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ABSTRACT

In high-energy heavy-ion collisions, two heavy nuclei, moving at relativistic velocities,

undergo Lorentz contraction and collide onto one another. Within these collisions, certain

nucleons, known as participants, contribute to the collision process, depositing a significant

amount of energy within a small volume. This leads to the formation of hot, dense matter

composed of a deconfined state of quarks and gluons, termed Quark Gluon Plasma (QGP).

Initially, this matter exists in a highly non-equilibrium state, with its constituents collid-

ing rapidly until reaching a near-equilibrium stage. This is then accurately described by

relativistic viscous hydrodynamics formalism. The QGP subsequently expands and cools,

transitioning back to colorless hadrons in a process known as hadronization. Even after

hadronization, the hadrons continue to collide, both elastically and non-elastically, until

reaching a point where all collisions cease, and the particles freely stream into the detector

for detection. In addition to the QGP formed by the participants, there is also an intense tran-

sient magnetic field generated, primarily by the relativistically moving spectators who do

not participate in the collision process. Theoretical calculations suggest that the initial mag-

nitude of the magnetic field resulting from a non-central Au+Au collision at √sNN = 200

GeV ranges from 1014 to 1015 Tesla. This intense magnetic field offers a unique opportunity

to explore various novel phenomena such as Chiral Magnetic Effect (CME), Chiral Sepa-

ration Effect (CSE), and Chiral Magnetic Wave (CMW). Since the QGP consists of freely

moving charges, it exhibits finite conductance and is highly responsive to electromagnetic

fields. Consequently, the QGP induces additional responses to the electromagnetic fields,

thereby altering the fields themselves. This underscores the importance of studying the in-

terplay between electromagnetic fields and fluid dynamics. The most effective approach to

this study is through relativistic magnetohydrodynamics formalism.

During the cooling and expansion process, constituent degrees of freedom, namely

quarks and gluons, collide with each other and transfer momentum, energy and mass. This

is why the study of transport properties is crucial. In the first part of the thesis, we will

primarily examine the impact of external electromagnetic fields, originating from specta-

tors, on the transport coefficients and evolution equations of various dissipative stresses

(shear, bulk, and diffusion). This is carried out by solving relativistic magnetohydrody-

ix



namic (RMHD) equations and determining the transport coefficients through underlying

microscopic theory, specifically from relativistic kinetic theory. We find here that second-

order evolution equations pick up additional contributions due to external electromagnetic

fields, and the Navier-Stokes relations change, making the primary transport coefficients

(shear and diffusion) anisotropic. Additionally, we delve into how these additional trans-

port coefficients arising from the external electromagnetic fields are influenced by varia-

tions in temperature, mass, and magnetic field. Understanding these dissipative stresses,

such as shear, bulk, and diffusion, is critical in the context of high-energy collisions as they

govern the non-equilibrium behavior of the QGP formed in these collisions.

Next, we study the generation of the electromagnetic fields in heavy-ion collisions.

There are essentially two sources of electromagnetic fields: the spectators and the partici-

pants. Here, we will focus on contributions from participants only. We study here the full

3+1D spatio-temporal evolution of electromagnetic fields, taking into account the partici-

pants flowing with the fluid. We discuss the results for two specific cases: point charges and

a more realistic scenario with transverse charge distribution. We found that unlike the elec-

tromagnetic field by the spectators, fields by participants increase and then decrease with

time post collisions. Also, a naive comparison about the strength of the field from both

sources suggests that the fields at a later stage are mainly due to the participant charges.

As we transition to low-energy heavy-ion collisions, experimental observations reveal

the emergence of nuclear stopping, where an increasing number of nucleons congregate the

mid-rapidity region. As there is a stopping we can affirm that there should be deceleration

of the charges occuring. These deceleration should be taken into account while calculating

the electromagnetic fields at the low centre-of-mass energies. This motivates us to inves-

tigate the effect of baryon stopping on the electromagnetic fields at low center-of-mass

energy collisions. We do this by introducing a energy-dependent stopping power and hence

parameterizing the participants velocity profile in a Monte-Carlo Glauber model. Here we

see clear effects of stopping on the various components of EM fields at later times after the

collisions.

Finally, in the last part of this thesis, we conduct a detailed investigation into the impact

of electric fields on bulk observables such as spectra and flow harmonics. Here we con-

sider four different configurations of electric fields on the transverse plane of the freeze-out

x



surface (kinetic freeze-out) and analyze the bulk observables (spectra and flows). This anal-

ysis is performed using a blast wave model where we parameterize the flow velocity and

temperature on the freeze-out hypersurface and incorporate Cooper-Frey prescriptions for

the particlization process. One of the most important result is the effect of electric fields on

the behavior of∆v2 of the identified particles (proton and pion for our case) with respect to

transverse momentum (pT ) of the particles. It initially increases and then nearly saturates

at some higher pT at around 3 GeV.
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4.1 Electric-field components eẼη (left) and eEx (right) as functions of η for a

stationary point source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2 Left and right panels: Magnetic-field components eBy as a function of η

and time for a stationary point source respectively. . . . . . . . . . . . . . 134

2



LIST OF FIGURES

4.3 Left panel: Domain of influence τ0 < τf (x; x0) < τ for the electric field
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Chapter 1

Introduction
Approximately fourteen billion years ago, the universe came into existence, and since then,

it has cooled down to a level that allows for our existence [1]. Scientists have conducted

extensive research to explore and understand the universe by studying its fundamental build-

ing blocks, which involves investigating the elementary particles and their interactions. By

the early nineteen hundred’s, it was discovered that atoms consist of a positively charged

nucleus around which negatively charged electrons orbit. The nucleus is further composed

of positively charged protons and charge-neutral neutrons [2]. However, one would ex-

pect that the protons inside the nucleus would undergo strong electric repulsion [3], which

would lead to the instability of the nucleus. This puzzle led to the development of theo-

ries proposing an additional force known as the strong nuclear force [4, 5]. In addition to

the electromagnetic and strong nuclear forces, there are two other fundamental forces: the

gravitational and the weak force. The gravitational force is a long-range force that mani-

fests its effect at a macroscopic scale, such as the motion of planets. The weak force [6, 7],

on the other hand, is responsible for the radioactive decay of the nucleus, such as beta de-

cay. For a long time, protons, neutrons, and electrons were considered the fundamental

building blocks of matter. Protons and neutrons, which are spin-half particles, are known

as baryons, while there is another category of integral spin particles known as mesons. Col-

lectively, these baryons and mesons are known as hadrons. In the late twentieth century,

Murray Gell-Mann and George Zweig independently proposed that hadrons are made up

of quarks, known as the quark model of hadrons [4, 8]. Later, it was also theorized that

quarks themselves are bound together by gluons, which act as a mediating particle for the
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strong nuclear force [9]. Along with the electrical charges corresponding to electromag-

netic interactions, analogous color charges corresponding to the strong nuclear force were

introduced. Quarks possess color charges but come together to form color-neutral hadrons.

Due to confinement within the hadrons, experiments cannot observe free quarks. However,

quarks can briefly become liberated (typically of the order of 10−23 seconds) within the nu-

clear volume through high-energy collisions between two nuclei or by compressing nuclear

matter to create regions of high baryon densities. This phenomenon, termed asymptotic

freedom of quarks, was proposed by Gross, Wilczek, and Politzer [10, 11, 12].

These theoretical models, in conjunction with collider experiments [13, 14], facilitated

the discovery of fundamental particles such as quarks and gluons. This breakthrough paved

the way for the development of the Standard Model of particle physics, which encompasses

three generations of quarks and leptons, in addition to the four fundamental gauge bosons

(gluons, photons,W± andZ bosons), and theHiggs boson [15] which givesmasses to all the

fundamental particles in the standard model. The challenge of understanding the nature and

properties of quarks and gluons spurred the exploration of high-energy collider experiments.

As discussed above, these experiments create brief periods of deconfined regions, leading

to the formation of a novel state of matter known as quark-gluon plasma (QGP) [16, 17].

These experiments involve the collision of two heavy nuclei, traveling at nearly the speed of

light, which yields extremely high energy densities, replicating conditions akin to the early

universe and facilitating the formation of QGP [18, 19]. Along with quarks and gluons,

one fascinating aspect of these collisions is the generation of the strongest magnetic fields

known in the universe, resulting from the motion of charged protons in the nucleus [20],

which are of the order of 1018 to 1019 G [21] for a typical non-central Au + Au or Pb

+ Pb collision at RHIC (√sNN = 200 GeV) and LHC (√sNN = 2.76 TeV) energies,

respectively.

At very high energy densities, such as that achieved in heavy-ion collisions, chiral sym-
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metry is approximately restored [22, 23], meaning there is almost no difference in the num-

ber of left-handed and right-handed quarks. However, the presence of topological fluctua-

tions leads to chiral imbalance [24, 25]. This imbalance, along with the intense magnetic

fields, may lead to the separation of positively and negatively charged quarks, resulting in a

charge current along the direction of the magnetic fields. This phenomenon is known as the

chiral magnetic effect [26, 27], which is expected to exist in such systems. Other novel and

fascinating effects like chiral separation effect [28], chiral Hall effect [29], chiral vortical

effect [30], etc., are also expected to be experienced in heavy-ion collisions.

Previous studies [31, 32, 33] have demonstrated that quark-gluon plasma (QGP) achieves

thermal equilibrium and exhibits collective motion. Such phenomena are well-captured by

relativistic viscous hydrodynamics formulations (discussed further in Sections 1.0.3 and

2.1). Consequently, the coexistence of intense magnetic fields and the QGP medium in

high-energy collision experiments allows us to comprehensively describe the evolution pro-

cess using relativistic magnetohydrodynamics formulations. This constitutes the central

focus of the present thesis.

Moving forward, this chapter primarily serves as a formal introduction to the system and

processes involved in heavy-ion collisions. This is organized as follows: In Section.(1.0.1),

we explore the nature and characteristics of the QGP. Following that, Section.(1.0.2) fo-

cuses on the intricacies of heavy-ion collisions, examining the collision dynamics. Subse-

quently, Section.(1.0.3) will provide insights into the various stages involved in the heavy-

ion collision process, elucidating the evolution from initial to final states. Given our primary

emphasis on studying the novel state of matter, Quark-Gluon Plasma, in heavy-ion colli-

sion experiments, we will further discuss various signatures hinting at its existence in such

collisions in Section.(1.0.4). Finally, in Section.(1.0.5), we will discuss the generation of

the electromagnetic fields and its characteristics in heavy-ion collisions, as well as a few of

the experimental attempts to measure them.
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1.0.1 Quark Gluon Plasma

The conceptualization of quark-gluon plasma (QGP) arises from a profound understanding

that under extreme thermal and density conditions, strongly interacting hadrons described

by Quantum Chromodynamics (QCD), undergoes a phase transition. This pivotal insight

traces its origins back to the 1970s when physicists envisioned that interactions among

quarks and gluons would significantly weaken under such extremes, indicated by the weak-

ening of the strong coupling constant (αs) with increasing momentum transfer (Q) [34, 35].

αs is related to the momentum transfer (Q) through the following relation:

αs(Q
2) =

12π

(11Nc − 2Nf ) ln( Q2

Λ2
QCD

)
, (1.1)

whereNc is the number of color charges andNf denoting the number of flavors. HereΛQCD

acts as a scale parameter for QCD calculation [36].

Fig.(1.1) presents a comparison of theoretical and experimental findings for αs versus

Q, showing consistency within the error bars. This observation suggests that in the limit

Q2 → Λ2
QCD, the value of αs is large and increases monotonically, whereas in the other limit

that is atQ2 → ∞ , αs becomes smaller and smaller which is known as the asymptotic free-

dom of quarks and gluons. QCDmainly has two distinct regimes of application based on the

strength of the strong coupling constant αs, that is the perturbative and non-perturbative.

Firstly, in the perturbative realm, where αs is small, QCD calculations excellently align

with experimental determinations, particularly evident in high-momentum transfer parton

collisions [10]. Conversely, as αs becomes large, the perturbative framework collapses,

necessitating alternative approaches. Within the non-perturbative regime, numerical sim-

ulations on a space-time lattice serve as a primary method for first-principle calculations.

This non-perturbative domain further boils down into two conditions. At zero temperature,

lattice QCD (lQCD) computations effectively predict hadron masses and thus breaks the

chiral symmetry. Conversely, in the high-temperature limit, perturbative QCD foresees the
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Figure 1.1: Variation of αs with Q from [34]. Measurements of αs(Q
2) with the results

obtained through fits of αs(MZ) to data within specific ranges of Q.

restoration of chiral symmetry. The lQCD analyses incorporating realistic quark masses

suggested a quark-hadron transition occurring around a crossover temperature of around

150 MeV [37] for vanishing chemical potential. Lattice calculations further predict the be-

haviour of scaled Energy density ( ϵ
T 4 ), Pressure ( P

T 4 ) and entropy density ( s
T 4 ). Fig.(1.2)

demonstrates the variation of all scaled quantities mentioned above as a function of tem-

perature (T). Here we can see a sharp increase in these quantities at around a crossover

temperature (Tc) of 150 MeV (yellow band shown in the figure). Calculating the effec-

tive degrees of freedom in a pion gas reveals an approximate value of 3. Conversely, for
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a composite system involving quarks with 3 distinct flavors, alongside their corresponding

anti-particles and gluons, the effective degrees of freedom can be expressed as:

geff = (ggluon +
7

8
gquark) = (8× 2 +

7

8
NcNfNsNa) = 47.5.

Here,Nc signifies the number of colors (Nc = 3),Nf denotes the number of flavors (Nf =

3), Ns denotes the spin degrees of freedom (Ns = 2), and Na = 2 stands for the degrees

of freedom attributed to both particles and anti-particles. We find that degrees of freedom

increases in QGP medium formation. This can be clearly seen from the sudden rise in the

scaled quantities around Tc suggesting a transition from a state where degrees of freedom

are hadrons at lower temperatures (T < Tc) to a state where quarks and gluons become

the relevent degrees of freedom at higher temperatures (T > Tc). We also note that these

quantities do not achieve the Stefan-Boltzmann limit (that is the non-interacting limit shown

at the right top of the plot in dashed line) even for a system of massless quarks and gluons

at high temperatures which indicates towards its strongly interacting nature.
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3s/4T3
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Figure 1.2: Variation of ϵ
T 4 , 3p

T 4 , 3s
T 4 vs T from lattice QCD results [37].

QGP thus embodies a captivating state of matter that exhibits attributes reminiscent of a

strongly interacting medium [17]. Next, we move onto the heavy-ion collision experiments,
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which produces such a medium.

1.0.2 Heavy-ion collisions and other collision experiments

From cosmological side the understanding of the early universe is mainly based on analyz-

ing remnants of the BigBang through cosmicmicrowave background radiation (CMBR) [38]

studies or observing natural phenomena like neutron star mergers [39], which often present

complex observational and interpretative challenges, along with statistical limitations. As

an alternative approach, scientists recreate early universe conditions in laboratory settings,

often referred to as a “little bang”. This provides an opportunity to statistically enrich our

findings. Colliding heavy-ions at high-energies, as performed at research facilities such

as Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC), generates

energy densities comparable to those encountered microseconds after the Big Bang. This

enables researchers to explore the properties and behavior of the QGP, providing valuable

insights into the conditions of the early universe.

The initial experimental confirmation of QGP came to light at the Relativistic Heavy-

Ion Collider (RHIC) in the early 2000s, situated at the Brookhaven National Laboratory.

Here, collisions between heavy-ions, specifically gold nuclei (Au), were conducted at ultra-

relativistic speeds (peak energies of√sNN = 200 GeV). Subsequent exploration took place

at the Large Hadron Collider (LHC) located at CERN, where collisions involving heavy-

ions, particularly lead nuclei (Pb), were performed at even higher energies (peak energies of
√
sNN = 13 TeV). Both LHC and RHIC played crucial roles in meticulously scrutinizing the

characteristics of the QGP medium. Through precise measurement and analysis of various

observables such as jet quenching, elliptic flow, and strangeness enhancement (discussed

later in Section.(1.0.4)), these experiments not only confirmed the existence of QGP but

also provided profound insights into its properties [40].

While heavy-ion collisions are centered on investigating the properties of the QGP, al-
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Figure 1.3: PDFs at Q2 = 10GeV 2, obtained from the ZEUS analysis of HERA data per-
formed by the Offset and the Hessian methods [41].

ternative experiments such as ZEUS at HERA were designed to assess the nuanced charac-

teristics of nucleons (protons and neutrons). This was achieved through the collision of lep-

tons with protons using deep inelastic scattering techniques. One crucial aspect of this study

is the investigation of parton distribution functions (PDFs), which provide insights into the

distribution and arrangement of partons (quarks and gluons) within a nucleon. Fig.(1.3)

illustrates the PDFs for up (u), down (d), and strange (s) quarks, as well as gluons, obtained

from the HERA experiment at a specific scale of momentum transfer (Q2 = 10GeV 2).

Here x is the Bjorken x, which simply denotes the fraction of momentum carried by a par-

ton (quark or gluon) inside a proton. So at large x values (close to 1), quarks dominate the
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nucleon’s composition, while at small x values (close to 10−4), there is a rise in gluon and

strangeness content, indicating their increased contribution to the nucleon’s structure at very

high energies. This gives us an idea that at very high energies, the probability of finding

gluons and sea quarks carrying a significant fraction of the nucleon’s momentum becomes

very high. Thus, we can affirm that gluons play a vital role in the overall structure and dy-

namics of the nucleon in this regime. Furthermore, this indefinite growth of gluon PDFs in

the low x regime looks counterintuitive, as the volume of a nucleon is finite, which in turn

should imply that the gluons should also exhibit saturation, famously called the “Gluon Sat-

uration” problem, one of the main aims of future EIC experiments [42]. Moreover, based

on the above idea initial model (CGC or color glass condenstate) has been developed and

implemented in heavy-ion collision simulations [43, 44]. Therefore, by studying the PDFs

at different momentum fractions in experiments like ZEUS at HERA or upcoming EIC ex-

periments [42] might provide us with valuable insights into the distribution and behavior

of partons within nucleons, complementing the research conducted in heavy-ion collision

experiments.

1.0.3 Stages of heavy-ion collision

During the collision, certain nucleons from the colliding nuclei actively participate in the

interaction, while others remain passive. The nucleons that are engaged in the interactions

are termed as “participants”, whereas the inactive ones are called as “spectators”. The par-

ticipants deposits an enormous amount of energy into a very confined space, leading to the

formation of QGP. After this, QGP will undergo an evolution which can be broadly cat-

egorized into three stages: the pre-hydrodynamic stage, the hydrodynamic stage, and the

freezout stage, each playing a crucial role in its development. Fig.(1.4) shows a schematic

view of different stages of heavy-ion collisions which wewill discuss below in some details.
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Figure 1.4: Stages of heavy-ion collisions.

Pre-hydrodynamic stage :

As shown in Fig.(1.4), the pre-hydrodynamic stage of heavy-ion collisions refers to the pe-

riod immediately after the collision (at proper time τ > 0) until local thermal equilibrium

is reached, during which the created medium is far away from thermal equilibrium. During

this stage, the medium can be effectively described by a free streaming mechanism. The

high kinetic energy of the incoming nucleons leads to the production of a substantial number

of heavy quark pairs, such as cc̄, ss̄, and bb̄, as well as highly energetic photons. These par-

ticles are generated mainly through initial hard scatterings. During the pre-hydrodynamic

stage, these highly energetic, but weakly coupled, partons start interacting among them-

selves. These interactions gradually lead to the equilibration of the system, where the par-

tons reach a state of thermal equilibrium. This equilibration eventually gives rise to the

formation of the strongly coupled QGP (sQGP) phase, characterized by the collective be-

havior of quarks and gluons. The duration of the pre-hydrodynamic stage, denoted by τ , is

less than 1 fm (at RHIC or LHC energies). Although there are ongoing discussions and in-

15



1 Introduction

vestigations concerning the existence of attractor solutions that might provide some answer

to this very early isotropisation process [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

In hydrodynamic simulations of heavy-ion collisions at the energies of LHC and RHIC, the

pre-hydrodynamic stage is typically modeled to have a duration of around 0.2-0.6 fm [58].

The specific duration is chosen to reproduce the mean transverse momentum (⟨pT ⟩) dis-

tribution of identified particles measured in experiments. This choice ensures that the hy-

drodynamic evolution accurately describes the experimental data and provides valuable

information about the properties and dynamics of the created medium. The transition from

the pre-hydrodynamic stage to the hydrodynamic stage marks the onset of the QGP phase.

Additionally a large transient electromagnetic (EM) field is generated during the colli-

sion, primarily due to the spectator nucleons [59, 60, 61, 62, 63] which is of the order

of 1018 − 1019G (the production of which is discussed later in Section.(1.0.5)). Also along

with that a large initial angular momentum is also produced of the order of 103 − 105 ℏ

(see Fig.(1.4)) [64, 65, 66]. We now move to the next stage of the collision that is the

hydrodynamic stage.

Hydrodynamic stage :

There is ample evidence, such as the mass ordering of transverse momentum spectra for

identified particles (such as pions, kaons, and protons), as well as flow patterns like ellip-

tic flow (discussed later in this chapter), suggesting that the Quark-Gluon Plasma (QGP)

formed in heavy-ion collisions undergoes collective motion. These findings have been val-

idated by comparing results from relativistic hydrodynamics simulations with experimen-

tal data [67, 68, 69, 70]. However, relatively little attention has been paid, especially in

the heavy-ion community, to the inclusion of electromagnetic fields in these simulations.

Such inclusion should be a natural extension and should lead to a consistent formulation of

relativistic magnetohydrodynamics [21], providing insight into the evolution of the QGP,
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as depicted in Fig.(1.4). In this stage, the QGP experiences expansion and cooling. The

expansion and cooling effects can be intuitively understood through the first law of ther-

modynamics, expressed as:

dQ = dU+ P dV (1.2)

where dQ is the heat supplied to the system, dU is the change in the internal energy of the

system, P is the pressure and dV is the change in the volume of the system. If dQ = 0 (i.e., no

external heat is supplied), then the work done by the system, P dV , will only change the in-

ternal energy of the system. That is, dU = −P dV. So if the volume increases (dV > 0), it will

reduce the internal energy of the system. This shows that expansion will reduce the temper-

ature of the system. This expansion and cooling causes the local energy density to decrease

which after certain time drops below the cross-over (transition) energy density. This transi-

tion, known as hadronization(1.4), which marks the beginning of a stage where degrees of

freedom from quarks and gluons get converted into hadrons, with pions, kaons, and protons

being the dominant hadrons produced. Even after hadronization, the expansion and cooling

of the system continues, and their behavior can still be effectively described using hydrody-

namics formalism. As the medium further cools down, particle production through inelastic

scattering eventually ceases at a specific temperature referred to as the chemical freeze-out

temperature. However, elastic interactions between the particles persist, contributing to

the overall dynamics of the system. It is important to note that the fluid description of the

medium is valid in regions where the mean free path of particles, denoted as λ, is much

smaller than the characteristic size of the system, denoted as L, i.e., λ
L
<< 1 [68, 71, 72].

