Please use this identifier to cite or link to this item: http://idr.niser.ac.in:8080/jspui/handle/123456789/1049
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatra, Kamal Lochan-
dc.contributor.authorSahoo, Binod Kumar-
dc.date.accessioned2024-12-02T09:53:02Z-
dc.date.available2024-12-02T09:53:02Z-
dc.date.issued2014-02-12-
dc.identifier.citationPatra, K. L., & Sahoo, B. K. (2013). Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth. Czechoslovak Mathematical Journal, 63(4), 909–922.en_US
dc.identifier.urihttps://doi.org/10.1007/s10587-013-0061-x-
dc.identifier.urihttp://idr.niser.ac.in:8080/jspui/handle/123456789/1049-
dc.description.abstractIn this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on n vertices with girth g (n, g being fixed), which graph minimizes the Laplacian spectral radius? Let U n,g be the lollipop graph obtained by appending a pendent vertex of a path on n − g (n > g) vertices to a vertex of a cycle on g ⩾ 3 vertices. We prove that the graph U n,g uniquely minimizes the Laplacian spectral radius for n ⩾ 2g − 1 when g is even and for n ⩾ 3g − 1 when g is odd.en_US
dc.language.isoenen_US
dc.publisherCzechoslovak Mathematical Journalen_US
dc.subjectLaplacian matrixen_US
dc.subjectLaplacian spectral radiusen_US
dc.subjectgirthen_US
dc.subjectunicyclic graphen_US
dc.titleMinimizing Laplacian spectral radius of unicyclic graphs with fixed girthen_US
dc.typeArticleen_US
Appears in Collections:Journal Papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.