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Summary

In this thesis, we look into the near-equilibrium dynamics of two very familiar systems with well-
known thermodynamic properties: black holes and fluids. Part I explores the effect of reparametriza-
tions of the horizon’s null generators on the entropy production on the horizon of a black hole in
Einstein-Gauss-Bonnet theory. Part II attempts to understand the relationship between stability
and causality in two well-known stable-causal models of relativistic hydrodynamics: the Miiller-
Israel-Stewart (MIS) model and the Bemfica-Disconzi-Noronha-Kovtun (BDNK) model, first by
Lorentz transforming to ultra-high boosted frames, and then by field redefinitions of the thermo-
dynamic variables. In all the cases, analysis was performed up to the linearized order in amplitude

dynamics.

Recent advances in the second law of black hole thermodynamics for higher-derivative gravity
theories have shown that there exists an entropy density and an entropy current on the dynami-
cal horizons of black holes of these theories, which, by construction, have a total non-negative
divergence for linearized amplitude perturbations about a stationary solution. However, the for-
mulation of this entropy density and current depends on the spatial slicing of the horizon along its
affinely-parametrized null generators.

In the first work 3 of Part 1, we study the non-trivial changes in entropy density and current
under a local reparametrization of the affinely-parametrized null-generators to another family of
affinely-parametrized null-generators. We find that the entropy density and entropy current change
such that their divergence, and hence the net entropy production on the horizon, remain invariant.

In the second work 4, we dualize this entropy density and entropy current to an entropy cur-
rent for a fluid residing on the boundary of an asymptotically AdS Einstein-Gauss-Bonnet black-
brane solution. The boundary coordinates used to describe the fluid’s entropy current correspond

to a non-affine parametrization of the null generator on the horizon. Although the Gauss-Bonnet



LIST OF TABLES

coupling doesn’t lead to any corrections to the fluid entropy current in the first order in boundary-
derivative expansion, there are non-trivial corrections in the second order dependent on the horizon-
to-boundary mapping functions, which aren’t necessarily expressible solely in terms of fluid vari-
ables. Hence, we conclude that for generic situations, the boundary entropy current thus obtained

doesn’t admit a derivative expansion.

One of the most difficult challenges in relativistic hydrodynamics has been to formulate hy-
drodynamic theories that admit perturbations about local equilibrium that are causal (i.e., do not
exit the light cone) and stable (i.e., decay down with time). The decades-old MIS and the recently
developed BDNK are two such formalisms with some regions in their parameter space where the
theories are stable and causal.

The first work 5 of Part 2 investigates the connection between stability and causality properties
using these two theories as case studies. Here, we utilize linearized stability analysis to obtain the
causality criteria for these two theories unambiguously. We find that the regions of the parameter
spaces of both these theories which are stable at an ultra-high boost (i.e., boost velocity = speed
of light), are stable at all other boost velocities and, hence, causal. The causality criteria thus
obtained from a low-wavenumber analysis match the asymptotic causality criteria performed at a
high-wavenumber of the theories.

In the second work of this part 6, we rewrite the conformal BDNK stress tensor in the “Lan-
dau frame” by redefining the temperature and velocity fields. We show that to maintain stability
and causality in the “Landau frame”, one either has to have an infinite number of derivative cor-
rections or has to include new ‘non-fluid’ variables in the formalism. Moreover, we find that this

incorporation of ‘non-fluid’ variables is a non-unique procedure.
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Chapter 1

Introduction

To understand the thermodynamic properties of any system, its equilibrium is often a safe harbor
from which to start venturing from. Akin to a sailor starting his adventures from close to the
coastline, the proverbial theoretical physicist often limits their analysis to the linearized regime of
dynamics only, where extraction and interpretation of analytic results are less complicated.

From a historical perspective, the field of thermodynamics has emerged to understand the re-
lationship between the different phenomenological quantities that label the state of a system in
and around its thermodynamic equilibrium. These physical quantities are called macroscopic state
variables and comprise different quantities like the system’s pressure, volume, energy density, tem-
perature, the number density of constituent particles etc., and thermodynamic equilibrium refers to
the situation where there is no flow of energy or particles between two systems in contact. The
four laws of thermodynamics were developed out of experimental observations in the eighteenth
and nineteenth centuries, and works by the likes of Carnot, Gibbs, Thomson, Clausius, and Boltz-
mann in these directions further went on to shape the course of science as well as the history of
humankind in the form of the industrial revolution.

Classically, the laws of thermodynamics establish relationships between the macroscopic vari-
ables without getting into the microscopic details of the system. Besides, they also function as
no-go theorems, restricting the possibility of unphysical phenomena from occurring. However, the
pursuit of understanding the underlying microscopic structures and constructing models consistent
with the observed macroscopic behavior of the systems has led to the formulation of kinetic theory.
With the advent of the atomic picture and, thence, the quantum theory as a possible microscopic
framework, the field of statistical mechanics rose to prominence as a way of connecting these un-

derlying microscopic degrees of freedom to the macroscopic variables like pressure, temperature
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etc. Statistical mechanics has since then been applied to a wide range of problems in different areas,
and the essence of any problem then boils down to identifying the microscopic degrees of freedom
of a system and constructing consistent solutions for them. One would then expect the macroscopic
variables corresponding to these solutions to follow the laws of thermodynamics.

In this thesis, we’ll focus on black holes and fluids, two of the most ideal and very potent instru-
ments in a theorist’s toolkit to probe the laws of thermodynamics in a variety of setups in nature.
The dynamics of fluids, alias “Hydrodynamics”, has been an instrumental theory for understand-
ing a wide variety of phenomena, ranging from everyday steady flows of water or air to those in
violent astrophysical plasma or heavy-ion collisions. Einstein’s theory of general relativity, on the
other hand, has enjoyed more than a century’s success in explaining gravitational phenomena, from
black holes to gravitational waves on the extremities, with those in our solar systems somewhere
in between. Though seemingly very different, the dynamics of these two derivative expandable
theories are strikingly similar, and in some particular cases, exact correspondences can be drawn
between them. The Fluid/Gravity correspondence, since its development in the 2000s, has been
instrumental in shedding light on this deep connection between these two theories, often leading to
predictions in one theory from analyses performed in its dual theory. In the following sections of
this chapter, we’ll briefly discuss some of the interesting questions and developments in all these
fields and try to establish the works presented in this thesis in the context of these, with the bigger

picture in the background.

1.1 Black Holes in General Relativity and Beyond
1.1.1 Gravitational theories as derivative expansions

Throughout the centuries, scientists and philosophers have been baffled by the observation that all
massive objects fall towards the surface of the earth. The idea of gravity as an attractive force
had been speculated for centuries by stalwarts like Aristotle and Galileo, among others, until it

reached its culmination in the form of Newton’s law of gravitation. Newton’s law of gravitation
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can be considered the earliest attempt at unification, as it connected the laws governing the motion
of celestial bodies with those followed by everyday objects around us on Earth. Another important
breakthrough was achieved by Einstein in the form of the General theory of relativity, which mod-
ified the idea of gravity as a force with the notion of gravity as a curvature in spacetime due to the
presence of matter. Einstein’s equation (actually a set of nonlinear partial differential equations)
of general relativity is a relation between the curvature tensors of spacetime and the stress tensor
of the external matter that causes the curvature. The curvature tensors themselves are functions of
spacetime derivatives of the metric tensor, which defines the line element on a particular spacetime.
In a theory of pure gravity, the metric is the dynamic degree of freedom, and Einstein’s equations
are the corresponding equations of motion. These equations can also be derived from an action
principle, where the corresponding Lagrangian, being a scalar, can contain only an even number of
derivatives. The least non-trivial action, the Einstein-Hilbert action, contains two derivatives and
gives rise to the renowned equation

&G

1
R, — §RgW = 7le (1.1)

where R, R, T, are the Ricci curvature tensor, Ricci scalar and the stress tensor of the external

e
matter field, respectively. GG is Newton’s gravitational constant and c is the speed of light.
Another parallel development has been in understanding the nature of the fundamental con-
stituents of matter, where the advent of quantum mechanics has led to a significant paradigm shift.
The attempt to reconcile the laws of the minuscule and the laws of the gigantic in the form of a con-
sistent quantum theory of gravity has been one of the biggest puzzles in the last century, and a con-
clusive answer still continues to elude us. The problem lies in the fact that, while trying to take loop
corrections into account in a two-derivative theory of gravity, one encounters non-renormalizable
divergences in different physical quantities that cannot be absorbed by redefinitions of the fields
or the coupling constants [4]. Hence, a two-derivative theory of gravity cannot be a UV complete

quantum theory of gravity (a theory valid in all energy scales). On the other hand, an attempt to con-

struct an effective field theory of quantum gravity would inevitably lead to a Lagrangian containing

6
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an infinite number of higher-derivative correction terms, as in an EFT, one must take into account
all terms consistent with the symmetries of the theory (in this case diffeomorphism-invariance).
One needs a UV-complete theory to fix the expansion coefficients of the various higher-derivative
terms, as it is not possible to do so using only an EFT. String theory, one of the leading candidates
of'a theory of quantum gravity, also leads to such higher-derivative corrections fixing the expansion
coefficients. ! This leads to the expectation that any viable UV complete theory of gravity when
expanded in the low-energy limit, would give rise to a series of higher-derivative corrections on the
two-derivative Einstein-Hilbert term. Thus, it is of interest to study higher-derivative theories with
arbitrary coefficients to explore the properties of UV complete gravity theories in more generality
while staying in the low-energy regime itself.

Of special interest among these higher-derivative terms is a combination called the Lovelock
Theory. The Lagrangian in the Lovelock theory is given by an appropriate linear combination of
contractions of the Riemann tensor that results in a second-order equation of motion. Ignoring the

proportionality constants, the Lagrangian can be expressed as [7]

S = /ddx\/—g R+ Zamlgmﬂﬁm
— (1.2)
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where [ is the length scale at which the higher-derivative terms begin to appear, and «,, is the
coefficient for each of the contributions. y/—g is the metric determinant.
The leading term in (1.2)
S = /ddx\/—_gR (1.3)
corresponds to the Einstein-Hilbert Lagrangian. The first non-trivial term in the series of Lovelock

theory is called the Gauss-Bonnet term and has the form
Ly=Lcp =R —4R" R, + R*"" R0 (1.4)

In four spacetime dimensions, the Gauss-Bonnet term is topological and equates to the Euler char-

acteristic of the spacetime. Hence, contributions from the Gauss-Bonnet term become meaningful

!One can try to construct renormalizable quantum gravity theories with higher-derivative Lagrangians as in [5, 6]
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only at d > 4. In the first part of the thesis I, we’ll specialize our analyses to the Gauss-Bonnet
theory.

Also worth noticing is the fact that the presence of solutions in the form of derivative expansion
is very reminiscent of derivative expansions in hydrodynamics, and as it was discovered later, one
can write exact mappings between the two systems. Some parallels were already being drawn in [ 8]
where, using the membrane paradigm, it was shown that a generic black hole horizon can behave

like a fluid with its own electrical conductivity, shear and bulk viscosity.

1.1.2 Black holes and their entropy

Black holes are a rich class of solutions to Einstein’s equations of general relativity with interesting
thermodynamic properties. Recent advances in astronomy like LIGO [9,10] and EHT [11-13] have
elevated them from purely theoretical constructs to tangible physical entities with considerable ob-
servational signatures. Classically, black holes can be visualized as ideal absorbers of radiation,
thus indicating the presence of some possible thermodynamic behavior. Following the seminal
works of Hawking, Bardeen, Carter and later Bekenstein [14—17] it was established that connec-
tions indeed exist between the geometric parameters characterizing a black hole and its thermody-
namic behavior [18-20] 2. In particular, for Einstein’s theory with a two-derivative Lagrangian,
the temperature of the black hole is given by its surface gravity, and the area of the event horizon
corresponds to its entropy. Using the Raychaudhuri equation [24], it was shown that the area of a
black hole never decreases.

Black-hole solutions can be shown to exist in higher-derivative gravity theories as well, and
probing into the thermodynamics of such solutions provides deeper insights into possible quan-
tum gravity theories. However, the identification between geometrical quantities with thermody-

namic variables there often becomes progressively non-trivial and in some cases, deriving the laws

2The third law is more of a conjecture than an actual inviolable law because there are several indications for its
violations in thermodynamic systems as well as in black hole mechanics. For example, spin ice systems found in
experiments in condensed matter [21] have non-vanishing entropy at ground state due to the degeneracy of the ground
state, and Kerr-Newman black holes [22,23] in general relativity have non-zero entropy at vanishing surface gravity,
which is not a universal constant but depends on its mass and angular momentum
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Law Thermodynamics Black Hole
Zeroth Law | At thermal equilibrium , temperature | Surface gravity « is constant on the
is constant throughout a body. horizon of a stationary black hole.
Energy is conserved between Perturbations in mass, area,
First Law two thermodynamic states angular velocity, and charge around
by 0U =TS + oW stationary black holes are related
by OM = 0A+ J 0+ @ 6Q)
Second Law The entropy of an isolated The area of a black hole’s
system never decreases. horizon never decreases. 64 > 0
Entropy of a system must go to Entropy of a black hole should
Third Law zero (or a universal constant) go to zero (or a universal constant)
at zero temperature. atk = 0.

Table 1.1: The four laws of thermodynamics and their counterparts in black hole mechanics.

of thermodynamics for general higher-derivative theories can be very difficult. Wald’s formal-
ism [25,26] provides one such possible identification for the laws of thermodynamics in general
diffeomorphism-invariant theories using Noether charges as in classical mechanics. The entropy
thus derived is called the “Wald Entropy” and was found to satisfy the first law of thermodynamics
by construction [26]. It was later found that although Wald entropy gives the entropy at equilibrium

but out of equilibrium, the definition of entropy is riddled with ambiguities [27-29].
Entropy of Black holes: Why is it important?

At this juncture, it would be a good point to pause and ponder the following question: Why does
the entropy of a black hole hold a position of high importance? The answer lies in the fact that a
black hole’s entropy can be considered a sort of bridge between the classical understanding of a
black hole and its underlying quantum nature. Classically, a black hole doesn’t radiate any energy.
Also, following the “No hair theorem”, a generic classical black hole solution is characterized only
by its mass, angular momentum and charge.

Historically, the four laws as derived in [ 14] were treated only as a correspondence since black
holes don’t radiate classically and hence, area can’t actually be interpreted as its entropy. How-

ever, Bekenstein later showed that to maintain the second law of thermodynamics in the rest of
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the universe, the black hole should also have some entropy associated with it and that it should
be proportional to the horizon area [15]. Using information theory arguments, the proportionality
constant was found to be related to the Planck length, thus indicating a connection with quantum
mechanics. Finally, Hawking’s semi-classical calculation based on a quantum field near the horizon
of a classical black hole background shows that a black hole does radiate with a thermal spectrum
at a temperature called the Hawking temperature and an entropy proportional to its area [16]. Now,
instead of using a two-derivative theory where the entropy is given by area, one can use an arbitrary
diffeomorphism-invariant theory where entropy is given by Wald entropy, and the proportionality
constant would then be fixed from quantum field theoretic analysis.

All of this hints that the entropy of a black hole is a possible window to peer into its quantum
nature. Also, the existence of entropy in any system has a foundation in statistical mechanics, where
a counting of some underlying some underlying microscopic degrees of freedom (or microstates)
gives us entropy. Hence, from a statistical perspective, the existence of entropy in black holes
provokes one to think about some underlying quantum microstates of the black holes, counting
which one can calculate its entropy. Thus, the problem of black hole entropy can be translated
into a counting problem. For specific extremal and near-extremal solutions at a large-charge limit,
progress has been made in this direction in [30,31] (see [32] for a review), but it remains to be seen
whether this can be achieved for any generic black hole solution.

Another avenue towards which black hole entropy guides is the holographic nature of informa-
tion in gravitational theories. The area dependence of entropy instead of volume, despite its ex-
tensive nature, is a piece of strong evidence of the same. Motivated by t’Hooft’s observation [33]
that a reconciliation of quantum mechanics and gravity indicates a possibility of encoding gravita-
tional degrees of freedom in a lower spacetime dimension and thus constraining the set of plausible
quantum theories of gravity, Susskind proposed the holographic principle in [34] and explored
how it might be realizable. As we will see in 1.3, there are indeed theories of holography like

AdS/CFT [35] where the bulk dynamics in some special spacetimes can be captured in the dynam-
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ics of some theory residing on the boundary.
Recent developments on black hole thermodynamics

We shall conclude this section by reporting some recent progress made on the thermodynamics of
black holes in higher-derivative theories. Following Wald’s procedure, [36] developed a framework
for studying the second law for black holes near equilibrium under a linearized approximation of
amplitude dynamics. [7] then attempted a non-perturbative construction of entropy for Lovelock-
theory, which satisfies the second law. In [37], the second law was formulated up to the linearized
order in amplitude dynamics as the combined divergence of an entropy density and an entropy
current on the horizon with non-negative divergence by construction and then in [38], this was
generalized for arbitrary higher-derivative theories of gravity. For an orientation towards the first
part of the thesis, we’ll review the coordinate systems and some necessary details from [37] and
[38] briefly in 2. [3] considers the effect of the event horizon’s null generator’s reparametrizations
on the local entropy production for the Gauss-Bonnet theory and [2] generalizes it to arbitrary
higher-derivative theories with an explicit expression for the transformation of entropy density and
entropy current under such reparametrizations. [39] extends the proof of the second law to nonlinear
order in amplitude dynamics in an effective field theory framework and [40, 41] study it further
in the non-perturbative regime. Parallelly, in [42—44], the authors extend the proof for arbitrary
diffeomorphism invariant gravity theories non-minimally coupled to matter fields. [2] also studies
the impact of constructional ambiguities (called Iyer-Wald ambiguities) in the entropy current on
its transformation under reparametrizations. Recent works have also tried to address the issue of
possible violations in the Bousso bound [45] of entropy for higher-derivative theories using Wald

entropy [46].

11
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1.2 Relativistic Hydrodynamics: A Brief Introduction

The field of fluid dynamics has been an active area of research for many centuries for theoretical
as well as experimental reasons. Theoretically, they are one of the most commonly used models
to understand the physical properties of continuum matter, and experimentally, they are one of the
most frequently encountered systems around us. Hydrodynamics is essentially a low-energy effec-
tive theory that uses gradient expansions of conserved quantities at equilibrium to describe systems
near equilibrium. Being a low-energy effective theory, it has a cutoff energy (or length scale) below
(or above) to which the derivative expansion is applicable. The derivatives of fluid variables must
be small compared to this cutoff scale, allowing us to treat these terms perturbatively *. Relativistic
hydrodynamics deals with systems at very high energies where the underlying symmetry is Lorentz
symmetry [49]. One of the most celebrated real-world successes of relativistic hydrodynamics has
been in explaining the physics behind heavy-ion collision experiments [50,51]. The recent dis-
covery of collective flow in mini-jets [52, 53] also has shown that hydrodynamic behavior can be

observed in systems of very small sizes and densities.

1.2.1 Stability and Causality in Relativistic Hydrodynamics

Entering the domain of derivative expansions in relativistic hydrodynamics, one naturally encoun-
ters the question of whether the added derivative corrections to the equilibrium theory are phys-
ically plausible. In principle, Lorentz symmetry allows one to add derivative corrections to the
equilibrium theory with arbitrary undetermined coefficients. But then, such solutions can often
lead to conflicts with physical principles. Thus, demanding that the solutions conform to physical
observations like entropy production, stability of solutions at equilibrium, or causal signal propaga-
tion lays constraints on possible structures that can be added to an equilibrium theory, and also on

the transport coefficients associated with these structures. For example, it has been demonstrated

30ne such ratio is the Knudsen number, which is a ratio between the mean free path in the fluid and the system
size. [47,48]
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in [54] that one can use the second law of thermodynamics (i.e., local entropy production, quanti-
fied by the non-negative divergence of a covariant entropy current) as one such physical guiding
principle to constrain an entropy current for a relativistic fluid. However, these constraints are
clearly not enough, as can be illustrated by the presence of unphysical solutions in the relativis-
tic Navier-Stokes equations at the first order in derivative expansion in the “Landau frame”. The
equations of motion for viscous flows, the well-known Navier-Stokes equations, are found to lead
to pathological solutions for relativistic fluids in the “Landau fluid frame” [55] (a particular choice
of off-equilibrium definitions of hydrodynamic variables). Specifically, the theory leads to acausal
solutions, and on Lorentz boosting, new modes pop up which may or may not be stable [56,57].
People have tried to remedy these issues by formulating the theory in different ways, of which the
two most well-known ones are the Miiller-Israel-Stewart (MIS) [58—60] and the Bemfica-Disconzi-
Noronha-Kovtun (BDNK) [61-64] theories. In the MIS formulation, the viscous corrections to
the conserved currents at equilibrium are promoted to new degrees of freedom with their own
relaxation-equation-like equations of motion. In the BDNK formulation, the conserved currents
are written in some generalized fluid frame, away from the Landau fluid frame. To derive these
theories from some microscopic degrees of freedom, a plethora of models and formulations have

come up with different underlying principles ranging from AdS/CFT to kinetic theory [65—68].

1.3 Correspondences: AdS/CFT, and thence, Fluid/Gravity
1.3.1 AdS/CFT Correspondence

The fact that the entropy of black holes, which is an extensive property, is given by the area of
black holes instead of its volume was a strong hint towards the holographic nature of informa-
tion in gravitational theories. This idea reached its pinnacle with the AdS/CFT correspondence,
which connects the dynamics of certain strongly coupled conformal field theories to the dynamics
of quantum gravity theories within the bulk of an AdS spacetime (a maximally symmetric space-

time with a negative cosmological constant) of one higher dimension [35,69-71]. Since its advent,
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it has been studied and applied in a variety of contexts ranging from black holes, strongly coupled
plasmas, heavy-ion collisions, holographic superconductors and superfluids [72]. Some of the in-
teresting results of relevance to this proposal have been in the form of obtaining expressions of
shear viscosity and other linear transport coefficients for a holographic fluid [73, 74]. It has also
been derived from the correspondence that the ratio between this shear viscosity coefficient and the
entropy density can be significantly smaller than what was previously suggested by perturbative
calculations [75]. Some other investigations have also been conducted to explore connections be-
tween the quasinormal modes of a black-brane lying in the bulk of the AdS spacetime and certain
correlators of the boundary dual CFT [76—-80]. All of these developments already set the stage for a
deeper dive into deriving the correspondence between holographic fluids and gravitational systems

in an AdS spacetime.

1.3.2 Fluid/Gravity Correspondence

The culmination of all these ideas led to the development of the Fluid/Gravity Correspondence
[1,81,82], where it was shown that the dynamics of a fluid residing on the AdS boundary can be
derived from the dynamics of a black brane metric inside the AdS bulk spacetime in the long wave-
length limit. Of special importance is the fact that this correspondence can be extended to nonlinear
order in amplitude perturbations, though it is perturbatively expanded in terms of boundary coordi-
nate derivatives. The velocity and temperature of the black brane are promoted to the temperature
and velocity of the boundary fluid, and solving Einstein equations for the bulk metric leads to the
Navier-Stokes equation for the boundary fluid. Thus, one can start with a stationary metric corre-
sponding to the boundary fluid at equilibrium and generate higher-order derivative corrected metric
solutions using this technique. Using the correspondence, one can also calculate various quantities
for the boundary fluid, like its stress tensor [81, 83], or a number of other transport coefficients
in various systems [65, 84]. One can also incorporate the effects of higher curvature corrections

to the gravitational system and study its effects on the boundary fluid [78, 79, 83]. Another very
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important application of the correspondence has been in using the area increase theorem for a black
brane horizon in the bulk to derive an entropy current for the boundary fluid with a non-negative
divergence [85]. Thus, the second law of black hole thermodynamics in a two-derivative theory
has been dualized to an ultra-local second law for a relativistic fluid on the boundary. For higher-
derivative corrected gravity theories, the entropy is given by Wald entropy. For relativistic fluids,
it was already known that entropy increase can be quantified as an entropy current with a non-
negative divergence and that the second law can be utilized to constrain the transport coefficients
and possible structures appearing in a fluid entropy current. The aforementioned duality between
the second law statements for a black brane in the bulk and a fluid on the boundary then automat-
ically makes one expect some kind of an ultra-local statement of the second law for black hole
horizons in line with an existent general ultra-local second law in fluids. This ultra-local form of
the second law in black holes was later worked out in the linear order in amplitude fluctuations
in [38]. As in [65, 67, 68], one can try to construct stable-causal hydrodynamic theories with the
bulk gravitational theory dictating the underlying microstructure of the fluid. Also, similar to the
stability and causality issues that plague relativistic hydrodynamic theories, one can find insta-
bilities and causality issues in the context of gravity. Besides Gregory-Laflamme instabilities in
higher dimensional black strings and branes [86,87], or extremal horizons becoming unstable under
perturbations [88], one can find stability and causality issues in spacetimes upon including higher
derivative corrections to the Lagrangian [89, 90]. Works like [91-93] also provide a window to
peer into such issues in depth on the gravity side and fluid/gravity correspondence can be a potent

tool to draw connections between stability and causality criteria on the two sides.

1.4 Motivation and Outline of the Thesis

Building on the background presented in the preceding sections, the works presented in this thesis
start off as a follow-up on the analysis in [38]. As it will be seen in 2, the class of coordinate

systems used in [38] to prove the second law uses an affine parameter along the null generators
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Figure 1.1: Penrose diagram of a uniform black hole (left) and a representation of the projection
of the horizon on the boundary (right). The shaded tube represents an area of the spacetime over
which the metric solution can locally be well-approximated to that of a corresponding uniform
black hole [1].

of the horizon as one of the coordinates (called the v coordinate); another null coordinate (the r
coordinate) that takes an observer away from the horizon is also affinely parametrized everywhere
on the spacetime. It was found that the form of the metric remains invariant under a rescaling of

these two coordinates of the form

r——, U=\ (1.5)

where A is a constant number.

A natural question that arises then is this: what happens if instead of constant As, we consider a
A which depends on the spatial coordinates on the horizon? Because if we rescale the v coordinate
in a v independent way, we’d still get an affine parameter along the null generators, thus keeping
the metric in the same class of coordinates as we started with; as a result, all of the analysis on the
second law via entropy densities and spatial entropy currents follows through. But non-triviality
is now introduced into the setup due to the fact that choosing a local reparametrization of the null
coordinate leads to the tangent vectors mixing up on a spatial slice of the horizon, resulting in a
modified slicing of the space-like slices of the horizon. Since the entropy density and spatial entropy

current depend on the slicing, their form should also now be modified. But, since these entropy
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density and spatial entropy current structures are not covariant objects to begin with, hence, their
transformations under these reparametrizations can be highly non-trivial. As described in Chapter
3 based on [3], here we try to find out the transformation of this combination of entropy density
and spatial entropy current for the case of the Gauss-Bonnet theory.

Now, the existence of the entropy current as in [38], or the further proof of the second law for
nonlinear dynamics of amplitude in an effective field theory sense as in [39], use the amplitude
of perturbations about a stationary black hole background solution as a perturbation parameter.
Another possible expansion can be in terms of boundary derivatives on the boundary of an asymp-
totically AdS spacetime. A derivative expansion scheme like this can often allow one to probe into
the non-perturbative amplitude dynamics regime while staying in the vicinity of long-wavelength
perturbations about equilibrium. Furthermore, for an entropy current for a relativistic fluid valid in
the linear regime of amplitude dynamics, there exist algorithms to extend it to entropy currents that
work in the nonlinear regime of amplitude dynamics [94]. Given all this existing framework, one
can aspire to explore the statement of the second law in a non-perturbative regime by constructing
a fluid entropy current from the entropy density and the spatial entropy current on the horizon using
fluid-gravity duality. The first step towards this long and ambitious goal would then be to construct
a fluid entropy current from the horizon entropy current for some higher-derivative theory of grav-
ity. Based on the algorithm presented in [85], we present this analysis in Chapter 4 of the thesis
based on [95].

Now, for a relativistic hydrodynamic theory, there already exists a conceptual tension in ana-
lyzing causality criteria. Specifically, while hydrodynamics is a low-energy effective theory, tra-
ditional causality analysis is mostly performed in the high-energy limit, also called asymptotic
causality analysis. Motivated by the principle that the stability property of the causal parameter
space of a theory should remain invariant in all reference frames connected by Lorentz boosts,
Chapter 5 based on [96] is an attempt to utilize this for causality analysis via stability analysis in

the MIS and BDNK theories.
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Again, as illustrated in [97], the stable-causal MIS theory can actually be visualized as an all-
order corrected theory in the Landau frame. The equation of motion of the viscous correction to
the stress tensor can be rewritten in the form of an infinite summation of derivative corrections of
fluid variables with a particular form of the associated transform coefficients. This shows that in
a stable-causal theory written in the Landau frame, one can trade off the extra degrees of freedom
(introduced to maintain stability and causality of the solutions) for an infinite order derivative cor-
rections to the equilibrium theory. In the same spirit, Chapter 6 based on [98] is a rewriting of
the BDNK stress tensor from its generalized hydrodynamic frame into the Landau frame, utilizing
infinite-order field redefinitions and then using new degrees of freedom.

Finally, Chapter 7 concludes the thesis with a brief summary of all the works presented in the

thesis and the future directions where the results presented here can be useful.
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Chapter 2

Technical Background

In this chapter, we’ll briefly discuss some of the formulations and techniques that form the basis
of the works in this thesis. In the first section 2.1, we’ll mostly review the framework developed
in [7,36, 38] to derive the second law on the horizon for arbitrary higher-derivative theories of
gravity using entropy currents. We’ll briefly discuss the “boost symmetry” of the metric and the
algorithm to get to the second law using this symmetry to constrain possible structures along with
appropriate boundary conditions. In the second section 2.2, we’ll review the basics of stability
and causality analysis in relativistic hydrodynamics and the MIS and BDNK theories, where we

perform the rest of the analyses in II.

2.1 Near-Horizon Coordinates and the Second Law for Higher-
Derivative Theories

This section will be based on Appendix A of [7], Appendix A of [37], [38], and Appendix A of [2].

2.1.1 Coordinates and the metric adapted to the horizon

To begin with, let us consider a (d+1)-dimensional spacetime, with a d-dimensional null-hypersurface
foliated by (d — 1)-dimensional slices. ! Let the coordinates on the d — 1-dimensional slice on the
null hypersurface be denoted by z* with their associated tangent vectors 9;. Let O, be the null gen-
erator along the d-dimensional null hypersurface. Let another set of null vectors 0, shoot off this
d-dimensional null-hypersurface into the full d 4+ 1-dimensional spacetime, and the corresponding
coordinate p measures the distance away from this d-dimensional surface. This null hypersurface

is actually the event horizon of a dynamic black hole in spacetime.

'Throughout this section, the Greek indices , v etc. will refer to the full d + 1-dimensional coordinates and the
Latin indices 4, j etc. will refer to the d — 1-dimensional coordinates.
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On the horizon, let us choose the coordinates such that the tangent vectors have the following

inner products among them

(0,,0,) =0, (8,,8,) =0 (2.1)

The second equality just follows from the fact that 0, are the null generators of the horizon. Note
that these relations are valid only on the horizon.

Next, we choose the p coordinate such that the horizon is located at p = 0, the 0, vectors are
null everywhere, and orthogonal to the 0; vectors everywhere. With the 0, vectors, they have an
inner product of 1 everywhere. These conditions translate to the following equations valid all over

the d + 1-dimensional spacetime
(99, 8p) = (0, 0:) =0, (), 0-) =1 2.2)
With these conditions, the metric written in (p, 7, x*) coordinates can be expressed as

ds® = g, datdx” = 2dr dp—(pC(1,2")+p* X (p, 7, 2"))dT*+2pw(p, T, x")dT dx'+hij(p, T, 2" )dx" dx’
(2.3)
Now, let us consider a stationary black hole with a Killing horizon where 7 is the Killing co-
ordinate. This tells us that all the metric components are now independent of 7 and (2.3) now

becomes
ds* = 2dr dp — (pC(z") + p* X (p,2"))d7* + 2pw(p, 2")dT dx' + hy(p, x")dz" da? (2.4)

At this point, we can refer to the Zeroth law of black hole mechanics, which states that for a station-
ary black hole, the temperature of the black hole is related to (J,g--),—o and that it is a constant all
over the horizon. This tells us that C'(7, 2*) is actually independent of 7 as well as the z* coordinates.