When λ ≈L, the fluid description becomes no longer applicable. The transition from aQGP

to hadrons represents a gradual evolution from a fluid to a particle-like picture, wherein in-

teractions are primarily dictated by hadron-hadron interactions. In realistic scenarios, repli-

cated through simulations, individualistic interactions among hadrons are captured using
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various transport models [73, 74, 75, 76, 77, 78, 79, 80, 81]. These models incorporate

the interactions mainly through different particle interaction cross-sections. It is however

crucial to note that the precise timing of this transition depends on the specific collision

systems, impact parameters, and center-of-mass energies (√sNN ) of the collisions. Fur-

thermore, these models naturally include a freeze-out stage, which we discuss below.

Freezeout stage :

After the hydrodynamic stage, the system progresses into the freezeout stage, where the

mean-free path between individual particles becomes appreciable compared to the system

size. This is usually the stage between chemical and kinetic freezeout. The entire heavy-

ion collision process in the most central case typically spans until 10-15 femtoseconds [82]

(depends one the collision energies and system sizes), out of which this last stage spans for

about 5-6 femtoseconds. By examining short-lived resonance particles decaying through

strong interactions, we can investigate the properties of the hadronic phase. Short-lived

resonances with a lifetime comparable to that of the hadronic phase, lead to the involve-

ment of their decay products in regeneration and rescattering processes [83, 84, 85]. These

interactions significantly contributed to the final particle spectra, correlations, and other ex-

perimental observables. The entire process comes to a halt when themean free path between

particles becomes greater than the system size. At this point, kinetic freezeout occurs, and

the particles free-stream to the detectors for detection.

1.0.4 Probes to detect QGP in heavy-ion collisions

The typical lifetime of QGP is of the order of 10−23 seconds [86], so it is practically im-

possible to get direct access to the medium formed in order to understand its dynamics and

properties. Hence, we need some indirect probes or signatures to conclude whether a QGP

medium has been formed. There are many signatures, and here we discuss some of them.
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• Elliptic flow : In a non-central heavy-ion collision, the nuclear overlap region typi-

cally assumes an almond-shaped geometry, exhibiting spatial anisotropy. The evolu-

tion of the medium is predominantly governed by fluid dynamics, driven by pressure

gradients.

Figure 1.5: Various flow harmonics calculated using two particle correlation vs pT for Pb-
Pb 5.02 TeV at 20-30 % centrality [87]

These pressure gradients act to transform the initial spatial anisotropy into momen-

tum anisotropy. Considering nuclei moving along the z-direction (beam direction)

and the impact parameter (b, defined as the distance between the centers of the two

nuclei) assumed along the x-axis, the azimuthal distribution of the produced particle

multiplicity can be expressed in terms of a Fourier expansion as follows:

E
d3N

dp3
=

d2N

2πpTdpTdy
(1 +

∞∑
n=1

vn cosn(φ−Ψn)). (1.3)

Here E d3N
dp3

on the LHS of the equation Eq.(1.3) is known as the invariant yield and

this has been written in terms of different flow coefficients (vn’s), where the vn can
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be defined as :

vn(pT ) =

∫ π

−π
dφ cosn (φ−Ψn)

d3N
d2pT dy∫ π

−π
dφ d3N

d2pT dy

, (1.4)

where N, pT , and y are Multiplicity, transverse momentum, and rapidity of the pro-

duced particle (momentum rapidity), respectively. Here, the elliptic flow is defined

as v2 = ⟨cos 2(φ−Ψ2)⟩, where φ represents the azimuthal angle of the particles pro-

duced in the lab frame, and Ψ2 is the second-order reaction plane angle. Here the ⟨·⟩

represents the average over events and also over all particles in these events. While

other geometric fluctuations may also exist, giving rise to higher-order flow harmon-

ics such as v3, v4, v5, etc. The positivity of the elliptic flow occurs when particles are

predominantly produced in the in-plane (the plane defined by the impact parameter

(b) and the beam axis), i.e., in the x− z plane, rather than in the out-of-plane (y − z

plane).

Some of the early experimental results showcasing the results of flow harmonics can

be found in [88, 18, 89, 90]. Figure.(1.5) shows the various flow harmonics calcu-

lated using two particle correlation for Pb-Pb collisions at √sNN = 5.02 TeV with

20-30% centrality. The symbols represent data from experiments (ALICE and AT-

LAS), while the lines with bands are from hydrodynamical models. We observe that

the elliptic flow (depicted in black) calculated here is the dominant contributor, and

the viscous hydrodynamics governing the description of the evolution of the fluid

agrees well with the experimental data, indicating the collective nature of the medium

(QGP) thus formed. However, the magnitude of the observed vn (pT ) depends on the

initial eccentricities ϵn (anisotropies in space), with the second harmonic eccentricity

defined as ϵ2 = ⟨⟨y2−x2⟩⟩
⟨⟨y2+x2⟩⟩ and the specific shear viscosity (

η
s
) values, where η is the

dynamical shear viscosity coefficient and s is the entropy density.

The magnitude of the elliptic flow v2(pT ) indicates the presence of an expanding
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Figure 1.6: Scaled elliptic flow for √sNN = 54.4 GeV at 10-40 % centrality for various
particle species [91].

medium but does not directly signify the formation of such a medium at the quark

level. The explanation for this lies in the concept of quark coalescence or recombi-

nation. This mechanism involves the production of hadrons, where quarks (q) and

anti-quarks (q̄) located at nearby phase space combine to form (qq̄) for mesons and

(qqq) for baryons. By employing this mechanism and plotting v2/nq, where nq is the

number of valence quarks/anti-quarks (2 for mesons and 3 for baryons), against pT ,

it is observed that at low pT (< 3 GeV), the scaling holds, whereas at higher pT , there

is a clear deviation from the scaling, indicating that particle production at higher pT

is primarily due to fragmentation [92].

Figure.(1.6) displays the plot for v2
nq

versus transverse kinetic energy scaled with nq,

i.e., (mT −m0)/nq, at
√
sNN = 54.4GeV for Au+Au collisions at 10-40% centrality

class for five different particle species (K0
s , ϕ, Λ, Ω−, Ξ−). The various symbols rep-

21



1 Introduction

resent data from STAR experiments, while the solid red line denotes the fit to theK0
s

data. It is evident that different species aptly follow the scaling behavior. The consis-

tent scaling behavior, observed regardless of whether the charged particles aremesons

or baryons, underscores the effectiveness of the recombination model at low pT . This

indicates that colored quarks exhibit hydrodynamic flow and subsequently coalesce

into colorless hadrons, thereby aptly capturing the fluid nature of the medium.

• Quarkonia suppression : The suppression of quarkonia, such as the J/Ψ bound

state composed of charm and anti-charm quarks (cc̄), in heavy-ion collision exper-

iments is considered a key indicator of QGP formation. These heavy quarks and

antiquarks, predominantly generated during the initial stages of the collision, interact

through a potential described by V = −αs

r
+ kr [93]. The first term of the poten-

tial is the Coulombic term due to two color charges (of q and q̄) with αs being the

strong coupling constant and r is the distance between the quark-anti-quark pair but

the second one is the linear term which increases as the q is separated from q̄ thus in-

creasing the potential which makes it impossible to obtain a single free quark [93]. In

the presence of a surrounding medium, such as a QGP, the formed quarkonia interact

with the surrounding charges, leading to interactions between the heavy quarkonia

and the surrounding light quarks. The presence of surrounding light quarks effec-

tively screens the heavy quarkonia, hindering their survival, a phenomenon known

as Debye screening. As a result, the potential between the heavy quarks is modi-

fied by a factor e−
r

ΛD , where ΛD is the Debye screening length. If the length scale

of the bound state exceeds ΛD, it becomes more prone to dissociation. The disso-

ciated heavy quarks subsequently undergo hadronization by interacting with other

light quarks, forming pairs such as qs̄, q̄s, qd̄, etc. As they dissociate in the presence

of the medium, there is a suppression in their number compared to that of without
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the medium. This suppression in their production, as observed in [94, 95], hints at

the production of QGP in heavy-ion experiments. Experimentally, the effect of these

processes can be observed through a quantity named RAA, also known as the nuclear

modification factor. This factor is generally defined as:

RAA(pT , y) =

d2N
d2pT dy

∣∣
A+A

⟨Ncoll⟩ d2N
d2pT dy

∣∣
p+p

, (1.5)

where ⟨Ncoll⟩ is the number of binary collisions usually taken from the Glauber model

calculations. ThisRAA is the ratio of multiplicity of heavy qq̄ pair in heavy-ion colli-

sion to that produced in the p-p collisions where no QGP is assumed to be produced.

The suppression in the number of quarkonia mainly is seen when RAA is less than

1. This suggests that there is a medium formation. Initially, it was anticipated that

the most pronounced suppression would occur at low quarkonium momenta, where

the qq̄ pair, quasi-statically embedded within the QGP, experiences the full impact of

Debye screening. However, at high pT , it was predicted that the suppression of J/Ψ

would diminish and eventually vanish. This expectation arose from the fact that the

cc̄ bound state forms outside the QGP and thus is unaffected by color screening. This

perception has since evolved in light of numerous theoretical and experimental find-

ings. It has been acknowledged that additional mechanisms contribute to quarkonium

melting beyond the static qq̄ potential. As the temperature of the medium increases,

different quarkonium states experience varying degrees of suppression. The binding

energy of each state determines its susceptibility to dissociation in the QGP which

is known as the sequential melting of quarkonia. Several investigations, exemplified

by studies on charmonium [96] and bottomonium [97], affirm that the concept of

sequential melting transcends the oversimplified paradigm of color screening.

Recent advancements both experimental andmodel predictions have shedded light on
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the fact that the properties of the quarkonia could also be affected by the regeneration

effects, that is regeneration of low pT quarkonia at LHC energies [98].

• Jet quenching : Jets are colimated spray of particles coming from the initial high

pT partons produced in the initial stage of heavy-ion collision. These jets while

traversing the thermal medium losses energy due to interaction with the dense mat-

ter. This thus results in the supression of the high pT particles which is generally

measured via the same nuclear modification factor RAA which was defined above

in Eq.(1.5) with the exception that the multiplicity (N) here is for the individual

light and heavy quarks as opposed to the quarkonia in the previous case. It was

observed initially at RHIC [99, 100, 101, 102] and was subsequently observed at

LHC as well [103, 104]. RAA ∼ 1 implies no suppression whereas RAA < 1 hints at

suppression of jets. Fig.(1.7) shows the plot of nuclear modification factor RAA for

direct photons and other light mesons for Au+Au collision at√sNN = 200 GeV and

also for π± for d+Au collisions at the same centre of mass energy. We can see that at

about 5-10 GeV the ϕ, π, η mesons all show a similar level of suppression, which can

be attributed as the effect of interaction with dense thermal medium. As a thermal

medium is usually attributed for low pT particle production, this jet quenching can

thus be thought of as a final state effect rather than from the initial state. However the

RAA for the direct γ show no suppression indicating the fact that photons interaction

with medium is negligible. π± from the d+Au collisions also show almost no sup-

pression. This indicate towards the fact that medium induced suppression is not seen

in those systems possibly due to no medium formation. Along with the light hadrons

the heavy flavour hadrons also serve as a potential candidate for identifying suppres-

sion as these are also generally formed at an early stage of the collision process and

traces out the full medium along its evolution.
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Figure 1.7: RAA for direct photons and other mesons for Au+Au collision at √sNN = 200
GeV [92]. Also the result for π± is given for d+ AU collisions at √sNN= 200 GeV.

Figure 1.8: RAA is depicted for prompt D-mesons, charged pions, charged particles, and
J/Ψ particles by ALICE [105]. Additionally, RAA results for both prompt and non-prompt
J/Ψ particles from CMS are included [106]. These measurements were conducted in central
Pb+Pb collisions at mid-rapidity with specific energy conditions noted in the legend.

Fig.(1.8) shows RAA vs pT for various heavy mesons (D mesons), charged pions

(π±) from ALICE experiments and quarkonia (J/Ψ both prompt and non prompt)

from CMS experiment for Pb+Pb at √sNN = 5.02 TeV at 0-10% centrality. We can

see that at higher pT over 10 GeV/c, the suppression of both heavy and light charged
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hadrons almost show a similar level of suppressionwhich is indeed due to themedium

effect. There are also other measurements, such as the ratio of the yields, performed

on different heavy quarks, can be found in [107, 108].

• Strangeness enhancement : The strangeness enhancement is one of the most impor-

tant signature of the QGP medium formation. Among the oldest signatures proposed

to indicate the presence of QGP in heavy-ion collisions is the observation of enhance-

ment in the strange particle production [109, 110]. Nucleons inside the nuclei before

the collisions lack valence strange quarks, yet ss̄ pairs can be generated in the ini-

tial hard scattering, subsequent QGP or hadronic phase formed during high-energy

heavy-ion collisions. In the event of QGP formation, an elevated production of s and

s̄ quarks is anticipated compared to normal hadronic interactions. This is due to the

competitive nature between the production of ss̄ pairs and uū and dd̄ pairs. This in-

dicates towards seeing an enhancement in strangeness production via taking the ratio

of the yields of multi-strange to light hadrons both at hadronic as well as partonic

sector which is usually given by:

multi-strange particles multiplicity (Λ,Ω)
light particles (π+, π−).

(1.6)

In addition to examining this ratio for different system sizes, such as p+p, p+Pb,

and Pb+Pb collisions, the relative comparison across these sizes can also serve as an

indicator of QGP phase formation. The validation of this phenomenon as a hallmark

of QGP formation was initially provided by the WA97 experiment [111]. Fig.(1.9)

presents the data showing the ratios of yields of multi-strange baryons (Λ, Ξ−, Ω− +

Ω̄+) for different system sizes relative to production at p+Be versus Npart, obtained

from the NA57 experiment [112]. The plot on the right side corresponds to the an-

tiparticle counterpart shown on the left. The plot reveals that at lower Npart the plots

for p-Be and p-Pb (small systems have lowmultiplicity), remain consistent with unity,
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Figure 1.9: Multistrange baryon enhancement measured by NA57 in Pb+Pb collisions at√
sNN = 17.3 GeV as a function of the number of participant nucleons (Npart) [112].

whereas in the higher Npart region, the results for Pb+Pb show an increasing trend with

respect to the increase in the number of participating nucleons. This increasing trend

in the ratios of multi-strange baryons in Pb+Pb to that in p+p or p+Be hints at the for-

mation of QGP medium in the nuclear-nuclear collisions. These findings were sub-

sequently supported by results from both STAR and ALICE experiments [113, 114].

• The direct photon measurement : Photons serve as electromagnetic probes, offer-

ing crucial insights about the presence of a dense partonic medium. They are gen-

erated at various stages of heavy-ion collisions, spanning from the pre-equilibrium

phase to the freeze-out stage, through processes such as q+ q̄ → γ+γ, q+ q̄ → γ+g,

and π+ + π− → γ + ρ0. Direct photons are the photons that are not produced from

hadronic decays. Fig.(1.10) shows the pT spectra for direct photons for Pb+Pb colli-

sion at √sNN = 2.76 TeV for different centrality classes (0–20 %, 20–40 %, 40–80
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Figure 1.10: Comparison between the direct photon pT -spectra in Pb+Pb collisions at√
sNN = 2.76 TeV across different centrality windows (0–20%, 20–40%, and 40–80%),

each scaled by specific factors (100, 10, and 1 respectively). These spectra are contrasted
with next-to-leading order pQCD predictions for direct photon yields in p+p collisions at
the same energy level, but scaled individually by the number of binary nucleon collisions
corresponding to each centrality window, as referenced in [115].

%) along with the pQCD predictions in case of p+p collisions at the similar energy. It

is clear that at high transverse momentum that is for pT > 4 GeV/c both the data from

Pb+Pb and scaled pQCD predictions for p+p collisions matches really well, whereas

there is a disagreement between them at low pT regime (pT < 4 GeV/c). This dis-

agreement is more evident in the most central collisions that is for 0–20 % centrality

range. At high pT regime that is beyond 4 GeV/c the direct photon spectra obeys a

power law whereas at low pT , the Pb+Pb data obeys an exponential distribution pro-

portional to e−
pT
Teff , where Teff is the effective temperature of the medium and pT is the
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usual transverse momentum of the particle. This exponential behaviour clearly indi-

cates the thermal behaviour of the direct photons. From this exponential fit we can

get the slope whose inverse will give us the temperature of the initial thermal medium

that is formed. There has been several attempts to extract the initial temperatures of

the medium using ideal and viscous hydrodynamics models [116, 117] which roughly

estimates τini= 0.2 fm/c with initial temperature at the centre to be Tini= 682 MeV and

τini= 0.4 fm/c with Tini= 385 MeV respectively. Recently, employing Bayesian fits,

researchers attempted to constrain the combination τ 1/3ini Tini. Their findings yielded a

value of 450+100
−70 fm1/3MeV for Pb+Pb collisions at √sNN = 2.76 TeV and 350+130

−60

fm1/3MeV for Au+Au collisions at √sNN = 200 GeV [118].

• QGP droplet in small systems: Till now all the signatures were indicating the for-

mation of dense QGP medium in large systems like Pb, Au where we also assumed

that smaller systems like p+p, p+Au, d+Au do not produced QGPmedium. However,

it was seen that even high-energy proton-proton collisions could produce a statisti-

cal system that might exhibit aspects of hydrodynamic behavior. The question then

arises: Are the energy densities in small systems sufficiently high to produce a QGP

medium, or is there a lower bound on the droplet size of the QGP that we can also

anticipate for smaller systems.

CMS provided the initial clear evidence of the behavior resembling a collective flow

pattern in p-p collisions at √sNN = 7 TeV [119]. Subsequent angular correlation

measurements at√sNN = 2.76 and 13 TeV further supported this finding [120, 121].

Similar observations of collective flow patterns have been documented in p+Pb col-

lisions at the LHC as well as in p+Au, d+Au, and 3He+Au collisions at RHIC [122,

123, 124, 125, 126, 127]. There have also been attempts from the computational

side involving viscous hydrodynamics to try and understand the situation across var-
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Figure 1.11: The hydrodynamic (superSONIC) simulations (bands) are compared with ex-
perimental data from ATLAS, CMS, and ALICE (symbols) for the elliptic (v2), triangu-
lar (v3), and quadrupolar (v4) flow coefficients across various collision systems: p+p (left
panel), p+Pb (center panel), and Pb+Pb (right panel) collisions at

√
s = 5.02 TeV. Simula-

tions were conducted using η/s = 0.08 and ζ/s = 0.01 for all systems. Notably, ATLAS
results for v3 and v4 are available solely for

√
s = 13 TeV, whereas all simulation outcomes

are based on
√
s = 5.02 TeV. The figure originates from [128].

ious system sizes. One such attempt is through the comparison of flow harmonics.

Fig.(1.11) shows vn’s for three different system sizes that is for p+p (left most), p+Pb

(middle) and Pb+Pb (right most) for√sNN= 5.02 TeV for the most central case. The

symbols represents the data from various experiments whereas the bands are the sim-

ulation results using the superSONIC code which uses viscous hydrodynamics for

the medium evolution. We can observe that the model calculations remarkably re-

produces the results across various system sizes. This suggests the possibility that a

QGP-like system may be formed in all such system sizes.

We will now discuss one of the intriguing aspects, which also constitutes the primary

focus of the current thesis that is studying the effects and behavior of intense electro-

magnetic fields produced in heavy-ion collision experiments. We now begin here by

exploring their generation in such collisions.
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1.0.5 Electromagnetic field production in heavy-ion collisions

In non-central heavy-ion collisions, the rapid motion of nuclei results in the generation of

intense electromagnetic fields. Due to the fast moving spectators moving along z-direction,

with impact parameter along the x-axis, the yth-component of magnetic field will be the

dominant contributor to the overall field production. Mathematically it can be written in

units ofm2
π as [129]:

e · ⟨By⟩ ∝
√
s

2mp

Z

A2/3

b

2RA

, for b < 2RA, (1.7)

wheremp, Z,A, b,RA are mass of proton, atomic number, mass number, impact parameter,

radius of the nuclei respectively. This shows that the fields will increase with increase in

the
√
s, Z and b. Studies have demonstrated that while these magnetic fields are transient

in vacuum, they may persist for longer durations in the presence of a conducting medium.

Fig.(1.12) illustrates the scenario where two highly Lorentz contracted nuclei moving at

Figure 1.12: Pictorial depiction of electromagnetic fields produced in a non-central heavy-
ion collision [130].

relativistic velocities in the beam direction (z-axis), with non-zero impact parameter along

the x-axis. The magnetic fields at (x, y, z) = (0, 0, 0) (shown by Bs) are produced pre-

dominantly in the y-direction that is perpendicular to the reaction plane (that is the plane

formed by the impact-parameter (x-axis) and the beam direction (z-axis)). According to the

31



1 Introduction

Maxwell’s equation∇× E = −∂tB, this time varying magnetic fields will induce an elec-

tric, which in turn produces a current J (shown by red circles). According to∇×B = µ0J,

these currents indeed will induce amagnetic field again in the same direction (y-axis) as was

produced by the moving spectators. This will enhance the contribution of the magnetic field

along the y-direction and this enhancement is primarily due to the medium induced effects.

This makes the magnetic fields to sustain more in the presence of a medium. This sustained

presence of magnetic fields increase their chances of being detected in high-energy heavy-

ion collision experiments [21]. The temporal behaviour of the magnetic field in presence

of a medium is illustrated in Fig.(1.13). Here we observe that the By decays rapidly and

reaches a very low value within a short period of time, around 2 fm (shown in blue) in vac-

cum. However, in the presence of a conductive medium (shown in red), the field sustains

for a longer period and maintains an appreciable strength.
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t @fmD
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Figure 1.13: Evolution of magnetic field with (red solid line) and without (blue solid line)
conductivity at RHIC energies[21].

