expansion

coefficients. 1 This leads to the expectation that any viable UV complete theory of gravity when

expanded in the low-energy limit, would give rise to a series of higher-derivative corrections on the

two-derivative Einstein-Hilbert term. Thus, it is of interest to study higher-derivative theories with

arbitrary coefficients to explore the properties of UV complete gravity theories in more generality

while staying in the low-energy regime itself.

Of special interest among these higher-derivative terms is a combination called the Lovelock

Theory. The Lagrangian in the Lovelock theory is given by an appropriate linear combination of

contractions of the Riemann tensor that results in a second-order equation of motion. Ignoring the

proportionality constants, the Lagrangian can be expressed as [7]

S =

∫
ddx

√
−g

(
R +

∞∑
m=2

αml
2m−2
s Lm

)
Lm = δµ1ν1···µmνm

ρ1σ1···ρmσm
Rρ1 σ1

µ1 ν1
· · ·Rρm σm

µm νm

(1.2)

where ls is the length scale at which the higher-derivative terms begin to appear, and αm is the

coefficient for each of the contributions.
√
−g is the metric determinant.

The leading term in (1.2)

S =

∫
ddx

√
−gR (1.3)

corresponds to the Einstein-Hilbert Lagrangian. The first non-trivial term in the series of Lovelock

theory is called the Gauss-Bonnet term and has the form

L2 = LGB = R2 − 4RµνRµν +RµνρσRµνρσ (1.4)

In four spacetime dimensions, the Gauss-Bonnet term is topological and equates to the Euler char-

acteristic of the spacetime. Hence, contributions from the Gauss-Bonnet term become meaningful
1One can try to construct renormalizable quantum gravity theories with higher-derivative Lagrangians as in [5, 6]
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1 Introduction

only at d > 4. In the first part of the thesis I, we’ll specialize our analyses to the Gauss-Bonnet

theory.

Also worth noticing is the fact that the presence of solutions in the form of derivative expansion

is very reminiscent of derivative expansions in hydrodynamics, and as it was discovered later, one

can write exact mappings between the two systems. Some parallels were already being drawn in [8]

where, using the membrane paradigm, it was shown that a generic black hole horizon can behave

like a fluid with its own electrical conductivity, shear and bulk viscosity.

1.1.2 Black holes and their entropy

Black holes are a rich class of solutions to Einstein’s equations of general relativity with interesting

thermodynamic properties. Recent advances in astronomy like LIGO [9,10] and EHT [11–13] have

elevated them from purely theoretical constructs to tangible physical entities with considerable ob-

servational signatures. Classically, black holes can be visualized as ideal absorbers of radiation,

thus indicating the presence of some possible thermodynamic behavior. Following the seminal

works of Hawking, Bardeen, Carter and later Bekenstein [14–17] it was established that connec-

tions indeed exist between the geometric parameters characterizing a black hole and its thermody-

namic behavior [18–20] 2. In particular, for Einstein’s theory with a two-derivative Lagrangian,

the temperature of the black hole is given by its surface gravity, and the area of the event horizon

corresponds to its entropy. Using the Raychaudhuri equation [24], it was shown that the area of a

black hole never decreases.

Black-hole solutions can be shown to exist in higher-derivative gravity theories as well, and

probing into the thermodynamics of such solutions provides deeper insights into possible quan-

tum gravity theories. However, the identification between geometrical quantities with thermody-

namic variables there often becomes progressively non-trivial and in some cases, deriving the laws
2The third law is more of a conjecture than an actual inviolable law because there are several indications for its

violations in thermodynamic systems as well as in black hole mechanics. For example, spin ice systems found in
experiments in condensed matter [21] have non-vanishing entropy at ground state due to the degeneracy of the ground
state, and Kerr-Newman black holes [22, 23] in general relativity have non-zero entropy at vanishing surface gravity,
which is not a universal constant but depends on its mass and angular momentum

8
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Law Thermodynamics Black Hole
Zeroth Law At thermal equilibrium , temperature Surface gravity κ is constant on the

is constant throughout a body. horizon of a stationary black hole.
Energy is conserved between Perturbations in mass, area,

First Law two thermodynamic states angular velocity, and charge around
by δU = TδS + δW stationary black holes are related

by δM = κ
8π
δA+ J δΩ + Φ δQ

Second Law The entropy of an isolated The area of a black hole’s
system never decreases. horizon never decreases. δA ≥ 0

Entropy of a system must go to Entropy of a black hole should
Third Law zero (or a universal constant) go to zero (or a universal constant)

at zero temperature. at κ = 0.

Table 1.1: The four laws of thermodynamics and their counterparts in black hole mechanics.

of thermodynamics for general higher-derivative theories can be very difficult. Wald’s formal-

ism [25, 26] provides one such possible identification for the laws of thermodynamics in general

diffeomorphism-invariant theories using Noether charges as in classical mechanics. The entropy

thus derived is called the “Wald Entropy” and was found to satisfy the first law of thermodynamics

by construction [26]. It was later found that althoughWald entropy gives the entropy at equilibrium

but out of equilibrium, the definition of entropy is riddled with ambiguities [27–29].

Entropy of Black holes: Why is it important?

At this juncture, it would be a good point to pause and ponder the following question: Why does

the entropy of a black hole hold a position of high importance? The answer lies in the fact that a

black hole’s entropy can be considered a sort of bridge between the classical understanding of a

black hole and its underlying quantum nature. Classically, a black hole doesn’t radiate any energy.

Also, following the “No hair theorem”, a generic classical black hole solution is characterized only

by its mass, angular momentum and charge.

Historically, the four laws as derived in [14] were treated only as a correspondence since black

holes don’t radiate classically and hence, area can’t actually be interpreted as its entropy. How-

ever, Bekenstein later showed that to maintain the second law of thermodynamics in the rest of

9



1 Introduction

the universe, the black hole should also have some entropy associated with it and that it should

be proportional to the horizon area [15]. Using information theory arguments, the proportionality

constant was found to be related to the Planck length, thus indicating a connection with quantum

mechanics. Finally, Hawking’s semi-classical calculation based on a quantum field near the horizon

of a classical black hole background shows that a black hole does radiate with a thermal spectrum

at a temperature called the Hawking temperature and an entropy proportional to its area [16]. Now,

instead of using a two-derivative theory where the entropy is given by area, one can use an arbitrary

diffeomorphism-invariant theory where entropy is given by Wald entropy, and the proportionality

constant would then be fixed from quantum field theoretic analysis.

All of this hints that the entropy of a black hole is a possible window to peer into its quantum

nature. Also, the existence of entropy in any system has a foundation in statistical mechanics, where

a counting of some underlying some underlying microscopic degrees of freedom (or microstates)

gives us entropy. Hence, from a statistical perspective, the existence of entropy in black holes

provokes one to think about some underlying quantum microstates of the black holes, counting

which one can calculate its entropy. Thus, the problem of black hole entropy can be translated

into a counting problem. For specific extremal and near-extremal solutions at a large-charge limit,

progress has been made in this direction in [30,31] (see [32] for a review), but it remains to be seen

whether this can be achieved for any generic black hole solution.

Another avenue towards which black hole entropy guides is the holographic nature of informa-

tion in gravitational theories. The area dependence of entropy instead of volume, despite its ex-

tensive nature, is a piece of strong evidence of the same. Motivated by t’Hooft’s observation [33]

that a reconciliation of quantum mechanics and gravity indicates a possibility of encoding gravita-

tional degrees of freedom in a lower spacetime dimension and thus constraining the set of plausible

quantum theories of gravity, Susskind proposed the holographic principle in [34] and explored

how it might be realizable. As we will see in 1.3, there are indeed theories of holography like

AdS/CFT [35] where the bulk dynamics in some special spacetimes can be captured in the dynam-
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ics of some theory residing on the boundary.

Recent developments on black hole thermodynamics

We shall conclude this section by reporting some recent progress made on the thermodynamics of

black holes in higher-derivative theories. FollowingWald’s procedure, [36] developed a framework

for studying the second law for black holes near equilibrium under a linearized approximation of

amplitude dynamics. [7] then attempted a non-perturbative construction of entropy for Lovelock-

theory, which satisfies the second law. In [37], the second law was formulated up to the linearized

order in amplitude dynamics as the combined divergence of an entropy density and an entropy

current on the horizon with non-negative divergence by construction and then in [38], this was

generalized for arbitrary higher-derivative theories of gravity. For an orientation towards the first

part of the thesis, we’ll review the coordinate systems and some necessary details from [37] and

[38] briefly in 2. [3] considers the effect of the event horizon’s null generator’s reparametrizations

on the local entropy production for the Gauss-Bonnet theory and [2] generalizes it to arbitrary

higher-derivative theories with an explicit expression for the transformation of entropy density and

entropy current under such reparametrizations. [39] extends the proof of the second law to nonlinear

order in amplitude dynamics in an effective field theory framework and [40, 41] study it further

in the non-perturbative regime. Parallelly, in [42–44], the authors extend the proof for arbitrary

diffeomorphism invariant gravity theories non-minimally coupled to matter fields. [2] also studies

the impact of constructional ambiguities (called Iyer-Wald ambiguities) in the entropy current on

its transformation under reparametrizations. Recent works have also tried to address the issue of

possible violations in the Bousso bound [45] of entropy for higher-derivative theories using Wald

entropy [46].

11
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1.2 Relativistic Hydrodynamics: A Brief Introduction

The field of fluid dynamics has been an active area of research for many centuries for theoretical

as well as experimental reasons. Theoretically, they are one of the most commonly used models

to understand the physical properties of continuum matter, and experimentally, they are one of the

most frequently encountered systems around us. Hydrodynamics is essentially a low-energy effec-

tive theory that uses gradient expansions of conserved quantities at equilibrium to describe systems

near equilibrium. Being a low-energy effective theory, it has a cutoff energy (or length scale) below

(or above) to which the derivative expansion is applicable. The derivatives of fluid variables must

be small compared to this cutoff scale, allowing us to treat these terms perturbatively 3. Relativistic

hydrodynamics deals with systems at very high energies where the underlying symmetry is Lorentz

symmetry [49]. One of the most celebrated real-world successes of relativistic hydrodynamics has

been in explaining the physics behind heavy-ion collision experiments [50, 51]. The recent dis-

covery of collective flow in mini-jets [52, 53] also has shown that hydrodynamic behavior can be

observed in systems of very small sizes and densities.

1.2.1 Stability and Causality in Relativistic Hydrodynamics

Entering the domain of derivative expansions in relativistic hydrodynamics, one naturally encoun-

ters the question of whether the added derivative corrections to the equilibrium theory are phys-

ically plausible. In principle, Lorentz symmetry allows one to add derivative corrections to the

equilibrium theory with arbitrary undetermined coefficients. But then, such solutions can often

lead to conflicts with physical principles. Thus, demanding that the solutions conform to physical

observations like entropy production, stability of solutions at equilibrium, or causal signal propaga-

tion lays constraints on possible structures that can be added to an equilibrium theory, and also on

the transport coefficients associated with these structures. For example, it has been demonstrated
3One such ratio is the Knudsen number, which is a ratio between the mean free path in the fluid and the system

size. [47, 48]
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in [54] that one can use the second law of thermodynamics (i.e., local entropy production, quanti-

fied by the non-negative divergence of a covariant entropy current) as one such physical guiding

principle to constrain an entropy current for a relativistic fluid. However, these constraints are

clearly not enough, as can be illustrated by the presence of unphysical solutions in the relativis-

tic Navier-Stokes equations at the first order in derivative expansion in the “Landau frame”. The

equations of motion for viscous flows, the well-known Navier-Stokes equations, are found to lead

to pathological solutions for relativistic fluids in the “Landau fluid frame” [55] (a particular choice

of off-equilibrium definitions of hydrodynamic variables). Specifically, the theory leads to acausal

solutions, and on Lorentz boosting, new modes pop up which may or may not be stable [56, 57].

People have tried to remedy these issues by formulating the theory in different ways, of which the

twomost well-known ones are theMüller-Israel-Stewart (MIS) [58–60] and the Bemfica-Disconzi-

Noronha-Kovtun (BDNK) [61–64] theories. In the MIS formulation, the viscous corrections to

the conserved currents at equilibrium are promoted to new degrees of freedom with their own

relaxation-equation-like equations of motion. In the BDNK formulation, the conserved currents

are written in some generalized fluid frame, away from the Landau fluid frame. To derive these

theories from some microscopic degrees of freedom, a plethora of models and formulations have

come up with different underlying principles ranging from AdS/CFT to kinetic theory [65–68].

1.3 Correspondences: AdS/CFT, and thence, Fluid/Gravity

1.3.1 AdS/CFT Correspondence

The fact that the entropy of black holes, which is an extensive property, is given by the area of

black holes instead of its volume was a strong hint towards the holographic nature of informa-

tion in gravitational theories. This idea reached its pinnacle with the AdS/CFT correspondence,

which connects the dynamics of certain strongly coupled conformal field theories to the dynamics

of quantum gravity theories within the bulk of an AdS spacetime (a maximally symmetric space-

time with a negative cosmological constant) of one higher dimension [35,69–71]. Since its advent,
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it has been studied and applied in a variety of contexts ranging from black holes, strongly coupled

plasmas, heavy-ion collisions, holographic superconductors and superfluids [72]. Some of the in-

teresting results of relevance to this proposal have been in the form of obtaining expressions of

shear viscosity and other linear transport coefficients for a holographic fluid [73, 74]. It has also

been derived from the correspondence that the ratio between this shear viscosity coefficient and the

entropy density can be significantly smaller than what was previously suggested by perturbative

calculations [75]. Some other investigations have also been conducted to explore connections be-

tween the quasinormal modes of a black-brane lying in the bulk of the AdS spacetime and certain

correlators of the boundary dual CFT [76–80]. All of these developments already set the stage for a

deeper dive into deriving the correspondence between holographic fluids and gravitational systems

in an AdS spacetime.

1.3.2 Fluid/Gravity Correspondence

The culmination of all these ideas led to the development of the Fluid/Gravity Correspondence

[1, 81, 82], where it was shown that the dynamics of a fluid residing on the AdS boundary can be

derived from the dynamics of a black brane metric inside the AdS bulk spacetime in the long wave-

length limit. Of special importance is the fact that this correspondence can be extended to nonlinear

order in amplitude perturbations, though it is perturbatively expanded in terms of boundary coordi-

nate derivatives. The velocity and temperature of the black brane are promoted to the temperature

and velocity of the boundary fluid, and solving Einstein equations for the bulk metric leads to the

Navier-Stokes equation for the boundary fluid. Thus, one can start with a stationary metric corre-

sponding to the boundary fluid at equilibrium and generate higher-order derivative corrected metric

solutions using this technique. Using the correspondence, one can also calculate various quantities

for the boundary fluid, like its stress tensor [81, 83], or a number of other transport coefficients

in various systems [65, 84]. One can also incorporate the effects of higher curvature corrections

to the gravitational system and study its effects on the boundary fluid [78, 79, 83]. Another very
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important application of the correspondence has been in using the area increase theorem for a black

brane horizon in the bulk to derive an entropy current for the boundary fluid with a non-negative

divergence [85]. Thus, the second law of black hole thermodynamics in a two-derivative theory

has been dualized to an ultra-local second law for a relativistic fluid on the boundary. For higher-

derivative corrected gravity theories, the entropy is given by Wald entropy. For relativistic fluids,

it was already known that entropy increase can be quantified as an entropy current with a non-

negative divergence and that the second law can be utilized to constrain the transport coefficients

and possible structures appearing in a fluid entropy current. The aforementioned duality between

the second law statements for a black brane in the bulk and a fluid on the boundary then automat-

ically makes one expect some kind of an ultra-local statement of the second law for black hole

horizons in line with an existent general ultra-local second law in fluids. This ultra-local form of

the second law in black holes was later worked out in the linear order in amplitude fluctuations

in [38]. As in [65, 67, 68], one can try to construct stable-causal hydrodynamic theories with the

bulk gravitational theory dictating the underlying microstructure of the fluid. Also, similar to the

stability and causality issues that plague relativistic hydrodynamic theories, one can find insta-

bilities and causality issues in the context of gravity. Besides Gregory-Laflamme instabilities in

higher dimensional black strings and branes [86,87], or extremal horizons becoming unstable under

perturbations [88], one can find stability and causality issues in spacetimes upon including higher

derivative corrections to the Lagrangian [89, 90]. Works like [91–93] also provide a window to

peer into such issues in depth on the gravity side and fluid/gravity correspondence can be a potent

tool to draw connections between stability and causality criteria on the two sides.

1.4 Motivation and Outline of the Thesis

Building on the background presented in the preceding sections, the works presented in this thesis

start off as a follow-up on the analysis in [38]. As it will be seen in 2, the class of coordinate

systems used in [38] to prove the second law uses an affine parameter along the null generators
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Figure 1.1: Penrose diagram of a uniform black hole (left) and a representation of the projection
of the horizon on the boundary (right). The shaded tube represents an area of the spacetime over
which the metric solution can locally be well-approximated to that of a corresponding uniform
black hole [1].

of the horizon as one of the coordinates (called the v coordinate); another null coordinate (the r

coordinate) that takes an observer away from the horizon is also affinely parametrized everywhere

on the spacetime. It was found that the form of the metric remains invariant under a rescaling of

these two coordinates of the form

r → r

λ
, v → λv (1.5)

where λ is a constant number.

A natural question that arises then is this: what happens if instead of constant λs, we consider a

λ which depends on the spatial coordinates on the horizon? Because if we rescale the v coordinate

in a v independent way, we’d still get an affine parameter along the null generators, thus keeping

the metric in the same class of coordinates as we started with; as a result, all of the analysis on the

second law via entropy densities and spatial entropy currents follows through. But non-triviality

is now introduced into the setup due to the fact that choosing a local reparametrization of the null

coordinate leads to the tangent vectors mixing up on a spatial slice of the horizon, resulting in a

modified slicing of the space-like slices of the horizon. Since the entropy density and spatial entropy

current depend on the slicing, their form should also now be modified. But, since these entropy
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density and spatial entropy current structures are not covariant objects to begin with, hence, their

transformations under these reparametrizations can be highly non-trivial. As described in Chapter

3 based on [3], here we try to find out the transformation of this combination of entropy density

and spatial entropy current for the case of the Gauss-Bonnet theory.

Now, the existence of the entropy current as in [38], or the further proof of the second law for

nonlinear dynamics of amplitude in an effective field theory sense as in [39], use the amplitude

of perturbations about a stationary black hole background solution as a perturbation parameter.

Another possible expansion can be in terms of boundary derivatives on the boundary of an asymp-

totically AdS spacetime. A derivative expansion scheme like this can often allow one to probe into

the non-perturbative amplitude dynamics regime while staying in the vicinity of long-wavelength

perturbations about equilibrium. Furthermore, for an entropy current for a relativistic fluid valid in

the linear regime of amplitude dynamics, there exist algorithms to extend it to entropy currents that

work in the nonlinear regime of amplitude dynamics [94]. Given all this existing framework, one

can aspire to explore the statement of the second law in a non-perturbative regime by constructing

a fluid entropy current from the entropy density and the spatial entropy current on the horizon using

fluid-gravity duality. The first step towards this long and ambitious goal would then be to construct

a fluid entropy current from the horizon entropy current for some higher-derivative theory of grav-

ity. Based on the algorithm presented in [85], we present this analysis in Chapter 4 of the thesis

based on [95].

Now, for a relativistic hydrodynamic theory, there already exists a conceptual tension in ana-

lyzing causality criteria. Specifically, while hydrodynamics is a low-energy effective theory, tra-

ditional causality analysis is mostly performed in the high-energy limit, also called asymptotic

causality analysis. Motivated by the principle that the stability property of the causal parameter

space of a theory should remain invariant in all reference frames connected by Lorentz boosts,

Chapter 5 based on [96] is an attempt to utilize this for causality analysis via stability analysis in

the MIS and BDNK theories.
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Again, as illustrated in [97], the stable-causal MIS theory can actually be visualized as an all-

order corrected theory in the Landau frame. The equation of motion of the viscous correction to

the stress tensor can be rewritten in the form of an infinite summation of derivative corrections of

fluid variables with a particular form of the associated transform coefficients. This shows that in

a stable-causal theory written in the Landau frame, one can trade off the extra degrees of freedom

(introduced to maintain stability and causality of the solutions) for an infinite order derivative cor-

rections to the equilibrium theory. In the same spirit, Chapter 6 based on [98] is a rewriting of

the BDNK stress tensor from its generalized hydrodynamic frame into the Landau frame, utilizing

infinite-order field redefinitions and then using new degrees of freedom.

Finally, Chapter 7 concludes the thesis with a brief summary of all the works presented in the

thesis and the future directions where the results presented here can be useful.
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Chapter 2

Technical Background
In this chapter, we’ll briefly discuss some of the formulations and techniques that form the basis

of the works in this thesis. In the first section 2.1, we’ll mostly review the framework developed

in [7, 36, 38] to derive the second law on the horizon for arbitrary higher-derivative theories of

gravity using entropy currents. We’ll briefly discuss the “boost symmetry” of the metric and the

algorithm to get to the second law using this symmetry to constrain possible structures along with

appropriate boundary conditions. In the second section 2.2, we’ll review the basics of stability

and causality analysis in relativistic hydrodynamics and the MIS and BDNK theories, where we

perform the rest of the analyses in II.

2.1 Near-Horizon Coordinates and the Second Law for Higher-
Derivative Theories

This section will be based on Appendix A of [7], Appendix A of [37], [38], and Appendix A of [2].

2.1.1 Coordinates and the metric adapted to the horizon

To beginwith, let us consider a (d+1)-dimensional spacetime, with a d-dimensional null-hypersurface

foliated by (d− 1)-dimensional slices. 1 Let the coordinates on the d− 1-dimensional slice on the

null hypersurface be denoted by xi with their associated tangent vectors ∂i. Let ∂τ be the null gen-

erator along the d-dimensional null hypersurface. Let another set of null vectors ∂ρ shoot off this

d-dimensional null-hypersurface into the full d+ 1-dimensional spacetime, and the corresponding

coordinate ρ measures the distance away from this d-dimensional surface. This null hypersurface

is actually the event horizon of a dynamic black hole in spacetime.
1Throughout this section, the Greek indices µ, ν etc. will refer to the full d + 1-dimensional coordinates and the

Latin indices i, j etc. will refer to the d− 1-dimensional coordinates.
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On the horizon, let us choose the coordinates such that the tangent vectors have the following

inner products among them

(∂τ , ∂i) = 0, (∂τ , ∂τ ) = 0 (2.1)

The second equality just follows from the fact that ∂τ are the null generators of the horizon. Note

that these relations are valid only on the horizon.

Next, we choose the ρ coordinate such that the horizon is located at ρ = 0, the ∂ρ vectors are

null everywhere, and orthogonal to the ∂i vectors everywhere. With the ∂τ vectors, they have an

inner product of 1 everywhere. These conditions translate to the following equations valid all over

the d+ 1-dimensional spacetime

(∂ρ, ∂ρ) = (∂ρ, ∂i) = 0, (∂ρ, ∂τ ) = 1 (2.2)

With these conditions, the metric written in (ρ, τ, xi) coordinates can be expressed as

ds2 = gµνdx
µdxν = 2dτ dρ−(ρC(τ, xi)+ρ2X(ρ, τ, xi))dτ 2+2ρω(ρ, τ, xi)dτ dxi+hij(ρ, τ, x

i)dxi dxj

(2.3)

Now, let us consider a stationary black hole with a Killing horizon where τ is the Killing co-

ordinate. This tells us that all the metric components are now independent of τ and (2.3) now

becomes

ds2 = 2dτ dρ− (ρC(xi) + ρ2X(ρ, xi))dτ 2 + 2ρω(ρ, xi)dτ dxi + hij(ρ, x
i)dxi dxj (2.4)

At this point, we can refer to the Zeroth law of black hole mechanics, which states that for a station-

ary black hole, the temperature of the black hole is related to (∂ρgττ )ρ=0 and that it is a constant all

over the horizon. This tells us thatC(τ, xi) is actually independent of τ as well as the xi coordinates.

Hence, (2.3) becomes

ds2 = 2dτ dρ− (ρC + ρ2X(ρ, xi))dτ 2 + 2ρω(ρ, xi)dτ dxi + hij(ρ, x
i)dxi dxj (2.5)

Another important point worth mentioning here is that the ∂τ vectors are non-affinely parametrized

null generators on the horizon ρ = 0.
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Now if we want to transform the metric to a different set of coordinates (r, v, xi) where r satis-

fies all of the properties as ρ, but v is now an affine parameter along the null generators, this leads

us to an additional constraint on the horizon as

(∂rGvv)r=0 = 0 (2.6)

Following [37], one can always transform to such a system of coordinates for a stationary black

hole metric using the transformations

ρ =
C

2
rv, τ =

2

C
log
(
Cv

2

)
(2.7)

and the metric (2.5) can now be expressed in (r, v, xi) coordinates as

ds2 = Gµνdx
µdxν = 2dv dr−r2X

(
Crv

2
, xi
)
dv2+2rωi

(
Crv

2
, xi
)
dvdxi+hij

(
Crv

2
, xi
)
dxidxj

(2.8)

The Killing vector ∂τ also transforms to

∂τ =
C

2
(v∂v − r∂r) (2.9)

Even for the generic case of an event horizon of a dynamical black hole without a Killing vector,

one can still transform to a set of coordinates where one of the coordinates (v in this case) is an

affine parameter along the null generators on the horizon. The transformation isn’t simply (2.7),

but receives corrections due to the τ and xi dependence of the metric components. In the (r, v, xi)

coordinates, the metric near the horizon of a dynamical black hole can then be expressed as

ds2 = 2dv dr − r2X
(
r, v, xi

)
dv2 + 2rωi

(
r, v, xi

)
dvdxi + hij

(
r, v, xi

)
dxidxj (2.10)

One more noteworthy point at this juncture is that these horizon-adapted coordinates may not be a

good set of global coordinates, but locally, sufficiently near the horizon, one can always find such

a form. Explicit checks in [44] show that while the Schwarzschild metric can be globally described

by these coordinates, the Kerr metric can only be described in these coordinates very close to the

horizon.
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Figure 2.1: A schematic representation of the horizon adapted coordinates in (2.10) from [2]

2.1.2 “Boost symmetry” of the metric

The coordinate choice in (2.10) doesn’t fix the metric completely. We are still left with some room

for further coordinate reparametrizations on the constant r or v slices without going out of the gauge

of the metric

1. A coordinate transformation of the form

v → v′ = f0(x
i) + f1(x

i)v (2.11)

on the horizon still keeps the null generators in the new coordinates affinely parametrized.

Away from the horizon, we’d need to appropriately redefine all the coordinates to stay in

the gauge. This form of transformation essentially is a redefinition in choosing the constant

v-slicing of the horizon.

2. Another coordinate transformation that only mixes the xi coordinates on the constant v-slice

of the horizon as

xi → yi = f2(x
i) (2.12)

can also be done without departing from our choice of gauge. This essentially captures our

freedom to choose the spatial coordinates on every constant v-slice of the horizon. This
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freedom also allows us to convert the partial derivatives ∂i to∇i.

A special class of (2.11) corresponding to f0(xi) = 0, f1(x
i) = λ with λ a constant number is

called the “boost” transformation [36]. The full transformation of the coordinates given by

v′ = λv, r′ =
r

λ
(2.13)

keeps the form of the metric (2.10) preserved to

ds2 = 2dv′ dr′ − r′2X

(
λr′,

v′

λ
, xi
)
dv′2 + 2r′ωi

(
λr′,

v′

λ
, xi
)
dv′dxi + hij

(
λr′,

v′

λ
, xi
)
dxidxj

(2.14)

Figure 2.2: Another special case of (2.11) where the v and xi coordinates map to τ and yi where
τ is another affine parameter. Comparing with (2.11), this corresponds to a case of (f0 = 0, f1 =
e−ζ(xi)). This reparametrization has been used in Chapter 3 [2, 3].

Since for a stationary black hole solution, all the r and v dependence of the metric components

occurs as products of rv, and therefore, under the (2.13) transformation, such a metric remains

totally invariant. Infinitesimal boost transformation is generated by the vector

ξµ∂µ = v∂v − r∂r (2.15)
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which is proportional to the Killing vector of stationarity with a factor of C
2
. Since the stationary

part of the metric remains invariant under (2.13), hence, if we decompose the full metric into a

stationary part and fluctuations around it, then only the latter transforms under this transformation.

If we write the full metric as

gµν = g(0)µν + ϵδgµν (2.16)

where g(0)µν is the stationary background metric, ϵ is a parameter that quantifies the departure from

equilibrium, and δgµν is the fluctuation in the metric about equilibrium, then under an infinitesimal

transformation generated by ξµ, the change in the metric is given by

Lξgµν = ϵLξδgµν (2.17)

For ϵ << 1, we can treat δgµν as a very small fluctuation about equilibrium. In the further sections,

we’ll work in a linearized approximation, where the equations will be considered only up toO(ϵ1).

Any covariant tensor in these coordinates will be constructed out of the following building

blocks:

1. Metric coefficients: A scalar X(r, v, xi), a vector ωi(r, v, x
i) and a tensor hij(r, v, xi) with

respect to the symmetry transformations among the xi coordinates.

2. Derivative operators: Two scalar operators ∂v and ∂r, and a vector operator∇i with respect

to the aforementioned transformations.

A generic covariant tensor can then be expressed as

T ∼ (∂r)
mr(∂v)

mvQ (2.18)

whereQ consists of X,ωi, hij and only actions of∇i on them. For such structures, T will be zero

at equilibrium on the horizon (r = 0) if mv > mr due to extra factors of r coming out from the

operation. Also, out of equilibrium, for such structures withmv > mr, contributions on the horizon

will always come out at O(ϵ) owing to the fact that the equilibrium contribution goes to 0.
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For ease in calculations, we define the notion of boost weight w of a covariant tensor T as

follows: under a boost transformation of r and v coordinates as in (2.13), a tensor with boost

weight T transforms as

T → λwT (2.19)

The previously discussed constraints related to mv and mr can be interpreted in terms of boost

weight as follows. Any positive boost weight structure vanishes on the horizon at equilibrium, and

out of equilibrium contributes at O(ϵ) or higher.

At this point, it should be noted that this boost symmetry is a special form of the reparametriza-

tion of the null generators where the affine parameter along them is scaled by a constant number. In

3, we will generalize this to a class of reparametrizations where this scaling would be dependent on

the spatial coordinates on the codimension-2 slice of the horizon. Further, the scenario we consider

in 4 is a more general case where the reparametrized null generators are non-affine. This happens

because when the null generators on the horizon are expressed in terms of the coordinates used to

describe the boundary hydrodynamic theory, they correspond to non-affinely parametrized vectors.

2.1.3 An off-shell identity and the second law

Based on the principles outlined in Section 2.1.2, one can constrain the possible covariant structures

that can exist on the horizon up to the linearized fluctuation regime up toO(ϵ) 2 Using these, one can

further lay constraints on the equation of motion of a diffeomorphism-invariant arbitrary higher-

derivative theory of gravity.

Considering a Lagrangian where the only dynamical degrees of freedom are the metric gµν , the

Riemann tensor Rµναβ , and symmetrized covariant derivatives of the Riemann tensor of the form

D(α1 · · ·Dαn)Rµναβ

S =

∫
ddx

√
−g L(gµν , Rµναβ, D(α1 · · ·Dαn)Rµναβ) (2.20)

2For more details on such constraints, one can refer to [38].
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Varying the Lagrangian with respect to the metric, one can obtain

δ[
√
−gL] =

√
−g[Eµν(g)δg

µν +DµΘ
µ(δg)] (2.21)

where Eµν is the equation of motion and Θµ is a boundary term depending on both gµν and δgµν

for some arbitrary variation gµν → gµν + δgµν .

It can be shown that up toO(ϵ), the (µ, ν = v, v) component ofEµν in the (r, v, xi) coordinates

and the metric of (2.10) can be arranged on the horizon into the form

(Evv)r=0 = ∂v

[
1√
h
∂v(

√
hJv) +∇iJ

i

]
+O(ϵ2) (2.22)

where, Jv and J i have boost weights 0 and 1 respectively. Since J i has a positive boost weight,

it vanishes out of equilibrium. Although Jv is a boost weight 0 quantity, it gets contributions at

equilibrium as well as out of equilibrium. The equilibrium contribution of Jv corresponds to Wald

entropy as defined in [26] and the out-of-equilibrium contributions contribute to JKM ambiguities

[28], which vanish at equilibrium. For these reasons, Jv and J i are called the entropy density and

the spatial entropy current respectively.

Now, if we consider some matter field to be there in the Lagrangian, the full equation of motion

would be given by

Eµν = Eµν + Tµν (2.23)

where Tµν corresponds to the matter sector’s stress tensor and Eµν is the contribution from the

purely gravitational part of the Lagrangian. Now, if thematter stress tensor satisfies the Null Energy

Condition 3, then on the horizon, it satisfies

Tvv = 0 (2.24)
3The null energy condition states that for any future-directed null vector field kµ, the stress tensor satisfies

Tµνk
µkν ≥ 0. [99]
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because ∂v are null vectors on the horizon. If we consider the theory to be on-shell, then

Eµν = 0 ⇒ Eµν + Tµν = 0

⇒(Evv + Tvv)r=0 = 0

⇒∂v

[
1√
h
∂v(

√
hJv) +∇iJ

i

]
+ Tvv +O(ϵ2) = 0

⇒∂v

[
1√
h
∂v(

√
hJv) +∇iJ

i

]
+O(ϵ2) ≤ 0

(2.25)

If we now impose a physical condition that the black hole settles down to equilibrium at future

infinity in time, i.e., v → ∞, then

v → ∞ ⇒ ∂v

[
1√
h
∂v(

√
hJv) +∇iJ

i

]
→ 0 (2.26)

Since Jv and J i have boost weights 0 and 1 respectively, hence at equilibrium,[
1√
h
∂v(

√
hJv) +∇iJ

i

]
→ 0 (2.27)

From this, we can conclude that

∂v

[
1√
h
∂v(

√
hJv) +∇iJ

i

]
+O(ϵ2) ≥ 0 (2.28)

for all finite v. This shows us that Jv and J i together satisfy an ultra-local form of the second law

on the black hole horizon. Jv denotes the change of entropy density in time, whereas J i captures

the spatial flux of entropy on a constant v-slice of the horizon. As has been shown in [2, 38], an

integral of the combined divergence of the entropy density and the spatial entropy current gives

us the entropy production between two nearby equilibrium states of the black hole. This entropy

production can be captured as

δS =

∫
dv

∫
dd−1x

(
∂v(

√
hJv) + ∂iJ

i
)
+O(ϵ2) (2.29)

This form of the change in entropy actually corresponds to the “Physical process version of the first

law” [29].

As will be seen in 3, (2.22) and (2.29) act as crucial inputs in understanding the reparametriza-

tion symmetry of local entropy production on the horizon.
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2.2 Relativistic Hydrodynamics: A Primer

In this section, we’ll briefly review the tools and techniques one can use to analyze stability and

causality in hydrodynamic theories. We’ll also review some commonly used choices of hydrody-

namic frames and the formulations of MIS and BDNK theories.

2.2.1 Linearized stability analysis in a theory

Consider any theory with a set of fields {Φi(x, t)} as its degrees of freedom. Let the equations of

motion of the system be given by a set of nonlinear coupled partial differential equations of the

form E({Φi(x, t)}) = 0. Let {Φe
i} be a set of exact solutions of E({Φi(x, t)}) = 0 conforming to

its symmetries. E({Φi(x, t)}) is a differential operator consisting of the field variables and their

spacetime derivatives 4. In hydrodynamics, {Φi(x, t)} would be given by the fluid’s temperature,

velocity, chemical potential etc. E({Φi(x, t)}) would be given by the conservation equations of

the stress tensor T µν or conserved charge currents Jµ as

∂µT
µν = 0, ∂µJ

µ = 0 (2.30)

Let {Φe
i} be given by the values of the fields at global equilibrium. To find the dispersion

relation, we’d first consider a linear expansion of {Φi(x, t)} about {Φe
i} of the form

{Φs
i (x, t)} = {Φe

i}+
∫
dωd3k⃗ ϵ ei(k⃗·x⃗−ωt){δΦi(ω, k⃗)} (2.31)

where k =
√
k⃗ · k⃗ and ϵ << 1. The deviations from global equilibrium are Fourier expanded and

quantified by the set of fluctuations {δΦi(ω, k⃗)}. Assuming that {Φs
i (x, t)} solvesE({Φi(x, t)}) =

0 up to linear order in ϵ

E({Φi(x, t)} = {Φs
i (x, t)}) +O(ϵ2) = 0 (2.32)

for arbitrary values of {δΦi(ω, k⃗)}. Since the equations are all linear in {δΦi(ω, k⃗)}, hence, we can
4This kind of linearized perturbation analysis isn’t just limited to hydrodynamics but is used in many other fields

like gravity. Hence, we keep the fields and equations here in full generality.
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express the full set of equations as a matrix equation of the form

E({Φi(x, t)}) = {Φs
i}+O(ϵ2) = 0 ⇒

∑
b

Mab({Φi}, ω, k) δΦb(ω, k⃗) = 0 (2.33)

Since this must be satisfied for all values of {δΦi(ω, k⃗)}, this can be possible only if

det(M({Φi}, ω, k)) = 0 (2.34)

The resultant equation gives us a set of polynomials of ω and k whose roots give us the spectrum

of ω. For a rotationally invariant spacetime, the polynomials are only functions of k2 and ω and

are of the form

f(ω, k2) = 0 (2.35)

A fluctuation around equilibrium is called linearly stable if it decays down to 0 with increasing

time. In the rest frame of the fluid, this is given by

Im(ω) ≤ 0 (2.36)

Since hydrodynamics is a low-energy effective theory, hence in general, one is interested in finding

solutions of ω as infinite series of k near k → 0 as

ω =
∞∑
n=0

cnk
n (2.37)

Modes that have ω = 0 at the limit k → 0 are defined as ‘hydrodynamic’ or ‘massless’ modes,

and those with ω ̸= 0 at k → 0 are called ‘non-hydrodynamic’ or massive modes. The non-hydro

modes are named thus for the following reasons. The global equilibrium in a hydrodynamic system

is characterized by conserved charges that can take any constant values, and dynamics in time are

generated only when there is some spatial variation in their value. In this perspective, each fluid

variable is associated with some conserved charge, and hydro modes are the ones whose frequency

(variation in time) vanishes as soon as there is no spatial variation (i.e., at k → 0). Hence, one

can think of hydrodynamics as the collective dynamics of the massless modes of a system slightly
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away from global equilibrium. From this point of view, the non-hydro modes can be interpreted as

those that do not vanish at zero momentum and, hence, cannot be associated with any conserved

charges of the system at equilibrium. This ω(k=0) ̸= 0 nature also resembles the rest mass energy

of massive particles in relativity where E =
√
p2 +m2 and E(p=0) ̸= 0, hence, the name massive

modes.