Hence, (2.3) becomes
ds® = 2d7 dp — (pC + p* X (p, 2"))d7* + 2pw(p, 2" )dT dz* + hij(p, 2")dx" da? (2.5)

Another important point worth mentioning here is that the 0, vectors are non-affinely parametrized

null generators on the horizon p = 0.
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Now if we want to transform the metric to a different set of coordinates (r, v, z) where r satis-
fies all of the properties as p, but v is now an affine parameter along the null generators, this leads

us to an additional constraint on the horizon as
(0rGyp)r=0 =0 (2.6)

Following [37], one can always transform to such a system of coordinates for a stationary black

hole metric using the transformations

C 2 Cv
p = 57’1), T = 5 IOg (7) (27)

and the metric (2.5) can now be expressed in (r, v, z*) coordinates as

ds® = G dxtdz” = 2dv dr—r*X (@,:ﬂ) dv?+-2rw; (%,xl) dvdxi—i-hij (%,ﬂ) dztdx’

2
(2.8)
The Killing vector 0, also transforms to
0y = %(v&, —1r0,) (2.9)

Even for the generic case of an event horizon of a dynamical black hole without a Killing vector,
one can still transform to a set of coordinates where one of the coordinates (v in this case) is an
affine parameter along the null generators on the horizon. The transformation isn’t simply (2.7),
but receives corrections due to the 7 and z* dependence of the metric components. In the (r, v, z)

coordinates, the metric near the horizon of a dynamical black hole can then be expressed as
ds? = 2dv dr — r* X (7", v, :17’) dv® + 2rw; (r, v, :1:@) dvdz’ + hij (r, v, xz) datda’ (2.10)

One more noteworthy point at this juncture is that these horizon-adapted coordinates may not be a
good set of global coordinates, but locally, sufficiently near the horizon, one can always find such
a form. Explicit checks in [44] show that while the Schwarzschild metric can be globally described
by these coordinates, the Kerr metric can only be described in these coordinates very close to the

horizon.
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d, — generator
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Figure 2.1: A schematic representation of the horizon adapted coordinates in (2.10) from [2]

2.1.2 “Boost symmetry” of the metric

The coordinate choice in (2.10) doesn’t fix the metric completely. We are still left with some room
for further coordinate reparametrizations on the constant r or v slices without going out of the gauge

of the metric

1. A coordinate transformation of the form
v— v = fo(a') + fi(a') (2.11)

on the horizon still keeps the null generators in the new coordinates affinely parametrized.
Away from the horizon, we’d need to appropriately redefine all the coordinates to stay in
the gauge. This form of transformation essentially is a redefinition in choosing the constant

v-slicing of the horizon.

2. Another coordinate transformation that only mixes the x’ coordinates on the constant v-slice
of the horizon as

'y = fola) (2.12)

can also be done without departing from our choice of gauge. This essentially captures our

freedom to choose the spatial coordinates on every constant v-slice of the horizon. This
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freedom also allows us to convert the partial derivatives 0; to V.

A special class of (2.11) corresponding to fo(z') = 0, fi(z') = X\ with A a constant number is
called the “boost” transformation [36]. The full transformation of the coordinates given by

V=X, 1=

g (2.13)

keeps the form of the metric (2.10) preserved to

/ / !/
ds® =2dv’ dr' — X | M, U—, ) dv? + 2r'w; | M U—, ) dv'dat + hi | A, U—, 2t | dxtda?
A A / A

(2.14)

v = constant T = constant

T = et

=0
r =0 p
) gauge unchanged )
v slices T slices
covariant tensor
Ez'z' €72TETT
(T‘ (T’) non - trivial (jT ,ji )

Figure 2.2: Another special case of (2.11) where the v and z° coordinates map to 7 and y* where
7 is another affine parameter. Comparing with (2.11), this corresponds to a case of (f, = 0, f1 =
e~¢@")). This reparametrization has been used in Chapter 3 [2,3].

Since for a stationary black hole solution, all the r and v dependence of the metric components
occurs as products of rv, and therefore, under the (2.13) transformation, such a metric remains

totally invariant. Infinitesimal boost transformation is generated by the vector
guau = Uav - Tar (215)
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which is proportional to the Killing vector of stationarity with a factor of % Since the stationary
part of the metric remains invariant under (2.13), hence, if we decompose the full metric into a
stationary part and fluctuations around it, then only the latter transforms under this transformation.
If we write the full metric as

Guv = 95 + €85G, (2.16)

where g,g,),) is the stationary background metric, € is a parameter that quantifies the departure from

equilibrium, and dg,,, is the fluctuation in the metric about equilibrium, then under an infinitesimal

transformation generated by £#, the change in the metric is given by
Leguy = €Le0g, (2.17)

For e << 1, we can treat d g, as a very small fluctuation about equilibrium. In the further sections,
we’ll work in a linearized approximation, where the equations will be considered only up to O(e').
Any covariant tensor in these coordinates will be constructed out of the following building

blocks:

1. Metric coefficients: A scalar X (r, v, z"), a vector w;(r, v, z*) and a tensor h;;(r, v, z*) with

respect to the symmetry transformations among the x* coordinates.

2. Derivative operators: Two scalar operators 0, and 0,., and a vector operator V; with respect

to the aforementioned transformations.

A generic covariant tensor can then be expressed as
T~ (0:)"(0,)™Q (2.18)

where Q consists of X, w;, h;; and only actions of V; on them. For such structures, 7 will be zero
at equilibrium on the horizon (r = 0) if m, > m, due to extra factors of » coming out from the
operation. Also, out of equilibrium, for such structures with m,, > m,., contributions on the horizon

will always come out at O(e) owing to the fact that the equilibrium contribution goes to 0.
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For ease in calculations, we define the notion of boost weight w of a covariant tensor 7 as
follows: under a boost transformation of r and v coordinates as in (2.13), a tensor with boost
weight 7 transforms as

T — AT (2.19)

The previously discussed constraints related to m, and m, can be interpreted in terms of boost
weight as follows. Any positive boost weight structure vanishes on the horizon at equilibrium, and
out of equilibrium contributes at O(e) or higher.

At this point, it should be noted that this boost symmetry is a special form of the reparametriza-
tion of the null generators where the affine parameter along them is scaled by a constant number. In
3, we will generalize this to a class of reparametrizations where this scaling would be dependent on
the spatial coordinates on the codimension-2 slice of the horizon. Further, the scenario we consider
in 4 is a more general case where the reparametrized null generators are non-affine. This happens
because when the null generators on the horizon are expressed in terms of the coordinates used to

describe the boundary hydrodynamic theory, they correspond to non-affinely parametrized vectors.

2.1.3 An off-shell identity and the second law

Based on the principles outlined in Section 2.1.2, one can constrain the possible covariant structures
that can exist on the horizon up to the linearized fluctuation regime up to O(¢) * Using these, one can
further lay constraints on the equation of motion of a diffeomorphism-invariant arbitrary higher-
derivative theory of gravity.

Considering a Lagrangian where the only dynamical degrees of freedom are the metric g,,,, the
Riemann tensor 12,3, and symmetrized covariant derivatives of the Riemann tensor of the form

Doy -

1

Do) Ryvagp

S = /ddx\/ —9g L(g,uln R,ul/a,87 D(a1 T Dan)R,uZ/aB) (220)

2For more details on such constraints, one can refer to [38].
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Varying the Lagrangian with respect to the metric, one can obtain

0[V=gL] = V=yg[Eu(9)0g" + D,O"(dg)] (2.21)

where £, is the equation of motion and ©* is a boundary term depending on both ¢, and dg,,,
for some arbitrary variation g, — g, + 0g..-
It can be shown that up to O(¢), the (i, v = v, v) component of E,,,, in the (r, v, 2") coordinates

and the metric of (2.10) can be arranged on the horizon into the form

(Evw)oo = 0, %a}(ﬁﬂ) L 10 (2.22)

where, J? and J* have boost weights 0 and 1 respectively. Since .J¢ has a positive boost weight,
it vanishes out of equilibrium. Although JV is a boost weight 0 quantity, it gets contributions at
equilibrium as well as out of equilibrium. The equilibrium contribution of J¥ corresponds to Wald
entropy as defined in [26] and the out-of-equilibrium contributions contribute to JKM ambiguities
[28], which vanish at equilibrium. For these reasons, .J* and J* are called the entropy density and
the spatial entropy current respectively.
Now, if we consider some matter field to be there in the Lagrangian, the full equation of motion
would be given by
Ew =Euw+Tw (2.23)

where T, corresponds to the matter sector’s stress tensor and £, is the contribution from the
purely gravitational part of the Lagrangian. Now, if the matter stress tensor satisfies the Null Energy

Condition *, then on the horizon, it satisfies

Typo = 0 (2.24)

3The null energy condition states that for any future-directed null vector field k*, the stress tensor satisfies
TukHE” > 0.199]
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because 0, are null vectors on the horizon. If we consider the theory to be on-shell, then

SMV:OjENV—i_TMV:O
:>(EUU + Tvv)r:O =0
1 ‘
=0y {ﬁ&)(\/ﬁﬂ) + VJ} + Ty +O0(2) =0 (2.25)

1 v ) 2
=0, {ﬁ&,(\/ﬁJ )+ vl-J] +0() <0

If we now impose a physical condition that the black hole settles down to equilibrium at future
infinity in time, i.e., v — 00, then

1 v o7t
v — 00 = 0, {ﬁ&,(\/ﬁ] )+ Vljl -0 (2.26)

Since J¥ and J¢ have boost weights 0 and 1 respectively, hence at equilibrium,

1 v T
{ﬁav(\/ﬁj ) + VZJ] -0 (2.27)

From this, we can conclude that

L v Tt 2
B, {\/Eav(ﬂj ) + W] +0(&) >0 (2.28)

for all finite v. This shows us that J* and .J* together satisfy an ultra-local form of the second law
on the black hole horizon. JV denotes the change of entropy density in time, whereas J* captures
the spatial flux of entropy on a constant v-slice of the horizon. As has been shown in [2,38], an
integral of the combined divergence of the entropy density and the spatial entropy current gives
us the entropy production between two nearby equilibrium states of the black hole. This entropy

production can be captured as
58 = / dv / Az (8v(\/ﬁj“) n aiji) +O(e) (2.29)

This form of the change in entropy actually corresponds to the “Physical process version of the first
law” [29].
As will be seen in 3, (2.22) and (2.29) act as crucial inputs in understanding the reparametriza-

tion symmetry of local entropy production on the horizon.
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2.2 Relativistic Hydrodynamics: A Primer

In this section, we’ll briefly review the tools and techniques one can use to analyze stability and
causality in hydrodynamic theories. We’ll also review some commonly used choices of hydrody-

namic frames and the formulations of MIS and BDNK theories.

2.2.1 Linearized stability analysis in a theory

Consider any theory with a set of fields {®;(x,¢)} as its degrees of freedom. Let the equations of
motion of the system be given by a set of nonlinear coupled partial differential equations of the
form E({®;(z,t)}) = 0. Let {®¢} be a set of exact solutions of F({®;(z,t)}) = 0 conforming to
its symmetries. F({®;(z,t)}) is a differential operator consisting of the field variables and their
spacetime derivatives *. In hydrodynamics, {®;(z,¢)} would be given by the fluid’s temperature,
velocity, chemical potential etc. E({®;(x,t)}) would be given by the conservation equations of

the stress tensor 7" or conserved charge currents J* as
0, =0, 0,J"=0 (2.30)

Let {P¢} be given by the values of the fields at global equilibrium. To find the dispersion

relation, we’d first consider a linear expansion of {®;(z, t)} about {®5} of the form
{@ (@, 1)} = {7} + / dwd’k ¢ 70 {50, (w, F)} (231)

where k = V' k - k and € << 1. The deviations from global equilibrium are Fourier expanded and
quantified by the set of fluctuations {6®;(w, k) }. Assuming that {®(z,t)} solves E({P;(z,t)}) =
0 up to linear order in €

E({®i(z,t)} = {P](z,1)}) + O(¢*) = 0 (2.32)

for arbitrary values of {0®;(w, k)}. Since the equations are all linear in {0®; (w, &)}, hence, we can

4This kind of linearized perturbation analysis isn’t just limited to hydrodynamics but is used in many other fields
like gravity. Hence, we keep the fields and equations here in full generality.
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express the full set of equations as a matrix equation of the form
E({®:(z,1)}) = {;} + O(€) = 0= Y Myp({®s}, w, k) 6®p(w, k) =0 (2.33)
b
Since this must be satisfied for all values of {§®;(w, &)}, this can be possible only if
det(M({®;},w,k)) =0 (2.34)

The resultant equation gives us a set of polynomials of w and k£ whose roots give us the spectrum
of w. For a rotationally invariant spacetime, the polynomials are only functions of k? and w and
are of the form

flw, k) =0 (2.35)

A fluctuation around equilibrium is called linearly stable if it decays down to 0 with increasing

time. In the rest frame of the fluid, this is given by
Im(w) <0 (2.36)

Since hydrodynamics is a low-energy effective theory, hence in general, one is interested in finding

solutions of w as infinite series of k near k¥ — 0 as

o0

w=Y k" (2.37)

n=0
Modes that have w = 0 at the limit £ — 0 are defined as ‘hydrodynamic’ or ‘massless’ modes,
and those with w # 0 at £ — 0 are called ‘non-hydrodynamic’ or massive modes. The non-hydro
modes are named thus for the following reasons. The global equilibrium in a hydrodynamic system
is characterized by conserved charges that can take any constant values, and dynamics in time are
generated only when there is some spatial variation in their value. In this perspective, each fluid
variable is associated with some conserved charge, and hydro modes are the ones whose frequency
(variation in time) vanishes as soon as there is no spatial variation (i.e., at & — 0). Hence, one

can think of hydrodynamics as the collective dynamics of the massless modes of a system slightly
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away from global equilibrium. From this point of view, the non-hydro modes can be interpreted as
those that do not vanish at zero momentum and, hence, cannot be associated with any conserved
charges of the system at equilibrium. This w,—p) # 0 nature also resembles the rest mass energy
of massive particles in relativity where £/ = \/]m and E(,_q) # 0, hence, the name massive
modes.

Recent developments suggest that the inclusion of non-hydro modes is necessary to maintain the
stability and causality of the solution [100, 101]. Different schemes to introduce them in a hydro-
dynamic theory include the MIS formulation and the BDNK formulation, which will be discussed

in Section 2.2.3.
Routh-Hurwitz stability analysis

In Chapter 5, our analysis focuses on the non-hydro modes of two stable-causal hydrodynamic
theories at the £ — 0 limit, i.e. where w(k = 0) = ¢¢. The stability criteria /m(w) < 0 in this
case then becomes Im(cq) < 0. The rest of the discussion in this section on stability analysis using
Routh-Hurwitz criteria [102] will focus on this special case.

The imaginary part of a( can be extracted as
Co = Im(co) = —i co (2.38)

The Routh-Hurwitz stability analysis is a way to analyze the stability of the roots of a polynomial
without explicitly calculating their roots. It involves constructing an array from the coefficients of

the polynomial called the ‘Routh array’ as follows. For a polynomial of the form

N
Z anx™ = ag+ a1zt + -+ anyzy =0 (2.39)
n=0

the Routh array is defined as ) )

an aN—2
aN-1 aN-3- -
bv-1 by (2.40)

CN-1 CN-—3"""
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where b;s and ¢;s are defined as

1

b . ay  anN-—2
N-1 = —

aN—1 |a4nN-1 AaAN-3

b . 1 an aAN_—4
N-3 = —

an—1 |a4nN-1 AaAN-—5

(2.41)

c o 1 anN—-1 aN-3
N-1= —

by_1 |[bnv-1 bn—s

c _ 1 lan—3 an—s
N-3 = —

bel bN—3 bN—5

In this way, for an O(z") polynomial, one can get N + 1 expressions in the first column of the
Routh array. Now, as one counts down this first column of the array, the no. of sign changes between
consecutive elements indicates the number of roots of the polynomial Zflv:o anx" = 0 lying in the
right half of the complex plane, i.e., unstable roots. Hence, for all roots of the polynomial to be
stable, all the elements of the first column of the Routh array must have the same sign, whether
positive or negative. In our case in Chapter 5, we’ll need to perform this Routh-Hurwitz analysis

on the Cys as defined above.

2.2.2 Causality analysis in linearized regime: Asymptotic causality

One of the most fundamental principles in relativity is that of causality, which ensures that the
time ordering of causally connected spacetime events remains preserved, i.e., cause always pre-
cedes its effect. From a perturbation theory perspective, perturbations around the equilibrium of a
system should never exit the light cone for the theory to be deemed causal. From a physical per-
spective, these perturbations can be assumed to originate from some source localized in spacetime,
and causality analysis then deals with the question/fact/scenario of whether they time evolve to
exit the light cone of the source. Since a perturbation localized in spacetime has a spread in the
energy-momentum (or frequency-wavenumber) space, hence, causality analysis of such a localized
perturbation should consider the contributions from all of these frequencies and wavenumbers.
Imposing the principle of causality in a relativistic hydrodynamic theory with a finite number

of transport coefficients puts constraints on the phase space of these parameters, thus constraining
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the values that these coefficients can take. In this way, it serves as a good benchmark criterion for
different microscopic models to be possible physically realizable theories.

One popular choice for analyzing a theory’s causality in the linearized fluctuation regime is cal-
culating the perturbation’s group velocity at an infinite wavenumber. A group velocity lesser than
the speed of light implies the perturbation being restricted to within the light cone, thus retaining

the causality property of the system [103]. °
dw

Group velocity: v, = 7 2.42)
System is causal = limy_,oo|vy| < 1

Since the analysis is performed at the £ — oo limit, hence, it is also called the “asymptotic
causality” analysis. Satisfying asymptotic causality is a necessary criterion for a well-behaved
theory but not sufficient; a hydrodynamic theory that violates asymptotic causality necessarily leads
to acausal modes [104]. Also, as discussed in Chapter 1, asymptotic causality analysis lies outside
the hydrodynamic regime due to its being a high-wavenumber analysis.

In another chain of recent works, the authors have attempted to understand the principle of

causality by staying within the low-k regime only [100, 105]. From a relativistic quantum field

theory analysis [106], one can derive necessary constraints on /m(w) and I'm(k) as
Im(w(k)) < [Im(k)|. (2.43)

Using these conditions, further bounds can be imposed on the expansion coefficients ¢, of the
modes (2.37) [100, 105, 107]. Chapter 5 is a pursuit following these principles to derive causality
criteria from a low-£ stability analysis in conformal, uncharged MIS and BDNK theories.

Recent works like [108, 109] have explored the causality properties of a theory in the nonlinear
regime by evaluating the characteristic velocities of the partial differential equations of motion (see
Appendix A of [101] for a discussion). In these cases, the propagation velocities are calculated by

calculating the normals to the characteristic curves, and the subluminality of these velocities (i.e.,

3 As shown in [104], as long as the asymptotic causality condition is fulfilled, causality is not violated even if the
perturbation’s group velocity exceeds the speed of light at some intermediate wavenumber.
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being less than the speed of light) makes the system causal. Satisfying nonlinear causality criteria is
sufficient for a theory to be causal. Since the analyses performed in Part II are linear, we’ll restrict

our attention to linearized causality analysis only in further discussion.
Schur stability of polynomials

Checking for the asymptotic causality of a dispersion polynomial often involves finding the roots
of a polynomial and imposing other conditions on it (e.g. that the roots be real, lie between —1
to +1 etc). In most of the cases, the polynomials are higher-order than quadratic and analytic
computations of causality criteria by root extraction methods can be very cumbersome. In Chapter
5, we use a novel method to extract causality criteria for a dispersion polynomial: checking for
the “Schur stability” of polynomials. Schur stability analysis checks for the existence of roots of
the polynomial within a unit disc on the complex plane without directly extracting its roots. For
this reason, it can be a much easier method to extract causality criteria analytically. We’ll briefly
review the method in this section following [110].
Consider a polynomial in complex x of the form
N

P(z) =) ca" (2.44)

n=0
For this polynomial, Schur stability analysis checks for the existence of roots in the unit disc on
the complex-z plane. This is analyzed by performing the following Mobius transformation on the

complex-x plane that maps the unit disc onto the entire left half-plane

iti(—l#xé@), zzZ—i(l%wEC) (2.45)

w =
The polynomial in z is then converted into a polynomial in w as
w—1

blw) = (w—1)VP (“’—“) (2.46)

where the rescaling with (w — 1)” is performed to cancel the (w — 1) factors in the denominators.

Y(w) is thus an O(w™) polynomial with its roots lying in the left half plane due to the applied
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Mobius transformation. Now, we can apply the Routh-Hurwitz stability check on ¢(w) as detailed
in the previous section, to check for the existence of stable w roots. Since the unit disc in the x
plane was mapped to the left half plane in the w plane, hence, RH stable w roots of 1(w) would
indicate Schur stable x roots of P(x).

However, this is not the end of the story as, although Schur stability analysis allows us to
check for the existence of roots within the unit disc, it doesn’t tell us whether the roots are real
or complex. The group velocities that we require are real quantities. Hence, one needs to impose
further constraints on the polynomial, like the positivity of the discriminant, to ensure that the roots
lying within the unit disc are real. The polynomials in Chapter 5 were at most quadratic in vg, thus
providing a less difficult setup to apply the positive discriminant criteria. Although imposing the
positive discriminant criteria in higher-order polynomials can be more non-trivial, the total method
of asymptotic causality analysis by Schur stability analysis should be less cumbersome to execute

than the usual root extraction methods.

2.2.3 Stress tensors and hydrodynamic frames

In the rest of this section, we’ll discuss some particular choices of hydrodynamic frames and the
form of stress tensors in those frames. A choice of hydrodynamic frame essentially refers to a
choice of out-of-equilibrium definitions of hydrodynamic fields like temperature, velocity, chemi-
cal potential etc. Since we’ll deal only with conformal uncharged fluids in this thesis, the discussion
in the rest of this section will only consider conformal fluids without any charge. Also, through-
out the section, we’ll consider the background spacetime to be flat and four-dimensional with the
metric n** = diagonal(—1,1,1,1).

One more terminology that is used in linearized stability analysis is ‘shear’ and ‘sound channel’.
These are nothing but the relations between the directions of k of the perturbation and the velocity
fluctuation §%. ‘Shear channel’ refers to the case where k | 6 and ‘Sound channel’ refers to the

case where k || 6@
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Stress tensor of an ideal fluid

A fluid without any dissipative effects is called an ideal fluid. The stress tensor for a relativistic
fluid is the conserved current corresponding to its translation symmetry. For a generic, uncharged

fluid, the equilibrium stress tensor has the form

Th = Eut'v + PAM (2.47)

where £, P, u* and A" are the fluid’s energy density, pressure, four-velocity and the projection

tensor orthogonal to the velocity, respectively. The projection tensor is defined as
AP = nt 4+ utu” (2.48)

The stress tensor being conserved supplies us with the equations of motion of the fluid’s degrees

of freedom (viz. temperature, velocity etc.)
9, T" =0 (2.49)
For a conformal fluid in four dimensions, energy and pressure are related by the equation of state
E=3P (2.50)
and in four dimension, the relation between £ and temperature 7 is given by
E=krT" (2.51)

where « is a constant related to the Stefan-Boltzmann constant. Thus, the stress tensor of an ideal

conformal uncharged fluid is given by

1
™ = gT* (u“u” + gA“”) (2.52)

Dissipative corrections and Landau frame

Hydrodynamic fields like velocity and temperature are well-defined for a fluid at global equilib-

rium, but when going out of equilibrium, they lose their meaning. To take into account this slightly
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out-of-equilibrium scenario, dissipative corrections are added to the equilibrium theory in the form
of derivative corrections of the equilibrium hydrodynamic fields. One then has to make a choice
of the out-of-equilibrium definitions of these fields, termed a “choice of hydrodynamic frame” or,
more colloquially, a ‘frame choice’. This frame choice then further regulates the possible structures
that can be added in these dissipative corrections.

For a general hydrodynamic theory, dissipative corrections can be added to the equilibrium
theory as follows (for simplicity, we’ll consider a conformal uncharged fluid here):

™ = T(’é'; + 71"

T = Syuku” + SeAP + 2uHVY) 4 TH (2.53)

0,T" =0

where Sy, Sy, VF, T* contribute O(9') onwards. Examples of possible structures in these cor-
rections include 0,7, 0,u, and their higher-order derivatives. In addition, V# and 7" satisfy
V-u = THu, = 0. Moreover, the added corrections should respect all the symmetries of the
equilibrium theory, and the equation of motion would still be given by the conservation of the full
stress tensor (conformal invariance in this case). Frame choices, as we shall see, are essentially
choices of these Sy, Sy, V#, TH structures.

The traditional strategy of frame choice involves first defining the fluid variables in terms of
some microscopic quantities (field theory operators) and then exploring the structure of the equa-
tions and their consequences. The “Landau frame” condition is one such example of a frame choice
where the equilibrium values of the hydrodynamic fields are chosen to be maintained even out of
equilibrium. This puts severe restrictions on the possible corrections as follows. In the Landau

frame, the fluid velocity is chosen to be a unit normalized timelike eigenvector of the stress tensor

with the negative energy density as the corresponding eigenvalue.

T"u, = —&u” (u,u" = —1)
(2.54)
=T0" u, =0=T" = SoA + TH

visc visc

For a conformal fluid, a non-zero S, violates conformal symmetry, therefore, So = 0. Physically,

the Landau frame choice has a nice interpretation: the fluid velocity is chosen to be the velocity
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of the energy flow. Hence, temperature and velocity at every point are well-defined as in local
equilibrium, ignoring the effects of dissipation. Dissipative effects are accounted for in the viscous
correction terms only, which are entered as corrections in pressure or in the traceless tensor sector.

Another commonly used frame choice is the Eckart frame, where the fluid velocity is chosen

along the velocity of the particle flow. Here, 7" can have a non-zero V.

Pathologies in the Landau frame

Ideally, a systematic attempt to add dissipative effects to the equilibrium theory should involve
adding derivative corrections order by order, starting from the first order. Since an O(0™) quantity
is considered to be much smaller than another O(9"~!) quantity, it is a natural expectation that such
derivative corrections can be added without causing any major upsets in the physical properties of
the equilibrium solutions. Higher-order derivative corrections should not impact the stability or
causality properties of the lower-order solution.

For a conformal fluid in the Landau frame, the only possible dissipative correction at O(9) is

of the form

TH = —2not” (2.55)

where 7 is called the ‘coefficient of shear viscosity’ and o*” is the shear tensor defined as

oM = AFCAVP (0(au5) — %na[g 0 - u) (2.56)

Using the second law of thermodynamics, 7 can be constrained to be a positive number.
The total stress tensor of the first-order derivative corrected conformal fluid in the Landau

frame, therefore, comes out to be
v 4 v 1 v v
™ = kT | ufu” + gA“ — 2no* (2.57)

It can be seen that upon Lorentz boosting the dispersion polynomial of the above stress tensor
by some finite non-zero boost and solving for w in terms of k£, new modes pop up which are non-

hydrodynamic in nature. Moreover, these new non-hydro modes have their leading terms (the £k = 0
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expansion coefficient) to be inversely proportional to the boost velocity. Since boost velocity can
take values arbitrarily close to 0 and even be equal to 0 in the rest frame of the fluid, these modes
can possibly diverge and indicate some pathologies of the theory [56, 111]. One can also find that
Green’s function corresponding to these dispersion polynomials has finite support outside the light-
cone [50], thus indicating possible propagation of these perturbations outside the light-cone, thus
violating causality. Thus, we can conclude from here that the relativistic first-order Navier-Stokes
equation in the Landau frame is acausal and unstable.

The problems here actually have to do with the following facts. Since without a specific mi-
croscopic theory, we are agnostic to the microscopic interactions and dynamics in the underlying
quantum field theory, hydrodynamics, to us, is just an effective theory. Hence, one should, in
principle, have to add an infinite number of derivative corrections to the equilibrium theory. Now,
numerical computations with infinite-order corrected theories are difficult, and for practical pur-
poses, one has to truncate these infinite series at some finite order. As has been shown in [97], it
is impossible to restore causality or stability to a viscous stress-tensor in the Landau frame adding
correction terms only up to a finite order in derivative expansion. These problems also can be
understood from the perspective of non-hydro modes: these dispersion polynomials lack any non-
hydro modes, and hence, a scale that determines up to what energy scale it is valid to take the
hydrodynamic approximation (i.e., long-wavelength approximation). As explored in [97] and in
Chapter 6 based on [98], incorporating the infinite series of derivative corrections can be a possible
way to cure these pathologies.

In the rest of the section, we’ll review two well-established formalisms to take into account

these non-hydro modes, thereby restoring stability and causality in the theories.
Miiller-Israel-Stewart (MIS) formalism

The MIS formalism is a method to remedy the stability and causality issues staying in the Landau
frame by promoting viscous contributions to conserved currents as new degrees of freedom. These

new degrees of freedom come with their own equations of motion, which are like relaxation equa-
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tions with their associated relaxation timescales. Due to the presence of time derivatives in the
relaxation equations, the full set of dispersion relations can now account for the non-hydro modes,
thus restoring stability and causality. Since the viscous degrees of freedom are not the result of any
microscopic quantum field theoretic operators, hence, they are not associated with any conserved
quantities. Thus, they are defined only out of equilibrium and lack any equilibrium counterparts.
Therefore, these are termed as ‘non-fluid’ degrees of freedom.

For an uncharged conformal fluid, the 7";” in MIS formalism is expressed as

visc

THY T

H’{OV) =0 (2.58)
" + mu - 011" = —2not”
where 11" is the shear viscous flux and 7y is the corresponding relaxation timescale.

The MIS formalism has successfully studied numerical simulations and phenomenological
models in colliding systems, both large and small [53]. Since it gives finite truncated equations
of motion and works with the equilibrium definitions of velocity and temperature, it is a very suit-
able framework for practical purposes. However, the conceptual hurdle lies in finding physical
motivations for the new degrees of freedom that are currently being investigated [112—114].

As explored in [97] and [98], incorporating new non-fluid degrees of freedom is just another

way of packaging the infinite number of derivative corrections required to render the theory causal.
Bemfica-Disconzi-Noronha-Kovtun (BDNK) formalism

The BDNK formalism addresses the stability-causality issue of relativistic hydrodynamics in a
different way; it accounts for the non-hydro modes using the hydrodynamic degrees of freedom
solely by trading off the Landau frame condition. Essentially, it uses field redefinitions of the
hydrodynamic variables to adopt a more general out-of-equilibrium definition of the fields instead
of the Landau frame condition. In this ‘generalized hydrodynamic frame,” one can write a truncated
stable-causal stress tensor without introducing any new degrees of freedom. All components of

the stress tensor and its viscous corrections can be written as derivatives of temperature, velocity
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etc. But in the process, the well-defined out-of-equilibrium notions of fluid variables are lost,
and one is left with ambiguities in their definitions out of equilibrium. Consequently, in terms of
microscopic operators, one doesn’t know what temperature or velocity means out of equilibrium
anymore. Rather, they act more like auxiliary variables to define the stress tensor in terms of
the quantities comprising the constitutive relations (like energy density). Moreover, one now has
to include viscous corrections in the constitutive relations like energy density and pressure. To
account for the non-hydro modes, these corrections must include temporal derivatives.

Historically, the stability-causality issues of the first-order relativistic Navier-Stokes equation
had been known for a long time, and it was a general impression that it is impossible to write
a stable-causal theory with only first-order corrections to the stress-tensor. With the advent of
the BDNK formalism, it became clear that by compromising the Landau frame choice using field
redefinitions, it is possible to write a first-order stable-causal theory.