Although a smooth distribution of protons inside a nucleus (calculated from optical

Glauber model) yields electric and magnetic fields predominantly in x- and y-direction

respectively, but in reality a calculation on an event-by-event basis indicates that due to

the fluctuations in the positions of the protons inside the nuclei, all the components of the

electromagnetic fields can exhibit comparable strengths [59, 60]. This phenomena is also
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illustrated in chapter.(5). However the predictions on the magnitude and calculation of the

strength of the electromagnetic fields are mere theoretical. Nonetheless, there have been

few attempts from the experimental side to measure and determine the effect of electromag-

netic fields, which we briefly describe below.

Observables for electromagnetic fields in heavy-ion collisions

Experimental progress and measurements that has been conducted to investigate the impact

of electromagnetic fields on the medium in heavy-ion collisions, is either by examining the

Chiral Magnetic Effect (CME) or by studying differential directed flow [131, 132, 133].

The CME is primarily observed in parity odd medium. It presents an unusual scenario

Figure 1.14: Visual representation of isobaric collisions involving Zr + Zr and Ru + Ru.

where an electric current emerges along the direction of an external magnetic field, induced

by a disparity in chirality (the difference in the number of left-handed and right-handed

particles). These anomalies are also anticipated in heavy-ion collisions, characterized by

highly intense magnetic fields and chirality imbalances within the generated medium. In

the quest for the CME search in heavy-ion collisions, investigations are chiefly conducted

through isobaric collisions. These collisions involve comparing the outcomes between col-

lisions of different ions, such as Zr or Ru, which share the same mass number but have

different atomic numbers (as depicted in Fig.(1.14)). Comparisons here are made between
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Zr+Zr and Ru+Ru collision systems to analyze the effects of varying atomic numbers while

keeping the mass number constant. As the magnetic fields are proportional to the atomic

number (Z), the one’s with greater Z will experience more magnetic fields, which will lead

to a greater separation between particles. The background contributions in both the systems

are kept constant via same mass number A (96 in this case). Thereby, indicating the fact

that any additional effects observed from comparing these collisions may stem from elec-

tromagnetic fields. The observable employed to detect this phenomenon is the γ correlator

defined as:

γ = ⟨cos(ϕα + ϕβ − 2ΨRP )⟩, (1.8)

where ϕα and ϕβ represent the azimuthal angles of particles of interest (POIs), and ΨRP

denotes the reaction plane angle. CME searches and its progress have been extensively

documented in the literature [132, 133].
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Figure 1.15: Comparison between experimental data and model predictions for the differ-
ential slope of elliptic flow (∆dv1

dy
) is conducted for pions, kaons, and protons in Au + Au

collisions at center-of-mass energies of √sNN = 200 GeV and 27 GeV, as well as for iso-
baric collisions at√sNN = 200 GeV [131].

Another observable that is used to measure the effect of electromagnetic fields are

through differential directed flow. Recent experiments have investigated the observable

∆dv1
dy

for all identified charged particles (pions, protons, kaons). ∆dv1
dy

is typically defined
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as the difference in the contribution from the particle and anti-particle’s the directed flow

slope values calculated at mid-rapidity (y=0). This phenomenon is primarily observed with

centrality, as the effect of the electromagnetic field is expected to increase in more periph-

eral collisions (70 - 80 %), mainly due to a large number of spectators. In Fig.(1.15), data

points for different systems and energies are represented by various symbols where colors

red, blue, and black corresponds to protons, pions, and kaons, respectively. The plots from

various models, such as UrQMD (depicted in the violet band) and VISHNU + EM field (in-

dicated by the red line), are also included. The notable observation indicating the presence

of the electromagnetic field is the negative slope of the aforementioned observable. It can

be seen that the model with the electromagnetic field (represented by the red line) roughly

reproduces the trajectory of the slope, whereas the model without electromagnetic fields

does not.

With that now we focus on the primary objective of this thesis:

• Calculation of evolution equations for the dissipative stresses (bulk, diffusion and

shear) in presence of external electromagnetic fields from kinetic theory.

• Generation of electromagnetic fields by the participant charges in heavy-ion colli-

sions.

• Effect of baryon stopping on the temporal evolution of all the components of electro-

magnetic fields.

• The effect of electric fields on the bulk observables (spectra, vn’s).

1.0.6 Thesis motivation

It is well known that the relativistic generalization of non-relativistic Navier-Stokes rela-

tions possesses an acausality issue, also discussed in chapter.(2). Specifically, it yields a
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group velocity vg that diverges at large k limit, where k = |k|with k being the wave vector.

To circumvent this issue, Israel and Stewart [134, 135, 136] proposed the formulation of

relaxation-type equations for dissipative stresses (bulk, shear, heat current) by going to a

higher order in derivative expansion. These equations can be written in the following form:

Π = −1

3
ζ
(
∂µu

µ + β0Π̇− α0∂µq
µ
)
, (1.9)

qλ = κT∆λµ
[
∂µα · nT/(ϵ+ P )− β1q̇µ + α0∂µΠ+ α1∂νπ

ν
µ

]
, (1.10)

πλµ = −2η
(
u<λ|µ> + β2π̇λµ − α1q<λ|µ>

)
, (1.11)

where uµ,Π, qλ, πλµ denote the fluid’s four-velocity, bulk, heat current, and shear stress, re-

spectively. Meanwhile, ζ , κ, and η primarily represent the first-order transport coefficients,

defined as bulk viscosity, thermal conductivity, and shear viscosity, respectively.

Bulk viscosity describes how a substance responds when it’s compressed or rarefied.

Shear viscosity explains how it reacts to tangential forces, while thermal conductivity tells

us how it responds to the heat moving from a high-temperature to a low-temperature region.

The dissipative stresses (Π, qλ, πλµ) are zeroth, first, and second-rank tensors, respectively.

Their formation arises from the comprehensive expansion of the full energy-momentum

tensor across all potential tensor ranks. A symmetric T µν can thus be written as:

T µν = A1u
µuν + A2g

µν + A3Π+ A4π
µν + A5 (u

µqν + uνqµ) , (1.12)

where the A’s are the unknown coefficients. The shear stress is a symmetric second-rank

tensor derived from the symmetric component of the T µν tensor. Both the heat current and

shear stress naturally exhibit orthogonality to the fluid’s four-velocity uµ. The dimension-

less transport coefficients (η
s
and ζ

s
), where ‘s’ is entropy density, hold significant impor-

tance in determining the magnitude of flow harmonics (v2). Moreover, their temperature

dependence underscores the system’s identification as a strongly coupled liquid rather than a

weakly coupled gas. Holographic calculations have proposed lower bounds on the η
s
value,
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typically around 1
4π
[137]. Furthermore, Bayesian estimates suggest that this value stands as

the lowest among known fluids, such as liquid helium and water, offering valuable insights

into the temperature-dependent behavior of both η
s
and ζ

s
[138].

Reflecting on the right-hand side of Eqs.(1.9)-(1.11), the first term in each equation

represents the Navier-Stokes relationships for the corresponding stresses. It’s worth noting

that these terms are all first-order in gradient expansion, treating uµ and T as zeroth or-

der in the gradient expansion. However, upon progression to higher orders, new transport

coefficients denoted by α’s and β’s come into play. Eqs.(1.9)-(1.11) typically treat the in-

dividual dissipative stresses (Π, qλ, πλµ) as separate entities, diverging from their role as

dependent quantities in the Navier-Stokes limit, thereby providing an evolution equation

for each. In the Navier-Stokes limit these dissipative stresses or fluxes are related to the

thermodynamics forces by the following relation:

J = γX, (1.13)

where X is the thermodynamic force which acts on the medium and J is the flux generated,

with γ being the transport coefficient. Here J can be Π, qλ, and πλµ and the X be deriva-

tive of zeroth order fluid variables like uµ, T, and α, with the γ being their corresponding

transport coefficients. The thorough derivation of these equations through entropy current

analysis is further given in chapter.(2). Obtaining these equations and estimating the nec-

essary transport coefficients required a meticulous derivation from a microscopic theory,

with relativistic kinetic theory as the foundation. At its core lies the relativistic Boltzmann

equation [139], expressed as:

pµ∂µf + F µ ∂f

∂pµ
= C[f ], (1.14)

where pµ represents the four-momentum of an individual particle, F µ accounts for all exter-

nal forces, and the right-hand side encompasses contributions from collisions. The function
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f denotes the one-particle distribution function derived from this equation for various pro-

cesses. In an 2 ↔ 2 elastic collisions like pp′ ↔ kk
′ , the term C[f ] is expressed as:

C[f ] =
1

2

∫
dp

′
dkdk

′
Wpp′→kk′

(
fkfk′ f̃pf̃p′ − fpfp′ f̃kf̃k′

)
, (1.15)

where p, p′ and k, k′ denote the four-momenta of the involved particles before and after

the collision respectively. Wpp′→kk′ represents the transition rate for the collisions between

individual particles. This equation’s first and second terms (given in the bracket) denote the

gain and loss terms for a collision happening locally at a given point. However, this form

of collision kernel introduces a challenge by converting the relativistic Boltzmann equation

into an integro-differential form, which is very challenging to solve. Therefore, several ap-

proximations were introduced by linearizing C[f ] [140, 141, 142], with the relaxation time

approximation (RTA) being one of the most popular methods. RTA simplifies the entire

right-hand side to −u·p
τc
δf , where δf = f − f0, denotes the small deviation from the equi-

librium distribution function f0, and τc represents the relaxation time (further lights on this

is provided in chapter.(2)). Moreover, Eqs. (1.9)-(1.11) have been derived multiple times

from the underlying relativistic kinetic theory using various approximations of collision

kernels [143, 144, 145, 146, 147, 148, 149, 150, 151, 152], commonly employed in numer-

ical simulations. However, modifications to these evolution equations were necessary in

the presence of electromagnetic fields, accounting for the contribution from F µ.

In this thesis, we formulate such evolution equations using relativistic kinetic theory,

employing the RTA within the collision kernel while considering the influence of exter-

nal electromagnetic fields. These equations are formulated to encompass contributions

from both particles and antiparticles. Additionally, we conduct a comparative analysis

with results obtained through the 14-moment method [153, 154]. Furthermore, we extend

our investigation to explore the impact of these fields on bulk observables, such as spec-

tra and flow harmonics (vn), employing a blast-wave model. This model incorporates a

38



1 Introduction

parametrized velocity profile with azimuthal anisotropy and temperature variation at the

freezeout hypersurface, allowing for a comprehensive assessment of the effects of the elec-

tromagnetic field (only electric fields in the present thesis).

So far, the fields considered were external, originating predominantly from spectator

charges. Numerous studies have explored the effect of such fields by considering that the

fields from the participants are very small compared to those produced by the spectators.

However, a detailed investigation regarding this was lacking. Hence, we aim to investigate

the behavior of electromagnetic fields primarily sourced from participant charges.

As the electromagnetic fields generated during the initial phase of heavy-ion collisions

evolve, they interact with the QGP medium, influencing its behavior by altering the fluid’s

velocity. This modification in velocity, in turn, induces further alterations in the fields, high-

lighting the necessity for a consistent magnetohydrodynamics (MHD) formulation. Inte-

grating these effects into the code necessitates a consistent Magnetohydrodynamics (MHD)

simulation, typically initialized with field components derived from Glauber model calcu-

lations assuming a constant velocity for the charged nucleons (protons). However, exper-

imental findings from low-energy heavy-ion collisions indicate the stopping of participant

nucleons around the mid-rapidity region, prompting adjustments to initial conditions. In

another study, we addressed this by parameterizing the velocity of participant protons such

that after the collisions, the fields undergo deceleration, exhibiting a stopping effect. We

systematically evaluated all electromagnetic field components and discussed their temporal

evolution.

1.0.7 Organisation of the thesis

The current thesis is organized as follows. Firstly, in chapter.(2), we present a theoretical

overview of relativistic hydrodynamics, magnetohydrodynamics, and kinetic theory, which

serve as the foundation for the subsequent chapters of the thesis.
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Following that, in chapter.(3), we delve into formulating a second-order non-resistive

and resistive magnetohydrodynamics (MHD) theory from relativistic kinetic theory, em-

ploying the RTA as the collision kernel. This section investigates the evolution of various

dissipative stresses, encompassing the effects of electric and magnetic fields. Furthermore,

we analyze the transport coefficients resulting from including electromagnetic fields, con-

sidering their dependence on magnetic field strength, temperature, and mass at the Navier-

Stokes and the second-order in gradient expansion limit.

In chapter.(4), we focus solely on the contributions from participants where we derive

the expressions for all the components of electromagnetic fields under two distinct scenar-

ios, one for a point charge and another for a more realistic scenario as possible in the case

of heavy-ion collisions.

Chapter.(5) primarily addresses the incorporation of baryon stopping effects via parametriz-

ing the participant proton velocity in the Glauber model and exploring their impact on the

temporal evolution of all the electromagnetic field components at low energies.

Lastly, in chapter.(6), by employing the blastwave model to parameterize fluid velocity

and temperature on the freezeout (kinetic) hypersurface and adopting the Cooper-Frye par-

ticlization prescription, we investigate the influence of electric fields on bulk observables

such as spectra and flow harmonics (vn’s).

We finally conclude the thesis in chapter.(7), where we summarize all the results ob-

tained, outline the conclusions drawn from the research presented in this thesis, and present

some of the avenues that can be further explored.

Throughout this thesis, we will be working in the natural units that are ℏ = c = kB =

ϵ0 = µ0 = 1 and the metric tensor in flat space-time is gµν =diag(+1,−1,−1,−1) unless

otherwise specified.
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Chapter 2

RevisitingTheoretical Frameworks: From
Macroscopic to Microscopic
The two main theories we focus on are fluid dynamics and kinetic theory. Fluid dynamics

encompasses the study of fluid motion and behavior, from blood flow in the human circu-

latory system to the collective dynamics of fundamental particles like quarks and gluons

forming Quark-Gluon Plasma (QGP). Fundamentally, fluid dynamics relies on conserva-

tion laws and the Navier-Stokes equation to describe fluid motion. At the same time, its

relativistic counterpart incorporates special relativity principles and is governed by the con-

servation of the energy-momentum tensor and charge current. On the other hand, relativistic

kinetic theory offers a robust statistical framework in which the macroscopic quantities are

expressed in terms of single-particle distribution function. At its core lies the relativistic

Boltzmann equation, which dictates the evolution of the distribution function of particles

in phase space.

This chapter is organized as follows: firstly, we delve into the mathematical construct

of the macroscopic theory, specifically the relativistic version of fluid dynamics in Sec-

tion.(2.1). Building upon our previous discussion on the intense magnetic field generation

in the chapter.(1), we briefly introduce the concept of relativistic magnetohydrodynamics in

Section.(2.2). Lastly, in Section.(2.3), we talk about the relativistic kinetic theory, setting

the stage for its application in the subsequent chapters of the current thesis.
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

2.1 Relativistic Hydrodynamics

Our current understanding of fluid dynamics relies heavily on the concept of scales. Fluid

dynamics, or hydrodynamics, operates on effectively long wavelengths (that is at large

length scales), assuming a collective behavior of the fluid. This collective behavior can

be quantified by a dimensionless quantity represented by the ratio of two length scales:

one microscopic and another macroscopic. If this ratio, denoted as Knudsen number =
microscopic scale
macroscopic scale , is less than 1, fluid dynamics provides a reasonable description. In this sec-

tion, we commence with a review of themathematical formulation of ideal (non-dissipative)

and dissipative relativistic hydrodynamics [1].

2.1.1 Ideal Hydrodynamics

In a relativistic framework, energy and momentum are encapsulated within the energy-

momentum tensor T µν , which represents a system’s response to perturbations in the metric

tensor gµν . Classical fluid dynamics, in the absence of thermal fluctuations, constructs the

energy-momentum tensor at leading order (ideal case) from a rank-one timelike tensor uµ

and a rank-two tensor gµν , where uµ denotes the fluid four-velocity. These tensors are

the only available constructs for such construction with uµ and gµν taking arbitrarily any

form and are quite general. By applying a suitable Lorentz boost, the equilibrium energy-

momentum tensor can be transformed into the local rest frame (LRF), characterized by

uµ = (1, 0). In this frame, T µν takes the following form:

T µν =


ϵ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (2.1)

Where:

• T 00 = ϵ, represents the energy density of the fluid.
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

• T 0i where i = (1,2,3), represents the momentum density.

• T i0 where i= (1,2,3), represents the energy flux.

• T ii = P, with i not summed over, represents the Pressure.

• T ij where i ̸= j is shear stress.

In an arbitrary frame with four-velocity, uµ = γ(1, v), the general form of the energy-

momentum tensor in the case of an ideal fluid is given by:

T µν
(0) = (ϵ+ P )uµuν − Pgµν . (2.2)

In this context, the subscript ‘0’ signifies the 0th-order in gradient expansion. Also ‘In

equilibrium’ indicates a state of local thermal equilibrium, implying dependence of all the

thermodynamic variables on both space and time (xµ = (t, x, y, z)). Both ϵ and P denote

quantities in the local rest frame of the fluid, where the observer moves with the fluid, and

are also time- and position-dependent functions. Consequently, the space-time evolution of

the ideal fluid adheres to the conservation equations of energy and momentum given as:

∂µT
µν
(0) = 0. (2.3)

Additionally, the conservation of net charges, such as baryon, strangeness, and electric

charges, follows the conservation equation for the particle four-current:

∂µN
µ
j(0) = 0, j = 1, 2, 3. (2.4)

In this representation, the zeroth componentN0 symbolizes the net number densitynwhereas

the remaining three components N i
j (i = 1, 2, 3) represent the respective current carried by

the j th particle, where the subscript ’j’ denotes various conserved charges. Hence for an

ideal fluid in local thermal equilibrium, the quantities T µν andNµ take the following form:

T µν
(0) = (ϵ(x) + P (x)) uµuν − P (x)gµν , (2.5)

Nµ
(0) = nuµ. (2.6)
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

Counting the number of equations, we find 5 conservation equations (4 from the conserva-

tion of energy-momentum tensor and 1 from the net particle number conservation equation),

but the number of unknowns is six: ϵ(x), P (x), n(x), and the three components of uµ (three

because uµuµ = 1 is a constraint). Therefore, we need one additional constraint to close

the equation, which comes from the equation of state, relating the pressure, energy density,

and number density, given as P (x) = f(ϵ(x), n(x)).

To gain physical insight from the conservation equations, we introduce the spatial pro-

jector operator∆µ
ν = (gµν −uµuν). The operator∆µ

ν is orthogonal to the fluid four-velocity

uµ, that is∆µ
νu

ν = 0. Projecting out the component along the direction of the fluid velocity,

we obtain:

uν∂µT
µν
(0) = 0 ⇒ Dϵ+ (ϵ+ P )∂µu

µ = 0, (2.7)

where D = uµ∂µ. Next, projecting the conservation equation along the direction perpen-

dicular to the fluid velocity gives us:

∆α
ν∂µT

µν
(0) = 0 ⇒ (ϵ+ P )uµ∂µu

α −∆µα∂µP = 0 ⇒ (ϵ+ P )Duα −∇αP = 0, (2.8)

where∇α = ∆µα∂µ. Eq.(2.7) and Eq.(2.8) are the relativistic versions of the continuity and

Euler equations respectively. In the non-relativistic limit (v ≪ c), D and ∇α essentially

reduce to time and space derivatives, and the energy density ϵ closely approximates the

mass density (ρ) as ϵ ≈ ρ, neglecting the kinetic terms. Thus, the relativistic conservation

equation in the non-relativistic limit simplifies to the following conservation of mass and

Euler equations:

∂tρ+∇ · (ρv) = 0, (2.9)

∂tv+ v · ∇v = −1

ρ
∇P. (2.10)

These equations are quite well-known and are widely used.
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

Again, recalling the first law of thermodynamics (as discussed previously in chapter 1),

we have:

dQ = dU + PdV − µdN, (2.11)

where dQ represents the amount of heat change in the system, which can alternatively be

expressed as TdS, with T denoting the temperature and dS the change in entropy of the

system. Here, dU signifies the change in internal energy, dV the change in volume, P the

pressure, µ the chemical potential, and dN the change in number of particles in the system.

Dividing the above equation by volume yields:

ds = βdu+ βP
dV

V
− αdn, (2.12)

where ds = dS/V denotes the entropy density, β = 1
T
, du = dU/V represents the internal

energy density, α = µ
T
, and dn = dN/V signifies the number density. The covariant

generalization of the above equation is written as:

dSµ
(0) = βνdT µ

ν(0) − αdNµ
(0). (2.13)

Here, the subscript ‘0’ denotes equilibrium conditions. Also, note that thermodynamic

analysis is typically conducted under equilibrium or very close to equilibrium conditions.

Rewriting Eq.(2.13) in terms of partial derivatives we have:

∂µS
µ
(0) = βν∂µT

µ
ν(0) − α∂µN

µ
(0). (2.14)

Given the conditions ∂µT µν
(0) = 0 and ∂µNµ

(0) = 0, we arrive at:

∂µS
µ
(0) = 0. (2.15)

This equation represents the second law of thermodynamics, showing that no entropy is

produced when the system is in equilibrium.

66
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2.1.2 Viscous Hydrodynamics

In the previous section, we explored the ideal hydrodynamics formulation. However, re-

ality often deviates from these ideal conditions. Dissipative effects in a fluid stem from

irreversible thermodynamic processes occurring during fluid motion. Typically, individual

fluid elements may not be in complete equilibrium with the entire fluid body. To approach

equilibrium, they exchange heat with their surroundings or may dissipate energy through

friction during their relative motion with the surroundings. Accounting for all these phe-

nomena is essential for constructing a realistic description of a relativistic fluid. Mathemat-

ically we can write T µν and Nµ taking all the dissipative effects into account as follows:

T µν = T µν
(0) +Πµν = ϵuµuν − P∆µν +Πµν , (2.16)

Nµ = Nµ
(0) + V µ = nuµ + V µ, (2.17)

where the additional terms arise due to the inclusion of dissipative effects (which can contain

any order of force gradient terms). The term encompassing all the dissipative contributions

in the energy-momentum tensor is denoted by Πµν , and in the number current, it is denoted

by V µ. Moving forward we need to decompose the Πµν into scalars, vectors, and tensors

so we use the following projection operator to do it. That is

∆µν
αβ =

1

2

(
∆µ

α∆
ν
β +∆µ

β∆
ν
α − 2

3
∆µν∆αβ

)
, (2.18)

which is orthogonal to both uµ and ∆µν . Now we can write the full Πµν only in terms of

the available irreducible tensors uµ, ∆µν and the above mentioned ∆µν
αβ . This reads as:

Πµν = −Π∆µν + 2u(µhν) + πµν , (2.19)
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where Π is bulk viscous pressure, hµ is heat current and πµν is shear viscous pressure and

are defined as:

Π ≡ −1

3
∆αβΠ

αβ,

hµ ≡ ∆µ
αuβΠ

αβ,

πµν ≡ ∆µν
αβΠ

αβ.