Recent developments suggest that the inclusion of non-hydromodes is necessary tomaintain the

stability and causality of the solution [100, 101]. Different schemes to introduce them in a hydro-

dynamic theory include the MIS formulation and the BDNK formulation, which will be discussed

in Section 2.2.3.

Routh-Hurwitz stability analysis

In Chapter 5, our analysis focuses on the non-hydro modes of two stable-causal hydrodynamic

theories at the k → 0 limit, i.e. where ω(k = 0) = c0. The stability criteria Im(ω) < 0 in this

case then becomes Im(c0) < 0. The rest of the discussion in this section on stability analysis using

Routh-Hurwitz criteria [102] will focus on this special case.

The imaginary part of a0 can be extracted as

C0 ≡ Im(c0) = −i c0 (2.38)

The Routh-Hurwitz stability analysis is a way to analyze the stability of the roots of a polynomial

without explicitly calculating their roots. It involves constructing an array from the coefficients of

the polynomial called the ‘Routh array’ as follows. For a polynomial of the form

N∑
n=0

anx
n = a0 + a1x

1 + · · ·+ aNx
N = 0 (2.39)

the Routh array is defined as 
aN aN−2 · · ·
aN−1 aN−3 · · ·
bN−1 bN−3 · · ·
cN−1 cN−3 · · ·
...

...

 (2.40)

30



2 Technical Background

where bis and cis are defined as

bN−1 = − 1

aN−1

∣∣∣∣ aN aN−2

aN−1 aN−3

∣∣∣∣
bN−3 = − 1

aN−1

∣∣∣∣ aN aN−4

aN−1 aN−5

∣∣∣∣
cN−1 = − 1

bN−1

∣∣∣∣aN−1 aN−3

bN−1 bN−3

∣∣∣∣
cN−3 = − 1

bN−1

∣∣∣∣aN−3 aN−5

bN−3 bN−5

∣∣∣∣
(2.41)

In this way, for an O(xN) polynomial, one can get N + 1 expressions in the first column of the

Routh array. Now, as one counts down this first column of the array, the no. of sign changes between

consecutive elements indicates the number of roots of the polynomial
∑N

n=0 anx
n = 0 lying in the

right half of the complex plane, i.e., unstable roots. Hence, for all roots of the polynomial to be

stable, all the elements of the first column of the Routh array must have the same sign, whether

positive or negative. In our case in Chapter 5, we’ll need to perform this Routh-Hurwitz analysis

on the C0s as defined above.

2.2.2 Causality analysis in linearized regime: Asymptotic causality

One of the most fundamental principles in relativity is that of causality, which ensures that the

time ordering of causally connected spacetime events remains preserved, i.e., cause always pre-

cedes its effect. From a perturbation theory perspective, perturbations around the equilibrium of a

system should never exit the light cone for the theory to be deemed causal. From a physical per-

spective, these perturbations can be assumed to originate from some source localized in spacetime,

and causality analysis then deals with the question/fact/scenario of whether they time evolve to

exit the light cone of the source. Since a perturbation localized in spacetime has a spread in the

energy-momentum (or frequency-wavenumber) space, hence, causality analysis of such a localized

perturbation should consider the contributions from all of these frequencies and wavenumbers.

Imposing the principle of causality in a relativistic hydrodynamic theory with a finite number

of transport coefficients puts constraints on the phase space of these parameters, thus constraining
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the values that these coefficients can take. In this way, it serves as a good benchmark criterion for

different microscopic models to be possible physically realizable theories.

One popular choice for analyzing a theory’s causality in the linearized fluctuation regime is cal-

culating the perturbation’s group velocity at an infinite wavenumber. A group velocity lesser than

the speed of light implies the perturbation being restricted to within the light cone, thus retaining

the causality property of the system [103]. 5

Group velocity: vg ≡
dω

dk

System is causal ⇒ limk→∞|vg| < 1

(2.42)

Since the analysis is performed at the k → ∞ limit, hence, it is also called the “asymptotic

causality” analysis. Satisfying asymptotic causality is a necessary criterion for a well-behaved

theory but not sufficient; a hydrodynamic theory that violates asymptotic causality necessarily leads

to acausal modes [104]. Also, as discussed in Chapter 1, asymptotic causality analysis lies outside

the hydrodynamic regime due to its being a high-wavenumber analysis.

In another chain of recent works, the authors have attempted to understand the principle of

causality by staying within the low-k regime only [100, 105]. From a relativistic quantum field

theory analysis [106], one can derive necessary constraints on Im(ω) and Im(k) as

Im(ω(k)) ≤ |Im(k)|. (2.43)

Using these conditions, further bounds can be imposed on the expansion coefficients cn of the

modes (2.37) [100, 105, 107]. Chapter 5 is a pursuit following these principles to derive causality

criteria from a low-k stability analysis in conformal, uncharged MIS and BDNK theories.

Recent works like [108,109] have explored the causality properties of a theory in the nonlinear

regime by evaluating the characteristic velocities of the partial differential equations of motion (see

Appendix A of [101] for a discussion). In these cases, the propagation velocities are calculated by

calculating the normals to the characteristic curves, and the subluminality of these velocities (i.e.,
5As shown in [104], as long as the asymptotic causality condition is fulfilled, causality is not violated even if the

perturbation’s group velocity exceeds the speed of light at some intermediate wavenumber.
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being less than the speed of light) makes the system causal. Satisfying nonlinear causality criteria is

sufficient for a theory to be causal. Since the analyses performed in Part II are linear, we’ll restrict

our attention to linearized causality analysis only in further discussion.

Schur stability of polynomials

Checking for the asymptotic causality of a dispersion polynomial often involves finding the roots

of a polynomial and imposing other conditions on it (e.g. that the roots be real, lie between −1

to +1 etc). In most of the cases, the polynomials are higher-order than quadratic and analytic

computations of causality criteria by root extraction methods can be very cumbersome. In Chapter

5, we use a novel method to extract causality criteria for a dispersion polynomial: checking for

the “Schur stability” of polynomials. Schur stability analysis checks for the existence of roots of

the polynomial within a unit disc on the complex plane without directly extracting its roots. For

this reason, it can be a much easier method to extract causality criteria analytically. We’ll briefly

review the method in this section following [110].

Consider a polynomial in complex x of the form

P (x) =
N∑

n=0

cnx
n (2.44)

For this polynomial, Schur stability analysis checks for the existence of roots in the unit disc on

the complex-x plane. This is analyzed by performing the following Möbius transformation on the

complex-x plane that maps the unit disc onto the entire left half-plane

w =
x+ 1

x− 1
(−1 ̸= x ∈ C), x =

w + 1

w − 1
(1 ̸= w ∈ C) (2.45)

The polynomial in x is then converted into a polynomial in w as

ψ(w) = (w − 1)NP

(
w + 1

w − 1

)
(2.46)

where the rescaling with (w− 1)N is performed to cancel the (w− 1) factors in the denominators.

ψ(w) is thus an O(wN) polynomial with its roots lying in the left half plane due to the applied
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Möbius transformation. Now, we can apply the Routh-Hurwitz stability check on ψ(w) as detailed

in the previous section, to check for the existence of stable w roots. Since the unit disc in the x

plane was mapped to the left half plane in the w plane, hence, RH stable w roots of ψ(w) would

indicate Schur stable x roots of P (x).

However, this is not the end of the story as, although Schur stability analysis allows us to

check for the existence of roots within the unit disc, it doesn’t tell us whether the roots are real

or complex. The group velocities that we require are real quantities. Hence, one needs to impose

further constraints on the polynomial, like the positivity of the discriminant, to ensure that the roots

lying within the unit disc are real. The polynomials in Chapter 5 were at most quadratic in v2g , thus

providing a less difficult setup to apply the positive discriminant criteria. Although imposing the

positive discriminant criteria in higher-order polynomials can be more non-trivial, the total method

of asymptotic causality analysis by Schur stability analysis should be less cumbersome to execute

than the usual root extraction methods.

2.2.3 Stress tensors and hydrodynamic frames

In the rest of this section, we’ll discuss some particular choices of hydrodynamic frames and the

form of stress tensors in those frames. A choice of hydrodynamic frame essentially refers to a

choice of out-of-equilibrium definitions of hydrodynamic fields like temperature, velocity, chemi-

cal potential etc. Since we’ll deal only with conformal uncharged fluids in this thesis, the discussion

in the rest of this section will only consider conformal fluids without any charge. Also, through-

out the section, we’ll consider the background spacetime to be flat and four-dimensional with the

metric ηµν = diagonal(−1, 1, 1, 1).

Onemore terminology that is used in linearized stability analysis is ‘shear’ and ‘sound channel’.

These are nothing but the relations between the directions of k⃗ of the perturbation and the velocity

fluctuation δu⃗. ‘Shear channel’ refers to the case where k⃗ ⊥ δu⃗ and ‘Sound channel’ refers to the

case where k⃗ ∥ δu⃗
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Stress tensor of an ideal fluid

A fluid without any dissipative effects is called an ideal fluid. The stress tensor for a relativistic

fluid is the conserved current corresponding to its translation symmetry. For a generic, uncharged

fluid, the equilibrium stress tensor has the form

T µν
(0) = Euµν + P∆µν (2.47)

where E ,P , uµ and ∆µν are the fluid’s energy density, pressure, four-velocity and the projection

tensor orthogonal to the velocity, respectively. The projection tensor is defined as

∆µν = ηµν + uµuν (2.48)

The stress tensor being conserved supplies us with the equations of motion of the fluid’s degrees

of freedom (viz. temperature, velocity etc.)

∂µT
µν = 0 (2.49)

For a conformal fluid in four dimensions, energy and pressure are related by the equation of state

E = 3P (2.50)

and in four dimension, the relation between E and temperature T is given by

E = κT 4 (2.51)

where κ is a constant related to the Stefan-Boltzmann constant. Thus, the stress tensor of an ideal

conformal uncharged fluid is given by

T µν = κT 4

(
uµuν +

1

3
∆µν

)
(2.52)

Dissipative corrections and Landau frame

Hydrodynamic fields like velocity and temperature are well-defined for a fluid at global equilib-

rium, but when going out of equilibrium, they lose their meaning. To take into account this slightly
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out-of-equilibrium scenario, dissipative corrections are added to the equilibrium theory in the form

of derivative corrections of the equilibrium hydrodynamic fields. One then has to make a choice

of the out-of-equilibrium definitions of these fields, termed a “choice of hydrodynamic frame” or,

more colloquially, a ‘frame choice’. This frame choice then further regulates the possible structures

that can be added in these dissipative corrections.

For a general hydrodynamic theory, dissipative corrections can be added to the equilibrium

theory as follows (for simplicity, we’ll consider a conformal uncharged fluid here):
T µν = T µν

(0) + T µν
vis

T µν
vis = S1u

µuν + S2∆
µν + 2u(µV ν) + T µν

∂µT
µν = 0

(2.53)

where S1, S2, V
µ, T µν contribute O(∂1) onwards. Examples of possible structures in these cor-

rections include ∂µT , ∂µuν and their higher-order derivatives. In addition, V µ and T µν satisfy

V · u = T µνuµ = 0. Moreover, the added corrections should respect all the symmetries of the

equilibrium theory, and the equation of motion would still be given by the conservation of the full

stress tensor (conformal invariance in this case). Frame choices, as we shall see, are essentially

choices of these S1, S2, V
µ, T µν structures.

The traditional strategy of frame choice involves first defining the fluid variables in terms of

some microscopic quantities (field theory operators) and then exploring the structure of the equa-

tions and their consequences. The “Landau frame” condition is one such example of a frame choice

where the equilibrium values of the hydrodynamic fields are chosen to be maintained even out of

equilibrium. This puts severe restrictions on the possible corrections as follows. In the Landau

frame, the fluid velocity is chosen to be a unit normalized timelike eigenvector of the stress tensor

with the negative energy density as the corresponding eigenvalue.
T µνuµ = −Euν (uµu

µ = −1)

⇒ T µν
viscuµ = 0 ⇒ T µν

visc = S2∆
µν + T µν

(2.54)

For a conformal fluid, a non-zero S2 violates conformal symmetry, therefore, S2 = 0. Physically,

the Landau frame choice has a nice interpretation: the fluid velocity is chosen to be the velocity
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of the energy flow. Hence, temperature and velocity at every point are well-defined as in local

equilibrium, ignoring the effects of dissipation. Dissipative effects are accounted for in the viscous

correction terms only, which are entered as corrections in pressure or in the traceless tensor sector.

Another commonly used frame choice is the Eckart frame, where the fluid velocity is chosen

along the velocity of the particle flow. Here, T µν
visc can have a non-zero V µ.

Pathologies in the Landau frame

Ideally, a systematic attempt to add dissipative effects to the equilibrium theory should involve

adding derivative corrections order by order, starting from the first order. Since an O(∂n) quantity

is considered to be much smaller than anotherO(∂n−1) quantity, it is a natural expectation that such

derivative corrections can be added without causing any major upsets in the physical properties of

the equilibrium solutions. Higher-order derivative corrections should not impact the stability or

causality properties of the lower-order solution.

For a conformal fluid in the Landau frame, the only possible dissipative correction at O(∂) is

of the form

T µν = −2ησµν (2.55)

where η is called the ‘coefficient of shear viscosity’ and σµν is the shear tensor defined as

σµν = ∆µα∆νβ

(
∂(αuβ) −

1

3
ηαβ ∂ · u

)
(2.56)

Using the second law of thermodynamics, η can be constrained to be a positive number.

The total stress tensor of the first-order derivative corrected conformal fluid in the Landau

frame, therefore, comes out to be

T µν = κT 4

(
uµuν +

1

3
∆µν

)
− 2ησµν (2.57)

It can be seen that upon Lorentz boosting the dispersion polynomial of the above stress tensor

by some finite non-zero boost and solving for ω in terms of k, new modes pop up which are non-

hydrodynamic in nature. Moreover, these new non-hydromodes have their leading terms (the k = 0
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expansion coefficient) to be inversely proportional to the boost velocity. Since boost velocity can

take values arbitrarily close to 0 and even be equal to 0 in the rest frame of the fluid, these modes

can possibly diverge and indicate some pathologies of the theory [56, 111]. One can also find that

Green’s function corresponding to these dispersion polynomials has finite support outside the light-

cone [50], thus indicating possible propagation of these perturbations outside the light-cone, thus

violating causality. Thus, we can conclude from here that the relativistic first-order Navier-Stokes

equation in the Landau frame is acausal and unstable.

The problems here actually have to do with the following facts. Since without a specific mi-

croscopic theory, we are agnostic to the microscopic interactions and dynamics in the underlying

quantum field theory, hydrodynamics, to us, is just an effective theory. Hence, one should, in

principle, have to add an infinite number of derivative corrections to the equilibrium theory. Now,

numerical computations with infinite-order corrected theories are difficult, and for practical pur-

poses, one has to truncate these infinite series at some finite order. As has been shown in [97], it

is impossible to restore causality or stability to a viscous stress-tensor in the Landau frame adding

correction terms only up to a finite order in derivative expansion. These problems also can be

understood from the perspective of non-hydro modes: these dispersion polynomials lack any non-

hydro modes, and hence, a scale that determines up to what energy scale it is valid to take the

hydrodynamic approximation (i.e., long-wavelength approximation). As explored in [97] and in

Chapter 6 based on [98], incorporating the infinite series of derivative corrections can be a possible

way to cure these pathologies.

In the rest of the section, we’ll review two well-established formalisms to take into account

these non-hydro modes, thereby restoring stability and causality in the theories.

Müller-Israel-Stewart (MIS) formalism

The MIS formalism is a method to remedy the stability and causality issues staying in the Landau

frame by promoting viscous contributions to conserved currents as new degrees of freedom. These

new degrees of freedom come with their own equations of motion, which are like relaxation equa-

38



2 Technical Background

tions with their associated relaxation timescales. Due to the presence of time derivatives in the

relaxation equations, the full set of dispersion relations can now account for the non-hydro modes,

thus restoring stability and causality. Since the viscous degrees of freedom are not the result of any

microscopic quantum field theoretic operators, hence, they are not associated with any conserved

quantities. Thus, they are defined only out of equilibrium and lack any equilibrium counterparts.

Therefore, these are termed as ‘non-fluid’ degrees of freedom.

For an uncharged conformal fluid, the T µν
visc in MIS formalism is expressed as

T µν
visc = Πµν

Πµν
(0) = 0

Πµν + τΠu · ∂Πµν = −2ησµν

(2.58)

where Πµν is the shear viscous flux and τΠ is the corresponding relaxation timescale.

The MIS formalism has successfully studied numerical simulations and phenomenological

models in colliding systems, both large and small [53]. Since it gives finite truncated equations

of motion and works with the equilibrium definitions of velocity and temperature, it is a very suit-

able framework for practical purposes. However, the conceptual hurdle lies in finding physical

motivations for the new degrees of freedom that are currently being investigated [112–114].

As explored in [97] and [98], incorporating new non-fluid degrees of freedom is just another

way of packaging the infinite number of derivative corrections required to render the theory causal.

Bemfica-Disconzi-Noronha-Kovtun (BDNK) formalism

The BDNK formalism addresses the stability-causality issue of relativistic hydrodynamics in a

different way; it accounts for the non-hydro modes using the hydrodynamic degrees of freedom

solely by trading off the Landau frame condition. Essentially, it uses field redefinitions of the

hydrodynamic variables to adopt a more general out-of-equilibrium definition of the fields instead

of the Landau frame condition. In this ‘generalized hydrodynamic frame,’ one can write a truncated

stable-causal stress tensor without introducing any new degrees of freedom. All components of

the stress tensor and its viscous corrections can be written as derivatives of temperature, velocity
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etc. But in the process, the well-defined out-of-equilibrium notions of fluid variables are lost,

and one is left with ambiguities in their definitions out of equilibrium. Consequently, in terms of

microscopic operators, one doesn’t know what temperature or velocity means out of equilibrium

anymore. Rather, they act more like auxiliary variables to define the stress tensor in terms of

the quantities comprising the constitutive relations (like energy density). Moreover, one now has

to include viscous corrections in the constitutive relations like energy density and pressure. To

account for the non-hydro modes, these corrections must include temporal derivatives.

Historically, the stability-causality issues of the first-order relativistic Navier-Stokes equation

had been known for a long time, and it was a general impression that it is impossible to write

a stable-causal theory with only first-order corrections to the stress-tensor. With the advent of

the BDNK formalism, it became clear that by compromising the Landau frame choice using field

redefinitions, it is possible to write a first-order stable-causal theory.

The BDNK stress tensor for a conformal uncharged fluid is formulated as follows

T µν = (E +A)

[
uµuν +

∆µν

3

]
+ [uµQν + uνQµ]− 2ησµν

A = χ

(
3
u · ∂T
T

+ ∂ · u
)

Qµ = θ

(
∆µν∂νT

T
+ u · ∂uµ

) (2.59)

The temporal derivatives (u · ∂) are the ones that account for the non-hydro modes and restore

causality in the equations.

A naive attempt to write this stress tensor from the generalized hydro frame to the Landau frame

would be by setting χ and θ to zero.

However, stability analysis reveals that the non-hydro modes come out with χ and θ in their

denominators, making it impossible to write the stress tensor in the Landau frame without compro-

mising stability and causality yet again. As has been shown in Chapter 6, it is possible to rewrite

the BDNK stress tensor in the Landau frame using an infinite tower of derivative corrections in

field redefinitions. This again emphasizes the fact that the BDNK formulation is a finite-truncated
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UV complete theory of relativistic hydrodynamics.
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Part I

Local Entropy Current on a Black Hole
Horizon and its Reparametrizations
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Chapter 3

Reparametrization symmetry of local entropy
production on a dynamical horizon
This chapter is based on [3].

The construction of entropy density and the current in [38] relies on a very specific choice of

the coordinate system 2.1 where the affine parameter along the null generator of the horizon is one

of the coordinates. Now, it is possible to reparameterize the null generators of the horizon in a

nontrivial way without affecting the affine nature of the parameter (2.11). The expressions for both

the entropy density and the spatial current change under this reparametrization. But we expect the

net entropy production, given by the ‘time’ derivative of the entropy density plus the divergence

of the spatial current, should be something physical and, therefore, independent of our choice of

affine parameters.

In this chapter, our goal is to verify the above expectation for the special case of Gauss-Bonnet

theory where both the entropy density and the current have been explicitly computed in [37].

We have found that under this transformation, the ’time’ derivative of the entropy density, as

well as the divergence of the spatial entropy current, change individually in a very nontrivial way;

however, they precisely cancel each other. Apart from being a consistency check for the results

described in [37], it also says why a spatial entropy current is necessary to make the laws of entropy

production independent of our choices of coordinates.

Though, at the moment, all the calculations are linear in the amplitude of the dynamics, we

eventually would like to have some construction of entropy density and the entropy current that

satisfy the first and the second law at all nonlinear orders and, if possible, without using any pertur-

bation. Now, in any such construction, a full knowledge of the underlying symmetries might turn

out to be very useful. The requirement that the entropy current and the density must transform in
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

such a way so that the net entropy production has some particular symmetry could be constraining

for all the nonlinear terms. 1 In other words, it would be very interesting if, instead of verifying the

symmetry in a particular theory, we could use it to predict some relation between the structure of

entropy density and the spatial entropy current in a theory-independent manner. We expect that our

explicit computation in the simple case of Gauss-Bonnet theory would help us to gain experience

for further progress in this direction.

The contents of this chapter are organized as follows. In section 3.1, we have described the

setup of our problem. In section 3.2, we have described the reparametrization symmetry. In section

3.3, we have explicitly verified that the entropy density and the entropy current do maintain this

symmetry in the particular case of Gauss-Bonnet theory. Finally, in section 3.4, we have concluded.

The details of the calculation are explained in the appendix A.

3.1 Set up

In this section, we shall briefly review the coordinate system used in the analysis of [37] for the

sake of continuity and the expression for entropy current and entropy density for the Gauss-Bonnet

theory.

3.1.1 Coordinate system

As mentioned before, the geometry we are considering is of the black-hole type containing a codi-

mension one null surface as the horizon. The coordinate system is constructed with the horizon

being the base, i.e., we first choose (D− 1) coordinates on the horizon. Let ∂v be the generator of

the horizon, which is a null geodesic with v being the affine parameter and xa, {a = 1, · · · , D−2}

are the spatial coordinates along the constant v slices of the horizon. So {v, xa} together constitute

a coordinate system on the horizon.

Once the coordinates on the horizon are fixed, we shoot off affinely parametrized null rays
1In [39], which came up shortly after our work, the authors have included an elaborate discussion on this issue.
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

∂r, making specific angles with horizon coordinates. The affine parameter r along these rays is a

measure of the distance away from the horizon. The angles are chosen so that the inner product

between ∂r and ∂v on the horizon is 1 and the same between ∂r and ∂as are zero. After imposing

all these conditions, the metric takes the following form (see [37] for more details)

ds2 = 2 dv dr − r2 X(r, v, xa) dv2

+ 2 r ωa(r, v, x
b) dv dxa + hab(r, v, x

a) dxa dxb
(3.1)

3.1.2 Gauss-Bonnet theory

We are considering a theory of pure gravity with a maximum of four derivatives. We shall be even

more specific in choosing the theory; we’ll work with the Gauss-Bonnet theory of gravity with the

following Action.

S =

∫
dDx

√
−G

[
R + α2

(
R2 − 4RµνRµν +RµνρσRµνρσ

)]
(3.2)

HereR,Rµν andRµνρσ are the Ricci scalar, Ricci tensor, and Riemann tensor2 of the full spacetime

respectively. All raising and lowering of indices have been done using the bulk metric gµν .

The entropy density (Jv) and the entropy current (Ja) on the horizon have the following struc-

ture

Jv =
(
1 + 2α2R

)
Ja = α2

[
−4∇bK

ab + 4∇aK
] (3.3)

Here R is the intrinsic Ricci scalar of the constant v slices of the horizon (i.e., the Ricci scalar

computed using the metric hab). Kab is the extrinsic curvature of the null horizon, and ∇a is the

covariant derivative with respect to hab

Kab ≡
1

2
∂vhab, K ≡ habKab (3.4)

2According to our convention,

R ≡ gµνRµν , Rµν ≡ Rρ
µρν

Rµ
νρσ ≡ ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

ραΓ
α
νσ − Γµ

σαΓ
α
ρν
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

The sole reason for choosing this theory is its simplicity. Despite being a four-derivative theory, the

equation of motion remains two derivatives, and both the entropy density and the current could be

constructed entirely from hab and its v and xa derivatives evaluated on the horizon, which simplifies

our task to a large extent. However, we must emphasize that the symmetry that we are going to

describe in the next section is expected to hold in any higher derivative theory of gravity.

3.2 Symmetry

In section 3.1, we have chosen a coordinate system adapted to the horizon so that the metric takes

the form as described in equation (3.1). However, this form does not fix the coordinates completely;

some residual gauge freedom is still left, and both the entropy density and entropy current do change

non-trivially under this unfixed coordinate freedom.

On the other hand, as we have explained in the introduction, the expression[
1√
h
∂v(

√
hJv) +∇iJ

i

]
(where Jv and J i are the entropy density and the spatial entropy current, respectively) is related to

the local entropy production along every point of the dynamical horizon and therefore, we expect

it to be invariant under the reparametrization of the null generators.

In this section, we shall first describe this residual freedom of coordinate transformation that is

not fixed by our choice of gauge. Next, we shall use the details of this transformation to make our

intuition about ‘invariance’ more precise.

3.2.1 Reparametrization of the null generator

The starting points in setting up our bulk coordinate system are the affinely parametrized null gener-

ators of the horizon and the coordinates along its spatial slices. Once we fix the horizon coordinates,

our gauge conditions uniquely fix the coordinates along the bulk. It follows that the residual sym-

metry that we are going to discuss here must involve a transformation of the horizon coordinates,
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

maintaining the affineness of the null generators. For convenience, let us use a bar on all the co-

ordinates of the horizon to distinguish them from the bulk coordinates. For example, {v̄, x̄a} will

denote the affine parameter along the null generator and spatial coordinates along the constant v̄

slices of the horizon only.

Now, an affine parameter will remain an affine parameter if we scale it in a v̄ independent

manner. So, we shall consider the following transformation on the horizon (r = 0 hypersurface).

v̄ → τ̄ = v̄ e−ζ(x̄a), x̄a → ȳa = x̄a (3.5)

As mentioned before, both v̄ and τ̄ are affine parameters along the null generators of the horizon.

However, constant v̄ slices are not the same as the constant τ̄ slices. In other words, the tangent

vectors along the constant v̄ slices given as ∂̄(x)a are different from the tangent vectors ∂̄(y)a along

the constant τ̄ slices. They are related as follows

∂̄(x)a = ∂̄(y)a −
(
∂ζ

∂ȳa

)
τ̄ ∂τ̄ (3.6)

Since the tangent vectors on the horizon change under this transformation, we need to transform

the r coordinate also so that the tangents along the constant {τ, ya} lines (or the coordinate vectors

pointing away from the horizon) maintain the same angle with the coordinate vectors along the

horizon. This will firstly lead to a redefinition of the r coordinate, and also, it will correct the

coordinate transformation (3.6) as one goes away from the horizon.

v = eζ(y)τ

[
1 +

∑
n=1

(ρ τ)n V(n)(τ, y⃗)

]

r = e−ζ(y)ρ

[
1 +

∑
n=1

(ρ τ)n R(n)(τ, y⃗)

]
xa = ya +

∑
n=1

(ρ τ)n Za
(n)(τ, y⃗)

(3.7)

Let us briefly motivate the choice of the above ansatz .

As mentioned before, the coordinate transformation is generated due to the scaling function ζ(ȳ)
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

defined only on the horizon, and once this horizon function is given, the rest of the coordinates

throughout the bulk are uniquely determined by our gauge condition. Clearly, it is impossible to

solve these gauge conditions exactly for a generic spacetime. However, the problem is very well-

suited for a near-horizon expansion since, geometrically, our choice of gauge is a two-step process

where we first choose coordinates on the horizon and then shoot out null geodesics with precise

angles to extend them away from the horizon.

As is often true with perturbative expansions, our ansatz also involves a few conventions and

assumptions. First note that each of the expansion coefficients (V(n), R(n) and Za
(n)), including the

function e±ζ strictly speaking should depend only on the horizon coordinates {τ̄ , ȳa}. Whenever

we are writing them as functions of bulk coordinates {τ, ya}, it involves an extension of these

functions to the bulk, which is rather arbitrary. It is always possible to redefine the expansion

coefficients at any given order by adding functions that vanish on the horizon without affecting the

lower-order coefficients. Similarly, ζ itself might admit a power series expansion in a distance from

the horizon (in fact, if we choose to write ζ(ya) in terms of {xa} coordinates, this will happen).

However, such redefinition, geometrically, does not mean that we are choosing new curves for

coordinate axes since we know all coordinates are uniquely determined by our gauge choice once

we fix the coordinates on the horizon. This is simply a rearrangement redundancy that is built into

our perturbative technique of solving the gauge choices. However, here we have chosen the most

naive bulk extension of all these horizon quantities by simply replacing all the {τ̄ , ȳa} dependence

with bulk coordinates {τ, ya} (which need not be the simplest choice in terms of the final form of

the expansion coefficients).

Next, we shall come to the second unusual choice we made in our ansatz. A near horizon ex-

pansion in our coordinates simply means an expansion in powers of ρ (and not in the powers of

the product (ρτ) as we have done here). However, note that there is no loss of generality in ex-

panding the powers of the product (ρτ) if we keep the τ dependence in the expansion coefficients

completely free. The reason behind this choice of expansion parameter is related to equilibrium
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

(stationary) horizons. We know that in stationary black holes, the radial dependence of the metric

components is always through the boost-invariant product (ρτ) or (rv) [37]. This will be true pro-

vided the coordinate transformation has the structure as described above with coefficient functions

independent of τ coordinates. In other words, in our (ρτ) expansion, the expansion coefficients

will depend on τ only when the horizon is evolving with time, thus enabling us to clearly distill out

the effect of dynamics from that of the stationary case.

Fortunately, all these subtle issues about the form of the coordinate transformation turn out to be

completely irrelevant to the present analysis of Einstein Gauss-Bonnet gravity. For this theory, both

the entropy density and entropy current are entirely constructed out of the induced spatial metric

of the horizon (denoted as hab) and its derivative along the tangents of the horizon (i.e., ∂a and ∂v

only and no ∂r). Here we do not need to know the metric components away from the horizon and

therefore there is no need to determine the coordinate transformation for nonzero ρ.3 The induced

metric on the horizon remains invariant under the reparametrization as

h̃ij = hij +O(r) (3.8)

3.2.2 Why we expect this transformation to be a symmetry

Here, we shall present a heuristic argument of why we expect such a symmetry to be there in the

first place. The argument is very similar to what one uses to prove ‘the physical process version of

the first law.’

Following the setup in [29], consider a stationary black hole. The horizon is a Killing horizon

in the absence of any perturbation. At some Killing time t0, matter fields are perturbed. If we treat

the amplitude of the field perturbation as of (O(δ)), then typically, the fluctuation in the matter

stress tensor would be of order O(δ2) and the same would be the order of the metric fluctuation

(which, at later sections, has been denoted as ϵ ∼ δ2). It follows that the local entropy production
3Higher order corrections to the metric coefficients are going to be computed in an upcoming work.
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

Sp ≡
[

1√
h
∂v

(√
h Jv

)
+ ∇iJ

i

]
, which is constructed solely out of metric fluctuation, is also

of order O (δ2). Note that the Killing equation will remain true up to order O(δ) and therefore to

compute the leading order (O(δ2)) expression for the entropy production, it makes sense to integrate

Sp between two constant ‘Killing time’ slices of the horizon, namely initial equilibrium (at ‘Killing

time t = −∞) to final equilibrium (at Killing time t = ∞). Now we could relate the ‘Killing

time’ to the affine parameter of the null generators where t = −∞ will correspond to v = 0, and

t = ∞ will correspond to v = ∞ (see [29] for the details). So, the net entropy production could

be expressed as [29, 37, 38, 115–119] 4

∆S =

∫ ∞

0

dv

∫
Σv

dnx⃗
√
h

[
1√
h
∂v

(√
h Jv

)
+∇iJ

i

]
= SEquilibrium2 − SEquilibrium1

(3.9)

where Σv is the constant v slices of the horizon and n = D − 2.

But the total entropy in equilibrium or for a stationary black hole is unambiguously defined

through Wald entropy, which is independent of how we parametrize the null generators of the

horizon, and the same must be true of their difference. Now under the reparametrization that we

are discussing, the measure of the above integration changes as

√
h dv dnx⃗ = eζ(y)

√
h dτ dny⃗

If wewant∆S to be invariant under the reparametrization of the null generators, then the expression[
1√
h
∂v

(√
h Jv

)
+∇iJ

i
]
, once written in terms of quantities defined in {τ, y⃗} coordinates, must

have an overall factor of e−ζ .[
1√
h
∂v

(√
h Jv

)
+∇aJ

a

]
= e−ζ

[ 1√
h̃
∂τ (
√
h̃J̃τ ) + ∇̃aJ̃

a
]

(3.10)

Here the LHS is expressed in {v, x⃗} coordinates and RHS is in {τ, y⃗} coordinates.

4We thank the referee for clarifying this point to us.
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

Nowwe shall come to an algebraic reason why the expression for net entropy production should

transform exactly as predicted in equation (3.10). We shall restrict this discussion to the theories

of pure gravity.

The key equation that leads to the entropy current on the horizon is the following

Evv|r=0 = ∂v

[ 1√
h
∂v(

√
hJv) +∇aJ

a
]
, (3.11)

Here Evv is the (vv) component of the equation of motion. This is a component of a covariant

tensor, and therefore, we know how it transforms under the above coordinate transformation for

every possible gravity action. On the horizon (i.e., at ρ = 0 hypersurface) the transformation

becomes particularly simple.

Evv|r=0 = e−2ζEττ |r=0 (3.12)

Now, in {ρ, τ, ya} coordinates, the metric has the same form as in equation (3.1). Therefore,

Eττ could also be expressed as in equation (3.11) for some J̃τ and J̃a.

Eττ |r=0 = ∂τ

[ 1√
h̃
∂τ (
√
h̃J̃τ ) + ∇̃aJ̃

a
]

Note J̃τ and J̃a are not components of covariant tensors on bulk space, and therefore, they do not

transform in any well-defined way. But combining the above equation with equations (3.12) and

(3.11) we get the following prediction.

Evv|r=0 = ∂v

[ 1√
h
∂v(

√
hJv) +∇aJ

a
]

= e−ζ ∂τ

[ 1√
h
∂v(

√
hJv) +∇aJ

a
]

= e−2ζEττ

= e−2ζ ∂τ

[ 1√
h̃
∂τ (
√
h̃J̃τ ) + ∇̃aJ̃

a
]

⇒ 1√
h
∂v(

√
hJv) +∇aJ

a = e−ζ
[ 1√

h̃
∂τ (
√
h̃J̃τ ) + ∇̃aJ̃

a
]

(3.13)

In the last line, both LHS and RHS (up to the factor of e−ζ) are related to the net entropy production

in the two coordinate systems discussed here. It follows that though the entropy density and the
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

entropy current might change in a very nontrivial way with several terms dependent on derivatives

of ζ , in the final expression of entropy production, they must cancel, leaving just an overall e−ζ

factor. Further, the equation (3.13) also says that this nontrivial cancellation must be true in all

higher derivative theories of gravity. In the next section, we shall verify this claim in the simplest

case of Gauss-Bonnet theory. 5

3.3 Verification for Gauss-Bonnet Theory

In this section, for the special case of Gauss-Bonnet theory, we would like to explicitly verify

whether the local entropy production on the horizon transforms the way we have predicted in the

previous sections. We know

Evv|r=0 = ∂v

[ 1√
h
∂v(

√
hJv) +∇aJ

a
]
, (3.14)

where

Jv = 1 + 2α2R, (3.15)

Ja = α2
[
−4∇bK

ab + 4∇aK
]

(3.16)

On the horizon, the reparametrization we are considering is the following

v = τ eζ(y), (3.17)

xa = ya. (3.18)

5It might seem that the heuristic justification provided at the very beginning of this subsection is not very different
from the algebraic one involving Evv . Indeed, if we follow the argument presented in [29], we see that at linearized
order, the net entropy production has been first related to the integration of the {vv} component of the matter stress
tensor and then by the equation of motion is related to the integration of Evv . So, the covariance of the integrand
in (eqn 9) is effectively the same as the covariance of Evv at least in this order. However, the covariance of the
integrand has a scope for further generalization if we want to extend this construction to higher orders in amplitude
expansion. Following [39], we could see that as we go in higher order, this local entropy current can no longer be
derived just from Evv , but the other components of Eµν also contribute, and it becomes quite complicated to figure
out the net transformation property of this combination of equations. However, if we expect the ultra-local form of
entropy production to be valid at higher orders, then there must be an integration formula for ∆S, and the integrand
must transform in a covariant manner once the corrections to Killing equations have been appropriately taken care of.
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

Clearly, theO(α0) piece (contribution from Einstein gravity) in Jv does not transform. So now we

have to determine how the order O(α2) pieces of Jv and Ja transform. Both of them will receive

non-trivial shifts generated by derivatives of the function ζ(y⃗). But these shifts will be such that

eventually in the expression of
[

1√
h
∂v(

√
hJv) +∇aJ

a
]
they will precisely cancel up to a factor of

overall e−ζ .