The BDNK stress tensor for a conformal uncharged fluid is formulated as follows

1%

T = (E+ A) {u“u” + AT] + [uQV + u” Q"] — 2not”

A=y (3“'7?T +a-u) (2.59)
uy
Q=10 (—A TaVT —i—u-@u“)

The temporal derivatives (u - 0) are the ones that account for the non-hydro modes and restore
causality in the equations.

A naive attempt to write this stress tensor from the generalized hydro frame to the Landau frame
would be by setting x and 6 to zero.

However, stability analysis reveals that the non-hydro modes come out with x and 6 in their
denominators, making it impossible to write the stress tensor in the Landau frame without compro-
mising stability and causality yet again. As has been shown in Chapter 6, it is possible to rewrite
the BDNK stress tensor in the Landau frame using an infinite tower of derivative corrections in

field redefinitions. This again emphasizes the fact that the BDNK formulation is a finite-truncated
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UV complete theory of relativistic hydrodynamics.
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Part 1

Local Entropy Current on a Black Hole
Horizon and its Reparametrizations
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Chapter 3

Reparametrization symmetry of local entropy
production on a dynamical horizon

This chapter is based on [3].

The construction of entropy density and the current in [38] relies on a very specific choice of
the coordinate system 2.1 where the affine parameter along the null generator of the horizon is one
of the coordinates. Now, it is possible to reparameterize the null generators of the horizon in a
nontrivial way without affecting the affine nature of the parameter (2.11). The expressions for both
the entropy density and the spatial current change under this reparametrization. But we expect the
net entropy production, given by the ‘time’ derivative of the entropy density plus the divergence
of the spatial current, should be something physical and, therefore, independent of our choice of
affine parameters.

In this chapter, our goal is to verify the above expectation for the special case of Gauss-Bonnet
theory where both the entropy density and the current have been explicitly computed in [37].

We have found that under this transformation, the ’time’ derivative of the entropy density, as
well as the divergence of the spatial entropy current, change individually in a very nontrivial way;
however, they precisely cancel each other. Apart from being a consistency check for the results
described in [37], it also says why a spatial entropy current is necessary to make the laws of entropy
production independent of our choices of coordinates.

Though, at the moment, all the calculations are linear in the amplitude of the dynamics, we
eventually would like to have some construction of entropy density and the entropy current that
satisfy the first and the second law at all nonlinear orders and, if possible, without using any pertur-
bation. Now, in any such construction, a full knowledge of the underlying symmetries might turn

out to be very useful. The requirement that the entropy current and the density must transform in
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

such a way so that the net entropy production has some particular symmetry could be constraining
for all the nonlinear terms. ! In other words, it would be very interesting if, instead of verifying the
symmetry in a particular theory, we could use it to predict some relation between the structure of
entropy density and the spatial entropy current in a theory-independent manner. We expect that our
explicit computation in the simple case of Gauss-Bonnet theory would help us to gain experience
for further progress in this direction.

The contents of this chapter are organized as follows. In section 3.1, we have described the
setup of our problem. In section 3.2, we have described the reparametrization symmetry. In section
3.3, we have explicitly verified that the entropy density and the entropy current do maintain this
symmetry in the particular case of Gauss-Bonnet theory. Finally, in section 3.4, we have concluded.

The details of the calculation are explained in the appendix A.

3.1 Setup

In this section, we shall briefly review the coordinate system used in the analysis of [37] for the
sake of continuity and the expression for entropy current and entropy density for the Gauss-Bonnet

theory.

3.1.1 Coordinate system

As mentioned before, the geometry we are considering is of the black-hole type containing a codi-
mension one null surface as the horizon. The coordinate system is constructed with the horizon
being the base, i.e., we first choose (D — 1) coordinates on the horizon. Let J, be the generator of
the horizon, which is a null geodesic with v being the affine parameterand 2%, {a =1,--- , D—2}
are the spatial coordinates along the constant v slices of the horizon. So {v, 2} together constitute
a coordinate system on the horizon.

Once the coordinates on the horizon are fixed, we shoot off affinely parametrized null rays

'In [39], which came up shortly after our work, the authors have included an elaborate discussion on this issue.
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

J,, making specific angles with horizon coordinates. The affine parameter r along these rays is a
measure of the distance away from the horizon. The angles are chosen so that the inner product
between 0, and 0, on the horizon is 1 and the same between 0, and J,s are zero. After imposing
all these conditions, the metric takes the following form (see [37] for more details)

ds* = 2 dv dr —r* X(r,v,2") dv*

3.1)
+ 27 wa(r, v, 2°) dv dz® 4 hey(r, v, %) dz® da®

3.1.2 Gauss-Bonnet theory

We are considering a theory of pure gravity with a maximum of four derivatives. We shall be even
more specific in choosing the theory; we’ll work with the Gauss-Bonnet theory of gravity with the

following Action.
S = / dPxvV—G [R+ o® (R — 4R"™ Ry, + R*" Ry ps )| (3.2)

Here R, R, and R, ,, are the Ricci scalar, Ricci tensor, and Riemann tensor” of the full spacetime
respectively. All raising and lowering of indices have been done using the bulk metric g,,,.
The entropy density (/) and the entropy current (/) on the horizon have the following struc-

ture
J’ = (1422°R)
(3.3)
J* = o’ [-4V,K® + 4V°K |
Here R is the intrinsic Ricci scalar of the constant v slices of the horizon (i.e., the Ricci scalar

computed using the metric hy,). K,y 1 the extrinsic curvature of the null horizon, and V, is the

covariant derivative with respect to h,

1
Kab = §avh'ab> K= habKab (34)

2 According to our convention,
Ruypa = ap]-—‘fjg - acr]-—‘,/jp +Ie1Te —TH T¢

pas vo oa~ pv
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

The sole reason for choosing this theory is its simplicity. Despite being a four-derivative theory, the
equation of motion remains two derivatives, and both the entropy density and the current could be
constructed entirely from h,;, and its v and x® derivatives evaluated on the horizon, which simplifies
our task to a large extent. However, we must emphasize that the symmetry that we are going to

describe in the next section is expected to hold in any higher derivative theory of gravity.

3.2 Symmetry

In section 3.1, we have chosen a coordinate system adapted to the horizon so that the metric takes
the form as described in equation (3.1). However, this form does not fix the coordinates completely;
some residual gauge freedom is still left, and both the entropy density and entropy current do change
non-trivially under this unfixed coordinate freedom.

On the other hand, as we have explained in the introduction, the expression

1

Vh

(where J¥ and J are the entropy density and the spatial entropy current, respectively) is related to

Ay (VhJ") + V. J'

the local entropy production along every point of the dynamical horizon and therefore, we expect
it to be invariant under the reparametrization of the null generators.

In this section, we shall first describe this residual freedom of coordinate transformation that is
not fixed by our choice of gauge. Next, we shall use the details of this transformation to make our

intuition about ‘invariance’ more precise.

3.2.1 Reparametrization of the null generator

The starting points in setting up our bulk coordinate system are the affinely parametrized null gener-
ators of the horizon and the coordinates along its spatial slices. Once we fix the horizon coordinates,
our gauge conditions uniquely fix the coordinates along the bulk. It follows that the residual sym-

metry that we are going to discuss here must involve a transformation of the horizon coordinates,
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

maintaining the affineness of the null generators. For convenience, let us use a bar on all the co-
ordinates of the horizon to distinguish them from the bulk coordinates. For example, {v, 2%} will
denote the affine parameter along the null generator and spatial coordinates along the constant v
slices of the horizon only.

Now, an affine parameter will remain an affine parameter if we scale it in a ¥ independent

manner. So, we shall consider the following transformation on the horizon (r = 0 hypersurface).

z%)

Do T=0e) L5yt =z (3.5)

As mentioned before, both v and 7 are affine parameters along the null generators of the horizon.
However, constant v slices are not the same as the constant 7 slices. In other words, the tangent
vectors along the constant v slices given as A" are different from the tangent vectors oY along

the constant 7 slices. They are related as follows

~ ~ 0

5 — 3 ( ¢ ) 0. (3.6)
Since the tangent vectors on the horizon change under this transformation, we need to transform

the r coordinate also so that the tangents along the constant {7, y*} lines (or the coordinate vectors

pointing away from the horizon) maintain the same angle with the coordinate vectors along the

horizon. This will firstly lead to a redefinition of the r coordinate, and also, it will correct the

coordinate transformation (3.6) as one goes away from the horizon.

v =eSWr

L+ (o) Vi, 27)]

n=1

r = efC(y)p

L+ (p7)" Riwy(7. g>] 37
n=1
Ia = ya + Z(p T)n Z(an)<7—, g)
n=1

Let us briefly motivate the choice of the above ansatz .

As mentioned before, the coordinate transformation is generated due to the scaling function ((y)
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

defined only on the horizon, and once this horizon function is given, the rest of the coordinates
throughout the bulk are uniquely determined by our gauge condition. Clearly, it is impossible to
solve these gauge conditions exactly for a generic spacetime. However, the problem is very well-
suited for a near-horizon expansion since, geometrically, our choice of gauge is a two-step process
where we first choose coordinates on the horizon and then shoot out null geodesics with precise
angles to extend them away from the horizon.

As is often true with perturbative expansions, our ansatz also involves a few conventions and
assumptions. First note that each of the expansion coefficients (V(,,), R(,) and Z Eln)), including the
function e*¢ strictly speaking should depend only on the horizon coordinates {7, 7*}. Whenever
we are writing them as functions of bulk coordinates {7, y"}, it involves an extension of these
functions to the bulk, which is rather arbitrary. It is always possible to redefine the expansion
coefficients at any given order by adding functions that vanish on the horizon without affecting the
lower-order coefficients. Similarly, ( itself might admit a power series expansion in a distance from
the horizon (in fact, if we choose to write ((y®) in terms of {x”} coordinates, this will happen).
However, such redefinition, geometrically, does not mean that we are choosing new curves for
coordinate axes since we know all coordinates are uniquely determined by our gauge choice once
we fix the coordinates on the horizon. This is simply a rearrangement redundancy that is built into
our perturbative technique of solving the gauge choices. However, here we have chosen the most
naive bulk extension of all these horizon quantities by simply replacing all the {7, y*} dependence
with bulk coordinates {7, y*} (which need not be the simplest choice in terms of the final form of
the expansion coefficients).

Next, we shall come to the second unusual choice we made in our ansatz. A near horizon ex-
pansion in our coordinates simply means an expansion in powers of p (and not in the powers of
the product (p7) as we have done here). However, note that there is no loss of generality in ex-
panding the powers of the product (p7) if we keep the 7 dependence in the expansion coefficients

completely free. The reason behind this choice of expansion parameter is related to equilibrium
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

(stationary) horizons. We know that in stationary black holes, the radial dependence of the metric
components is always through the boost-invariant product (p7) or (rv) [37]. This will be true pro-
vided the coordinate transformation has the structure as described above with coefficient functions
independent of 7 coordinates. In other words, in our (p7) expansion, the expansion coefficients
will depend on 7 only when the horizon is evolving with time, thus enabling us to clearly distill out

the effect of dynamics from that of the stationary case.

Fortunately, all these subtle issues about the form of the coordinate transformation turn out to be
completely irrelevant to the present analysis of Einstein Gauss-Bonnet gravity. For this theory, both
the entropy density and entropy current are entirely constructed out of the induced spatial metric
of the horizon (denoted as h,;) and its derivative along the tangents of the horizon (i.e., d, and 0,
only and no 0,). Here we do not need to know the metric components away from the horizon and
therefore there is no need to determine the coordinate transformation for nonzero p.> The induced

metric on the horizon remains invariant under the reparametrization as

3.2.2 Why we expect this transformation to be a symmetry

Here, we shall present a heuristic argument of why we expect such a symmetry to be there in the
first place. The argument is very similar to what one uses to prove ‘the physical process version of
the first law.’

Following the setup in [29], consider a stationary black hole. The horizon is a Killing horizon
in the absence of any perturbation. At some Killing time ¢,, matter fields are perturbed. If we treat
the amplitude of the field perturbation as of (O(J)), then typically, the fluctuation in the matter
stress tensor would be of order O(6%) and the same would be the order of the metric fluctuation

(which, at later sections, has been denoted as € ~ §2). It follows that the local entropy production

3Higher order corrections to the metric coefficients are going to be computed in an upcoming work.
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S, = {\/LE&J (\/ﬁ J”) + Viji], which is constructed solely out of metric fluctuation, is also
of order O (6%). Note that the Killing equation will remain true up to order O(4) and therefore to
compute the leading order (O(5?)) expression for the entropy production, it makes sense to integrate
S, between two constant ‘Killing time’ slices of the horizon, namely initial equilibrium (at ‘Killing
time t = —oo) to final equilibrium (at Killing time ¢ = c0). Now we could relate the ‘Killing
time’ to the affine parameter of the null generators where ¢ = —oo will correspond to v = 0, and
t = oo will correspond to v = oo (see [29] for the details). So, the net entropy production could

be expressed as [29,37,38,115-119] *

AS — /OO dv/ 4"z Vh {%&, (\/5 J”) + wﬂ'} (3.9)
0 v .

= SEquilibriumy — O Equilibrium;
where Y, 1s the constant v slices of the horizon and n = D — 2.
But the total entropy in equilibrium or for a stationary black hole is unambiguously defined
through Wald entropy, which is independent of how we parametrize the null generators of the
horizon, and the same must be true of their difference. Now under the reparametrization that we

are discussing, the measure of the above integration changes as
Vhdv d'z = WV dr d"j

If we want AS to be invariant under the reparametrization of the null generators, then the expression
[\/LE&, (\/ﬁ J ”) + V;J Z] , once written in terms of quantities defined in {7, §/} coordinates, must

have an overall factor of e <.

[%au (\/ﬁ J”) + vaja] — ¢ [%&(\/ZJT) + @aja} (3.10)

Here the LHS is expressed in {v, ¥} coordinates and RHS is in {7, i/} coordinates.

#We thank the referee for clarifying this point to us.
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Now we shall come to an algebraic reason why the expression for net entropy production should
transform exactly as predicted in equation (3.10). We shall restrict this discussion to the theories
of pure gravity.

The key equation that leads to the entropy current on the horizon is the following

Byl = | <=0, (VRI") + V), (3.11)

1
0,
Vh
Here E,, is the (vv) component of the equation of motion. This is a component of a covariant
tensor, and therefore, we know how it transforms under the above coordinate transformation for

every possible gravity action. On the horizon (i.e., at p = 0 hypersurface) the transformation

becomes particularly simple.
E’U‘U‘T‘IO — 6_2CET’T’T:0 (312)

Now, in {p, 7, y*} coordinates, the metric has the same form as in equation (3.1). Therefore,
E., could also be expressed as in equation (3.11) for some .J” and J°.

1 = - -

o (VRJT) + vaja]

Vh

Note J™ and J* are not components of covariant tensors on bulk space, and therefore, they do not

ETT|7':0 = ar[

transform in any well-defined way. But combining the above equation with equations (3.12) and
(3.11) we get the following prediction.

1
Vh
=e 0, [

Bulimo = 0| = 0u(VRI") + V]

L
vh
= ¢ B, (3.13)
— %9, [iaf(\/ﬁjf) + ?aja}

Vh

1 v a_ o L
éﬁ&,(\/ﬁf)—i—va] - C[\/ﬁ

In the last line, both LHS and RHS (up to the factor of e~¢) are related to the net entropy production

0,(VhJ®) + vaja}

0, (VhJT) + %j“}

in the two coordinate systems discussed here. It follows that though the entropy density and the
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entropy current might change in a very nontrivial way with several terms dependent on derivatives
of ¢, in the final expression of entropy production, they must cancel, leaving just an overall e ¢
factor. Further, the equation (3.13) also says that this nontrivial cancellation must be true in all
higher derivative theories of gravity. In the next section, we shall verify this claim in the simplest

case of Gauss-Bonnet theory. °

3.3 Verification for Gauss-Bonnet Theory

In this section, for the special case of Gauss-Bonnet theory, we would like to explicitly verify
whether the local entropy production on the horizon transforms the way we have predicted in the

previous sections. We know

Euolro = 0, [%&}(\/ﬁjv) + vaja], (3.14)

where

JU =14 2a*R, (3.15)

J* = 0o’ [-4V,K? + 4V°K | (3.16)
On the horizon, the reparametrization we are considering is the following

v=rTeW (3.17)

x® =y (3.18)

3t might seem that the heuristic justification provided at the very beginning of this subsection is not very different
from the algebraic one involving E,,,. Indeed, if we follow the argument presented in [29], we see that at linearized
order, the net entropy production has been first related to the integration of the {vv} component of the matter stress
tensor and then by the equation of motion is related to the integration of E,,. So, the covariance of the integrand
in (eqn 9) is effectively the same as the covariance of E,,, at least in this order. However, the covariance of the
integrand has a scope for further generalization if we want to extend this construction to higher orders in amplitude
expansion. Following [39], we could see that as we go in higher order, this local entropy current can no longer be
derived just from E,,, but the other components of £,,,, also contribute, and it becomes quite complicated to figure
out the net transformation property of this combination of equations. However, if we expect the ultra-local form of
entropy production to be valid at higher orders, then there must be an integration formula for AS, and the integrand
must transform in a covariant manner once the corrections to Killing equations have been appropriately taken care of.
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Clearly, the O(a?) piece (contribution from Einstein gravity) in J¥ does not transform. So now we

have to determine how the order O(a?) pieces of J* and J® transform. Both of them will receive
non-trivial shifts generated by derivatives of the function ((i). But these shifts will be such that
eventually in the expression of \/LE@U(\/EJ )+ Vo “] they will precisely cancel up to a factor of
overall e~¢.

Now we shall first describe how all the relevant quantities individually transform under this reparametriza-
tion.

The derivatives transform as

9y = e Wa_, (3.19)

00 = 0y — (0,0)70:. (3.20)

The Christoffel connection transforms as

1
Faz,bc - 5(8bhac + achab - aa,hbc)7

(3.21)
- 1_‘(JL,bc - T(gbKac + chab - gaKbc)7
where,
€a = 0a( = uC, (3.22)
~ 1
K = EaTh“b' (3.23)
The Ricci scalar is given as
R = (h*n" — hR*) (04T pe — WPIT p0al g be)- (3.24)
Under the change of coordinates, the Ricci Scalar transforms as
R =R+ 2(h*h" — h*n") {(—7){51751 + (&0a + €a0y) — &€} K e
(3.25)

+ Tf2d<€bkpc + fC[N(pb - fpkbc) + T2£b€d87'[~(ac‘| .
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This implies that the order O(a?) piece of the entropy density transforms as
J'=2R =2R
+ 4(hhb — hee B [(—7){&a + (04 + €0y) — &b} Kae (3.26)
+ 7T (&R pe + Elpy — EKe) + 7260600, Koc).
Now we know that J7|p(42) = 2R, then

1

1
hav(\/ﬁjv) |O(a2) = G_C—haf(\/ﬁjT) ‘O(oﬂ)

7
+ 4e=S(hnbe — hahb) | — (EpaKae) — (€04 + £aOp) Ko

%

+ T2 (& K pe + EKpy — §Ke) — T{&a + (§0a + £a0y) H(0r Koc)

+ ngd(gbaTKpc + gcaTkpb — gparkbc) + gbgdkac + ?)TgbgdaTkac + £b£d7_2a‘,2-f<ac + 0(62).

(3.27)
The entropy current is given as
J* = —4(h*h* — KV, K g, (3.28)
hence
Vo * = —4(h*h* — h*h*M)VyV g K ge. (3.29)
The extrinsic curvature in the two coordinate systems are related as
Koo = ¢ Ky (3.30)
This implies
vd[(ac = e7C[@d}?ac - gd(Rac + Ta‘rkac)] (331)

vadKac = e—C 6b@djv(ac - (gbdkac) - (gbéd + fdéb)}%ac + f‘zd(gbkpc + gckpb - ngbc>
- 7—{gbd + (fbéd + §d5b>}(a7'[~(ac) + Tf‘id(ébaﬂ'}?—pc + gca‘rf(pb - gpaTIN(bc)

+ é-bfdkac + 3T§b€da7'[~(ac + 6b5d7—2a72-[~(ac + 0(62)'
(3.32)
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Hence, the divergence of the Entropy current transforms as
VoIt = T,
— de™¢ (e — hachbd) [ — (fbdf(ac) — (fbéd + fdéb)f(ac + fid(fbf(pc + é-ckpb — fpf(bc)
— 7{&a + (604 + Ea0p) }(Or Koe) + 7T (£,0: Kpe + £.0: Ky — £,0- Koe)
+ EplaKae + 37E8a0r Koo + £b£d7—2aikac:| +0(e).
(3.33)
From equations (3.27) and (3.33), we find that terms linear in K, i.c., O(e) terms cancel

exactly leaving an overall factor of e ¢ in the zeroth order term. Hence, we have

1

Vh

1

\/EaT(\/EJT) + Vo J| + 0. (3.34)

Oy(VhJY) 4+ Vo J* = e—C[

3.4 Conclusion

In this chapter, we have verified the general expectation that net entropy production in a dynamical
gravity should not depend on how we choose coordinates along the horizon. First, in section 3.2,
we have outlined a general proof of why the entropy production should transform in the way we
physically expect (see equation (3.13) and the discussion around). Then, in the next section, we
verified the claim for the particular case of Gauss-Bonnet theory by explicit computation. This
provides a consistency check on the construction of the entropy current in Einstein-Gauss-Bonnet
theory.

It might seem that apart from the consistency check mentioned above, our computation is not
of much use since we already have a general proof that this symmetry must work. However, as we
have already mentioned in the introduction, our final goal is to have some construction of entropy
current and entropy density that works without any perturbation. In this context, it would be inter-
esting to analyze this symmetry in a more systematic manner so that we could use it to constrain
the structure of the entropy density and the entropy current in a theory-independent manner. Note

that the existence of entropy density and the spatial entropy current has been predicted using the
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3 Reparametrization symmetry of local entropy production on a dynamical horizon

special case of the transformation considered here, namely boost symmetry generated by a con-
stant ¢ [38, 120]. It is natural to expect more constraints in the whole structure if we use a larger
symmetry where ( is a function of all spatial coordinates. This work is a small step towards this
goal, which would give us more experience in dealing with the symmetries of null surfaces and the
corresponding transformation of the relevant physical quantities.

One very natural extension of this work might be to perform similar calculations for other
four-derivative theories where the cancellations can be slightly non-trivial due to the presence of
off-the-horizon terms in the entropy current and entropy density.

Another interesting future direction to take can be to explore the existence of any possible re-
lations between this reparametrization symmetry and the BMS or Carrollian symmetries. Recently
in [121-124], the authors have shown the presence of extended BMS-like symmetries on the black
hole horizon called Carrollian symmetries. Any possible connections of this symmetry with super-
translations or superrotations of the others can be useful in our understanding of the rich symmetric

structure of the horizon.
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Chapter 4

Entropy current and fluid-gravity duality in

Gauss-Bonnet theory
This chapter is based on [95].

4.1 Introduction

In general, it is a challenging task to find dynamical black hole solutions even in Einstein gravity.
One either has to use some perturbation or numerics. The perturbation in terms of the amplitude
of the dynamics around a stationary solution is one such analytic technique to generate dynamical
black hole solutions and as mentioned above, this is the one that has been used for the construction
of the entropy density and the current on the horizon. In this chapter, we would like to extend this
construction of horizon entropy current to another class of dynamical black hole/brane solutions
generated using derivative expansion [1,81,82, 125].

Derivative expansion is a technique that could be applied to slowly varying dynamics (not
necessarily of small amplitude). In [81], this technique has been used to generate solutions to
Einstein equations in the presence of a negative cosmological constant and in [83], it has been
further extended to Einstein-Gauss-Bonnet theory. These solutions are asymptotically AdS and are
dual to conformal hydrodynamics with a very specific value of shear viscosity that gets corrected
once the Gauss-Bonnet terms are added to the gravity action. The dual theory of hydrodynamics
lives on the boundary of the AdS space, a co-dimension one hypersurface with flat metric. Such a
theory of hydrodynamics always admits an entropy current - a covariant vector under the boundary
Lorentz transformation, which has non-negative divergence on every solution of the fluid equations.

Itis natural to expect that the entropy along the dynamical horizon could be recast into one candidate

57



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

for the boundary entropy current in any higher derivative theory of gravity as long as the black hole
solution admits a fluid dual (see [126, 127] for such constructions).

In the case of Einstein gravity, where the horizon area plays the role of entropy density in the
black hole, one could lift the horizon entropy to the boundary by using some (non-unique) horizon-
boundary map. This map finally results in an entropy current in the fluid theory, expressed entirely
in terms of fluid variables and with non-negative divergence, guaranteed by the ‘horizon area in-
crease’ theorem [85]. In other words, in two derivative theories of gravity with a negative cosmo-
logical constant, the entropy production at every point on the dynamical horizon (with a degenerate
metric) could be neatly mapped to the similar ultra-local (point by point) entropy production in the
dual fluid dynamics, living on the boundary (with simple flat metric).

Clearly, this whole algorithm of lifting the horizon entropy density to the fluid entropy current
crucially depends on how we map the points on the horizon to the points on the boundary. From
the perspective of the boundary fluid, the mapping functions, which relate every point on the null
horizon to a point on the time-like boundary, are some external variables. One of the key outcomes
of the analysis in [85] is that for dynamical black holes/branes in Einstein gravity, it is possible to
choose these mapping functions in a way so that the local entropy density on the horizon is a local
function of the fluid variables only.

The reason that allows one to make such a choice is as follows.

For black holes in two derivative theories, the second law of thermodynamics is a consequence of
the ‘horizon area increase’ theorem. The proof of this theorem does not need any form of pertur-
bation or approximation on the horizon dynamics [15,17,99]. Also, the candidate for the entropy
density - the area of the spatial sections of the horizon, is entirely independent of how we choose
to parametrize the null generators of the horizon. This is why in two derivative theories, one is free
to choose the mapping functions that are compatible with the description of the boundary fluid.

In fact, the choice of mapping used in [85] explicitly breaks the Lorentz covariance of the

boundary coordinates, and the applicability of derivative expansion is implicitly assumed at all

58



4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

intermediate steps. It was the final answer for entropy current that was independently checked for
Lorentz covariance and then covariantized entirely in terms of fluid variables and their boundary
derivatives.

Now, the construction of entropy current in [37,38] in higher derivative theories depends very
much on how we choose the spatial sections of the dynamical horizon. So, a priori, it is not clear

whether in such higher derivative theories also

1. we could lift the horizon entropy current to the boundary and rewrite the entropy production

as a divergence of a current covariant with respect to the boundary metric;

2. the covariant boundary entropy current, thus constructed, is a legitimate entropy current in

the dual theory of hydrodynamics, expressible entirely in terms of fluid variables.

In this chapter, we shall see that the answer to the first question is positive. We have been
able to construct a manifestly covariant formula for boundary entropy current by rearranging the
expressions for the entropy current and entropy density on the horizon with the mapping functions.
These mapping functions are left arbitrary in our construction. They appear in the final formula of
the boundary entropy current as new variables, much like the fluid variables. However, these new
variables need not admit any derivative expansion.

In the case of two derivative theories of gravity, dependence on these mapping functions cancels
out in the final formula as a consequence of the ‘reparametrization invariance’ of horizon area. This
provides another justification of why the procedure used in [85], despite explicitly breaking the
Lorentz invariance and translation invariance at every intermediate step, has worked so beautifully.

But in higher derivative theories, the construction of the entropy density and the entropy current
need a very specific choice of coordinates on the horizon, where the null generators are affinely
parametrized. Therefore, unlike the two derivative theories, the mapping functions here are not
completely free; they have to be compatible with the horizon-adapted coordinates used in [37,

38] to parametrize the rate of entropy production along the null generator. Further, to generate a
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

legitimate fluid entropy current on the boundary fluid, the mapping functions should not violate the
applicability of derivative expansion in terms of the boundary coordinates. It turns out that these
two conditions are not easy to satisfy simultaneously. We applied our construction to the horizon
entropy current in Einstein-Gauss-Bonnet theory, whose fluid dual has already been constructed
in [83]. But even before using the details of the of the bulk metric here, we could see that the
covariant entropy current in the boundary theory, constructed by dualizing the horizon entropy,
will have non-trivial dependence on the mapping functions, which do not get cancelled and also
most likely will not admit any derivative expansion.

To summarise, the answer to the second question posed above is generically negative.

However, this is probably not a complete ‘no go’ theorem about the possibility of dualizing
the ‘horizon entropy current’ to a legitimate fluid entropy current. It is still possible that for some
special higher derivative theory, these dependencies on the mapping functions do cancel among
themselves. Also, we have one construction of the boundary entropy current, but we do not have
any proof that this is a unique construction. For example, any expression of the current could be
modified by adding terms that are identically conserved without affecting its divergence. Similarly,
the entropy current and entropy density on the horizon also have a number of ambiguities [3,27-29].
It is worth exploring whether all the terms that are not compatible with derivative expansion or fluid
dynamics could be removed by fixing these ambiguities in a certain way. We leave these for future

work.

This chapter is organized as follows. In the next subsection, we give a summary of the main
results. Then in section 4.2 we have described how we could construct the horizon to boundary
map. Next, in section 4.3, we have used this map to translate the horizon current to a covariant
boundary current. In section 4.4, we have applied this construction to the dynamical black holes of
Einstein-Gauss-Bonnet theory in the presence of a negative cosmological constant. In section 4.5,

we explore some future directions. Finally, in section 4.6, we conclude.
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

4.1.1 The Result

As mentioned before, the main result in this chapter is a formula for the boundary entropy current

whose divergence is equal to the rate of local entropy production on the dynamical horizon.

In [37, 38], it has been shown that in higher derivative theories of gravity, one could always
construct an entropy density (denoted as ;) and a spatial entropy current (denoted as j%) on every

black hole solution with a dynamical horizon such that

{%&, (x/ﬁjv) + Vij’} >0 4.1)

provided the amplitude of the dynamics remains small throughout the evolution of the black
hole till it settles to equilibrium.

Here v is the affine parameter along the null generators of the horizon; the sub/superscript ‘i’
denotes the spatial coordinates along the constant v slices of the horizon and V; is the covariant
derivative with respect to the induced metric along the constant v slices.

In this chapter, using a set of mapping functions from the horizon to the boundary (a map
between the horizon coordinates {v, o’} and boundary coordinates {x#}) we have constructed an
expression for entropy current J# on the boundary such that

1
Vh

where D,, denotes the covariant derivative with respect to the boundary metric.

D, J* = —=0,(Vh j°) + V5’ (4.2)

The expression for J# turns out to be

Jh— \/1(7) i = (i1 + 1)

9 0 g,
H _ fluﬁyeﬂﬂlﬂ2u.ﬂn61/V1V2~-~VnXM1V1 e X/Lnl/n (43)

n!
tﬂ

R

o (b)

t tﬁgaﬂ
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

where t* and [!" are vectors related to the map of {v, a’} coordinates on the horizon to {z*} coor-

dinates on the boundary and are defined as follows

_ ozt ozt

th=— ¥ ,
ov’ " oot

And Y, is the degenerate induced metric on the horizon expressed in terms of the boundary co-
ordinates or, more precisely if the bulk metric dual to the boundary fluid is denoted as G (7, z#)
with » = 0 being the horizon, then

Xuv = G/J,V |T—>O

The symbol e##1F» denotes the completely antisymmetric (n + 1) indexed tensor with each com-
ponent equal to either 0 or £1. Note that in our convention, this epsilon tensor does not have any
factor like the determinant of the metric.

We have explicitly constructed the boundary entropy current for the case of Einstein-Gauss-

Bonnet theory, for which the horizon current is already determined in [37].