The term u(µhν) represents the following symmetric form (uµhν + uνhµ)/2. Also V µ can

be indicated as diffusion current with V µ = ∆µ
αN

α. With this, we again do a counting

of variables and the number of independent components available. We know that T µν

constitutes a symmetric second-rank tensor with ten independent components, while Nµ

represents a four-vector, resulting in a total of fourteen independent components. Upon

examining the tensor decompositions of T µν and Nµ, we recognize that V µ and hµ, being

orthogonal to uµ, possess only three independent components each. The shear-stress tensor

πµν , symmetric, traceless, and orthogonal to uµ, inherently harbors five independent com-

ponents. Alongside uµ, ϵ, n, and Π, totaling six independent components (where pressure

P is related with ϵ through the equation of state), we thus have a total sum of seventeen

independent components, surpassing the anticipated count by three. This can be solved by

defining our velocity four-vector or in short by a frame definition.

So far, the hydrodynamic four-velocity uµ has been left unspecified. By choosing a

suitable frame for uµ, it becomes possible to define important macroscopic properties such

as energy density, number density, heat flow, and entropy density for any fluid. Two widely

used definitions of uµ originate from the formulations of Eckart and Landau-Lifshitz [2, 3,

4]. Under the Eckart definition, uµ aligns with the particle four-flow Nµ, expressed as:

uµ ≡ Nµ

√
NνN ν

. (2.20)

In the local rest frame of the fluid, it’s observed that the spatial component of Nµ becomes

zero. On the contrary, Landau-Lifshitz’s approach aligns uµ with the energy flow, expressed
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

as:

uµ ≡ T µ
ν u

ν√
uαT αβTβγuγ

. (2.21)

When projecting T µνuν with the projection operator, we obtain:

∆σ
µT

µνuν = 0. (2.22)

As a result, the energy flow vanishes in the local rest frame of the fluid element, indicating

hµ ≡ 0 in this frame. Essentially, in the Landau-Lifshitz frame, we observe a non-vanishing

diffusion current V µ alongside a vanishing heat current hµ, whereas the reverse occurs in

the Eckart frame. By making this selection, we ensure consistency with the required and

available number of independent components, which is 14. Therefore, for the remainder of

the thesis, we will exclusively adopt the Landau frame choice.

First-Order Theory for Viscous Hydrodynamics

As mentioned earlier, ideal hydrodynamics represents a zeroth-order gradient expansion.

However, accounting for dissipative effects involves incorporating terms that are gradients

of known hydrodynamic variables such as uµ and T . Here, first-order refers to the inclu-

sion of terms up to the first-order in the gradient expansion of the above-mentioned fluid

variables. In the presence of dissipation, entropy production occurs, denoted by ∂µSµ ̸= 0.

By generalizing the entropy current, we can express it in the following form:

Sµ = Pβµ + βνT µ
ν − αNµ. (2.23)

Here, α = µ
T
, where T represents the local temperature of the system and µ denotes the

chemical potential. Additionally, βν = uν

T
, and T µν along withNµ include both equilibrium

and dissipative terms. Now taking the derivative of Eq.(2.23) and by using the relations

given in Eq.(2.16) and (2.17) with a bit of manipulation we get:

∂µS
µ = −βΠθ − Vµ∇µα + βπµνσµν , (2.24)
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whereΠ is bulk viscous pressure, θ = ∂µu
µ which is the expansion scaler, Vµ is the diffusion

current, β = 1/T is the inverse temperature, σµν = ∆µν
αβ∇αuβ is the symmetric, tranceless

second-rank tensor corresponding to shear stress. Eq. (2.24) must satisfy the inequality

condition ∂µSµ ≥ 0, stemming from the second law of thermodynamics. To ensure this,

each component on the right-hand side of Eq. (2.24) should be positive definite. We can

achieve this by expressing both the viscous pressures and diffusion current as follows:

Π = −ζθ, (2.25)

V µ = κ∇µα, (2.26)

πµν = 2ησµν , (2.27)

where ζ , κ, and η are the coefficients of bulk, diffusion, and shear viscosity, respectively.

Putting all these back into the Eq.(2.24) we get:

∂µS
µ = βζΠ2 − 1

κ
VµV

µ +
β

2η
πµνπ

µν . (2.28)

Let us note that provided ∂µSµ is positive definite, the first term on the right-hand side of

Eq. (2.28) should be positive with β and ζ being positive. The third term also requires η

to be positive. However, in the second term, κ is positive, and the negative sign here is

typically taken care of by the fact that the diffusion current (V µ) is a space-like vector by

construction. Thus, in short, ensuring positive definite entropy production requires that all

transport coefficients be positive, which imposes a constraint on the range of values that

they can take. The equations mentioned in Eq.(2.25), (2.26) and (2.27) represent the rela-

tivistic version of the Navier-Stokes relations. It is well known that in relativistic theory, the

requirement that no signal should travel faster than the speed of light imposes an additional

constraint. Consequently, to check this, we conduct a linear analysis of the aforementioned

relations. Let’s consider a small perturbation in the fluid’s energy density and velocity from
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an initial state of equilibrium and rest that is:

ϵ = ϵ0 + δϵ(x, t), (2.29)

uµ = (1, 0) + δuµ(x, t). (2.30)

Here, ϵ0 represents the equilibrium energy density, and (1, 0) denotes the unperturbed flow

velocity with perturbations introduced through δϵ and δuµ. Considering the perturbations

are of the form of plane waves that is δϵ(x) = δϵ(k)eik·x and similarly for δuµ, we get a

dispersion relation which gives a relation:

ω ∝ k2, (2.31)

where ω is the ‘0th’ component of the four wave-vector kµ and k is the spatial part of the

four wave-vector with |k| = k. Examining the group velocity derived from this dispersion

relation, we find:

vg(k) =
dω

dk
∝ k. (2.32)

It’s evident that the group velocity is unbounded. As the wave vector k approaches infin-

ity, the group velocity also tends to infinity, which contradicts the principles of relativity.

To address this, a causal theory is necessary. Thus, one turns to a higher-order derivative

expansion initially proposed by Israel and Stewart [5, 6, 7]. Other formulations have also

been proposed [8, 9, 10], but we will mainly focus on the Israel-Stewart-like causal theory

formulation.

Israel-Stewart second-order causal theory

Israel and Stewart’s development of a causal theory also relied on the notion of formulating

the entropy four-current comprehensively, encompassing all primary fluid variables and

incorporating dissipative currents. Thus, we express the generalized form of Eq.(2.23) as
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follows [5, 11]:

Sµ = Pβµ + βνT
µν − αNµ −Qµ(δNµ, δT µν), (2.33)

where in Qµ contains all the dissipative effects, with δNµ = Nµ − Nµ
(0) and δT

µν =

T µν − T µν
(0) . Utilizing Eqs.(2.16) and (2.17) in Eq.(2.33) and truncating up to the second-

order in the derivative expansion we get:

Sµ = suµ − κV µ −
(
β0Π

2 − β1VνV
ν + β2π

αβπαβ
) uµ
2T

− (α0Π∆
µν + α1π

µν)
Vν
T

+O(δ3). (2.34)

The αi’s and βi’s are complicated functions of temperature and chemical potential, often

referred to as coupling terms. The βi’s represent diagonal coupling coefficients, indicat-

ing the coupling between dissipative stresses (bulk-bulk, shear-shear, diffusion-diffusion),

while the αi’s denote cross-coupling coefficients between dissipative stresses and diffusion

currents (bulk-diffusion and shear-diffusion). Upon differentiation of the aforementioned

equation, we can get the form of ∂µSµ as shown in [5].

Ensuring ∂µSµ ≥ 0 according to the second law of thermodynamics, we thus get all the

evolution equations for the dissipative stresses (bulk, shear, diffusion) which is given as:

Π = −1

3
ζ
(
∂µu

µ + β0Π̇− α0∂µq
µ
)
, (2.35)

qµ = κT∆µλ [(∂λα)nT/(ϵ+ P )− β1q̇λ + α0∂λΠ+ α1∂νπ
ν
λ] , (2.36)

πµν = 2η (∇<µuν> − β2π̇µν + α1∇<µqν>) . (2.37)

where spatial vector qµ = hµ + V µ(ϵ+P )
n

(in Landau frame hµ=0). Ȧ is just a different

notation forDA that is mentioned above, whereA can be any arbitrary quantity. The above

set of equations are relaxation-type equations, implying that there is no instantaneous signal

propagation but rather a delay achieved by relaxation times thus taking into account the

causality issue posed at the leading order. It’s worth noting that all the unknown βi’s should
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be related to the relaxation time to ensure dimensional consistency and they do so in the

following manner:

τΠ = ζβ0/3,

τn = κTβ1,

τπ = 2ηβ2.

All the above relaxation times τΠ, τn, τπ are necessarily positive. With this, we now move

on to the macroscopic relativistic magnetohydrodynamics formulation.

2.2 Relativistic MHD

Given our primary objective of investigating the influence of magnetic fields in heavy-ion

collisions, it is evident that relativistic magnetohydrodynamics provides the most suitable

theoretical framework for our study. To commence, let us present a textbook-style intro-

duction to the relativistically covariant formulation of electrodynamics. Without sacrificing

generality, we can define the second-rank antisymmetric electromagnetic field tensor F µν

in terms of the electric Eµ and magnetic Bµ field four-vectors (defined below), along with

the four-velocity uµ, as is given in various references [12, 13, 14].

F µν = Eµuν − Eνuµ + ϵµναβuαBβ. (2.38)

Its Hodge dual is given by:

F̃ µν = Bµuν − Bνuµ − ϵµναβuαEβ, (2.39)

where Eµ = F µνuν and Bµ = F̃ µνuν = 1
2
ϵµναβuνFαβ . Additionally, using the antisym-

metric property of F µν , it becomes evident that both Eµ and Bµ are perpendicular to uµ,

meaningEµuµ = Bµuµ = 0. Moreover, in the rest frame uµ = (1, 0), we findEµ := (0,E)
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2 Revisiting Theoretical Frameworks: From Macroscopic to Microscopic

and Bµ := (0,B), where E and B represent the electric and magnetic field three-vectors,

respectively, with Ei := F i0 and Bi := −1
2
ϵijkFjk.

Maxwell’s equations can be expressed covariantly as:

∂µF
µν = Jν , (2.40)

∂µF̃
µν = 0, (2.41)

where Jν represents the electric charge four-current, acting as the source of the electromag-

netic field. In a fluid with four-velocity uµ, Jµ can be decomposed as follows:

Jµ = jµ + dµ, (2.42)

where jµ denotes the conduction current and dµ = ∆µ
νJ

ν represents the charge diffusion

current, with nq = uµJ
µ being the proper net charge density. Assuming a linear consti-

tutive relation between jµ and Eµ (Ohm’s law), we have jµ = σµνEν , where σµν denotes

the conductivity tensor. It’s important to note that uµjµ = 0 indicates the fact that the con-

duction current exists even when the net charge vanishes. The solutions of equations (2.40)

and (2.41), together with a given Jµ in equation (2.42), completely determine the evolution

of the electromagnetic field. Jµ serves as a coupling between the fluid and the fields, as it

contains information about the fluid, such as fluid conductivity σµν and net charge density

nq, and acts as a source in Maxwell’s equations. Incidentally, for a single-component gas

as considered in the current thesis, the net charge density is equivalent to the net number

density, and the following relation holds nq = qnf , where nf corresponds to the net number

density.

In the absence of polarization or magnetization, the stress-energy tensor for the electro-

magnetic field can be expressed as:

T µν
EM = −F µλF ν

λ +
1

4
gµνF αβFαβ. (2.43)
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Differentiating the field stress-energy tensor, we obtain the equation of motion:

∂µT
µν
EM = −F νλJλ. (2.44)

Up to this point, no external sources have been considered. Therefore, the charge current

density arises solely from the fluid, i.e., Jµ = Jµ
f . However, in the presence of an exter-

nal source current Jµ
ext (e.g., spectator protons in heavy-ion collisions acting as an external

source for the electromagnetic fields in the QGP), the total current consists of both conduc-

tion and external current densities:

Jµ = Jµ
f + Jµ

ext. (2.45)

In this scenario, the external current density serves as a source term in the energy-momentum

conservation equation. In the ideal MHD limit (also to be discussed in chapter.(3)), which

corresponds to a very large magnetic Reynolds number Rm ≫ 1, the magnetic Reynolds

number is given by Rm = LUσµ, where L represents the characteristic length or time

scale of the QGP, U is the characteristic velocity of the flow, and µ is the magnetic per-

meability of the QGP. The large Rm limit is associated with a very large or infinite elec-

trical conductivity. However, the induced charge density due to the electromagnetic field

Jµ
ind = σEµ (where σ is the isotropic electrical conductivity, i.e., σµν = σgµν) must be

finite, leading to Eµ → 0 in this case. As a result, the electromagnetic tensor F µν takes the

following form:

F µν → Bµν = ϵµναβuαBβ. (2.46)

Substituting equations (2.45) and (2.46) into Maxwell’s equations (2.40), we obtain:

ϵµναβ (uα∂µBβ +Bβ∂µuα) = Jν
f + Jν

ext. (2.47)

Now, expressing the energy-momentum tensor for the electromagnetic case using equa-

tions (2.43) and (2.46), we have:

T µν
EM → T µν

B =
B2

2
(uµuν −∆µν − 2bµbν) , (2.48)
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where BµBµ = −B2 and bµ = Bµ

B
, with bµuµ = 0 and bµbµ = −1. Furthermore, from

equation (2.46), one can show that BµνBµν = 2B2, allowing us to introduce another anti-

symmetric tensor defined as:

bµν = −B
µν

B
, (2.49)

with the properties: bµνuν = bµνbν = 0 and bµνbµν = 2. When we relax the ideal MHD

approximation and consider the effect of finite conductivity, the full F µν given in Eq.(2.38)

is considered. The energy-momentum tensor for the electromagnetic field is expressed as:

T µν
EM =

(
B2 + E2

2

)
uµuν −

(
B2 + E2

2

)
∆µν − B2bµbν

−E2eµeν + 2Q(µuν), (2.50)

where Bµ = Bbµ, Eµ = Eeµ, bµbµ = −1, eµeµ = −1, Qµ = EµλρEλBρ with Eµλρ =

ϵµλρτuτ , and bµuµ = eµuµ = 0. We can now express the total T µν as T µν = T µν
EM + T µν

f .

For the non-dissipative fluid, T µν
f = ϵuµuν − P∆µν . Hence, the energy-momentum tensor

for the non-dissipative fluid in the presence of the electromagnetic field takes the following

form:

T µν
tot(0) =

(
ϵ+

B2 + E2

2

)
uµuν −

(
P +

B2 + E2

2

)
∆µν

−B2bµbν − E2eµeν + 2Q(µuν). (2.51)

For the dissipative fluid in the EM field, we have:

T µν
tot =

(
ϵ+

B2 + E2

2

)
uµuν −

(
P +Π+

B2 + E2

2

)
∆µν

+πµν − B2bµbν − E2eµeν + 2Q(µuν). (2.52)

The relativistic magnetohydrodynamics equations thus consist of energy-momentum

conservation equations for fluid and electromagnetic fields and Maxwell’s equations. This

set of conservation equations is closed with an Equation of State (EoS) relating fluid pres-

sure, energy, and number density and a constitutive equation for the charge four current. In
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the presence of an external electromagnetic field, there exists an external force on charged

fluid, and the total energy-momentum conservation takes the following form

∂µT
µν = −F νλJext,λ. (2.53)

The conservation equation for electromagnetic fields can be rewritten using Eq.(2.44) and

Eq.(2.45) as:

∂µT
µν
EM = −F νλ(Jf,λ + Jext,λ). (2.54)

Now using Eq.(2.53) and Eq.(2.54) we land up at:

∂µT
µν
f = F νλJf,λ. (2.55)

Also, we know that the conservation of charge current of the fluid is conserved separately

stating:

∂µJ
µ
f = 0 (2.56)

Typically, the conservation of the total energy-momentum tensor in an isolated system

holds. However, when an external source is present (such as an external charge current),

conservation is only maintained by including an appropriate source term. This indicates that

in such scenarios, the evolution of the fluid relies on the fluid charge current, as depicted in

Eq.(2.55).

As previously discussed regarding Israel-Stewart-like second-order evolution equations

for dissipative stresses in the context of viscous hydrodynamics, similar evolution equations

exist for dissipative stresses in the presence of electromagnetic fields, which we will be de-

riving in the chapter.(3). Recalling our discussion on the Israel-Stewart type theory, which

allowed for positive definite entropy current generation. We noted that the coupling terms

associated with transport coefficients were unknown and were only constrained. To deter-

mine their values, we need an underlying theory, which we will be studying in the following

section, specifically, the relativistic kinetic theory.
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2.3 Relativistic Kinetic theory

Kinetic theory offers a way to understand the collective behavior by describingmacroscopic

quantities in terms of the distribution of individual particles in phase space. In relativistic

systems, such as those in high-energy physics or astrophysics, we can derive formulations

of dissipative hydrodynamics or magnetohydrodynamics using relativistic kinetic theory.

In this approach, we employ a single-particle distribution function f(x, p), where x denotes

position space and p momentum of the particle. This function allows us to quantify the

behavior of the system. For instance, the total number of particles (N ) within the system

can be represented as
∫∞
−∞

∫∞
−∞ d4pd4xf(x, p) where d4xd4p is the phase-space volume el-

ement. Furthermore, all the fundamental quantities, such as the entropy current Sµ, the

number current Nµ, and the energy-momentum tensor T µν , can be expressed as various

moments of this distribution function (f(x, p)). These moments provide insights into the

overall dynamics of the system, shedding light on its macroscopic behavior. These are thus

represented as:

T µν =

∫
d3p

p0
√
−gpµpνf(x, p), (2.57)

Nµ =

∫
d3p

p0
√
−gpµf(x, p), (2.58)

Sµ = −
∫
d3p

p0
√
−gpµf(x, p)(lnf(x, p)− 1), (2.59)

where d3p
√
−g

p0
is the Lorentz invariant quantity with p0 =

√
|p|2 +m2 and g being the

det(gµν). The distribution function f(x, p) represented above is a dynamical quantity and

can be retrieved using the relativistic Boltzmann equation:

df

dT
=
dxµ

dT
∂µf +

dpµ

dT
∂f

∂pµ
= C[f ], (2.60)
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where pµ = dxµ

dT is the four-momentum of the individual particle, df
dT is the total derivative

of the distribution function, and F µ = dpµ

dT is the external force applied. The first term here(
dxµ

dT ∂µf
)
represents the free-streaming term, while the second term takes into account the

effects of all the external forces, and the right-hand side takes into account all the informa-

tion about the collision dynamics taking place in the system. Here the F µ = −Γµ
αβp

αpβ or

qF µνpν are the forces corresponding to the curved space-time or the electromagnetic case,

respectively with Γµ
αβ being the Christoffel symbol of second kind.

In the realm of hydrodynamics, we previously partitioned the total energy-momentum,

number current, and entropy current into two distinct categories: ideal and dissipative. This

categorization is based on the fact that we need to distinguish between ideal quantities,

which do not contribute to entropy production, and those that lead to dissipation, conse-

quently resulting in entropy production. Continuing in the same manner, we undertake

a similar decomposition, presuming the presence of an equilibrium distribution function

f0(x, p) alongside an off-equilibrium counterpart δf(x, p). Consequently, we represent the

distribution function f(x, p) = f0(x, p) + δf(x, p). Thus, we write the equilibrium and

non-equilibrium quantities here as:

ϵ ≡ uµuνT
µν = uµuν

∫
d3p

p0
√
−gpµpν

(
f0 + f̄0

)
, (2.61)

n ≡ uµN
µ = uµ

∫
d3p

p0
√
−gpµ

(
f0 − f̄0

)
, (2.62)

P ≡ −∆µν

3
T µν = −∆µν

3

∫
d3p

p0
√
−gpµpν

(
f0 + f̄0

)
, (2.63)

s ≡ uµS
µ = −uµ

∫
d3p

p0
√
−gpµ(f0 + f̄0)[ln(f0 + f̄0)− 1], (2.64)

dSµ ≡ ∆µ
νS

µ = −∆µ
ν

∫
d3p

p0
√
−gpν(δf + δf̄)[ln(δf + δf̄)− 1], (2.65)

V µ ≡ ∆µ
νN

ν = ∆µ
ν

∫
d3p

p0
√
−gpν

(
δf − δf̄

)
, (2.66)
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Π ≡ −∆µν

3
δT µν = −∆µν

3

∫
d3p

p0
√
−gpµpν

(
δf + δf̄

)
, (2.67)

πµν ≡ ∆µν
αβδT

µν = ∆µν
αβ

∫
d3p

p0
√
−gpαpβ

(
δf + δf̄

)
, (2.68)

where f̄0 and δf̄ denote the equilibrium and off-equilibrium parts from the anti-particles,

where for anti-particles q → −q and µ→ −µ. For convenience, we express the integrals in

Eq.(2.61) to Eq.(2.63) in terms of thermodynamic integrals I(m)±
nq (defined in Appendix A.1)

as:

ϵ = I
(0)+
20 , (2.69)

n = I
(0)−
10 , (2.70)

P = −I(0)+21 , (2.71)

here ± corresponds to the addition or subtraction of f̄ (we will be using these notations

also in the chapter.(3)). Again from the expression of entropy current in Eq.(2.59) and

demanding ∂µSµ = 0, we get that equilibrium distribution function to be of the following

form:

f0(x, p) = F
(
pµuµ
T

)
. (2.72)

In the case of fermions, bosons, or Boltzmann statistics, the equilibrium distribution is given

as:

f0(x, p) =
1

exp
(pµuµ

T
− α

)
± l

, (2.73)

where l = 0,±1 for Boltzmann, fermions, and bosons, respectively. Here uµpµ is the

scalar invariant and can be interpreted as the energy of the particle in the rest frame of the

fluid. Along with the equilibrium quantities, the dissipative part of the distribution func-

tion δf(x, p) is evaluated using the relativistic Boltzmann equation.(2.60). While doing

so, it is very important to consider the form of the collision kernel. Over the years, there

have been many advances toward taking care of the collision kernel [15, 16, 17]. One of
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the most renowned and straightforward approaches is the RTA (relaxation time approxi-

mation), where we postulate C[f ] = −u·p
τc
δf(x, p). Here, τc signifies the relaxation time,

denoting the duration required for a particle in a non-equilibrium distribution state to tran-

sition to equilibrium. The negative sign’s physical significance lies in its role in driving

non-equilibrium particle distributions towards equilibrium. With this, we are ready with

the final Boltzmann equation, that is:

pµ∂µf + F µ ∂f

∂pµ
= −u · p

τc
δf(x, p), (2.74)

which we will be using in the rest of the thesis.

