Please use this identifier to cite or link to this item: http://idr.niser.ac.in:8080/jspui/handle/123456789/58
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarethyia, Shrishti-
dc.contributor.authorLourderaj, Upakarasamy-
dc.date.accessioned2022-08-05T10:49:15Z-
dc.date.available2022-08-05T10:49:15Z-
dc.date.issued2022-06-20-
dc.identifier.urihttp://idr.niser.ac.in:8080/jspui/handle/123456789/58-
dc.language.isoen_USen_US
dc.publisherSchool of Chemical Sciences, NISER, Bhubaneswaren_US
dc.relation.ispartofseries;T262-
dc.subjectChemistryen_US
dc.subjectChemical dynamics simulationen_US
dc.subjectArtificial intelligenceen_US
dc.subjectMachine Learningen_US
dc.subjectPotential energy surfacesen_US
dc.titleMachine learning for chemical dynamics simulationsen_US
dc.typeThesisen_US
Appears in Collections:School of Chemical Sciences

Files in This Item:
File Description SizeFormat 
T262_Shrishti_Barethiya_1711128.pdf
  Restricted Access
9.39 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.