1 VH
INZ O R0
9 ttﬂgaﬁ

with the following notation

JM

[ (1+a*R) ¢ —4a® (X" — X7"'x*) (DWICaﬁ)}

R = (XMIHXMVQ - XMVZXMZVI) |:8M1FV17M2V2 - Xalazrahuwlraz,uzm - QtQFa,mm (auzfm)}
r=0

Kog = —t'Tpns, ¥ = (0 — t48,) (8% — t"5) G (r = 0)

and

Da’Cw/ = aa,C,uV - f‘ﬂaulcﬁl/ - f‘ﬁaV]CN/B
(4.4)

where

- 0 - -
L= . such that tht, =1, Il't, =0

7

o 4.5)
Fa,uy = 5 (aux,,a + (9VXW — (3aXW) 5 F/(jy = )Zaﬁrﬁ7ﬂy + taaytu

~+

Note that for a generic case, these mapping functions will enter the expression of the boundary

entropy current through the two vectors #* and {,. And as we have mentioned before, these two
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

vectors need not admit a derivative expansion. The reason is as follows.

t*, being the tangent vector to the affinely parametrized null generators of the horizon (located
at r = (), must be proportional to the normal of the » = 0 hypersurface. This normal is given
by n* = G*"(r = 0), which according to fluid-gravity correspondence, must admit a derivative

expansion in terms of fluid variables. Let us denote the proportionality factor as e?(®).

The affine parameter v could be related to ¢(z) as (see section 4.3.3)

> L ntn? -1
v = €_¢L = e_‘i) Z L(k)7 where % = — [(n . a)L(k—l)} , L(O) = — |:( 5 ) [&XW]TZO}
k=0

Therefore fu = (%) must have a term proportional to d,¢. Now J,¢ must be a zeroth order

vector since its component along the direction of n* is of zeroth order in derivative expansion. It

satisfies the equation (follows from the fact that ¢* is an affinely parametrized geodesic, see section

4.2.2)
n*n?

(n-a)¢:( 5 )[arqu]r—O

However at zeroth order in derivative expansion, only vector that could be expressed entirely

in terms of fluid variables is the fluid velocity u* itself. So J,¢ has to be proportional to u,, with
proportionality factor being some function of temperature. But any gradient vector field like d,,¢
or d,v could not be proportional to fluid velocity whenever the velocity has nonzero vorticity. This
shows that any generic situation J,,¢ are the ‘non-fluid’ terms, that will remain there in the bound-

ary entropy current constructed dualizing the horizon current.

Finally we have evaluated the boundary current (4.16) on slowly varying black holes in Einstein-
Gauss-Bonnet theory up to correction of order O(9?). Up to this order in derivative expansion, the
‘non-fluid” mapping functions (functions that do not admit a derivative expansion in terms of fluid
variables) do not contribute. In fact just like the fluid dual to Einstein gravity, the O(0) contri-

bution to the entropy current vanishes which is also what is expected for an uncharged fluid. The
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

expression of J# turns out to be the following
JH=r}nt+ O (a,07) (4.6)

where 7 1s the length scale associated with the temperature of the Black hole or the dual fluid as

defined in (4.8).

4.2 The map between horizon and boundary

As described before, the dynamical black brane solution that we are considering here, is always
perturbative. Two different types of perturbations are used to describe the solution. For the entropy
density and the current constructed on the horizon as in [37-39, 120], the perturbation parameter
is the amplitude of the dynamics whereas in [81] it is the derivatives of the boundary fluid data
(velocity and temperature) that play the role of the small parameter. In both cases, the starting
point is a stationary black hole/brane metric. In both cases, we could choose a gauge where the
horizon is at the origin of the radial coordinate (the coordinate that measures the distance away from
the horizon). In amplitude expansion, the black hole metric is parametrized by its components
evaluated at the horizon, whereas in the case of derivative expansion, it is parametrized by the
metric components evaluated at the AdS boundary expressed in terms of the variables of the dual
fluid description.

The key part of this chapter is about a map between the points on the horizon and the points on
the boundary. To define any such map we first need to set up coordinate systems on both horizon
and the boundary. In this section first we shall briefly describe the two coordinate systems that
are used to describe the entropy current on the horizon [37, 38] and the fluid dynamics living on
the boundary [81, 125]. We shall refer to them as ‘horizon adapted coordinates’ and ‘boundary
coordinates’ respectively.

Then in the final subsection we shall relate this two coordinates to get a point by point map from

the horizon to the boundary.
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

4.2.1 Horizon adapted coordinate system

The entropy density and current, defined on the horizon are expressed in a very special choice of
coordinates, tuned to the structure of null hypersurface. We shall denote this coordinate system as

‘horizon adapted coordinate system’. In these coordinates the metric takes the following form
ds® = 2dp dv — p* X (p,v,d) dv* + 2p w;(p,v, &) dv da’ + hi;(p,v, &) da'da’ (4.7)

where X, w; and h;; are arbitrary nonzero functions of p,v and @ = {a'}. In this metric, the
horizon is located at the p = 0 hypersurface. At p = 0, the vector 0, is affinely patrametrized
null generator of the horizon, with v being the affine parameter. 0; s are the spatial vectors on the
constant v slices of the horizon. The entropy current is defined on the horizon and therefore could

depend only on the metric functions X, w; and h;; and their J; and 0, derivatives.

In a stationary solution, the p and v dependence of the metric would be constrained. The func-
tions X, w; and h;; will only depend on the product of p and v. The stationary metric will be

completely invariant under the transformation

v — v, p%ﬁ

A

While constructing the horizon entropy current, a departure from this invariance has been treated

as the small parameter, characterizing the amplitude of the dynamics.

4.2.2 Boundary coordinates

In hydrodynamics, the local velocity of the field denoted as u*(x) is a special vector. While writing
the dual metric, the most convenient choice of gauge turns out to be related to this velocity field. In

this choice of gauge (with coordinates denoted as {r, y*}), the metric takes the following general
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structure

ds® = —2u,, dy" dr + X, dy"dy”

X could be further decomposed as
(4.8)
Xpv = Sluuuy + SQPMV + (V;Luy + VV“M) + 77LV

such that "V, = u"T,, =0, P, = . + uuu,
Here » — o0 is the boundary, and the metric takes the form of Poincare patch AdS as we approach
the boundary. Here also, we shall choose the origin of the r coordinate at the horizon. Therefore

r = 0 is a null hypersurface by construction, which further implies
G"(r=0)=0 and n"0, = G"™(r = 0)0, is anull vector at the horizon

The vector n* = G"™|,—o must be identified with the null generator of the horizon (though not
affinely parametrized).

Using the fact that the null generator of the horizon is just the dual vector of the one form dr or, in
other words, n*Gip = 05, we get the following identities for the n* vector, which would turn out

to be useful at a later point.

T A
p="nNn GAB|r:O = n“GuB

= n'Gu = —u,n" =1 4.9)

= nuG/u/‘TZO = nMX/w’rzo =0

S1, 59, V,, and T, all are functions of 7 and y* , but the y* dependence is known only perturbatively
where the perturbation parameters are the derivatives of the fluid variables. In fact the derivative
expansion would be valid only when the fluid variables are slowly varying with respect to some
scale, in this case, the temperature of the fluid. The more the number of derivatives, the more

suppressed the terms are. !

"Note in [81, 83] the choice of gauge was quite different from the one we are using here. In case of fluid gravity
correspondence, it makes sense to parametrize the metric in terms of fluid variables defined with respect to the boundary
stress tensor. The horizon in the initial papers of fluid-gravity correspondence is not located at » = 0 but given by
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4.2.3 The horizon to boundary map

The metric described in section 4.2.1 is in a completely different gauge than that of hydrodynamic
metric in section 4.2.2. However, the construction of the horizon entropy current is very much tied
to the choice of coordinates as given in 4.2.1. It is obvious that, to translate the horizon entropy
current in terms of the fluid variables the first step would be to establish a dictionary between these
two coordinate systems.
We shall transform the fluid metric (as given in eq:(4.8)) to the gauge described in section (4.2.1).
This will allow us to describe metric functions (X, w; and h;;) as they appeared in equation (4.7)
in terms of the fluid variables (velocity and temperatures) and their appropriate derivatives.

In other words, we shall express r and z* as functions of { p, v, @} such that the following gauge

conditions are satisfied.

=02 () () o0 (5) (5) =
o=t () (o) () (5)] 2[5 ) (50)] =1 e
on-u= -n (5 () +(2) ()] e [(5) ()

Now it is difficult to solve these equations exactly, even in just the radial coordinate. However,

for our entropy current, it is enough to have the near horizon structure of the metric. So we shall

be solving the gauge conditions (4.11) in an expansion in p.

r = ry(y*) whose value is related to the local temperature of the dynamical black brane being considered. We can
translate between these two gauges by a simple shift of  coordinate

r—=r+rgy")

This step adds a little modification to the fluid metric without affecting its general structure. The net result of this shift
is just a shift in x,,,, as follows

Xpv = Xpv — (Uu0p + 1w, 0,)TH (4.10)

In our solution rz will simply be length scale, with respect to which the slow variation or the derivative expansion is
defined.
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We shall take the following ansatz for the coordinate transformations:

r=pru(v, o)+ pt re(v,a) +
2 (4.12)
o = i) (v, i) + p i) (v, i) + p7 wiy) (v, 06) + -

In the above coordinate transformation the functions x’{o) (v, a’) will be effectively taken as input
functions. All the rest, namely {x’{n)(v, o’)} and 7, (v, ') will be determined in terms of the
functions !,

) (v, ;). In Appendix B.2 we have determined the first few coefficients of the above

transformation equations (equation (4.12)).

8:2’(0)
ov

Note that the input functions m’{o) (v, a;) are not entirely free. The vector t* = (

> must be an
affinely parametrized null geodesic with respect to the full metric.

Let us define the following set of vectors that are tangent to the horizon

o 8:1:?‘0) " 83:’(0)
ov T 8ai

t*, being the null generator of the horizon, is also a normal to the horizon.

Hence it follows that ¢* must be proportional to n* of the fluid metric we defined in the previous
step. In other words

th = e’ = G (r = 0)
where ¢ is a scalar function of {z#} so that t* becomes a affinely parametrized null geodesic.
Processing this condition we get the following equation for the field ¢(x)

n*n?

(n-3)¢=( 5 >[8TXW]TO (4.13)

Note that the RHS of equation (4.13) is nonzero even at zeroth order in derivative. Therefore, it
is not ¢ but its derivative along the direction of n* that satisfies the derivative expansion. At this
stage we are free to choose the dependence of ¢ along the directions perpendicular to n*.

Now ¢ is an external scalar field from the perspective of boundary fluid dynamics and gener-
ically the fluid entropy current would depend on the choice of ¢. We should be able to choose ¢
in a way so that the final fluid entropy current is entirely expressible in terms of the fluid variables

like velocity and temperature only.
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4.3 Translating the horizon current to the boundary current

In this section, we shall find out an abstract expression for entropy current J* in the boundary such
that

D, JM5Y, 5 = —=0,(Vh j¥) + Vij! (4.14)

1
Vi
where j and j° are defined in equation (4.1). Here the RHS of the above equation is written in
the horizon adapted coordinates whereas the LHS is in terms of the boundary coordinates. D,
denotes the covariant derivative with respect to the boundary metric. In the first subsection, we
shall describe how to determine .J#, given j° and j°. The final expression for .J* turns out to be the

following

f fyeumm---uneumw---un

JH = \/ﬁ(j”t“ +j'I) where H = -

n‘ XﬂlVl to XNnVn (415)

1
N/
Here j¥ and j* have to be read off from the expression of the horizon current. t*, , and [} are
vectors related to the map.
da’

oxH

oz
oat’

oxt -
t“ = W, tIJ«

ZLE

o,
oxr’ !

Using the fact that t* = e®n* and t“f# = 1 the expression for H and current could be simplified

further
JH — (5ot + 511
V3 \/ tath gl g B
H _ nunuel—"ﬂllﬂ /JnEZ/I/U/Q' VnXMlVl . XHnVn (416)
n!
s "
Al —

\/nanﬁg tatﬁg
4.3.1 Constructing J*

In this subsection, we shall determine an algorithm to determine J* out of 5V and j°. The key issue

here is to re-express the entropy production formula on the horizon (i.e., the expression in the RHS
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of equation (4.14)) as a divergence of a current covariant with respect to the boundary coordinates.
It turns out that if we could rewrite the equation (4.14) in a ‘metric independent’ language using n
and (n — 1) forms, it helps to identify the J*.
Let us first define the following two n-forms.

-V €i [ 1nda“ /\ dazz o e /\ da’in
Jtemp = \/E] 142 - (4 17)

3 Ehigigindv A da’ Nda® - - A da'
=—Vhj
(n—1)!

J, space

Here, €;,4,...;, 1S the completely antisymmetric n indexed tensor with each component equal to 0 or
+1.
One could show that the exterior derivative of (Jiemp + Jspace) 1 proportional to the top form

on the horizon, where the proportionality constant is the RHS of equation (4.14).

€irigindv A da®t Nda® -+ A datn
n!

A(Timp + Jspace) = |00 (VI3 + VR V] { (4.18)

Here d denotes the exterior derivative.

Now we shall rewrite Jicp,, and Jgp,c. 1n terms of the boundary coordinates using the fact that
dv = t,dz", do’ =1 dz"

We need to use the following identities.

i e — AP
Ui U €inigeni, = A €y,

L 1 ~
H1 B0 11020000 L
G- lile = < i, €

in A
dx” A dzht - - A\ dahe Y dxtt A - A datnt (4.19)
€ g pro---pim o = 5u€#1"'#n+l T 1)

dx¥ N\ dxt? - N\ dzhn 5 5 dzFt Ao N\ datn
€popia - pin (n—1)! = (5a6mt1'-~un - 6y€ocu1-~~un) ol

Here A is the Jacobian of the coordinate transformation
v, a’} 1 o{x"}
A =det | ——— — =det | ———
‘ [ o{wr) } A" [a{v, o'}’
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First, we shall write an expression for v/ in terms of the boundary coordinates.

B B EZIlnejljnh’Ll‘]l Y hzn‘jn
1 11°+0n J1°Jn n V1 Un
B (ﬁ) et I U U [ X X (4220)

I\ (1N’ 5 i vvsn
= E Z tutl/ € € X;j/llll e XMnVn

Using the above identities we process both Jiey,, and Jypace as follows.

€5, i It [in
Jtemp = \/_jv ( S 'ull Mn) dx" A - N dxtr

n!
v tueﬂﬂl'“ﬂn n1 o
=VhA j — dz" A -+ A datr (4.21)
~ ~ 1
f— |:tatﬁ Eaal aneﬂﬁl 6" Xalﬂl e Xanﬁn:| ? jv (tueuulu.ﬂn) dxﬂl /\ ... /\ dl,,un
n! n!
Topace = =V ¥ [ EEn ) § i i dgh A dat - A dat
space — T J m L Ln a €T X

=~V () ((;;mi—slz)n) bl 2 - L da A dxt - A dat

- A
= —\/E (]klZ) tﬂ (m) to‘eawz...un daxt N\ dxh? - A dat

A )
= —Vh (—,) (G*2) Tt (6 €oppapin s — O vpuapipin] ATt A d -« A dat
n:

~ ~ l .
_ |:tat/3 Eaal'--ane/ﬁﬁl'--/gn XOélﬁl . Xom,@n:| 2 <(]kl5) EMMI"'MH) dx'ul /\ dqu . /\ dl./in
n! n!

(4.22)

So finally we have

Jtemp + Jspace

B gag,ﬁ €aa1"~an€551"'5n Xaaps * "
N n!

N[

Xanﬁn] 50 4 (U] e et At - A da

= d(Jtemp + Jspace)

Loty edoraneBBfibn y oy 2 v dTPE N - N dVrtt
_ a“( |: 8 € € ‘ Xai181 X nﬁn:| [jvt,u + (]kl;:)] > <6 1 Vntl an - 1)' x )
n: .
(4.23)
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Now from equation (4.18) we know the expression of d(Jiemp + Jspace) in terms of {v, o’} co-
ordinate system. If we rewrite the (n + 1) form that appears in equation (4.18) in terms of {z*}

coordinates we get the following

dv A da' - - - dar
€i1-in |

n!
dz¥ NdzMr A - A dxP
€iq-mipy '
n!
dx¥ NdxH" N - N da:“")

_ 7 11 in
=1t lul l,u

n

(4.24)
n!

dzh A - A dghntt
(n+ 1)!

= Aty t"eup i (

= ALy 10 i (

dxul /\ e /\ dajun+1
= A €prpnepinga (n+1)!

Substituting equation (4.24) in equation (4.18) and then comparing with equation (4.23) we

find

. P {5 oo an BBy L 2
alo, (Vi) + VRV = au( {t“tﬁ ——— XW”} [t + (1) >
(4.25)

As we have discussed before, in dynamical black holes, the expression [81, (\/E j“) +Vh V; j’}
is identified with net entropy production in every infinitesimal subregion of the horizon and, up to
the linear order in the amplitude of the dynamics, it must vanish (if it does not, then the same
expression at linear order, will lead to both entropy production and destruction depending on the
sign of the amplitude and thus violating the second law). Since A, the Jacobian of the coordinate

transformation is non-vanishing everywhere, we conclude

( |it~0££ﬂ Gozar“an‘sﬁﬁl'“ﬁn Xy *
oy
n!

1
: ‘Xa”ﬁ”} [7Ut* + (5*1)] ) =0 (up to terms nonlinear in amplitude)

Now we can turn the above expression into a divergence of current covariant (i.e., in the form
of equation (4.14)) with respect to the boundary metric, if we identify the boundary entropy current

as

[

1 faf aay-an Lp1Bn B Xa 2
JH = ([ B € € o Xou B X nﬁn:| [j”t“—i— (JklZ)}) (4.26)
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where | g% = lim, o0 (%) | is the boundary metric and g = det[g,(f’y)].

Equation (4.26) is one of our key results. Now a couple of comments about this formula.

» J# is a covariant vector in the boundary spacetime with boundary metric gbel,), provided we

treat ¢+, [}’ and t .. as independent upper and lower index vectors respectively.

* Though we have said that ¢* is the affinely parametrized null generator on the horizon ex-
pressed in terms of boundary coordinates, the analysis in this section nowhere used the affine-
ness of the v parameter. So equation (4.26) is valid even when v is not an affine parameter,

but it has to be a parameter along the null generator” .

* The expressions for j and j° depend on the details of the equation of motion in higher

derivative theory, which in turn depend on the affine parametrization of the null generators.

5% and j' could be determined in terms of the functions appearing in metric (4.7) (i.e., X,
w; and h;;) and their appropriate derivatives. Using this horizon to boundary map, we could

re-express j* and j* in terms of the fluid variables and the mapping vectors ¢* and [/'.

« From the perspective of boundary fluid, t*, I}’ or #, are external variables. So the entropy
current described in equation (4.26) would be a genuine fluid entropy current provided our
mapping functions are such that the vectors t#, I}. or ¢, are either constants or are determined

entirely in terms of fluid variables.

4.3.2 Entropy current in boundary fluid dual to Einstein gravity

In Einstein gravity, the entropy on the horizon is simply given by the area of the spatial sections

of the horizon. In our choice of horizon-adapted coordinate system, it is the square root of the

2For example, in [85] the null generators are parametrized using the boundary time-like coordinate v. This is not an
affine parametrization, but still will we could apply our formula to recover the expression of entropy current derived
in [85]. We have to use the following facts. In two derivative theories j¥ = 1, j' = 0 and the choice of map in [85]
is such that tNde“ = dv, t* =" The boundary metric gff)l,) = N

nv
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

determinant of /;;. It follows

where the subscript (2) denotes the fact that it is for a two derivative theory of gravity. Substituting
it in equation (4.26), we get the following expression for the boundary entropy current for two

derivative theory.

guo_ L tatp €€ By By Xans
@ /g® nl

In the above expression, the vector fields #,, and t* appear. They depend on our choice of mapping

2
t#

and naively, it seems that even in two derivative theories of gravity, the boundary entropy current
might not admit a description in terms of fluid variables. But in this section, we would like to
argue that this is not the case; all the factors that might not admit a derivative expansion or fluid
description cancel between ¢ and f”, and we could rewrite Jé) entirely in terms of fluid variables.

Note, t,, = g\t and t,, could be viewed as two vectors on the boundary with the following

inner products with respect to the boundary metric
tuty [g(b)]w =1

whereas t* = e?G*" is a time-like vector with respect to the boundary metric’. Define the unit

vector along the direction of # as follows

tH nt :
= e here 1l = v/ g, il = /gl and 1 = G (e = 0
n

We can always decompose the vector ¢, in the following way

3>

/\

t, = Ht|| +V, = gW <||T;H> +V,, suchthat V,t" =0 (4.27)

~

Now Y., on the horizon satisfies the following identity ¢, = 0. So both indices of x,,, are

in the directions perpendicular to t* or n*. It follows that in the tensor

Eaal...aneﬁﬁl"'ﬁn XO&IBI e Xanﬂn

n!

Aaﬁz{

3This is because at leading order in derivative expansion t* = e?GH" = e®u* + O(9). Now u* is a time like
vector and derivative corrections can never change the sign of the leading order result
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all the indices {«; } and {3;} in the Levi Cevita tensors are contracted with vectors perpendicular to
n*. Hence, A*? will be non-zero only when both of its free indices are projected along the direction

of . In other words, V, A*% = VBAQB = 0, where V, is defined in equation (4.27). Therefore

- ..
i 514&6 — Wnangflaﬂ
L 1
u 1 tatﬁ 6&0&1"-an618ﬁ1"',8n Xalﬁl PR Xanﬁn 2 m
= Jip = q® n! '

(4.28)

_ 1
1 ﬁaﬁg Eaalma"E'Bﬁlm'Bn Xy " Xanﬁn:| 2
[[¢]]

1 _ﬁaﬁ/j Eaa1...an€ﬂ51--ﬂn Xasfr * " * Xow B 2 o
g® n!

Note n* = ﬁ could be entirely expressed in terms of fluid variables and the boundary metric
and therefore admit derivative expansion. Equation (4.28) is a manifestly covariant entropy current
for the boundary fluid dual to Einstein gravity, which always admits a derivative expansion. After
we know that the horizon current will translate into such a covariant ‘hydro-like’ expression for the
boundary current, we are free to choose any kind of coordinates and mapping. Even if our choice

breaks all the symmetries, the final result is guaranteed to be a covariant entropy current for the

dual fluid theory.

4.3.3 Entropy current in higher derivative theories

In this subsection, we would like to contrast the previous description with the scenario in higher
derivative theories. In higher derivative theories, j* and j* have non-trivial structures constructed
out of the metric functions (X, w;, h;;) and their derivatives in the horizon-adapted coordinates.
The details of these structures will depend on the particulars of the higher derivative equations of
motion. As we have seen before, once translated to boundary coordinates, the entropy current, in
general, will be a vector function of both the fluid variables and the mapping variables.

But unlike in two derivative theories where the entropy density (as given by v/%) is invariant under

any reparametrization of the null generators, here affine parametrization is crucial for the construc-
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tion of 7V and j*. This probably indicates that in a higher derivative theory, we would not be able to
rearrange the formula for boundary entropy current to completely eliminate the dependence on the
mapping like we have done in Einstein gravity. So, here the key question turns out to be whether
there exists a choice of horizon to boundary map that allows us to express the final fluid entropy
current entirely in terms fluid variables, without any explicit dependence on boundary coordinates
(any arbitrary map, generically not compatible with derivative expansion will lead to such explicit
dependence on boundary coordinates). Further, given the non-universality of the structures ap-
pearing in j¥ and j° it is unlikely that we would be able the answer this question in a universal way
- a single map will not work for entropy current in all higher derivative theories. However, the

following simplification could be predicted on a general ground.

* The final fluid entropy current J#* will not have any free ‘2’ index (the spatial indices in the

ozH

Ba’) must be contracted with the

horizon adapted coordinates). Therefore, all the [} = (

da’
oxH

, ozt oo’ oz Ov .
Hpr —F | —— — ¢ #
ity (80&) (8x”> % < ov > <8x”) oy — 't

So finally, all the dependence on the mapping functions could be transferred to the depen-

inverse mapping l; = ( ), which are the only sources of ¢ indices in J*). Now

dence on t* and #,,.

* t* could be written as t* = e®n#, and it is the scalar function ¢ that does not admit a derivative
expansion. So from the fluid point of view, the two scalar functions ¢(z*) and v(z*) could

spoil the ‘fluid nature’ of the boundary entropy current.

* The variations of these scalars along the direction of n* are constrained.

n*n?

(n-0)p = ( ) > [0 Xl —gs  (t-0v=1= (n-9v=e? (4.29)

Once we ‘choose’ these scalars on a given slice perpendicular to n*, these equations will fix

their subsequent evolution along the n* directions.
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* From the two equations in (4.29), we could solve v in terms of ¢ perturbatively using deriva-
tive expansion. This could be done as follows.

Define L = e®v. Then the equation for L turns out to be
(n-0)L—L(n-0)p=1

Assume L admits a derivative expansion and could be expressed entirely in terms of fluid
variables, with the leading terms having zero derivatives. Since we already know that (n-0)¢
starts from zeroth order, it follows that (n-0) L - the first term in the above equation is actually
subleading in terms of derivative expansion. This allows us to solve the equation recursively

generating the following infinite series

=e?L=¢" L here L) = | ————— Ly =— 4.30
=St e Ly =[S ko = (G g55) @0

Note that this solution implies a very particular choice for the v = 0 slice of the horizon; it

is the spatial slice where ¢ — oo Using equation (4.30) we could express fu in terms of 0,,¢.
t,=e?(=L0,0+0,L) (4.31)

« 1, must satisfy the condition /', = 0 for every i index (coordinates along the spatial section

of the horizon)

0=10Ut,=e?(LIND,p+11'0,L)
140, L (4.32)

= 1'0,0 = 7

Now we have seen that L satisfies derivative expansion with the leading term being zeroth
order in derivatives. So from equation (4.32) we could infer that the variation of ¢ along the

o' directions also satisfies derivative expansion with the leading term being of first order.

Naively it seems that (4.32) is not consistent because (¢ - 9) and (; - 9) must commute; from

equation (4.32), it follows that (¢ - 9)(l; - 0)¢ is a second order term whereas (I; - 9)(t - 0)¢
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looks like a first order term since (¢ - )¢ is of zeroth order. However, we could show that

the first order piece in (I; - 9)(¢ - 9)¢ vanishes once we apply (4.32).

e (149,) (t - )9

= ¢ (119,) (¢ n- 0)9

= (l{0u9) (n - 0¢) + (1}'0,) (n - 9¢) (4.33)
_ lfauL(O) n- 1 n- 2

_< Lo )( 9¢) + (I'0,,) ( 8¢)—|—(’)(8)

-0(@)

In the last line, we have used equation (4.30)for the expression of L q).

« It turns out that the overall factors of e finally get canceled between ¢+, fu and vVh. We
could see it as follows.
The factors of e? in j¥ or j' are determined by their boost weight. Since j* has zero boost
weight, once translated into boundary coordinates, it will not have any factor of e?, whereas
4% having boost weight one, will carry a single factor of e?. We have already seen v/h,
expressed in terms of boundary coordinates, carries a factor of e~ from the ||¢|| factor in the
denominator (see equation (4.28)). Hence in the expression v/h (5°t* + 11'4%) all factors of

overall e? cancel.

Therefore, once we fix v in terms of ¢ using equation (4.30), the ‘non-fluid’ function re-

maining in our construction is the derivative of ¢ along the directions perpendicular to n*

4.4 Entropy current in Einstein-Gauss-Bonnet theory

In this section, we shall specialize to Einstein-Gauss-Bonnet theory. The entropy density and the
entropy current for black holes in Einstein-Gauss-Bonnet theory have been worked out in [37,38].

Using the horizon to boundary map, we shall rewrite the current in boundary coordinates. At this
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stage, we shall not use any derivative or amplitude expansion. We shall see that the final expressions
will explicitly depend on the ‘non-fluid’ variables through fu and J,¢. Note that any term or
factor that could be expressed as a product of metric components in boundary coordinates and
their boundary derivatives are fluid variables. For example, the Christoffel symbols with respect
to the bulk metric in boundary coordinates are always fluid variables.

In the end, we shall substitute the details of the bulk metric in Gauss-Bonnet theory dual to hy-
drodynamics. Since the metric is known up to the first order in derivative expansion, the boundary
entropy current thus generated will also be correct only up to the first order. As mentioned before,
up to this order, the entropy current will turn out to be trivial; it is simply equal to what it was for
Einstein gravity. All the new terms generated by Gauss-Bonnet Action contribute to the boundary

entropy current only in the second order.

4.4.1 ;" and j’ in terms of ‘fluid’ and ‘non fluid’ data

We shall first quote the expression for entropy density and the spatial entropy current for black
holes in Gauss-Bonnet theory as given in [37,38].
The final form of the entropy density and spatial entropy current density particular to Gauss-

Bonnet theory is given as follows.

" =vVh(1+2a°R), j'=—4a*(V;K7 - V'K) (4.34)

where

h = determinant of h;;

R = intrinsic curvature evaluated w.r.t the h;;

V, = covariant derivative with respect to h;; (4.35)
K = %&,hij, K = hY K,

Lowering or raising of indices are done w.r.t h;; with 2"/ being the inverse
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One key simplifying factor here is that neither j nor 5’ needs any information about how the hori-
zon data changes as one moves away from the horizon or, more precisely, the 7 derivatives of the
metric functions. This, in turn, implies that to evaluate the current, we need only the leading coeffi-
cients in the coordinate transformation as described in equation (4.12). In the previous subsection,
we have already determined the expression for v/h in terms of fluid data. In this subsection, we

shall compute V; K;; with appropriate index contractions for ;I and R for j*
Extrinsic curvature and its covariant derivatives

The extrinsic curvature is defined as K;; = %&hij |,—0. On the horizon, the » = 0 hypersurface,

hi; 1s simply related to x ..

hij = U X (4.36)

J

Here we have used the fact that (8%%) vanishes on the horizon. Now, using the fact that 0, =t - 0,

we could determine K;; as
K;j = lﬁ-‘lj”»lCW where K,, = —t°T, 0 (4.37)
Here we have used the fact that
(t-l = (I;-0)t*", and X (L - O)t' = —t*(I" - O) Xy

Now we have to compute its covariant derivative. The following structure would prove useful for
our computation. Note, for any boundary tensor with lower {yu, v} indices, we could define the

following horizon tensor with {7, j} indices

_ qp1gp2 pn
]—;1122“ — l’ll llz ct lin 7;;1'“2'“”

Now it turns out that the covariant derivative of the above tensor VT ;,..;, also has a similar

expression in terms of { 4, v} indices of the boundary coordinates. We could write it in the following

way

ViTigein = G2 1 (DT g (4.38)

J ot 2
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where D, is a new covariant derivative with its connection defined as

Zzﬁ = ;‘CZ’GF@,&B —+ t”@afg
ov

Dt

(4.39)

where ¢, = ( ) . XM= A A . A% =05 — s

One could easily show these structures by acting the covariant derivatives on vectors and recur-
sively using the relations for higher indexed tensors. Note the new connection fgﬁ is also sym-
metric in its lower two indices. The other mixed tensor we defined here is actually a projector to

constant v slices of the horizon because
t"AP, = A% t, =0

Using these structures, we could see that
Vk:Kij - l?l?l;ﬂDaIC;w
— e [aa/cw — 1% Ky — fﬁwicug] (4.40)
where K, = —t"T'o 0
The spatial current on the horizon will add the following contribution to the boundary entropy

current

Je o L)A 3 (\/ﬁj“) — 402

space \/gv

Now using the identity A% I;15 = X", we finally get the following expression for the space part

—A 1V (Wi — hMRi) (VK ;)
g

of the entropy current

fl ff[/yeu'/il"'/inGVVl”'VnX y
J¢ = —4a? £ it

P X,U«nVn

space

1
_VH (V%" — 0X7) (D,Kop) where H =

(4.41)
Intrinsic Ricci scalar

For the temporal part of the entropy current, we need to compute the intrinsic Ricci scalar of the
constant v slices of the horizon.