Nowwe shall first describe how all the relevant quantities individually transform under this reparametriza-

tion.

The derivatives transform as

∂v = e−ζ(y)∂τ , (3.19)

∂a = ∂̃a − (∂̃aζ)τ∂τ . (3.20)

The Christoffel connection transforms as

Γa,bc =
1

2
(∂bhac + ∂chab − ∂ahbc),

= Γ̃a,bc − τ(ξbK̃ac + ξcK̃ab − ξaK̃bc),

(3.21)

where,

ξa = ∂aζ = ∂̃aζ, (3.22)

K̃ab =
1

2
∂τhab. (3.23)

The Ricci scalar is given as

R̃ = (hadhbc − hachbd)(∂̃dΓ̃a,bc − hpqΓ̃p,adΓ̃q,bc). (3.24)

Under the change of coordinates, the Ricci Scalar transforms as

R = R̃+ 2(hadhbc − hachbd)

[
(−τ){ξbd + (ξb∂̃d + ξd∂̃b)− ξbξd}K̃ac

+ τ Γ̃p
ad(ξbK̃pc + ξcK̃pb − ξpK̃bc) + τ 2ξbξd∂τK̃ac

]
.

(3.25)
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This implies that the order O(α2) piece of the entropy density transforms as

Jv = 2R = 2R̃

+ 4(hadhbc − hachbd)[(−τ){ξbd + (ξb∂̃d + ξd∂̃b)− ξbξd}K̃ac

+ τ Γ̃p
ad(ξbK̃pc + ξcK̃pb − ξpK̃bc) + τ 2ξbξd∂τK̃ac].

(3.26)

Now we know that Jτ |O(α2) ≡ 2R̃, then

1√
h
∂v(

√
hJv)|O(α2) = e−ζ 1√

h
∂τ (

√
hJτ )|O(α2)

+ 4e−ζ(hadhbc − hachbd)

[
− (ξbdK̃ac)− (ξb∂̃d + ξd∂̃b)K̃ac

+ Γ̃p
ad(ξbK̃pc + ξcK̃pb − ξpK̃bc)− τ{ξbd + (ξb∂̃d + ξd∂̃b)}(∂τK̃ac)

+ τ Γ̃p
ad(ξb∂τK̃pc + ξc∂τK̃pb − ξp∂τK̃bc) + ξbξdK̃ac + 3τξbξd∂τK̃ac + ξbξdτ

2∂2τ K̃ac

]
+O(ϵ2).

(3.27)

The entropy current is given as

Ja = −4(hadhbc − hcdhab)∇bKcd, (3.28)

hence

∇aJ
a = −4(hadhbc − hachbd)∇b∇dKac. (3.29)

The extrinsic curvature in the two coordinate systems are related as

Kac = e−ζK̃ac. (3.30)

This implies

∇dKac = e−ζ [∇̃dK̃ac − ξd(K̃ac + τ∂τK̃ac)] (3.31)

∇b∇dKac = e−ζ

[
∇̃b∇̃dK̃ac − (ξbdK̃ac)− (ξb∂̃d + ξd∂̃b)K̃ac + Γ̃p

ad(ξbK̃pc + ξcK̃pb − ξpK̃bc)

− τ{ξbd + (ξb∂̃d + ξd∂̃b)}(∂τK̃ac) + τ Γ̃p
ad(ξb∂τK̃pc + ξc∂τK̃pb − ξp∂τK̃bc)

+ ξbξdK̃ac + 3τξbξd∂τK̃ac + ξbξdτ
2∂2τ K̃ac

]
+O(ϵ2).

(3.32)
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Hence, the divergence of the Entropy current transforms as

∇aJ
a = e−ζ∇̃aJ̃

a

− 4e−ζ(hadhbc − hachbd)

[
− (ξbdK̃ac)− (ξb∂̃d + ξd∂̃b)K̃ac + Γ̃p

ad(ξbK̃pc + ξcK̃pb − ξpK̃bc)

− τ{ξbd + (ξb∂̃d + ξd∂̃b)}(∂τK̃ac) + τ Γ̃p
ad(ξb∂τK̃pc + ξc∂τK̃pb − ξp∂τK̃bc)

+ ξbξdK̃ac + 3τξbξd∂τK̃ac + ξbξdτ
2∂2τ K̃ac

]
+O(ϵ2).

(3.33)

From equations (3.27) and (3.33), we find that terms linear in K̃ab, i.e., O(ϵ) terms cancel

exactly leaving an overall factor of e−ζ in the zeroth order term. Hence, we have

1√
h
∂v(

√
hJv) +∇aJ

a = e−ζ

[
1√
h
∂τ (

√
hJτ ) + ∇̃aJ̃

a

]
+O(ϵ2). (3.34)

3.4 Conclusion

In this chapter, we have verified the general expectation that net entropy production in a dynamical

gravity should not depend on how we choose coordinates along the horizon. First, in section 3.2,

we have outlined a general proof of why the entropy production should transform in the way we

physically expect (see equation (3.13) and the discussion around). Then, in the next section, we

verified the claim for the particular case of Gauss-Bonnet theory by explicit computation. This

provides a consistency check on the construction of the entropy current in Einstein-Gauss-Bonnet

theory.

It might seem that apart from the consistency check mentioned above, our computation is not

of much use since we already have a general proof that this symmetry must work. However, as we

have already mentioned in the introduction, our final goal is to have some construction of entropy

current and entropy density that works without any perturbation. In this context, it would be inter-

esting to analyze this symmetry in a more systematic manner so that we could use it to constrain

the structure of the entropy density and the entropy current in a theory-independent manner. Note

that the existence of entropy density and the spatial entropy current has been predicted using the
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

special case of the transformation considered here, namely boost symmetry generated by a con-

stant ζ [38, 120]. It is natural to expect more constraints in the whole structure if we use a larger

symmetry where ζ is a function of all spatial coordinates. This work is a small step towards this

goal, which would give us more experience in dealing with the symmetries of null surfaces and the

corresponding transformation of the relevant physical quantities.

One very natural extension of this work might be to perform similar calculations for other

four-derivative theories where the cancellations can be slightly non-trivial due to the presence of

off-the-horizon terms in the entropy current and entropy density.

Another interesting future direction to take can be to explore the existence of any possible re-

lations between this reparametrization symmetry and the BMS or Carrollian symmetries. Recently

in [121–124], the authors have shown the presence of extended BMS-like symmetries on the black

hole horizon called Carrollian symmetries. Any possible connections of this symmetry with super-

translations or superrotations of the others can be useful in our understanding of the rich symmetric

structure of the horizon.
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Chapter 4

Entropy current and fluid-gravity duality in
Gauss-Bonnet theory
This chapter is based on [95].

4.1 Introduction

In general, it is a challenging task to find dynamical black hole solutions even in Einstein gravity.

One either has to use some perturbation or numerics. The perturbation in terms of the amplitude

of the dynamics around a stationary solution is one such analytic technique to generate dynamical

black hole solutions and as mentioned above, this is the one that has been used for the construction

of the entropy density and the current on the horizon. In this chapter, we would like to extend this

construction of horizon entropy current to another class of dynamical black hole/brane solutions

generated using derivative expansion [1, 81, 82, 125].

Derivative expansion is a technique that could be applied to slowly varying dynamics (not

necessarily of small amplitude). In [81], this technique has been used to generate solutions to

Einstein equations in the presence of a negative cosmological constant and in [83], it has been

further extended to Einstein-Gauss-Bonnet theory. These solutions are asymptotically AdS and are

dual to conformal hydrodynamics with a very specific value of shear viscosity that gets corrected

once the Gauss-Bonnet terms are added to the gravity action. The dual theory of hydrodynamics

lives on the boundary of the AdS space, a co-dimension one hypersurface with flat metric. Such a

theory of hydrodynamics always admits an entropy current - a covariant vector under the boundary

Lorentz transformation, which has non-negative divergence on every solution of the fluid equations.

It is natural to expect that the entropy along the dynamical horizon could be recast into one candidate
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for the boundary entropy current in any higher derivative theory of gravity as long as the black hole

solution admits a fluid dual (see [126,127] for such constructions).

In the case of Einstein gravity, where the horizon area plays the role of entropy density in the

black hole, one could lift the horizon entropy to the boundary by using some (non-unique) horizon-

boundary map. This map finally results in an entropy current in the fluid theory, expressed entirely

in terms of fluid variables and with non-negative divergence, guaranteed by the ‘horizon area in-

crease’ theorem [85]. In other words, in two derivative theories of gravity with a negative cosmo-

logical constant, the entropy production at every point on the dynamical horizon (with a degenerate

metric) could be neatly mapped to the similar ultra-local (point by point) entropy production in the

dual fluid dynamics, living on the boundary (with simple flat metric).

Clearly, this whole algorithm of lifting the horizon entropy density to the fluid entropy current

crucially depends on how we map the points on the horizon to the points on the boundary. From

the perspective of the boundary fluid, the mapping functions, which relate every point on the null

horizon to a point on the time-like boundary, are some external variables. One of the key outcomes

of the analysis in [85] is that for dynamical black holes/branes in Einstein gravity, it is possible to

choose these mapping functions in a way so that the local entropy density on the horizon is a local

function of the fluid variables only.

The reason that allows one to make such a choice is as follows.

For black holes in two derivative theories, the second law of thermodynamics is a consequence of

the ‘horizon area increase’ theorem. The proof of this theorem does not need any form of pertur-

bation or approximation on the horizon dynamics [15, 17, 99]. Also, the candidate for the entropy

density - the area of the spatial sections of the horizon, is entirely independent of how we choose

to parametrize the null generators of the horizon. This is why in two derivative theories, one is free

to choose the mapping functions that are compatible with the description of the boundary fluid.

In fact, the choice of mapping used in [85] explicitly breaks the Lorentz covariance of the

boundary coordinates, and the applicability of derivative expansion is implicitly assumed at all
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intermediate steps. It was the final answer for entropy current that was independently checked for

Lorentz covariance and then covariantized entirely in terms of fluid variables and their boundary

derivatives.

Now, the construction of entropy current in [37, 38] in higher derivative theories depends very

much on how we choose the spatial sections of the dynamical horizon. So, a priori, it is not clear

whether in such higher derivative theories also

1. we could lift the horizon entropy current to the boundary and rewrite the entropy production

as a divergence of a current covariant with respect to the boundary metric;

2. the covariant boundary entropy current, thus constructed, is a legitimate entropy current in

the dual theory of hydrodynamics, expressible entirely in terms of fluid variables.

In this chapter, we shall see that the answer to the first question is positive. We have been

able to construct a manifestly covariant formula for boundary entropy current by rearranging the

expressions for the entropy current and entropy density on the horizon with the mapping functions.

These mapping functions are left arbitrary in our construction. They appear in the final formula of

the boundary entropy current as new variables, much like the fluid variables. However, these new

variables need not admit any derivative expansion.

In the case of two derivative theories of gravity, dependence on these mapping functions cancels

out in the final formula as a consequence of the ‘reparametrization invariance’ of horizon area. This

provides another justification of why the procedure used in [85], despite explicitly breaking the

Lorentz invariance and translation invariance at every intermediate step, has worked so beautifully.

But in higher derivative theories, the construction of the entropy density and the entropy current

need a very specific choice of coordinates on the horizon, where the null generators are affinely

parametrized. Therefore, unlike the two derivative theories, the mapping functions here are not

completely free; they have to be compatible with the horizon-adapted coordinates used in [37,

38] to parametrize the rate of entropy production along the null generator. Further, to generate a
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legitimate fluid entropy current on the boundary fluid, the mapping functions should not violate the

applicability of derivative expansion in terms of the boundary coordinates. It turns out that these

two conditions are not easy to satisfy simultaneously. We applied our construction to the horizon

entropy current in Einstein-Gauss-Bonnet theory, whose fluid dual has already been constructed

in [83]. But even before using the details of the of the bulk metric here, we could see that the

covariant entropy current in the boundary theory, constructed by dualizing the horizon entropy,

will have non-trivial dependence on the mapping functions, which do not get cancelled and also

most likely will not admit any derivative expansion.

To summarise, the answer to the second question posed above is generically negative.

However, this is probably not a complete ‘no go’ theorem about the possibility of dualizing

the ‘horizon entropy current’ to a legitimate fluid entropy current. It is still possible that for some

special higher derivative theory, these dependencies on the mapping functions do cancel among

themselves. Also, we have one construction of the boundary entropy current, but we do not have

any proof that this is a unique construction. For example, any expression of the current could be

modified by adding terms that are identically conserved without affecting its divergence. Similarly,

the entropy current and entropy density on the horizon also have a number of ambiguities [3,27–29].

It is worth exploring whether all the terms that are not compatible with derivative expansion or fluid

dynamics could be removed by fixing these ambiguities in a certain way. We leave these for future

work.

This chapter is organized as follows. In the next subsection, we give a summary of the main

results. Then in section 4.2 we have described how we could construct the horizon to boundary

map. Next, in section 4.3, we have used this map to translate the horizon current to a covariant

boundary current. In section 4.4, we have applied this construction to the dynamical black holes of

Einstein-Gauss-Bonnet theory in the presence of a negative cosmological constant. In section 4.5,

we explore some future directions. Finally, in section 4.6, we conclude.
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4.1.1 The Result

As mentioned before, the main result in this chapter is a formula for the boundary entropy current

whose divergence is equal to the rate of local entropy production on the dynamical horizon.

In [37, 38], it has been shown that in higher derivative theories of gravity, one could always

construct an entropy density (denoted as jv) and a spatial entropy current (denoted as ji) on every

black hole solution with a dynamical horizon such that[
1√
h
∂v

(√
hjv
)
+∇ij

i

]
≥ 0 (4.1)

provided the amplitude of the dynamics remains small throughout the evolution of the black

hole till it settles to equilibrium.

Here v is the affine parameter along the null generators of the horizon; the sub/superscript ‘i’

denotes the spatial coordinates along the constant v slices of the horizon and ∇i is the covariant

derivative with respect to the induced metric along the constant v slices.

In this chapter, using a set of mapping functions from the horizon to the boundary (a map

between the horizon coordinates {v, αi} and boundary coordinates {xµ}) we have constructed an

expression for entropy current Jµ on the boundary such that

DµJ
µ =

1√
h
∂v(

√
h jv) +∇ij

i (4.2)

where Dµ denotes the covariant derivative with respect to the boundary metric.

The expression for Jµ turns out to be

Jµ =
1√
g(b)

√
H√

tαtβg
(b)
αβ

(
jvtµ + jilµi

)
H ≡ n̂µn̂νϵ

µµ1µ2···µnϵνν1ν2···νnχµ1ν1 · · ·χµnνn

n!

n̂µ =
tµ√
tαtβg

(b)
αβ

(4.3)
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where tµ and lµi are vectors related to the map of {v, αi} coordinates on the horizon to {xµ} coor-

dinates on the boundary and are defined as follows

tµ ≡ ∂xµ

∂v
, lµi ≡ ∂xµ

∂αi

And χµν is the degenerate induced metric on the horizon expressed in terms of the boundary co-

ordinates or, more precisely if the bulk metric dual to the boundary fluid is denoted as GAB(r, x
µ)

with r = 0 being the horizon, then

χµν = Gµν |r→0

The symbol ϵµµ1···µn denotes the completely antisymmetric (n+ 1) indexed tensor with each com-

ponent equal to either 0 or ±1. Note that in our convention, this epsilon tensor does not have any

factor like the determinant of the metric.

We have explicitly constructed the boundary entropy current for the case of Einstein-Gauss-

Bonnet theory, for which the horizon current is already determined in [37].

Jµ =
1√
g(b)

√
H√

tαtβg
(b)
αβ

[ (
1 + α2R

)
tµ − 4α2

(
χ̄γαχ̄µβ − χ̄γµχ̄αβ

)
(DγKαβ)

]
with the following notation

R ≡ (χ̄µ1ν1χ̄µ2ν2 − χ̄µ1ν2χ̄µ2ν1)

[
∂µ1Γν1,µ2ν2 − χ̄α1α2Γα1,µ1ν1Γα2,µ2ν2 − 2tαΓα,µ1ν1

(
∂µ2 t̃ν2

) ]
r=0

Kαβ ≡ −tµΓµ,αβ, χ̄µν ≡
(
δµα − tµt̃α

) (
δνβ − tν t̃β

)
Gαβ(r = 0)

and

DαKµν ≡ ∂αKµν − Γ̃β
αµKβν − Γ̃β

ανKµβ

(4.4)

where

t̃µ ≡ ∂v

∂xµ
such that tµt̃µ = 1, lµi t̃µ = 0

Γα,µν =
1

2
(∂µχνα + ∂νχµα − ∂αχµν) , Γ̃α

µν ≡ χ̄αβΓβ,µν + tα∂ν t̃µ

(4.5)

Note that for a generic case, these mapping functions will enter the expression of the boundary

entropy current through the two vectors tµ and t̃µ. And as we have mentioned before, these two
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vectors need not admit a derivative expansion. The reason is as follows.

tµ, being the tangent vector to the affinely parametrized null generators of the horizon (located

at r = 0), must be proportional to the normal of the r = 0 hypersurface. This normal is given

by nµ ≡ Gµr(r = 0), which according to fluid-gravity correspondence, must admit a derivative

expansion in terms of fluid variables. Let us denote the proportionality factor as eϕ(x).

tµ = eϕ(x)nµ = eϕ(x) Gµr|r=0

The affine parameter v could be related to ϕ(x) as (see section 4.3.3)

v ≡ e−ϕL = e−ϕ

∞∑
k=0

L(k), where
L(k)

L(0)

= −
[
(n · ∂)L(k−1)

]
, L(0) = −

[(
nµnν

2

)
[∂rχµν ]r=0

]−1

Therefore t̃µ =
(

∂v
∂xµ

)
must have a term proportional to ∂µϕ. Now ∂µϕ must be a zeroth order

vector since its component along the direction of nµ is of zeroth order in derivative expansion. It

satisfies the equation (follows from the fact that tµ is an affinely parametrized geodesic, see section

4.2.2)

(n · ∂)ϕ =

(
nµnν

2

)
[∂rχµν ]r=0

However at zeroth order in derivative expansion, only vector that could be expressed entirely

in terms of fluid variables is the fluid velocity uµ itself. So ∂µϕ has to be proportional to uµ with

proportionality factor being some function of temperature. But any gradient vector field like ∂µϕ

or ∂µv could not be proportional to fluid velocity whenever the velocity has nonzero vorticity. This

shows that any generic situation ∂µϕ are the ‘non-fluid’ terms, that will remain there in the bound-

ary entropy current constructed dualizing the horizon current.

Finallywe have evaluated the boundary current (4.16) on slowly varying black holes in Einstein-

Gauss-Bonnet theory up to correction of orderO(∂2). Up to this order in derivative expansion, the

‘non-fluid’ mapping functions (functions that do not admit a derivative expansion in terms of fluid

variables) do not contribute. In fact just like the fluid dual to Einstein gravity, the O(∂) contri-

bution to the entropy current vanishes which is also what is expected for an uncharged fluid. The
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expression of Jµ turns out to be the following

Jµ = r3H n̂µ +O
(
α4, ∂2

)
(4.6)

where rH is the length scale associated with the temperature of the Black hole or the dual fluid as

defined in (4.8).

4.2 The map between horizon and boundary

As described before, the dynamical black brane solution that we are considering here, is always

perturbative. Two different types of perturbations are used to describe the solution. For the entropy

density and the current constructed on the horizon as in [37–39, 120], the perturbation parameter

is the amplitude of the dynamics whereas in [81] it is the derivatives of the boundary fluid data

(velocity and temperature) that play the role of the small parameter. In both cases, the starting

point is a stationary black hole/brane metric. In both cases, we could choose a gauge where the

horizon is at the origin of the radial coordinate (the coordinate that measures the distance away from

the horizon). In amplitude expansion, the black hole metric is parametrized by its components

evaluated at the horizon, whereas in the case of derivative expansion, it is parametrized by the

metric components evaluated at the AdS boundary expressed in terms of the variables of the dual

fluid description.

The key part of this chapter is about a map between the points on the horizon and the points on

the boundary. To define any such map we first need to set up coordinate systems on both horizon

and the boundary. In this section first we shall briefly describe the two coordinate systems that

are used to describe the entropy current on the horizon [37, 38] and the fluid dynamics living on

the boundary [81, 125]. We shall refer to them as ‘horizon adapted coordinates’ and ‘boundary

coordinates’ respectively.

Then in the final subsection we shall relate this two coordinates to get a point by point map from

the horizon to the boundary.
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4.2.1 Horizon adapted coordinate system

The entropy density and current, defined on the horizon are expressed in a very special choice of

coordinates, tuned to the structure of null hypersurface. We shall denote this coordinate system as

‘horizon adapted coordinate system’. In these coordinates the metric takes the following form

ds2 = 2dρ dv − ρ2X(ρ, v, α⃗) dv2 + 2ρ ωi(ρ, v, α⃗) dv dα
i + hij(ρ, v, α⃗) dα

idαj (4.7)

where X , ωi and hij are arbitrary nonzero functions of ρ, v and α⃗ = {αi}. In this metric, the

horizon is located at the ρ = 0 hypersurface. At ρ = 0, the vector ∂v is affinely patrametrized

null generator of the horizon, with v being the affine parameter. ∂i s are the spatial vectors on the

constant v slices of the horizon. The entropy current is defined on the horizon and therefore could

depend only on the metric functions X , ωi and hij and their ∂i and ∂v derivatives.

In a stationary solution, the ρ and v dependence of the metric would be constrained. The func-

tions X , ωi and hij will only depend on the product of ρ and v. The stationary metric will be

completely invariant under the transformation

v → λv, ρ→ ρ

λ

While constructing the horizon entropy current, a departure from this invariance has been treated

as the small parameter, characterizing the amplitude of the dynamics.

4.2.2 Boundary coordinates

In hydrodynamics, the local velocity of the field denoted as uµ(x) is a special vector. While writing

the dual metric, the most convenient choice of gauge turns out to be related to this velocity field. In

this choice of gauge (with coordinates denoted as {r, yµ}), the metric takes the following general
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structure

ds2 = −2uµ dy
µ dr + χµν dy

µdyν

χµν could be further decomposed as

χµν ≡ S1uµuν + S2Pµν + (Vµuν + Vνuµ) + Tµν

such that uµVµ = uµTµν = 0, Pµν ≡ ηµν + uµuν

(4.8)

Here r → ∞ is the boundary, and the metric takes the form of Poincare patch AdS as we approach

the boundary. Here also, we shall choose the origin of the r coordinate at the horizon. Therefore

r = 0 is a null hypersurface by construction, which further implies

Grr(r = 0) = 0 and nµ∂µ = Grµ(r = 0)∂µ is a null vector at the horizon

The vector nµ = Grµ|r=0 must be identified with the null generator of the horizon (though not

affinely parametrized).

Using the fact that the null generator of the horizon is just the dual vector of the one form dr or, in

other words, nAGAB = δrB, we get the following identities for the nµ vector, which would turn out

to be useful at a later point.

δrB = nAGAB|r=0 = nµGµB

⇒ nµGµr = −uµnµ = 1

⇒ nµGµν |r=0 = nµχµν |r=0 = 0

(4.9)

S1, S2, Vµ and Tµν all are functions of r and yµ , but the yµ dependence is known only perturbatively

where the perturbation parameters are the derivatives of the fluid variables. In fact the derivative

expansion would be valid only when the fluid variables are slowly varying with respect to some

scale, in this case, the temperature of the fluid. The more the number of derivatives, the more

suppressed the terms are. 1

1Note in [81, 83] the choice of gauge was quite different from the one we are using here. In case of fluid gravity
correspondence, it makes sense to parametrize themetric in terms of fluid variables definedwith respect to the boundary
stress tensor. The horizon in the initial papers of fluid-gravity correspondence is not located at r = 0 but given by

66



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

4.2.3 The horizon to boundary map

The metric described in section 4.2.1 is in a completely different gauge than that of hydrodynamic

metric in section 4.2.2. However, the construction of the horizon entropy current is very much tied

to the choice of coordinates as given in 4.2.1. It is obvious that, to translate the horizon entropy

current in terms of the fluid variables the first step would be to establish a dictionary between these

two coordinate systems.

We shall transform the fluid metric (as given in eq:(4.8)) to the gauge described in section (4.2.1).

This will allow us to describe metric functions (X , ωi and hij) as they appeared in equation (4.7)

in terms of the fluid variables (velocity and temperatures) and their appropriate derivatives.

In other words, we shall express r and xµ as functions of {ρ, v, α⃗} such that the following gauge

conditions are satisfied.

Gρρ = 0 ⇒ − 2uµ

(
∂xµ

∂ρ

)(
∂r

∂ρ

)
+ χµν

(
∂xµ

∂ρ

)(
∂xν

∂ρ

)
= 0

Gρv = 1 ⇒ − uµ

[(
∂r

∂ρ

)(
∂xµ

∂v

)
+

(
∂r

∂v

)(
∂xµ

∂ρ

)]
+ χµν

[(
∂xν

∂ρ

)(
∂xµ

∂v

)]
= 1

Gραi
= 0 ⇒ − uµ

[(
∂r

∂ρ

)(
∂xµ

∂αi

)
+

(
∂r

∂αi

)(
∂xµ

∂ρ

)]
+ χµν

[(
∂xν

∂ρ

)(
∂xµ

∂αi

)]
= 0

(4.11)

Now it is difficult to solve these equations exactly, even in just the radial coordinate. However,

for our entropy current, it is enough to have the near horizon structure of the metric. So we shall

be solving the gauge conditions (4.11) in an expansion in ρ.

r = rH(yµ) whose value is related to the local temperature of the dynamical black brane being considered. We can
translate between these two gauges by a simple shift of r coordinate

r → r + rH(yµ)

This step adds a little modification to the fluid metric without affecting its general structure. The net result of this shift
is just a shift in χµν as follows

χµν → χµν − (uµ∂ν + uν∂µ)rH (4.10)

In our solution rH will simply be length scale, with respect to which the slow variation or the derivative expansion is
defined.
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We shall take the following ansatz for the coordinate transformations:

r = ρ r(1)(v, αi) + ρ2 r(2)(v, αi) + · · ·

xµ = xµ(0)(v, αi) + ρ xµ(1)(v, αi) + ρ2 xµ(2)(v, αi) + · · ·
(4.12)

In the above coordinate transformation the functions xµ(0)(v, α
i) will be effectively taken as input

functions. All the rest, namely {xµ(n)(v, αi)} and r(n)(v, αi) will be determined in terms of the

functions xµ(0)(v, αi). In Appendix B.2 we have determined the first few coefficients of the above

transformation equations (equation (4.12)).

Note that the input functions xµ(0)(v, αi) are not entirely free. The vector tµ ≡
(

∂xµ
(0)

∂v

)
must be an

affinely parametrized null geodesic with respect to the full metric.

Let us define the following set of vectors that are tangent to the horizon

tµ ≡

(
∂xµ(0)
∂v

)
, lµi ≡

(
∂xµ(0)
∂αi

)
tµ, being the null generator of the horizon, is also a normal to the horizon.

Hence it follows that tµ must be proportional to nµ of the fluid metric we defined in the previous

step. In other words

tµ = eϕnµ = eϕGrµ(r = 0)

where ϕ is a scalar function of {xµ} so that tµ becomes a affinely parametrized null geodesic.

Processing this condition we get the following equation for the field ϕ(x)

(n · ∂)ϕ =

(
nµnν

2

)
[∂rχµν ]r=0 (4.13)

Note that the RHS of equation (4.13) is nonzero even at zeroth order in derivative. Therefore, it

is not ϕ but its derivative along the direction of nµ that satisfies the derivative expansion. At this

stage we are free to choose the dependence of ϕ along the directions perpendicular to nµ.

Now ϕ is an external scalar field from the perspective of boundary fluid dynamics and gener-

ically the fluid entropy current would depend on the choice of ϕ. We should be able to choose ϕ

in a way so that the final fluid entropy current is entirely expressible in terms of the fluid variables

like velocity and temperature only.
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4.3 Translating the horizon current to the boundary current

In this section, we shall find out an abstract expression for entropy current Jµ in the boundary such

that

DµJ
µ(jv, ji) =

1√
h
∂v(

√
h jv) +∇ij

i (4.14)

where jv and ji are defined in equation (4.1). Here the RHS of the above equation is written in

the horizon adapted coordinates whereas the LHS is in terms of the boundary coordinates. Dµ

denotes the covariant derivative with respect to the boundary metric. In the first subsection, we

shall describe how to determine Jµ, given jv and ji. The final expression for Jµ turns out to be the

following

Jµ =
1√
g(b)

√
H
(
jvtµ + jilµi

)
where H ≡ t̃µt̃νϵ

µµ1µ2···µnϵνν1ν2···νnχµ1ν1 · · ·χµnνn

n!
(4.15)

Here jv and ji have to be read off from the expression of the horizon current. tµ, t̃µ and lµi are

vectors related to the map.

tµ ≡ ∂xµ

∂v
, t̃µ ≡ ∂v

∂xµ
, lµi ≡ ∂xµ

∂αi
, liµ ≡ ∂αi

∂xµ

Using the fact that tµ = eϕnµ and tµt̃µ = 1 the expression for H and current could be simplified

further

Jµ =
1√
g(b)

√
H√

tαtβg
(b)
αβ

(
jvtµ + jilµi

)
H ≡ n̂µn̂νϵ

µµ1µ2···µnϵνν1ν2···νnχµ1ν1 · · ·χµnνn

n!

n̂µ =
nµ√

nαnβg
(b)
αβ

=
tµ√
tαtβg

(b)
αβ

(4.16)

4.3.1 Constructing Jµ

In this subsection, we shall determine an algorithm to determine Jµ out of jv and ji. The key issue

here is to re-express the entropy production formula on the horizon (i.e., the expression in the RHS
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of equation (4.14)) as a divergence of a current covariant with respect to the boundary coordinates.

It turns out that if we could rewrite the equation (4.14) in a ‘metric independent’ language using n

and (n− 1) forms, it helps to identify the Jµ.

Let us first define the following two n-forms.

Jtemp ≡
√
h jv

ϵi1i2···indα
i1 ∧ dαi2 · · · ∧ dαin

n!

Jspace ≡ −
√
h jk

ϵki2i3···indv ∧ dαi2 ∧ dαi3 · · · ∧ dαin

(n− 1)!

(4.17)

Here, ϵi1i2···in is the completely antisymmetric n indexed tensor with each component equal to 0 or

±1.

One could show that the exterior derivative of (Jtemp + Jspace) is proportional to the top form

on the horizon, where the proportionality constant is the RHS of equation (4.14).

d(Jtemp + Jspace) =
[
∂v

(√
h jv

)
+
√
h ∇ij

i
] [ϵi1i2···indv ∧ dαi1 ∧ dαi2 · · · ∧ dαin

n!

]
(4.18)

Here d denotes the exterior derivative.

Now we shall rewrite Jtemp and Jspace in terms of the boundary coordinates using the fact that

dv = t̃µdx
µ, dαi = liµdx

µ

We need to use the following identities.

li1µ1
· · · linµn

ϵi1i2···in = ∆ tµ ϵµµ1···µn

lµ1

i1
· · · lµn

in
ϵi1i2···in =

(
1

∆

)
t̃µ ϵ

µµ1···µn

ϵµµ1µ2···µn

(
dxν ∧ dxµ1 · · · ∧ dxµn

n!

)
= δνµϵµ1···µn+1

(
dxµ1 ∧ · · · ∧ dxµn+1

(n+ 1)!

)
ϵµαµ2···µn

(
dxν ∧ dxµ2 · · · ∧ dxµn

(n− 1)!

)
=
(
δναϵµµ1···µn − δνµϵαµ1···µn

)(dxµ1 ∧ · · · ∧ dxµn

n!

)
(4.19)

Here ∆ is the Jacobian of the coordinate transformation

∆ = det

[
∂{v, αi}
∂{xµ}

]
,

1

∆
= det

[
∂{xµ}
∂{v, αi}

]
,
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First, we shall write an expression for
√
h in terms of the boundary coordinates.

h = det[hij] =
ϵi1···inϵj1···jnhi1j1 · · · hinjn

n!

=

(
1

n!

)
ϵi1···inϵj1···jn

[
lµi1 · · · l

µn

in

] [
lν1j1 · · · l

νn
jn

]
χµ1ν1 · · ·χµnνn

=

(
1

n!

)(
1

∆

)2

t̃µt̃ν ϵ
µµ1···µnϵνν1···νn χµ1ν1 · · ·χµnνn

(4.20)

Using the above identities we process both Jtemp and Jspace as follows.

Jtemp =
√
h jv

(
ϵi1···inl

i1
µ1
· · · linµn

n!

)
dxµ1 ∧ · · · ∧ dxµn

=
√
h∆ jv

(
tµϵµµ1···µn

n!

)
dxµ1 ∧ · · · ∧ dxµn

=

[
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2

jv
(
tµϵµµ1···µn

n!

)
dxµ1 ∧ · · · ∧ dxµn

(4.21)

Jspace = −
√
h jk

(
ϵki2i3···in
(n− 1)!

)
t̃µl

i2
µ2
· · · linµn

dxµ ∧ dxµ2 · · · ∧ dxµn

= −
√
h
(
jklνk

)(ϵi1i2i3···in
(n− 1)!

)
t̃µl

i1
ν l

i2
µ2
· · · linµn

dxµ ∧ dxµ2 · · · ∧ dxµn

= −
√
h
(
jklνk

)
t̃µ

(
∆

(n− 1)!

)
tαϵανµ2···µn dx

µ ∧ dxµ2 · · · ∧ dxµn

= −
√
h

(
∆

n!

) (
jklνk

)
t̃µt

α [δµν ϵαµ1µ2···µn − δµαϵνµ1µ2···µn ] dx
µ1 ∧ dxµ2 · · · ∧ dxµn

=

[
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2
(
(jklµk ) ϵµµ1···µn

n!

)
dxµ1 ∧ dxµ2 · · · ∧ dxµn

(4.22)
So finally we have

Jtemp + Jspace

=

[
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 [
jvtµ + (jklµk )

] ϵµµ1···µn

n!
dxµ1 ∧ dxµ2 · · · ∧ dxµn

⇒ d(Jtemp + Jspace)

= ∂µ

([
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 [
jvtµ + (jklµk )

])(ϵν1···νn+1dx
ν1 ∧ · · · ∧ dxνn+1

(n+ 1)!

)
(4.23)
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Now from equation (4.18) we know the expression of d(Jtemp + Jspace) in terms of {v, αi} co-

ordinate system. If we rewrite the (n + 1) form that appears in equation (4.18) in terms of {xµ}

coordinates we get the following

ϵi1···in

(
dv ∧ dαi1 · · · dαin

n!

)
= t̃ν l

i1
µ1
· · · linµn

ϵi1···in

(
dxν ∧ dxµ1 ∧ · · · ∧ dxµn

n!

)
= ∆ t̃ν t

µϵµµ1···µn

(
dxν ∧ dxµ1 ∧ · · · ∧ dxµn

n!

)
= ∆ t̃ν t

µδνµϵµ1µ2···µn+1

(
dxµ1 ∧ · · · ∧ dxµn+1

(n+ 1)!

)
= ∆ ϵµ1µ2···µn+1

(
dxµ1 ∧ · · · ∧ dxµn+1

(n+ 1)!

)
(4.24)

Substituting equation (4.24) in equation (4.18) and then comparing with equation (4.23) we

find

∆
[
∂v

(√
h jv

)
+
√
h ∇ij

i
]
= ∂µ

([
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 [
jvtµ + (jklµk )

])
(4.25)

Aswe have discussed before, in dynamical black holes, the expression
[
∂v

(√
h jv

)
+
√
h ∇ij

i
]

is identified with net entropy production in every infinitesimal subregion of the horizon and, up to

the linear order in the amplitude of the dynamics, it must vanish (if it does not, then the same

expression at linear order, will lead to both entropy production and destruction depending on the

sign of the amplitude and thus violating the second law). Since ∆, the Jacobian of the coordinate

transformation is non-vanishing everywhere, we conclude

∂µ

([
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 [
jvtµ + (jklµk )

])
= 0 (up to terms nonlinear in amplitude)

Now we can turn the above expression into a divergence of current covariant (i.e., in the form

of equation (4.14)) with respect to the boundary metric, if we identify the boundary entropy current

as

Jµ =
1√
g(b)

([
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 [
jvtµ + (jklµk )

])
(4.26)

72



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

where
[
g
(b)
µν = limr→∞

(χµν

r2

) ]
is the boundary metric and g(b) = det[g

(b)
µν ].

Equation (4.26) is one of our key results. Now a couple of comments about this formula.

• Jµ is a covariant vector in the boundary spacetime with boundary metric g(b)µν , provided we

treat tµ, lµk and t̃µ as independent upper and lower index vectors respectively.

• Though we have said that tµ is the affinely parametrized null generator on the horizon ex-

pressed in terms of boundary coordinates, the analysis in this section nowhere used the affine-

ness of the v parameter. So equation (4.26) is valid even when v is not an affine parameter,

but it has to be a parameter along the null generator2 .