In the next chapter, we use the above form of the Boltzmann equation given in Eq.(2.74)

with external forces (electromagnetic fields) to derive the Israel-Stewart-like evolution equa-

tions for the dissipative stresses (Π, πµν , V µ) using the RTA as collision kernel.
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Chapter 3

Relativistic non-resistive and resistivemag-
netohydrodynamics for dissipative systems
Here the terms “non-resistive” and “resistive” refers to different descriptions of magneto-

hydrodynamics (MHD), a framework used to study the behavior of conducting mediums in

the presence of magnetic fields. Let’s explore these two descriptions: non-resistive MHD

assumes that the medium is perfectly conducting, meaning there is no electrical resistance.

In the previous chapter, we discussed that Eµ = F µνuν , where the symbols have the usual

meaning. In any arbitrarily boosted frameEµ can be written as (−γE ·v,−γ (E+ v× B)).

For a finite amount of charge, charge-current Jµ is finite and hence the limit of infinite con-

ductivity leads to Eµ tending to 0 given that Jµ = σEµ. In this limit as Eµ is set to zero, it

boils down to the condition that each element in the electric four-vector is zero, stating that

the fluid velocity (v) is perpendicular to the electric field (E) and E + v × B = 0, with B

being the magnetic field vector. Thus in the ideal or non-resistive limit, Ohm’s law takes

the simplified form E+ v× B = 0. This approximation is often employed in astrophysics

which results in a condition known as ‘frozen-in’ magnetic field lines, where the magnetic

field evolves with the fluid, and its dynamics are completely determined by the fluid ve-

locity. On the other hand, resistive MHD accounts for the presence of a finite electrical

resistivity in the conducting medium. This is a more realistic scenario in which the Ohm’s

law is modified to include the resistive term: E+ v× B = ηJ, where η is the electrical re-

sistivity and J is the electric current density. The resistive term accounts for the dissipation

of magnetic energy due to the finite electrical resistivity of the medium.

In this chapter, we will discuss both resistive and non-resistive evolution equations for
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3 Relativistic non-resistive and resistive magnetohydrodynamics for dissipative systems

the dissipative stresses for a conducting medium. It has been shown previously in chap-

ter.(2) that Israel Stewart-like (IS-like) theories resolve the major problem of acausality

in the first order. This theory is indeed known to be causal and stable but in a restricted

manner [1, 2, 3, 4]. Many advancements in IS-like equations, excluding electromagnetic

fields, have been derived directly from kinetic theory. These advancements were achieved

by considering various moments, applying different counting schemes, or by incorporat-

ing non-local effects in collision terms etc [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Further,

second-order causal magnetohydrodynamics equations were also derived for non-resistive

in [16] and subsequently for resistive case in [17] for a single-component system of spinless

particles (no antiparticle) using a 14-moment approximation.

Here, we will delve into the utilization of the relaxation time approximation in the

collision kernel to derive the relativistic non-resistive and subsequently resistive, viscous

second-order magnetohydrodynamic (MHD) equations that govern the dissipative quanti-

ties in the context of heavy-ion collisions. We should note that putting the limit of infinite

conductivity or Eµ = 0 in the resistive case, we should retrieve the non-resistive evolution

equations of the dissipative stresses but to make sure that these are exactly the evolution

equations in the non-resistive limit we derive both the cases one-by-one. To accomplish

this, we solve the Boltzmann equation for a system of particles and antiparticles, employ-

ing a Chapman-Enskog-like gradient expansion of the single-particle distribution function

truncated in the second order. Furthermore, in this chapter, we also derive the anisotropic

transport coefficients in the Navier-Stokes limit. This will provide us with a comprehensive

understanding of the behavior of the dissipative quantities considering the external electro-

magnetic field’s effects on the system.

Firstly, wewill review theMHDequations introduced in the previous chapter and briefly

discuss these equations. Following that, in Section.(3.1), we will delve into the formal-

ism utilized to derive Israel-Stewart-like equations for all the dissipative stresses, explicitly
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considering the influence of external magnetic fields only in the non-resistive case. Addi-

tionally, this section will explore the new second-order transport coefficients arising from

this formalism, examining their dependence on temperature and mass. In section.(3.2) we

will derive the general expressions of Israel-Stewart-like evolution equations for dissipa-

tive stresses. This derivation will encompass contributions from electric and magnetic field

vectors in a scenario of finite conductivity. Finally, in Section.(3.3), we will outline the

conclusions drawn from the findings presented in this chapter. The time-like fluid’s four-

velocity uµ satisfy uµuµ = 1. Also, we use the following decomposition for the partial

derivative: ∂µ ≡ uµuν∂
ν + (gµν − uµuν)∂

ν = uµD +∇µ. The ∇αuβ is decomposed as:

∇αuβ = ωαβ + σαβ +
1

3
θ∆αβ, (3.1)

where ωαβ = (∇αuβ − ∇βuα)/2 is the anti-symmetric vorticity tensor, σαβ ≡ ∇⟨αuβ⟩ =

1
2

(
∇αuβ +∇βuα

)
− 1

3
θ∆αβ is the symmetric-traceless tensor and θ ≡ ∂µu

µ is the expan-

sion scalar. The fourth-rank projection tensor is defined as ∆µν
αβ = 1

2

(
∆µ

α∆
ν
β +∆µ

β∆
ν
α

)
−

1
3
∆µν∆αβ . In Chapter (2), we provided a brief overview of the relativistic MHD equations.

We now proceed by rewriting the key equations that were previously introduced:

∂µT
µν
EM = −F νλ (Jf,λ + Jext,λ) , (3.2)

∂µT
µν
f = F νλJf,λ, (3.3)

∂µJ
µ
f = 0, (3.4)

with F µν = Eµuν − Eνuµ + Bµν . All the terms have the usual meaning as defined pre-

viously. Considering the contributions from both the electric and magnetic fields we can

further analyze these equations by taking the projection along and perpendicular to fluid

four velocity. The parallel projection of Eq.(3.2) and Eq.(3.3) gives:

uν∂µT
µν
EM = Eλ (Jf,λ + Jext,λ) , (3.5)

uν∂µT
µν
f = −EλJf,λ. (3.6)
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It implies that the energy density of the fluid and the field is affected by the charge cur-

rents/electric field vector but in the Non-resistive limit (Eµ → 0) we get the energy densities

to be independent of both charge currents and the electromagnetic fields. The perpendicular

projection of Eq.(3.2) and Eq.(3.3) using Eq.(2.45) gives

∆α
ν∂µT

µν
EM = (−Eαuλ +Bbαλ) (Jf,λ + Jext,λ) , (3.7)

∆α
ν∂µT

µν
f = (Eαuλ − Bbαλ)Jf,λ. (3.8)

This shows that though the momentum density of fluid depend on the diffusion current of

the fluid/electromagnetic field but for fields, it additionally depends on the external current.

Now using Eq.(3.4), Eq.(3.3) with the expression for F µν along with the equations for the

fluid as is given in Eq.(2.16), Eq. (2.17) and using the thermodynamic integrals given in

Eq. (A.7) and Eq. (A.8) we get the evolution equations for α̇, β̇ and u̇µ which are of the

following forms:

α̇ =
1

D20

[
J
(0)−
20 θ (ϵ+ P +Π)− J

(0)+
30

(
nfθ + ∂µV

µ
f

)
+ J

(0)−
20 (−πµνσµν + qEµVfµ)

]
,

β̇ =
1

D20

[
J
(0)+
10 θ (ϵ+ P +Π)− J

(0)−
20

(
nfθ + ∂µV

µ
f

)
+ J

(0)+
10 (−πµνσµν + qEµVfµ)

]
,

u̇µ =
1

ϵ+ P

[
nf

β
(∇µα− h∇µβ)− Πu̇µ +∇µΠ−∆µ

ν∂ρπ
ρν

]
+

1

ϵ+ P
[qnfE

µ − qBbµνVfν ] , (3.9)

where D20 = J
(0)+
30 J

(0)+
10 − J

(0)−
20 J

(0)−
20 , h = ϵ+P

nf
and σµν = ∆µν

αβ∇αuβ . The above set

of three equations gives us the equation of motion of the fluid variables. The first two

equations however are the evolution equations for the chemical potential and temperature

respectively which only depend on the external electric field vector, whereas the relativistic

Navier-Stokes equation given in Eq.(3.9) depends both on the external electric andmagnetic

field vectors.

As previously discussed, the fluid variables represent the leading-order terms, also con-

sidered as the zeroth-order terms. Their derivatives form the first-order terms, typically
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expressed by the constitutive equations of shear, bulk, and diffusion. However, the last

term in the Navier-Stokes equation (as shown in Eq.(3.9)) is unique in that it depends on

the magnetic fields and contributes to the Navier-Stokes equation at the next-to-leading or-

der in the gradient expansion. This is because the diffusion current V µ
f is itself a first-order

term in the gradient expansion, which we are going to derive next for both resistive and

non-resistive cases.

3.1 Non-Resistive MHD

Here we intend to derive order-by-order constitutive and evolution equations of all the dis-

sipative stresses (bulk, diffusion and shear) for the ideal MHD conditions (infinite conduc-

tivity limit).

3.1.1 Formalism

In order to get the order-by-order expressions for all the dissipative stresses we will have

to first find out the δf ’s at various orders upto n = 2, where n is the order of expansion,

from the Boltzmann equation and putting these in the expressions for the dissipative stresses

given in Eq.(2.66)-Eq.(2.68) we get all the results at various orders. Now we first start with

the Boltzmann equation.

Relativistic Boltzmann Equation

In the relativistic Boltzmann equation (RBE), accounting for the influence of a non-zero

force Fν , as discussed in the preceding chapter, we have:

pµ∂µf + Fν ∂

∂pν
f = C[f ]. (3.10)

Here, f(x, p, t) represents the one-particle distribution function, capturing the phase space

density of particles, while C[f ] denotes the collision kernel. Notably, in the ideal magne-

tohydrodynamic (MHD) scenario, the electric field vanishes in the fluid’s local rest frame.
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Consequently, the sole contribution to the force term in the RBE stems from the magnetic

field. This contribution is expressed as Fν := qF ναpα for particles, where q denotes the

electric charge of the particles, and F µν = −Bbµν ( Eq.(2.46)).

As previously discussed, considerable simplification arises when we adopt the relax-

ation time approximation for the collision kernel. In non-relativistic systems, this approx-

imation, introduced by Bhatnagar-Gross-Krook (BGK), and in relativistic systems, as pro-

posed by Anderson and Witting in [18], takes the form:

C[f ] = −u · p
τc

δf,

where τc represents the relaxation time, indicating the duration particles take to deviate

from equilibrium and reach an equilibrium state, and δf = f − f0 represents the deviation

from the equilibrium distribution f0. Substituting this collision kernel into the relativistic

Boltzmann equation (RBE), as given by Eq.(3.10), yields:

pµ∂µf + qF σνpν
∂

∂pσ
f = −u · p

τc
δf. (3.11)

Correspondingly, equations for antiparticles are derived by replacing q → −q and f → f̄ .

However, it’s important to note that this approximation has its limitations. Notably, the

relaxation time (τc) remains independent of the momentum of colliding particles. Fur-

thermore, it assumes that the interaction between colliding particles results in mean free

paths longer than the interaction length. In simpler terms, we assume that f(x, p, t) varies

smoothly over the duration of collisions and distances comparable to the interaction range.

Expansion in gradients

One can express Eq.(3.11) in the well-known hydrodynamic gradient expansion form, as

discussed in [19], under the condition that the system approaches equilibrium, i.e., the colli-

sion kernel nearly vanishes (C[f ] ≈ 0). In the absence of an electromagnetic field, Eq.(3.11)
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takes the form: (
τc
u · p

pµ∂µ + 1

)
f = (D + 1)f = f0, (3.12)

where we define the operator D ≡ τc
u·pp

µ∂µ. Multiplying the inverse operator (D + 1)−1 in

the above equation and subsequently performing a power series expansion yields:

f =
∞∑
n=0

(−D)nf0 =
∞∑
n=0

(
− τc
u · p

pµ∂µ

)n

f0. (3.13)

This expansion holds true provided that theKnudsen number satisfies Kn = τc∂ ≪ 1, which

serves as the relevant expansion parameter. If one assumes the typical gradient strength to

be proportional to the temperature, ∂ ∼ T , then the expansion parameter becomes τcT , and

the series expansion remains valid for τcT ≪ 1. However, the naive gradient expansion

breaks down in the presence of a magnetic field, as it introduces a new scale proportional to

the strength of the magnetic field. By defining the operatorDB ≡ τc
u·p

(
pµ∂µ + qF σνpν

∂
∂pσ

)
and performing a similar power series expansion, we obtain:

f =
∞∑
n=0

(−DB)
nf0,

=
∞∑
n=0

[
− τc
u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)]n
f0. (3.14)

In addition to the previous assumption τcT ≪ 1, it’s necessary to ensure τc/rg ≪ 1, where

rg = k⊥/qB represents the gyroradius (Larmor radius), and k⊥ denotes the component of

momentum perpendicular to the magnetic field’s direction. In plasma, the typical transverse

momentum of a particle is k⊥ ∼ T , thus satisfying the condition χ = qBτc/T ≪ 1.

Here, we determine f by retaining terms up to the second-order, i.e., n = 2 in Eq.(3.14),

resulting in:

f = f0 + δf (1) + δf (2), (3.15)

where

δf (1) = − τc
u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)
f0, (3.16)
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and

δf (2) =
τc
u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)[
τc
u · p

(
pα∂α + qF ρβpβ

∂

∂pρ

)
f0

]
. (3.17)

This expression can be simplified using the relations qBbµνpν ∂f0
∂pµ

= 0 and F µν = −Bbµν ,

resulting in:

f = f0 + δf̃ (1) + δf̃ (2), (3.18)

where

δf̃ (1) = − τc
u · p

pµ∂µf0, (3.19)

and

δf̃ (2) =
τc
u · p

pµ∂µ

[
τc
u · p

pα∂αf0

]
− τc
u · p

qBbσνpν
∂

∂pσ

[
τc
u · p

pα∂αf0

]
.

It’s important to note that although the magnetic field does not explicitly enter the first term

of δf̃ (2), it does implicitly through the acceleration term u̇µ, as shown in Eq.(3.9), when

taking higher-order moments of such terms.

3.1.2 Results

With all the expressions for the off-equilibrium distribution function in place we can now

just plug in all in the Eq.(2.66)-Eq.(2.68) and obtain the results for this case order-by-order.

First order equations

The term δf̃ (1) does not depend explicitly or implicitly on the magnetic field, as the first-

order equations retain terms up toO(∂), as shown in all equations in Eq.(3.9). Nevertheless,

for completeness, we discuss here the results for the first-order terms in the gradient expan-

sion. The outcomes of this section coincide with those in [14], derived under the assumption

of zero magnetic fields.

We compute the dissipative part of the energy-momentum tensor (including shear, bulk

viscosity, and diffusion) using δf̃ (1) and δ ˜̄f (1), given by:
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πµν
(1) = ∆µν

αβ

∫
dppαpβ

(
δf̃ (1) + δ ˜̄f (1)

)
, (3.20)

Π(1) = −∆µν

3

∫
dppµpν

(
δf̃ (1) + δ ˜̄f (1)

)
, (3.21)

V µ
(1) = ∆µ

α

∫
dppα

(
δf̃ (1) − δ ˜̄f (1)

)
. (3.22)

The negative sign here in V µ is from the conservation of net-number of charges. By substi-

tuting the expression for δf̃ (1) from Eq.(3.19) into Eqs.(3.20)-(3.22) and performing some

algebraic manipulations, we obtain the following relations. For the shear viscous pressure:

πµν
(1) = 2τcβπσ

µν , (3.23)

where βπ = βJ
(1)+
42 and σµν = ∆µν

αβ∇αuβ .

For the bulk viscous pressure:

Π(1) = −τcβΠθ, (3.24)

where θ = ∂µu
µ and

βΠ =
5β

3
J
(1)+
42 + XJ (0)+

31 − YJ (0)−
21 , (3.25)

with X and Y given by

X =
J
(0)+
10 (ϵ+ P )− J

(0)−
20 nf

D20

,

Y =
J
(0)−
20 (ϵ+ P )− J

(0)+
30 nf

D20

. (3.26)

Finally, for the net particle diffusion current:

V µ
(1) = τcβV∇µα, (3.27)
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where βV =
nf

ϵ+P
J
(0)−
21 − J

(1)−
21 . Here, βπ, βΠ, and βV represent the transport coefficients of

shear, bulk, and diffusion current, respectively, with their explicit expressions provided as

well.

Second-order equations

Next wemove onto the derivation for the second-order evolution equation for the dissipative

stresses.

Shear stress:

The second-order contribution to the shear stress tensor is defined as:

πµν
(2) = ∆µν

αβ

∫
dppαpβ

(
δf̃ (2) + δ ˜̄f (2)

)
, (3.28)

where δf̃ (2) is provided in Eq.(3.20). It’s important to note that the total shear stress includes

both first and second-order terms:

πµν = πµν
(1) + πµν

(2). (3.29)

By evaluating the integral in Eq.(3.28) (refer to Appendix.(A.5.3) for detailed calculations)

and incorporating it into Eq.(3.29), we obtain the evolution equation for the shear stress

tensor:

πµν

τc
= −π̇µν + 2βπσ

µν + 2π⟨µ
γ ω

ν⟩γ − τπππ
⟨µ
γ σ

ν⟩γ − δπππ
µνθ + λπΠΠσ

µν − τπV V
⟨µu̇ν⟩

+λπV V
⟨µ∇ν⟩α + lπV∇⟨µV ν⟩ + δπB∆

µν
ηβqBb

γηgβρπγρ − τcqBτπV Bu̇
⟨µbν⟩σVσ

−τcqBλπV BVγb
γ⟨µ∇ν⟩α− qτcδπV B∇⟨µ (Bν⟩γVγ

)
, (3.30)

where the resulting second-order transport coefficients are expressed in terms of thermo-

dynamic integrals as shown in Table.(A.1). It’s noteworthy that the coefficients τπV and

λπV involve derivatives of lπV [10], while τπV B and λπV B include derivatives of δπV B , re-

spectively. It’s observed that the last four terms explicitly incorporate the magnetic field,
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which is a novel addition compared to the case of zero magnetic field [14]. In contrast to

the 14-moment approximation employed in [16] for non-zero magnetic fields, only the first

ten terms on the right-hand side exhibit a similar form or analogous structure. However,

the last three terms are unique to this formulation and do not emerge in the 14-moment ap-

proximation. Further discussion on this matter is provided in Section.(3.1.2).

Bulk stress:

Similar to the derivation of shear viscosity, we proceed to derive the second-order evolution

equation for bulk viscous stress. By definition:

Π(2) = −∆αβ

3

∫
dppαpβ

(
δf̃ (2) + δ ˜̄f (2)

)
. (3.31)

Evaluating the integral using δf̃ (2) from Eq.(3.20), and noting that the total bulk stress is a

combination of first and second-order terms, i.e., Π = Π(1) + Π(2), we obtain, after some

algebra (detailed calculations are provided in Appendix.(A.2.2)), the evolution equation for

bulk stress:

Π

τc
= −Π̇− δΠΠΠθ + λΠππ

µνσµν − τΠV V · u̇− λΠV V · ∇α− lΠV ∂ · V − βΠθ

+τcτΠV Bu̇αqBb
αβVβ − τcqδΠV B∇µ

(
BbµβVβ

)
− τcqBλΠV Bb

µβVβ∇µα,(3.32)

where the second-order transport coefficients are expressed in terms of thermodynamic in-

tegrals (see Table.(A.2)), and we utilize Eq.(3.26) for the expressions of X and Y . The

coefficients τΠV and λΠV contain derivatives of lΠV , while τΠV B and λΠV B involve deriva-

tives of δΠV B . Notably, the last three terms of the equation are new compared to those

in [14] and are dependent on the magnetic field. In comparison to the 14-moment approxi-

mation in [16] in the presence of a magnetic field, the bulk viscous relaxation equation did

not include any magnetic field-dependent terms.

Diffusion current:
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The expression for the second-order contribution to the diffusion current for the net charge

is given by:

V µ
(2) = ∆µ

α

∫
dppα

(
δf̃ (2) − δ ˜̄f (2)

)
, (3.33)

where δf̃ (2) is taken from Eq.(3.20). Like other dissipative quantities, the total diffusion

four-vector is composed of first and second-order terms, i.e., V µ = V µ
(1) + V µ

(2). After

evaluating the integral (for details see Appendix.(A.2.3)), we obtain the following second-

order evolution equation for the diffusion current:

V µ

τc
= −V̇ ⟨µ⟩ − Vνω

νµ − λV V V
νσµ

ν − δV V V
µθ + λVΠΠ∇µα− λV ππ

µν∇να− τV ππ
µ
ν u̇

ν

+τVΠΠu̇µ + lV π∆
µν∂γπ

γ
ν − lVΠ∇µΠ+ βV∇µα− qBδV Bb

µγVγ + τcqBlV πBb
σµ∂κπκσ

+τcqBτVΠBb
γµΠu̇γ − τcqBlVΠBb

γµ∇γΠ− qτcδV V BBb
µνVνθ − qτcλV V BBb

γνVνσ
µ
γ

−qτcρV V BBb
γνVνω

µ
γ − τcqτV V B∆

µ
γD (BbγνVν) . (3.34)

The second-order transport coefficients are expressed in terms of thermodynamic integrals,

as detailed in Table.(A.3). Specifically, the coefficients τV π and λV π involve the derivative

of lV π, while τVΠ and λVΠ involve the derivative of lVΠ. Additionally, δV V B contains the

derivative of τV V B . In deriving the final expression in Eq.(3.34), we utilize X and Y from

Eq.(3.26). Comparing our result to the RTA calculation in [14] without a magnetic field

reveals that the last eight terms on the RHS are new and dependent on the magnetic field.

Similarly, comparingwith the relaxation equation for diffusion in the presence of amagnetic

field in [16] using the 14-moment approximation indicates that the first 13 terms share a

similar form, while the last seven terms are absent in the moment method.