In this section, we note down the calculation for the Ricci scalar, R, with respect to h;;.
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We start with the expression for the Riemann tensor

a __ a
bed — 80de

+ I8 T — (¢ <> d)

m

Now we will process 0.1';; in the following way

OcLl'yq = 0 (R*Tp )

= 8ch“p1“p,bd -+ hapacFMd

where in the last line, we have used

Hence, we have

Oclhg + 16T =

—h*T? Tppa — UeThg + R0 pa

O.h™ = —h* P O,h,,

achrq -

r

Fr,cq + Fq,cr

— BT Ty i + hP0.Tp pa

So, we can write the expression for the Riemann tensor in the following form

Raved = OcLapd — BT ppa — (Qalape — 0, Tpoe)

Now the expression for the I'; ;; in the following

Lrij = lfl;lgra,w/ + X Uy (li ) 8[;)

Then we can process 0.1, 44 in the following way

OcLapa = (le - 0) [y lgla T oy + X 1 (1 - OL7)]

And also,

P
Fcarpvbd
m
= h? Fm,carp,bd
e Yo 2 113172 115W 151
=X lc lalb ld FOC,HVFCVLMW

+ Xvwn (lc : aZZ) (lb ) 8[;1)

+ A IHIYT

v1lc’a

o (I - OLg") + AZH G (e - L) Vo i
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where, we have defined y*° = lf‘lf h' and used the fact that Y’y 5, = A2.

Then we have

acra,bd - Fgarp,bd

=L L5101 - 0) U + 111 (L - 0) 1y 4+ 1815 (1, - 0) 1]

(4.50)
+ GG 0T g — XL ag,galar ] + Xyl [(Le - 9) (I - O]
+ T [zglgf,,l (Iy - QL) + WLt (1, - 8[21)}
Hence, we have the expression for R .q as
Rt =05 g = X Ty gl ] [IT120E = B30
(4.51)
+ 1Ty Osto, [WIIS1 + 1512001 — D101 — 11001
So, finally we have
R :hachbdRabcd
(4.52)

= [XHVXQ/B - XOWXHB] [aﬂra,py - XalaQFaz,,BaFal,;w - 2ta1Fa1,,u1/aozgﬁ}

Hence, we finally get the following expression for the intrinsic Ricci scalar

R = (XMWXMW - mej(wyl) aM1FV1,M2V2 - Xa1a2ra17M1V1Fa27u2V2 - ZtOCFOc,Mwl (8u2£V2)

(4.53)
Separating ‘fluid’ and ‘non-fluid’ terms
The final form of the entropy current written in terms of boundary coordinates {z*} is
' = Thace T Sime
where Jk, . = —4a’ \/1(—b)|¢—ﬁ| (N = X)) (D3 Kap) (4.54)
1

q® |||
Jfe = ——=VH (1 + 2a*R) i

time \/ﬁ

‘R is given in equation (4.53).

In this expression of the current, most of the terms are ‘fluid’ terms in the sense that they depend
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solely on the metric components and their derivatives written in boundary coordinates. The excep-
tions are those terms where one has explicit ¢, e.g., in A* = ¢# — t#t,. These terms could be
further processed by expressing ¢, in terms of 9,,¢ using equation(4.31). The expressions turn out
to be too big to be presented here. We have collected them in appendix (B.3).

In the final stage, we would like to evaluate this current on the hydrodynamic metric correctly
up to first order in derivative expansion. However, just looking at equation (4.54), we could figure
out that J, . .. is of second order. This is because I, ,,,, 18 always of first order in terms of derivative
expansion and so is Koz ~ Iy 5. It follows that J& .. ~ DK, ~ O(9). Using a similar
argument, we could show that R is also of O(9?), where we have used the fact that #,, is of order
O(1) in terms of derivative expansion. Therefore, up to first order in derivative expansion, there
will not be any contribution to the entropy current from the Gauss-Bonnet correction. To have any

non-trivial result, we need to go at least one higher order in derivative expansion, which we leave

for future work.

4.5 Future Directions

If we follow our construction, the boundary entropy current will involve one ‘non-fluid” function,
the scalar field ¢, whose exponential relates the two different parametrizations of the horizon null
generator. But the fluid entropy current must not have any other field other than the fluid velocity
and its local temperature. So the next natural question is whether we could use the non-uniqueness
of the currents on both horizon and the boundary side to remove this unwanted ¢ dependence.
Einstein-Gauss-Bonnet theory is the simplest well-studied example where such currents and am-
biguities could be explicitly constructed and tested. But unfortunately to the order that we have
worked here, no such fixing is required since up to this order all the non-trivial structures that have
this ‘non fluid’ 9,,¢ factor just vanish. So our future goal would be to extend this calculation to

order O(9?). In this section we shall set up the stage for this future calculation.
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4.5.1 Conditions of stationarity

As mentioned before, the entropy current and the entropy density in higher derivative theories work
only for horizons where the amplitude (let’s denote it as €) of the dynamics is small and could be
treated perturbatively. Moreover, the construction in [37,38] works only up to the linear order in
€. So we should not expect the dual fluid entropy current to do any better. In other words, while
applying formula (4.26), we should ignore all terms that are of O(€?) or higher in x,,,, t* or {,,.
Now derivative expansion is not the same as amplitude expansion. It is quite possible to have terms
that are linear in € but higher order in terms of derivative. So we need to have a clean prescription
to identify fluid data that are linear in amplitude (but in principle, could have multiple derivatives).

A stationary fluid on the boundary (where both the boundary metric and the fluid configuration
admit at least one Killing vector) should be dual to a stationary bulk metric with a Killing horizon.
In other words, the Killing vector on the boundary could be extended to a bulk Killing vector, which
on the horizon reduces to the Killing generator of the horizon. In terms of equations, what we mean
is the following. Suppose & = 40, is the bulk Killing vector.

Since it reduces to the generator of the horizon (the » = 0 hypersurface in our choice of coordinates)

lIim¢ =0, lim&* oc G* -
r—0 r—0

Further, £40,4 should reduce to the boundary Killing vector 5&)@ in the limit r — oo

lim & =0, lim & = ¢
r—00 r—00 (0)

Now for our analysis, we shall assume* that

i EH — (IR gh
lg%g G*|,—o f(b)

4This assumption could be justified as follows. Let’s choose a coordinate system where £40, = 0,, i.e. T is
the parameter along the integral curve of ¢4, The Killing coordinate is 7, and hence, the metric could be expressed
such that all of its components are independent of 7. Since the boundary metric is just the boundary limit of the bulk
metric, its components should also be independent of 7. The same should be true of the fluid variables like velocity
and temperature as the bulk metric components are functions of these variables only. Therefore the same 7 will also
be a Killing coordinate from the perspective of the stationary boundary fluid.
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The above condition will result in a set of constraints both on the fluid data and the horizon data
(vanishing of some particular fluid/ horizon structures), respectively. Any violation of these con-
straints will be a departure from stationarity and, therefore, generically of order O(¢) terms. We
have a clean classification of such terms on the horizon side and using the map, we could translate
them to the fluid side. The O(¢) terms, thus derived on the fluid side, should be automatically
compatible with constraints of stationarity (and departure from it) as expected from any stationary
fluid configuration.

Product of two such order O(¢) terms will be order O(¢)? and therefore neglected.

4.5.2 Choice of Fluid Frames

In section 4.2, we have presented the metric dual to boundary fluid dynamics (see equation (4.8)).
This metric is written in terms of fluid velocity (u*) and temperature (7"). But as one goes to higher
order in derivative expansion, one has the freedom to redefine the velocity and the temperature of
the fluid. This ambiguity is present in fluid dynamics itself and is usually fixed by a specific choice
of fluid frames. Now fluid dynamics is about the dynamics of the stress tensor and other conserved
charges of the system. So the fluid frames are also usually defined in terms of the stress tensor or
the currents. For example, in ‘Landau frame’ the velocity of the energy flow is defined as u*. This
implies that u* is the unique time-like eigenvector of the stress tensor (normalized). Once u* (and
temperature) is unambiguously defined, the dual bulk metric is constructed. A given definition of
the fluid frame amounts to a given boundary condition for the metric function while solving for the
bulk metric.

In this section, we shall adopt a different choice of fluid frame which would be more suitable for
our purpose, and in particular, for the description of equilibrium. We shall define our new velocity
ut as

nt

u* =0, where n* = G""|,—y and Pt =

—ntnY? g,(fy)

For brevity, we shall denote this choice of velocity as ‘Gravity frame’. One could choose this frame
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

only if the fluid admits a gravity dual. Note that

uu’gravity frame — uM‘Landau frame + O (a)

So in zeroth order in derivative, these two definitions of velocity agree as they should. In fact, it
turns out that even at first order in derivative expansion, these two velocities agree; the difference
starts only at second order. However, since in this chapter, our computations are correct only up
to first order in derivative expansion, this frame redefinition becomes particularly simple for us.

Basically, it says there is no transformation at all up to first order in derivatives.

4.5.3 Metric Dual to Hydrodynamics in Gauss-Bonnet Theory in Gravity
frame

The metric dual to hydrodynamic in Einstein-Gauss-Bonnet theory has been worked out in [83] up

to first order in derivative expansion. However, in [83] the main concern was boundary hydrody-

namics and therefore, the author has worked in a slightly different gauge than what is described

in equation (4.10). In this subsection, we shall work out the same metric, but in the gauge most

convenient for our purpose , i.e., using the gravity frame described in the previous section.

The action for the full Einstein + Gauss-Bonnet” theory is given by >

S = SE + Ckz SGB
1 5
Sp=—1- /d z v/—g(R —2A) (4.55)
1
Sap = i /d5x \/—g(R2 —AR"PR 5 + RABCDRABCD)

We will parametrize A ® as A = —6 (1 — 2a?).

SHere, we have used the convention 4G5 = 1 (where G is the Newton’s constant in five dimensions) to have only
the horizon area term without any extra proportionality constants as the entropy of the Einstein theory. Accordingly,
the proportionality constant in Sg and S p have been modified from those used in [83].

In [83], to ensure the fact that the boundary metric is exactly equal to the Minkowski metric - N> the author has to
scale the boundary coordinates in an o dependent manner. As a result in the final covariant bulk metric the component
G, 1s no longer equal to —u,,, rather just proportional to it with an v dependent constant as proportionality factor.
However, in our analysis we have crucially used the fact that G, = —u,, and also the calculation simplifies if the
boundary metric is just equal to 7,,,. It turns out if we want to impose both these conditions on the bulk metric, we
need to scale the consmological constant.
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

The equations of motion of the full theory are given by

1 1
Eyn = (RMN - §9MNR + Agun — 5042 gun(R® —4R"PRap + RABCDRABCD))
(4.56)
+a? <4RMPQLR]5 QL _ 4RPORy oo — 4R Ry + 2R RMN>
The black-brane metric which is dual to a boundary fluid and solves these equations of motion
up to first order in derivatives as well as in o is given by

ds? = —2u,dx"dr + X, dat dz” (4.57)

Note that in this gauge, the boundary metric will be of the form g,(f'u) = 1, and lowering and

raising of the boundary indices have to be done w.r.t gf}’y) X can be expressed as

r r r r
X = — re f (—) Uy + ry K (—) P, +rg F (—) Ow +raV (—) (upay, + uyay,)
TH TH TH TH

+0 (TH S1 (L) Uy +TH S <L> P;w)
H rH

As mentioned before, here, 7y is the scale associated with the black hole solution. The functions

1 4
- (053)
1+z

(4.58)

used in (4.58) are defined as

e [(1+2)" 1]

fl) =(1+2) o

Viz)=—= (4.59)
2x

Sl(x) :?

SQ(ZL') =0
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with,

Fo(x) :%(x +1)* (—4log(z + 1) + 2log(z + 2) + log(z(z +2) + 2) — 2tan™ " (z + 1) + )

F,(x) :(1+—1x)2 m(x 4+ 1)* — do(x(zx +3) +3) —4(z + 1)*log(z + 1) + 4log(x + 2) + 3log(x(x + 2) -
+ x(z + 2)(x(x + 2) + 2)(4log(x + 2) + 3log(x(x + 2) + 2) — 2log((z + 2)(x(x 4+ 2) + 2)))

—2log((z + 2)(w(z +2) +2)) —2(z + D*tan *(z +1) — 1

(4.60)
and the fluid variables 6 and 0, and the projector P,, are given by
P, = gﬁ’,,) + uyly,
0=0-u (4.61)

O = P'L?Pfa((XUB)
4.5.4 Stationary solution in Gravity frame

In a stationary metric with horizon located at r = 0, the Killing vector is £ o< G*"|,—¢. According
to our assumption

fé) x GH|pzp, = §€2) o u" in Gravity frame

Now in a stationary situation G*" is proportional to the Killing vector, both for the Bulk and the
boundary metric. Therefore, in case of stationary fluid, this particular choice of frame amounts to
choosing the fluid velocity in the direction of the Killing vector for the boundary metric.

In this subsection, we shall start from the assumption that {494 = £70, + F(r, z*)u”d,,. Then
we shall derive the conditions v/ must satisfy so that €40, is a bulk Killing vector. We shall see
that u* will turn out to be proportional to the boundary Killing vector as expected, with its shear
tensor and expansion vanishing everywhere.

Now we will show that if we have a Killing vector proportional to the fluid velocity u*, then the
expansion and shear tensor will vanish. We will also get constraints on the proportionality constant

such that this condition is satisfied.
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

We will start by writing the fluid metric in a way such that the horizon is located at the origin of

the radial coordinate.

ds? = —2u,, dz" dr — v}, f (r/rg) (uuda?)? + (r +rg)? Py, dot do” + X dat da” (4.62)
where, X;(}z/) contains terms first order in derivative of the fluid variables.

Then the killing vector will have the following form
404 o< GM|,—g = F w0, (4.63)

where, F' is the proportionality constant.

In covariant form this becomes
Eada® = Fdr+ F[riy f(r/ru) ua + u“xf}cz] dz® (4.64)

Now we will solve for the Killing equation on this and write down the conditions it will give on F'
and (V.

The Killing equation is
Valp +Vpéa=0 (4.65)
The (r, ) component of which will give the following condition
8,F =0 (4.66)
The (r, 1) component will give
O F —Fa,=0 (4.67)
where, a, = (u - 0) u,.

The (i, v) component will give

rf-_l fr/ra) |u, (0F — Fa,)+u, (0,F —Fa,)|+2F(r+ rH)QUW
(4.68)

20 0
+ Fr(r+ TH)mPW +rg F2ry f(r)rg)—r f (r/ry)] g Uty = 0
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

where we have used the following identity and fluid constraint equation, J,u, = 0., + Wy —

U, + 5 Py and % + 555 = 0.

Now to be consistent with (4.67) we should have
=0, 0,=0 (4.69)

Hence, we could show that with vanishing shear tensor and expansion, F' u* is actually a Killing
vector with F' satisfying (4.66) and (4.67).

Note that ' = é is a solution to (4.66) and (4.67). Also note that in [128] the Killing vector
§* = £ u® where, T'is the local temperature T' = (%) ry and c is a constant. Hence, up to an
overall constant, the two Killing vectors are equivalent.

Hence, these stationarity conditions are identical to the ones derived in [128] from the perspective

of a stationary boundary fluid.

4.6 Conclusion

The construction of [37,38] gives an expression of entropy density and entropy current on the dy-
namical black hole solution in the higher derivative theories of gravity. However, this construction
works (i.e, it leads to entropy production) only when the amplitude of the dynamics is small, and
all terms quadratic or higher order in the amplitude are neglected. Recently it has been extended
to quadratic order in amplitude [39]. But clearly, this is not the most satisfying answer; the second
law should hold for any dynamics irrespective of its amplitude. Our final goal is to extend the
construction of [37,38] to the nonlinear orders in amplitude.

In this chapter, we have used fluid-gravity correspondence to construct a dual entropy current
in the boundary fluid by lifting the entropy current on the horizon via a horizon to boundary map.
Since our horizon entropy current works only up to the linear order in the amplitude, we should not

expect the fluid entropy current to do any better. So the entropy current constructed in this manner
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will have non negative divergence only up to the linear order in the dynamical fluid data.

However, in relativistic hydrodynamics we independently know how to extend a given entropy
current that works only up to linear order in amplitude, to an entropy current where the amplitude
is no longer a perturbation parameter [94]. So it is reasonable to hope that if we could construct the
dual fluid entropy current nonperturbatively and use the horizon to boundary map in reverse, we
might be able to say something about the entropy current in higher derivative theories of gravity in
a similar nonperturbative manner.

With this goal in mind, in this chapter, we have taken the first baby step of constructing the
fluid entropy current dual to the horizon entropy current [37,38] in dynamical black holes of Gauss-
Bonnet gravity. The fluid entropy current thus constructed depends non trivially on the mapping
functions that relate the boundary coordinates with the horizon coordinates. This dependence has
complicated our construction since these mapping functions need not admit a derivative expansion
like the fluid variables. The immediate future direction would be to search for a particular set of
mapping functions so that the final fluid entropy current is expressible only in terms of fluid and

fluid-like variables that admit derivative expansion in every stage.

In this chapter, we have made a couple of simplifications in this direction. Since both the hori-
zon and the boundary are codimension-one hypersurfaces, naively, there could be (D — 1) such
mapping functions, where D is the number of bulk dimensions. But using some symmetry and
re-arrangement, we could reduce it to only one scalar ‘non fluid” function, which could be ¢(x*)
or v(x*). This scalar is also largely constrained in the sense that if it is specified on a given spatial
slice, the consistency equation will fix it everywhere on the horizon (or boundary). So finally, the
task of finding appropriate (D — 1) scalar ‘mapping functions’ has been reduced to the search for

an appropriate equation, constraining a single scalar on a given spatial slice.

In this context, it might be useful to note that the horizon and also the entropy on it have sym-
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4 Entropy current and fluid-gravity duality in Gauss-Bonnet theory

metry under the reparametrization of the horizon generator. It has been explored in the case of
Einstein-Gauss-Bonnet theory in [3,39]. The discussion could be extended to include ‘non-affine’
reparametrization of the horizon generators, which might have some direct application for our anal-

ysis here.
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Part 11

Stability and Causality in theories of
Relativistic Hydrodynamics
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Chapter 5

Causality Criteria from Stability Analysis at
Ultra-High Boost

This chapter is based on [96].

It has been established that the group velocity of the propagating mode exceeding the speed
of light for some frequency range does not violate causality, as long as it is subluminal at the in-
finite frequency (wavenumber) limit [103, 104]. This necessary condition for causality is called
the asymptotic causality condition which has been widely used to check the causal validity of a
hydrodynamic theory [129-131]. But the conceptual anomaly with this approach is that the hy-
drodynamic gradient expansion has been tested to be a divergent series with factorial growth of
large order corrections indicating a zero radius of convergence [132, 133]. Given the situation, an
alternate definition of causality is imperative. On the other hand, the stability of a relativistic sys-
tem has been known to behave distinctly depending upon the observer’s frame of reference [56].
This issue has been recently addressed in [107,134], where it has been argued that frame-invariant
stability is possible only if the theory respects causality. The objective of this chapter is to employ
the frame-invariance of the stability property of a theory to establish its causality constraints. The
non-triviality again comes from the fact that checking linear stability at arbitrary reference frames
to identify the invariantly stable parameter space can be a cumbersome job. In this chapter for
two well-known stable-causal theories, we have demonstrated that the linear stability analysis in a
reference frame boosted to a near luminal speed can alone provide the stability invariant parame-
ter space at the spatially homogeneous limit of the theory and hence can be used to determine the
causal domain of the theory as well. In [135], this identification has been observed from a kinetic
theory derivation of a stable-causal first-order theory. Here, we show that one can solely use the

low-wavenumber stability analysis to produce the exact results of asymptotic causality in the MIS
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

and BDNK theories. The analysis presented here serves as a case study of two most well-known
stable-causal theories to show that the causality of a theory can be probed without departing from
the small-k£ domain. Since relativistic hydrodynamics is a low-energy effective theory, hence we

believe this approach provides us with a more appropriate definition of causality.

5.1 Basic setup

In this chapter, hydrodynamic stability has been analyzed in a generalized Lorentz frame with an
arbitrary boost velocity for both second-order Miiller-Israel-Stewart (MIS) theory [60, 136, 137],
and the recently proposed first-order stable-causal (BDNK) theory [61, 63, 138, 139]. We lin-
earize the conservation equations for small perturbations of fluid variables around their hydro-
static equilibrium, ¥ (¢, x) = 1y + 09 (¢, x), with the fluctuations expressed in the plane wave
solutions via a Fourier transformation §1(¢, ) — e'**=“Y§)(w, k), (subscript 0 indicates global
equilibrium). The background fluid is considered to be boosted along the x-axis with a constant
velocity v, uff = 7(1,v,0,0) with v = 1/4/1 —v2. The corresponding velocity fluctuation is
dut = (yvou®, you®, du¥, du*) which gives ufjou, = 0 to maintain the velocity normalization. In
the following analysis, we present the leading order stability analysis (at £ — 0 limit) for both the

theories at conformal, charge less limit.

5.2 Conventions and notations

Throughout the manuscript, we have used natural unit (A = ¢ = kg = 1) and flat space-time with
mostly positive metric signature n* = diag (—1,1,1,1). The used notations read, D = u*0,,,
VH = A"Q,, ot = AZ;E)O‘UB with Arves — %AMQA”/B+%A“5A”Q— %A“”Ao‘ﬁ and A* = nH +
utu”, e = energy density, P = pressure, u* = hydrodynamic four-velocity, 7, = relaxation time
of shear-viscous flow, = shear viscous coefficient, £, 6 are first order field correction coefficients
of BDNK theory. From the constraints of the second law of thermodynamics, n should always be

a positive number [140]. The scaling notation & denotes = /(ey + Fp).

96
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5.3 Identifying stability invariant parameter space from ultra-
high boost

First, we discuss the case of MIS theory where the energy-momentum tensor takes the form, 7*" =
eutu” + PAM + . The conservation of energy-momentum tensor 9,7*" = 0 and the relaxation
equation of shear viscous flow 7 = —TWAZZ/;DWQB — 2not together give us the equations of
motion to be linearized. In the transverse or shear channel, the leading term of the frequency
(w) solution in wavenumber k-expansion is a single non-hydro non-propagating mode, wy;g =
—i/y(7x — 7v?). Now the demand that stability requires the imaginary part of the frequency to be
negative renders the stability criteria 7, /77 > v [104]. For sound channel, the leading order single
non-propagating mode turns out to be, wlu,ﬂs = —i(1 - g) /(1 — g) — 21v2]. For the range
of boost velocity 0 < v < 1, the stability condition becomes, 7, /7] > 3v*/(1 — %) In both the
channels, the right-hand sides of the inequalities for 7, /7 are monotonically increasing functions
of v within the mentioned range that allow only positive values of 7, and give the strictest bound
for v — 1. So we infer that the allowed parameter space over the transport coefficients 7 and 7, set
by stability criteria at the spatially homogeneous limit (£ — 0) for any boost velocity v, is always
a subset of the same for any lower value of v. Hence, we conclude here that the v.— 1 bound
(7, > n for shear channel and 7, > 27 for sound channel) provides the necessary and sufficient
region in the parameter space where the system is stable at the spatially homogeneous limit for all
reference frames (0 < v < 1). So here we see that for the MIS theory, checking stability alone in a
reference frame with ultra-high boost (v — 1) is sufficient to identify the frame-invariantly stable
parameter space at £ — 0 limit.

Next, we discuss the case of BDNK theory for which the energy-momentum tensor takes the

form, T = (e+ ey )utu” + (P + Py) A" + (uFWY +u”WH) + 71, with the first order dissipative

field corrections, €, = 560]3530 + &0 u), P = gfog;o + %(8 cu), WH = 9[% + Du*] and
T = —2no*. The shear channel analysis is identical to that of MIS theory with the replacement

7. = 0/(e0+ Py) [63]. However, the situation becomes significantly more mathematically involved
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Figure 5.1: Linearly stable parameter space for MIS Shear channel (Left) and MIS Sound channel
(Right) for different v values

in the sound channel. The leading order w solution in k-expansion gives rise to the quadratic
dispersion relation aw?® + bw + ¢ = 0, with a = 72[£0 — 2E(277 + O)v? + L0(E — 4i)vl], b =
(€ +0) — 3(0 + € + 4)v?*] and ¢ = (v2/3 — 1). This dispersion polynomial gives rise to two
non-propagating, non-hydro modes whose stability has been analyzed using the Routh-Hurtwitz
(R-H) stability test [102]. The stability criteria constrain the parameter space for BDNK sound

channel through the two following inequalities,

v\? 4 v?
o <].—— ?§{> — g??V <é;‘% ?§49> >0 s (5.1)
2
(5+m<y—%>—§mﬂ>o. (5.2)

Eq.(5.1) and (5.2) together necessarily confine the parameter space within the region,

V4

(L—v2/3)"

v2 €>4
9

(1—v/32 " e

>4
3

I |

The right-hand sides of both the inequalities are monotonically increasing functions of v which
allow only positive values of £ and 6 with lower bounds ranging from 0 to 7 and 0 to 37 respectively

as v ranges from 0 to 1. Following these conditions, Fig.5.2 shows that the parameter space where
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the theory is stable at v.— 1 is enclosed within the same for any lower value of v. So, identical
to the situation of MIS theory, for BDNK theory as well, the stability condition at v — 1, is a
necessary and sufficient condition for stability to hold at the spatially homogeneous limit for all

possible boost velocities 0 < v < 1.

15 T r ‘
10} v=0.9999 1

5f v=0.8

v=0

6/n
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&in

Figure 5.2: Linearly stable parameter space for BDNK sound channel for different v values.

Given the above analysis for MIS and BDNK theories, we establish our first key finding here.
For relativistic dissipative hydrodynamic theories like BDNK and MIS, performing stability anal-
ysis at ultra-high boost velocity (v — 1) alone suffices to conclude the stability invariance of the
theory. Stability analysis at any other boost velocity lacks this confirmation. The stable parameter
space at v — 1 is a necessary and sufficient region of the theory for stability invariance to hold at

the spatially homogeneous limit.

5.4 Causality from stability analysis

In this section, we will prove that only the stability criteria at v — 1 limit is enough to provide the
region of parameter space over which each of these two theories is causal. The idea is that, since
it has been proven for theories like MIS and BDNK that the stability conditions at v — 1 identify

the region of parameter space where the system is frame invariantly stable, and since stability
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invariance requires the causality properties of the theory to be respected according to the arguments
put forward in [107, 134], hence the stability constraints at ultra-high boost automatically lead us
to the causal region of the parameter space. For MIS theory, the stability conditions at v — 1 limit

for the shear and sound channels give us %’* > 1and ;—’7; > 1 respectively. It can be shown that the

expressions on the left-hand sides of the inequalities for both channels are functions of the square

ORe(w)
ok

of respective asymptotic group velocities v, = limy,_, ‘ , (v2)* =17/7r and (vg)” = % +1.
These expressions for both the channels finally reduce to 0 < vg < 1, and therefore, the stability
criteria at v — 1 boil down to the asymptotic causality condition 0 < vZ < 1 for the MIS theory in
the parameter range 7, 7, > 0.

For BDNK theory, the shear channel stability condition at v — 1 gives % > 1, which is again
the asymptotic causality condition 0 < vg < 1 where vg = 7. Next, for the BDNK sound channel,

we attempt to solve the inequalities (5.1) and (5.2) served as stability criteria in a boosted frame.

Stability inequality (5.1) can be recast as,
{(/v?) — a1} {(1/v*) — 22} >0, (5.4)
where x, x5 are the roots of the equation,
5 2 1
(E0)x= — §€(277 +0)x + 59(5 —4n) =0. (5.5)

Inequality (5.4) has two possible solutions z1, x5 < viz or x1,xy > V% Since |v| ranges from 0 to 1
and hence 1/v? ranges from 1 to oo, the second solution turns out to the unphysical. The first and
only physically acceptable solution then gives us the strictest bound x1, 5 < 1 corresponding to
the limit v — 1. Now, incorporation of the second stability inequality (5.2) restricts the allowed
region to only positive values of £ and . This restriction (along with > 0) leads to a positive
discriminant of (5.5), which restricts both the roots of = to be real, among which at least one root
is always positive in our stable parameter space at v — 1. As it will be explicitly shown in the
next section doing a large £ analysis of the theory that the quadratic equation satisfied by vg for the

BDNK sound channel is exactly identical to (5.5), the inequalities (5.1) and (5.2) condense down

100



5 Causality Criteria from Stability Analysis at Ultra-High Boost

together to give vg < 1 with at least one vg > () that produces two subluminal propagating modes.
So, our stability analysis at ultra-high boost independently identifies the causal parameter space of
the MIS and BDNK theories, which exactly reproduces the results of asymptotic causality analysis

for the respective theories without going to the large £ limit.

5.5 Causality from large £ analysis

Now, let us analyze the situation of causality in the high-k regime itself and compare how accurately
the subluminal parameter space has been predicted by stability analysis at ultra-high boost. At
the large & limit, an expansion of the form w = v,k + >~ ¢, k™" is used [130] as a solution
of the dispersion equation from which a polynomial over the asymptotic group velocity v, can
be obtained. Next, we check the Schur stability of the polynomial [110] to check if the roots of
these equations are subluminal and, if they are, then how the parameter space is constrained by
them. Any polynomial P(z) of degree d is called “Schur stable” if its roots lie within a unit disc
around the origin of the complex plane. This can be tested by introducing a Mdbius transformation
w = (z+1)/(z — 1), which maps the unit disc about the origin of the complex plane into the left
half plane, i.e., Re(w) < 0if |z| < 1. So, P(z) will be Schur stable if and only if the transformed
polynomial of the same degree Q(w) = (w — 1)?P (“4) is Hurwitz stable. This method is
extremely efficient, especially in cases where a direct extraction of roots from the polynomial is
too complicated.

For the shear channels, the Schur stability conditions that can give rise to subluminal, propa-
gating modes are 7, — 7 > Oand 7 + 77 > 0 for MISand § — » > 0 and 6 + n > 0 for BDNK.
In both cases, the first conditions are identically the stability conditions obtained at v — 1 and the
second conditions are obvious if the first ones are satisfied. For the propagating modes of MIS
sound channel, the Schur stability conditions are given by 7, — 277 > 0 and 7, + 77 > 0. Again, the

first one is the v — 1 stability criterion, and the rest is its obvious implication. So, we conclude

that for both the shear channels and the MIS sound channel, the v — 1 stability region exactly
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reproduces the causal parameter space.
The situation in the BDNK sound channel is comparatively quite non-trivial. The 1)3 values are

to be extracted from the following quadratic polynomial with z = vg,
, 2 1
P(z) = (£0)z" — 55(9 +2n)z + §0(5 —4n) =0, (5.6)

whose Schur stability needs to be checked to find the causal parameter space. Its Mobius transfor-

mation again turns out to be a quadratic polynomial,

(&0 no\ o 2
Q(w)—(3 En 3> +30(77+25)w
4€0 0
+ <—3 +577—%) =0, (5.7)

whose Hurwitz stability requires all the three coefficients of Eq.(5.7) to be of the same sign, either
positive or negative (along with a positive discriminant of P(z) to ensure that all the non-real roots
of v on the complex plane are excluded).
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Figure 5.3: The subluminal parameter space for BDNK sound channel from Schur stability.

In Fig.5.3, the parameter space for which both the roots satisfy |v§ ‘ < 1 are plotted for both the
positive as well as negative conventions. The regions IA (red, crisscrossed), IB (blue, crisscrossed)

and IC (black, solid-filled) are located within quadrants where both ¢ and £ are of the same sign
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and indicate the regions of the parameter space where all the coefficients of (5.7) are positive. The
regions IIA (yellow, striped), IIB (green, striped) and IIC (black, solid-filled) are located within
quadrants with 6 and £ of opposite signs and denote the convention where all coefficients of (5.7)
are negative. Together, all of these regions (IA-C, IIA-C) provide the full causal parameter space
given by (5.6). Furthermore, the signs of the coefficients of (5.6) indicate that the regions IC and
IIC bounded by £ > 4n, £ < 0,—2n < 6 < 0 give —1 < vg < 0 for both roots and hence, fail to
generate any propagating mode. The rest of the regions (IA-B, IIA-B) correspond to at least one
0< vg < 1 and hence at least two subluminal propagating modes. The regions IA and IIA cover
the parameter space with the additional constraints £ < 0,& > 41,60 > 0,6 < —2n, which give us
both 113 values between 0 and 1 and hence, four subluminal propagating modes. The remaining two
regions, IB and IIB, belong to the parameter space constrained by 0 < £ < 47, which corresponds

2 < 0 for one root and 0 < 2

t0—1<vg p

< 1 for the other, indicating the presence of two
non-propagating modes besides the existence of the two subluminal propagating modes.