• The expressions for jv and ji depend on the details of the equation of motion in higher

derivative theory, which in turn depend on the affine parametrization of the null generators.

• jv and ji could be determined in terms of the functions appearing in metric (4.7) (i.e., X ,

ωi and hij) and their appropriate derivatives. Using this horizon to boundary map, we could

re-express jv and ji in terms of the fluid variables and the mapping vectors tµ and lµi .

• From the perspective of boundary fluid, tµ, lµk or t̃µ are external variables. So the entropy

current described in equation (4.26) would be a genuine fluid entropy current provided our

mapping functions are such that the vectors tµ, lµk or t̃µ are either constants or are determined

entirely in terms of fluid variables.

4.3.2 Entropy current in boundary fluid dual to Einstein gravity

In Einstein gravity, the entropy on the horizon is simply given by the area of the spatial sections

of the horizon. In our choice of horizon-adapted coordinate system, it is the square root of the
2For example, in [85] the null generators are parametrized using the boundary time-like coordinate v. This is not an

affine parametrization, but still will we could apply our formula to recover the expression of entropy current derived
in [85]. We have to use the following facts. In two derivative theories jv = 1, ji = 0 and the choice of map in [85]
is such that t̃µdxµ = dv, tµ = nµ

nv . The boundary metric g
(b)
µν = ηµν .

73



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

determinant of hij . It follows

jv(2) = 1, ji(2) = 0

where the subscript (2) denotes the fact that it is for a two derivative theory of gravity. Substituting

it in equation (4.26), we get the following expression for the boundary entropy current for two

derivative theory.

Jµ
(2) =

1√
g(b)

[
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2

tµ

In the above expression, the vector fields t̃µ and tµ appear. They depend on our choice of mapping

and naively, it seems that even in two derivative theories of gravity, the boundary entropy current

might not admit a description in terms of fluid variables. But in this section, we would like to

argue that this is not the case; all the factors that might not admit a derivative expansion or fluid

description cancel between tµ and t̃µ, and we could rewrite Jµ
(2) entirely in terms of fluid variables.

Note, tµ = g
(b)
µν tν and t̃µ could be viewed as two vectors on the boundary with the following

inner products with respect to the boundary metric

tµt̃ν [g
(b)]µν = 1

whereas tµ = eϕGµr is a time-like vector with respect to the boundary metric3. Define the unit

vector along the direction of tµ as follows

n̂µ ≡ tµ

||t||
=

nµ

||n||
, where ||t|| ≡

√
−tµtνg(b)µν , ||n|| ≡

√
−nµnνg

(b)
µν and nµ = Gµr(r = 0)

We can always decompose the vector t̃µ in the following way

t̃µ =
n̂µ

||t||
+ Vµ = g(b)µν

(
n̂ν

||t||

)
+ Vµ, such that Vνtν = 0 (4.27)

Now χµν on the horizon satisfies the following identity tµχµν = 0. So both indices of χµν are

in the directions perpendicular to tµ or n̂µ. It follows that in the tensor

Aαβ ≡
[
ϵαα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

]
3This is because at leading order in derivative expansion tµ = eϕGµr = eϕuµ + O(∂). Now uµ is a time like

vector and derivative corrections can never change the sign of the leading order result
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all the indices {αi} and {βi} in the Levi Cevita tensors are contracted with vectors perpendicular to

n̂µ. Hence,Aαβ will be non-zero only when both of its free indices are projected along the direction

of n̂. In other words, VαAαβ = VβA
αβ = 0, where Vµ is defined in equation (4.27). Therefore

t̃αt̃βA
αβ =

1

||t||2
n̂αn̂βA

αβ

⇒ Jµ
(2) =

1√
g(b)

[
t̃αt̃β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2

tµ

=
1√
g(b)

[
n̂αn̂β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2 tµ

||t||

=
1√
g(b)

[
n̂αn̂β ϵ

αα1···αnϵββ1···βn χα1β1 · · ·χαnβn

n!

] 1
2

n̂µ

(4.28)

Note n̂µ = nµ

||n|| could be entirely expressed in terms of fluid variables and the boundary metric

and therefore admit derivative expansion. Equation (4.28) is a manifestly covariant entropy current

for the boundary fluid dual to Einstein gravity, which always admits a derivative expansion. After

we know that the horizon current will translate into such a covariant ‘hydro-like’ expression for the

boundary current, we are free to choose any kind of coordinates and mapping. Even if our choice

breaks all the symmetries, the final result is guaranteed to be a covariant entropy current for the

dual fluid theory.

4.3.3 Entropy current in higher derivative theories

In this subsection, we would like to contrast the previous description with the scenario in higher

derivative theories. In higher derivative theories, jv and ji have non-trivial structures constructed

out of the metric functions (X, ωi, hij) and their derivatives in the horizon-adapted coordinates.

The details of these structures will depend on the particulars of the higher derivative equations of

motion. As we have seen before, once translated to boundary coordinates, the entropy current, in

general, will be a vector function of both the fluid variables and the mapping variables.

But unlike in two derivative theories where the entropy density (as given by
√
h) is invariant under

any reparametrization of the null generators, here affine parametrization is crucial for the construc-
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tion of jv and ji. This probably indicates that in a higher derivative theory, we would not be able to

rearrange the formula for boundary entropy current to completely eliminate the dependence on the

mapping like we have done in Einstein gravity. So, here the key question turns out to be whether

there exists a choice of horizon to boundary map that allows us to express the final fluid entropy

current entirely in terms fluid variables, without any explicit dependence on boundary coordinates

(any arbitrary map, generically not compatible with derivative expansion will lead to such explicit

dependence on boundary coordinates). Further, given the non-universality of the structures ap-

pearing in jv and ji it is unlikely that we would be able the answer this question in a universal way

- a single map will not work for entropy current in all higher derivative theories. However, the

following simplification could be predicted on a general ground.

• The final fluid entropy current Jµ will not have any free ‘i’ index (the spatial indices in the

horizon adapted coordinates). Therefore, all the lµi =
(
∂xµ

∂αi

)
must be contracted with the

inverse mapping liµ =
(

∂αi

∂xµ

)
, which are the only sources of i indices in Jµ). Now

lµi l
i
ν =

(
∂xµ

∂αi

)(
∂αi

∂xν

)
= δµν −

(
∂xµ

∂v

)(
∂v

∂xν

)
= δµν − tµt̃ν

So finally, all the dependence on the mapping functions could be transferred to the depen-

dence on tµ and t̃µ.

• tµ could bewritten as tµ = eϕnµ, and it is the scalar function ϕ that does not admit a derivative

expansion. So from the fluid point of view, the two scalar functions ϕ(xµ) and v(xµ) could

spoil the ‘fluid nature’ of the boundary entropy current.

• The variations of these scalars along the direction of nµ are constrained.

(n · ∂)ϕ =

(
nµnν

2

)
[∂rχµν ]r=0 , (t · ∂)v = 1 ⇒ (n · ∂)v = e−ϕ (4.29)

Once we ‘choose’ these scalars on a given slice perpendicular to nµ, these equations will fix

their subsequent evolution along the nµ directions.
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• From the two equations in (4.29), we could solve v in terms of ϕ perturbatively using deriva-

tive expansion. This could be done as follows.

Define L ≡ eϕv. Then the equation for L turns out to be

(n · ∂)L− L(n · ∂)ϕ = 1

Assume L admits a derivative expansion and could be expressed entirely in terms of fluid

variables, with the leading terms having zero derivatives. Since we already know that (n·∂)ϕ

starts from zeroth order, it follows that (n·∂)L - the first term in the above equation is actually

subleading in terms of derivative expansion. This allows us to solve the equation recursively

generating the following infinite series

v ≡ e−ϕL = e−ϕ

∞∑
k=0

L(k), where L(k) =

[
(n · ∂)L(k−1)

(n · ∂)ϕ

]
, L(0) = −

(
1

(n · ∂)ϕ

)
(4.30)

Note that this solution implies a very particular choice for the v = 0 slice of the horizon; it

is the spatial slice where ϕ→ ∞ Using equation (4.30) we could express t̃µ in terms of ∂µϕ.

t̃µ = e−ϕ (−L ∂µϕ+ ∂µL) (4.31)

• t̃µ must satisfy the condition lµi t̃µ = 0 for every i index (coordinates along the spatial section

of the horizon)

0 = lµi t̃µ = e−ϕ (L lµi ∂µϕ+ lµi ∂µL)

⇒ lµi ∂µϕ =
lµi ∂µL

L

(4.32)

Now we have seen that L satisfies derivative expansion with the leading term being zeroth

order in derivatives. So from equation (4.32) we could infer that the variation of ϕ along the

αi directions also satisfies derivative expansion with the leading term being of first order.

Naively it seems that (4.32) is not consistent because (t · ∂) and (li · ∂) must commute; from

equation (4.32), it follows that (t · ∂)(li · ∂)ϕ is a second order term whereas (li · ∂)(t · ∂)ϕ
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looks like a first order term since (t · ∂)ϕ is of zeroth order. However, we could show that

the first order piece in (li · ∂)(t · ∂)ϕ vanishes once we apply (4.32).

e−ϕ (lµi ∂µ) (t · ∂)ϕ

= e−ϕ (lµi ∂µ) (e
ϕ n · ∂)ϕ

= (lµi ∂µϕ) (n · ∂ϕ) + (lµi ∂µ) (n · ∂ϕ)

=

(
lµi ∂µL(0)

L(0)

)
(n · ∂ϕ) + (lµi ∂µ) (n · ∂ϕ) +O

(
∂2
)

= O
(
∂2
)

(4.33)

In the last line, we have used equation (4.30)for the expression of L(0).

• It turns out that the overall factors of eϕ finally get canceled between tµ, t̃µ and
√
h. We

could see it as follows.

The factors of eϕ in jv or ji are determined by their boost weight. Since jv has zero boost

weight, once translated into boundary coordinates, it will not have any factor of eϕ, whereas

ji having boost weight one, will carry a single factor of eϕ. We have already seen
√
h,

expressed in terms of boundary coordinates, carries a factor of e−ϕ from the ||t|| factor in the

denominator (see equation (4.28)). Hence in the expression
√
h (jvtµ + lµi j

i) all factors of

overall eϕ cancel.

Therefore, once we fix v in terms of ϕ using equation (4.30), the ‘non-fluid’ function re-

maining in our construction is the derivative of ϕ along the directions perpendicular to nµ

.

4.4 Entropy current in Einstein-Gauss-Bonnet theory

In this section, we shall specialize to Einstein-Gauss-Bonnet theory. The entropy density and the

entropy current for black holes in Einstein-Gauss-Bonnet theory have been worked out in [37,38].

Using the horizon to boundary map, we shall rewrite the current in boundary coordinates. At this
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stage, we shall not use any derivative or amplitude expansion. We shall see that the final expressions

will explicitly depend on the ‘non-fluid’ variables through t̃µ and ∂µϕ. Note that any term or

factor that could be expressed as a product of metric components in boundary coordinates and

their boundary derivatives are fluid variables. For example, the Christoffel symbols with respect

to the bulk metric in boundary coordinates are always fluid variables.

In the end, we shall substitute the details of the bulk metric in Gauss-Bonnet theory dual to hy-

drodynamics. Since the metric is known up to the first order in derivative expansion, the boundary

entropy current thus generated will also be correct only up to the first order. As mentioned before,

up to this order, the entropy current will turn out to be trivial; it is simply equal to what it was for

Einstein gravity. All the new terms generated by Gauss-Bonnet Action contribute to the boundary

entropy current only in the second order.

4.4.1 jv and ji in terms of ‘fluid’ and ‘non fluid’ data

We shall first quote the expression for entropy density and the spatial entropy current for black

holes in Gauss-Bonnet theory as given in [37, 38].

The final form of the entropy density and spatial entropy current density particular to Gauss-

Bonnet theory is given as follows.

jv =
√
h
(
1 + 2α2R

)
, ji = −4α2

(
∇jK

ij −∇iK
)

(4.34)

where

h = determinant of hij

R = intrinsic curvature evaluated w.r.t the hij

∇i = covariant derivative with respect to hij

Kij ≡
1

2
∂vhij, K ≡ hijKij

Lowering or raising of indices are done w.r.t hij with hij being the inverse

(4.35)
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One key simplifying factor here is that neither jv nor ji needs any information about how the hori-

zon data changes as one moves away from the horizon or, more precisely, the r derivatives of the

metric functions. This, in turn, implies that to evaluate the current, we need only the leading coeffi-

cients in the coordinate transformation as described in equation (4.12). In the previous subsection,

we have already determined the expression for
√
h in terms of fluid data. In this subsection, we

shall compute∇kKij with appropriate index contractions for jilµi andR for jv

Extrinsic curvature and its covariant derivatives

The extrinsic curvature is defined as Kij = 1
2
∂vhij|r=0. On the horizon, the r = 0 hypersurface,

hij is simply related to χµν .

hij = lµi l
ν
jχµν (4.36)

Here we have used the fact that
(

∂ρ
∂αi

)
vanishes on the horizon. Now, using the fact that ∂v = t · ∂,

we could determineKij as

Kij = lµi l
ν
jKµν where Kµν = −tαΓα,µν (4.37)

Here we have used the fact that

(t · ∂)lµi = (li · ∂)tµ, and χµν(li · ∂)tµ = −tµ(li · ∂)χµν

Now we have to compute its covariant derivative. The following structure would prove useful for

our computation. Note, for any boundary tensor with lower {µ, ν} indices, we could define the

following horizon tensor with {i, j} indices

Ti1i2···in = lµ1

i1
lµ2

i2
· · · lµn

in
Tµ1µ2···µn

Now it turns out that the covariant derivative of the above tensor ∇jTi1i2···in also has a similar

expression in terms of {µ, ν} indices of the boundary coordinates. We couldwrite it in the following

way

∇jTi1i2···in = lνj l
µ1

i1
lµ2

i2
· · · lµn

in
[DνTµ1µ2···µn ] (4.38)
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where Dν is a new covariant derivative with its connection defined as

Γ̃ν
αβ = χ̄νθΓθ,αβ + tν∂αt̃β

where t̃µ ≡
(
∂v

∂xµ

)
, χ̄µν = ∆µ

α∆
ν
β χ

αβ, ∆α
β ≡ δαβ − tαt̃β

(4.39)

One could easily show these structures by acting the covariant derivatives on vectors and recur-

sively using the relations for higher indexed tensors. Note the new connection Γ̃µ
αβ is also sym-

metric in its lower two indices. The other mixed tensor we defined here is actually a projector to

constant v slices of the horizon because

tα∆β
α = ∆α

β t̃α = 0

Using these structures, we could see that

∇kKij = lαk l
µ
i l

ν
jDαKµν

= lαk l
µ
i l

ν
j

[
∂αKµν − Γ̃β

αµKβν − Γ̃β
ανKµβ

]
where Kµν = −tαΓα,µν

(4.40)

The spatial current on the horizon will add the following contribution to the boundary entropy

current

Jµ
space =

1√
g(b)

∆ lµa

(√
h ja

)
= −4α2 1√

g(b)
∆ lµa

√
h
(
hkihja − hkahij

)
(∇kKij)

Now using the identity hijlµi lνj = χ̄µν , we finally get the following expression for the space part

of the entropy current

Jµ
space = −4α2 1√

g(b)

√
H
(
χ̄γαχ̄µβ − χ̄γµχ̄αβ

)
(DγKαβ) where H ≡ n̂µn̂νϵ

µµ1···µnϵνν1···νnχµ1ν1 · · ·χµnνn

n!

(4.41)

Intrinsic Ricci scalar

For the temporal part of the entropy current, we need to compute the intrinsic Ricci scalar of the

constant v slices of the horizon.

In this section, we note down the calculation for the Ricci scalar,R, with respect to hij .
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We start with the expression for the Riemann tensor

Ra
bcd = ∂cΓ

a
bd + Γa

cmΓ
m
bd − (c↔ d) (4.42)

Now we will process ∂cΓa
bd in the following way

∂cΓ
a
bd = ∂c (h

apΓp,bd)

= ∂ch
apΓp,bd + hap∂cΓp,bd

= −haqΓp
cqΓp,bd − Γa

crΓ
r
bd + hap∂cΓp,bd

(4.43)

where in the last line, we have used

∂ch
ap = −haqhpr∂chrq

∂chrq = Γr,cq + Γq,cr

(4.44)

Hence, we have

∂cΓ
a
bd + Γa

crΓ
r
bd = −haqΓp

cqΓp,bd + hap∂cΓp,bd (4.45)

So, we can write the expression for the Riemann tensor in the following form

Rabcd = ∂cΓa,bd − Γp
caΓp,bd − (∂dΓa,bc − Γp

daΓp,bc) (4.46)

Now the expression for the Γk,ij in the following

Γk,ij = lµi l
ν
j l

α
kΓα,µν + χµν l

µ
k

(
li · ∂lνj

)
(4.47)

Then we can process ∂cΓa,bd in the following way

∂cΓa,bd = (lc · ∂) [lµb l
ν
d l

α
aΓα,µν + χµν l

µ
a (lb · ∂lνd)] (4.48)

And also,

Γp
caΓp,bd

= hpmΓm,caΓp,bd

= χ̄α1αlµc l
ν
al

µ1

b l
ν1
d Γα,µνΓα1,µ1ν1 +∆α

ν1
lµc l

ν
aΓα,µν (lb · ∂lν1d ) + ∆α1

ν l
µ1

b l
ν1
d (lc · ∂lνa) Γα1,µ1ν1

+ χνν1 (lc · ∂lνa) (lb · ∂l
ν1
d )

(4.49)

82



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

where, we have defined χ̄αβ = lαi l
β
j h

ij and used the fact that χ̄αβχβν = ∆α
ν .

Then we have

∂cΓa,bd − Γp
caΓp,bd

=Γα,µν [l
ν
d l

α
a (lc · ∂) l

µ
b + lµb l

α
a (lc · ∂) lνd + lµc l

α
a (lb · ∂) lνd ]

+ lµb l
ν
d l

α
a l

β
c [∂βΓα,µν − χ̄α1α2Γα2,βαΓα1,µν ] + χµνl

µ
a [(lc · ∂) (lb · ∂lνd)]

+ tαΓα,µν

[
lµc l

ν
a t̃ν1 (lb · ∂l

ν1
d ) + lµb l

ν
d t̃ν1 (lc · ∂lν1a )

]
(4.50)

Hence, we have the expression forRabcd as

Rabcd = [∂βΓα,µν − χ̄α1α2Γα2,βαΓα1,µν ]
[
lµb l

ν
d l

α
a l

β
c − lµb l

ν
c l

α
a l

β
d

]
+ tαΓα,µν∂δ t̃ν1

[
lµb l

ν
c l

δ
dl

ν1
a + lµd l

ν
al

δ
b l

ν1
c − lµb l

ν
d l

δ
c l

ν1
a − lµc l

ν
al

δ
b l

ν1
d

] (4.51)

So, finally we have

R =hachbdRabcd

=
[
χ̄µνχ̄αβ − χ̄ανχ̄µβ

] [
∂βΓα,µν − χ̄α1α2Γα2,βαΓα1,µν − 2tα1Γα1,µν∂αt̃β

] (4.52)

Hence, we finally get the following expression for the intrinsic Ricci scalar

R = (χ̄µ1ν1χ̄µ2ν2 − χ̄µ1ν2χ̄µ2ν1)

[
∂µ1Γν1,µ2ν2 − χ̄α1α2Γα1,µ1ν1Γα2,µ2ν2 − 2tαΓα,µ1ν1

(
∂µ2 t̃ν2

) ]
(4.53)

Separating ‘fluid’ and ‘non-fluid’ terms

The final form of the entropy current written in terms of boundary coordinates {xµ} is

Jµ = Jµ
space + Jµ

time

where Jµ
space = −4α2 1√

g(b)

√
H

||t||
(
χ̄γαχ̄µβ − χ̄γµχ̄αβ

)
(DγKαβ)

Jµ
time =

1√
g(b)

√
H
(
1 + 2α2R

)
n̂µ

(4.54)

R is given in equation (4.53).

In this expression of the current, most of the terms are ‘fluid’ terms in the sense that they depend

83



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

solely on the metric components and their derivatives written in boundary coordinates. The excep-

tions are those terms where one has explicit t̃µ, e.g., in ∆µ
ν = δµν − tµt̃ν . These terms could be

further processed by expressing t̃µ in terms of ∂µϕ using equation(4.31). The expressions turn out

to be too big to be presented here. We have collected them in appendix (B.3).

In the final stage, we would like to evaluate this current on the hydrodynamic metric correctly

up to first order in derivative expansion. However, just looking at equation (4.54), we could figure

out that Jµ
space is of second order. This is because Γα,µν is always of first order in terms of derivative

expansion and so is Kαβ ∼ tµΓµ,αβ . It follows that Jµ
space ∼ DγKαβ ∼ O(∂2). Using a similar

argument, we could show that R is also of O(∂2), where we have used the fact that t̃µ is of order

O(1) in terms of derivative expansion. Therefore, up to first order in derivative expansion, there

will not be any contribution to the entropy current from the Gauss-Bonnet correction. To have any

non-trivial result, we need to go at least one higher order in derivative expansion, which we leave

for future work.

4.5 Future Directions

If we follow our construction, the boundary entropy current will involve one ‘non-fluid’ function,

the scalar field ϕ, whose exponential relates the two different parametrizations of the horizon null

generator. But the fluid entropy current must not have any other field other than the fluid velocity

and its local temperature. So the next natural question is whether we could use the non-uniqueness

of the currents on both horizon and the boundary side to remove this unwanted ϕ dependence.

Einstein-Gauss-Bonnet theory is the simplest well-studied example where such currents and am-

biguities could be explicitly constructed and tested. But unfortunately to the order that we have

worked here, no such fixing is required since up to this order all the non-trivial structures that have

this ‘non fluid’ ∂µϕ factor just vanish. So our future goal would be to extend this calculation to

order O(∂2). In this section we shall set up the stage for this future calculation.
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4.5.1 Conditions of stationarity

Asmentioned before, the entropy current and the entropy density in higher derivative theories work

only for horizons where the amplitude (let’s denote it as ϵ) of the dynamics is small and could be

treated perturbatively. Moreover, the construction in [37, 38] works only up to the linear order in

ϵ. So we should not expect the dual fluid entropy current to do any better. In other words, while

applying formula (4.26), we should ignore all terms that are of O(ϵ2) or higher in χµν , tµ or t̃µ.

Now derivative expansion is not the same as amplitude expansion. It is quite possible to have terms

that are linear in ϵ but higher order in terms of derivative. So we need to have a clean prescription

to identify fluid data that are linear in amplitude (but in principle, could have multiple derivatives).

A stationary fluid on the boundary (where both the boundary metric and the fluid configuration

admit at least one Killing vector) should be dual to a stationary bulk metric with a Killing horizon.

In other words, the Killing vector on the boundary could be extended to a bulk Killing vector, which

on the horizon reduces to the Killing generator of the horizon. In terms of equations, what we mean

is the following. Suppose ξ = ξA∂A is the bulk Killing vector.

Since it reduces to the generator of the horizon (the r = 0 hypersurface in our choice of coordinates)

lim
r→0

ξr = 0, lim
r→0

ξµ ∝ Gµr|r=0

Further, ξA∂A should reduce to the boundary Killing vector ξµ(b)∂µ in the limit r → ∞

lim
r→∞

ξr = 0, lim
r→∞

ξµ = ξµ(b)

Now for our analysis, we shall assume4 that

lim
r→0

ξµ = Gµr|r=0 = ξµ(b)

4This assumption could be justified as follows. Let’s choose a coordinate system where ξA∂A = ∂τ , i.e. τ is
the parameter along the integral curve of ξA. The Killing coordinate is τ , and hence, the metric could be expressed
such that all of its components are independent of τ . Since the boundary metric is just the boundary limit of the bulk
metric, its components should also be independent of τ . The same should be true of the fluid variables like velocity
and temperature as the bulk metric components are functions of these variables only. Therefore the same τ will also
be a Killing coordinate from the perspective of the stationary boundary fluid.
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The above condition will result in a set of constraints both on the fluid data and the horizon data

(vanishing of some particular fluid/ horizon structures), respectively. Any violation of these con-

straints will be a departure from stationarity and, therefore, generically of order O(ϵ) terms. We

have a clean classification of such terms on the horizon side and using the map, we could translate

them to the fluid side. The O(ϵ) terms, thus derived on the fluid side, should be automatically

compatible with constraints of stationarity (and departure from it) as expected from any stationary

fluid configuration.

Product of two such order O(ϵ) terms will be order O(ϵ)2 and therefore neglected.

4.5.2 Choice of Fluid Frames

In section 4.2, we have presented the metric dual to boundary fluid dynamics (see equation (4.8)).

This metric is written in terms of fluid velocity (uµ) and temperature (T ). But as one goes to higher

order in derivative expansion, one has the freedom to redefine the velocity and the temperature of

the fluid. This ambiguity is present in fluid dynamics itself and is usually fixed by a specific choice

of fluid frames. Now fluid dynamics is about the dynamics of the stress tensor and other conserved

charges of the system. So the fluid frames are also usually defined in terms of the stress tensor or

the currents. For example, in ‘Landau frame’ the velocity of the energy flow is defined as uµ. This

implies that uµ is the unique time-like eigenvector of the stress tensor (normalized). Once uµ (and

temperature) is unambiguously defined, the dual bulk metric is constructed. A given definition of

the fluid frame amounts to a given boundary condition for the metric function while solving for the

bulk metric.

In this section, we shall adopt a different choice of fluid frame which would be more suitable for

our purpose, and in particular, for the description of equilibrium. We shall define our new velocity

uµ as

uµ ≡ n̂µ, where nµ = Gµr|r=0 and n̂µ =
nµ√

−nµnνg
(b)
µν

For brevity, we shall denote this choice of velocity as ‘Gravity frame’. One could choose this frame
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only if the fluid admits a gravity dual. Note that

uµ|gravity frame = uµ|Landau frame +O (∂)

So in zeroth order in derivative, these two definitions of velocity agree as they should. In fact, it

turns out that even at first order in derivative expansion, these two velocities agree; the difference

starts only at second order. However, since in this chapter, our computations are correct only up

to first order in derivative expansion, this frame redefinition becomes particularly simple for us.

Basically, it says there is no transformation at all up to first order in derivatives.

4.5.3 Metric Dual to Hydrodynamics in Gauss-Bonnet Theory in Gravity
frame

The metric dual to hydrodynamic in Einstein-Gauss-Bonnet theory has been worked out in [83] up

to first order in derivative expansion. However, in [83] the main concern was boundary hydrody-

namics and therefore, the author has worked in a slightly different gauge than what is described

in equation (4.10). In this subsection, we shall work out the same metric, but in the gauge most

convenient for our purpose , i.e., using the gravity frame described in the previous section.

The action for the full ”Einstein + Gauss-Bonnet” theory is given by 5

S = SE + α2 SGB

SE = − 1

4π

∫
d5x

√
−g(R− 2Λ)

SGB = − 1

4π

∫
d5x

√
−g(R2 − 4RABRAB +RABCDRABCD)

(4.55)

We will parametrize Λ 6 as Λ = −6 (1− 2α2).
5Here, we have used the convention 4G5 = 1 (whereG5 is the Newton’s constant in five dimensions) to have only

the horizon area term without any extra proportionality constants as the entropy of the Einstein theory. Accordingly,
the proportionality constant in SE and SGB have been modified from those used in [83].

6In [83], to ensure the fact that the boundary metric is exactly equal to the Minkowski metric - ηµν , the author has to
scale the boundary coordinates in an α dependent manner. As a result in the final covariant bulk metric the component
Gρµ is no longer equal to −uµ, rather just proportional to it with an α dependent constant as proportionality factor.
However, in our analysis we have crucially used the fact that Gρµ = −uµ and also the calculation simplifies if the
boundary metric is just equal to ηµν . It turns out if we want to impose both these conditions on the bulk metric, we
need to scale the consmological constant.
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The equations of motion of the full theory are given by

EMN =

(
RMN − 1

2
gMNR + ΛgMN − 1

2
α2 gMN(R

2 − 4RABRAB +RABCDRABCD)

)
+ α2

(
4RMPQLR

PQL
N − 4RPQRMPNQ − 4R P

MRNQ + 2R RMN

) (4.56)

The black-brane metric which is dual to a boundary fluid and solves these equations of motion

up to first order in derivatives as well as in α2 is given by

ds2 = −2uµdx
µdr + χµνdx

µdxν (4.57)

Note that in this gauge, the boundary metric will be of the form g
(b)
µν = ηµν and lowering and

raising of the boundary indices have to be done w.r.t g(b)µν . χµν can be expressed as

χµν =− r2H f

(
r

rH

)
uµuν + r2H K

(
r

rH

)
Pµν + rH F

(
r

rH

)
σµν + rH V

(
r

rH

)
(uµaν + uνaµ)

+ θ

(
rH S1

(
r

rH

)
uµuν + rH S2

(
r

rH

)
Pµν

)
(4.58)

As mentioned before, here, rH is the scale associated with the black hole solution. The functions

used in (4.58) are defined as

f(x) = (1 + x)2
[
1−

(
1

1 + x

)4
]
− 2 α2

[
(1 + x)4 − 1

]
(1 + x)6

K(x) = (1 + x)2

V (x) =− x

S1(x) =
2x

3

S2(x) =0

F (x) =F0(x) + α2 Fα(x)

(4.59)
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with,

F0(x) =
1

2
(x+ 1)2

(
−4 log(x+ 1) + 2 log(x+ 2) + log(x(x+ 2) + 2)− 2 tan−1(x+ 1) + π

)
Fα(x) =

1

(1 + x)2

[
π(x+ 1)4 − 4x(x(x+ 3) + 3)− 4(x+ 1)4 log(x+ 1) + 4 log(x+ 2) + 3 log(x(x+ 2) + 2)

+ x(x+ 2)(x(x+ 2) + 2)(4 log(x+ 2) + 3 log(x(x+ 2) + 2)− 2 log((x+ 2)(x(x+ 2) + 2)))

− 2 log((x+ 2)(x(x+ 2) + 2))− 2(x+ 1)4 tan−1(x+ 1)− 1

]
(4.60)

and the fluid variables θ and σµν and the projector Pµν are given by

Pµν = g(b)µν + uµuν

θ = ∂ · u

σµν = Pα
µ P

β
ν ∂(αuβ)

(4.61)

4.5.4 Stationary solution in Gravity frame

In a stationary metric with horizon located at r = 0, the Killing vector is ξµ ∝ Gµr|r=0. According

to our assumption

ξµ(b) ∝ Gµr|r=0, ⇒ ξµ(b) ∝ uµ in Gravity frame

Now in a stationary situation Gµr is proportional to the Killing vector, both for the Bulk and the

boundary metric. Therefore, in case of stationary fluid, this particular choice of frame amounts to

choosing the fluid velocity in the direction of the Killing vector for the boundary metric.

In this subsection, we shall start from the assumption that ξA∂A = ξr∂r + F (r, xµ)uµ∂µ. Then

we shall derive the conditions uµ must satisfy so that ξA∂A is a bulk Killing vector. We shall see

that uµ will turn out to be proportional to the boundary Killing vector as expected, with its shear

tensor and expansion vanishing everywhere.

Now we will show that if we have a Killing vector proportional to the fluid velocity uµ, then the

expansion and shear tensor will vanish. We will also get constraints on the proportionality constant

such that this condition is satisfied.

89



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

We will start by writing the fluid metric in a way such that the horizon is located at the origin of

the radial coordinate.

ds2 = −2uµ dx
µ dr − r2H f (r/rH) (uµdx

µ)2 + (r + rH)
2Pµν dx

µ dxν + χ(1)
µν dx

µ dxν (4.62)

where, χ(1)
µν contains terms first order in derivative of the fluid variables.

Then the killing vector will have the following form

ξA∂A ∝ Gµr|r=0 = F uµ∂µ (4.63)

where, F is the proportionality constant.

In covariant form this becomes

ξAdx
A = F dr + F

[
r2H f (r/rH) uα + uµχ(1)

µα

]
dxα (4.64)

Now we will solve for the Killing equation on this and write down the conditions it will give on F

and χ(1).

The Killing equation is

∇AξB +∇BξA = 0 (4.65)

The (r, r) component of which will give the following condition

∂rF = 0 (4.66)

The (r, µ) component will give

∂µF − F aµ = 0 (4.67)

where, aµ = (u · ∂) uµ.

The (µ, ν) component will give

r2H f (r/rH)

[
uµ (∂νF − F aν) + uν (∂µF − F aµ)

]
+ 2F (r + rH)

2σµν

+ F r(r + rH)
2θ

D − 2
Pµν + rH F [2rH f (r/rH)− r f ′ (r/rH)]

θ

D − 2
uµuν = 0

(4.68)
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where we have used the following identity and fluid constraint equation, ∂µuν = σµν + ωµν −

uµaν +
θ

D−2
Pµν and (u·∂)rH

rH
+ θ

D−2
= 0.

Now to be consistent with (4.67) we should have

θ = 0, σµν = 0 (4.69)

Hence, we could show that with vanishing shear tensor and expansion, F uµ is actually a Killing

vector with F satisfying (4.66) and (4.67).

Note that F = 1
rH

is a solution to (4.66) and (4.67). Also note that in [128] the Killing vector

ξα = c
T
uα where, T is the local temperature T =

(
D−1
4π

)
rH and c is a constant. Hence, up to an

overall constant, the two Killing vectors are equivalent.

Hence, these stationarity conditions are identical to the ones derived in [128] from the perspective

of a stationary boundary fluid.

4.6 Conclusion

The construction of [37, 38] gives an expression of entropy density and entropy current on the dy-

namical black hole solution in the higher derivative theories of gravity. However, this construction

works (i.e, it leads to entropy production) only when the amplitude of the dynamics is small, and

all terms quadratic or higher order in the amplitude are neglected. Recently it has been extended

to quadratic order in amplitude [39]. But clearly, this is not the most satisfying answer; the second

law should hold for any dynamics irrespective of its amplitude. Our final goal is to extend the

construction of [37, 38] to the nonlinear orders in amplitude.

In this chapter, we have used fluid-gravity correspondence to construct a dual entropy current

in the boundary fluid by lifting the entropy current on the horizon via a horizon to boundary map.

Since our horizon entropy current works only up to the linear order in the amplitude, we should not

expect the fluid entropy current to do any better. So the entropy current constructed in this manner
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will have non negative divergence only up to the linear order in the dynamical fluid data.

However, in relativistic hydrodynamics we independently know how to extend a given entropy

current that works only up to linear order in amplitude, to an entropy current where the amplitude

is no longer a perturbation parameter [94]. So it is reasonable to hope that if we could construct the

dual fluid entropy current nonperturbatively and use the horizon to boundary map in reverse, we

might be able to say something about the entropy current in higher derivative theories of gravity in

a similar nonperturbative manner.

With this goal in mind, in this chapter, we have taken the first baby step of constructing the

fluid entropy current dual to the horizon entropy current [37,38] in dynamical black holes of Gauss-

Bonnet gravity. The fluid entropy current thus constructed depends non trivially on the mapping

functions that relate the boundary coordinates with the horizon coordinates. This dependence has

complicated our construction since these mapping functions need not admit a derivative expansion

like the fluid variables. The immediate future direction would be to search for a particular set of

mapping functions so that the final fluid entropy current is expressible only in terms of fluid and

fluid-like variables that admit derivative expansion in every stage.

In this chapter, we have made a couple of simplifications in this direction. Since both the hori-

zon and the boundary are codimension-one hypersurfaces, naively, there could be (D − 1) such

mapping functions, where D is the number of bulk dimensions. But using some symmetry and

re-arrangement, we could reduce it to only one scalar ‘non fluid’ function, which could be ϕ(xµ)

or v(xµ). This scalar is also largely constrained in the sense that if it is specified on a given spatial

slice, the consistency equation will fix it everywhere on the horizon (or boundary). So finally, the

task of finding appropriate (D − 1) scalar ‘mapping functions’ has been reduced to the search for

an appropriate equation, constraining a single scalar on a given spatial slice.

In this context, it might be useful to note that the horizon and also the entropy on it have sym-
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metry under the reparametrization of the horizon generator. It has been explored in the case of

Einstein-Gauss-Bonnet theory in [3,39]. The discussion could be extended to include ‘non-affine’

reparametrization of the horizon generators, which might have some direct application for our anal-

ysis here.
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Part II

Stability and Causality in theories of
Relativistic Hydrodynamics
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Chapter 5

Causality Criteria from Stability Analysis at
Ultra-High Boost
This chapter is based on [96].

It has been established that the group velocity of the propagating mode exceeding the speed

of light for some frequency range does not violate causality, as long as it is subluminal at the in-

finite frequency (wavenumber) limit [103, 104]. This necessary condition for causality is called

the asymptotic causality condition which has been widely used to check the causal validity of a

hydrodynamic theory [129–131]. But the conceptual anomaly with this approach is that the hy-

drodynamic gradient expansion has been tested to be a divergent series with factorial growth of

large order corrections indicating a zero radius of convergence [132, 133]. Given the situation, an

alternate definition of causality is imperative. On the other hand, the stability of a relativistic sys-

tem has been known to behave distinctly depending upon the observer’s frame of reference [56].

This issue has been recently addressed in [107,134], where it has been argued that frame-invariant

stability is possible only if the theory respects causality. The objective of this chapter is to employ

the frame-invariance of the stability property of a theory to establish its causality constraints. The

non-triviality again comes from the fact that checking linear stability at arbitrary reference frames

to identify the invariantly stable parameter space can be a cumbersome job. In this chapter for

two well-known stable-causal theories, we have demonstrated that the linear stability analysis in a

reference frame boosted to a near luminal speed can alone provide the stability invariant parame-

ter space at the spatially homogeneous limit of the theory and hence can be used to determine the

causal domain of the theory as well. In [135], this identification has been observed from a kinetic

theory derivation of a stable-causal first-order theory. Here, we show that one can solely use the

low-wavenumber stability analysis to produce the exact results of asymptotic causality in the MIS
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and BDNK theories. The analysis presented here serves as a case study of two most well-known

stable-causal theories to show that the causality of a theory can be probed without departing from

the small-k domain. Since relativistic hydrodynamics is a low-energy effective theory, hence we

believe this approach provides us with a more appropriate definition of causality.