Analysis at the ultrarelativistic and weak field limit

In the ultra-relativistic limit (m/T → 0), the transport coefficients for a classical Maxwell

gas with a constant relaxation time τc can be analytically calculated using thermodynamic

integrals. These coefficients can be categorized as follows: (i) Coefficients independent
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Transport Denicol CE
Coefficients et al.
βπ 4P/5 4P/5
τππ 10/7 10/7
δππ 4/3 4/3
τπV 0 0
λπV 0 0
lπV 0 0

(a)

Transport Denicol CE
Coefficients et al.
βV nf/12 nf/12
λV V 3/5 3/5
δV V 1 1
τV π β/20 β/4
λV π β/20 β/16
lV π β/20 β/4

(b)

Transport Denicol CE
Coefficients et al.
δπB 2β/5 β/2
δV B 5β/12 β
δπV B − 2/5
δΠV B − 1/3
τΠV B − 2/3
lV πB − β2/12
τVΠB − β2/12
lVΠB − β2/12
δV V B − β/3
λV V B − 3β/20
ρV V B − β/4
τV V B − β/4

(c)

Table 3.1: (a) Comparison of coefficients for the shear-stress equation of a massless Boltz-
mann gas (particle only) calculated using the Chapman-Enskog (CE) method in this work
and by Denicol et al. using the 14-moment method [17]. (b) Comparison of coefficients
for the diffusion equation of a massless Boltzmann gas (particle only) calculated using the
Chapman-Enskog (CE) method in this work and by Denicol et al. using the 14-moment
method [17]. (c) Transport coefficients in the shear, bulk, and diffusion equations that cou-
ple the magnetic field and dissipative quantities for a massless Boltzmann gas (particles
only).
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of the magnetic field are listed in Tables.(3.1)(a) and (3.1)(b) for the shear and number

diffusion, respectively. (ii) Magnetic field-dependent coefficients are presented in Ta-

ble.(3.1)(c). In this limit, the bulk viscous pressure vanishes and is not considered. Ad-

ditionally, Table.(3.1) includes results obtained from the 14-moment approximation in the

presence of a magnetic field [16] in the ultra-relativistic limit. It’s important to note that in

this scenario, the coefficients δπB and δV B differ between the two approaches mentioned

above.

In the regime of weak magnetic fields, characterized by temperatures much larger than

the strength of the magnetic field (T 2 ≫ qB), we introduce the dimensionless parameter

gB = qB/T 2, where gB ≪ 1. In the presence of a magnetic field, the relaxation-time

approximation (RTA) expansion in Eq.(3.14) involves two power counting schemes: Kn =

τcT and χ = qBτc/T . However, in the weak field limit, the expansion parameter χ =

gBτcT becomes small, and thus it is treated as a sub-leading contribution. Consequently, at

second-order, one effectively retains terms up toO(Kn2) in spatial gradients andO(χ ·Kn)

for mixed terms 1. In this limit, the relaxation equations reduces to the following forms:

π̇µν = 2βπσ
µν − πµν

τc
+ 2π⟨µ

γ ω
ν⟩γ − τπππ

⟨µ
γ σ

ν⟩γ − δπππ
µνθ + λπΠΠσ

µν

− τπV V
⟨µu̇ν⟩ + λπV V

⟨µ∇ν⟩α + lπV∇⟨µV ν⟩ + δπB∆
µν
ηβqBb

γηgβρπγρ, (3.35)

Π̇ = −βΠθ −
Π

τc
− δΠΠΠθ + λΠππ

µνσµν − τΠV V · u̇− λΠV V · ∇α− lΠV ∂ · V,

(3.36)

V̇ ⟨µ⟩ = βV∇µα− V µ

τc
− Vνω

νµ − λV V V
νσµ

ν − δV V V
µθ + λVΠΠ∇µα− λV ππ

µν∇να

− τV ππ
µ
ν u̇

ν + τVΠΠu̇µ + lV π∆
µν∂γπ

γ
ν − lVΠ∇µΠ− qBδV Bb

µγVγ. (3.37)

The above set of simplified relaxation equations presented in Eqs.(3.35)-(3.37) cor-

responds to the relaxation equations derived in [16]. In the weak magnetic field limit, the
1We do not consider terms of O(χ2) since they do not contribute to the expansion in Eq.(3.14).
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Figure 3.1: Dimensionless transport coefficients TδV B and TδπB that couple fluid to mag-
netic field as a function ofm/T .

dimensionless magnetic field-dependent transport coefficients TδπB and TδV B are depicted

in Fig.(3.1) as functions ofm/T . Asm/T approaches 0, these coefficients converge to the

values obtained in Table.(3.1)(c).

Navier-Stokes limit

In the Navier-Stokes limit, we retain terms O(Kn) and O(χ · Kn), which results in the

first and second terms on the right-hand side of Eqs.(3.35)-(3.37) being of first-order in

gradients, along with the last term, which is both dependent on the magnetic field and first-

order in gradients. Rearranging these terms, we obtain:

Π

τc
= βΠθ, (3.38)(

gµν

τc
+ qBδV Bb

µγ

)
Vγ = βV∇µα, (3.39)(

gµγgνρ

τc
− δπB∆

µν
ηβqBb

γηgβρ
)
πγρ = 2βπσ

µν . (3.40)
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Since the bulk viscous pressure remains independent of any magnetic field influence, the

Navier-Stokes limit for bulk viscosity ζ is straightforwardly identical to the case without

magnetic fields, i.e., ζ = βΠτc. To proceed, we need to solve for the constitutive relations

by inverting the coefficients multiplied on the left side of the remaining equations. The

general solution for the remaining equations is given as follows:

Vγ =
(
κ∥P

∥
δγ + κ⊥P

⊥
δγ + κ×P

×
δγ

)
∂δα, (3.41)

πγρ =

(
η0P

(0)
αβγρ + η1

(
P

(1)
αβγρ + P

(−1)
αβγρ

)
+ iη2

(
P

(1)
αβγρ − P

(−1)
αβγρ

)
+ η3

(
P

(2)
αβγρ + P

(−2)
αβγρ

)
+ iη4

(
P

(2)
αβγρ − P

(−2)
αβγρ

))
σαβ. (3.42)

Here, P ∥
δγ , P⊥

δγ , and P
×
δγ are second-rank projection tensors, while P

(n)
αβγρ, where n = −2

to n = +2, are fourth-rank projection tensors. The symbol i represents the imaginary

unit. Further details on the definitions of these tensors can be found in Appendix.(A.3),

and additional information is available in references [20, 21]. The transport coefficients

κ∥, κ⊥, κ×, and η0 to η4 play crucial roles in characterizing the system’s behavior. These

coefficients can be determined by substituting the solutions derived earlier into the left-

hand side of Eqs.(3.40) and (3.39), followed by the application of properties associated with

projection tensors. The resulting expressions for the diffusion coefficients are as follows:

κ∥ = βV τc, (3.43)

κ⊥ =
βV τc

1 + (qBτcδV B)
2 , (3.44)

κ× =
βV qBτ

2
c δV B

1 + (qBτcδV B)
2 = κ⊥qBτcδV B. (3.45)
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Similarly, the shear viscous coefficients are expressed as:

η0 = 2βπτc, (3.46)

η1 =
2βπτc

1 + (2qBτcδπB)
2 , (3.47)

η2 =
4βπqBτ

2
c δπB

1 + (2qBτcδπB)
2 = 2η1qBτcδπB, (3.48)

η3 =
2βπτc

1 + (qBτcδπB)
2 , (3.49)

η4 =
2βπqBτ

2
c δπB

1 + (qBτcδπB)
2 = η3qBτcδπB. (3.50)

Notably, η1 and η3 exhibit even functions concerning the magnetic field, while η2 and

η4 may take either sign, representing odd functions of B. Fig.(3.2) illustrates the magnetic-

field dependence of these coefficients, comparing results from the current work (solid lines)

with those from reference [16] (dotted lines). In the limit of a vanishing magnetic field,

i.e., qB → 0, the diffusion coefficients reduce to κ× → 0 and κ∥ = κ⊥, whereas the

shear viscous coefficients simplify to η2 = η4 = 0 and η1 = η3 = η0, consistent with

expectations. The transport coefficients identified in the Navier-Stokes limit in this study

are denoted as κ∥, κ⊥, and κ× for the diffusion coefficients, and η0, η1, η2, η3, η4 for the shear

viscous coefficients. In contrast, [16] labels them as κ0∥, κ0⊥, κ0×, η00, η01, η02, η03, η04.

Utilizing the same basis as [16], the following relations between the transport coefficients

are established [22]:

κ0∥ ≡ κ∥,

κ0⊥ ≡ κ⊥,

κ0× ≡ κ×,

(3.51)
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Figure 3.2: The magnetic-field dependence of the diffusion coefficients (top plot) and the
shear-viscosity coefficients (bottom plot). The solid lines are the results from the current
work while the dotted lines are from ref. [16].

η00 ≡ η1,

η01 ≡
16(qBτcδπB)

2

3
η1,

η02 ≡ η3 − η1,

η03 ≡
η2
2
,

η04 ≡ η4. (3.52)
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Figure 3.3: Mass and temperature variation of the transport coefficients arising due to ex-
ternal magnetic field at second-order.
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A comparison of the transport coefficients obtained from both approaches in them = 0

limit is depicted in Fig.(3.2), where they are plotted as functions of χ = qBτc/T . In this

plot, the solid lines represent the results derived from the RTA method employed in our

current study, while the dotted lines represent the outcomes obtained from the 14-moment

approximation as reported in [16]. Notably, although there are quantitative discrepancies

between the two sets of coefficients, they exhibit a similar qualitative behavior. These

differences can be attributed to the distinct values of the transport coefficients δπB and δV B

obtained in each approach.

Now we move onto the remaining transport coefficients. In Fig.(3.3), we plot the dif-

ferent transport coefficients with respect to mass or temperature. We observe that δπV B and

δΠV B are sensitive to various temperatures at high mass (m), whereas for various masses,

they are sensitive only at the low temperatures (T ). We see that at increasing temperatures

values of these transport coefficients are also increasing (clearly visible at high mass re-

gions), whereas it is reverse in case of variation with masses. On the other hand, for other

transport coefficients such as lV πB , lVΠB, τVΠB, ρV V B , λV V B , and τV V B , they appear dis-

tinguishable for different temperatures at the low mass limit, while for various masses, they

are distinguishable at the low-temperature limit.

3.2 Resistive MHD

Expanding on our previous analysis, we will now develop a more complete set of equations

for dissipative stresses at different orders by relaxing the ideal MHD assumption of infinite

conductivity.

3.2.1 Formalism

Following a similar procedure as in the previous case, we commence by deriving the off-

equilibrium distribution function up to the second-order. Subsequently, utilizing the relation

104



3 Relativistic non-resistive and resistive magnetohydrodynamics for dissipative systems

between dissipative stresses and the distribution function, we derive the complete set of

evolution equations.

Off-equilibrium correction to distribution functions upto second-order:

Utilizing a technique similar to that employed in the non-resistive scenario, we compute

the δf corrections. Eq.(3.11) can be expressed as a power series expansion in the following

manner:

f =
∞∑
n=0

(−1)n
(
τc
u.p

)n(
pµ∂µ + qF µνpν

∂

∂pµ

)n

f0. (3.53)

In the scenario without electrical resistance, there were two expansion parameters: Kn =

τc∂µ and χ = qBτc/T . Here, the electric field wasn’t treated as an independent degree of

freedom; instead, it was linked to the magnetic field as E = −v× B. However, upon relax-

ing the assumption of infinite conductivity and explicitly incorporating the electric field’s

impact in our computations, an additional expansion parameter, ξ = qEτc/T , alongside Kn

and χ naturally arises. When truncating the expansion up to the second-order, we find:

f = f0 + δf (1) + δf (2), (3.54)

where

δf (1) = − τc
u · p

(
pµ∂µf0 + βqEνpνf0f̃0

)
, (3.55)

δf (2) = F1 + F2 + F3 + F4, (3.56)

F1 =
τc
u · p

pµ∂µ

(
τc
u · p

pσ∂σf0

)
,

F2 =
τc
u · p

pµ∂µ

(
qτc
u · p

f0f̃0β(E · p)
)
,

F3 =
qτc
u.p

F µνpν
∂

∂pµ

(
τc
u · p

pσ∂σf0

)
,

F4 =
q2τc
u · p

F µνpν
∂

∂pµ

(
τc
u · p

f0f̃0β(E · p)
)
.

Similarly the correction for anti-particles (δf̄ ) are also calculated.
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3.2.2 Results

After having these we will nowmove onto deriving the results for the first and second-order

equations for shear, bulk and diffusion currents.

First order Constitutive relations

Having the δf ’s, now truncating upto O(∂) , O(∂χ) and O(ξ), we find the expressions for

different dissipative stresses, here we will start with the bulk case.

Bulk Stress:

Utilizing Eq.(3.55), we compute the first-order dissipative fluxes. The first-order bulk stress

is expressed as

Π(1) = −∆µν

3

∫
dppµpν

(
δf (1) + δf̄ (1)

)
. (3.57)

After some algebraic manipulation, we arrive at

Π(1) = −τcβΠθ, (3.58)

where βΠ = 5β
3
J
(1)+
42 + XJ (0)+

31 − YJ (0)−
21 with

X =
J
(0)+
10 (ϵ+ P )− J

(0)−
20 nf

D20

and

Y =
J
(0)−
20 (ϵ+ P )− J

(0)+
30 nf

D20

Diffusion Current:

The diffusion current for the first order is given by

V µ
(1) = ∆µ

α

∫
dppα

(
δf (1) − δf̄ (1)

)
. (3.59)

Using Eq. (3.55) we get

V µ
(1) = τcβV (∇µα + βqEµ) , (3.60)
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where βV = 1
h
J
(0)−
21 − J

(1)−
21 .

Shear Stress:

The shear stress for the first order is given by

πµν
(1) = ∆µν

αβ

∫
dppαpβ

(
δf (1) + δf̄ (1)

)
, (3.61)

Using Eq.(3.55) we get

πµν
(1) = 2τcβπσ

µν , (3.62)

where βπ = βJ
(1)+
42 .

The first-order expressions reveal that both the bulk and shear stress cases yield iden-

tical results irrespective of any electromagnetic fields, consistent with the findings in the

previous scenario. Conversely, the diffusion current exhibits contributions originating from

Eµ.

Second-order evolution equations

The second-order evolution equations are found as follows.

Bulk Stress

In a manner akin to the first-order scenario, the expression for the second-order bulk stress

is derived as follows:

Π(2) = −∆αβ

3

∫
dp pαpβ

(
δf (2) + δf̄ (2)

)
. (3.63)

Here, the total bulk stress encompasses contributions from both first and second-order

terms, represented as:

Π = Π(1) +Π(2). (3.64)
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The evolution equation governing the bulk stress is derived by considering Eq.(3.63) along

with Eq.(3.64) (refer to Appendix.(A.5.1) for detailed derivation):

Π

τc
= −Π̇− δΠΠΠθ + λΠππ

µνσµν − τΠV V · u̇− λΠV V · ∇α

− lΠV ∂ · V − βΠθ − qBλΠV Bb
µβVβVµ

+ τcτΠV Bu̇αqBb
αβVβ − qδΠV B∇µ

(
τcBb

µβVβ
)
− q2τcχΠEEE

µEµ. (3.65)

Here, the transport coefficients featured in Eq.(3.65) are cataloged in Table.(A.4), while

the remaining coefficients retain their conventional interpretations as discussed for the ideal

MHD (non-resistive) case.

Diffusion Current

The derivation of the diffusion current expression follows a similar approach, albeit with a

key distinction: the particle and antiparticle contributions are no longer additive. We define

the second-order diffusion current as:

V µ
(2) = ∆µ

α

∫
dp pα

(
δf (2) − δf̄ (2)

)
. (3.66)

Combining the first and second-order terms, the total diffusion current is expressed as:

V µ = V µ
(1) + V µ

(2). (3.67)

The second-order evolution equation for the diffusion current is derived from Eq.(3.66) and

Eq.(3.67) (refer to Appendix.(A.5.2) for detailed derivation).
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V µ

τc
= −V̇ ⟨µ⟩ − Vνω

νµ + λV V V
νσµ

ν − δV V V
µθ + λVΠΠ∇µα− λV ππ

µν∇να

− τV ππ
µ
ν u̇

ν − qBδV Bb
µγVγ + τVΠΠu̇µ + lV π∆

µν∂γπ
γ
ν

− lVΠ∇µΠ+ βV∇µα + τcqBlV πBb
σµ∂κπκσ − qτcλV V BBb

γνVνσ
µ
γ

+ τcqBτVΠBb
γµΠu̇γ − τcqBlVΠBb

γµ∇γΠ− qτcδV V BBb
µνVνθ

− qτcρV V BBb
γνVνω

µ
γ + χV EqE

µ + q∆µ
αχV ED (τcE

α)

− qτcρV EE
µθ − qτV V B∆

µ
γD (τcBb

γνVν) . (3.68)

The coefficients associated with the resistive case are detailed in Table.(A.5), while the

remaining transport coefficients retain their properties as in the ideal MHD scenario.

Shear Stress

The second-order shear stress expression is derived using the following definition:

πµν
(2) = ∆µν

αβ

∫
dp pαpβ

(
δf (2) + δf̄ (2)

)
. (3.69)

It’s important to note that the total shear stress comprises both first and second-order terms:

πµν = πµν
(1) + πµν

(2). (3.70)

Evaluating the integral in Eq.(3.69) (detailed in Appendix.(A.5.3)) and combining it with

Eq.(3.70), we obtain the evolution equation for the shear stress:

πµν

τc
= −π̇⟨µν⟩ + 2βπσ

µν + 2π⟨µ
γ ω

ν⟩γ − τπππ
⟨µ
γ σ

ν⟩γ − δπππ
µνθ

+ λπΠΠσ
µν − τπV V

⟨µu̇ν⟩ − τcqBτπV Bu̇
⟨µbν⟩σVσ

+ λπV V
⟨µ∇ν⟩α− lπV∇⟨µV ν⟩ + δπB∆

µν
ηβqBb

γηgβρπγρ

− qBλπV BVγb
γ⟨µV ν⟩ − qδπV B∇⟨µ (τcBν⟩γVγ

)
+ q2τcχπEE∆

µν
σρE

σEρ. (3.71)

The coefficients appearing only for the resistive case in Eq.(3.71) are listed in Table.A.6,

while the remaining coefficients remain consistent with the ideal MHD scenario.
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Transport CE Denicol
Coefficients et al.
τΠV 0 0
χΠEE β2P/36 −
λΠV 1/(3β) 0
lΠV 0 0
λΠV B 3/(βP ) −

(a)

Transport CE Denicol
Coefficients et al.
λV V 2/5 3/5
δV V 22/3 1
δV B 2β 5β/12
ρV E Pβ2/18 −
χV E Pβ2/12 Pβ2/12

(b)
Transport CE Denicol
Coefficients et al.
τπV 12/(5β) 0
lπV 12/(5β) 0
λπV 11/5β 0

λπV B 24/5(βP )−1 −
χπEE 2β2P/15 −

(c)

Table 3.2: (a) Transport coefficients for the bulk-stress for a massless Boltzmann gas (result
for particles only and for zero chemical potential) calculated using CE method (this work)
and compared with the results from the moment method [17] (b) same as Table.(3.2)(a) but
for diffusion current (c) same as Table.(3.2)(a) but for shear stress.

Navier-stokes relations

Here, we isolate the terms that are only first-order in gradients in Eqs.(3.65), (3.68), and

(3.71) to obtain the Navier-Stokes limit:

Π

τc
= −βΠθ, (3.72)

V µ + qBτcδV Bb
µνVν − qτcββVE

µ = τcβV∇µα, (3.73)(
gµγgνρ

τc
− δπB∆

µν
ηβqBb

γηgβρ
)
πγρ = 2βπσ

µν . (3.74)

In the power counting scheme, the electric fieldEµ is consideredO(∂) as given in [23]. By

employing the same projection operators as in the previous case, we obtain the coefficients

for shear, bulk, and diffusion. Interestingly, the first-order transport coefficients for shear
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and bulk viscosity remain the same as in the ideal MHD case. However, for diffusion,

new transport coefficients emerge. Decomposing the diffusion four-current in terms of

projectors, we have:

Vν =
(
κ∥P

∥
δν + κ⊥P

⊥
δν + κ×P

×
δν

)
∂δα

+
1

q

(
σ∥P

∥
δν + σ⊥P

⊥
δν + σ×P

×
δν

)
Eδ.

Utilizing Ohm’s law for current in a conducting fluid:

Jµ
ind = σµν

E Eν ,

where σµν
E is the electrical conductivity tensor. By substituting the above equation into

Eq.(3.73), and leveraging the properties of projection operators, we find:

κ∥ = τcβV ,

κ⊥ =
τcβV

1 + (qBτcδV B)
2 ,

κ× = κ⊥qBτcδV B.

Similarly, comparing coefficients of Eδ, we obtain:

σ
∥
E = q2τcββV ,

σ⊥
E =

q2τcββV

1 + (qBτcδV B)
2 ,

σ×
E =

q3Bτ 2c ββV δV B

1 + (qBτcδV B)
2 .

The relations presented above embody the kinetic interpretation of the Wiedemann-

Franz law, which states that σ = q2βκ. Furthermore, setting all dissipative quantities to

zero yields ∇µα = −qβEµ. Notably, σ∥
E remains independent of the magnetic field and is

proportional to T 2; σ⊥
E and σ×

E decrease with increasing magnetic fields [24, 21, 25]. Again

we can also decompose the δf (1) (as given in Eq.(3.55)) as

δf (1) =
f0f̄0τc
u · p

(
AΠ+ BβVβ + Cγρπγρ

)
,
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where

A = − 1

τcβΠ

[
(u · p)2

D20

(
J
(0)−
20 (ϵ+ P )− J

(0)+
30 nf

)
−(u · p)

D20

(
J
(0)+
10 (ϵ+ P )− J

(0)−
20 nf

)
+
β∆µβp

µpβ

3

]
,

Bβ = − pβ

τcβV
+

nf (u · p)pβ

τcβV (ϵ+ P )

−
(
1− (u · p)

h

)
qBpµδV Bb

β
µ

βV
,

Cγρ =
βpβpκ

2βπ

(
gγκg

ρ
β

τc
− δπB∆

µν
ητ qBb

γηgτρgβνgκµ

)
.

