Please use this identifier to cite or link to this item: http://idr.niser.ac.in:8080/jspui/handle/123456789/1220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahu, Brundaban-
dc.date.accessioned2025-01-13T11:56:53Z-
dc.date.available2025-01-13T11:56:53Z-
dc.date.issued2013-03-11-
dc.identifier.citationRamakrishnan, B., & Sahu, B. (2013). EVALUATION OF THE CONVOLUTION SUMS ∑l+15m=nσ(l)σ(m) AND ∑3l+5m=nσ(l)σ(m) AND AN APPLICATION. International Journal of Number Theory, 09(03), 799–809.en_US
dc.identifier.urihttps://doi.org/10.1142/S179304211250162X-
dc.identifier.urihttp://idr.niser.ac.in:8080/jspui/handle/123456789/1220-
dc.description.abstractWe evaluate the convolution sums ∑l,m∈ℕ,l+15m=nσ(l)σ(m) and ∑l,m∈ℕ,3l+5m=nσ(l)σ(m) for all n ∈ ℕ using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer n by the form We also determine the number of representations of positive integers by the quadratic form by using the convolution sums obtained earlier by Alaca, Alaca and Williams [Evaluation of the convolution sums ∑l+6m=nσ(l)σ(m) and ∑2l+3m=nσ(l)σ(m), J. Number Theory124(2) (2007) 491–510; Evaluation of the convolution sums ∑l+24m=nσ(l)σ(m) and ∑3l+8m=nσ(l)σ(m), Math. J. Okayama Univ.49 (2007) 93–111].en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Number Theoryen_US
dc.subjectConvolution sumsen_US
dc.subjectmodular formsen_US
dc.subjectquasimodular formsen_US
dc.subjectnumber of representations by a quadratic formen_US
dc.titleEvaluation of the Convolution Sums ∑l+15m=nσ(l)σ(m) AND ∑3l+5m=nσ(l)σ(m) And an Applicationen_US
dc.typeArticleen_US
Appears in Collections:Journal Papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.