5.1 Basic setup

In this chapter, hydrodynamic stability has been analyzed in a generalized Lorentz frame with an

arbitrary boost velocity for both second-order Müller-Israel-Stewart (MIS) theory [60, 136, 137],

and the recently proposed first-order stable-causal (BDNK) theory [61, 63, 138, 139]. We lin-

earize the conservation equations for small perturbations of fluid variables around their hydro-

static equilibrium, ψ(t, x) = ψ0 + δψ(t, x), with the fluctuations expressed in the plane wave

solutions via a Fourier transformation δψ(t, x) → ei(kx−ωt)δψ(ω, k), (subscript 0 indicates global

equilibrium). The background fluid is considered to be boosted along the x-axis with a constant

velocity v, uµ0 = γ(1, v, 0, 0) with γ = 1/
√
1− v2. The corresponding velocity fluctuation is

δuµ = (γvδux, γδux, δuy, δuz) which gives uµ0δuµ = 0 to maintain the velocity normalization. In

the following analysis, we present the leading order stability analysis (at k → 0 limit) for both the

theories at conformal, charge less limit.

5.2 Conventions and notations

Throughout the manuscript, we have used natural unit (h̄ = c = kB = 1) and flat space-time with

mostly positive metric signature ηµν = diag (−1, 1, 1, 1). The used notations read, D ≡ uµ∂µ,

∇µ = ∆µν∂ν , σµν = ∆µν
αβ∂

αuβ with∆µναβ = 1
2
∆µα∆νβ+ 1

2
∆µβ∆να− 1

3
∆µν∆αβ and∆µν = ηµν+

uµuν , ϵ ≡ energy density, P ≡ pressure, uµ ≡ hydrodynamic four-velocity, τπ ≡ relaxation time

of shear-viscous flow, η ≡ shear viscous coefficient, E , θ are first order field correction coefficients

of BDNK theory. From the constraints of the second law of thermodynamics, η should always be

a positive number [140]. The scaling notation x̃ denotes x/(ϵ0 + P0).
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

5.3 Identifying stability invariant parameter space from ultra-
high boost

First, we discuss the case of MIS theory where the energy-momentum tensor takes the form, T µν =

ϵuµuν+P∆µν+πµν . The conservation of energy-momentum tensor ∂µT µν = 0 and the relaxation

equation of shear viscous flow πµν = −τπ∆µν
αβDπ

αβ − 2ησµν together give us the equations of

motion to be linearized. In the transverse or shear channel, the leading term of the frequency

(ω) solution in wavenumber k-expansion is a single non-hydro non-propagating mode, ω⊥
MIS =

−i/γ(τπ − η̃v2). Now the demand that stability requires the imaginary part of the frequency to be

negative renders the stability criteria τπ/η̃ > v2 [104]. For sound channel, the leading order single

non-propagating mode turns out to be, ω∥
MIS = −i(1 − v2

3
)/γ[τπ(1 − v2

3
) − 4η̃

3
v2]. For the range

of boost velocity 0 ≤ v < 1, the stability condition becomes, τπ/η̃ > 4
3
v2/(1 − v2

3
). In both the

channels, the right-hand sides of the inequalities for τπ/η̃ are monotonically increasing functions

of v within the mentioned range that allow only positive values of τπ and give the strictest bound

for v → 1. So we infer that the allowed parameter space over the transport coefficients η and τπ set

by stability criteria at the spatially homogeneous limit (k → 0) for any boost velocity v, is always

a subset of the same for any lower value of v. Hence, we conclude here that the v → 1 bound

(τπ > η̃ for shear channel and τπ > 2η̃ for sound channel) provides the necessary and sufficient

region in the parameter space where the system is stable at the spatially homogeneous limit for all

reference frames (0 ≤ v < 1). So here we see that for the MIS theory, checking stability alone in a

reference frame with ultra-high boost (v → 1) is sufficient to identify the frame-invariantly stable

parameter space at k → 0 limit.

Next, we discuss the case of BDNK theory for which the energy-momentum tensor takes the

form, T µν = (ϵ+ ϵ1)u
µuν +(P +P1)∆

µν +(uµW ν +uνW µ)+πµν , with the first order dissipative

field corrections, ϵ1 = E Dϵ
ϵ0+P0

+ E(∂ · u), P1 = E
3

Dϵ
ϵ0+P0

+ E
3
(∂ · u),W µ = θ[∇

µT
T

+ Duµ] and

πµν = −2ησµν . The shear channel analysis is identical to that of MIS theory with the replacement

τπ = θ/(ϵ0+P0) [63]. However, the situation becomes significantly more mathematically involved
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Figure 5.1: Linearly stable parameter space for MIS Shear channel (Left) and MIS Sound channel
(Right) for different v values

in the sound channel. The leading order ω solution in k-expansion gives rise to the quadratic

dispersion relation aω2 + bω + c = 0, with a = γ2[Ẽ θ̃ − 2
3
Ẽ(2η̃ + θ̃)v2 + 1

9
θ̃(Ẽ − 4η̃)v4], b =

iγ[(Ẽ + θ̃) − 1
3
(θ̃ + Ẽ + 4η̃)v2] and c = (v2/3 − 1). This dispersion polynomial gives rise to two

non-propagating, non-hydro modes whose stability has been analyzed using the Routh-Hurtwitz

(R-H) stability test [102]. The stability criteria constrain the parameter space for BDNK sound

channel through the two following inequalities,

Eθ
(
1− v2

3

)2

− 4

3
ηv2
(
E +

v2

3
θ

)
> 0 , (5.1)

(E + θ)

(
1− v2

3

)
− 4

3
ηv2 > 0 . (5.2)

Eq.(5.1) and (5.2) together necessarily confine the parameter space within the region,

θ

η
>

4

3

v2

(1− v2/3)2
,

E
η
>

4

9

v4

(1− v2/3)2
. (5.3)

The right-hand sides of both the inequalities are monotonically increasing functions of v which

allow only positive values of E and θwith lower bounds ranging from 0 to η and 0 to 3η respectively

as v ranges from 0 to 1. Following these conditions, Fig.5.2 shows that the parameter space where
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

the theory is stable at v → 1 is enclosed within the same for any lower value of v. So, identical

to the situation of MIS theory, for BDNK theory as well, the stability condition at v → 1, is a

necessary and sufficient condition for stability to hold at the spatially homogeneous limit for all

possible boost velocities 0 ≤ v < 1.
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Figure 5.2: Linearly stable parameter space for BDNK sound channel for different v values.

Given the above analysis for MIS and BDNK theories, we establish our first key finding here.

For relativistic dissipative hydrodynamic theories like BDNK and MIS, performing stability anal-

ysis at ultra-high boost velocity (v → 1) alone suffices to conclude the stability invariance of the

theory. Stability analysis at any other boost velocity lacks this confirmation. The stable parameter

space at v → 1 is a necessary and sufficient region of the theory for stability invariance to hold at

the spatially homogeneous limit.

5.4 Causality from stability analysis

In this section, we will prove that only the stability criteria at v → 1 limit is enough to provide the

region of parameter space over which each of these two theories is causal. The idea is that, since

it has been proven for theories like MIS and BDNK that the stability conditions at v → 1 identify

the region of parameter space where the system is frame invariantly stable, and since stability
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

invariance requires the causality properties of the theory to be respected according to the arguments

put forward in [107, 134], hence the stability constraints at ultra-high boost automatically lead us

to the causal region of the parameter space. For MIS theory, the stability conditions at v → 1 limit

for the shear and sound channels give us τπ
η̃
> 1 and τπ

2η̃
> 1 respectively. It can be shown that the

expressions on the left-hand sides of the inequalities for both channels are functions of the square

of respective asymptotic group velocities vg = limk→∞

∣∣∣∂Re(ω)∂k

∣∣∣, (v2g)⊥ = η̃/τπ and (v2g)∥ =
4η̃
3τπ

+ 1
3
.

These expressions for both the channels finally reduce to 0 < v2g < 1, and therefore, the stability

criteria at v → 1 boil down to the asymptotic causality condition 0 < v2g < 1 for the MIS theory in

the parameter range η, τπ > 0.

For BDNK theory, the shear channel stability condition at v → 1 gives θ
η
> 1, which is again

the asymptotic causality condition 0 < v2g < 1 where v2g = η
θ
. Next, for the BDNK sound channel,

we attempt to solve the inequalities (5.1) and (5.2) served as stability criteria in a boosted frame.

Stability inequality (5.1) can be recast as,

{(
1/v2

)
− x1

}{(
1/v2

)
− x2

}
> 0 , (5.4)

where x1, x2 are the roots of the equation,

(Eθ)x2 − 2

3
E(2η + θ)x+

1

9
θ(E − 4η) = 0 . (5.5)

Inequality (5.4) has two possible solutions x1, x2 < 1
v2 or x1, x2 >

1
v2 . Since |v| ranges from 0 to 1

and hence 1/v2 ranges from 1 to∞, the second solution turns out to the unphysical. The first and

only physically acceptable solution then gives us the strictest bound x1, x2 < 1 corresponding to

the limit v → 1. Now, incorporation of the second stability inequality (5.2) restricts the allowed

region to only positive values of E and θ. This restriction (along with η > 0) leads to a positive

discriminant of (5.5), which restricts both the roots of x to be real, among which at least one root

is always positive in our stable parameter space at v → 1. As it will be explicitly shown in the

next section doing a large k analysis of the theory that the quadratic equation satisfied by v2g for the

BDNK sound channel is exactly identical to (5.5), the inequalities (5.1) and (5.2) condense down
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together to give v2g < 1 with at least one v2g > 0 that produces two subluminal propagating modes.

So, our stability analysis at ultra-high boost independently identifies the causal parameter space of

the MIS and BDNK theories, which exactly reproduces the results of asymptotic causality analysis

for the respective theories without going to the large k limit.

5.5 Causality from large k analysis

Now, let us analyze the situation of causality in the high-k regime itself and compare how accurately

the subluminal parameter space has been predicted by stability analysis at ultra-high boost. At

the large k limit, an expansion of the form ω = vgk +
∑∞

n=0 cnk
−n is used [130] as a solution

of the dispersion equation from which a polynomial over the asymptotic group velocity vg can

be obtained. Next, we check the Schur stability of the polynomial [110] to check if the roots of

these equations are subluminal and, if they are, then how the parameter space is constrained by

them. Any polynomial P (z) of degree d is called “Schur stable” if its roots lie within a unit disc

around the origin of the complex plane. This can be tested by introducing a Möbius transformation

w = (z + 1)/(z − 1), which maps the unit disc about the origin of the complex plane into the left

half plane, i.e., Re(w) < 0 if |z| < 1. So, P (z) will be Schur stable if and only if the transformed

polynomial of the same degree Q(w) = (w − 1)dP
(
w+1
w−1

)
is Hurwitz stable. This method is

extremely efficient, especially in cases where a direct extraction of roots from the polynomial is

too complicated.

For the shear channels, the Schur stability conditions that can give rise to subluminal, propa-

gating modes are τπ − η̃ > 0 and τπ + η̃ > 0 for MIS and θ − η > 0 and θ + η > 0 for BDNK.

In both cases, the first conditions are identically the stability conditions obtained at v → 1 and the

second conditions are obvious if the first ones are satisfied. For the propagating modes of MIS

sound channel, the Schur stability conditions are given by τπ − 2η̃ > 0 and τπ + η̃ > 0. Again, the

first one is the v → 1 stability criterion, and the rest is its obvious implication. So, we conclude

that for both the shear channels and the MIS sound channel, the v → 1 stability region exactly
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reproduces the causal parameter space.

The situation in the BDNK sound channel is comparatively quite non-trivial. The v2g values are

to be extracted from the following quadratic polynomial with z = v2g ,

P (z) = (Eθ)z2 − 2

3
E(θ + 2η)z +

1

9
θ(E − 4η) = 0 , (5.6)

whose Schur stability needs to be checked to find the causal parameter space. Its Möbius transfor-

mation again turns out to be a quadratic polynomial,

Q(w) =

(
Eθ
3

− Eη − ηθ

3

)
w2 +

2

3
θ (η + 2E)w

+

(
4Eθ
3

+ Eη − ηθ

3

)
= 0 , (5.7)

whose Hurwitz stability requires all the three coefficients of Eq.(5.7) to be of the same sign, either

positive or negative (along with a positive discriminant of P (z) to ensure that all the non-real roots

of v2g on the complex plane are excluded).
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Figure 5.3: The subluminal parameter space for BDNK sound channel from Schur stability.

In Fig.5.3, the parameter space for which both the roots satisfy
∣∣v2g∣∣ < 1 are plotted for both the

positive as well as negative conventions. The regions IA (red, crisscrossed), IB (blue, crisscrossed)

and IC (black, solid-filled) are located within quadrants where both θ and E are of the same sign
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and indicate the regions of the parameter space where all the coefficients of (5.7) are positive. The

regions IIA (yellow, striped), IIB (green, striped) and IIC (black, solid-filled) are located within

quadrants with θ and E of opposite signs and denote the convention where all coefficients of (5.7)

are negative. Together, all of these regions (IA-C, IIA-C) provide the full causal parameter space

given by (5.6). Furthermore, the signs of the coefficients of (5.6) indicate that the regions IC and

IIC bounded by E > 4η, E < 0,−2η < θ < 0 give −1 < v2g < 0 for both roots and hence, fail to

generate any propagating mode. The rest of the regions (IA-B, IIA-B) correspond to at least one

0 < v2g < 1 and hence at least two subluminal propagating modes. The regions IA and IIA cover

the parameter space with the additional constraints E < 0, E > 4η, θ > 0, θ < −2η, which give us

both v2g values between 0 and 1 and hence, four subluminal propagating modes. The remaining two

regions, IB and IIB, belong to the parameter space constrained by 0 < E < 4η, which corresponds

to −1 < v2g < 0 for one root and 0 < v2g < 1 for the other, indicating the presence of two

non-propagating modes besides the existence of the two subluminal propagating modes.

Now comes a crucial identification; we observe that the causal parameter space in the first quad-

rant covered by the regions IA and IB together exactly agrees with the stable region at v → 1 and

hence, with the frame-invariantly stable parameter space as well. This can be readily checked by

realizing that the Schur condition from (5.7),−ηθ
3
−Eη+ Eθ

3
> 0 is exactly identical to the stability

constraint (5.1) at v → 1. The other two Schur conditions, θ(η+2E) > 0 and−ηθ
3
+Eη+ 4Eθ

3
> 0

along with a positive discriminant of (5.6), further restrict the region exclusively to within the

θ > 0, E > 0 quadrant for propagating modes, which exactly resembles the role played by (5.2)

with v → 1 to define the stable parameter space. So, the entire causal parameter space obtained

from the asymptotic equation (5.6) (by Schur convention I, all coefficients > 0) is fully identified

by the stable region at ultra-high boost depicted in Fig.5.2. In this context, we refer to the results

obtained in [139], where the large wave-number causality constraint is given solely by region IA

with four subluminal propagating modes. The analysis there lacks the region IB where two sublu-

minal propagating modes are present along with two non-propagating modes. We duly point out
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that this lacking region is stable in every reference frame (Fig.5.2), which invariably identifies this

region to respect causality since covariant stability is possible only for causal systems [107, 134].

So, we conclude that, because of the complexity involved, it is indeed difficult to analytically ex-

tract the full causal parameter space from the large-k dispersion polynomial. However, the method

of stability analysis at v → 1 presented in this chapter is much more effective in pointing out the

full stable and causal parameter space unambiguously.

We finally point out that for regions IIA and IIB, where θ and E are of opposite signs, the system

is unstable in all reference frames. As mentioned in the stability arguments of [134], there could

be other regions of the parameter space like IIA and IIB, where causality holds, but the system is

invariantly unstable in all reference frames. The stability criteria at ultra-high boost strictly give us

the parameter space where these two theories are causal as well as stable in all reference frames.

5.6 Conclusion

We have shown here, for the first time, for two well-known stable-causal hydrodynamic theories,

viz. MIS and BDNK, an alternate way to derive the region of parameter space over which the

theories are frame-invariantly stable at leading order in k and necessarily causal. Despite inherent

differences in their construction, our analysis reveals that linearized stability analysis at ultra-high

boost accurately leads us to the results of asymptotic causality conditions under which both the

theories are frame-invariantly stable, without going to the large-k limit. Since the whole analysis

is performed at a low-k limit, this approach liberates us from going to a non-perturbative high-k

regime that seems outside the domain of validity of a low-energy effective theory like relativistic

hydrodynamics. Moreover, in the presence of technical non-trivialities in solving the asymptotic

causality equations, our method of stability check at v → 1 is more effective and simpler in de-

tecting the causal parameter space. Although the current analysis has been carried out for a con-

formal, chargeless system, the results presented here do not lack in generality. In [135], a coarse-

grained derivation of a non-conformal, charged, stable-causal first-order theory indeed shows that
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the monotonically decreasing stable parameter space becomes the strictest bound for v → 1 which

singularly gives the causal parameter space as well.

The findings presented here heavily depend upon the monotonic behavior of the stable param-

eter space as a function of v. The monotonic behavior that exists for these two most well-known

stable-causal theories doesn’t hold for the relativistic first-order Navier-Stokes theory. This indi-

cates that this feature could be an important signature for pathology-free hydrodynamic theories.

Further, the prediction of high-k results from the low-k domain using ultra-high boost, as observed

here, indicates some possible connection between the two limiting k-regimes of the theories, which

requires further investigation. In Appendix A, we have derived our results for a more general class

of hydrodynamic problems and provided intuitive arguments in support of the current outcome.

The causality criteria considered here are asymptotic causality criteria, which are necessary but

not sufficient conditions [141]. A more rigorous study of causality requires a study of characteris-

tics [108, 109], which will be explored in our future endeavors.
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Chapter 6

Frame transformation and stable-causal hy-
drodynamic theory
This chapter is based on [98].

6.1 Introduction

6.1.1 Summary and discussion of our results

In this chapter, our goal is to rewrite the BDNK stress tensor in the Landau frame by redefining

the velocity and the energy density (temperature). In some sense, the key result of this work is the

relation between the fluid variables in BDNK formalism (denoted by uµ and T respectively) and

the velocity and the temperature field defined after frame transformation that are fixed through the

Landau gauge condition (denoted as ûµ and T̂ ). We have explicitly worked out the relation for

those fluid profiles that have small fluctuations around some global equilibrium. We have assumed

that the amplitudes of the fluctuations are small enough so that a linearized treatment is justified.

Further, in order to obtain an analytically tractable all-order theory, we have restricted our analysis

only to conformal, uncharged fluids in BDNK formalism.

To state our results in terms of equations, let us first introduce a notation uµ − ûµ = δuµ

and T − T̂ = δT . We have found that the shift variables δuµ and δT must satisfy the following

differential equations up to terms that are linear in δT , δuµ and their derivatives,

δT

T̂
+ χ̃

[
D̂T̂

T̂
+

∇̂µû
µ

3

]
+ χ̃

[
D̂δT

T̂
+

∇̂µδu
µ

3

]
= 0 ,

δuµ + θ̃

[
D̂ûµ +

∇̂µT̂

T̂

]
+ θ̃

[
D̂δuµ +

∇̂µδT

T̂

]
= 0 . (6.1)

Next, we develop a formal solution for the equations (6.1) using two different methods. In both
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cases, it is manifested that the solutions will have terms up to all orders in derivative expansion.

Finally, we introduce a set of new tensorial ‘non-fluid’ variables (like the shear tensor in MIS

theory) in order to recast the BDNK theory in an MIS-type formalism where the fluid variables

like velocity and the temperature are defined through the Landau gauge condition.

In the first method, the equivalent system of equations will have an infinite number of ‘non-

fluid’ variables with the following nested structure of the energy-momentum tensor T µν :

∂µT
µν = 0 , T µν = ε̂

[
ûµûν +

1

3
∆̂µν

]
+ π̂µν ,

(1 + θ̃D̂)π̂µν = −2ησ̂µν + ρµν1 ,

(1 + χ̃D̂)ρµν1 = (−2η)(−θ̃) 1
T̂
∇̂⟨µ∇̂⟩νT̂ + ρµν2 ,

(1 + θ̃D̂)ρµν2 = (−2η)(−θ̃)
(
− χ̃
3

)
∇̂⟨µ∇̂⟩ν∇̂ · û+ ρµν3 ,

(1 + χ̃D̂)ρµν3 = (−2η)(−θ̃)2
(
− χ̃
3

)
1

T̂
∇̂⟨µ∇̂⟩ν∇̂2T̂ + ρµν4 ,

(1 + θ̃D̂)ρµν4 = (−2η)(−θ̃)2
(
− χ̃
3

)2

∇̂⟨µ∇̂⟩ν∇̂2∇̂ · û+ · · ·

... (6.2)

In the second method, we need to introduce only one ‘shear tensor’ type non-fluid variable, but its

equation of motion turns out to be second order in spatial and third order in temporal derivatives,

∂µT
µν = 0 , T µν = ε̂

(
ûµûν +

1

3
∆̂µν

)
+ π̂µν ,[

(1 + θ̃D̂)(1 + χ̃D̂)− θ̃
χ̃

3
∇̂2

]{
(1 + θ̃D̂)π̂µν + 2ησ̂µν

}
= 2ηθ̃

{
1 + (θ̃ + χ̃)D̂

} ∇̂⟨µ∇̂ν⟩T̂

T̂
. (6.3)

We have analyzed the spectrum of linearized fluctuations in both systems and found that all the hy-

drodynamic modes match those of the BDNK theory. This indicates that in the regime where fluid

descriptions are applicable, all three systems of equations presented here are equivalent. However,

equations (6.2) and equations (6.3) also have some extra non-hydrodynamic modes which are not
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there in the BDNK theory. The emergence of these new modes is possibly connected with the zero

modes in the equations of the field redefinition (equations (6.1)) themselves.

Our equations are by no means more tractable than that of the BDNK. But here, the fluid vari-

ables have a clear and standard meaning, and since the velocity and temperature in BDNK theory

could be precisely transformed to these variables (though we have derived it only at a linearized

level), it attaches a similar definition to the BDNK fluid variables as well. Our analysis suggests that

even in BDNK theory, there will be hidden non-fluid variables (or an infinite number of deriva-

tives) if one would like to express the theory in terms of fluid variables only, which are locally

defined through stress-energy tensor as we have in ‘Landau frame’1.

6.1.2 Convention and notations

Throughout the chapter, we have used natural unit (h̄ = c = kB = 1) and flat space-time

with mostly positive metric signature gµν = diag (−1, 1, 1, 1). ε, T, P, uµ are, respectively, en-

ergy density, temperature pressure and hydrodynamic four-velocity. The local rest frame is de-

fined as uµ = (1, 0, 0, 0), ∆µν = gµν + uµuν is the space projection operator orthogonal to uµ.

∆µναβ = 1
2
∆µα∆νβ + 1

2
∆µβ∆να − 1

3
∆µν∆αβ is the traceless projection operator orthogonal to uµ

and ∆µν . Any rank-2, symmetric, traceless tensor is defined as, A⟨µBν⟩ = ∆µν
αβA

αBβ . The used

derivative operators read as: covariant time derivative D = uµ∂µ, spatial gradient ∇µ = ∆µν∂ν

and traceless, symmetric velocity gradient σµν = ∂⟨µuν⟩. η is the shear viscous coefficient, τπ is

the relaxation time of shear-viscous flow πµν of MIS theory, χ, θ are the first order field correction

coefficients of BDNK theory. From the constraints of the second law of thermodynamics, η should

always be a positive number [140]. The scaling notation x̃ denotes x/(ε + P ). We linearize the

conservation equations for small perturbations of fluid variables around their hydrostatic equilib-
1In this context, we should mention the analysis in [142]. Here also, the authors connect the MIS and the BDNK

type formalism with field redefinition. However, the authors here tried to explain this field redefinition ambiguity
more from a microscopic point of view. Whereas, in our analysis, we are completely agnostic about the microscopic
descriptions or statistical interpretation of these field redefinitions. As a result, we could find more than one way (in
fact, in principle, there should be just an infinite number of ways) of ‘integrating in’ the non-fluid variables for the
same BDNK theory but recast in the Landau frame.
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rium, ψ(t, x) = ψ0 + δψ(t, x), with the fluctuations expressed in the plane wave solutions via a

Fourier transformation δψ(t, x) → ei(kx−ωt)δψ(ω, k), (subscript 0 indicates global equilibrium).

6.1.3 Outline of the rest of the chapter

This chapter is organized as follows. In section 6.2, we describe theMIS theory in its simplest form,

and then we show how integrating out the extra ‘non-fluid’ variable results in a stress tensor with

an infinite number of derivatives. This section will act as a warm-up for the techniques of infinite

sum to be used in the next section. Also, it indicates how a causal theory in the Landau frame,

if expressed only in terms of fluid variables, turns out to have an infinite number of derivatives.

In the next section 6.3, we describe the BDNK theory and redefine the velocity and temperature

variables (only at the linearized level) to bring them to the Landau frame. Redefinition involves

generating an infinite number of derivatives. We can sum these infinite series in two different ways

as described in two different subsections of section 6.3. These two different ways of summation lead

to two different methods of ‘integrating in’ new ‘non-fluid’ variables, showing the non-uniqueness

of the process of ‘integrating in’ new variables. In section 6.4, the dispersion relations and the

corresponding spectra of these different systems of equations have been analyzed to check that

our systems of equations are indeed equivalent to BDNK formalism, at least in the hydrodynamic

regime. Finally, in section 6.5, we conclude.

6.2 MIS theory - an infinite order fluid formalism

The pathologies regarding superluminal signal propagation and thermodynamic stability of the

long-established relativistic first-order theories [55, 143], have been first taken care by the higher

order MIS theory [56,111], where the dissipative field corrections are promoted to new degrees of

freedom [59, 60, 136, 137]. Keeping up to the linear terms, the MIS equations of motion are given
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by [50],

∂µT
µν = 0 , T µν = ε

[
uµuν +

1

3
∆µν

]
+ πµν , (6.4)

πµν + τπDπ
µν = −2ησµν . (6.5)

Here, we attempt to derive the combined results of Eq.(6.4) and (6.5) without treating πµν as an

independent degree of freedom. Instead of attributing an individual differential equation to πµν

like Eq.(6.5), we express it as a sum of gradient corrections that includes all derivative orders in

Eq.(6.4) itself such as,

πµν =
∞∑
n=1

πµν
n ,

πµν
1 = −2ησµν , πµν

n = −τπDπµν
n−1 , n ≥ 2 . (6.6)

This leads to the shear-stress tensor as the following,

πµν =− 2η

{
∞∑
n=0

(−τπD)n
}
σµν (6.7)

=− 2η (1 + τπD)−1 σµν . (6.8)

So, we conclude that if we want to write the MIS theory without introducing any additional degrees

of freedom, this will lead to a stress tensor that is defined up to all orders of gradient correction. Any

finite truncation of Eq.(6.7) fails to produce the relaxation operator like structure in the denominator

of Eq.(6.8). However, it is to be noted that Eq.(6.5) is local in both time and space, whereas Eq.(6.8)

becomes non-local in time since the frequency of the corresponding Fourier mode appears in the

denominator. The details of the acausality of a truncated series in Eq.(6.7) can be found in [97].

6.3 BDNK theory and the transformation of the ‘fluid frame’

In the last few years, a new study of the relativistic first-order stable-causal theory (BDNK theory)

has been proposed by defining the out-of-equilibrium hydrodynamic variables in a general frame

other than that is defined by Landau or Eckart, through their postulated constitutive relations that
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include spatial as well as temporal gradients [61,63,64,67,138,139] . In BDNK theory, if we further

impose conformal symmetry and no conserved charges, the energy-momentum tensor (T µν) takes

the form,

T µν = (ε+A)

[
uµuν +

∆µν

3

]
+ [uµQν + uνQµ]− 2ησµν , (6.9)

with the first-order dissipative field corrections as,

A = χ

[
3
DT

T
+∇µu

µ

]
, Qµ = θ

[
∇µT

T
+Duµ

]
. (6.10)

We have used the identityDε/(ε+P ) = 3DT/T for a conformal system where the energy density

goes as ε ∼ T 4, and it is connected with the pressure P as (ε + P ) = 4ε/3 2. The dispersion

relations resulting from Eq.(6.9) produce stable-causal modes only with non-zero values of θ and

χ. The neatness of this method lies in not requiring any additional degrees of freedom other than

the temperature and velocity to preserve causality and stability. Eq.(6.9) and (6.10) also show that

the theory is local in fluid variables both spatially and temporally. However, as mentioned before,

unlike the MIS theory, the definitions of the fluid velocity and the temperature are not fixed here in

terms of stress tensor or any other microscopic operator. In this section, we would like to redefine

the velocity and the temperature in a way so that the stress tensor, expressed in terms of these

redefined fluid variables, satisfies the Landau frame condition. Our philosophy is as follows.

We shall assume that the one-point function of the microscopic stress tensor operator in a ‘near

thermal’ state is given by the BDNK stress tensor (6.9). But it is expressed in terms of some ‘ve-

locity’ and ‘temperature’ variables {uµ, T}, which agree with the traditional definitions of velocity

and temperature in global equilibrium but deviate in a generic ‘near equilibrium’ state. On the other

hand, we know that in the Landau frame, the velocity and the temperature fields are locally defined
2For simplicity, throughout this chapter, we shall restrict our analysis to conformal fluids, where tempera-

ture provides the only scale and the space-time dependence of all other dimensional variables like energy den-
sity is completely determined by that of the temperature. For example, ε(xµ) = 3c T 4(xµ), P (xµ) =
c T 4(xµ), where c is some constant. Because of this, while discussing the space-time dependence of the fluid vari-
ables, we shall often use ε(xµ), P (xµ) or T (xµ) interchangeably.
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in terms of the one-point function of the Stress tensor T µν as the following,

T µ
ν (T̂ , û

µ) ûν = −ε̂ ûµ . (6.11)

We denote the notationˆto indicate fields at the Landau frame such as ûν is the velocity, ε̂ is the

local energy density and T̂ is the temperature in the Landau frame. Transforming the BDNK stress

tensor in the Landau frame involves two steps. First, we have to solve for ûµ and ε̂ by solving

equation (6.11), where in place of T µ
ν we shall use the BDNK stress tensor (6.9). The second step

involves rewriting the BDNK stress tensor in terms of these new fluid variables ûµ and ε̂.

Generically, performing such a frame transformation in a non-perturbative manner is extremely

cumbersome. But to make our analysis computationally tractable, we restrict it to linearized treat-

ment. Physically, we are restricting our analysis only to those fluid states whose deviation from

global equilibrium is of very small amplitude. Such perturbations are enough to decide the linear

stability and the causality of the theory - the key motivation behind the BDNK formalism. Since all

definitions of the fluid variables agree in global equilibrium (or at the level of ‘ideal’ fluid), field

redefinition is needed only in ‘non-equilibrium’ fluid states. It follows that, if the deviation from

equilibrium is of small amplitude such that a linearized treatment is allowed, the same should also

be true for field redefinition. In other words, while redefining the velocity and the temperature, we

can safely ignore terms that are nonlinear in the shift of the variables. In terms of equations, what

we mean is the following.

We define that the velocity uµ and the temperature T in the BDNK stress tensor are related to

the Landau frame velocity ûµ and temperature T̂ in the following fashion,

uµ = ûµ + δuµ, T = T̂ + δT , (6.12)

where the shift variables δuµ and δT are small enough to be treated only linearly. Note that both

δuµ and δT are non-trivial functions of ûµ and T̂ . Once we impose the Landau gauge condition

(6.11) after substituting (6.12) in the BDNK stress tensor (6.9), it reduces to the following set of
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coupled and linear partial differential equations (PDEs) for the shift variables,

δuµ + θ̃

[
D̂ûµ +

∇̂µT̂

T̂

]
+ θ̃

[
D̂δuµ +

∇̂µδT

T̂

]
= 0, (6.13)

δT

T̂
+ χ̃

[
D̂T̂

T̂
+

∇̂µû
µ

3

]
+ χ̃

[
D̂δT

T̂
+

∇̂µδu
µ

3

]
= 0 . (6.14)

This linearization simplifies the analysis so that we can have an ‘all-order’ (in derivatives) formula

for both the field redefinitions and the stress tensor in the new frame.

It turns out that the ‘MIS type nonlocality’ emerges here again, even in the BDNK theory, due

to the infinite order field redefinition is needed to cast it in the Landau frame. At the linearized

level, the field redefinition can be done in two different representations. In one case, we summed

only the time derivatives up to the infinite order, leading to a set of equations that look nonlocal in

time (with the time derivative appearing in the denominator) but local in space. In the second case,

we summed both the time and the space derivatives, leading to a full nonlocal redefinition of the

fluid variables. In either case, these nonlocalities (derivatives appearing in the denominator) could

be absorbed by introducing new ‘non-fluid’ variables. These two different methods are described

in the following two different subsections.

6.3.1 Method-1: Frame transformation order by order

In this subsection, we shall solve these PDEs (6.13) and (6.14) order by order in derivative expan-

sion. We shall assume that δuµ, δε and δT admit the following infinite series expansion,

δuµ =
∞∑
n=1

δuµn, δε =
∞∑
n=1

δεn, δT =
∞∑
n=1

δTn . (6.15)

Here, the subscript (n) denotes the order in terms of derivative expansion. Substituting the ex-

pansion of (6.15) in the PDEs (6.13) and (6.14), one can easily find the solution in terms of the
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following recursive relations,

δT1 = −χ̃

[
D̂T̂

T̂
+

1

3
∇̂µû

µ

]
, δuµ1 = −θ̃

[
∇̂µT̂

T̂
+ D̂ûµ

]
,

δTn = −χ̃
[
1

T̂
D̂δTn−1 +

1

3
∇̂µδu

µ
n−1

]
for n ≥ 2 ,

δuµn = −θ̃
[
1

T̂
∇̂µδTn−1 + D̂δuµn−1

]
for n ≥ 2 . (6.16)

Eq.(6.16) provides the successive field corrections up to any desired order.

The next step is to rewrite the energy-momentum tensor in terms of the new fluid variables.

The energy-momentum tensor in this frame turns out to be,

T µν =

[
ε̂+

∞∑
n=1

δεn + χ

{
3
D̂T̂

T̂
+ ∂αû

α +
3

T̂
D̂

∞∑
n=1

δTn + ∂α

∞∑
n=1

δuαn

}](
ûµûµ +

1

3
∆̂µν

)

+

[
4

3
ε̂

∞∑
n=1

δuνn + θ

{
∇̂νT̂

T̂
+ D̂ûν +

1

T̂
∇̂ν

∞∑
n=1

δTn + D̂
∞∑
n=1

δuνn

}]
ûµ

+

[
4

3
ε̂

∞∑
n=1

δuµn + θ

{
∇̂µT̂

T̂
+ D̂ûµ +

1

T̂
∇̂µ

∞∑
n=1

δTn + D̂
∞∑
n=1

δuµn

}]
ûν − 2η

[
σ̂µν +

∞∑
n=1

∂⟨µδuν⟩n

]
.

(6.17)

As mentioned before, only linearized terms are considered. The used notations (now defined

in terms of Landau frame variable) read : ∆̂µν = gµν + ûµûν , D̂ = ûµ∂µ, ∇̂µ = ∆̂µν∂ν , σ̂
µν =

∂⟨µûν⟩ = ∆̂µν
αβ∂

αûβ . After substituting the recursive solution for δuµn and δTn as given in (6.16),

the energy density correction and energy-flux or momentum flow vanish as expected in the Landau

frame, and one finally has the following energy-momentum tensor upto all order,

T µν =ε̂

[
ûµûµ +

1

3
∆̂µν

]
− 2η

[
σ̂µν +

∞∑
n=1

∂⟨µδuν⟩n

]
. (6.18)

All order sum of the temporal derivatives

Once we explicitly evaluate δuµn and δTn for the first few orders, we observe that a very nice pattern

emerges, which we could use to sum this infinite series to get an all-order expression.

In order to do so, first we list the velocity and temperature corrections up to first four orders

obtained from the Landau matching conditions:
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δuµ1 = −θ̃

[
D̂ûµ +

∇̂µT̂

T̂

]
, (6.19)

δT1

T̂
= −χ̃

[
D̂T̂

T̂
+

1

3

(
∇̂ · û

)]
, (6.20)

δuµ2 = θ̃2D̂2ûµ + θ̃
[
θ̃ + χ̃

] 1

T̂
D̂∇̂µT̂ + θ̃

χ̃

3
∇̂µ
(
∇̂ · û

)
, (6.21)

δT2

T̂
= χ̃2 D̂

2T̂

T̂
+
χ̃

3

[
χ̃+ θ̃

]
D̂
(
∇̂ · û

)
+
χ̃

3
θ̃
∇̂2T̂

T̂
, (6.22)

δuµ3 = −θ̃3D̂3ûµ − θ̃
[
θ̃2 + θ̃χ̃+ χ̃2

] D̂2∇̂µT̂

T̂
− θ̃

χ̃

3

[
2θ̃ + χ̃

]
D̂∇̂µ

(
∇̂ · û

)
− θ̃2

χ̃

3

∇̂2∇̂µT̂

T̂
,

(6.23)

δT3

T̂
= −χ̃3 D̂

3T̂

T̂
− χ̃

3

[
χ̃2 + χ̃θ̃ + θ̃2

]
D̂2
(
∇̂ · û

)
− χ̃

3
θ̃
[
2χ̃+ θ̃

] D̂∇̂2T̂

T̂
− χ̃2

9
θ̃∇̂2

(
∇̂ · û

)
,

(6.24)

δuµ4 = θ̃4D̂4ûµ + θ̃
[
θ̃3 + θ̃2χ̃+ θ̃χ̃2 + χ̃3

] D̂3∇̂µT̂

T̂
+ θ̃

χ̃

3

[
3θ̃2 + 2θ̃χ̃+ χ̃2

]
D̂2∇̂µ

(
∇̂ · û

)
+ θ̃2

χ̃

3

[
2θ̃ + 2χ̃

]
D̂
∇̂2∇̂µT̂

T̂
+ θ̃2

χ̃2

9
∇̂2∇̂µ

(
∇̂ · û

)
, (6.25)

δT4

T̂
= χ̃4 D̂

4T̂

T̂
+
χ̃

3

[
χ̃3 + χ̃2θ̃ + χ̃θ̃2 + θ̃3

]
D̂3
(
∇̂ · û

)
+
χ̃

3
θ̃
[
3χ̃2 + 2χ̃θ̃ + θ̃2

] D̂2∇̂2T̂

T̂

+
χ̃2

9
θ̃
[
2χ̃+ 2θ̃

]
D̂∇̂2

(
∇̂ · û

)
+
χ̃2

9
θ̃2
∇̂4T̂

T̂
, (6.26)

... .