This formulation holds significant potential for applications such as the Cooper-Frye pre-

scription, where the expression of δf corrections in terms of dissipative quantities could

prove advantageous. It’s important to note that while we’ve endeavored to represent δf in

terms of powers of pµ, it’s not feasible for Bβ and Cγρ, where the corrections arising from

magnetic fields manifest at the first order. In chapter.(6), we will exclusively utilize δf (1)

for the electric fields case to investigate its various impact on flow harmonics and spectra.

3.3 Conclusion

For the first time, we derive the relativistic non-resistive and resistive, viscous second-

order magnetohydrodynamics equations for the dissipative quantities using the relaxation

time approximation by including the contributions from both particles and antiparticles.

Assuming that the single-particle distribution function is close to equilibrium, we solve the

Boltzmann equation in the presence of an external electromagnetic field using a Chapman-

Enskog-like gradient expansion with three relevant expansion parameters: the Knudsen

number Kn = τcT , two dimensionless parameters χ = qBτc/T , and ξ = qEτc/T , where

the latter two depend on the strength of the electromagnetic fields. In the first order, dissipa-

tive quantities are independent of the magnetic field, whereas the diffusion current depends
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on the electric field. Moreover, in the second order, we found new transport coefficients

that couple the electromagnetic field to dissipative quantities, apart from the usual transport

coefficients that one gets without any external field. Compared to the results of the 14-

moment approximation, additional terms involving the electromagnetic field appear in the

relaxation time approximation. However, in the weak field limit for the non-resistive case,

the form of the relaxation equations is the same as that of the 14-moment approximation

but with different values for the transport coefficients. Again, in the ultra-relativistic limit,

the resulting transport coefficients from the two approaches were compared, and some of

the coefficients were found to differ, and some new transport coefficients appeared. As the

introduction of external fields breaks the isotropy of the transport coefficients, the shear

splits into three independent components and the diffusion coefficients into two indepen-

dent ones, whereas the bulk remains unaffected. Amongst the different transport coeffi-

cients, we found some are proportional to odd powers of the magnetic field, and some are

not. The ones that are odd powers in the magnetic field are the Hall terms. These trans-

port coefficients do not give rise to entropy, or, in other words, they do not contribute to

entropy production. This is because the odd power of the magnetic field makes the trans-

port coefficient odd under time-reversal symmetry, making it non-dissipative. Again, in

the Navier-Stokes limit, we recovered the usual form of the transport coefficients, as was

found before in the 14-moment approximation. Also, we retrieved the relativistic version

of theWiedemann-Franz law for the resistive case, which is the ratio of electrical to thermal

conductivity of the fluid, which should be proportional to the inverse of the temperature.

Lastly, we also delved into studying the behavior with varying temperature and mass for

the new transport coefficients that appeared in the second order for the non-resistive case.

Here, we found that some transport coefficients become insensitive to temperature at high

or low m/T limits. The current chapter primarily examines the impact of external elec-

tromagnetic fields generated by spectators on transport coefficients and the evolution of

113



3 Relativistic non-resistive and resistive magnetohydrodynamics for dissipative systems

dissipative stresses up to the first and second orders in gradient expansion. Subsequently,

our focus shifts to investigating the generation and evolution of such electromagnetic fields.

In the next chapter, we will explore the behavior of these electromagnetic fields origi-

nating from charged participants.
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Chapter 4

Electromagnetic fields by charged partic-
ipants
In previous studies, extensive numerical investigations [1, 2, 3, 4, 5, 6, 7, 8] have explored

the dynamics of the bulk medium, notably the Quark-Gluon Plasma (QGP), and its interplay

with electromagnetic fields. However, within the realm of theoretical calculations, only a

handful of works [9, 10, 11] have computed the evolution of electromagnetic fields gener-

ated by participants in the QGP and the hadronic phase but without taking into account the

participant (fluid) flow velocity.

Given that charged participants constitute the bulk of the medium formation (predomi-

nantly in low-energy collisions), it is imperative to include fluid flow while calculating the

fields they generate. Thus, understanding the electromagnetic fields generated by partici-

pants becomes crucial. This serves as the primary focus of this chapter’s work. While the

generic framework for studying the dynamics of charged participants is relativistic magne-

tohydrodynamics (RMHD), which often necessitates numerical simulations, our approach

is more modest, focusing on analytical insights. To achieve this, we approximate the prob-

lem by studying Maxwell’s equations in a charged background fluid flow, considering a

simple one-dimensional Bjorken flow [12].

The structure of this chapter unfolds as follows: we commence with a review of the

fundamental equations in Section.(4.1), followed by Section.(4.2), which outlines the back-

groundmodel and the associated assumptions. The solution to Green’s function is presented

in Section.(4.3). Subsequently, our findings are discussed in Section.(4.4), followed by the

conclusion and outlook presented in Section (4.5). In this chapter, we will adhere to the
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4 Electromagnetic fields by charged participants

mostly positive metric assumption that is gµν = diag(−,+,+,+).

4.1 Basic equations

Let’s review the fundamental equations required for our subsequent analysis, with their

derivation outlined in [13, 14]. The energy-momentum tensor of the fluid, formulated in

the Landau frame, is expressed as:

T µν
f ≡ εuµuν + p∆µν , (4.1)

where ∆µν represents the spatial projection operator defined by:

∆µν ≡ gµν + uµuν , (4.2)

and ε denotes the energy density, p signifies the isotropic pressure, and uµ represents the

fluid four-velocity. As customary, the fluid four-velocity is normalized such that uµuµ =

−1. The covariant derivative of uµ can be decomposed using the four-velocity uµ and the

projection operator ∆µν into basic irreducible kinematic quantities:

uµ;ν = σµν + ωµν +
θ

3
∆µν − u̇µuν , (4.3)

where the shear tensor σµν , vorticity tensor ωµν , expansion scalar θ, and four-acceleration

u̇µ are defined as follows:

σµν ≡
∆α

µ∆
β
ν

2
(uα;β + uβ;α)−

θ

3
∆µν , (4.4)

ωµν ≡
∆α

µ∆
β
ν

2
(uα;β − uβ;α) , (4.5)

θ ≡ uµ;µ, (4.6)

u̇µ ≡ uµ;νu
ν . (4.7)

It is noteworthy that σµνuµ = ωµνu
µ = u̇µuµ = 0 by definition. Here ; represents the

covariant derivative of a quantity. Let’s examine the first set of Maxwell’s equations, rep-
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4 Electromagnetic fields by charged participants

resented as follows:

F µν
;µ = −Jν , (4.8)

where Jν = Jµ
f +J

ν
ext represents the total charge four-current, encompassing both the charge

current generated within the fluid Jf and that originating from an external source Jν
ext, such

as spectators. The fluid charge current adheres to the conservation law:

Jµ
f ;µ = 0. (4.9)

The second set of equations emerges as a direct consequence of the existence of a four-

potential and is articulated as:

Fαβ;γ + Fβγ;α + Fγα;β = 0 . (4.10)

When observed from the perspective of fluid moving with four-velocity uµ, the electromag-

netic field tensor can be partitioned into ‘electric’ (Eµ) and ‘magnetic’ (Bµ) components,

defined by:

Eµ ≡ gµαFανu
ν , (4.11)

and

Bµ ≡ 1

2
ϵµναβFαβuν , (4.12)

where ϵµναβ signifies the totally antisymmetric tensor with ϵ0123 =
√
−g. Utilizing the

definitions provided in Eqs. (4.11) and (4.12), we readily deduce that

Eµu
µ = 0 , (4.13)

Bµu
µ = 0 . (4.14)

Using the provided definitions, we can express the electromagnetic tensor Fµν in any

arbitrary frame as follows:

Fµν ≡ uµEν − Eµuν + ϵµναβu
αBβ. (4.15)
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4 Electromagnetic fields by charged participants

Similarly, the charge current can be decomposed into the local charge density ρ ≡ ρf =

−Jµuµ and the charge diffusion current V µ ≡ V µ
f = Jν∆ µ

ν ,

Jµ ≡ Jµ
f = ρfu

µ + V µ
f . (4.16)

It’s noteworthy that as stated in the introduction, wewill solely consider fluid-origin charges

and currents here, neglecting any external contributions. For later convenience, wewill omit

the subscript ‘f ’. Maxwell’s equations, Eq.(4.8) and Eq.(4.10), can be broken down into

temporal and spatial components using uµ and the projector∆µν , yielding the following set

of equations:

Eµ
;µ − Bµνωµν − Eν u̇ν = ρ , (4.17)

Bµ
ν;µ − uνBαβω

αβ − Eµ

(
ωµν + σµν −

2θ

3
∆µν

)
+∆ α

ν Ėα = −Vν , (4.18)

Bµ
;µ − Eµνωµν − Bν u̇ν = 0 , (4.19)

Eµ
ν;µ − uνEαβω

αβ − Bµ

(
ωµν + σµν −

2θ

3
∆µν

)
+∆ α

ν Ḃα = 0 , (4.20)

where the antisymmetric tensors: Bµν ≡ ϵµναβu
αBβ , and Eµν ≡ ϵµναβu

αEβ .

As is mentioned in chapter.(2) the electromagnetic energy-momentum tensor is defined

as

T µν
em ≡ F λµF ν

λ − 1

4
gµνFαβF

αβ , (4.21)

and the total energy-momentum tensor of the system is given by

T µν ≡ T µν
f + T µν

em . (4.22)

The conservation law for T µν is expressed as

T µν
;µ = 0 . (4.23)

The above equation is satisfied given that there are no external source present. These equa-

tions also imply

T µν
f ;µ = F νλJf,λ . (4.24)
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4 Electromagnetic fields by charged participants

Projecting Eq.(4.24) along the directions of uν and ∆α
ν yields the following equations of

motion:

ε̇ = −((ε+ p)θ + EλVλ), (4.25)

u̇α =
1

(ε+ p)

(
∇αp+ Eαρ− BαλVλ

)
. (4.26)

The Lorentz forces in the second and third terms on the right-hand side of Eq.(4.26) con-

tribute to the fluid’s work, while dissipative forces from shear and bulk viscosity are ne-

glected here. Eqs.(4.17)-(4.20) and (4.25)-(4.26), along with an equation of state for the

fluid, completely describe the system under consideration, provided a consistent initial and

boundary data are given. In the subsequent section, we simplify these equations by disre-

garding the back-reaction of electromagnetic fields on the fluid, as described in Eqs.(4.25)-

(4.26). That is our fluid is not affected by the electromagnetic fields.

4.2 Background model and assumptions

The preceding analysis holds a broad applicability, as the Eqs.(4.17)–(4.20) are applicable

to various physical scenarios once the background evolution is defined. For instance, when

there are no matter sources, one can set the observer’s acceleration to zero. Likewise, in

cases where the fluid evolution is stationary and non-rotating, the expansion scalar and vor-

ticity tensor can be assumed to be zero. In the subsequent discussion, we will consider a

background fluid undergoing a longitudinal boost-invariant Bjorken expansion [12]. This

choice is motivated by the well-known property of boost invariance being readily appar-

ent in Milne coordinates compared to Minkowski coordinates. The line element in Milne

coordinates (τ, x, y, η) is given by:

ds2 = −dτ 2 + dx2 + dy2 + τ 2dη2 (4.27)
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4 Electromagnetic fields by charged participants

This line element is invariant under the combined symmetry SO(1, 1) ⊗ ISO(2) ⊗ Z2,

encompassing boost-invariance along the beam direction η, rotational and translational in-

variance in the transverse (x, y) coordinates, and reflection under η → −η. The flow

consistent with this combined symmetry property is uµ = (1, 0, 0, 0). Similarly, the only

non-vanishing Christoffel symbols are: Γτ
ηη ≡ τ , Γη

τη = Γη
ητ ≡ 1/τ . Furthermore, Bjorken

symmetry implies ωµν = u̇µ ≡ 0, θ ≡ 1/τ , and σµν ≡ diag(0,−1/(3τ),−1/(3τ), 2τ/3).

It’s worth noting that the inherent anisotropy in the electromagnetic energy-momentum

tensor clashes with the pronounced symmetry of the Milne metric. In the context of ideal

Bjorken flow—where dissipation and electromagnetic effects are absent—Eq.(4.26) triv-

ially reduces to zero. This arises from the boost invariance of the expansion, resulting in

negligible acceleration. Similarly, Eq.(4.25) yields the well-established Bjorken scaling

ε ∼ τ−4/3 under the assumption of a squared speed of sound c2s = 1/3. However, the pres-

ence of a back-reaction from the electromagnetic field onto the fluid introduces non-zero

acceleration, thereby impacting the electromagnetic fields according to Eqs.(4.17)-(4.20).

Furthermore, the electric field’s influence leads to modifications in Eq.(4.25), deviating

from the conventional Bjorken scaling. For example, in [2], the authors conducted a 1+1-

dimensional resistive MHD calculation in transversely homogeneous settings, without ne-

glecting any back-reaction. Their study elucidated how boost invariance is compromised

due to the self-consistent dynamics of matter and electromagnetic fields.

A pivotal assumption underpins our analysis. Considering the expression on the right-

hand side of Eq.(4.26), where the Lorentz forces are scaled by 1/(ε + P ), we introduce

the inverse plasma β-parameter: β−1 ≡ B2
0/(2p0), which governs their relative strength.

When the inverse plasma β-parameter β−1 ≪ 1, we can safely disregard the back-reaction

of the electromagnetic field on the fluid. Given that the strength of the electromagnetic

field—originating from spectators in mid-central collisions—diminishes more rapidly with

increasing collision energy compared to the energy density of the fluid, it’s anticipated that
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β−1 remains small at higher collision energies. Nonetheless, it’s conceivable that certain

regions within the fireball, such as its periphery, may exhibit large β−1 even at moderate

energies. In the subsequent discussion, we will operate within this regime and neglect any

influence of the electromagnetic fields on the background fluid.

Lastly, we make the assumption that the fluid behaves as an ideal insulator, character-

ized by a negligible conductivity, resulting in a diffusion current V µ
f of zero according to

Ohm’s law. This assumption is not too bold, given that lattice simulations suggest a low

conductivity for the plasma, with σ/T = 8παEM/3 ≃ 0.06 [15], where σ denotes conduc-

tivity, T represents temperature, and αEM refers to the fine structure constant. Nevertheless,

for the sake of completeness, we retain this term in our subsequent derivation, although we

omit it later when discussing specific cases (see Sec.(4.4)).

Under the aforementioned assumption, Eqs.(4.17)-(4.20) simplify to the familiar Gauss

laws for electric and magnetic fields:

∂xEx + ∂yEy + τ−2∂ηEη = ρ , (4.28)

∂xBx + ∂yBy + τ−2∂ηBη = 0 , (4.29)

Similarly, the equations corresponding to Faraday’s law become:

∂τ (τBx) = −(∂yEη − ∂ηEy) , (4.30)

∂τ (τBy) = (∂xEη − ∂ηEx) , (4.31)

∂τ
(
τ−1Bη

)
= −(∂xEy − ∂yEx) , (4.32)

while Ampère’s law is represented by:
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∂τ (τEx) = (∂yBη − ∂ηBy)− τV x , (4.33)

∂τ (τEy) = −(∂xBη − ∂ηBx)− τV y , (4.34)

∂τ
(
τ−1Eη

)
= (∂xBy − ∂yBx)− τV η . (4.35)

In pursuit of deriving the wave equation governing electromagnetic fields within this

expanding context, we begin by redefining the electromagnetic fields alongside the charges

and currents. Specifically, we introduce the following transformations: Ẽ(x,y) = τE(x,y),

B̃(x,y) = τB(x,y), Ẽη = τ−1Eη, B̃η = τ−1Bη, ρ̃ = τρ, and Ṽ i = τ 2V i. With these

redefinitions in place, Maxwell’s equations given by Eq.(4.28)-(4.35) can be simplified to:

∂iẼi = ρ̃ , (4.36)

∂iB̃i = 0 , (4.37)

∂τ B̃x = τ−1∂ηẼy − τ∂yẼη , (4.38)

∂τ B̃y = τ∂xẼη − τ−1∂ηẼx , (4.39)

∂τ B̃η = τ−1∂yẼx − τ−1∂xẼy , (4.40)

∂τ Ẽx = τ∂yB̃η − τ−1∂ηB̃y − τ−1Ṽ x , (4.41)

∂τ Ẽy = τ−1∂ηB̃x − τ∂xB̃η − τ−1Ṽ y , (4.42)

∂τ Ẽη = τ−1∂xB̃y − τ−1∂yB̃x − τ−1Ṽ η . (4.43)

To derive the wave equations, we follow a systematic procedure. For instance, to obtain

the wave equation for B̃x, we utilize Eqs.(4.42) and (4.43), taking their partial derivatives

with respect to η and y, respectively. Subsequently, we substitute the resultant expressions

into the partial derivative with respect to τ in Eq.(4.38). This process is repeated for the

remaining components of the electromagnetic fields, yielding the following set of wave

equations:
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□Ẽx = 2∂yB̃η − (∂xρ̃+ τ−1∂τ Ṽ
x) , (4.44)

□Ẽy = −2∂xB̃η − (∂yρ̃+ τ−1∂τ Ṽ
y) , (4.45)

□Ẽη = −τ−1∂τ Ṽ
η − τ−2∂ηρ̃ , (4.46)

□B̃x = −2∂yẼη + ∂yṼ
η − τ−2∂ηṼ

y , (4.47)

□B̃y = 2∂xẼη − ∂xṼ
η + τ−2∂ηṼ

x , (4.48)

□B̃η = τ−2∂xṼ
y − τ−2∂yṼ

x , (4.49)

where □ represents the d’Alembert operator in Milne coordinates, defined as:

□ ≡ ∂2τ + τ−1∂τ − τ−2∂2η − ∂2x − ∂2y . (4.50)

The Eqs.(4.44)-(4.49) constitute the primary findings of this study. In contrast to the

standard source-free wave equation in Minkowski coordinates [11], these equations ex-

hibit additional couplings between the field components on the right-hand side, which are

absent in the former coordinate system. This discrepancy highlights an intriguing conse-

quence: even in the absence of charge currents Ṽ i, one can generate magnetic fields for

stationary charges in an expanding medium. These magnetic fields are driven by the gra-

dients of electric fields, which serve as sources. These phenomena, reminiscent of Jefi-

menko’s equations or the Jefimenko-Feynman formula [16], will be briefly discussed in

Sec.(4.4). The origin of these coupling terms can be traced back to the non-vanishing ex-

pansion scalar θ and shear stress tensor σµν in Eqs.(4.17)-(4.20). It is crucial to note that

the electromagnetic fields derived from the solutions of Eqs.(4.44)-(4.49) are not merely

the coordinate-transformed solutions of electromagnetic fields in Minkowski coordinates.

Unless one solves Eqs.(4.44)-(4.49) with a longitudinal fluid velocity vz ≡ uz/ut = tanh η

in the latter coordinate system, the solutions will differ. Here, uz and ut represent the com-

ponents of the four-velocity in Minkowski coordinates. Since the velocity in Minkowski
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coordinates is coordinate-dependent, the fields cannot be obtained simply by boosting from

the rest frame to this frame. In the subsequent section, we will solve Eqs.(4.44)-(4.49) based

on a mode decomposition of Green’s equation.

4.3 Solution of thewave equations for electromagnetic fields

To tackle the system of non-linear coupledwave equations represented by Eqs.(4.44)-(4.49),

we observe that the longitudinal components of the electromagnetic fields depend solely

on external sources, while the transverse components rely on the gradients of the former.

Consequently, we can adopt an iterative approach to solve the system, first addressing the

longitudinal components and subsequently leveraging this solution to determine the trans-

verse components. The equation governing the longitudinal components is a well-studied

problem in the literature [17, 18, 19], frequently encountered in solving the Klein-Gordon

equation in Milne coordinates. It is worth noting that various methods, such as the WKB

procedure [20, 21] or mode decomposition of Green’s function [22, 23], have been em-

ployed to address similar equations. However, in this study, we opt for the latter approach,

which yields an exact solution.

Using the 2-point Green functionG(xµ; x′µ) betweenxµ ≡ (τ, x⊥, η) andx′µ ≡ (τ ′, x′⊥, η′),

we define the following:

Gr(xµ; x
′
µ) = −Θ(τ − τ ′)G(xµ; x

′
µ) , (4.51)

Ga(xµ; x
′
µ) = Θ(τ ′ − τ)G(xµ; x

′
µ) , (4.52)

Ḡ(xµ; x
′
µ) =

1

2

[
Gr(xµ; x

′
µ) +Ga(xµ; x

′
µ)
]
, (4.53)

whereΘ(τ − τ ′
) is the Heaviside step function, andGr(xµ; x

′
µ),Ga(xµ; x

′
µ), and Ḡ(xµ; x′µ)

are the retarded, advanced, and symmetric propagators, respectively. Now, we decompose
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the Green function into modes via a Fourier expansion:

G(xµ; x
′
µ) =

1

(2π)3
√
ττ ′

∫
d3kei[k⊥·(x⊥−x′⊥)+kη(η−η′)]

[
akη(τ)bkη(τ

′)− akη(τ
′)bkη(τ)

]
,

(4.54)

where pµ ≡ (k⊥, kη). Let akη(τ) and bkη(τ) be particular solutions satisfying:

akη(τ) = 1 , ∂τakη(τ) = 0 ,

bkη(τ) = 0 , ∂τbkη(τ) = 1 , (4.55)

at τ = 1. Then, it can be verified that the following relation holds for any τ :

akη(τ)∂τbkη(τ)− ∂τakη(τ)bkη(τ) = 1. (4.56)

Given that the Green’s function G(xµ; x′µ) satisfies the homogeneous wave equation

□G(xµ; x′µ) = 0 (4.57)

together with the boundary conditions:

G(xµ; x
′
µ) = 0 , ∂τG(xµ; x

′
µ) = −1

τ
δ(xi − x′i) , (4.58)

at τ = τ ′.