Now comes a crucial identification; we observe that the causal parameter space in the first quad-
rant covered by the regions IA and IB together exactly agrees with the stable region at v — 1 and
hence, with the frame-invariantly stable parameter space as well. This can be readily checked by
realizing that the Schur condition from (5.7), —%9 —&En+ % > 0 is exactly identical to the stability
constraint (5.1) at v — 1. The other two Schur conditions, (1 + 2€) > 0 and —%9 +En+ 42—6 >0
along with a positive discriminant of (5.6), further restrict the region exclusively to within the
6 > 0,& > 0 quadrant for propagating modes, which exactly resembles the role played by (5.2)
with v — 1 to define the stable parameter space. So, the entire causal parameter space obtained
from the asymptotic equation (5.6) (by Schur convention I, all coefficients > 0) is fully identified
by the stable region at ultra-high boost depicted in Fig.5.2. In this context, we refer to the results
obtained in [139], where the large wave-number causality constraint is given solely by region 1A

with four subluminal propagating modes. The analysis there lacks the region IB where two sublu-

minal propagating modes are present along with two non-propagating modes. We duly point out
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

that this lacking region is stable in every reference frame (Fig.5.2), which invariably identifies this
region to respect causality since covariant stability is possible only for causal systems [107, 134].
So, we conclude that, because of the complexity involved, it is indeed difficult to analytically ex-
tract the full causal parameter space from the large-k dispersion polynomial. However, the method
of stability analysis at v — 1 presented in this chapter is much more effective in pointing out the
full stable and causal parameter space unambiguously.

We finally point out that for regions IIA and IIB, where 6 and £ are of opposite signs, the system
is unstable in all reference frames. As mentioned in the stability arguments of [134], there could
be other regions of the parameter space like IIA and IIB, where causality holds, but the system is
invariantly unstable in all reference frames. The stability criteria at ultra-high boost strictly give us

the parameter space where these two theories are causal as well as stable in all reference frames.

5.6 Conclusion

We have shown here, for the first time, for two well-known stable-causal hydrodynamic theories,
viz. MIS and BDNK, an alternate way to derive the region of parameter space over which the
theories are frame-invariantly stable at leading order in k£ and necessarily causal. Despite inherent
differences in their construction, our analysis reveals that linearized stability analysis at ultra-high
boost accurately leads us to the results of asymptotic causality conditions under which both the
theories are frame-invariantly stable, without going to the large-£ limit. Since the whole analysis
is performed at a low-k limit, this approach liberates us from going to a non-perturbative high-%
regime that seems outside the domain of validity of a low-energy effective theory like relativistic
hydrodynamics. Moreover, in the presence of technical non-trivialities in solving the asymptotic
causality equations, our method of stability check at v.— 1 is more effective and simpler in de-
tecting the causal parameter space. Although the current analysis has been carried out for a con-
formal, chargeless system, the results presented here do not lack in generality. In [135], a coarse-

grained derivation of a non-conformal, charged, stable-causal first-order theory indeed shows that
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5 Causality Criteria from Stability Analysis at Ultra-High Boost

the monotonically decreasing stable parameter space becomes the strictest bound for v — 1 which
singularly gives the causal parameter space as well.

The findings presented here heavily depend upon the monotonic behavior of the stable param-
eter space as a function of v. The monotonic behavior that exists for these two most well-known
stable-causal theories doesn’t hold for the relativistic first-order Navier-Stokes theory. This indi-
cates that this feature could be an important signature for pathology-free hydrodynamic theories.
Further, the prediction of high-£ results from the low-£ domain using ultra-high boost, as observed
here, indicates some possible connection between the two limiting k-regimes of the theories, which
requires further investigation. In Appendix A, we have derived our results for a more general class
of hydrodynamic problems and provided intuitive arguments in support of the current outcome.
The causality criteria considered here are asymptotic causality criteria, which are necessary but
not sufficient conditions [141]. A more rigorous study of causality requires a study of characteris-

tics [108, 109], which will be explored in our future endeavors.
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Chapter 6

Frame transformation and stable-causal hy-

drodynamic theory
This chapter is based on [98].

6.1 Introduction
6.1.1 Summary and discussion of our results

In this chapter, our goal is to rewrite the BDNK stress tensor in the Landau frame by redefining
the velocity and the energy density (temperature). In some sense, the key result of this work is the
relation between the fluid variables in BDNK formalism (denoted by u* and T respectively) and
the velocity and the temperature field defined after frame transformation that are fixed through the
Landau gauge condition (denoted as @* and 7). We have explicitly worked out the relation for
those fluid profiles that have small fluctuations around some global equilibrium. We have assumed
that the amplitudes of the fluctuations are small enough so that a linearized treatment is justified.
Further, in order to obtain an analytically tractable all-order theory, we have restricted our analysis
only to conformal, uncharged fluids in BDNK formalism.

To state our results in terms of equations, let us first introduce a notation u* — u* = Jdu”
and T — T = 6T. We have found that the shift variables du* and 67 must satisfy the following

differential equations up to terms that are linear in 67", du* and their derivatives,

5T+~_DT+@MW L. D5T+%5u# 0
T X T 3 X S 3 =V,
Vel ] V16T
Sut + 0 Dﬂ"+VT +0 D6u“+vT =0, (6.1)

Next, we develop a formal solution for the equations (6.1) using two different methods. In both
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6 Frame transformation and stable-causal hydrodynamic theory

cases, it is manifested that the solutions will have terms up to all orders in derivative expansion.
Finally, we introduce a set of new tensorial ‘non-fluid’ variables (like the shear tensor in MIS
theory) in order to recast the BDNK theory in an MIS-type formalism where the fluid variables
like velocity and the temperature are defined through the Landau gauge condition.

In the first method, the equivalent system of equations will have an infinite number of ‘non-

fluid’ variables with the following nested structure of the energy-momentum tensor 7#":

1.
9. =0, T =:¢ [u“u + gA‘“’} e

(1+6D)a" = —2p6"" + pl”,
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(6.2)

In the second method, we need to introduce only one ‘shear tensor’ type non-fluid variable, but its

equation of motion turns out to be second order in spatial and third order in temporal derivatives,
174 17 2 ~ AUV 1 A v JaNy V74
0, =0, T =¢&|a"a” + gA“ + T,

{(1 +0D)(1+ xD) — é% @2] {(1 4 D) ¢ 277&#”}
_ _ Ly Ve T

- 2n9{1+(9+X)D}T. (6.3)
We have analyzed the spectrum of linearized fluctuations in both systems and found that all the hy-
drodynamic modes match those of the BDNK theory. This indicates that in the regime where fluid

descriptions are applicable, all three systems of equations presented here are equivalent. However,

equations (6.2) and equations (6.3) also have some extra non-hydrodynamic modes which are not
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there in the BDNK theory. The emergence of these new modes is possibly connected with the zero
modes in the equations of the field redefinition (equations (6.1)) themselves.

Our equations are by no means more tractable than that of the BDNK. But here, the fluid vari-
ables have a clear and standard meaning, and since the velocity and temperature in BDNK theory
could be precisely transformed to these variables (though we have derived it only at a linearized
level), it attaches a similar definition to the BDNK fluid variables as well. Our analysis suggests that
even in BDNK theory, there will be hidden non-fluid variables (or an infinite number of deriva-
tives) if one would like to express the theory in terms of fluid variables only, which are locally

defined through stress-energy tensor as we have in ‘Landau frame’!.

6.1.2 Convention and notations

Throughout the chapter, we have used natural unit (h = ¢ = kg = 1) and flat space-time
with mostly positive metric signature g*¥ = diag (—1,1,1,1). ¢,T, P,u* are, respectively, en-
ergy density, temperature pressure and hydrodynamic four-velocity. The local rest frame is de-
fined as u* = (1,0,0,0), A® = ¢g" + utu” is the space projection operator orthogonal to u*.
ArvalB — %A“O‘A”B + %A“B AN %A’“’Ao‘ﬁ is the traceless projection operator orthogonal to u,,
and A,,. Any rank-2, symmetric, traceless tensor is defined as, Alepr) = AZ;AQBB . The used
derivative operators read as: covariant time derivative D = u"0,,, spatial gradient V* = A",
and traceless, symmetric velocity gradient o#¥ = 9*u”). 7 is the shear viscous coefficient, 7, is
the relaxation time of shear-viscous flow 7 of MIS theory, ¥, ¢ are the first order field correction
coefficients of BDNK theory. From the constraints of the second law of thermodynamics, 7 should
always be a positive number [140]. The scaling notation Z denotes = /(¢ + P). We linearize the

conservation equations for small perturbations of fluid variables around their hydrostatic equilib-

'In this context, we should mention the analysis in [142]. Here also, the authors connect the MIS and the BDNK
type formalism with field redefinition. However, the authors here tried to explain this field redefinition ambiguity
more from a microscopic point of view. Whereas, in our analysis, we are completely agnostic about the microscopic
descriptions or statistical interpretation of these field redefinitions. As a result, we could find more than one way (in
fact, in principle, there should be just an infinite number of ways) of ‘integrating in’ the non-fluid variables for the
same BDNK theory but recast in the Landau frame.
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rium, ¢(t,x) = ¢y + 01 (t, x), with the fluctuations expressed in the plane wave solutions via a

Fourier transformation 6v(t, z) — e’**=«) §i(w, k), (subscript 0 indicates global equilibrium).

6.1.3 Outline of the rest of the chapter

This chapter is organized as follows. In section 6.2, we describe the MIS theory in its simplest form,
and then we show how integrating out the extra ‘non-fluid’ variable results in a stress tensor with
an infinite number of derivatives. This section will act as a warm-up for the techniques of infinite
sum to be used in the next section. Also, it indicates how a causal theory in the Landau frame,
if expressed only in terms of fluid variables, turns out to have an infinite number of derivatives.
In the next section 6.3, we describe the BDNK theory and redefine the velocity and temperature
variables (only at the linearized level) to bring them to the Landau frame. Redefinition involves
generating an infinite number of derivatives. We can sum these infinite series in two different ways
as described in two different subsections of section 6.3. These two different ways of summation lead
to two different methods of ‘integrating in” new ‘non-fluid’ variables, showing the non-uniqueness
of the process of ‘integrating in’ new variables. In section 6.4, the dispersion relations and the
corresponding spectra of these different systems of equations have been analyzed to check that
our systems of equations are indeed equivalent to BDNK formalism, at least in the hydrodynamic

regime. Finally, in section 6.5, we conclude.

6.2 MIS theory - an infinite order fluid formalism

The pathologies regarding superluminal signal propagation and thermodynamic stability of the
long-established relativistic first-order theories [55, 143], have been first taken care by the higher
order MIS theory [56, 111], where the dissipative field corrections are promoted to new degrees of

freedom [59, 60, 136, 137]. Keeping up to the linear terms, the MIS equations of motion are given
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by [50],

1
0, =0, TW =« [u“u” + gA‘“’} + T (6.4)
" + . DT = —2not” . (6.5)
Here, we attempt to derive the combined results of Eq.(6.4) and (6.5) without treating 7" as an

independent degree of freedom. Instead of attributing an individual differential equation to 7+

like Eq.(6.5), we express it as a sum of gradient corrections that includes all derivative orders in

Eq.(6.4) itself such as,
Y = Z mh,
n=1
Y = =2t T =—7.Dnt" n>2. (6.6)

This leads to the shear-stress tensor as the following,

™ = —2p {i (—TWD)n} ot (6.7)

n=0

=2 (1 +7.D) ot . (6.8)
So, we conclude that if we want to write the MIS theory without introducing any additional degrees
of freedom, this will lead to a stress tensor that is defined up to all orders of gradient correction. Any
finite truncation of Eq.(6.7) fails to produce the relaxation operator like structure in the denominator
of Eq.(6.8). However, it is to be noted that Eq.(6.5) is local in both time and space, whereas Eq.(6.8)
becomes non-local in time since the frequency of the corresponding Fourier mode appears in the

denominator. The details of the acausality of a truncated series in Eq.(6.7) can be found in [97].

6.3 BDNK theory and the transformation of the ‘fluid frame’

In the last few years, a new study of the relativistic first-order stable-causal theory (BDNK theory)
has been proposed by defining the out-of-equilibrium hydrodynamic variables in a general frame

other than that is defined by Landau or Eckart, through their postulated constitutive relations that
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include spatial as well as temporal gradients [61,63,64,67,138,139]. In BDNK theory, if we further
impose conformal symmetry and no conserved charges, the energy-momentum tensor (7") takes

the form,

pv
" = (e + A) [u“u” + A3 }

+ [W'Q" + u"Q ] — 2no", (6.9)

with the first-order dissipative field corrections as,

Azx[?)%%—vﬂu“}, Q”:H[

VAT
T

+ Du”] . (6.10)

We have used the identity De /(e + P) = 3DT /T for a conformal system where the energy density
goes as ¢ ~ T, and it is connected with the pressure P as (¢ + P) = 4e/3 2. The dispersion
relations resulting from Eq.(6.9) produce stable-causal modes only with non-zero values of ¢ and
X. The neatness of this method lies in not requiring any additional degrees of freedom other than
the temperature and velocity to preserve causality and stability. Eq.(6.9) and (6.10) also show that
the theory is local in fluid variables both spatially and temporally. However, as mentioned before,
unlike the MIS theory, the definitions of the fluid velocity and the temperature are not fixed here in
terms of stress tensor or any other microscopic operator. In this section, we would like to redefine
the velocity and the temperature in a way so that the stress tensor, expressed in terms of these
redefined fluid variables, satisfies the Landau frame condition. Our philosophy is as follows.

We shall assume that the one-point function of the microscopic stress tensor operator in a ‘near
thermal’ state is given by the BDNK stress tensor (6.9). But it is expressed in terms of some ‘ve-
locity” and ‘temperature’ variables {u*, T'}, which agree with the traditional definitions of velocity
and temperature in global equilibrium but deviate in a generic ‘near equilibrium’ state. On the other

hand, we know that in the Landau frame, the velocity and the temperature fields are locally defined

For simplicity, throughout this chapter, we shall restrict our analysis to conformal fluids, where tempera-
ture provides the only scale and the space-time dependence of all other dimensional variables like energy den-
sity is completely determined by that of the temperature. For example, e(a#) = 3¢ T*(z*), P(z") =
c T*(x"), where c is some constant. Because of this, while discussing the space-time dependence of the fluid vari-
ables, we shall often use e(x*), P(z*) or T'(x*) interchangeably.
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in terms of the one-point function of the Stress tensor 7#” as the following,
TH(T, ") 0¥ = —& G~ . (6.11)

We denote the notation " to indicate fields at the Landau frame such as 4" is the velocity, € is the
local energy density and 7 is the temperature in the Landau frame. Transforming the BDNK stress
tensor in the Landau frame involves two steps. First, we have to solve for u* and £ by solving
equation (6.11), where in place of 7} we shall use the BDNK stress tensor (6.9). The second step
involves rewriting the BDNK stress tensor in terms of these new fluid variables @* and €.

Generically, performing such a frame transformation in a non-perturbative manner is extremely
cumbersome. But to make our analysis computationally tractable, we restrict it to linearized treat-
ment. Physically, we are restricting our analysis only to those fluid states whose deviation from
global equilibrium is of very small amplitude. Such perturbations are enough to decide the linear
stability and the causality of the theory - the key motivation behind the BDNK formalism. Since all
definitions of the fluid variables agree in global equilibrium (or at the level of ‘ideal’ fluid), field
redefinition is needed only in ‘non-equilibrium’ fluid states. It follows that, if the deviation from
equilibrium is of small amplitude such that a linearized treatment is allowed, the same should also
be true for field redefinition. In other words, while redefining the velocity and the temperature, we
can safely ignore terms that are nonlinear in the shift of the variables. In terms of equations, what
we mean is the following.

We define that the velocity u* and the temperature 7' in the BDNK stress tensor are related to

the Landau frame velocity u* and temperature T in the following fashion,
wt =0t +out, T=T+0T, (6.12)

where the shift variables Ju* and 07" are small enough to be treated only linearly. Note that both
du” and 6T are non-trivial functions of @* and T'. Once we impose the Landau gauge condition

(6.11) after substituting (6.12) in the BDNK stress tensor (6.9), it reduces to the following set of
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coupled and linear partial differential equations (PDEs) for the shift variables,

. \vZ%sll I VHST
Sut + 0 | Da* + ——| + 60 | Déu" + ——| =0, (6.13)
i T T
o7 _[DT wv,ar|  _[DsT  V,eu
- : _ =0. 6.14
7 +X 7 + 5 ]er + 5 ] (6.14)

This linearization simplifies the analysis so that we can have an ‘all-order’ (in derivatives) formula
for both the field redefinitions and the stress tensor in the new frame.

It turns out that the ‘MIS type nonlocality’ emerges here again, even in the BDNK theory, due
to the infinite order field redefinition is needed to cast it in the Landau frame. At the linearized
level, the field redefinition can be done in two different representations. In one case, we summed
only the time derivatives up to the infinite order, leading to a set of equations that look nonlocal in
time (with the time derivative appearing in the denominator) but local in space. In the second case,
we summed both the time and the space derivatives, leading to a full nonlocal redefinition of the
fluid variables. In either case, these nonlocalities (derivatives appearing in the denominator) could
be absorbed by introducing new ‘non-fluid’ variables. These two different methods are described

in the following two different subsections.

6.3.1 Method-1: Frame transformation order by order

In this subsection, we shall solve these PDEs (6.13) and (6.14) order by order in derivative expan-

sion. We shall assume that du*, )¢ and 67" admit the following infinite series expansion,

out = il&uﬁ, 0e = iléan, ol = idTn : (6.15)

Here, the subscript (n) denotes the order in terms of derivative expansion. Substituting the ex-

pansion of (6.15) in the PDEs (6.13) and (6.14), one can easily find the solution in terms of the
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following recursive relations,

DT 1. S| VET
0 =—x |— + =V, a*|, duf =—0 — + Du" |,
1 X 7 gV 1 T
1 - 1.
(STn = —X |:%D5Tn1 + gvu(suz_ll for n > 2 s
1. .
dubt = —6 {%V”éTnl + Déuﬁl] forn > 2. (6.16)

Eq.(6.16) provides the successive field corrections up to any desired order.
The next step is to rewrite the energy-momentum tensor in terms of the new fluid variables.

The energy-momentum tensor in this frame turns out to be,

P DT 3 A < 1,
T =14+ » dep+x(3—+ 00" +=D>» 01,4+ 0, > du, wrut + - AR

S o a3 S n o] (e o)
1 & YA/ A 1o, o 2

+ géz(mw{ = Dﬁ”+%V”ZéTn+D25uZ}] a
L n=1 n=1 n=1
4.\ J VT N H 1 71 N AN T nv iy S (1§, V)

+ 3 Zéun—i-Q = + Du +%V Z5Tn+Dz5un w’ —2n |0 —I—Z@ ou, | .
L n=1 n=1 n=1 n=1

(6.17)

As mentioned before, only linearized terms are considered. The used notations (now defined
in terms of Landau frame variable) read : Aw = g + utu”, D = o, VH = AW&,, o =
olrar) = Aggaaaﬂ . After substituting the recursive solution for du# and §7,, as given in (6.16),
the energy density correction and energy-flux or momentum flow vanish as expected in the Landau

frame, and one finally has the following energy-momentum tensor upto all order,

1~
T =¢ laﬂa# + gA””] — o

o+ Y a<“5ug>] . (6.18)
n=1

All order sum of the temporal derivatives

Once we explicitly evaluate du’ and 07, for the first few orders, we observe that a very nice pattern
emerges, which we could use to sum this infinite series to get an all-order expression.
In order to do so, first we list the velocity and temperature corrections up to first four orders

obtained from the Landau matching conditions:
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out = —0 | Di* + @;TA : (6.19)
5;? =% DTT + % (@ : u) , (6.20)
Sub = G2D%a" + 6 [é + 92] %f)WT + égw (@ u> , 6.21)
5;} =>22D;T+§ 0D (v ) +§9V;T N (6.22)
e DQ;’“‘T 0% [2+ 3] DY (V-4) - éﬂvzz”T,
(6.23)
T DT Xl (9 0) - X fox s ] 25 R (9.4
(6.24)
Sut = G*D*a + 60 [53 + 0%y + 0%2 + X3] DSZM + GX [392 +20% + X ] D*V* (V u)
+ §2§ [2(5 v 2;2] DWZ“ " Xl o (@ u) , (6.25)
5;4 = it ﬁ;T + ’?f [x 20+ 102 + 03} D? ( ) %é [3X 420 + 92] D21
+ %25 [2;2 n 2@] DV? (@ . u) —92 V;T (6.26)

We see that, with increasing order n of derivative correction, the velocity correction terms
dut (as well as the temperature correction terms 97;,), include higher and higher orders of the
spatial gradients on 7" and u* systematically. Moreover, the order of the temporal gradient on each
such spatial gradient term also chronologically increases. This increase of temporal derivatives
is observed to follow a particular pattern such that they can be clubbed together into products of

infinite sums. Below, we write the fully summed (up to all orders) velocity and the temperature
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corrections such that this repetitive pattern in the temporal derivatives becomes manifest.

ut = "+ Ul + Sub - = {1+(—éb)+<—6~[9>2+<—é[?>3+---}a“

+ (=) (%) 1+2(=0D) +3 (—éf))Q +oo| [142(=xD) +3 (—;zf))z + } W?T
+(—0)? (—%)2 1+3 <—éf)> + (—9D>2 + ] (6.27)

M (6.28)

The infinite sums over the time derivative can be encompassed in a closed form following the
relaxation operator-like terms to appear in the denominator of the thermodynamic quantities, giving

rise to pole-like structures in the following manner,

ut =t 4 oul + oub + - - -

1

Lo (6.29)
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Similarly, for the temperature correction, we have the following derivative pattern :

T=T+6T +6Ts+--- = [1+(—)215)—}—(—;2[))24_(_)215)34_...1

Just like the velocity variable, the above series can also be resummed as,

T =T+ 6T, + 6Ty + - --

9\« 1 1 co (&
! (‘%) O T braane (v-4)

(6.31)

Putting the velocity correction given by Eq.(6.29) in Eq.(6.18) we have the all order frame

transformed BDNK stress tensor in Landau frame as,

1~
™ = ¢ [u“u + gAW] +

(6.32)

with the shear stress 7 = —2n [&““ +> dnsuy) } as the only dissipative contribution, now
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resummed under the all order frame transformation as the following,

_ 2 L1y A Ao n
(=0) (—3%) VEVIVIY - G4 | (6.33)

Note that, for each increasing spatial gradient, the temporal gradient resulting from the infinite sum
also increases in the denominator, such that they exactly balance each other. This condition has
been mentioned in [101] as a necessary condition of causality.

Both equations (6.29) and (6.3 1) are just formal solutions as they have derivatives in the denom-
inator. Such an expression really makes sense in the space of frequencies rather than in real-time.
However, what this indicates is a nonlocality in time (or integration over time). Just like in the
MIS theory, such nonlocalities could be recast into a local set of equations by introducing new

‘non-fluid’ variables, which is the topic of the next subsection.
Introducing ‘non-fluid’ degrees of freedom to make BDNK a local theory in Landau frame

In section 6.3.1, Eq.(6.32) and (6.33) combinedly provide the energy-momentum tensor of a frame-
transformed BDNK theory that is nonlocal in fluid variables. In this subsection, our goal is to
introduce new ‘non-fluid’ degrees of freedom, ones that vanish at any state of global thermal equi-
librium and, therefore, are not extensions of any conserved charges. This viewpoint also provides
us some guidance as to how we should formulate the equations of motion for ‘non-fluid’ variables.
Like 7" in MIS theory, any non-fluid variable should approach a vanishing value in a ‘relaxation
type’ equation. The relaxation time scales are provided by the poles in the infinite sum of temporal
derivatives we did in the previous subsection. However, unlike the MIS theory, here, after com-

pleting the infinite sum in the temporal derivatives, the degree of the pole increases ad infinitum
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along with more and more spatial derivatives in the numerator. This indicates an infinite number
of non-fluid degrees of freedom in a nested series of ‘relaxation type’ equations.

We can make this intuition precise in the following set of infinitely many equations. This
is a local theory both in space and time, equivalent to BDNK, at least with respect to linearized
perturbations around equilibrium in the hydrodynamic regime (barring a few singular points in
the frequency domain), but has an infinite number of degrees of freedom, (as we expected) in the

following manner,

0,T" =0, TW=¢ {u”u + %AW} + 7
(L+0D)7" = —206" + pi",

(14 D)t = (~2)(~0) VT 4 g

L+ ID)p = (-20)(-0) (=3 ) VTG it g

(L XD = (=207 (= ) ZVHTT 4
18D = (200 (5) TR ik

(6.34)

Eq. (6.2) and so on set an infinite nested series of new degrees of freedom much in the same line
as the conventional MIS theory given by Eq.(6.4) and (6.5). Eq.(6.2) combinedly boils down to
Eq.(6.32) and (6.33) where each increasing spatial gradient term is now attributed to a new degree

of freedom.

6.3.2 Method-2: Frame transformation in one go

In the previous section, we have solved the linearized frame transformation equations (6.13) and
(6.14) using derivative expansion. Though the method of derivative expansion could be applied to
solve even a nonlinear set of equations, we have heavily used linearization to simplify the solution

further. In fact, the way we have summed the infinite series to generate temporal derivatives in
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the denominator is clearly a formal manipulation, and it makes sense only in the case of linearized
treatment in Fourier space. It also indicates an integration over time, which is then made local by
introducing new ‘non-fluid’ variables.

Now, while solving (6.13) and (6.14), if we eventually allow ourselves to have temporal deriva-
tives (ﬁ) in the denominator, there is no harm in having spatial derivatives as well (again makes
sense only when viewed in Fourier space and indicates an infinite order of spatial derivatives or in-
tegration/nonlocality in space). In this subsection, we shall use this formal manipulation of having
both spatial and temporal derivatives in the denominator. This will lead to solutions of the frame
transformation equations (6.13) and (6.14) in one go.

The steps are as follows. First, we take the divergence of equation (6.13) and the following two

coupled scalar equations will give the two scalar variables (V - §u) and 67 /T as,

T 5T - |\v2T ..

[1+0D] (v-au)wv?‘; +0 VT +DV-a| =0, (6.35)
0T R e

[1+XD} =+ 3 (Vo) =0. (6.36)

In Eq.(6.36) we have used the on shell identity % + %@ -4 = 0 that always holds at linearized
level under Landau frame condition. Now eliminating (V - du) from the above two equations, first
we find %T. Then, substituting this solution in (6.13), we find the expression for Ju*. The final

solution (BDNK variables in terms of Landau frame variables) takes the following form:

w = (@ + out) (6.37)

- 6.38

- (1 +«§D) (63%)
-1 o . ¥ - rowveT 9. .

- (1 + 9D> [(1 +0D)(1+XD) - 03 VQ] [9 a3 (9 + X) VAV - u)] . (6.39)

In the Landau frame, the stress tensor will again have the structure of the form given in equation

(6.18). After substituting the solutions (6.39) there, we finally get the following shear tensor,
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wgwf — LG+ V) <@ . u)
(1+6D)(1+ D) — 6% V2

277@
146D

(6.41)

2
ﬁ'“”:—|: 77~A:|6-MV+
1+6D

Equation (6.41) could be further simplified using the fact that in Landau frame at the linearized

level V - 4 and % are related as follows,

V-u+3 < - > = terms nonlinear in fluctuations. (6.42)

Using identity (6.42), Eq.(6.41) becomes,

7%’“’——[ QT’M]&W
i Pl vt
{1+(6+X)D} :
~ A S é.. A~
(1+0D)(1+xD) — = V?

2n6
1+6D

(6.43)

The equations (6.39), (6.40), (6.41) and (6.43) are all very formal with spatial as well as temporal
derivatives in the denominator. But following the strategy presented in the case of MIS theory, we
can recast equation (6.43) as an inhomogeneous differential equation for the new ‘nonfluid’ degree

of freedom 7*" as follows,

w

[(1 L GD)(1 + D) — X @2} {4 D) 1 2mir)

. Y Veyn T
; } VIVAT (6.44)

= 2né{1+ (0+x)D
T
Here, just like in MIS theory, we are introducing only one new ‘non-fluid’ tensorial degree of

freedom, but it follows a complicated inhomogeneous PDE, second order in spatial but third order

in temporal derivatives®.

3Note that in the limit ¥ — 0, the equation (6.44) becomes very similar to the corresponding equation in MIS theory
with a slight modification as follows.

. Y AvIAviok s
(1+0D)a" = —2n [&W_9<v Z )

(6.45)
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Comparison with the previous method with infinite ‘non-fluid’ variables

Generically, a nonlocal theory could be made local by introducing new degrees of freedom, but the
process of ‘integrating in” new degrees could have ambiguities. The two methods described in the
previous two subsections could be one example of this ambiguity. Both methods attempt to write a
system of coupled equations involving both fluid and ‘non-fluid’ variables that are equivalent to the
equations in BDNK theory. However, the structure of the equations and also the extra ‘non-fluid’
variables are so widely different that in the first case, we need to introduce an infinite number of
variables, whereas in the second case, we need just one. In this subsection, we would like to see
how these two sets of equations are actually equivalent, at least in some regime of frequency and
spatial momenta.

It turns out that the field redefinition we have used in the first method (see equations (6.29) and

(6.31)) could be further rearranged in the following fashion. For the velocity redefinition, we have,

ut ="+ ouf + duby + - - - (6.46)
iy ] _X) 7T
SR VU ) NS S PRI ) T G ) MR O i
(1+6D) (1460D)(1+xD) (14+60D)(1+xD) T
0 _X .y _Xx) o
(=6 ( i’;)A PRI ) B ?;)A V24 w(v-a). (6.47)
(1460D)2(1+ xD) (146D)(1+ xD)
Similarly, for the temperature redefinition we have,
T=T+6T + 06T+ (6.48)

N>

L [1+ (=0) (-3 e,
(1+3D) | (

+T (_§N)A __ [1 + (_@A (_%)A Vig...
(1+xD)(1+6D) (1+6D)(1+xD)

(@ - u) . (6.49)

Substituting this rearranged field redefinition, the dissipative part of the stress tensor could also
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be rearranged as,

79 = — 2pA°s L ugr
"1 (1+0D)
(—6) L leuew (=0)  (=3%) 2 7
(1+60D)(1+xD)1T (1+60D) (1+ xD)
(=0) _(=5%) VEVY L1+ (=0) (5% V2. L V0P (6.50)
(14 6D)2(1+ D) (14+6D) (1+ YD) P '

Now the infinite sum in powers of spatial derivative V2 converges for those linearized pertur-

bations where the operator satisfies the inequality,

. (5) v <t 651

1+6D)(1+ xD)

Within this radius of convergence, we can again sum the spatial derivatives and get the following

expression for the field redefinitions,

ut = at 4 oul + dub + - - (6.52)
_ 1 A
“(+éD)
A i) (% v ( u)
+<_§) _ T _ + ( )(~ As) _ — :
[(1 +0D)(1 + XD) — eg@z} (1+6D) {(1 +0D)(1 + YD) — egw]

2L L0 (G4 1) VA(V - Q)

a +1§f?)a# (1+ éD)T[u :e< )(1 ) D) — 52]62} ’ (639
3

T =T+ 40Ty +---

INCEL) SR - V1) s
(1+9D)(1+5<D)—9§v2] 3 [(1+0D)(1+>~<D)—9 VQ]

[

3
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From (6.53) it is simple to estimate 7" as,

FHv [—é AL} + 0% L iy (V . ﬂ)]
—_— 2

~ T 3 (1+6D)
T = —2n — — — )
(1+0D) [(1 +0D)(1 + YD) — 65%2
~ A ~\ vA'Avidk s
o [ [ ()
1+6D 1+6D| | (1+6D)(1+xD) — 6% v2 '

It can be observed that Eq.(6.53), (6.54) and (6.55) are exactly identical as (6.39), (6.40) and
(6.43) of the field correction at one go results. (In the second step of the derivation of (6.53) and
(6.55), we have taken recourse to the identity (6.42). For detailed steps of the summation, the reader
may refer to appendix D.1.) So, within the radius of convergence, both methods actually generate
the same set of equations as expected.