We see that, with increasing order n of derivative correction, the velocity correction terms

δuµn (as well as the temperature correction terms δTn), include higher and higher orders of the

spatial gradients on T and uµ systematically. Moreover, the order of the temporal gradient on each

such spatial gradient term also chronologically increases. This increase of temporal derivatives

is observed to follow a particular pattern such that they can be clubbed together into products of

infinite sums. Below, we write the fully summed (up to all orders) velocity and the temperature
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corrections such that this repetitive pattern in the temporal derivatives becomes manifest.

uµ = ûµ + δuµ1 + δuµ2 + · · · =
[
1 +

(
−θ̃D̂

)
+
(
−θ̃D̂

)2
+
(
−θ̃D̂

)3
+ · · ·

]
ûµ

+ (−θ̃)
[
1 +

(
−θ̃D̂

)
+
(
−θ̃D̂

)2
+ · · ·

] [
1 +

(
−χ̃D̂

)
+
(
−χ̃D̂

)2
+ · · ·

]
∇̂µT̂

T̂

+ (−θ̃)
(
− χ̃
3

)
)

[
1 + 2

(
−θ̃D̂

)
+ 3

(
−θ̃D̂

)2
+ · · ·

] [
1 +

(
−χ̃D̂

)
+
(
−χ̃D̂

)2
+ · · ·

]
∇̂µ
(
∇̂ · û

)
+ (−θ̃)2

(
− χ̃
3

)[
1 + 2

(
−θ̃D̂

)
+ 3

(
−θ̃D̂

)2
+ · · ·

] [
1 + 2

(
−χ̃D̂

)
+ 3

(
−χ̃D̂

)2
+ · · ·

]
∇̂2∇̂µT̂

T̂

+ (−θ̃)2
(
− χ̃
3

)2 [
1 + 3

(
−θ̃D̂

)
+ 6

(
−θ̃D̂

)2
+ · · ·

]
(6.27)[

1 + 2
(
−χ̃D̂

)
+ 3

(
−χ̃D̂

)2
+ · · ·

]
∇̂2∇̂µ

(
∇̂ · û

)
+ · · · . (6.28)

The infinite sums over the time derivative can be encompassed in a closed form following the

relaxation operator-like terms to appear in the denominator of the thermodynamic quantities, giving

rise to pole-like structures in the following manner,

uµ =ûµ + δuµ1 + δuµ2 + · · ·

=
1

(1 + θ̃D̂)
ûµ

+(−θ̃) 1

(1 + θ̃D̂)

1

(1 + χ̃D̂)

∇̂µT̂

T̂

+(−θ̃)
(
− χ̃
3

)
1

(1 + θ̃D̂)2
1

(1 + χ̃D̂)
∇̂µ∇̂ · û

+(−θ̃)2
(
− χ̃
3

)
1

(1 + θ̃D̂)2
1

(1 + χ̃D̂)2
∇̂2∇̂µT̂

T̂

+(−θ̃)2
(
− χ̃
3

)2
1

(1 + θ̃D̂)3
1

(1 + χ̃D̂)2
∇̂2∇̂µ∇̂ · û

+ · · · . (6.29)
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Similarly, for the temperature correction, we have the following derivative pattern :

T = T̂ + δT1 + δT2 + · · · =
[
1 +

(
−χ̃D̂

)
+
(
−χ̃D̂

)2
+
(
−χ̃D̂

)3
+ · · ·

]
T̂

+ T̂ (− χ̃
3
)

[
1 +

(
−χ̃D̂

)
+
(
−χ̃D̂

)2
+ · · ·

] [
1 +

(
−θ̃D̂

)
+
(
−θ̃D̂

)2
+ · · ·

](
∇̂ · û

)
+

(
− χ̃
3

)
(−θ̃)

[
1 + 2

(
−χ̃D̂

)
+ 3

(
−χ̃D̂

)2
+ · · ·

] [
1 +

(
−θ̃D̂

)
+
(
−θ̃D̂

)2
+ · · ·

]
∇̂2T̂

+ T̂

(
− χ̃
3

)2

(−θ̃)
[
1 + 2

(
−χ̃D̂

)
+ 3

(
−χ̃D̂

)2
+ · · ·

] [
1 + 2

(
−θ̃D̂

)
+ 3

(
−θ̃D̂

)2
+ · · ·

]
∇̂2
(
∇̂ · û

)
+ · · · . (6.30)

Just like the velocity variable, the above series can also be resummed as,

T =T̂ + δT1 + δT2 + · · ·

=
1

(1 + χ̃D̂)
T̂

+T̂

(
− χ̃
3

)
1

(1 + χ̃D̂)

1

(1 + θ̃D̂)

(
∇̂ · û

)
+

(
− χ̃
3

)
(−θ̃) 1

(1 + χ̃D̂)2
1

(1 + θ̃D̂)
∇̂2T̂

+T̂

(
− χ̃
3

)2

(−θ̃) 1

(1 + χ̃D̂)2
1

(1 + θ̃D̂)2
∇̂2
(
∇̂ · û

)
+ · · · . (6.31)

Putting the velocity correction given by Eq.(6.29) in Eq.(6.18) we have the all order frame

transformed BDNK stress tensor in Landau frame as,

T µν = ε̂

[
ûµûν +

1

3
∆̂µν

]
+ π̂µν , (6.32)

with the shear stress π̂µν = −2η
[
σ̂µν +

∑∞
n=1 ∂

⟨µδu
ν⟩
n

]
as the only dissipative contribution, now
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resummed under the all order frame transformation as the following,

π̂µν =− 2η

[
∇̂⟨µûν⟩

(1 + θ̃D̂)
+

(−θ̃)
(1 + θ̃D̂)

1

T̂
∇̂⟨µ∇̂ν⟩T̂

(1 + χ̃D̂)

+
(−θ̃)

(1 + θ̃D̂)2

(−1
3
χ̃)(

1 + χ̃D̂
)∇̂⟨µ∇̂ν⟩∇̂ · û

+
(−θ̃)2

(1 + θ̃D̂)2

(
−1

3
χ̃
)

(1 + χ̃D̂)2
1

T̂
∇̂⟨µ∇̂ν⟩∇̂2T̂

+
(−θ̃)2

(1 + θ̃D̂)3

(
−1

3
χ̃
)2

(1 + χ̃D̂)2
∇̂⟨µ∇̂ν⟩∇̂2∇̂ · û+ · · ·

]
. (6.33)

Note that, for each increasing spatial gradient, the temporal gradient resulting from the infinite sum

also increases in the denominator, such that they exactly balance each other. This condition has

been mentioned in [101] as a necessary condition of causality.

Both equations (6.29) and (6.31) are just formal solutions as they have derivatives in the denom-

inator. Such an expression really makes sense in the space of frequencies rather than in real-time.

However, what this indicates is a nonlocality in time (or integration over time). Just like in the

MIS theory, such nonlocalities could be recast into a local set of equations by introducing new

‘non-fluid’ variables, which is the topic of the next subsection.

Introducing ‘non-fluid’ degrees of freedom to make BDNK a local theory in Landau frame

In section 6.3.1, Eq.(6.32) and (6.33) combinedly provide the energy-momentum tensor of a frame-

transformed BDNK theory that is nonlocal in fluid variables. In this subsection, our goal is to

introduce new ‘non-fluid’ degrees of freedom, ones that vanish at any state of global thermal equi-

librium and, therefore, are not extensions of any conserved charges. This viewpoint also provides

us some guidance as to how we should formulate the equations of motion for ‘non-fluid’ variables.

Like πµν in MIS theory, any non-fluid variable should approach a vanishing value in a ‘relaxation

type’ equation. The relaxation time scales are provided by the poles in the infinite sum of temporal

derivatives we did in the previous subsection. However, unlike the MIS theory, here, after com-

pleting the infinite sum in the temporal derivatives, the degree of the pole increases ad infinitum
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along with more and more spatial derivatives in the numerator. This indicates an infinite number

of non-fluid degrees of freedom in a nested series of ‘relaxation type’ equations.

We can make this intuition precise in the following set of infinitely many equations. This

is a local theory both in space and time, equivalent to BDNK, at least with respect to linearized

perturbations around equilibrium in the hydrodynamic regime (barring a few singular points in

the frequency domain), but has an infinite number of degrees of freedom, (as we expected) in the

following manner,

∂µT
µν = 0 , T µν = ε̂

[
ûµûν +

1

3
∆̂µν

]
+ π̂µν ,

(1 + θ̃D̂)π̂µν = −2ησ̂µν + ρµν1 ,

(1 + χ̃D̂)ρµν1 = (−2η)(−θ̃) 1
T̂
∇̂⟨µ∇̂⟩νT̂ + ρµν2 ,

(1 + θ̃D̂)ρµν2 = (−2η)(−θ̃)
(
− χ̃
3

)
∇̂⟨µ∇̂⟩ν∇̂ · û+ ρµν3 ,

(1 + χ̃D̂)ρµν3 = (−2η)(−θ̃)2
(
− χ̃
3

)
1

T̂
∇̂⟨µ∇̂⟩ν∇̂2T̂ + ρµν4 ,

(1 + θ̃D̂)ρµν4 = (−2η)(−θ̃)2
(
− χ̃
3

)2

∇̂⟨µ∇̂⟩ν∇̂2∇̂ · û+ · · ·

... (6.34)

Eq. (6.2) and so on set an infinite nested series of new degrees of freedom much in the same line

as the conventional MIS theory given by Eq.(6.4) and (6.5). Eq.(6.2) combinedly boils down to

Eq.(6.32) and (6.33) where each increasing spatial gradient term is now attributed to a new degree

of freedom.

6.3.2 Method-2: Frame transformation in one go

In the previous section, we have solved the linearized frame transformation equations (6.13) and

(6.14) using derivative expansion. Though the method of derivative expansion could be applied to

solve even a nonlinear set of equations, we have heavily used linearization to simplify the solution

further. In fact, the way we have summed the infinite series to generate temporal derivatives in
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the denominator is clearly a formal manipulation, and it makes sense only in the case of linearized

treatment in Fourier space. It also indicates an integration over time, which is then made local by

introducing new ‘non-fluid’ variables.

Now, while solving (6.13) and (6.14), if we eventually allow ourselves to have temporal deriva-

tives (D̂) in the denominator, there is no harm in having spatial derivatives as well (again makes

sense only when viewed in Fourier space and indicates an infinite order of spatial derivatives or in-

tegration/nonlocality in space). In this subsection, we shall use this formal manipulation of having

both spatial and temporal derivatives in the denominator. This will lead to solutions of the frame

transformation equations (6.13) and (6.14) in one go.

The steps are as follows. First, we take the divergence of equation (6.13) and the following two

coupled scalar equations will give the two scalar variables (∇̂ · δu) and δT/T̂ as,

[
1 + θ̃D̂

]
(∇̂ · δu) + θ̃∇̂2 δT

T̂
+ θ̃

[
∇̂2T̂

T̂
+ D̂∇̂ · û

]
= 0 , (6.35)[

1 + χ̃D̂
] δT
T̂

+
χ̃

3
(∇̂ · δu) = 0 . (6.36)

In Eq.(6.36) we have used the on shell identity D̂T̂

T̂
+ 1

3
∇̂ · û = 0 that always holds at linearized

level under Landau frame condition. Now eliminating (∇̂ · δu) from the above two equations, first

we find δT

T̂
. Then, substituting this solution in (6.13), we find the expression for δuµ. The final

solution (BDNK variables in terms of Landau frame variables) takes the following form:

uµ = (ûµ + δuµ) (6.37)

=

(
ûµ

1 + θ̃D̂

)
(6.38)

−
(
1 + θ̃D̂

)−1
[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃

χ̃

3
∇̂2

]−1 [
θ̃
∇̂µT̂

T̂
− θ̃

3

(
θ̃ + χ̃

)
∇̂µ(∇̂ · û)

]
, (6.39)

T =
(
T̂ + δT

)
=

[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃

χ̃

3
∇̂2

]−1 [
(1 + θ̃D̂)T̂ − χ̃

3
T̂
(
∇̂ · û

)]
. (6.40)

In the Landau frame, the stress tensor will again have the structure of the form given in equation

(6.18). After substituting the solutions (6.39) there, we finally get the following shear tensor,
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π̂µν =−
[

2η

1 + θ̃D̂

]
σ̂µν +

[
2ηθ̃

1 + θ̃D̂

] ∇̂⟨µ∇̂ν⟩T̂
T̂

− 1
3
(θ̃ + χ̃)∇̂⟨µ∇̂ν⟩

(
∇̂ · û

)
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2

 . (6.41)

Equation (6.41) could be further simplified using the fact that in Landau frame at the linearized

level ∇̂ · û and D̂T̂

T̂
are related as follows,

∇̂ · û+ 3

(
D̂T̂

T̂

)
= terms nonlinear in fluctuations. (6.42)

Using identity (6.42), Eq.(6.41) becomes,

π̂µν = −
[

2η

1 + θ̃D̂

]
σ̂µν

+

[
2ηθ̃

1 + θ̃D̂

]
{
1 + (θ̃ + χ̃)D̂

}
∇̂⟨µ∇̂ν⟩T̂

T̂

(1 + θ̃D̂)(1 + χ̃D̂)− θ̃χ̃
3
∇̂2

 . (6.43)

The equations (6.39), (6.40), (6.41) and (6.43) are all very formal with spatial as well as temporal

derivatives in the denominator. But following the strategy presented in the case of MIS theory, we

can recast equation (6.43) as an inhomogeneous differential equation for the new ‘nonfluid’ degree

of freedom πµν as follows,[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃

χ̃

3
∇̂2

]{
(1 + θ̃D̂)π̂µν + 2ησ̂µν

}
= 2ηθ̃

{
1 + (θ̃ + χ̃)D̂

} ∇̂⟨µ∇̂ν⟩T̂

T̂
. (6.44)

Here, just like in MIS theory, we are introducing only one new ‘non-fluid’ tensorial degree of

freedom, but it follows a complicated inhomogeneous PDE, second order in spatial but third order

in temporal derivatives3.
3Note that in the limit χ̃ → 0, the equation (6.44) becomes very similar to the corresponding equation inMIS theory

with a slight modification as follows.

(1 + θ̃D̂)π̂µν = −2η

[
σ̂µν − θ̃

(
∇̂⟨µ∇̂ν⟩T̂

T̂

)]
. (6.45)
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Comparison with the previous method with infinite ‘non-fluid’ variables

Generically, a nonlocal theory could be made local by introducing new degrees of freedom, but the

process of ‘integrating in’ new degrees could have ambiguities. The two methods described in the

previous two subsections could be one example of this ambiguity. Both methods attempt to write a

system of coupled equations involving both fluid and ‘non-fluid’ variables that are equivalent to the

equations in BDNK theory. However, the structure of the equations and also the extra ‘non-fluid’

variables are so widely different that in the first case, we need to introduce an infinite number of

variables, whereas in the second case, we need just one. In this subsection, we would like to see

how these two sets of equations are actually equivalent, at least in some regime of frequency and

spatial momenta.

It turns out that the field redefinition we have used in the first method (see equations (6.29) and

(6.31)) could be further rearranged in the following fashion. For the velocity redefinition, we have,

uµ = ûµ + δuµ1 + δuµ2 + · · · (6.46)

=
1

(1 + θ̃D̂)
ûµ +

(−θ̃)
(1 + θ̃D̂)

1

(1 + χ̃D̂)

[
1 +

(−θ̃)
(1 + θ̃D̂)

(
− χ̃

3

)
(1 + χ̃D̂)

∇̂2 + · · ·

]
∇̂µT̂

T̂

+
(−θ̃)

(1 + θ̃D̂)2

(
− χ̃

3

)
(1 + χ̃D̂)

[
1 +

(−θ̃)
(1 + θ̃D̂)

(
− χ̃

3

)
(1 + χ̃D̂)

∇̂2 + · · ·

]
∇̂µ
(
∇̂ · û

)
. (6.47)

Similarly, for the temperature redefinition we have,

T = T̂ + δT1 + δT2 + · · · (6.48)

=
1

(1 + χ̃D̂)

[
1 +

(−θ̃)
(1 + θ̃D̂)

(
− χ̃

3

)
(1 + χ̃D̂)

∇̂2 + · · ·

]
T̂

+T̂

(
− χ̃

3

)
(1 + χ̃D̂)

1

(1 + θ̃D̂)

[
1 +

(−θ̃)
(1 + θ̃D̂)

(
− χ̃

3

)
(1 + χ̃D̂)

∇̂2 + · · ·

](
∇̂ · û

)
. (6.49)

Substituting this rearranged field redefinition, the dissipative part of the stress tensor could also
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be rearranged as,

π̂αβ =− 2η∆̂αβ
µν

[
1

(1 + θ̃D̂)
∇̂µûν

+
(−θ̃)

(1 + θ̃D̂)

1

(1 + χ̃D̂)

1

T̂
∇̂µ∇̂ν

{
1 +

(−θ̃)
(1 + θ̃D̂)

(−1
3
χ̃)

(1 + χ̃D̂)
∇̂2 + · · ·

}
T̂

+
(−θ̃)

(1 + θ̃D̂)2

(−1
3
χ)

(1 + χ̃D̂)
∇̂µ∇̂ν

{
1 +

(−θ̃)
(1 + θ̃D̂)

(−1
3
χ̃)

(1 + χ̃D̂)
∇̂2 + · · ·

}
∇̂ρû

ρ

]
. (6.50)

Now the infinite sum in powers of spatial derivative ∇̂2 converges for those linearized pertur-

bations where the operator satisfies the inequality,

[ (
θ̃χ̃
3

)
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

]
< 1 . (6.51)

Within this radius of convergence, we can again sum the spatial derivatives and get the following

expression for the field redefinitions,

uµ = ûµ + δuµ1 + δuµ2 + · · · (6.52)

=
1

(1 + θ̃D̂)
ûµ

+(−θ̃)
∇̂µT̂

T̂[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2
] + (−θ̃)

(
− χ̃

3

)
(1 + θ̃D̂)

∇̂µ
(
∇̂ · û

)
[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2
] ,

=
1

(1 + θ̃D̂)
ûµ +

[
−θ̃ ∇̂µT̂

T̂
+ θ̃

3

(
θ̃ + χ̃

)
∇̂µ(∇̂ · û)

]
(1 + θ̃D̂)

[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2
] , (6.53)

and,

T = T̂ + δT1 + δT2 + · · ·

=
(1 + θ̃D̂)T̂[

(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃
3
∇̂2
] + T̂

(
− χ̃
3

) (
∇̂ · û

)
[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2
] . (6.54)
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From (6.53) it is simple to estimate πµν as,

π̂µν =− 2η
σ̃µν

(1 + θ̃D̂)
− 2η

[
−θ̃ ∇̂⟨µ∇̂ν⟩T̂

T̂
+ θ̃ χ̃

3
1

(1+θ̃D̂)
∇̂⟨µ∇̂ν⟩

(
∇̂ · û

)]
[
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2
] ,

=−
[

2η

1 + θ̃D̂

]
σµν +

[
2ηθ̃

1 + θ̃D̂

]
(
1 + (θ̃ + χ̃)D̂

)(
∇̂⟨µ∇̂ν⟩T̂

T̂

)
(1 + θ̃D̂)(1 + χ̃D̂)− θ̃ χ̃

3
∇̂2

 . (6.55)

It can be observed that Eq.(6.53), (6.54) and (6.55) are exactly identical as (6.39), (6.40) and

(6.43) of the field correction at one go results. (In the second step of the derivation of (6.53) and

(6.55), we have taken recourse to the identity (6.42). For detailed steps of the summation, the reader

may refer to appendix D.1.) So, within the radius of convergence, both methods actually generate

the same set of equations as expected.

At this stage, let us emphasize one point. This method of ‘integrating in’ new ‘non-fluid’

degrees of freedomwith new equations of motion is highly non-unique, even at the linearized level.

For example, we could have chosen δuµ and δT themselves to be the new ‘non-fluid’ variables,

satisfying the new equations as given in (6.13) and (6.14) and we could take a viewpoint that the

uµ and the T fields in the BDNK theory are actually the Landau frame fluid variables plus ‘non-

fluid’ variables {δuµ, δT}. Note that though δuµ and δT would look very much like velocity and

temperature corrections, they are still ‘non-fluid’ variables in the Landau frame since they vanish in

global equilibrium. Another choice of introducing infinitely many ‘non-fluid’ degrees of freedom

would be to simply use δuµn and δTn (as defined in (6.15)) and then the recursive equations (6.16)

would turn out to be the new equations of motion.

The two choices of new variables, discussed here in detail, are basically guided by our sense of

mathematical aesthetics and an attempt to adhere to the philosophy of MIS theory where the new

‘non-fluid’ variable is a rank-2 symmetric tensor, structurally very similar to the energy-momentum

tensor. At the moment, we do not have any further physical support behind our choice of variables.
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6.4 Dispersion relation

As we have seen in the previous sections, a system of fluid equations with terms up to all orders in

derivative expansion could be converted to PDEs with a finite number of derivatives, provided we

introduce new ‘non-fluid’ degrees of freedom. The ‘non-fluid’ variables we introduced basically

capture the effect of a formal infinite sum over derivatives, leading to pole-like structures in the

momentum-frequency space.

Now, these infinite series in derivatives (or, more precisely, in the 4-momenta of the Fourier

transform of linear fluctuations) could be summed only within their radius of convergence. Once

we extend the summed-up theories beyond that radius, we often encounter ‘non-hydrodynamic

modes’ that are not exactly the same as that of the BDNK theory4. However, in this section, we

shall see that the hydrodynamic modes of the system of equations described in the previous two

sections are both exactly the same as that of the BDNK theory at every order in k expansion. This

is a consistency test of our claim that our system of equations is indeed equivalent to BDNK for-

malism, at least in the hydrodynamic regime.

4A similar situation arises in the case of the MIS theory as we have presented in section 6.2. In the hydrodynamic
regime, the stress tensor must be described in a derivative expansion, which turns out to have an infinite number of
terms (see equation(6.6)). Now, in the frequency space (ω), this infinite sum can be performed only within a radius of
convergence, which in this case turns out to be

D ∼ |ω| ≤ 1

τπ
.

Introducing new ‘non-fluid’ variables πµν essentially amounts to extending the theory beyond this radius of conver-
gence. Now ω = − i

τπ
is the new non-hydro mode that emerges in the process of integrating in πµν and this mode is

exactly on the radius of convergence of the previous derivative expansion.
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6.4.1 Method - 1

Here, the equivalent system is described by an infinite number of variables and, therefore, an infinite

number of equations. For convenience, let us first quote the equations here again.

∂µT
µν = 0 , T µν = ε̂

[
ûµûν +

1

3
∆̂µν

]
+ π̂µν ,

(1 + θ̃D̂)π̂µν = −2ησ̂µν + ρµν1 ,

(1 + χ̃D̂)ρµν1 = (−2η)(−θ̃) 1
T̂
∇̂⟨µ∇̂⟩νT̂ + ρµν2 ,

(1 + θ̃D̂)ρµν2 = (−2η)(−θ̃)
(
− χ̃
3

)
∇̂⟨µ∇̂⟩ν∇̂ · û+ ρµν3 ,

(1 + χ̃D̂)ρµν3 = (−2η)(−θ̃)2
(
− χ̃
3

)
1

T̂
∇̂⟨µ∇̂⟩ν∇̂2T̂ + ρµν4 ,

(1 + θ̃D̂)ρµν4 = (−2η)(−θ̃)2
(
− χ̃
3

)2

∇̂⟨µ∇̂⟩ν∇̂2∇̂ · û+ · · ·

... (6.56)

The ‘non-fluid’ variables are πµν and the infinite sequence of ρµνn s, each satisfying a relaxation type

of equation.

We parameterize the perturbation around static global equilibrium in the following fashion,

T̂ = T0 + ϵ δT eiT0(−ωt+kx)

ûµ = {1, 0, 0, 0}+ ϵ {0, βx, βy, 0} eiT0(−ωt+kx)

ρxxn = ϵ δρxxn eiT0(−ωt+kx) = −2ρyyn = −2ρzzn ∀n

ρxyn = ϵ δρxyn eiT0(−ωt+kx) ∀n , (6.57)

all other components of ρµνn vanish for every n.

Here, ϵ is a book-keeping parameter for linearization. Any term quadratic or higher order in

ϵ will be ignored. We have scaled the frequency and the spatial momenta with the equilibrium

temperature T0 so that both ω and k are dimensionless. Similarly, we introduce new dimensionless

parameters of the theory η̃0, χ̃0 and θ̃0 as follows,

η̃ ≡ η̃0
T0
, χ̃ ≡ χ̃0

T0
, θ̃ ≡ θ̃0

T0
.
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If we substitute the fluctuations (6.57) in equations (6.56), we find the dispersion polynomial

P(ω, k) whose zeroes will give the modes where the fluctuations can have a nontrivial solution.

Now, in this case, it is difficult to expressP(ω, k) in a compact form since the equations involve

an infinite number of variables. Instead, we shall determine the dispersion polynomial PN(ω, k)

for the same system, truncated at some arbitrary but finite order n = N recursively. The infinite

N limit of PN(ω, k) will give the actual dispersion polynomial of the system. We have,

PN(ω, k) = P shear(ω, k) P sound
N (ω, k) , (6.58)

where,

P shear(ω, k) = η̃0 k
2 − iω (1− i θ̃0 ω) ,

P sound
N (ω, k) = (1− i χ̃0 ω)

N
2 (1− i θ̃0 ω)

N
2 PN(ω, k) When N even,

P sound
N (ω, k) = (1− i χ̃0 ω)

N+1
2 (1− i θ̃0 ω)

N−1
2 PN(ω, k) When N odd . (6.59)

Note the factor P shear(ω, k) is independent of N . We could further check that it has the same

form as that of the dispersion polynomial in BDNK theory (see (6.9) and (6.10)) in the shear chan-

nel. For PN(ω, k) we have a recursion relation as follows,

P2m−1 = (1− i χ̃0 ω)P2m−2 − i

(
4η0
3m

)
θ̃m0 χ̃

m−1
0 (ik)2(m+1) for odd N = 2m− 1, m ≥ 1 ,

P2m = (1− i θ̃0 ω)P2m−1 − i

(
4η0
3m

)
θ̃m0 χ̃

m
0 (ik)2(m+1) (−iω) for even N = 2m, m > 0 ,

P0 = 3iω2(1− i χ̃0 ω) + k2(i+ 4η̃0ω + θ̃0ω) .

(6.60)

From equations (6.58), (6.59) and (6.60), we could see that the degree of the polynomial (and

therefore the number of zeroes) in the sound channel increases as we include more and more ρµνn s in

our system of equations. In other words, with increasingN , we keep getting more and more modes.

However, it is easy to take k → 0 limit in these recursive equations, and one could see that in the
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sound channel, there are precisely two modes at ω = 0, and all the rests are either at
[
ω = − i

χ̃0

]
or[

ω = − i
θ̃0

]
similar to the BDNK theory at k → 0 limit. According to our definitions, the modes

with vanishing frequencies at k → 0 limit are the hydro modes. So, this system of equations does

have two hydro modes in the sound channel, as expected from the parent BDNK theory. Further, by

explicit calculation, we can see that these hydrodynamic sound modes match with those of BDNK

even at non-zero k, if we treat k perturbatively in a power series expansion 5. So clearly, the hydro-

modes in the equations described in these sections for both the sound and shear channel (in the

shear channel, even the non-hydro modes match with BDNK) are the same as those of BDNK,

justifying our claim that this system of equations is equivalent to the BDNK systems of equations

in the hydrodynamic regime.

6.4.2 Method - 2

For convenience, let us first quote the system of equations that we would like to analyze,

∂µT
µν = 0 , T µν = ε̂

[
ûµûν +

1

3
∆̂µν

]
+ π̂µν , (6.61)[

(1 + θ̃D̂)(1 + χ̃D̂)− θ̃
χ̃

3
∇̂2

]{
(1 + θ̃D̂)π̂µν + 2ησ̂µν

}
= 2ηθ̃

{
1 + (θ̃ + χ̃)D̂

} ∇̂⟨µ∇̂ν⟩T̂

T̂
. (6.62)

As before, we parameterize the perturbation around static global equilibrium in the following fash-

ion,

T̂ = T0 + ϵ δT eiT0(−ωt+kx) ,

ûµ = {1, 0, 0, 0}+ ϵ {0, βx, βy, 0} eiT0(−ωt+kx) ,

πxx = ϵ δπxx eiT0(−ωt+kx) = −2πyy = −2πzz ,

πxy = ϵ δπxy eiT0(−ωt+kx) ,

(6.63)

5If we truncate the equations at n = N , then the frequency of the sound mode matches with that of BDNK upto
order O ∼ (kN+3). This we have checked in Mathematica for all N ≤ 10.
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with ϵ as a book-keeping parameter for linearization. Any term quadratic or higher order in ϵ will

be ignored. Again, the frequency and the spatial momenta are scaled with the equilibrium temper-

ature T0 so that both ω and k are dimensionless. And also we have introduced new dimensionless

parameters of the theory η̃0, χ̃0 and θ̃0 as follows,

η̃ ≡ η̃0
T0
, χ̃ ≡ χ̃0

T0
, θ̃ ≡ θ̃0

T0
.

Substituting equation (6.63) in the system of equations ((6.61) and (6.62)), we find the following

dispersion polynomial,

P (ω, k) = (1− iθ̃0ω)

[(
χ̃0θ̃0
3

)
k2 + (1− iθ̃0ω)(1− iχ̃0ω)

]
PBDNK(ω, k) , (6.64)

where PBDNK(ω, k) is the similar dispersion polynomial computed for the fluctuations around

the static equilibrium solutions in BDNK systems of equations as given in (6.9) and (6.10) and

given by,

PBDNK =
(
η̃0k

2 − iω(1− iθ̃0ω)
)
×[

χ̃0θ̃0ω
4 + i

(
χ̃0 + θ̃0

)
ω3 −

{
1 +

2

3
χ̃0

(
θ̃0 + 2η̃0

)
k2
}
ω2 − i

3

(
χ̃0 + θ̃0 + 4η̃0

)
ωk2 +

k2

3
+
θ̃0
9
(χ̃0 − 4η̃0) k

4

]
.

(6.65)

In other words, the zeroes of PBDNK(ω, k) are the hydro and non-hydro modes of the BDNK

theory.

From equation (6.64), it is clear that all the modes of the BDNK system are already contained

in the system of equations (6.61) and (6.62). However, they also contain some new modes, which

are the zeros of the prefactor,

Pextra(ω, k) ≡
(

P (ω, k)

PBDNK(ω, k)

)
= (1− iθ̃0ω)

[(
χ̃0θ̃0
3

)
k2 + (1− iθ̃0ω)(1− iχ̃0ω)

]
. (6.66)
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Note that all these new modes are of non-hydro type. One could further check that they corre-

spond to the zero modes of the linear PDEs that determine the shift of the velocity and the temper-

ature field (δuµ and δT respectively) under frame transformation (see equation (6.16)).

The existence of such zero modes implies that if we view δuµ or δT as generated from a field

redefinition (and not as new ‘non-fluid’ variables), then even after fixing the Landau frame con-

dition, there are still some unfixed residual ambiguities (which exist only at some special form of

ω(k)) in the definition of the fluid variables. On the other hand, if we absorb these shift fields (δuµ

and δT ) into new ‘nonfluid’ variables, the extra zeros of the prefactor Pextra(ω, k) do become the

newmodes of the theory. In some sense, the residual ambiguities in the field redefinition procedure

translate to the non-uniqueness of the UV degrees of freedom beyond the hydrodynamic regime.

6.5 Conclusion

In this work, we rewrite the stress tensor of the BDNK hydrodynamic theory in the Landau frame

at least for the part that will contribute to the spectrum of linearized perturbation around static

equilibrium. Though the BDNK formalism has a finite number of derivatives, it turns out that

in the Landau frame, it will have either an infinite number of derivatives or one has to introduce

new non-fluid variables. There is no unique way to introduce these non-fluid variables. Here,

motivated by the structure of the MIS formalism, we have presented two different ways of doing

it, resulting in two completely different-looking sets of equations. However, both the sets have

the same hydrodynamics modes as the BDNK theory. But in the process of ‘integrating in’ the

non-fluid variables, new non-hydrodynamic modes are generated.

In both methods, we need to do a formal infinite sum over derivatives. We suspect that the

convergence issues of these infinite sums, also related to the ‘non-invertibility’ of the zero modes

of the linear operator involved in field redefinition, are responsible for these new non-hydrodynamic

modes. However, this point needs further investigation.

More generally, it would be interesting to know if we can identify a part of the spectrum to
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be invariant under field redefinition and, therefore, truly physical. 6 In this context, the following

observation seems useful. In BDNK theory, if we set viscosity (η) to zero (with nonzero χ and θ),

then via field redefinition, the stress tensor could be made identical to that of an ideal fluid at the

linearized level, though in the original ‘BDNK’ frame it will have nontrivial dispersion relation

dependent on the values of χ and θ. This indicates that there might be some partial redundancy

in the information contained in the spectrum of a fluid theory. It would be nice to have a more

comprehensive understanding of this aspect of the spectrum.

Our work has set up a stage for comparison between the BDNK and MIS-type theories. At first

glance, they look very different. However, the fluid variables like velocity and temperature used to

express the BDNK stress tensor are not the same as the ones used in MIS theory. A comparison is

meaningful only if the basic variables of the equations are the same. Oncewe have done the required

transformation, it turns out that though there are differences in the details, the basic structure of

nonlocality or ‘non-fluid’ variables is very similar in both theories. The advantage of the Landau

frame is that the fluid variables are locally defined in terms of the one-point function of the stress

tensor, but in this case, the causal equations turn out to have nonlocal terms or an infinite number of

derivatives. Whereas in BDNK theories, the equations are local with a finite number of derivatives,

but the fluid variables are related to the one point function of the stress tensor in a very non-trivial

and nonlocal fashion.

However, there is more information in the BDNK formalism than what has just been stated

above. It says that there exist causal fluid theories where the non-localities could be completely

absorbed in a field redefinition, thereby generating causal but local fluid theory with a finite number

of derivatives. Since the final equation we derived on the shear tensor πµν is different from what

one conventionally has in theMIS theory, it also says that the non-localities of theMIS theory could

possibly never be completely absorbed in the field redefinition.

It would be interesting to extend this analysis to full nonlinear order. Also, it would be very
6Building upon the work presented in this chapter, in [144, 145], it has been shown that it is indeed possible to do

so using infinite order field redefinitions.
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informative to know whether and, if yes, how the story changes as one adds higher order derivative

corrections to the BDNK theory.

132



Finale: Conclusion, Future Directions,
Bibliography

133



Chapter 7

Conclusion and Future Directions
In this thesis, we have analyzed different aspects of the dynamics of black holes and relativistic

fluids in a linearized regime near equilibrium. In the first part of the thesis, we have looked closer

into the effect of the horizon’s null generators’ reparametrization on the statement of the second law

on a black hole horizon. In the second part, we have explored different aspects of two well-known

stable-causal relativistic hydrodynamic theories in the conformal uncharged limit.

Both the works of Part 1 are focused on black hole solutions in the Gauss-Bonnet theory and the

linearized regime in the dynamics of amplitude. The first work analyzes the effect of reparametriza-

tion of the horizon’s null generators on the statement of local entropy production on the horizon.

The results suggest that for the Gauss-Bonnet theory, although the entropy density and the spa-

tial entropy current on the horizon transform non-trivially and non-covariantly, their combined

divergence is covariant under the reparametrization up to linearized order in amplitude dynamics.

Hence, local entropy production at each spacetime point on the horizon remains invariant under this

affine-to-affine reparametrization of the null generators. In [2], we have extended this analysis for

arbitrary higher-derivative gravity theories non-minimally coupled to matter fields. The transfor-

mation of the entropy density and spatial entropy current under such reparametrizations has been

explicitly derived, and the effect of constructional ambiguities (Iyer-Wald ambiguities) can also

be seen. In the second work, we have used the fluid-gravity duality to dualize this combination

of entropy density and spatial entropy current on the horizon to an entropy current for a fluid re-

siding on the boundary of an asymptotically AdS spacetime with a black brane in the bulk. For

generic higher-derivative gravity theories and generic mapping functions between the horizon and

the boundary, we find a non-trivial dependence of this entropy current on the mapping functions.

This prevents them from being called “genuine fluid entropy current” as these mapping functions
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may or may not be expressible solely in terms of fluid data.

