Please use this identifier to cite or link to this item: http://idr.niser.ac.in:8080/jspui/handle/123456789/1116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahu, Brundaban-
dc.date.accessioned2024-12-04T10:17:48Z-
dc.date.available2024-12-04T10:17:48Z-
dc.date.issued2013-03-11-
dc.identifier.citationRamakrishnan, B., & Sahu, B. (2013). EVALUATION OF THE CONVOLUTION SUMS ∑l+15m=nσ(l)σ(m) AND ∑3l+5m=nσ(l)σ(m) AND AN APPLICATION. International Journal of Number Theory, 09(03), 799–809.en_US
dc.identifier.urihttps://doi.org/10.1142/S179304211250162X-
dc.identifier.urihttp://idr.niser.ac.in:8080/jspui/handle/123456789/1116-
dc.description.abstractWe evaluate the convolution sums l,m,l+15m=nσ(l)σ(m) and l,m,3l+5m=nσ(l)σ(m) for all n using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer n by the form x12 + x1x2 + x22 + x3 2 + x3x4 + x42 + 5 (x52 + x5x6 + x6 2 + x72 + x7x2 + x 82). We also determine the number of representations of positive integers by the quadratic form x12 + x 22+x32+x42 + 6 (x52+x62+x7 2+x82), by using the convolution sums obtained earlier by Alaca, Alaca and Williams [Evaluation of the convolution sums l+6m=nσ(l)σ(m) and 2l+3m=nσ(l)σ(m) , J. Number Theory 124(2) (2007) 491-510; Evaluation of the convolution sums l+24m=nσ(l)σ(m) and 3l+8m=nσ(l) σ(m), Math. J. Okayama Univ. 49 (2007) 93-111].en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Number Theoryen_US
dc.subjectConvolution sumsen_US
dc.subjectmodular formsen_US
dc.subjectquasimodular formsen_US
dc.subjectnumber of representations by a quadratic formen_US
dc.titleEvaluation of the convolution sums ∑l+15m=nσ(l)σ(m) AND ∑3l+5m=nσ(l)σ(m) and an applicationen_US
dc.typeArticleen_US
Appears in Collections:Journal Papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.