At this stage, let us emphasize one point. This method of ‘integrating in” new ‘non-fluid’
degrees of freedom with new equations of motion is highly non-unique, even at the linearized level.
For example, we could have chosen du* and 7" themselves to be the new ‘non-fluid’ variables,
satisfying the new equations as given in (6.13) and (6.14) and we could take a viewpoint that the
ut and the 7' fields in the BDNK theory are actually the Landau frame fluid variables plus ‘non-
fluid’ variables {du*, §T'}. Note that though du* and §7 would look very much like velocity and
temperature corrections, they are still ‘non-fluid’ variables in the Landau frame since they vanish in
global equilibrium. Another choice of introducing infinitely many ‘non-fluid’ degrees of freedom
would be to simply use du¥ and 67, (as defined in (6.15)) and then the recursive equations (6.16)
would turn out to be the new equations of motion.

The two choices of new variables, discussed here in detail, are basically guided by our sense of
mathematical aesthetics and an attempt to adhere to the philosophy of MIS theory where the new
‘non-fluid’ variable is a rank-2 symmetric tensor, structurally very similar to the energy-momentum

tensor. At the moment, we do not have any further physical support behind our choice of variables.
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6.4 Dispersion relation

As we have seen in the previous sections, a system of fluid equations with terms up to all orders in
derivative expansion could be converted to PDEs with a finite number of derivatives, provided we
introduce new ‘non-fluid’ degrees of freedom. The ‘non-fluid’ variables we introduced basically
capture the effect of a formal infinite sum over derivatives, leading to pole-like structures in the
momentum-frequency space.

Now, these infinite series in derivatives (or, more precisely, in the 4-momenta of the Fourier
transform of linear fluctuations) could be summed only within their radius of convergence. Once
we extend the summed-up theories beyond that radius, we often encounter ‘non-hydrodynamic
modes’ that are not exactly the same as that of the BDNK theory*. However, in this section, we
shall see that the hydrodynamic modes of the system of equations described in the previous two
sections are both exactly the same as that of the BDNK theory at every order in k expansion. This
is a consistency test of our claim that our system of equations is indeed equivalent to BDNK for-

malism, at least in the hydrodynamic regime.

4A similar situation arises in the case of the MIS theory as we have presented in section 6.2. In the hydrodynamic
regime, the stress tensor must be described in a derivative expansion, which turns out to have an infinite number of
terms (see equation(6.6)). Now, in the frequency space (w), this infinite sum can be performed only within a radius of
convergence, which in this case turns out to be

1
Dn~w < —.

Introducing new ‘non-fluid’ variables 7" essentially amounts to extending the theory beyond this radius of conver-
gence. Now w = — -~ is the new non-hydro mode that emerges in the process of integrating in 7 and this mode is
exactly on the radius of convergence of the previous derivative expansion.
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6.4.1 Method -1

Here, the equivalent system is described by an infinite number of variables and, therefore, an infinite
number of equations. For convenience, let us first quote the equations here again.
0,T" =0 T = ¢ [A“”’Jr A‘“’} + T
Y 3 Y
(1+6D)a" = —2p6"" + p}”,

~ v 1 ~a1%e a v
(L+XD)p" = (=20)(=0)=VIV"T + pb,

(6.56)

The ‘non-fluid’ variables are 7/ and the infinite sequence of ph”s, each satisfying a relaxation type
of equation.

We parameterize the perturbation around static global equilibrium in the following fashion,
T =T + € T /To(-wtthe)
" = {1,0,0,0} + € {0, Bs, By, 0} e To(-wtthe)
i = € dpyr TR = —9pl = —2p7F v
prv = e 5piy e Towitkn) (6.57)

all other components of p/” vanish for every n.

Here, € is a book-keeping parameter for linearization. Any term quadratic or higher order in
e will be ignored. We have scaled the frequency and the spatial momenta with the equilibrium
temperature 7} so that both w and £ are dimensionless. Similarly, we introduce new dimensionless

parameters of the theory 7y, Yo and 9~0 as follows,

S
Il

Sz

s

7 X

S|
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If we substitute the fluctuations (6.57) in equations (6.56), we find the dispersion polynomial
P(w, k) whose zeroes will give the modes where the fluctuations can have a nontrivial solution.
Now, in this case, it is difficult to express P(w, k) in a compact form since the equations involve
an infinite number of variables. Instead, we shall determine the dispersion polynomial Py (w, k)
for the same system, truncated at some arbitrary but finite order n = N recursively. The infinite

N limit of Py (w, k) will give the actual dispersion polynomial of the system. We have,
Pr(w, k) = P (w, k) PR (w, k) (6.58)

where,

’[)Shear(u}, /{:) =1 k2 —iw (1 —1 éo W) )

|z

IPJS\([)und<w7 k)=(1—ixow)2(1l—1i éo w)%PN(M k) When N even,

PR (w, k) = (1 =i Xo W) (16 w) 2_IPN(W, k) When N odd . (6.59)

Note the factor Pt (w, k) is independent of N. We could further check that it has the same
form as that of the dispersion polynomial in BDNK theory (see (6.9) and (6.10)) in the shear chan-

nel. For Py (w, k) we have a recursion relation as follows,

4no
3m
B0 G (112D (L) N =2 0
Zm 0 X0! iw) foreven N =2m, m >0,

Py = 3iw?(1 — i Yo w) + k(i 4 47w + Gow) .

Pom—1= (1 =1 Xow)Pom—2 —i < ) g xm= (k)2 ™Y forodd N =2m —1, m>1,

sz (l—leouJ)Pgm 1—’L(

(6.60)

From equations (6.58), (6.59) and (6.60), we could see that the degree of the polynomial (and
therefore the number of zeroes) in the sound channel increases as we include more and more ph”s in
our system of equations. In other words, with increasing NV, we keep getting more and more modes.

However, it is easy to take £ — 0 limit in these recursive equations, and one could see that in the
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sound channel, there are precisely two modes at w = 0, and all the rests are either at {w =— t} or

0

{w = —éi} similar to the BDNK theory at £ — 0 limit. According to our definitions, the modes
with vanishing frequencies at £ — 0 limit are the hydro modes. So, this system of equations does
have two hydro modes in the sound channel, as expected from the parent BDNK theory. Further, by
explicit calculation, we can see that these hydrodynamic sound modes match with those of BDNK
even at non-zero k, if we treat k perturbatively in a power series expansion °. So clearly, the hydro-
modes in the equations described in these sections for both the sound and shear channel (in the
shear channel, even the non-hydro modes match with BDNK) are the same as those of BDNK,
justifying our claim that this system of equations is equivalent to the BDNK systems of equations

in the hydrodynamic regime.

6.4.2 Method -2

For convenience, let us first quote the system of equations that we would like to analyze,
v v A | Ap sy 14 v ~ v
oI =0, T =:¢ [u“u + gA“ } + (6.61)

[(1 +6D)(1+4 xD) — (% @2] {(1 +6D)7" + 2775”"}

. . y VevIT
_ 2776{1+(6+>2)D}T. (6.62)

As before, we parameterize the perturbation around static global equilibrium in the following fash-
ion,

T =Ty + € 6T e Tol-witke)
= {1’ 0’ O’ O} +e€ {07 69:? ﬂy, O} €iTO(_"Jt+kx) ,
(6.63)

T — ¢ §t ezTo(fwt+kac) — oYY — _9p*F 7

T — ¢ 7Y ezTO(fthrkx)

Y

SIf we truncate the equations at n = N, then the frequency of the sound mode matches with that of BDNK upto
order O ~ (k™*3). This we have checked in Mathematica for all N < 10.
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with € as a book-keeping parameter for linearization. Any term quadratic or higher order in € will
be ignored. Again, the frequency and the spatial momenta are scaled with the equilibrium temper-
ature Ty so that both w and £ are dimensionless. And also we have introduced new dimensionless

parameters of the theory 1)y, Yo and 0~0 as follows,
X = =/, ==

Substituting equation (6.63) in the system of equations ((6.61) and (6.62)), we find the following

dispersion polynomial,

P(w, k?) = (1 — ’iéow) [(%&)) k’2 + (1 - Zéo(x})(l - ’i}ZQCL)) PBDNK(CL), k) 3 (664)

where Pgpnik (w, k) is the similar dispersion polynomial computed for the fluctuations around
the static equilibrium solutions in BDNK systems of equations as given in (6.9) and (6.10) and

given by,

PBDNK = (77]0]62 — ZW(l — ’léo(x))) X
Xéw“ﬂ‘(f& +é)w3— 14 2% (é +277)k2 oﬁ—f(;z +6 +4ﬁ)wk2+k—2+é_0(
ovo 0 0 3 0 0 0 3 0 0 0 3 9

(6.65)

In other words, the zeroes of Pspnk (w, k) are the hydro and non-hydro modes of the BDNK
theory.

From equation (6.64), it is clear that all the modes of the BDNK system are already contained
in the system of equations (6.61) and (6.62). However, they also contain some new modes, which

are the zeros of the prefactor,

= Pl k) = (1 — ifpw Xof ) 12 — ifow) (1 — iXow
Pextraw,k)_( ))—u do >[< / )k £ i) (1~ i) | - (666)

Pepnk (w, k
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Note that all these new modes are of non-hydro type. One could further check that they corre-
spond to the zero modes of the linear PDEs that determine the shift of the velocity and the temper-
ature field (0u* and 67" respectively) under frame transformation (see equation (6.16)).

The existence of such zero modes implies that if we view Ju* or §T as generated from a field
redefinition (and not as new ‘non-fluid’ variables), then even after fixing the Landau frame con-
dition, there are still some unfixed residual ambiguities (which exist only at some special form of
w(k)) in the definition of the fluid variables. On the other hand, if we absorb these shift fields (du*
and §7") into new ‘nonfluid’ variables, the extra zeros of the prefactor Py, (w, k) do become the
new modes of the theory. In some sense, the residual ambiguities in the field redefinition procedure

translate to the non-uniqueness of the UV degrees of freedom beyond the hydrodynamic regime.

6.5 Conclusion

In this work, we rewrite the stress tensor of the BDNK hydrodynamic theory in the Landau frame
at least for the part that will contribute to the spectrum of linearized perturbation around static
equilibrium. Though the BDNK formalism has a finite number of derivatives, it turns out that
in the Landau frame, it will have either an infinite number of derivatives or one has to introduce
new non-fluid variables. There is no unique way to introduce these non-fluid variables. Here,
motivated by the structure of the MIS formalism, we have presented two different ways of doing
it, resulting in two completely different-looking sets of equations. However, both the sets have
the same hydrodynamics modes as the BDNK theory. But in the process of ‘integrating in’ the
non-fluid variables, new non-hydrodynamic modes are generated.

In both methods, we need to do a formal infinite sum over derivatives. We suspect that the
convergence issues of these infinite sums, also related to the ‘non-invertibility’ of the zero modes
ofthe linear operator involved in field redefinition, are responsible for these new non-hydrodynamic
modes. However, this point needs further investigation.

More generally, it would be interesting to know if we can identify a part of the spectrum to
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be invariant under field redefinition and, therefore, truly physical. ¢ In this context, the following
observation seems useful. In BDNK theory, if we set viscosity (1) to zero (with nonzero y and 6),
then via field redefinition, the stress tensor could be made identical to that of an ideal fluid at the
linearized level, though in the original ‘BDNK’ frame it will have nontrivial dispersion relation
dependent on the values of x and 6. This indicates that there might be some partial redundancy
in the information contained in the spectrum of a fluid theory. It would be nice to have a more
comprehensive understanding of this aspect of the spectrum.

Our work has set up a stage for comparison between the BDNK and MIS-type theories. At first
glance, they look very different. However, the fluid variables like velocity and temperature used to
express the BDNK stress tensor are not the same as the ones used in MIS theory. A comparison is
meaningful only if the basic variables of the equations are the same. Once we have done the required
transformation, it turns out that though there are differences in the details, the basic structure of
nonlocality or ‘non-fluid’ variables is very similar in both theories. The advantage of the Landau
frame is that the fluid variables are locally defined in terms of the one-point function of the stress
tensor, but in this case, the causal equations turn out to have nonlocal terms or an infinite number of
derivatives. Whereas in BDNK theories, the equations are local with a finite number of derivatives,
but the fluid variables are related to the one point function of the stress tensor in a very non-trivial
and nonlocal fashion.

However, there is more information in the BDNK formalism than what has just been stated
above. It says that there exist causal fluid theories where the non-localities could be completely
absorbed in a field redefinition, thereby generating causal but local fluid theory with a finite number
of derivatives. Since the final equation we derived on the shear tensor 7 is different from what
one conventionally has in the MIS theory, it also says that the non-localities of the MIS theory could
possibly never be completely absorbed in the field redefinition.

It would be interesting to extend this analysis to full nonlinear order. Also, it would be very

®Building upon the work presented in this chapter, in [144, 145], it has been shown that it is indeed possible to do
so using infinite order field redefinitions.
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informative to know whether and, if yes, how the story changes as one adds higher order derivative

corrections to the BDNK theory.
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Chapter 7

Conclusion and Future Directions

In this thesis, we have analyzed different aspects of the dynamics of black holes and relativistic
fluids in a linearized regime near equilibrium. In the first part of the thesis, we have looked closer
into the effect of the horizon’s null generators’ reparametrization on the statement of the second law
on a black hole horizon. In the second part, we have explored different aspects of two well-known
stable-causal relativistic hydrodynamic theories in the conformal uncharged limit.

Both the works of Part 1 are focused on black hole solutions in the Gauss-Bonnet theory and the
linearized regime in the dynamics of amplitude. The first work analyzes the effect of reparametriza-
tion of the horizon’s null generators on the statement of local entropy production on the horizon.
The results suggest that for the Gauss-Bonnet theory, although the entropy density and the spa-
tial entropy current on the horizon transform non-trivially and non-covariantly, their combined
divergence is covariant under the reparametrization up to linearized order in amplitude dynamics.
Hence, local entropy production at each spacetime point on the horizon remains invariant under this
affine-to-affine reparametrization of the null generators. In [2], we have extended this analysis for
arbitrary higher-derivative gravity theories non-minimally coupled to matter fields. The transfor-
mation of the entropy density and spatial entropy current under such reparametrizations has been
explicitly derived, and the effect of constructional ambiguities (Iyer-Wald ambiguities) can also
be seen. In the second work, we have used the fluid-gravity duality to dualize this combination
of entropy density and spatial entropy current on the horizon to an entropy current for a fluid re-
siding on the boundary of an asymptotically AdS spacetime with a black brane in the bulk. For
generic higher-derivative gravity theories and generic mapping functions between the horizon and
the boundary, we find a non-trivial dependence of this entropy current on the mapping functions.

This prevents them from being called “genuine fluid entropy current” as these mapping functions
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may or may not be expressible solely in terms of fluid data.

In the first work of Part 2, we derive the causality criteria for conformal uncharged MIS and
BDNK theories, which are the two most well-known formulations of stable-causal relativistic hy-
drodynamic theories solely using linearized stability analysis. The derivation makes use of the fact
that the causal parameter space of a theory is also stable at all frames connected by Lorentz boosts.
Hence, the region of the parameter space, which stays stable in all the Lorentz-boosted frames, is
identified to be the causal parameter space, and the corresponding inequalities give us the causality
constraints on the parameters. The important result we find here is that the region of the parameter
space stable at an ultra-high boost (boost velocity nearly equal to the speed of light) is the one that
stays stable in all frames and, hence, is the causal parameter space. The corresponding stability
criteria that one gets at an ultra-high boost are the causality criteria. In the second work of Part
2, we use the freedom to redefine hydrodynamic fields to rewrite the stress tensor of the BDNK
theory written in a generalized hydro frame into the Landau frame. We find that, although the
stress tensor in the BDNK theory as written in a generalized hydrodynamic frame is truncated at
the first-order in derivative expansion, when written in the Landau frame, the stress tensor has an
infinite number of derivative corrections. These infinite corrections can be recast as extra non-fluid
degrees of freedom, as in the MIS theory. This procedure of incorporating new degrees of freedom
in the theory is non-unique, and we show two of the possible ways to do the same, motivated by
the form of the stress tensor in the MIS theory. We also find that the field redefinition leaves the
hydrodynamic modes of the theory unchanged, but modifies the non-hydrodynamic spectrum of
the theory, including leading to degenerate non-hydro modes.

The analyses performed in this thesis shed light on some possible avenues for future explo-
rations. Broadly, the frameworks developed here can be used to understand entropy currents on a
black hole’s horizon in more detail, to understand the causality properties of a hydrodynamic theory
without departing from the low-wavenumber regime, and to utilize the fluid-gravity correspondence

in constructing stable-causal theories of hydrodynamics from some gravity dual spacetimes.
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As indicated in [2], it might be an interesting open direction to use the Iyer-Wald ambiguities in-
volved in the entropy current construction to generate such pieces in the entropy current that exactly
cancel out the non-covariant terms in the affine-to-affine transformation of the currents. For exam-
ple, in the Gauss-Bonnet theory, the entropy density and spatial entropy current would receive extra
terms upon fixing the Iyer-Wald ambiguities, which might, in turn, contribute to the entropy current
exactly canceling out the non-covariant terms in the entropy current’s transformation. If this were
possible, it would then be interesting to check if an algorithm can be developed to systematically
cancel out such non-covariant pieces using appropriate ambiguity fixing and, therefore, develop a
procedure to write entropy currents that transform covariantly under coordinate transformations on
the horizon. The investigation can then be extended to test whether these entropy currents trans-
form covariantly under non-affine coordinate transformations. This can then open up a variety of
new directions as one can then try to extract an ‘improved’ boundary entropy current from here.
These would be different from the ones derived in [95] as they’d have lyer-Wald ambiguities fixed
to certain values and might possibly be genuine fluid entropy currents. These ‘genuine’ fluid en-
tropy currents originally valid for linear amplitude regime only can then be uplifted to construct
entropy currents valid even in the nonlinear regime of dynamics, using algorithms developed in
past works as [94]. These entropy currents can then be mapped back to the horizon to understand
the second law for black holes in the regime of nonlinear dynamics.

One can also explore these entropy current structures and the associated coordinate transfor-
mations from the perspective of Carrollian symmetries. Since the horizon is a null hypersurface, it
is endowed with an underlying Carrollian symmetry [121]. The reparametrizations on the horizon
seem very similar to what has been described as Carrollian diffeomorphisms [146]. A possible
first step towards understanding this connection can be to construct structures on the horizon that
are covariant under Carrollian diffeomorphisms. This would help in examining the validity of the
reparametrizations as Carrollian diffeomorphisms. One could then try to express the second law

on the horizon in terms of Carroll covariant structures, possibly as some conservation equation for
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a current. A far shot would involve interpreting the entropy current as a Noether current, corre-
sponding to some symmetry, possible symmetry under Carrollian diffeomorphisms.

The model-specific derivation of causality criteria for MIS and BDNK theories using stability
analysis in [96] is limited to the conformal uncharged limit. Lifting these assumptions, it would
be interesting to test whether stability criteria at ultra-high boost indeed give us the causality con-
straints in the theory. Some analyses indicate that it is indeed the case for non-conformal, un-
charged, and charged conformal MIS theories [130], hinting towards the generality of the analysis.
It would be useful to actually prove this identification of causality and near-luminal stability cri-
teria for general dispersion polynomials. This would then allow for the causality of a theory to be
analyzed without departing from the low-wavenumber regime of the theory, which is more suitable
and conceptually appropriate for a derivative expandible effective theory like relativistic hydrody-
namics. For hydrodynamic theories in general, and specifically in those derived from a gravity dual
theory, this method of causality analysis can lead to a more proper way of deriving the constraints
on the parameters.

The concept of introducing infinite order derivative corrections to a theory to maintain stability
and causality, as studied in [98], can be extended to gravitational solutions as well with the moti-
vation to construct stable-causal hydrodynamic theories from a gravitational dual. It would then
be interesting to resum these infinite corrections into new degrees of freedom on the fluid side and
find their interpretations on the gravity side. The authors in [68] have already constructed a gravity
dual for the BDNK stress theory using an appropriate choice of the zero modes of the solutions. It
would be interesting to compare these results with one obtained by adding an infinite no. of correc-
tions to a uniform black brane solution in asymptotically AdS metric. One can also try to involve
higher-derivative corrections to the gravitational solution and check whether a BDNK stress tensor
can be constructed corresponding to these. It can further be checked whether the causality anal-
ysis for such a boundary fluid can constrain the coupling parameters of higher-derivative gravity

corrections, as was done in [77-79]. Further, it would be interesting to explore the connections
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between the quasinormal modes of the bulk spacetime and those of the boundary dual fluid theory
under the framework of BDNK hydrodynamics. In general, the BDNK theory gives an alternative
formulation to test the general predictions obtained from a dual gravitational theory. One can also
explore if any other alternative stable-causal hydrodynamic formulations are possible besides the

MIS and BDNK and what their implications might be for a dual gravitational theory.
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Appendix A

(For Chapter - 3)

A.1 Notations, Conventions, and Definitions

In this appendix, we summarize our notation conventions and list the definitions of the various

structures that we have used throughout our work.

* Indices: Uppercase Latin alphabets A, B, C... will refer to full D space-time coordinates and

Lowercase Latin alphabets a, b, c... will refer to the (D — 2) dimensional spatial coordinates.

* Choice of coordinates:

XA ={rv,2°}, YA ={p, 7,4} : The full space-time
coordinates in D dimensions
r, p = The radial coordinates
v, 7 = The Eddington-Finkelstein type time coordinates
x% y* = The (D — 2) spatial coordinates
* Choice of Space-time Metrics:
ds®* =2 dvdr —r? X(r,v,2%) dv® 4+ 2 1 wa(r, v, 2°) dv daz® + hey(r, v, 2) do® da®

= Gap(r,v,2%) dX* dXP
=2dr dp—p* X(p,7,y%) dr> +2 p Qg (p, 7,y°) dr dy® + hap(p, 7, y®) dy® dy®
= gas(p,7,y*) dYH dY'B

« Structures like spatial derivatives, curvature tensors, and metric components in the Y* co-

ordinate system will be represented with a ~ on their corresponding counterparts in the X

coordinates. For example, X, w;, hyj, (0, = 52 ) — X, @i, haj, <5a = 6;)
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* Transformation of Coordinates and Derivatives on the Horizon:
r=ep+0(p)
p=er+O(r?
v=e7+O(p)
T=¢e¢ v+ O(r)
2" =y" +0(p)
y* =2+ O(r)
9, = e¢ (8,, + %T%@T + Tf“éa) + O(p)
Dy, = e 0, + O(p)
0o = 0o — 7 &0 + O(p)

where we’ve denoted 9,¢ = 9,¢ by &,.

» Definition of Curvature Tensors:

1 1
Kap = =0,hq K =h"Kqg = —=0,Vh
b 28 b b \/E \/_
5 1 - o 1 -
Koy = -0:hay K = habKab = _Na‘r\/z
2 Vh

Rapcp, Rap, R =

Riemann tensor, Ricci tensor, Ricci scalar corresponding to full metric G or g
Rabcda Raln R =

Riemann tensor, Ricci tensor, Ricci scalar corresponding to intrinsic metric i or h

A.2 Detailed Expressions

In this appendix, we show the explicit calculations for the relation between quantities such as
Christoffel connection, Ricci scalar, and the divergence of entropy current between X* and Y4

coordinate systems.
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 Expression for Christoffel connection in transformed coordinates

Fa,bc = 5 (8bhac + Ochap — 8ahbc)
f - 57_87' (gbhac + &chay — gahbc) (A.D)

= fa,bc - T(gbKac + fckab - gaf(bc)

» Expressions for Riemann tensor and Ricci scalar

Rabcd = _[adra,bc — acl—‘(z,bd + hpqrp,acrq,bd - Fp,aqu,bchpq] (Az)

* Ricci Scalar in transformed coordinates

R = hachbdRabcd
= —hhP 0T o pe + D RO g pac + PRy gal g peh?? — BT, 0al g pch?? (A.3)

_ (hadhbc . hachbd>(adra7bc _ hpqudpq’bc)

adra,bc :édra,bc - deafra,bc
= 04 [fa,bc — T(&pKae + EKap — gaf(bc)} — 7840, [fa,bc — T(&pKae + Elap — faf(bc)]
= [0aTape — T(&alac +§>f‘~<ag— EaaKne) — T(&0aK oo + 0T — €004 e ]
+ [ = 7(6a0s Kae + G0 — £a0aKye) + T(€a&p Kae + Ca€lins — EabalSne)

+ T2 (Ea0r Koo + EEDA s — €400 Ko
(A.4)

The terms canceled in (A.4) due to the fact that terms symmetric in (¢, d) will not contribute
to the Ricci scalar as it has a prefactor of (h%?hb¢ — ha¢h®d) which is antisymmetric in (c, d).

Hence,
Oalape = Ol ape — T[(&oa + &0a + €40y — €6t Kae — (Sad + €aOa + €0 — Eaba) Kae]

+72 [&lﬁb@f(ac - §d§aarf(bc]‘
(AS)
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From eqn. (A.3) and (A.1),
WLy aalgpe = Ty aalgpe — THPT) aa(§K ge + EKgy — & Kie) "
— Thquq,bc(faf(pd + fdf(pa — fpf(ad) + O(€?). (o
Thus, from (A.3), (A.5), and (A.6)
R =R + (hedpbe — pocpbd)
[—27{&a + (§0a + £a0y) — €&} Kuc

+ 27—2 (Sdgba‘rf(ac) + 2T hP1 f‘p,ad(fbch + gcf(qb - qubc)]

(A.7)

+ O(€).
* The divergence of entropy current in transformed coordinates

The expression for entropy current for Gauss-Bonnet theory is given as
J = —4(V, Kb — VK 4h*Y). (A.8)
This implies, that the divergence of Entropy current is
Vo J* = —4(h*hbe — B\ VK og = —4(h*hP — h*h*)\V,V 4 K,.. (A.9)

Let us define a three index object M 4. such that
My ae =VaKoe =Vy (e_CKac) =0y (e_Cf(ac) -1, (e_cf(pc) — I, (e_c_f(ap)
:{ai - deaT}(e_Cf{aC) - f’éa (G_CKPC) - fﬁc (Q_Cf(ap) +O(€%)
=¢ (04K ae — Ealae = Ea70r Koo — T, Kpe — I Kop | + O(?) (A.10)
=e ¢ <?dkac — &Koo — dearf(ac> +0(e)

=~ (Maae = (63)aac ) + O(E),

(0M)d0c = &4 (K + Tan(ac) (A.11)
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Also, we define
Wabed = VoM ac
=0y Mgac — UpgMpac — T Mape — Ty M ap
:51) {67( (Md,ac - (5M)d,ac>} - fbechaT (Md,ac - (5M>d,ac>
et [fi’d (Wtpae = (0N )pae) + Ty (Mage = (53)ape) + T (Vi — (0¥ )y } +0()
=e ¢ [@bMd,ac —&(1+170;) (Md,ac - 5Md,ac> — @b(SMd,ac}
=e ¢ [@b@df(ac — &My e — VO Myae — T My ae + &(1 + 7—67)5Md,ac]

:e_c [ﬁb@df(ac \_gb@dkac - @b(SdKaCZ - @b(deaTKaC) - beafﬁdkas

te%l terEZ
—+ §b<1 + T@T)(idkac + dean(acZ:| + O(€2>.
ter‘rrn?a
(A.12)
Now,
term 1 = — éhb@df(ac - 6b(ngN(aC)
= - gbédkac + gbf‘zakpc + gbfch(ap - Sdébkac + fdf‘gaf(pc (A13)

+ 610 Kop — il ae + T8, Ko
From (A.9), we see that for calculation of the divergence of entropy current, the terms in
(A.12) have to be contracted with (h*h% — ha°hd), which is antisymmetric in (c,d) or
(a,b). Now, in (A.13), the terms &1 K, and &% K. are symmetric in (c,d) and (a, b)
respectively. Hence, these can be dropped. In addition, we can perform some relabelling of

indices and rewrite term 1 as

term 1 = — Sbédkac + Sbf‘gakpc - gdébf(ac + gcf‘idkbp - dekac - f‘gdgpkbc-
~ o ~ ~ ~ R R (A.14)
= — (&0a + £a0p) Kae — &pallac + 1% (€K py + &K pe — &5 Ke).
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In a similar fashion, we can express term 2 as
term 2 = — ngaT@dKac - 6b(éudTaT}N(aC)
=T [gb@d(arkac) + ﬁb(fdaT[%ac)] + 0(62)

=T [(gbéd + gdéb)an(ac + gbdaTKac - f‘Zd(gcaTKpb + gbarkpc - gpaTKbc) + 0(62)-
(A.15)

Now, evaluating term 3
term 3 =&,(1 + 70) (§aae + £a70r Koc) = G Kae + 370- Koo + 7202 Koc). (A16)
Combining results from (A.12), (A.14), (A.15) and (A.16)
Waped = € [@b@dkac - (fbdf(ac> - (Sbéd + fdéb) Koo +T7, (&af(pc + &Ky — fpf(bc>
-7 {fbd + (fbéd + §d5b> } (0, Koe) + 717, <€ba7']~(pc + E0- Ky — gpaTKbc)

+ 5b5dkac + 3T€b§daTKac + £b§d7—2672—[~(ac:| + O<62)'
(A.17)

Hence up to O(e), the divergence of the entropy current becomes
Vaja = €7C@aja - 4€7<(hadhbc - haChbd) |: - <€bdkac) - (Sbéd + $d5b>[~(ac
+ T2 (& K pe + EKpy — §Ke) — T{&a + (§0a + £a0) H(0r Koc)

+ 712 J(&0r Kpe + €0, Ky — £,0- Kie) + EaK e + 3766407 Koo + E€am? 02 Koo |
(A.18)

A.3 Action of Derivatives on some Specific Structures

In this appendix we’ll see how the derivatives of certain boost weight 1 structures transform under
the coordinate transformations. We’ll see how these terms can be condensed into some particular
forms that can help us manipulate them in simpler ways.

Any boost weight 1 term can be written in the form of d,(some boost weight 0 structure, say

Qa;as...a,)- Transforming the 0, operator under the coordinate transformations as in (3.19), we can

159



A (For Chapter - 3)

write it as ¢ ¢ (0, Qa,as,...a, ). Also since 7 is analogous to the v coordinate itself, (0;Qq,a,...q, ) itself
is a boost weight 1 structure in the {p, 7, y*} coordinate system. Now if we act with a Vi on this

structure, we get

Vi (analag...an) = Vi(e_c (87Qa1a2.--an>)

(A.19)
:ai<€_<<aTQa1a2...an)) - B_CF?g,laTQbag...an - e_CF?QQaTQalb...G/n"' - €_<FfanaTQala2__b

ai(eic(aTQalaz--.an)) = (51 - fiTaT)(eic(a‘rQalaz...an))
= _fi(eic(a‘rQalaQ.‘.an» - é-iT(eicaT(aTQmag...an)) - €7<5i<87'@a1a2...an) (A20)

= e*C |:(§@'<87Qa1a2...an) - §z(1 + T&T)<87Qa1a2...an)i|

F?am (aTQmaQ..b..an) = [f‘?am - T(gk)} (87Qa1a2..b..an) = f‘?am (aTQalag..b..an) + 0(62)

évi(analaQ...aTJ = e_C [61 - Sz(l + 7_87')} 87Qa1a2...an + 0(62)
(A.21)

This form becomes especially useful while calculating J* and V;.J*.
One more structure that can appear in the calculations of the 0, J" is of the form 0, (7Q) from
the extra terms that are generated due to the coordinate transformation. This derivative can be

arranged in the following form which makes it easier to manipulate.