In the first work of Part 2, we derive the causality criteria for conformal uncharged MIS and

BDNK theories, which are the two most well-known formulations of stable-causal relativistic hy-

drodynamic theories solely using linearized stability analysis. The derivation makes use of the fact

that the causal parameter space of a theory is also stable at all frames connected by Lorentz boosts.

Hence, the region of the parameter space, which stays stable in all the Lorentz-boosted frames, is

identified to be the causal parameter space, and the corresponding inequalities give us the causality

constraints on the parameters. The important result we find here is that the region of the parameter

space stable at an ultra-high boost (boost velocity nearly equal to the speed of light) is the one that

stays stable in all frames and, hence, is the causal parameter space. The corresponding stability

criteria that one gets at an ultra-high boost are the causality criteria. In the second work of Part

2, we use the freedom to redefine hydrodynamic fields to rewrite the stress tensor of the BDNK

theory written in a generalized hydro frame into the Landau frame. We find that, although the

stress tensor in the BDNK theory as written in a generalized hydrodynamic frame is truncated at

the first-order in derivative expansion, when written in the Landau frame, the stress tensor has an

infinite number of derivative corrections. These infinite corrections can be recast as extra non-fluid

degrees of freedom, as in the MIS theory. This procedure of incorporating new degrees of freedom

in the theory is non-unique, and we show two of the possible ways to do the same, motivated by

the form of the stress tensor in the MIS theory. We also find that the field redefinition leaves the

hydrodynamic modes of the theory unchanged, but modifies the non-hydrodynamic spectrum of

the theory, including leading to degenerate non-hydro modes.

The analyses performed in this thesis shed light on some possible avenues for future explo-

rations. Broadly, the frameworks developed here can be used to understand entropy currents on a

black hole’s horizon in more detail, to understand the causality properties of a hydrodynamic theory

without departing from the low-wavenumber regime, and to utilize the fluid-gravity correspondence

in constructing stable-causal theories of hydrodynamics from some gravity dual spacetimes.
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As indicated in [2], it might be an interesting open direction to use the Iyer-Wald ambiguities in-

volved in the entropy current construction to generate such pieces in the entropy current that exactly

cancel out the non-covariant terms in the affine-to-affine transformation of the currents. For exam-

ple, in the Gauss-Bonnet theory, the entropy density and spatial entropy current would receive extra

terms upon fixing the Iyer-Wald ambiguities, which might, in turn, contribute to the entropy current

exactly canceling out the non-covariant terms in the entropy current’s transformation. If this were

possible, it would then be interesting to check if an algorithm can be developed to systematically

cancel out such non-covariant pieces using appropriate ambiguity fixing and, therefore, develop a

procedure to write entropy currents that transform covariantly under coordinate transformations on

the horizon. The investigation can then be extended to test whether these entropy currents trans-

form covariantly under non-affine coordinate transformations. This can then open up a variety of

new directions as one can then try to extract an ‘improved’ boundary entropy current from here.

These would be different from the ones derived in [95] as they’d have Iyer-Wald ambiguities fixed

to certain values and might possibly be genuine fluid entropy currents. These ‘genuine’ fluid en-

tropy currents originally valid for linear amplitude regime only can then be uplifted to construct

entropy currents valid even in the nonlinear regime of dynamics, using algorithms developed in

past works as [94]. These entropy currents can then be mapped back to the horizon to understand

the second law for black holes in the regime of nonlinear dynamics.

One can also explore these entropy current structures and the associated coordinate transfor-

mations from the perspective of Carrollian symmetries. Since the horizon is a null hypersurface, it

is endowed with an underlying Carrollian symmetry [121]. The reparametrizations on the horizon

seem very similar to what has been described as Carrollian diffeomorphisms [146]. A possible

first step towards understanding this connection can be to construct structures on the horizon that

are covariant under Carrollian diffeomorphisms. This would help in examining the validity of the

reparametrizations as Carrollian diffeomorphisms. One could then try to express the second law

on the horizon in terms of Carroll covariant structures, possibly as some conservation equation for
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a current. A far shot would involve interpreting the entropy current as a Noether current, corre-

sponding to some symmetry, possible symmetry under Carrollian diffeomorphisms.

The model-specific derivation of causality criteria for MIS and BDNK theories using stability

analysis in [96] is limited to the conformal uncharged limit. Lifting these assumptions, it would

be interesting to test whether stability criteria at ultra-high boost indeed give us the causality con-

straints in the theory. Some analyses indicate that it is indeed the case for non-conformal, un-

charged, and charged conformal MIS theories [130], hinting towards the generality of the analysis.

It would be useful to actually prove this identification of causality and near-luminal stability cri-

teria for general dispersion polynomials. This would then allow for the causality of a theory to be

analyzed without departing from the low-wavenumber regime of the theory, which is more suitable

and conceptually appropriate for a derivative expandible effective theory like relativistic hydrody-

namics. For hydrodynamic theories in general, and specifically in those derived from a gravity dual

theory, this method of causality analysis can lead to a more proper way of deriving the constraints

on the parameters.

The concept of introducing infinite order derivative corrections to a theory to maintain stability

and causality, as studied in [98], can be extended to gravitational solutions as well with the moti-

vation to construct stable-causal hydrodynamic theories from a gravitational dual. It would then

be interesting to resum these infinite corrections into new degrees of freedom on the fluid side and

find their interpretations on the gravity side. The authors in [68] have already constructed a gravity

dual for the BDNK stress theory using an appropriate choice of the zero modes of the solutions. It

would be interesting to compare these results with one obtained by adding an infinite no. of correc-

tions to a uniform black brane solution in asymptotically AdS metric. One can also try to involve

higher-derivative corrections to the gravitational solution and check whether a BDNK stress tensor

can be constructed corresponding to these. It can further be checked whether the causality anal-

ysis for such a boundary fluid can constrain the coupling parameters of higher-derivative gravity

corrections, as was done in [77–79]. Further, it would be interesting to explore the connections
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between the quasinormal modes of the bulk spacetime and those of the boundary dual fluid theory

under the framework of BDNK hydrodynamics. In general, the BDNK theory gives an alternative

formulation to test the general predictions obtained from a dual gravitational theory. One can also

explore if any other alternative stable-causal hydrodynamic formulations are possible besides the

MIS and BDNK and what their implications might be for a dual gravitational theory.
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Appendix A

(For Chapter - 3)
A.1 Notations, Conventions, and Definitions

In this appendix, we summarize our notation conventions and list the definitions of the various

structures that we have used throughout our work.

• Indices: Uppercase Latin alphabetsA,B,C...will refer to fullD space-time coordinates and

Lowercase Latin alphabets a, b, c... will refer to the (D−2) dimensional spatial coordinates.

• Choice of coordinates:

XA = {r, v, xa}, Y A = {ρ, τ, ya} : The full space-time

coordinates in D dimensions

r, ρ = The radial coordinates

v, τ = The Eddington-Finkelstein type time coordinates

xa, ya = The (D − 2) spatial coordinates

• Choice of Space-time Metrics:

ds2 = 2 dv dr − r2 X(r, v, xa) dv2 + 2 r ωa(r, v, x
b) dv dxa + hab(r, v, x

a) dxa dxb

= GAB(r, v, x
a) dXA dXB

= 2 dτ dρ− ρ2 X̃(ρ, τ, ya) dτ 2 + 2 ρ ω̃a (ρ, τ, y
b) dτ dya + h̃ab(ρ, τ, y

a) dya dyb

= gAB(ρ, τ, y
a) dY A dY B

• Structures like spatial derivatives, curvature tensors, and metric components in the Y A co-

ordinate system will be represented with a ˜ on their corresponding counterparts in the XA

coordinates. For example, X,ωi, hij,
(
∂a =

∂
∂xa

)
→ X̃, ω̃i, h̃ij,

(
∂̃a =

∂
∂ya

)
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A (For Chapter - 3)

• Transformation of Coordinates and Derivatives on the Horizon:

r = e−ζρ+O(ρ2)

ρ = eζr +O(r2)

v = eζτ +O(ρ)

τ = e−ζv +O(r)

xa = ya +O(ρ)

ya = xa +O(r)

∂r = eζ
(
∂ρ +

1

2
τ 2ξ2∂τ + τξa∂̃a

)
+O(ρ)

∂v = e−ζ∂τ +O(ρ)

∂a = ∂̃a − τ ξa∂τ +O(ρ)

where we’ve denoted ∂aζ = ∂̃aζ by ξa.

• Definition of Curvature Tensors:

Kab =
1

2
∂vhab K = habKab =

1√
h
∂v
√
h

K̃ab =
1

2
∂τ h̃ab K̃ = h̃abK̃ab =

1√
h̃
∂τ

√
h̃

RABCD, RAB, R =

Riemann tensor, Ricci tensor, Ricci scalar corresponding to full metric G or g

Rabcd,Rab,R =

Riemann tensor, Ricci tensor, Ricci scalar corresponding to intrinsic metric h or h̃

A.2 Detailed Expressions

In this appendix, we show the explicit calculations for the relation between quantities such as

Christoffel connection, Ricci scalar, and the divergence of entropy current between XA and Y A

coordinate systems.
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• Expression for Christoffel connection in transformed coordinates

Γa,bc =
1

2

(
∂bhac + ∂chab − ∂ahbc

)
= Γ̃a,bc −

1

2
τ∂τ
(
ξbhac + ξchab − ξahbc

)
= Γ̃a,bc − τ

(
ξbK̃ac + ξcK̃ab − ξaK̃bc

) (A.1)

• Expressions for Riemann tensor and Ricci scalar

Rabcd = −[∂dΓa,bc − ∂cΓa,bd + hpqΓp,acΓq,bd − Γp,adΓq,bch
pq] (A.2)

• Ricci Scalar in transformed coordinates

R = hachbdRabcd

= −hachbd∂dΓa,bc + hadhbc∂dΓa,bdc + hachbdΓp,adΓq,bch
pq − hadhbcΓp,adΓq,bch

pq

= (hadhbc − hachbd)
(
∂dΓa,bc − hpqΓp,adΓq,bc

) (A.3)

∂dΓa,bc =∂̃dΓa,bc − τξd∂τΓa,bc

= ∂̃d
[
Γ̃a,bc − τ(ξbK̃ac + ξcK̃ab − ξaK̃bc)

]
− τξd∂τ

[
Γ̃a,bc − τ(ξbK̃ac + ξcK̃ab − ξaK̃bc)

]
=
[
∂̃dΓ̃a,bc − τ(ξbdK̃ac +

HHHHξcdK̃ab − ξadK̃bc)− τ(ξb∂̃dK̃ac +
XXXXXξc∂̃dK̃ab − ξa∂̃dK̃bc)

]
+
[
− τ(ξd∂̃bK̃ac +

XXXXXξd∂̃cK̃ab − ξd∂̃aK̃bc) + τ(ξdξbK̃ac +
XXXXξdξcK̃ab − ξaξdK̃bc)

+ τ 2(ξdξb∂τK̃ac +
XXXXXXξdξc∂τK̃ab − ξdξa∂τK̃bc)

]
(A.4)

The terms canceled in (A.4) due to the fact that terms symmetric in (c, d) will not contribute

to the Ricci scalar as it has a prefactor of (hadhbc − hachbd) which is antisymmetric in (c, d).

Hence,

∂dΓa,bc = ∂̃dΓ̃a,bc − τ
[
(ξbd + ξb∂̃d + ξd∂̃b − ξdξb)K̃ac − (ξad + ξa∂̃d + ξd∂̃a − ξaξd)K̃bc]

+τ 2[ξdξb∂τK̃ac − ξdξa∂τK̃bc].

(A.5)
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From eqn. (A.3) and (A.1),

hpqΓp,adΓq,bc = hpqΓ̃p,adΓ̃q,bc − τhpqΓ̃p,ad(ξbK̃qc + ξcK̃qb − ξqK̃bc)

− τhpqΓ̃q,bc(ξaK̃pd + ξdK̃pa − ξpK̃ad) +O(ϵ2).
(A.6)

Thus, from (A.3), (A.5), and (A.6)

R = R̃+ (hadhbc − hachbd)

[−2τ{ξbd + (ξb∂̃d + ξd∂̃b)− ξdξb}K̃ac

+ 2τ 2(ξdξb∂τK̃ac) + 2τhpq Γ̃p,ad(ξbK̃qc + ξcK̃qb − ξqK̃bc)]

+O(ϵ2).

(A.7)

• The divergence of entropy current in transformed coordinates

The expression for entropy current for Gauss-Bonnet theory is given as

Ja = −4(∇bK
ba −∇aKcdh

cd). (A.8)

This implies, that the divergence of Entropy current is

∇aJ
a = −4(hadhbc − hcdhab)∇a∇bKcd = −4(hadhbc − hachbd)∇b∇dKac. (A.9)

Let us define a three index objectMd,ac such that

Md,ac ≡∇dKac = ∇d

(
e−ζK̃ac

)
= ∂d

(
e−ζK̃ac

)
− Γp

da

(
e−ζK̃pc

)
− Γp

dc

(
e−ζK̃ap

)
={∂̃d − ξdτ∂τ}

(
e−ζK̃ac

)
− Γ̃p

da

(
e−ζK̃pc

)
− Γ̃p

dc

(
e−ζK̃ap

)
+O(ϵ2)

=e−ζ
[
∂̃dK̃ac − ξdK̃ac − ξdτ∂τK̃ac − Γ̃p

daK̃pc − Γ̃p
dcK̃ap

]
+O(ϵ2)

=e−ζ
(
∇̃dK̃ac − ξdK̃ac − ξdτ∂τK̃ac

)
+O(ϵ2)

=e−ζ
(
M̃d,ac − (δM̃)d,ac

)
+O(ϵ2),

(A.10)

(δM̃)d,ac = ξd

(
K̃ac + τ∂τK̃ac

)
(A.11)
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Also, we define

Wabcd ≡ ∇bMd,ac

=∂bMd,ac − Γp
bdMp,ac − Γp

baMd,pc − Γp
bcMd,ap

=∂̃b

{
e−ζ
(
M̃d,ac − (δM̃)d,ac

)}
− ξbe

−ζτ∂τ

(
M̃d,ac − (δM̃)d,ac

)
− e−ζ

[
Γ̃p
bd

(
M̃p,ac − (δM̃)p,ac

)
+ Γ̃p

ba

(
M̃d,pc − (δM̃)d,pc

)
+ Γ̃p

bc

(
M̃d,ap − (δM̃)d,ap

)]
+O(ϵ2)

=e−ζ
[
∇̃bM̃d,ac − ξb(1 + τ∂τ )

(
M̃d,ac − δM̃d,ac

)
− ∇̃bδM̃d,ac

]
=e−ζ

[
∇̃b∇̃dK̃ac − ξbM̃d,ac − ∇̃bδM̃d,ac − ξbτ∂τM̃d,ac + ξb(1 + τ∂τ )δM̃d,ac

]
=e−ζ

[
∇̃b∇̃dK̃ac −ξb∇̃dK̃ac − ∇̃b(ξdK̃ac)︸ ︷︷ ︸

term 1

−∇̃b(ξdτ∂τK̃ac)− ξbτ∂τ∇̃dK̃ac︸ ︷︷ ︸
term 2

+ ξb(1 + τ∂τ )(ξdK̃ac + ξdτ∂τK̃ac)︸ ︷︷ ︸
term 3

]
+O(ϵ2).

(A.12)

Now,

term 1 =− ξb∇̃dK̃ac − ∇̃b(ξdK̃ac)

=− ξb∂̃dK̃ac + ξbΓ̃
p
daK̃pc + ξbΓ̃

p
dcK̃ap − ξd∂̃bK̃ac + ξdΓ̃

p
baK̃pc

+ ξdΓ̃
p
bcK̃ap − ξbdK̃ac + Γ̃p

bdξpK̃ac.

(A.13)

From (A.9), we see that for calculation of the divergence of entropy current, the terms in

(A.12) have to be contracted with (hadhbc − hachbd), which is antisymmetric in (c, d) or

(a, b). Now, in (A.13), the terms ξbΓ̃p
dcK̃ap and ξdΓ̃p

baK̃pc are symmetric in (c, d) and (a, b)

respectively. Hence, these can be dropped. In addition, we can perform some relabelling of

indices and rewrite term 1 as

term 1 =− ξb∂̃dK̃ac + ξbΓ̃
p
daK̃pc − ξd∂̃bK̃ac + ξcΓ̃

p
adK̃bp − ξbdK̃ac − Γ̃p

adξpK̃bc.

=− (ξb∂̃d + ξd∂̃b)K̃ac − ξbdK̃ac + Γ̃p
ad(ξcK̃pb + ξbK̃pc − ξpK̃bc).

(A.14)
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In a similar fashion, we can express term 2 as

term 2 =− ξbτ∂τ∇̃dK̃ac − ∇̃b(ξdτ∂τK̃ac)

=− τ
[
ξb∇̃d(∂τK̃ac) + ∇̃b(ξd∂τK̃ac)

]
+O(ϵ2)

=− τ
[
(ξb∂̃d + ξd∂̃b)∂τK̃ac + ξbd∂τK̃ac − Γ̃p

ad(ξc∂τK̃pb + ξb∂τK̃pc − ξp∂τK̃bc)
]
+O(ϵ2).

(A.15)

Now, evaluating term 3

term 3 =ξb(1 + τ∂τ )(ξdK̃ac + ξdτ∂τK̃ac) = ξbξd(K̃ac + 3τ∂τK̃ac + τ 2∂2τ K̃ac). (A.16)

Combining results from (A.12), (A.14), (A.15) and (A.16)

Wabcd = e−ζ

[
∇̃b∇̃dK̃ac −

(
ξbdK̃ac

)
−
(
ξb∂̃d + ξd∂̃b

)
K̃ac + Γ̃p

ad

(
ξbK̃pc + ξcK̃pb − ξpK̃bc

)
− τ

{
ξbd +

(
ξb∂̃d + ξd∂̃b

)}
(∂τK̃ac) + τ Γ̃p

ad

(
ξb∂τK̃pc + ξc∂τK̃pb − ξp∂τK̃bc

)
+ ξbξdK̃ac + 3τξbξd∂τK̃ac + ξbξdτ

2∂2τ K̃ac

]
+O(ϵ2).

(A.17)

Hence up to O(ϵ), the divergence of the entropy current becomes

∇aJ
a = e−ζ∇̃aJ̃

a − 4e−ζ(hadhbc − hachbd)

[
− (ξbdK̃ac)− (ξb∂̃d + ξd∂̃b)K̃ac

+ Γ̃p
ad(ξbK̃pc + ξcK̃pb − ξpK̃bc)− τ{ξbd + (ξb∂̃d + ξd∂̃b)}(∂τK̃ac)

+ τ Γ̃p
ad(ξb∂τK̃pc + ξc∂τK̃pb − ξp∂τK̃bc) + ξbξdK̃ac + 3τξbξd∂τK̃ac + ξbξdτ

2∂2τ K̃ac

]
.

(A.18)

A.3 Action of Derivatives on some Specific Structures

In this appendix we’ll see how the derivatives of certain boost weight 1 structures transform under

the coordinate transformations. We’ll see how these terms can be condensed into some particular

forms that can help us manipulate them in simpler ways.

Any boost weight 1 term can be written in the form of ∂v(some boost weight 0 structure, say

Qa1a2...an). Transforming the ∂v operator under the coordinate transformations as in (3.19), we can
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write it as e−ζ(∂τQa1a2...an). Also since τ is analogous to the v coordinate itself, (∂τQa1a2...an) itself

is a boost weight 1 structure in the {ρ, τ, ya} coordinate system. Now if we act with a ∇xi on this

structure, we get

∇i(∂vQa1a2...an) = ∇i(e
−ζ(∂τQa1a2...an))

=∂i(e
−ζ(∂τQa1a2...an))− e−ζΓb

ia1
∂τQba2...an − e−ζΓb

ia2
∂τQa1b...an ...− e−ζΓb

ian∂τQa1a2...b

(A.19)

∂i(e
−ζ(∂τQa1a2...an)) = (∂̃i − ξiτ∂τ )(e

−ζ(∂τQa1a2...an))

= −ξi(e−ζ(∂τQa1a2...an))− ξiτ(e
−ζ∂τ (∂τQa1a2...an))− e−ζ ∂̃i(∂τQa1a2...an)

= e−ζ
[
∂̃i(∂τQa1a2...an)− ξi(1 + τ∂τ )(∂τQa1a2...an)

] (A.20)

Γb
iam(∂τQa1a2..b..an) =

[
Γ̃b
iam − τ(ξK̃...)

]
(∂τQa1a2..b..an) = Γ̃b

iam(∂τQa1a2..b..an) +O(ϵ2)

⇒∇i(∂vQa1a2...an) = e−ζ
[
∇̃i − ξi(1 + τ∂τ )

]
∂τQa1a2...an +O(ϵ2)

(A.21)

This form becomes especially useful while calculating J i and ∇iJ
i.

One more structure that can appear in the calculations of the ∂vJv is of the form ∂v(τQ) from

the extra terms that are generated due to the coordinate transformation. This derivative can be

arranged in the following form which makes it easier to manipulate.

∂v [τQ] = e−ζ∂τ [τQ] = e−ζ(1 + τ∂τ )Q (A.22)
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Appendix B

(For Chapter - 4)
B.1 Notations and Identities in 4

Here, unless explicitly mentioned, all identities and equations are valid only on the horizon, the

null hypersurface at r = 0.

hij = lµi l
ν
jχµν

Γk,ij = lµi l
ν
j l

α
k Γα,µν + χµν l

µ
k (li · ∂)l

ν
j

Kij = lµi l
ν
jKµν where Kµν = −tαΓα,µν

(B.1)

Notation related to coordinate transformation

tµ ≡ ∂xµ

∂v
≡ eϕnµ ≡ eϕ ||n|| n̂µ where nµ ≡ Gµr, ||n|| ≡

√
nµnνηµν

t̃µ =
∂v

∂xµ
, t̃µt

µ = 1, tµχµν = 0, tµliµ = t̃µl
µ
i = 0, lµi l

j
µ = δji , lµi l

i
ν + tµt̃ν = δµν

0 = GµrGrr +GµνGνr = −χµνuν , ⇒ χµνuµ = 0

1 = GrrGrr +GrµGµr = −nµuµ, ⇒ nµuµ = −1

(B.2)

Proof for the first identity in equation (4.19)

DefineΩµ ≡ ϵµµ1···µnli1µ1
· · · linµn

( ϵi1···in
n!

)
Nowwe could show that the expression li1µ1

· · · linµn
ϵi1···in

could be expressed as

li1µ1
· · · linµn

ϵi1···in = Ωµϵµµ1···µn

Ωµϵµµ1···µn = ϵµµ1···µnϵ
µν1···νnli1ν1 · · · l

in
νn

(ϵi1···in
n!

)
(B.3)
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Projectors and related identities

∆α
µ ≡ δαµ − tαt̃µ, Note t̃α∆

α
µ = ∆α

µt
µ = 0

χ̄αβ = ∆α
µ χ

µν ∆β
ν , χ̄µαχαν = ∆µ

ν

χµαχαν = δµν + nµuν ⇒ uµ χ
µαχαν = χµαχαν n

ν = 0

(B.4)

B.2 First few functions of the coordinate transformation

We shall determine r(1) and xµ(1) by processing the gauge conditions evaluated at ρ = 0. On the

horizon, the gauge conditions impose the following constraints

− 2uµx
µ
(1)r(1) + xµ(1)x

ν
(1)χµν = 0, −uµr(1)tµ + tνxµ(1)χµν = 1, −uµr(1)lµi + lνi x

µ
(1)χµν = 0

(B.5)

where

tµ ≡

(
∂xµ(0)
∂v

)
, lµi ≡

(
∂xµ(0)
∂αi

)

From the second equation using the fact that tµ(χµν)ρ=0 = 0 we find

r(1) = −(uµt
µ)−1 (B.6)

To simplify the solution for xµ(1) we also need the relation between χµν and hij on the horizon.

hij(ρ = 0) =

(
∂xµ

∂αi

)(
∂xν

∂αj

)
χµν(r = 0) = lµi i

ν
jχµν |r=0

hij(ρ = 0) = Inverse of hij at horizon = (ij) component of the inverse of the bulk metric on the horizon

= Gρµ

[(
∂αi

∂xµ

)(
∂αj

∂ρ

)
+

(
∂αj

∂xµ

)(
∂αi

∂ρ

)]
+Gρρ

(
∂αj

∂ρ

)(
∂αi

∂ρ

)
+Gµν

[(
∂αj

∂xµ

)(
∂αi

∂xν

)
+

(
∂αj

∂xµ

)(
∂αi

∂xν

)]
= tµ

[(
∂αi

∂xµ

)(
∂αj

∂ρ

)
+

(
∂αj

∂xµ

)(
∂αi

∂ρ

)]
+Gµν

[(
∂αj

∂xµ

)(
∂αi

∂xν

)
+

(
∂αj

∂xµ

)(
∂αi

∂xν

)]
=

(
∂xµ

∂v

)[(
∂αi

∂xµ

)(
∂αj

∂ρ

)
+

(
∂αj

∂xµ

)(
∂αi

∂ρ

)]
+Gµν

[(
∂αj

∂xµ

)(
∂αi

∂xν

)
+

(
∂αj

∂xµ

)(
∂αi

∂xν

)]
= χµν

[(
∂αj

∂xµ

)(
∂αi

∂xν

)
+

(
∂αj

∂xµ

)(
∂αi

∂xν

)]
= liµl

j
νχ

µν

(B.7)
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In the third and the fourth lines, we have used the fact that

Gρµ(ρ = 0) ∝ tµ =

(
∂xµ

∂v

)
= generator of the horizon

also Gρρ(ρ = 0) = 0 and χµν ≡ Gµν ̸= Inverse of χµν (not defined on the horizon).

We also need the inverse of these relations i.e., χµν and χµν in terms of hij etc.

χµν(r = 0) = liµl
j
νhij

χµν(r = 0) = lµi l
ν
j h

ij +

[(
∂xµ

∂ρ

)(
∂xν

∂λ

)
+

(
∂xν

∂ρ

)(
∂xµ

∂λ

)]
hρλ

= lµi l
ν
j h

ij +
[
xµ(1)t

ν + xν(1)t
µ
] (B.8)

Now we shall solve for xµ(1). For convenience, we shall express x
µ
(1) as

xµ(1) = P tµ + P i lµi (B.9)

Substituting (B.9) and (B.6) in the third equation of (B.5) we find

u · li
u · t

+ P j lµi l
ν
jχµν = 0 ⇒ P i = −hij

(
u · li
u · t

)
where hij(ρ = 0) = lµi l

ν
jχµν , hij = Inverse of hij

(B.10)

Now we shall find P from the first equation of (B.5).

− 2uµx
µ
(1)r(1) + xµ(1)x

ν
(1)χµν = 0

⇒ 2P + 2P i

(
li · u
u · t

)
+ xµ(1)x

ν
(1)χµν = 0

(B.11)

Solving this equation we find xµ(1).

xµ(1) =
1

2
hij
[
(u · li)(u · lj)

(u · t)2

]
tµ − hij

[
(u · li)lµj
(u · t)

]
(B.12)

Some Potentially useful identities for future works

1. xµ(1) related

xµ(1) =
1

2
hij
[
(u · li)(u · lj)

(u · t)2

]
tµ − hij

[
(u · li)lµj
(u · t)

]
xν(1)χµν = t̃µ −

uµ
(u · t)

(B.13)
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Using the two identities

hij = liµl
j
νχ

µν , liµl
ν
i = δµν − tµt̃ν , χµνuν = 0

we could further process the expression of xµ(1)

hij(u · li)(u · lj) = (u · t)2
(
t̃αχ

αβ t̃β
)

hij(li · u)lµj = (u · t)
[
−t̃νχµν + tµ

(
t̃αχ

αβ t̃β
)]

⇒ xµ(1) = −1

2

(
t̃αχ

αβ t̃β
)
tµ + t̃νχ

µν

(B.14)

2. Metric related:

hij(ρ = 0) = lµi l
ν
jχµν(r = 0)

hij(ρ = 0) = liµl
j
νχ

µν(r = 0)

χαβ = lαi l
β
j h

ij + xα(1)t
β + xβ(1)t

α

(B.15)

3. Geodesic related

tA∇AtB|ρ=0 = 0 ⇒ tαtµΓα,µν = 0 (B.16)

4. Extrinsic curvatures

Kij = lµi l
ν
jKµν , K̄ij = lµi l

ν
j K̄µν

where

Kµν = −tαΓα,µν

K̄µν =
(
∂µt̃ν + ∂ν t̃µ

)
−
[
∂µuν + ∂νuµ

(u · t)

]
− ∂rχµν

(u · t)
− xα(1)Γα,µν

KijK̄
ij = −

[
χµ1µ2χν1ν2 −

(
χµ1µ2xν1(1)t

ν2 + χν1ν2xµ1

(1)t
µ2

)]
Kµ1ν1K̄µ2ν2

(B.17)
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B.3 Boundary current in terms of fluid variables and ∂µϕ

Simplifying Jµ
space

We shall first show an identity tµKµν = 0

tµKµν =− tµtαΓα,µν

=− tµtα [∂µχνα + ∂νχµα − ∂αχµν ]

=− tµtα∂νχµα = −tµ∂ν [tαχµα] + tµχµα (∂νt
α) = 0

(B.18)

Now expanding DαKµν we find

DαKµν = ∂αKµν − χ̄θϕ (Γϕ,αµKθν + Γϕ,ανKθµ) + tθ
(
Kθν∂µt̃α +Kθµ∂ν t̃α

)
(B.19)

The last term in the RHS of equation (B.19) will vanish as a consequence of the identity (B.18).

The second term in the RHS of (B.19) could be further simplified using the expansion of χ̄θϕ.

χ̄θϕ (Γϕ,αµKθν + Γϕ,ανKθµ)

= χθϕ (Γϕ,αµKθν + Γϕ,ανKθµ)

− bϕtθ (Γϕ,αµKθν + Γϕ,ανKµθ)

+ bθ (KαµKθν +KανKµθ)− Btθ (KαµKθν +KανKµθ)

where bµ ≡ χµν t̃ν , B ≡ t̃µt̃νχ
µν

(B.20)

Here the term bθKθνKαµ is quadratic in the amplitude of the dynamics and therefore is negligible

within our approximation. The last two terms vanish if we apply the identity (B.18). Hence it

follows

DαKµν = ∂αKµν − χθϕ (Γϕ,αµKθν + Γϕ,ανKθµ) +O
(
ϵ2
)

From ∂αKµν we can separate the fluid and non-fluid terms in the following way

∂αKµν = −eϕ {(∂αnν1) Γν1,µν + nν1∂αΓν1,µν} − eϕ (∂αϕ)n
ν1Γν1,µν (B.21)
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Now for convenience we will write the expression for Jµ
space as a sum of two terms

Jµ
space = T1 + T2 (B.22)

with

T1 = −4α2 1√
g(b)

√
H√

tαtβg
(b)
αβ

(
χ̄γαχ̄µβ − χ̄γµχ̄αβ

)
(∂γKαβ)

T2 = 4α2 1√
g(b)

√
H√

tαtβg
(b)
αβ

(
χ̄γαχ̄µβ − χ̄γµχ̄αβ

)
χθϕ (Γϕ,γαKθβ + Γϕ,γβKθα)

(B.23)

Now we use the identity of (B.18) to simplify the terms and (4.31) to separate the terms

[T1]fluid

=4α2 1√
g(b)

√
H√

nαnβg
(b)
αβ

{(∂γnν1) Γν1,αβ + nν1∂γΓν1,αβ}[
(χαα1∂α1L)

(
χββ1∂β1L

)
nγnµ −

(
χββ1∂β1L

)
nµχγα

− (χαα1∂α1L) (χ
γγ1∂γ1L)n

βnµ + (χγγ1∂γ1L) (χ
µµ1∂µ1L)n

αnβ

+ (χγγ1∂γ1L)n
µχαβ + (χαα1∂α1L)n

βχγµ

− χαβχγµ +
(
χββ1∂β1L

)
nαχγµ − (χαα1∂α1L)n

γχµβ

+ χγαχµβ − (χγγ1∂γ1L)n
αχµβ + (χµµ1∂µ1L)n

γχαβ

−
(
χββ1∂β1L

)
(χµµ1∂µ1L)n

αnγ − (χµµ1∂µ1L)n
βχγα

+ (χσ1σ2∂σ1L ∂σ2L)
(
nβnµχγα − nγnµχαβ − nαnβχγµ + nαnγχµβ

)]

(B.24)
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[T1]non−fluid

= 4α2 1√
g(b)

√
H√

nαnβg
(b)
αβ

{(∂γϕ)nν1Γν1,αβ}
[
(χαα1∂α1L)

(
χββ1∂β1L

)
nγnµ

−
(
χββ1∂β1L

)
nµχγα − (χαα1∂α1L) (χ

γγ1∂γ1L)n
βnµ + (χγγ1∂γ1L)n

µχαβ + (χαα1∂α1L)n
βχγµ

− χαβχγµ +
(
χββ1∂β1L

)
nαχγµ − (χαα1∂α1L)n

γχµβ + χγαχµβ − (χγγ1∂γ1L)n
αχµβ

+ (χµµ1∂µ1L)n
γχαβ −

(
χββ1∂β1L

)
(χµµ1∂µ1L)n

αnγ − (χµµ1∂µ1L)n
βχγα

+(χγγ1∂γ1L) (χ
µµ1∂µ1L)n

αnβ + (χσ1σ2∂σ1L ∂σ2L)
(
nβnµχγα − nγnµχαβ − nαnβχγµ + nαnγχµβ

)]
+ 4α2 1√

g(b)

√
H√

nαnβg
(b)
αβ

{(∂γϕ)nν1Γν1,αβ + (∂γn
ν1) Γν1,αβ + nν1∂γΓν1,αβ}

[(
− L ∂α1L ∂β1ϕ

− L ∂β1L ∂α1ϕ+ L2 ∂α1ϕ ∂β1ϕ
)
nγnµχαα1χββ1 + L

(
χββ1∂β1ϕ

)
nµχγα −

(
− L ∂α1L ∂γ1ϕ

− L ∂γ1L ∂α1ϕ+ L2 ∂α1ϕ ∂γ1ϕ
)
nβnµχαα1χγγ1 − L (χγγ1∂γ1ϕ)n

µχαβ − L (χαα1∂α1ϕ)n
βχγµ

− L
(
χββ1∂β1ϕ

)
nαχγµ + L (χαα1∂α1ϕ)n

γχµβ + L (χγγ1∂γ1ϕ)n
αχµβ − L (χµµ1∂µ1ϕ)n

γχαβ

−
(
− L ∂β1L ∂µ1ϕ− L ∂µ1L ∂β1ϕ+ L2 ∂β1ϕ ∂µ1ϕ

)
nαnγχββ1χµµ1 + L (χµµ1∂µ1ϕ)n

βχγα

+
(
− L ∂γ1L ∂µ1ϕ− L ∂γ1ϕ ∂µ1L+ L2 ∂γ1ϕ ∂µ1ϕ

)
nαnβχγγ1χµµ1 −

(
L ∂σ1L ∂σ2ϕ

+ L ∂σ1ϕ ∂σ2L− L2 ∂σ1ϕ ∂σ2ϕ
)
χσ1σ2

(
nβnµχγα − nγnµχαβ − nαnβχγµ + nαnγχµβ

)]
(B.25)

[T2]fluid

=4α2 1√
g(b)

√
H√

nαnβg
(b)
αβ

χθϕ

[
(nσ3Γσ3,θβΓϕ,γα + nσ4Γσ4,θαΓϕ,γβ)

{
− (χαα1∂α1L)

(
χββ1∂β1L

)
nµnγ

+
(
χββ1∂β1L

)
nµχγα − (χγγ1∂γ1L)n

µχαβ + χαβχγµ + (χαα1∂α1L)n
γχµβ − χγαχµβ

− (χµµ1∂µ1L)n
γχαβ + (χσ1σ2∂σ1L ∂σ2L)n

γnµχαβ

}
+ (nσ4Γσ4,θα) Γϕ,γβ

{
(χαα1∂α1L) (χ

γγ1∂γ1L)n
βnµ − (χαα1∂α1L)n

βχγµ + (χµµ1∂µ1L)n
βχγα

− (χσ1σ2∂σ1L ∂σ2L)n
βnµχγα

}
+ (nσ3Γσ3,θβ) Γϕ,γα

{
−
(
χββ1∂β1L

)
nαχγµ + (χγγ1∂γ1L)n

αχµβ

+ (χµµ1∂µ1L)
(
χββ1∂β1L

)
nαnγ − (χσ1σ2∂σ1L ∂σ2L)n

αnγχµβ

}]
(B.26)
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[T2]non−fluid

=4α2 1√
g(b)

√
H√

nαnβg
(b)
αβ

χθϕ

[{ (
L ∂α1L ∂β1ϕ+ L ∂α1ϕ ∂β1L− L2 ∂α1ϕ ∂β1ϕ

)
nµnγχαα1χββ1

+ L
(
χγγ1∂γ1ϕ χ

αβ − χββ1∂β1ϕ χ
γα
)
nµ − L

(
χαα1∂α1ϕ χ

µβ
)
nγ

+ L
(
χµµ1∂µ1ϕ χ

αβ
)
nγ

}
(nσ3Γσ3,θβΓϕ,γα + nσ4Γσ4,θαΓϕ,γβ)

− nβnµ (nσ4Γσ4,θαΓϕ,γβ)χ
αα1χββ1

(
L ∂α1L ∂γ1ϕ+ L ∂α1ϕ ∂γ1L− L2 ∂α1ϕ ∂γ1ϕ

)
+ L (nσ4Γσ4,θα) Γϕ,γβ

{
(χαα1∂α1ϕ) n

βχγµ − (χµµ1∂µ1ϕ)n
βχγα

}
+ L (nσ3Γσ3,θβ) Γϕ,γα

{
χββ1∂β1ϕ n

αχγµ − χγγ1∂γ1ϕ n
αχµβ

}
−
(
L ∂β1L ∂µ1ϕ+ L ∂β1ϕ ∂µ1L− L2 ∂β1ϕ ∂µ1ϕ

)
nαnγχµµ1χββ1 (nσ3Γσ3,θβ) Γϕ,γα

− χσ1σ2
(
L ∂σ1L ∂σ2ϕ+ L ∂σ1ϕ ∂σ2L− L2 ∂σ1ϕ ∂σ2ϕ

){
− (nσ4Γσ4,θα) Γϕ,γβn

βnµχγα

− (nσ3Γσ3,θβ) Γϕ,γαn
αnγχµβ + (nσ3Γσ3,θβΓϕ,γα + nσ4Γσ4,θαΓϕ,γβ)n

γnµχαβ

}]
(B.27)

Simplifying Jµ
time

In this section we will write down the intrinsic Ricci scalar as a sum of ‘fluid’ and ‘non-fluid’ terms.

Using the definition of K and ignoring the terms quadratic in the amplitude of dynamics, we can

write

R = (χ̄µ1ν1χ̄µ2ν2 − χ̄µ1ν2χ̄µ2ν1)

[
∂µ1Γν1,µ2ν2 − χα1α2Γα1,µ1ν1Γα2,µ2ν2

− bα1Γα1,µ1ν1Kµ2ν2 − bα2Γα2,µ2ν2Kµ1ν1 + 2Kµ1ν1

(
∂µ2 t̃ν2

) ]
= T1 + T2 + T3 + T4 + T5

(B.28)
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Now we use the identity of (B.18) to simplify the terms and (4.31) to separate the terms

[T1 + T2]fluid

=

[
∂µ1Γν1,µ2ν2 − χα1α2Γα1,µ1ν1Γα2,µ2ν2

][
−
(
χµ2θ2∂θ2L

)
nν2χµ1ν1 +

(
χµ2θ2∂θ2L

)
nν1χµ1ν2

+
(
χµ1θ3∂θ3L

)
nν2χµ2ν1 −

(
χµ1θ3∂θ3L

)
nν1χµ2ν2 − χµ1ν2χµ2ν1 + χµ1ν1χµ2ν2

+
(
χαβ∂αL ∂βL

)
(nµ2nν2χµ1ν1 − nµ2nν1χµ1ν2 − nµ1nν2χµ2ν1 + nµ1nν1χµ2ν2)

−
(
χµ1θ3∂θ3L

) (
χν1θ4∂θ4L

)
nµ2nν2 +

(
χν1θ4∂θ4L

) (
χµ2θ2∂θ2L

)
nµ1nν2

+
(
χν1θ4∂θ4L

)
nµ2χµ1ν2 −

(
χν1θ4∂θ4L

)
nµ1χµ2ν2 +

(
χν2θ5∂θ5L

){ (
χµ1θ3∂θ3L

)
nµ2nν1

−
(
χµ2θ2∂θ2L

)
nµ1nν1 − χµ1ν1nµ2 + χµ2ν1nµ1

}]
(B.29)

[T1 + T2]non−fluid

=

[
∂µ1Γν1,µ2ν2 − χα1α2Γα1,µ1ν1Γα2,µ2ν2

][
L
(
χµ2θ2∂θ2ϕ

)
(nν2χµ1ν1 − nν1χµ1ν2)

+ L
(
χµ1θ3∂θ3ϕ

)
(nν1χµ2ν2 − nν2χµ2ν1) + L

(
χν1θ4∂θ4ϕ

)
(nµ1χµ2ν2 − nµ2χµ1ν2)

+ {nµ2nν2χµ1ν1 − nµ2nν1χµ1ν2 − nµ1nν2χµ2ν1 + nµ1nν1χµ2ν2}
{
− L

(
χαβ∂αL ∂βϕ

)
− L

(
χαβ∂αϕ ∂βL

)
+ L2

(
χαβ∂αϕ ∂βϕ

)}
+ L

(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4L

)
nµ2nν2

+ L
(
χν1θ4∂θ4ϕ

) (
χµ1θ3∂θ3L

)
nµ2nν2 − L2

(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4ϕ

)
nµ2nν2

− L
(
χµ2θ2∂θ2ϕ

) (
χν1θ4∂θ4L

)
nµ1nν2 − L

(
χν1θ4∂θ4ϕ

) (
χµ2θ2∂θ2L

)
nµ1nν2

+ L2
(
χν1θ4∂θ4ϕ

) (
χµ2θ2∂θ2ϕ

)
nµ1nν2 − L

(
χν2θ5∂θ5ϕ

){
− nµ2χµ1ν1 + nµ1χµ2ν1

+
(
χµ1θ3∂θ3L

)
nµ2nν1 −

(
χµ2θ2∂θ2L

)
nµ1nν1 − L

(
χµ1θ3∂θ3ϕ

)
nµ2nν1

+ L
(
χµ2θ2∂θ2ϕ

)
nµ1nν1

}]

(B.30)

[T3]fluid =
(
χα1θ6∂θ6L

)
(nσ3Γσ3,µ2ν2) Γα1,µ1ν1

[ (
χµ2θ2∂θ2L

)
nν1χµ1ν2 −

(
χµ1θ3∂θ3L

)
nν1χµ2ν2

−
(
χν1θ4∂θ4L

)
nµ1χµ2ν2 +

(
χν2θ5∂θ5L

)
nµ1χµ2ν1 + χµ1ν1χµ2ν2 − χµ1ν2χµ2ν1

+
(
χαβ∂αL ∂βL

)
nµ1nν1χµ2ν2 −

(
χµ2θ2∂θ2L

) (
χν2θ5∂θ5L

)
nµ1nν1

]
(B.31)
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[T3]non−fluid

=
(
χα1θ6∂θ6L

)
(nσ3Γσ3,µ2ν2) Γα1,µ1ν1

[
− L

(
χµ2θ2∂θ2ϕ

)
nν1χµ1ν2 + L

(
χν1θ4∂θ4ϕ

)
nµ1χµ2ν2

+ L
(
χµ1θ3∂θ3ϕ

)
nν1χµ2ν2 − L

(
χν2θ5∂θ5ϕ

)
nµ1χµ2ν1 −

(
L ∂αL ∂βϕ+ L ∂αϕ ∂βL

− L2 ∂αϕ ∂βϕ
)
χαβnµ1nν1χµ2ν2

]
− L

(
χα1θ6∂θ6ϕ

)
(nσ3Γσ3,µ2ν2) Γα1,µ1ν1

[
− L

(
χµ2θ2∂θ2ϕ

)
nν1χµ1ν2 + L

(
χν1θ4∂θ4ϕ

)
nµ1χµ2ν2

+ L
(
χµ1θ3∂θ3ϕ

)
nν1χµ2ν2 − L

(
χν2θ5∂θ5ϕ

)
nµ1χµ2ν1 −

(
L ∂αL ∂βϕ+ L ∂αϕ ∂βL

− L2 ∂αϕ ∂βϕ
)
χαβnµ1nν1χµ2ν2 +

(
χµ2θ2∂θ2L

)
nν1χµ1ν2 −

(
χµ1θ3∂θ3L

)
nν1χµ2ν2

−
(
χν1θ4∂θ4L

)
nµ1χµ2ν2 +

(
χν2θ5∂θ5L

)
nµ1χµ2ν1 + χµ1ν1χµ2ν2 − χµ1ν2χµ2ν1

+
(
χαβ∂αL ∂βL

)
nµ1nν1χµ2ν2 −

(
χµ2θ2∂θ2L

) (
χν2θ5∂θ5L

)
nµ1nν1

]
(B.32)

[T4 + T5]fluid

=nσ4Γσ4,µ1ν1

(
2∂µ2∂ν2L− χα2θ7∂θ7L Γα2,µ2ν2

) [
−
(
χαβ∂αL ∂βL

)
nµ2nν2χµ1ν1

+
(
χµ2θ2∂θ2L

)
nν2χµ1ν1 −

(
χµ1θ3∂θ3L

)
nν2χµ2ν1 −

(
χν1θ4∂θ4L

)
nµ2χµ1ν2

+
(
χν2θ5∂θ5L

)
nµ2χµ1ν1 +

(
χµ1θ3∂θ3L

) (
χν1θ4∂θ4L

)
nµ2nν2 + χµ1ν2χµ2ν1 − χµ1ν1χµ2ν2

]
(B.33)
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[T4 + T5]non−fluid

=nσ4Γσ4,µ1ν1

(
2∂µ2∂ν2L− χα2θ7∂θ7L Γα2,µ2ν2

) [
L
(
χαβ∂αϕ ∂βL

)
nµ2nν2χµ1ν1

− L2
(
χαβ∂αϕ ∂βϕ

)
nµ2nν2χµ1ν1 + L

(
χαβ∂αL ∂βϕ

)
nµ2nν2χµ1ν1

− L
(
χµ2θ2∂θ2ϕ

)
nν2χµ1ν1 + L

(
χµ1θ3∂θ3ϕ

)
nν2χµ2ν1 + L

(
χν1θ4∂θ4ϕ

)
nµ2χµ1ν2

− L
(
χν2θ5∂θ5ϕ

)
nµ2χµ1ν1 − L

(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4L

)
nµ2nν2

− L
(
χµ1θ3∂θ3L

) (
χν1θ4∂θ4ϕ

)
nµ2nν2 + L2

(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4ϕ

)
nµ2nν2

]
+ nσ4Γσ4,µ1ν1

(
− 2∂µ2ϕ ∂ν2L− 2∂µ2L ∂ν2ϕ− 2L ∂µ2∂ν2ϕ+ 2∂µ2ϕ ∂ν2ϕ

+ Lχα2θ7∂θ7ϕ Γα2,µ2ν2

)[
−
(
χαβ∂αL ∂βL

)
nµ2nν2χµ1ν1 +

(
χµ2θ2∂θ2L

)
nν2χµ1ν1

−
(
χµ1θ3∂θ3L

)
nν2χµ2ν1 −

(
χν1θ4∂θ4L

)
nµ2χµ1ν2 +

(
χν2θ5∂θ5L

)
nµ2χµ1ν1

+
(
χµ1θ3∂θ3L

) (
χν1θ4∂θ4L

)
nµ2nν2 + χµ1ν2χµ2ν1 − χµ1ν1χµ2ν2

+ L
(
χαβ∂αϕ ∂βL

)
nµ2nν2χµ1ν1 − L2

(
χαβ∂αϕ ∂βϕ

)
nµ2nν2χµ1ν1

+ L
(
χαβ∂αL ∂βϕ

)
nµ2nν2χµ1ν1 − L

(
χµ2θ2∂θ2ϕ

)
nν2χµ1ν1 + L

(
χµ1θ3∂θ3ϕ

)
nν2χµ2ν1

+ L
(
χν1θ4∂θ4ϕ

)
nµ2χµ1ν2 − L

(
χν2θ5∂θ5ϕ

)
nµ2χµ1ν1

− L
(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4L

)
nµ2nν2 − L

(
χµ1θ3∂θ3L

) (
χν1θ4∂θ4ϕ

)
nµ2nν2

+ L2
(
χµ1θ3∂θ3ϕ

) (
χν1θ4∂θ4ϕ

)
nµ2nν2

]

(B.34)
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Appendix C

(For Chapter - 5)
C.1 Causality criteria from near-luminal stability for a general

hydrodynamic theory

C.1.1 Monotonic behavior of stable parameter space with boost velocity

In the current analysis, the conservation equations (giving rise to hydrodynamic evolution equa-

tions) are linearized for small perturbations of fluid variables around their hydrostatic equilibrium.

The method gives the dispersion polynomial in the frequency (ω,k) plane as F (ω,k) = 0, whose

solution provides the dispersion relation ω = ω(k) that is required for the stability analysis. Here,

we are deriving our results for a general hydrodynamic dispersion polynomial (irrespective of shear

or sound channel), which obeys just two assumptions guided by generic physics requirements. The

assumptions are motivated by the conservation rules (of the number of fluid modes) and the sym-

metry requirements and do not compromise the generality of our method.

Assumption 1 : The total power of any term that contains k (it can be a term that contains only

k or an admixture of ω and k) must not exceed the largest power of a pure ω term. Following this

criteria, a most general dispersion polynomial must obey,

Oω[F (ω,k ̸= 0)] = O|k|[F (ω = a|k|,k = b|k|] , (C.1)

with a as a nonzero real scalar constant, b as a real unit vector and Ox denoting the order of the

polynomial in the variable x.

In Ref. [101], Eq.(C.1) has been mentioned as a condition for causality. We are justifying this

assumption from the point of Lorentz invariance of the number of modes in a theory. If the right-

hand side of (C.1) has a larger order than the left-hand side, then a Lorentz boost of the background

fluid with a velocity v always produces spurious modes, modes that never appeared in the local
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rest frame analysis [129, 131]. Given that the number of modes changes with the arbitrary choice

of equilibrium state, it is indicative that the equations of motion that lead to such a polynomial

cannot constitute a viable theory of viscous hydrodynamics. Moreover, the solution of these new

modes will be inversely proportional to some powers of v (in the boosted frame the polynomial

variable changes from ω to vω), that diverges as v → 0 and hence are unphysical. With this chain

of arguments, below we are writing the most general form of the dispersion polynomial (of order

M ) for any arbitrary hydrodynamic theory in the local rest frame of the fluid:

aMω
M + aM−1ω

M−1 + · · ·+ a2ω
2 + a1ω + a0 = 0 ,

with,

a0 = a00 + a10k + · · ·+ aM−2
0 kM−2 + aM−1

0 kM−1 + aM0 k
M ,

a1 = a01 + a11k + · · ·+ aM−2
1 kM−2 + aM−1

1 kM−1 ,

a2 = a02 + a12k + · · ·+ aM−2
2 kM−2 ,

...

aM−2 = a0M−2 + a1M−2k + a2M−2k
2 ,

aM−1 = a0M−1 + a1M−1k ,

aM = a0M , (C.2)

which in a consolidated form can be written as,

M∑
n=0

an(k)ω
n = 0, an(k) =

M−n∑
m=0

amn k
m . (C.3)

The coefficients amn (the subscript n denotes the power of ω and the superscript m denotes the

power of k of the term it is associated with) are functions of transport coefficients of the underlying

coarse-grained system that set the parameter space of the theory. We are putting no constraint on

the amn values. They can be both real and imaginary and can have positive or negative values or

even become zero depending upon the construction of a particular hydrodynamic theory.
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Our next step is to boost Eq.(C.2) with velocity v and extract the stability criteria of that boosted

polynomial at the spatial homogeneous limit (k → 0). At k → 0, the boosted form of Eq.(C.2)

becomes,

(γω)M
[
a0M(−v)0 + a1M−1(−v)1 + a2M−2(−v)2 + · · ·

+ aM−2
2 (−v)M−2 + aM−1

1 (−v)M−1 + aM0 (−v)M
]

+ (γω)M−1

[
a0M−1(−v)0 + a1M−2(−v)1 + · · ·

+ aM−2
1 (−v)M−2 + aM−1

0 (−v)M−1

]
+ · · ·

+ (γω)1
[
a01(−v)0 + a10(−v)1

]
+ (γω)0

[
a00(−v)0

]
= 0 , (C.4)

with γ = 1/
√
1− v2. Eq.(C.4) can again be expressed in a general form as,

M∑
n=0

An(γω)
n = 0, An =

n∑
m=0

an−m
m (−v)n−m . (C.5)

Since an analytical solution of Eq.(C.4) is beyond the scope, in order to check its stability we take

recourse of Routh-Hurtwitz (R-H) stability test [102]. The stability condition requires the elements

belonging to the first column of the Routh array (includes the coefficients of (γω)M , (γω)M−1

and determinants involving other coefficients of (C.4)) to be of identical sign, either positive or

negative. This leads us toM + 1 number of inequalities which say that, in order to have a stable

theory, all these elements are either greater or lesser than zero. So if these elements are expressed

as fi ({amn },v), for all roots of ω to be stable, we must have either

fi ({amn },v) > / < 0 , (C.6)

for all i ∈ {1,M + 1}. At this point, we state our second assumption.

Assumption 2 : The local rest frame dispersion polynomial (C.2) only allows even power of

|k| =
√
k2, making it F (ω,k2) = 0, i.e, the coefficients amn with an odd m are zero [147]. This
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can be simply understood from the fact that k being a vector, only the powers of k2 are allowed in

the scalar dispersion polynomial (C.2). As a consequence, the boosted polynomial (C.4) contains

only even power of |v| =
√
v2 (also required since v is a vector as well).

These two assumptions lead to the fact that the R-H stability criteria of (C.4) boil down to a

set of inequalities where a power series over v2 is greater or lesser than zero. To demonstrate the

situation we are writing here the condition over the first element of the first column of the Routh

array,

a0M(v)0 + a2M−2(v)
2 + · · ·+ aM−2

2 (v)M−2 + aM0 (v)M > 0 . (C.7)

Here, M is considered to be even (oddM conditions can be similarly extracted where the power

of the last term would beM − 1) and we illustrate the result for the “all positive” possibility. Now,

the left-hand side of inequality (C.7) can be decomposed as,

(v2 − x1)(v
2 − x2) · · · (v2 − xM/2) > 0 , (C.8)

where xl are the roots of the polynomial,

a0M + a2M−2x+ · · ·+ aM−2
2 xM/2−1 + aM0 x

M/2 = 0 , (C.9)

and are functions of the amn coefficients only (i.e., xl ≡ xl(a
m
n )), which are again functions of the

transport coefficients of the system. So, to hold inequality (C.8), each factor (v2 − xl) has to be

positive or negative accordingly. So finally, the R-H criteria boil down to a set of inequalities such

that,

(v2 − xl) > / < 0 ⇒ xl(a
m
n ) > / < v2 . (C.10)

So, from (C.10), we can see that the stability criteria of any theory reduces to a set of inequali-

ties where a function of the fluid parameters is greater or lesser than v2. Clearly, this indicates a

monotonic behavior of the parameter space on v2, and consequently, at spatial homogeneous limit

(k → 0), the stable parameter space must monotonically decrease from v = 0 to 1 or from v → 1
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to 0 respectively. So, if we follow the ‘greater than’ possibility (xl(amn ) > v2) of (C.10), the sta-

bility region of parameter space for v → 1 includes the same for any lower value of v turning the

stability condition at v → 1 a necessary and sufficient condition for stability to hold at the spatially

homogeneous limit for all possible boost velocities 0 ≤ v < 1. Conversely, following the ‘lesser

than’ possibility, the direction of monotonicity reverses.

Now, the sign of the inequality in (C.10) (that leads to the direction of monotonicity) suffers

from ambiguity. The reason is that since Eq.(C.2) describes the dispersion polynomial of a possible

most general theory, the signs of the amn coefficients are completely unknown and arbitrary. To re-

solve this ambiguity, we investigate Eq.(C.4) at different boost velocities and provide the following

line of arguments.

At v = 0, we observe that for each n, only the coefficients amn withm = 0 are contributing to the

stability analysis. For a non-zero value of v, all the amn coefficients with even m are contributing.

If we have a look at Eq.(C.2), we can see that the stability conditions at non-zero v constrain a

much larger number of elements of the parameter space, making the system of inequalities more

restrictive than the ones at v = 0. In other words, the conditions at v ̸= 0 lay a stricter bound on the

entire parameter space than those at v = 0. So, it is indicative that the monotonicity over v2 that

has been discussed so far is uniformly restricting the parameter space from v = 0 to v → 1. This

turns the parameter space, which is stable at near-luminal boost velocity, a necessary and sufficient

region for frame-invariant stability to hold (at the spatially homogeneous limit), and consequently,

identify the causal parameter space as well [134].

In support of the above discussion, here we are writing the polynomial equation for asymptotic

group velocity vg at k → ∞ resulting from (C.2) for evenM :

a0M(v2g)
M
2 + a2M−2(v

2
g)

M
2
−1 + · · ·+ aM−2

2 v2g + aM0 = 0 . (C.11)

In order to have a causal, propagating mode, (C.11) must have real, positive, subluminal roots of

v2g , which are the functions of the amn coefficients of (C.11). From Eq.(C.2), we see that these amn

are the coefficients of the largest k power for each an term with n even. Clearly, the conditions for
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subluminal roots will involve constraints on these coefficients. Here, we see that stability conditions

for v = 0 only include the a0M among these coefficients and can not able to identify the causal

parameter space because of this nominal overlap. On the other hand, the stability constraints with

nonzero v include all the coefficients of Eq.(C.11). So, the monotonicity over v2 leaves us with

the choice that stability at v → 1 demarcates the causal parameter space.

C.1.2 Connection between stable parameter space at k → 0, v → 1 and
causal parameter space at large k

A mathematical explanation regarding this connection can be followed here. For that, say for an

evenM case we divide Eq.(C.7) by (v2)M/2. Being a positive quantity, it will not alter the sign of

inequality and converts (C.7) into,

a0M

(
1

v2

)M
2

+ a2M−2

(
1

v2

)M
2
−1

+ · · ·

+ aM−2
2

(
1

v2

)
+ aM0 > 0 , (C.12)

which can be decomposed as,(
1

v2
− y1

)(
1

v2
− y2

)
· · ·
(

1

v2
− yM/2

)
> 0 , (C.13)

with yl being roots of,

a0My
M
2 + a2M−2y

M
2
−1 + · · ·+ aM−2

2 y + aM0 = 0 . (C.14)

Now, in order to hold inequality (C.13), each bracketed quantity on the left-hand side has to be

individually positive or negative. The only physical choice is the positive convention, which for

each yl leads to, (
1

v2
− yl

)
> 0 , yl <

1

v2
, (C.15)

which gives the strictest bound at v → 1 such that yl < 1. Here we make an important observation.

We notice that Eq.(C.14) and the polynomial for asymptotic group velocity (C.11) are identical.

177



C (For Chapter - 5)

Consequently, the yl are the solutions for v2g itself. So from (C.15), we can see that the stability

conditions at v → 1 are indeed related to the causality criteria of the theory (v2g < 1). It is to be

noted here that (C.7) is not the only stability condition (it is the first one of them; there areM more).

In the theories that we have studied in our work - MIS and BDNK - the other conditions basically

set the convention for the direction of inequalities that cancels any choice of yl other than (C.15).

Nevertheless, the structural similarity of (C.11) and (C.12) is enough to indicate the connection

between the near luminal (v → 1) stability conditions at the spatial homogeneous limit (k → 0)

and the causality criteria predicted at the asymptotic causality limit (k → ∞).
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(For Chapter - 6)
D.1 Detailed calculations of Method-1

In this section, we will derive the form of the frame transformations in an infinite-order derivative

expansion. To begin with, we’ll rewrite the transformations of T and uµ under frame redefinitions

T − T̂ = δT =
∞∑
n=1

δTn, uµ − ûµ = δuµ =
∞∑
n=1

ûµn

Substituting this into the expression of the stress-tensor and using the Landau-frame condition,

the following expressions are obtained for δTn and δuµn.

δT1 = −χ̃

(
D̂T̂

T̂
+

1

3
∇̂ · û

)

δTn≥2 = −χ̃

(
D̂δTn−1

T̂
+

1

3
∇̂ · δun−1

)
δuµ1 = −θ̃

(
D̂ûµ + ∇̂µT̂

)
δuµn≥2 = −θ̃

(
D̂δuµn−1 + ∇̂µδTn−1

)
(D.1)

D.1.1 Transformation of velocity

Using the forms given above, we can try to express δuµn in terms of the lower order δT s and δuµns

as,
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δuµn = (−θ̃)
[
D̂δuµn−1 +∇µ δTn−1

T̂

]
=

[
(−θ̃)2D̂2δmuν +

χ̃θ̃

3
∇̂ν∇̂µ

]
δuνn−2 + (−θ̃)(−θ̃ − χ̃)D̂

∇µδTn−2

T̂

=

[
(−θ̃)3D̂3δµν +

χ̃θ̃

3
(−2θ̃ − χ̃)D̂∇̂ν∇̂µ

]
δunun−3

+ (−θ̃)

[
(θ̃2 + χ̃θ̃ + χ̃2)D̂2 +

χ̃θ̃

3
∇̂2

]
∇̂µ δTn−3

T̂

=

(−θ̃)4D̂4δµν +
χ̃θ̃

3
(3θ̃2 + 2χ̃θ̃ + χ̃2)D̂2∇̂ν∇̂µ +

(
χ̃θ̃

3

)2

∇̂2∇̂ν∇̂µ

 δuνn−4

+ (−θ̃)

[
−(θ̃3 + χ̃θ̃2 + χ̃2θ̃ + χ̃3)D̂3 +

χ̃θ̃

3
2(−θ̃ − χ̃)D̂∇̂2

]
∇̂µ δTn−4

T̂

=

(−θ̃)5D̂5δµν − χ̃θ̃

3
(4θ̃3 + 3θ̃2χ̃+ 2χ̃2θ̃ + χ̃3)D̂3∇̂ν∇̂µ +

(
χ̃θ̃

3

)2

(−3θ̃ − 2χ̃)D̂∇̂2∇̂ν∇̂µ

 δuνn−5

+ (−θ̃)

[
(θ̃4 + θ̃3χ̃+ θ̃2χ̃2 + θ̃χ̃3 + χ̃4)D̂4

+
χ̃θ̃

3
(3θ̃2 + 4χ̃θ̃ + 3χ̃2)D̂2∇̂2 +

(
χ̃θ̃

3

)2

(∇̂2)2

]
∇̂µ δTn−5

T̂

(D.2)

In this way, continuing the sequence, δuµn can be expressed in terms of T̂ and û as,

δuµn = (−θ̃D̂)nûµ + (−θ̃)
n−1∑
m=0

cm

(
χ̃θ̃

3
∇̂2

)m

D̂n−1−2m ∇̂µT̂

T̂
(D.3)

+
n−2∑
m=0

χ̃θ̃

3
dm

(
χ̃θ̃

3
∇̂2

)m

D̂n−2−2m∇̂µ∇̂ · û , (D.4)

where,

cmn =
1

(m!)2

(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m n−1∑
l=0

(−θ̃)l(−χ̃)n−1−l, (D.5)

dmn =
1

(m+ 1)

(
− ∂

∂θ̃

)
cmn . (D.6)
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The expressions in (6.19)-(6.27) can be reproduced from this form in (D.3). To find δuµ, we need

to sum over all the δuµns from n = 1 to∞ as follows,

δuµ =
∞∑
n=1

δuµn =

(
∞∑
n=1

(−θ̃D̂)nûµ

)
+ (−θ̃)

(
∞∑
n=1

n−1∑
m=0

cm

(
χ̃θ̃

3
∇̂2

)m

D̂n−1−2m

)
∇̂µT̂

T̂

+

(
∞∑
n=1

n−2∑
m=0

χ̃θ̃

3
dm

(
χ̃θ̃

3
∇̂2

)m

D̂n−2−2m

)
∇̂µ∇̂ · û .

(D.7)

Considering the first summation of (D.7), we find that it is an infinite summation of the form
∞∑
n=1

xn = x

∞∑
n=0

xn =
x

1− x
. (D.8)

Hence, from the first summation, we get(
∞∑
n=1

(−θ̃D̂)n

)
ûµ =

(−θ̃D̂)

(1 + θ̃D̂)
ûµ . (D.9)

The second summation in (D.7) is actually a nested summation of three different indices as,
∞∑
n=1

n−1∑
m=0

1

(m!)2

(
χ̃θ̃

3
∇̂2

)m

D̂n−1−2m

(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m
(

n−1∑
l=0

(−θ̃)l(−χ̃)n−1−l

)
. (D.10)

Replacing the index n by N = n− 1, (D.10) becomes,

∞∑
N=0

N∑
m=0

1

(m!)2

(
χ̃θ̃

3
∇̂2

)m

D̂N−2m

(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m
(

N∑
l=0

(−θ̃)l(−χ̃)N−l

)
. (D.11)

For values m > N , we see that
(

∂
∂θ̃

)m
or
(

∂
∂χ̃

)m
acting on the summation over l gives 0 as the

highest power of θ̃ or χ̃ in the series is N only. So, we can add an infinite no. of such zeros and

extend the summation overm to∞ instead of N .

∞∑
N=0

∞∑
m=0

1

(m!D̂)2

(
χ̃θ̃

3
∇̂2

)m

D̂N

(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m
(

N∑
l=0

(−θ̃)l(−χ̃)N−l

)
(D.12)

The summations over m and N now have independent limits; hence, their order can be inter-

changed, and we can rewrite the summation as

∞∑
m=0

1

(m!D̂)2

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m ∞∑
N=0

D̂N

(
N∑
l=0

(−θ̃)l(−χ̃)N−l

)
(D.13)
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The summations over N and l can then be interchanged using the Cauchy product formula(
∞∑
n=0

an

)(
∞∑

m=0

bl

)
=

∞∑
n=0

(
n∑

l=0

albn−m

)
and (D.10) can now be expressed as

∞∑
m=0

1

(m!D̂)2

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m
(

∞∑
N=0

(−χ̃D̂)N

)(
∞∑
l=0

(−θ̃D̂)l

)

=
∞∑

m=0

1

(m!D̂)2

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m
(

1

(1 + χ̃D̂)

1

(1 + θ̃D̂)

)

=
∞∑

m=0

1

(m!D̂)2

(
χ̃θ̃

3
∇̂2

)m(
m!D̂m

(1 + χ̃D̂)m+1

m!D̂m

(1 + θ̃D̂)m+1

)

=
∞∑

m=0

1

(1 + χ̃D̂)

1

(1 + θ̃D̂)

(
χ̃θ̃
3
∇̂2

(1 + χ̃D̂)(1 + θ̃D̂)

)m

=
1

(1 + χ̃D̂)

1

(1 + θ̃D̂)

1

1−
χ̃θ̃
3
∇̂2

(1+χ̃D̂)(1+θ̃D̂)

=
1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

(D.14)

Now, let us consider the third summation
∞∑
n=1

n−2∑
m=0

χ̃θ̃

3

1

(m!)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m+1(
− ∂

∂χ̃

)m

D̂n−2−2m

(
n−1∑
l=0

(−θ̃)l(−χ̃)n−1−l

)
(D.15)

Here, we see that form = n−1, the no. of ∂
∂θ̃
derivatives becomes more than the highest power

of θ̃ present in the series over l, thus making the term corresponding to m = n − 1 zero. We can

add this zero term, and then our sum becomes
∞∑
n=1

n−1∑
m=0

χ̃θ̃

3

1

(m!)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m+1(
− ∂

∂χ̃

)m

D̂n−2−2m

(
n−1∑
l=0

(−θ̃)l(−χ̃)n−1−l

)
(D.16)

Using N = n− 1 as before,

∞∑
N=0

N∑
m=0

χ̃θ̃

3

1

(m!D̂)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m

D̂−1

(
− ∂

∂θ̃

)( N∑
l=0

(−θ̃)l(−χ̃)N−lD̂N

)
(D.17)
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Again, extending the sum over m up to ∞ and interchanging summations like the previous

case, we get

∞∑
m=0

χ̃θ̃

3

1

(m!D̂)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m

D̂−1

(
− ∂

∂θ̃

)( ∞∑
N=0

N∑
l=0

(−θ̃)l(−χ̃)N−lD̂N

)

=
∞∑

m=0

χ̃θ̃

3

1

(m!D̂)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m

D̂−1

(
− ∂

∂θ̃

)(
1

(1 + θ̃D̂)(1 + χ̃D̂)

)

=
∞∑

m=0

χ̃θ̃

3

1

(m!D̂)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
− ∂

∂θ̃

)m(
− ∂

∂χ̃

)m

D̂−1

(
D̂

(1 + θ̃D̂)2
1

(1 + χ̃D̂)

)

=
∞∑

m=0

χ̃θ̃

3

1

(m!D̂)2
1

(m+ 1)

(
χ̃θ̃

3
∇̂2

)m(
(m+ 1)!D̂m

(1 + θ̃D̂)m+2

m!D̂m+1

(1 + χ̃D̂)m

)

=
χ̃θ̃

3

1

(1 + θ̃D̂)2
1

(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃

3
∇̂2

)m(
1

(1 + θ̃D̂)m
1

(1 + χ̃D̂)m

)

=
χ̃θ̃

3

1

(1 + θ̃D̂)

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

(D.18)

So, putting all these results together, (D.7) becomes

δuµ =
(−θ̃D̂)

(1 + θ̃D̂)
ûµ + (−θ̃) 1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

∇̂µT̂

T̂

+
χ̃θ̃

3

1

(1 + θ̃D̂)

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

∇̂µ∇̂ · û

⇒ δuµ =
(−θ̃D̂)

(1 + θ̃D̂)
ûµ +

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

(
−θ̃ ∇̂

µT̂

T̂
+
χ̃θ̃

3

1

(1 + θ̃D̂)
∇̂µ∇̂ · û

)
(D.19)

which we see is identical to the δuµ calculated in (6.39).

Also worth noticing is the point that, had we not summed overm in the second and third sum-

mations, then δuµ would have been left in the form of an infinite series of the form
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δuµ =
(−θ̃D̂)

(1 + θ̃D̂)
ûµ − 1

(1 + θ̃D̂)(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
θ̃
∇̂µT̂

T̂
−

χ̃θ̃
3

(1 + θ̃D̂)
∇̂µ∇̂ · û

}
uµ = ûµ + δuµ =

1

(1 + θ̃D̂)
ûµ

+
1

(1 + θ̃D̂)(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

µT̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂µ∇̂ · û

}
σµν =

1

(1 + θ̃D̂)
− 2ησ̂µν

− 2η
1

(1 + θ̃D̂)

1

(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}
(D.20)

We can recast this form of σµν into the form of a relaxation equation given by

(1 + θ̃D̂)σµν = −2η

[
σ̂µν

+
1

(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}]
= −2ησ̂µν + ρ

⟨µν⟩
1

(D.21)

where ρ⟨µν⟩1 is given by

ρ
⟨µν⟩
1 =

[
−2η

1

(1 + χ̃D̂)

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}]
(D.22)

It can again be recast into a relaxation equation as

⇒ (1 + χ̃D̂)ρ
⟨µν⟩
1 =

[
−2η

∞∑
m=0

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}]

= −2η(−θ̃)∇̂
⟨µ∇̂ν⟩T̂

T̂
+ ρ

⟨µν⟩
2

(D.23)

184



D (For Chapter - 6)

with ρ⟨µν⟩2 defined and associated with another relaxation equation as

ρ
⟨µν⟩
2 =

−2η χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

− 2η
∞∑

m=1

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}

(1 + θ̃D̂)ρ
⟨µν⟩
2 = −2η

χ̃θ̃

3
∇̂⟨µ∇̂ν⟩∇̂ · û+ ρ

⟨µν⟩
3

(D.24)

where again ρ⟨µν⟩3 contains the infinite series. In this way, the sequence would continue, and

any general term would be given by (for n ≥ 0)

(1 + χ̃D̂)ρ
⟨µν⟩
2n+1 = (−2η)(−θ̃)

(
χ̃θ̃

3
∇̂2

)n
∇̂⟨µ∇̂ν⟩T̂

T̂
+ ρ

⟨µν⟩
2n+2

(1 + θ̃D̂)ρ
⟨µν⟩
2n+2 = (−2η)

χ̃θ̃

3

(
χ̃θ̃

3
∇̂2

)n

∇̂⟨µ∇̂ν⟩∇̂ · û+ ρ
⟨µν⟩
2n+3

ρ
⟨µν⟩
2n+1 =

−2η

(1 + χ̃D̂)

∞∑
m=n

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}

ρ
⟨µν⟩
2n+2 =

−2η

(1 + θ̃D̂)

χ̃θ̃

3

(
χ̃θ̃

3
∇̂2

)n

∇̂⟨µ∇̂ν⟩∇̂ · û

+
∞∑

m=n+1

(
χ̃θ̃
3
∇̂2

(1 + θ̃D̂)(1 + χ̃D̂)

)m{
−θ̃ ∇̂

⟨µ∇̂ν⟩T̂

T̂
+

χ̃θ̃
3

(1 + θ̃D̂)
∇̂⟨µ∇̂ν⟩∇̂ · û

}
(D.25)

These are the general forms of the ρ⟨µν⟩n s given in (6.2).

D.1.2 Transformation of temperature

As it was done in the previous subsection, the expression for δTn

T̂
can be written as,

δTn

T̂
=

(−χ̃D̂)nT̂

T̂
+ (−χ̃)

n−1∑
m=0

cmnD̂
n−1−2m

(
χ̃θ̃

3
∇̂2

)m(
∇̂ · û
3

)

+
χ̃θ̃

3

n−2∑
m=0

fmnD̂
n−2−2m

(
χ̃θ̃

3
∇̂2

)m
∇̂2T̂

T̂

(D.26)
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where cmn is defined the same way as in δuµn and fmn is defined in terms of cmn as

fmn =
1

m+ 1

(
− ∂

∂χ̃

)
cmn (D.27)

Similar to the case of δuµ, we again take an infinite summation over n to obtain δT

T̂
as

δT

T̂
=

∞∑
n=1

δTn

T̂
=− χ̃

(1 + χ̃D̂)

D̂T̂

T̂
+ (−χ̃) 1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

(
∇̂ · û
3

)

+
χ̃θ̃

3

1

(1 + χ̃D̂)

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

∇̂2T̂

T̂

(D.28)

and from there, obtain the same T = T̂ + δT as in (6.40)

T =
1

(1 + χ̃D̂)
T̂ − T̂ χ̃

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

(
∇̂ · û
3

)

+
1

(1 + χ̃D̂)

1

(1 + χ̃D̂)(1 + θ̃D̂)− χ̃θ̃
3
∇̂2

χ̃θ̃

3
∇̂2T̂

=
1

(1 + θ̃D)(1 + χ̃D)− χ̃θ̃
3
∇2

[
(1 + θ̃D̂)T̂ − T̂ χ̃

∇̂ · û
3

] (D.29)
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