0, [rQ] = 0, [TQ] = (1 4+ 79,)Q (A.22)
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(For Chapter - 4)

B.1 Notations and Identities in 4

Here, unless explicitly mentioned, all identities and equations are valid only on the horizon, the

null hypersurface at r = 0.
hij = lfll;xm,
Crij = LU Toyw + X U (i - O)1F
K;j = lfl]”-lCW where K, = —t°T', .

Notation related to coordinate transformation

Ox*
= s e’nt = e ||n|| A" where n* =G" ||n|| = /nFnrn,,
v
- ov - ; - , . ; -
ty = gyt ttt =1, t'x,, =0, ", =t0' =0, ', =¢], LI, +t't, =3

0= GurGrr + GMVGVT = _X/Wuua = Xlwu# =0

1=G6"G,, + GGy = —nl'uy,, = nfu, = —1

Proof for the first identity in equation (4.19)

Define (= er#n]in ... [in (25 ) Now we could show that the expression [/}, - - -

n!

could be expressed as

R (I o T
Ui U iy, = QP €y

. . €
I _ pV1Ungit | Jin 11°"ln
V€ pprmpn = €pprropin € by -1y, ( )
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Projectors and related identities

A%, =69 — 1],

o

Note #,A%, = A%, t" =0
XQB = Aau X" A/Bw XX = AFY (B4)

X' “Xaw = 08 + 1wy, = uy X" Yo = X' “Xaw n” =0
B.2 First few functions of the coordinate transformation

We shall determine 7(;) and x by processing the gauge conditions evaluated at p = 0. On the
horizon, the gauge conditions impose the following constraints

= 20,21y F O T X = 0, —wr @t H T Xw = 1 el ) X =0

(B.5)
o 8x(0) g (91:’(0)
ov |7 "\ Oy

From the second equation using the fact that t*(x ., ),~0 = 0 we find

where

ray = —(u,t") ™ (B.6)

To simplify the solution for z* (1) We also need the relation between Y, and h;; on the horizon.

ozt ox
hij(pzo): (aa) (aa )X#u(r_())_l i Xuv|r 0
i j

h(p = 0) = Inverse of h;; at horizon = (ij) component of the inverse of the bulk metric on the horizon
da'\ (Do’ da?\ [ da’ da da’
= GPH - - pp
|G) (5) + (55) (@) o (5) (5)
dal\ [ dat da?\ [ dat
pv
rer | (G () + (o) (5
(200 (P00 (50 (B0N] g [(000) (000, (007 (00
B oxH dp oxH dp oxH oxV oxt oxV
(O da'\ [ 0al dad\ (ot e da\ (0o’ N dad\ (0o’
v oxH ap Ozt dp oxH oxVv oxH oxV
da?\ (Do’ da?
— v |22 1M
e G) Ge) + (ax) (5e:)] -

(B.7)
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In the third and the fourth lines, we have used the fact that
x#

G (p=0) xth= (8_> = generator of the horizon
v

also G??(p = 0) = 0 and x*¥ = G* # Inverse of y,,,, (not defined on the horizon).

We also need the inverse of these relations i.e., x,,, and x** in terms of h;; etc.

XW,(T = 0) = l;lljjh”

5 L1 Ox*\ [ 0x” ox"\ [ Ozt
=0 =i+ (50 (55) + () (57) ) B9

— BURY [t 1+ o]

Now we shall solve for xé‘l). For convenience, we shall express xé‘l) as
afyy = Pt + P (B.9)

Substituting (B.9) and (B.6) in the third equation of (B.5) we find

L PPN =0 = PP =—hY [ —
wp T X (ut) (B.10)
where  h;;(p=0) = lf‘l}’ij, h" = Inverse of h;;
Now we shall find P from the first equation of (B.5).
_ QuMm’(*l)r(l) + xé‘l)m(”l)xw =0
(lu , (B.11)
Solving this equation we find xfl).
1. .. (UZ)(ul) B (u.li)l‘,‘
" A ¥ ? J th — pY _J B.12
=5 [ (u-1) 1
Some Potentially useful identities for future works
1. x’é) related
mul _ lhij {(U lz)(“‘lj)} o {(u lz)lq
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Using the two identities
h = l;lix’“’, l;l;’ = —t't,, x"™u, =0

we could further process the expression of xé‘l)
R (u-1)(u- 1) = (u-t)? (faxaﬂfg)
R - )l = (u-t) [T + t* (fax*’s) ]

1 - ~ -
= T()y = ~3 (tax*ts) t* + 1, "

. Metric related:

hij(p = 0) = 15 X (r = 0)
Wi(p = 0) = X" (r = 0)

o

X =0T + aft + )

. Geodesic related

tVatplpmo =0 = t*t" T4, =0

. Extrinsic curvatures

[_(ij — ZMZVICMV

Y]

g

where

K = —tTq

Ko = (9t + 0,t,) — {Qtu,, + a"u“] _ OrXuw a

(u-1) -

Ty Lo
(u-t) (1) et
Kz’j[(ij [ |:X“1H2XU1112 _ (Xuluzx'(fll)tw 4 XVWQxl(ill)tﬂz) } ]Cmyl ]6#2”2
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B.3 Boundary current in terms of fluid variables and 0,¢

Simplifying J%

space
We shall first show an identity K, =0
I, = — 19T o
= — "1 [0uXva + OuXpa — OaXuw] (B.18)
= — t'"t" Oy Xpa = —t"0y [t*Xpa) + ' Xpa (0,t%) =0

Now expanding D, K,,, we find
Da’CMV - aalc;w - )—<9¢ <F¢,QHIC0V + F¢,aV’C0;L) + tg (’Cﬂuaufa + K@uaufa) (B19)

The last term in the RHS of equation (B.19) will vanish as a consequence of the identity (B.18).

The second term in the RHS of (B.19) could be further simplified using the expansion of y??.

5(% (Fqﬁ,aulceu + Fqﬁ,av,c@u)
= X" (Cs.auKov + To,00K0,)
— b’ (CgauKov + TparKpo) (B.20)
+ 07 (Kapullow + Ko Kpo) — Bt (Kopllow + Ko Co0)
where V' = x"t,, B=t,t,x"
Here the term 0Ky, K., is quadratic in the amplitude of the dynamics and therefore is negligible

within our approximation. The last two terms vanish if we apply the identity (B.18). Hence it

follows

Dalc;w = aalc,uy - X0¢ (Fqb,oz,uK:Gu + Fqﬁ,azzICGu) + O (62)

From 0,K,, we can separate the fluid and non-fluid terms in the following way

0ulCpy = =€ {(0an™) Ty y + 17200} — €% (0ad) 0Ty (B.21)
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Now for convenience we will write the expression for J,, .. as a sum of two terms

‘]space Tl + T2 (B22)
with
T, = #B — XX ) (6 ’Caﬁ)
V3 \/tatﬁ
(B.23)
T, = g wa(aﬁ) X9¢ (F¢ﬁalc95 + FqﬁnBKGa)

u
\/9“’ \/tatﬂ ®)

Now we use the identity of (B.18) to simplify the terms and (4.31) to separate the terms

[Tl] fluid

1 VH
:40{2 m ®) {(a’yn )
g A / nanﬁgaﬂ

{(Xaalaalm (Xﬁ[haﬁlL) n’nt — (XﬁﬁlaﬁlL) n”xm

Luiap +n" 0,00 0}

— (X80, L) (X0, L) 00 + (X105, L) (X" 0, L) n*n”

+ ("9, L) P 4 (X1 0, L) 0Py (B.24)
_ Xaﬁxw + (XﬂﬁlaﬁlL) "™ — (x**'0,, L) n”x“ﬂ

X = (00, L) N (XM O L) 0

— (X795, L) ("0, L) 0" — (X" 0y L) X

+ (x°*°20,, L 0,,L) (n’gn“xw — I — nenfy T 4 nanvx“ﬁ)
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[T1]

non— fluid

=40’ {(8’Y¢) nylrm,aﬁ} (X***0a, L) (Xﬁﬁl 8,31[/) n’n"
g(b) an B (b)
V n*n’g,s

— (X785, L) X0 — (X0, L) (X785, L) 0P 4 (X705, L) 0 X+ (X2 D L) 07X
_ Xﬂﬁxw + (Xﬁfh aﬁlL) noy ™ — (onal 8(11[/) nvxuﬂ + Xvaxuﬁ _ (val 871 L) naxuﬁ’
+ (8, L) n X — (X710, L) (" 8,y L) 00 — (X0, L) 07X

+ (X0, L) (x**"0,,L) nn® + (x°*°20,, L 0,,L) (nﬂn“xm — It — nenfy T 4 no‘rﬂx“ﬁ)

1 H
+ 4042 \/_ {(a“/qb) n*! I‘1/1 aB + (awnyl) FV1 af +n” a’YFVl &5} ( — L aoqL 861¢
Vg®  Jpans,® ’ ’ ’
nencg,s
- L 851L 8a1¢ + L2 aoz1¢ aﬁl QS) n'yn,uchq Xﬂﬁl + L (Xﬁﬁl 861 Qb) n“XW - ( - L aoqL a’h¢
— L 671L aa1¢ + 1.2 3a1¢ 871¢)n/3nNXOéOLIX'Y'Yl — L (XWl&n@ n”xo‘ﬁ L (Xaalaa1¢) nb’Xw
— L (x*"95,0) n®X™ + L (Xx“*" 0, ®) 0" x** + L (X" 0, 6) n®x"* — L (X" 0,1y ¢) 1 x*”
— (=L 93,L 0y, — L8, L 95,0+ L 0p,¢ 0y, 0)nn X 71X + L (319, ) X"
+ (= L0y L3¢ —L0y¢ 0y L+ L*0,¢0,,¢)nn’ XX — (L 0, L 0,5,

+ L Oy, ¢ Ogy L — L? 05, ¢ 602<;§) X712 (nﬁn“xw — Tty — nenfyH 4 no‘nwx“'g)
(B.25)

[TQ] fluid

1 vVH
Ji® o s o)
g nanﬁgaﬂ

+ (Xﬂb’l %L) n“XW _ (va aylL) nuxaﬁ + Xaﬁxw + (XamaalL) n'yXuﬁ _ X'yaxuﬂ

=40

[(”Ugrag,eﬁ%w + 17 Loy pal',5) { — (X0, L) (X" 95, L) n'n”

- (x"9,,L) ' + (x°*720,,L 0,,L) n”n“xaﬂ}
+ (07 Ty 00) Fwﬂ{ (X 0y L) (X0, L) P — (x**1 00, L) nP X" + (X410, L) nP X7
— (x7*?0,,L 0,,L) nﬁnﬂxm} + (nUSFag,GB) F(Ma{ _ (XﬂﬂlaﬁlL) ne\ T + (lea%l» naxuﬁ

+ (x""10,, L) (Xﬁﬂl 0s, L) n*n” — (x°**20,, L 0, L) n%ﬂx“ﬁH
(B.26)
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[TQ]non—fluid
= va X o¢ [{ (L Oy L 03,0 + L 0n, ¢ 05, L — L? 04,0 8/31gz§) ntnY @1y

=4a?
V9 nenfgl g

L (X050 x* = X"7105,0 X*) 0¥ — L (X** 0oy & X"7) 07

(
L (X#Mam(ﬁ Xaﬁ) n’Y} (nasrﬂsﬁﬁrtﬁﬁa + nU4FU479aF¢,76>
— " (07 Ty, 00 6.48) X X (L 0oy L 05,6 + L 00y ¢ 05, L — L? 94,9 0,,9)
+ L (7T g, 00) Tons { (X** 00y ) n°X" = (X0, 0) 0P X7}
+ L (n%Ty08) g ra {Xﬁﬂl 0, nX™ — X" 0,, ¢ n"‘x“ﬁ}
— (L 05, L 0,0+ L 0p,¢ 0, L — L? Op, ¢ amgb) nonY P (n7T 5y 08) L' g~y

X7 (L 05, L 05y + L 05§ Oy L — L* 0, O,y ) { — (n%*T 5, 00) Dgpn’nix7®

— (n%T gy 08) Tgyan®n X" 4+ (07T oy 05T 670 + 17 Ty gal'p08) 010 Y H
(B.27)

Simplifying J/;

In this section we will write down the intrinsic Ricci scalar as a sum of ‘fluid’ and ‘non-fluid’ terms.

Using the definition of K and ignoring the terms quadratic in the amplitude of dynamics, we can

write
(oMY SH2V2 CH1V2 SH2VL oo
R = (X X - X X ) 8/1«11—‘1117!1«21/2 X Fal,ml/l Faz,mr/z
(051 a2 r
—b Fal,#lvllcmw —b Fa27u2V2’CH1V1 + Qlcullfl (amtl/z)

=T+ T+ T3+ T+ Ts
(B.28)
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Now we use the identity of (B.18) to simplify the terms and (4.31) to separate the terms
(11 + T5) fiuid

=10, Do o — Xamralwlramw} {_ (X722, L) 02X + (#2024, L) 0¥ 12
+ (XI130p, L) i xH — (XM 8y, L) X — xR e
+ (XaﬁaaL OgL) (nF2n?2 )1V — ph2p V2 — P2y 2Vt iy k)
— (X“103893L) (X”194894L) nt?n"? + (X"104894L) (X“292892L) nttn"?

+ (X”194894L) nt2xHrr — (X”164894L) ntt 2 4 (X”295@95L) { (X“193893L) nt2n"t

. 202 [N Z RN 5 S PN 1) M1, 1
(X 892L)n n XMk 4+ M

(B.29)
[Tl + T2]nonffluid
= 8u1F,j1“u2y2 _ Xalazral,u1V1Fa2:ﬂ2V21 {L (XM292892¢) (nVQX!th — nlelth)
+ L (Xﬂ193803¢) (nle,uzl/z _ nu2xuzt/1) + [ (XU104894¢) (nulxuzuz _ n#2X,u1V2)
+ {nthanXMl/l — pHRpYiy e gy Rl nulnlllxuwz} { — I (XaﬁaaL aﬂ¢)
— L (Xaﬁaaﬁb 35L) + L2 (Xaﬂaa¢ aﬂ¢) } + L (X“193(993¢) (XV104894L) nHzpve
(B.30)

+ L (x"%89,0) (X% 05, L) 020> — L* (x"1% 0y, 0) (x"%0p,0) n>n”?

L (X"%205,0) (X%, L) n 10 — L (X%, ) ("0, L) 1

+ L (%05,0) (x"2%0,0) 10" — L ("% 0y, 0) { S G
+ (X% 0, L) 20 — (#2285, L) n it — L (x™% g, ) nP2n

+ L (XM292692¢> ntiptt }:|

(T3] fruia = (X**% 05 L) (n”* Ty i) Loy yirn { (X209, L) n" X172 — (X% Dpy L) " X2V
_ (XV194394L) TV (X”295895L) PPNV | BV V2 vz v
+ (XaﬁﬁaL GBL) ntn?tyH2r2 — (X“QOQ(%QL) (X”205895L) nttn"t
(B.31)
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[T3]non—fluid
— (queeaeﬁL) (n03F037u2V2) FO¢1,M1V1 |: — L (XM202862 ¢) n’t X/huz + L (XV194894¢) nH X,UQVQ
+ L (x"%09,0) n"" x> — L (x> 09,0) 0" x**** — (L 0oL 93¢ + L Oap O5L

PP S——

— L (Xa196896¢) (nUSFUS,H2V2) Fa1,,u11/1 |: . (Xﬂ202692¢) n't quz + L (Xu194894¢) nH XM2V2
L ("% 05,0) X2 — L (X505, 8) n X2 — (L BaL Do+ L Dach D51

— L? 0,0 8gqb) Pt iyt 4 (X”2926’92L) n"tyHr? — (X“193893L) n"tyH?

— (X191 0p, L) xR g (X725, L) XM xR — vy

4 (XaﬁaaL 8gL) nfiptt 22 — (X#292892L) (XV295895L) n#lnl’1:|

(B.32)

[Ty + T5) fruid
:nmrm,mm (28u28u2L - Xa297807L Faz,uzuz) { - (XaﬁaaL aﬁL) n/—LQnVQX/—LlVl
4 (X#292892L) nV2XlL1V1 _ (X,ulesaesL) nV2XH2V1 _ (XV194894L) nH2XH1V2

+ (XV295805L> nmxuﬂ/l 4 (Xﬂlegaegl/) (XV194804L> nt2npv? 1 XM1V2X#2V1 _ X#1V1XH2V2

(B.33)
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(T4 + Ts]non- fruia
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Appendix C

(For Chapter - 5)

C.1 Causality criteria from near-luminal stability for a general
hydrodynamic theory

C.1.1 Monotonic behavior of stable parameter space with boost velocity

In the current analysis, the conservation equations (giving rise to hydrodynamic evolution equa-
tions) are linearized for small perturbations of fluid variables around their hydrostatic equilibrium.
The method gives the dispersion polynomial in the frequency (w, k) plane as F'(w, k) = 0, whose
solution provides the dispersion relation w = w(k) that is required for the stability analysis. Here,
we are deriving our results for a general hydrodynamic dispersion polynomial (irrespective of shear
or sound channel), which obeys just two assumptions guided by generic physics requirements. The
assumptions are motivated by the conservation rules (of the number of fluid modes) and the sym-
metry requirements and do not compromise the generality of our method.

Assumption 1 : The total power of any term that contains k (it can be a term that contains only
k or an admixture of w and k) must not exceed the largest power of a pure w term. Following this

criteria, a most general dispersion polynomial must obey,
OulF(w.k # 0)] = OpF(w = alk|, k = blk] (C.1)

with a as a nonzero real scalar constant, b as a real unit vector and O, denoting the order of the
polynomial in the variable x.

In Ref. [101], Eq.(C.1) has been mentioned as a condition for causality. We are justifying this
assumption from the point of Lorentz invariance of the number of modes in a theory. If the right-
hand side of (C.1) has a larger order than the left-hand side, then a Lorentz boost of the background

fluid with a velocity v always produces spurious modes, modes that never appeared in the local
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rest frame analysis [129, 131]. Given that the number of modes changes with the arbitrary choice
of equilibrium state, it is indicative that the equations of motion that lead to such a polynomial
cannot constitute a viable theory of viscous hydrodynamics. Moreover, the solution of these new
modes will be inversely proportional to some powers of v (in the boosted frame the polynomial
variable changes from w to vw), that diverges as v — 0 and hence are unphysical. With this chain
of arguments, below we are writing the most general form of the dispersion polynomial (of order

M) for any arbitrary hydrodynamic theory in the local rest frame of the fluid:
apw + a0 4 agw? Faw +ag =0 ,
with,

ap = ad +ajk + - +al 2R p o) TR e KM
ay =ad +atk+ - +a)2EME p )M

0 1 M-27.M-2
Ay = Gy + agk + -~ +ay °k :

_ 0 1 2 2
ap—2 = Ao + apr ok + ajy, ok,
_ 0 1
aM_l — CLM71 + aMflk 3

ap = a’?\/] ) (C2)

which in a consolidated form can be written as,

M M—n
D an(B)w" =0, an(k)=> ayk™. (C.3)
n=0 m=0

The coefficients a]' (the subscript n denotes the power of w and the superscript m denotes the
power of k of the term it is associated with) are functions of transport coefficients of the underlying
coarse-grained system that set the parameter space of the theory. We are putting no constraint on
the a)" values. They can be both real and imaginary and can have positive or negative values or

even become zero depending upon the construction of a particular hydrodynamic theory.
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Our next step is to boost Eq.(C.2) with velocity v and extract the stability criteria of that boosted
polynomial at the spatial homogeneous limit (¢ — 0). At & — 0, the boosted form of Eq.(C.2)

becomes,
()" [ b () + sl
P )l ) v
()7 e (=) + () o
P ) b )
()" o)+ ab(—v) | + ()" [ab—)*] =0, (4

with v = 1/4/1 — v2. Eq.(C.4) can again be expressed in a general form as,

M n
Y A () =0, A, = an(=v)mm (C.5)
n=0 m=0

Since an analytical solution of Eq.(C.4) is beyond the scope, in order to check its stability we take
recourse of Routh-Hurtwitz (R-H) stability test [102]. The stability condition requires the elements
belonging to the first column of the Routh array (includes the coefficients of (yw)*, (yw)M !
and determinants involving other coefficients of (C.4)) to be of identical sign, either positive or
negative. This leads us to M + 1 number of inequalities which say that, in order to have a stable
theory, all these elements are either greater or lesser than zero. So if these elements are expressed

as f; ({a"}, v), for all roots of w to be stable, we must have either

fi{ar},v)> /<0, (C.6)
forall i € {1, M + 1}. At this point, we state our second assumption.
Assumption 2 : The local rest frame dispersion polynomial (C.2) only allows even power of
|k| = Vk?, making it F'(w, k®) = 0, i.e, the coefficients a™ with an odd m are zero [147]. This
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can be simply understood from the fact that k being a vector, only the powers of k? are allowed in
the scalar dispersion polynomial (C.2). As a consequence, the boosted polynomial (C.4) contains
only even power of |v| = v/v2 (also required since v is a vector as well).

These two assumptions lead to the fact that the R-H stability criteria of (C.4) boil down to a
set of inequalities where a power series over v? is greater or lesser than zero. To demonstrate the
situation we are writing here the condition over the first element of the first column of the Routh

array,
(V)P Fad, (V)2 a) A (v)M R aSJ(V)M >0. (C.7

Here, M is considered to be even (odd M conditions can be similarly extracted where the power
of the last term would be M — 1) and we illustrate the result for the “all positive” possibility. Now,

the left-hand side of inequality (C.7) can be decomposed as,
(V2 —21)(v:—29) - (VP — Tay2) >0, (C.8)
where z; are the roots of the polynomial,
a?w%—cﬁw_gx%—---—I—aéw_z:l:M/Q_l%—aé%M/Q:0, (C.9

and are functions of the a”* coefficients only (i.e., x; = x;(a!")), which are again functions of the
transport coefficients of the system. So, to hold inequality (C.8), each factor (v? — ;) has to be
positive or negative accordingly. So finally, the R-H criteria boil down to a set of inequalities such
that,

Vi—x)>/<0 = xza™)>/<v. (C.10)

So, from (C.10), we can see that the stability criteria of any theory reduces to a set of inequali-
ties where a function of the fluid parameters is greater or lesser than v2. Clearly, this indicates a
monotonic behavior of the parameter space on vZ, and consequently, at spatial homogeneous limit

(k — 0), the stable parameter space must monotonically decrease from v = 0 to 1 or from v — 1
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to 0 respectively. So, if we follow the ‘greater than’ possibility (z;(a™) > v?) of (C.10), the sta-
bility region of parameter space for v.— 1 includes the same for any lower value of v turning the
stability condition at v — 1 a necessary and sufficient condition for stability to hold at the spatially
homogeneous limit for all possible boost velocities 0 < v < 1. Conversely, following the ‘lesser
than’ possibility, the direction of monotonicity reverses.

Now, the sign of the inequality in (C.10) (that leads to the direction of monotonicity) suffers
from ambiguity. The reason is that since Eq.(C.2) describes the dispersion polynomial of a possible
most general theory, the signs of the a;' coefficients are completely unknown and arbitrary. To re-
solve this ambiguity, we investigate Eq.(C.4) at different boost velocities and provide the following
line of arguments.

Atv = 0, we observe that for each n, only the coefficients a]' with m = 0 are contributing to the
stability analysis. For a non-zero value of v, all the a" coefficients with even m are contributing.
If we have a look at Eq.(C.2), we can see that the stability conditions at non-zero v constrain a
much larger number of elements of the parameter space, making the system of inequalities more
restrictive than the ones at v = 0. In other words, the conditions at v # 0 lay a stricter bound on the
entire parameter space than those at v = 0. So, it is indicative that the monotonicity over v that
has been discussed so far is uniformly restricting the parameter space from v = 0 to v — 1. This
turns the parameter space, which is stable at near-luminal boost velocity, a necessary and sufficient
region for frame-invariant stability to hold (at the spatially homogeneous limit), and consequently,
identify the causal parameter space as well [134].

In support of the above discussion, here we are writing the polynomial equation for asymptotic
group velocity v, at & — oo resulting from (C.2) for even M :

M_q

a?w(vg)%+a?\472(v§)7 o Fa) i 4 al =0. (C.11)

In order to have a causal, propagating mode, (C.11) must have real, positive, subluminal roots of
vg, which are the functions of the a' coefficients of (C.11). From Eq.(C.2), we see that these a’

are the coefficients of the largest k£ power for each a,, term with n even. Clearly, the conditions for
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subluminal roots will involve constraints on these coefficients. Here, we see that stability conditions
for v = 0 only include the a3, among these coefficients and can not able to identify the causal
parameter space because of this nominal overlap. On the other hand, the stability constraints with
nonzero v include all the coefficients of Eq.(C.11). So, the monotonicity over v leaves us with

the choice that stability at v — 1 demarcates the causal parameter space.

C.1.2 Connection between stable parameter space at & — 0, v . — 1 and
causal parameter space at large &

A mathematical explanation regarding this connection can be followed here. For that, say for an
even M case we divide Eq.(C.7) by (v2)*/2. Being a positive quantity, it will not alter the sign of

inequality and converts (C.7) into,

1\ 1)z
0 2
() ()
+ay'~ ( )+a0 (C.12)

which can be decomposed as,

1 1 1
(ﬁ—yl) (ﬁ—yz) (ﬁ_yM/Q) >0, (C.13)

with y; being roots of,

ay® +ad Lyt ad Py e =0 (C.14)

Now, in order to hold inequality (C.13), each bracketed quantity on the left-hand side has to be
individually positive or negative. The only physical choice is the positive convention, which for

each y; leads to,

1 1
(ﬁ_yl) >0 ) yl<$7 (CIS)

which gives the strictest bound at v — 1 such that y; < 1. Here we make an important observation.

We notice that Eq.(C.14) and the polynomial for asymptotic group velocity (C.11) are identical.

177



C (For Chapter - 5)

Consequently, the y; are the solutions for vg itself. So from (C.15), we can see that the stability
conditions at v.— 1 are indeed related to the causality criteria of the theory (vﬁ < 1). Itis to be
noted here that (C.7) is not the only stability condition (it is the first one of them; there are M more).
In the theories that we have studied in our work - MIS and BDNK - the other conditions basically
set the convention for the direction of inequalities that cancels any choice of y; other than (C.15).
Nevertheless, the structural similarity of (C.11) and (C.12) is enough to indicate the connection
between the near luminal (v — 1) stability conditions at the spatial homogeneous limit (k — 0)

and the causality criteria predicted at the asymptotic causality limit (k — c0).
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(For Chapter - 6)
D.1 Detailed calculations of Method-1

In this section, we will derive the form of the frame transformations in an infinite-order derivative
expansion. To begin with, we’ll rewrite the transformations of 7" and u* under frame redefinitions
[e.e] oo
T-T=6T=Y 0T, u'—i'"=du=>) il
n=1 n=1
Substituting this into the expression of the stress-tensor and using the Landau-frame condition,

the following expressions are obtained for §7;, and du.

(DT, 1.
5Tn22 ==X ( < + gv : 5un—1> (Dl)
sut = i (Dir + 547)
R (D(su’;;_l + WaTn_l)
D.1.1 Transformation of velocity

Using the forms given above, we can try to express du/ in terms of the lower order 07's and du''s

as,
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Sut = (—0) [ﬁ&uﬁ_l + VH 7

+ (—0)

+(=9)

+(=9)

where,

|
|

. G
(—0)2D%™u, + %vyw

(—0)*D%" +

(-0 Dot + X (30 + 20 + 1)

(0D — N (4 1 3%+ 25°0 + 1)

3
(6% 4 X0 +

X0

5Tn1:|

. VO -
)D* + X—V2

(=20 — ) DV, V*

3

T
—(F + X0 + 0+ XD+

n
Ou" Uyy_3

- 5Tn—3

VH—

T

~ ~ ~

D*V,V

(0* + 3% + 2% + 0% + X1 D*

g - _ L
+ %(392 4450 + 372) DV +

In this way, continuing the sequence, du! can be expressed in terms of 7" and 4 as,

~\ 2
ot (%") A

N ~

Voo

5Tn—5

~

T

~\ 2
D3V, V* + (%) (=30 — 2X)DV?V, V"

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)
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The expressions in (6.19)-(6.27) can be reproduced from this form in (D.3). To find du”, we need

to sum over all the duf's from n = 1 to oo as follows,

Jut 12 - noH n Z & XéAQ " n—1—2m @#T
u—Z(Su— > (—6D) +(=0) [ DD em SV D =
n=1 n=1 m=0
+ in_gid f‘—%? Dr2m ) IR L
n=1 m=0 3 " 3
(D.7)

Considering the first summation of (D.7), we find that it is an infinite summation of the form

Zx":x Zx": (D.8)
n=1 n=0
Hence, from the first summation, we get
S —0D
> (—6D)" | @ = (=9D) ou (D.9)
— (1+6D)

The second summation in (D.7) is actually a nested summation of three different indices as,

in_l (ml!)2 <%%2>mf7"”m (—%)m (—%)m (g(—éy(—w”) . (D.10)

n=1 m=0

Replacing the index n by N =n — 1, (D.10) becomes,

m m
For values m > N, we see that <a%) or (a%) acting on the summation over [ gives 0 as the

highest power of 6 or ¥ in the series is NV only. So, we can add an infinite no. of such zeros and

extend the summation over m to oo instead of V.

¥ o (miD)? (XH A )mﬁN <_%)m (_(%)m (lZN(;(—é)’(—X)Nl) (D.12)

>y

The summations over m and N now have independent limits; hence, their order can be inter-

changed, and we can rewrite the summation as

3 (XH A )m (_8%>m (_%)m Ni;ODN (éFé)l(—fc)Nl) (D.13)

m:O
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The summations over N and [ can then be interchanged using the Cauchy product formula

(Se) (1) -5 (Seonr)

and (D.10) can now be expressed as

> ]. )’ZQA2 ( a>m( a)m > ~AN > ’”/‘l
. A v/ . - —xD —0D
2 by 3 o) ar) |07 (2000
<1 (%0, ( ) )m ( ) )m 1 1
:Z = —V ——= — = — = =X
= (m!D)2 \ 3 o0 ox (14 xD) (1 +6D)
_i 1 X~@2 " < m!D™ mlD™ )
n D2\ 3 S ym+1 ) 7y\ym+1
= (m!D) (1 +x{3~)A (1+ 912) (D.14)
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Now, let us consider the third summation

0o n—2 3 ~ m m+1 m n—1
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n=1 m=0

Here, we see that for m = n— 1, the no. of derlvatlves becomes more than the highest power
of present in the series over [/, thus making the term corresponding to m = n — 1 zero. We can
add this zero term, and then our sum becomes

n=1 m=0

:

Using N = n — 1 as before,

N=0m=0
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Again, extending the sum over m up to oo and interchanging summations like the previous

case, we get
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(D.19)

which we see is identical to the du* calculated in (6.39).
Also worth noticing is the point that, had we not summed over m in the second and third sum-

mations, then du* would have been left in the form of an infinite series of the form
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We can recast this form of 0" into the form of a relaxation equation given by
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where p{"”’ is given by
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with p2 ¥ defined and associated with another relaxation equation as

where again p(“ ¥} contains the infinite series. In this way, the sequence would continue, and

any general term would be given by (for n > 0)

Wep) VEOIT
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(pv)

These are the general forms of the p,; s given in (6.2).

D.1.2 Transformation of temperature

As it was done in the previous subsection, the expression for 2= can be written as
9 T b

5T, (—-xDyT e XeA TV

T
>~<_ i n 2—-2m X_év@2 " @2,‘?
3 2 3 7
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where c,,,, is defined the same way as in du” and f,,, is defined in terms of ¢,,,, as

1 0
Ly D.2

Similar to the case of du*, we again take an infinite summation over n to obtain 2L as
’ T

(5T_§:5Tn__ X ﬁT+(—>2) 1 V-
T ST (+xD) T (1+xD)(1+ D) — ¥v2 \ 3 2%
Y0 1 1 V2T '
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and from there, obtain the same 7' = 7' + 67 as in (6.40)
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