We can demonstrate that the symmetric propagator Ḡ(xµ; x′µ) satisfies the following

inhomogeneous wave equation:

□Ḡ(xµ; x′µ) =
1√
ττ ′

δ4(xµ − x′µ), (4.59)

where δ4(xµ−x′µ) = δ(τ − τ ′)δ3(xi−x′i). Using the definition of the d’Alembert operator

fromEq.(4.50), it can be verified that the particular solution satisfies the following relations:

akη(τ)bkη(τ
′)−akη(τ ′)bkη(τ) =

π
√
ττ ′

2

[
Jikη (k⊥τ)Yikη (k⊥τ

′)− Jikη (k⊥τ
′)Yikη (k⊥τ)

]
,

(4.60)
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where Jikη (k⊥τ) and Yikη (k⊥τ) are the Bessel functions of the first and second kind, re-

spectively, with k⊥ ≡ |k⊥|. Substituting Eq.(4.60) into Eq.(4.54), we arrive at the following

equation for the Green’s function:

G(xµ; x
′
µ) = −ϵ(τ − τ ′)θ(λ2)

4π

∫ ∞

0

k⊥dk⊥J0(λk⊥)J0(r⊥k⊥) , (4.61)

= −ϵ(τ − τ ′)

2π
δ(s2), (4.62)

where λ2 = τ 2 + τ ′2 − 2ττ ′ cosh(η − η′), r2⊥ ≡ (x− x′)2 + (y − y′)2, s2 = λ2 − r2⊥, and

ϵ(τ−τ ′) = Θ(τ−τ ′)−Θ(τ ′−τ) respectively. By substituting Eq.(4.61) into the definition

of the symmetric propagator Eq.(4.53), we obtain:

Ḡ(xµ; x
′
µ) =

1

4π
δ(τ 2 + τ ′2 − 2ττ ′ cosh(η − η′)− r2⊥). (4.63)

Eq.(4.61) closely resembles its counterpart in the usual representation in Minkowski space-

time, but the expression for s2 in Eq.(4.61) (which has support only at the light cone) differs

entirely from that in the latter.

Thus, for any field Φ(xµ) satisfying an equation of the form:

□Φ(xµ) = S(xµ), (4.64)

with a generic source S(xµ), the solution takes the form:

Φ(xµ) =

∫
Ḡ(xµ; x

′
µ)S(x

′
µ)
√
g′d4x′. (4.65)

4.4 Results

In this section, we unveil the outcomes concerning the electromagnetic fields produced by

the participants. Initially, we scrutinize a straightforward scenario featuring a motionless

point charge, where the fields correspond to those derived from the Liénard-Wiechert poten-

tial within the expanding fluid framework. This serves as a litmus test for our formulation

130



4 Electromagnetic fields by charged participants

in a simplified setting. Following this, we proceed to a more practical scenario, wherein

charged particles are arranged in a Gaussian distribution across the transverse plane while

adhering to specific constraints on the region of participant charge allocation.

4.4.1 Field of a stationary point charge

Consider the charge density attributed to a stationary (co-moving) point particle in an ex-

panding fluid, characterized by a four-velocity uµ = (1, 0, 0, 0). This density is represented

by:

ρ(τ, x) = Ze
δ3(x− x0)Θ(τ − τ0)

τ
. (4.66)

Here, Ze signifies the charge magnitude, and x0 denotes its position. To mitigate the

singularity of the Green’s function at τ = 0, we assume that the charge emerged at a finite

time in the past, τ = τ0. This assumption is common in heavy-ion collision hydrodynamics,

where hydrodynamic evolution typically commences after a finite time, approximately ∼

0.5 − 0.6 fm. It’s important to note that in this framework, there’s no conservation law

for charge, and charge can be spontaneously generated if sufficient energy is available.

Additionally, considering the fluid as a perfect insulator implies a zero charge diffusion

current V µ. Consequently, the particular solution for the η component of the magnetic field

(Eq.(4.49)) can be set to zero without loss of generality, effectively decoupling from other

electromagnetic field components. Substituting the gradient of the point charge (Eq.(4.66))

as a source in the Green’s function (Eq.(4.65)), we obtain:

Ẽη(τ, x) = −Ze
∫

1

(τ ′)2
Ḡ(τ, x; τ ′, x′)∂ηρ̃(τ ′, x′)

√
g(τ ′)d3x′dτ ′, (4.67)

as a solution of Eq.(4.46). The integration of Eq.(4.67) with the symmetric Green’s

function (Eq.(4.63)) is straightforward, resulting in:
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Ẽη(τ, x) =

{
Ze τ sinh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]
3/2 , if τ0 < τf (x; x0) < τ

0, otherwise
(4.68)

where τf (x; x0) := τ cosh(η−η0)−
√

(r⊥ − r⊥0)2 + τ 2 sinh2(η − η0) and the inequal-

ity satisfies causality constraints. The transverse components of electric fields can be com-

puted analogously, yielding:

Ẽx(τ, x) =

{
Ze τ(x−x0) cosh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]
3/2 , if τ0 < τf (x; x0) < τ

0, otherwise
(4.69)

Ẽy(τ, x) =

{
Ze τ(y−y0) cosh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]
3/2 , if τ0 < τf (x; x0) < τ

0, otherwise
(4.70)

As discussed in Section.(4.3), the transverse magnetic fields can be obtained by taking

the gradients of the longitudinal component of the electric field, Eq.(4.68), acting as a source

in Eq.(4.65), resulting in:

B̃y(τ, x) = 2

∫
Ḡ(τ, x; τ ′, x′)∂x′Ẽη(τ

′, x′)
√
g(τ ′)d3x′dτ ′, (4.71)

as a solution of Eq.(4.48). The integration over τ ′ is straightforward, yielding:

B̃y(τ, x) =


Ze 3

8π2

∫
d3x′ τf (x′;x)2(x′−x0) sinh(η0−η′)

[(r′⊥−r⊥0)2+τf (x′;x)2 sinh2(η′−η0)]
5/2

1√
(r⊥−r′⊥)2+τ2 sinh2(η−η′)

,

if (τ0 < τf (x′; x0) < τ) ∧ (τ0 < τf (x′; x) < τ),

0, otherwise
(4.72)

where, τf (x′; x) = τ cosh(η − η′)−
√
(r⊥ − r′⊥)

2 + τ 2 sinh2(η − η′).

In the expression above, one of the constraints originates from the electric field in

Eq.(4.68), while the other arises from the Green’s function in Eq.(4.71). A similar approach
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can be employed to obtain the x-component of the magnetic field. The spatial integration

in Eq.(4.72) cannot be simplified into an elementary form; hence, we resort to numerical

integration in the subsequent sections.
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Figure 4.1: Electric-field components eẼη (left) and eEx (right) as functions of η for a
stationary point source.

To examine the spatiotemporal behavior of the electromagnetic fields generated by the

charged participants, we simplify by assuming that the charges are positioned at x0 =

(b/2, 0, 0) and the initial time τ0 = 0.6 fm, where b represents the coordinate of the source,

taken as b = 7 fm. We compute the fields at points with transverse coordinates x⊥ = (0, 0),

while allowing for varying rapidities η and times τ . The magnitude of the charge Ze is

treated as a free parameter, and for our calculations, we set Z = 79, representing half of the

total charged spectators in an Au-Au collision, although this is a simplification. With this

setup, the only non-vanishing components of the electromagnetic fields are Ẽη,Ex, andBy.

Fig.(4.1) illustrates the components eẼη and eEx of the electric field as functions of η.

Different symbols in the plot correspond to distinct time frames. Notably, the x-component

of the electric field exhibits even symmetry with respect to rapidity, with a magnitude ap-

proximately ten times greater than that of the η-component, which demonstrates odd sym-
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metry. At any given η, the electric fields decay as ∼ τ−3 (see Eqs.(4.68) and (4.69)).

Preceding τ = 4.6 fm, the electric field for both components is nonexistent due to retarda-

tion effects. Subsequently, only regions consistent with causality witness the electric field’s

presence, resulting in the piecewise behavior depicted in the figure. Naturally, this region

of influence is contingent upon the initial time τ0 and the relative distances x− x0.
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Figure 4.2: Left and right panels: Magnetic-field components eBy as a function of η and
time for a stationary point source respectively.

In Fig.(4.2) (left panel), the magnetic field component eBy is depicted as a function of η,

with various symbols denoting different time frames. Initially, at early times (τ < 3.1 fm),

the magnetic field is absent due to the initial causality constraint (refer to Eq.(4.72)), which

is inherited from the electric field. However, unlike the electric field, which is confined to

τf (x; x0), the magnetic field’s support extends to a broader space-time region, as evident

in the left panel of Fig.(4.2). Here, the magnetic field attains non-zero values earlier than

the corresponding electric field, which remains zero until τ = 4.6 fm. Nevertheless, the

magnetic field during this early period is confined to a narrower rapidity region due to this

constraint. Subsequently, for 3.1 fm < τ < 4.6 fm, the magnitude of the magnetic field

intensifies and exhibits continuous evolution across the rapidity spectrum.
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Figure 4.3: Left panel: Domain of influence τ0 < τf (x; x0) < τ for the electric field
component eẼη. Right panel: Domain of influence for the magnetic field component eBy,
τ0 < τf (x′; x0) < τ ∧ τ0 < τf (x′; x) < τ . The transverse coordinates and η0 are set to zero
(r⊥ = r⊥0 = η0 = 0) for simplicity.

The influence domains of both the electric and magnetic fields are determined by their

respective equations. The electric field, denoted as eẼη in Eq.(4.68), exhibits an influence

domain defined as τ0 < τf (x; x0) < τ , where τf (x; x0) describes the causal boundary. On

the other hand, the magnetic field, represented by eBy in Eq.(4.72), extends its influence

over the domain τ0 < τf (x′; x0) < τ ∧ τ0 < τf (x′; x) < τ , where τf (x′; x0) characterizes

the extent of influence at each spatial point x′ relative to the source at x0.

Examining Fig.(4.3) (left panel), which illustrates the domain of influence or causal

region, it becomes evident that for smaller values of τ , the support of τf (x; x0) is confined

to narrower intervals in η for the electric field. Conversely, inspecting Fig.(4.3) (right panel)

for the magnetic field, the support extends over larger areas depending on the specific value

of η′. For instance, at η′ = 0, the magnetic field’s support closely resembles that of the

electric field. However, for η′ = −1.0 or η′ = 1.5, the shaded region encompasses a

broader area compared to the former scenario. As time progresses, both the electric and

magnetic fields undergo an incremental expansion in their supportive domains.
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Now turning our attention to Fig.(4.2) (right panel), showcasing the temporal evolution

of the magnetic field for two distinct rapidity values, η = 1 and η = 2. For η = 1,

we have additionally fitted the obtained numerical solution with a power law (indicated

by black dotted lines). It’s apparent that the entire time evolution can be categorized into

two regimes: during early times, the magnetic field exhibits growth proportional to τ 5,

while at later times, it decays as τ−2.2. In the intermediate region around τ ∼ 4.6 fm, a

discontinuity is observed. Conversely, for larger rapidities, such as η = 2, the magnitude

of the magnetic field is approximately an order of magnitude smaller compared to smaller

rapidities, like η = 1. A noteworthy comparison can be made with the results obtained

from spectators [11], where, at vanishing conductivity, the decay is simply proportional

to τ−3. However, during early times, the magnitude is significantly higher and depends

on the collision energy. Nevertheless, a distinguishing characteristic of the magnetic field

generated by the participants, unlike the spectators, is its sustained significance throughout

the evolution, even at very late times. For instance, at τ = 10 fm for a smaller rapidity

η = 1, the magnitude is of the order of O(10−3) compared to O(10−5) (in units ofm2
π) for

the spectators.

4.4.2 Fields for a transverse charge distribution

Now, let’s delve into the investigation of fields induced by a stationary charge distribution.

We adopt the convention that the charge density of both the target and projectile is dis-

tributed across the transverse plane while remaining localized in the rapidity direction. To

simplify the analysis, we assume that the protons within a nucleus are uniformly distributed

according to a Gaussian profile with mean x0 and standard deviation σ⊥. Thus, the charge

density takes the form:

ρ(τ, x) = Ze
f⊥(x, x0; y, y0)δ(η − η0)

τ
Θ(τ − τ0), (4.73)
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where f⊥(x, x0; y, y0) represents the charge distribution in the transverse direction, given

by:

f⊥(x, x0; y, y0) =
1

πσ2
⊥

[
exp

(
−(x− x0)

2 + (y − y0)
2

σ2
⊥

)
+ exp

(
−(x+ x0)

2 + (y + y0)
2

σ2
⊥

)]
Θ

(
1− x2

r2a
− y2

r2b

)
. (4.74)

Here, x0 = b/2 and y0 = 0, representing the centers of the nuclei in the transverse plane,

with σ⊥ = 5 fm. The parameter b denotes the impact parameter, set to b = 7 fm. The

semi-major and semi-minor axes of the elliptical region of the participants are determined

by ra = R−x0 and rb =
√
R2 − x20, whereR signifies the radius of a nucleus (R = 7 fm).

The unit step function in Eq.(4.74) ensures that only charges within the elliptical region in

the transverse plane are considered.

Following a procedure akin to that for the point charge discussed in Section.(4.4.1),

we can determine the various field components utilizing the Green’s function given by

Eq.(4.63) for the equations Eqs.(4.44) to (4.49). The integration over τ and η yields elemen-

tary results, leading to the following expressions for the electromagnetic field components:

Ẽη(τ, x) =
Ze

4π

∫
d2x′

τ sinh(η − η0)

[(x− x′)2 + (y − y′)2 + τ 2 sinh2(η − η0)]
3/2

× f⊥(x
′, x0; y

′, y0)Θ

(
1− x′2

r2a
− y′2

r2b

)
, (4.75)

B̃y(τ, x) = Ze
3

8π2

∫
d3x′d2x′′

τf (x′; x)2(x′ − x′′) sinh(η0 − η′)[
(x′ − x′′)2 + (y′ − y′′)2 + τf (x′; x)2 sinh2(η0 − η)

]5/2
× f⊥(x

′′, x0; y
′′, y0)√

(x− x′)2 + (y − y′)2 + τ 2 sinh2(η − η′)
×Θ

(
1− x′′2

r2a
− y′′2

r2b

)
.

(4.76)

Here, the integration over x′ is again confined to the causal region, satisfying the in-

equality τ0 < τf (x′; x) < τ , along with the physical boundary of the elliptical region ex-

pressed via the unit-step function. We explicitly present the expressions for Ẽη and B̃y,
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noting that other components of the electromagnetic fields can be computed using a similar

procedure, which we omit here.
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Figure 4.4: The electric-field component eẼη as a function of η . Various symbols represent
the values of electric field at different times.

Fig.(4.4) illustrates the behavior of eẼη as a function of η at various time instances.

In comparison to the electric field generated by a point charge distribution (see Fig.(4.1),

top panel), the electric field arising from a charge distribution exhibits non-zero values

even at early times, around τ ∼ 1.1 fm, albeit localized in space. As time progresses, the

electric field gradually diminishes, asymptotically approaching zero at large rapidities. The

magnitude of the electric field is approximately ∼ 0.1m2
π, serving as the source for the

magnetic field.

Fig.(4.5) depicts the temporal evolution of the transverse component of the magnetic

field, eBy, at rapidity η = 0.5, with the blue band representing an estimate of the numerical

integration error. Due to the highly oscillatory nature of the integrand in Eq.(4.75), extrap-

olation to smaller time intervals was not feasible. Nonetheless, the qualitative behavior of

the magnetic field at late times (τf > 4.6 fm) resembles that of a point charge distribution

(cf. Fig.(4.2), bottom panel), persisting for sufficiently long timescales in the context of
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Figure 4.5: Time evolution of eBy at rapidity η = 0.5. The blue band is the estimate of the
error in the numerical integration.

heavy-ion collisions. This prolonged lifetime can be attributed to the retardation effect, ev-

ident from Fig.(4.3), highlighting that the support of the integral in Eq.(4.75) expands to

larger spatial regions with non-vanishing gradients of electric field at late times.

4.5 Conclusion

Our investigation delved into the study of spatiotemporal dynamics of electromagnetic

fields produced by charged particles within an expanding fluid governed by a background

Bjorken flow. We addressed Maxwell’s equations within this framework, assuming a negli-

gible back-reaction to the fluid’s flow. Introducing coupling to the fluid’s shear and expan-

sion scalar added complexity to the dynamics. Interestingly, we found that even without

charged currents, gradients in the electric field could generate a magnetic field for a station-

ary charge distribution co-moving with the fluid. This resultant magnetic field undergoes

an initial phase of vanishing, followed by growth and eventual decay. The principle of

causality proves indispensable in describing the evolution of such charge distributions in

space and time. We also examined a more realistic scenario involving continuous charge
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distribution within the context of heavy-ion collisions. The resultant magnetic field retains

significance even at temporal scales as large as ∼ 10 fm. This observation supports prior

studies discussing the magnetic field’s influence during the hadronic stage of heavy-ion

collisions [24, 25, 26]. However, our study has some limitations, primarily from the as-

sumption of vanishing charged currents. Relaxing this assumption could yield intriguing

consequences, particularly when considering non-equilibrium processes like charge dif-

fusion and conductivity. These processes nullify existing gradients in the electric charge

distribution, potentially leading to non-trivial alterations in the spatiotemporal evolution of

dynamic electromagnetic fields. Unfortunately, our efforts to incorporate these terms into

the analysis hindered our ability to find analytical solutions for Green’s function, making

the problem quite challenging. In the future we could explore flow patterns with non-zero

vorticity and acceleration, offering promising paths for gaining deeper insights into the in-

tricate dynamics of electromagnetic fields in expanding fluid media.

We now shift our focus to another aspect which is studying the behavior of all the compo-

nents of electromagnetic fields taking into account the nuclear stopping. This phenomenon

is particularly prominent in low-energy nuclear collisions, notably at FAIR energies.

140



References
[1] G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D. E. Kharzeev and M. Bleicher,

“Magnetic fields in heavy ion collisions: flow and charge transport,” Eur. Phys. J. C 80,

no.3, 293 (2020) doi: 10.1140/epjc/s10052-020-7847-4 [arXiv:1908.07605 [hep-ph]].

[2] A. Dash, M. Shokri, L. Rezzolla and D. H. Rischke, “Charge diffusion in relativis-

tic resistive second-order dissipative magnetohydrodynamics,” Phys. Rev. D 107, no.5,

056003 (2023) doi: 10.1103/PhysRevD.107.056003 [arXiv:2211.09459 [nucl-th]].

[3] K. Nakamura, T. Miyoshi, C. Nonaka and H. R. Takahashi, “Relativistic resistive

magneto-hydrodynamics code for high-energy heavy-ion collisions,” Eur. Phys. J. C 83,

no.3, 229 (2023) doi: 10.1140/epjc/s10052-023-11343-y [arXiv:2211.02310 [nucl-th]].

[4] E. R. Most, J. Noronha and A. A. Philippov, “Modelling general-relativistic plasmas

with collisionless moments and dissipative two-fluid magnetohydrodynamics,” Mon.

Not. Roy. Astron. Soc. 514, no.4, 4989-5003 (2022) doi: 10.1093/mnras/stac1435

[arXiv:2111.05752 [astro-ph.HE]].

[5] E. R. Most and J. Noronha, “Dissipative magnetohydrodynamics for nonresistive rel-

ativistic plasmas: An implicit second-order flux-conservative formulation with stiff re-

laxation,” Phys. Rev. D 104, no.10, 103028 (2021) doi: 10.1103/PhysRevD.104.103028

[arXiv:2109.02796 [astro-ph.HE]].

[6] K. Dionysopoulou, D. Alic, C. Palenzuela, L. Rezzolla and B. Giacomazzo,

“General-Relativistic Resistive Magnetohydrodynamics in three dimensions: formula-

tion and tests,” Phys. Rev. D 88, 044020 (2013) doi: 10.1103/PhysRevD.88.044020

[arXiv:1208.3487 [gr-qc]].

141

https://doi.org/10.1140/epjc/s10052-020-7847-4
https://doi.org/10.1103/PhysRevD.107.056003
https://doi.org/10.1140/epjc/s10052-023-11343-y
https://doi.org/10.1093/mnras/stac1435
https://doi.org/10.1103/PhysRevD.104.103028
https://doi.org/10.1103/PhysRevD.88.044020


REFERENCES

[7] A. Huang, D. She, S. Shi, M. Huang and J. Liao, “Dynamical magnetic fields in

heavy-ion collisions,” Phys. Rev. C 107, no.3, 034901 (2023) doi: 10.1103/Phys-

RevC.107.034901 [arXiv:2212.08579 [hep-ph]].

[8] A. Das, S. S. Dave, P. S. Saumia and A. M. Srivastava, “Effects of magnetic field on

plasma evolution in relativistic heavy-ion collisions,” Phys. Rev. C 96, no.3, 034902

(2017) doi: 10.1103/PhysRevC.96.034902 [arXiv:1703.08162 [hep-ph]].

[9] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The Effects of topological charge

change in heavy ion collisions: ’Event by event P and CP violation’,” Nucl. Phys. A 803,

227-253 (2008) doi: 10.1016/j.nuclphysa.2008.02.298 [arXiv:0711.0950 [hep-ph]].

[10] U. Gursoy, D. Kharzeev and K. Rajagopal, “Magnetohydrodynamics, charged cur-

rents and directed flow in heavy ion collisions,” Phys. Rev. C 89(5), 054905 (2014) doi:

10.1103/PhysRevC.89.054905 [arXiv:1401.3805 [hep-ph]].

[11] U. Gürsoy, D. Kharzeev, E. Marcus, K. Rajagopal and C. Shen, “Charge-dependent

Flow Induced byMagnetic and Electric Fields in Heavy Ion Collisions,” Phys. Rev. C 98,

no.5, 055201 (2018) doi: 10.1103/PhysRevC.98.055201 [arXiv:1806.05288 [hep-ph]].

[12] J. D. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity

Region,” Phys. Rev. D 27, 140-151 (1983) doi: 10.1103/PhysRevD.27.140.

[13] Kip S. Thorne and Douglas MacDonald, “Electrodynamics in curved space-

time: 3 + 1 formulation,” Mon. Not. Roy. Astron. Soc. 198, no.2, 339-

343 (1982) doi: 10.1093/mnras/198.2.339 [https://academic.oup.com/mnras/article-

pdf/198/2/339/9402846/mnras198-0339.pdf].

[14] C. G. Tsagas, “Electromagnetic fields in curved spacetimes,” Class. Quant. Grav. 22,

393-408 (2005) doi: 10.1088/0264-9381/22/2/011 [arXiv:gr-qc/0407080 [gr-qc]].

142

https://doi.org/10.1103/PhysRevC.107.034901
https://doi.org/10.1103/PhysRevC.107.034901
https://doi.org/10.1103/PhysRevC.96.034902
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1103/PhysRevC.89.054905
https://doi.org/10.1103/PhysRevC.98.055201
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1093/mnras/198.2.339
https://doi.org/10.1088/0264-9381/22/2/011


REFERENCES

[15] G. Aarts and A. Nikolaev, “Electrical conductivity of the quark-gluon plasma:

perspective from lattice QCD,” Eur. Phys. J. A 57, no.4, 118 (2021) doi:

10.1140/epja/s10050-021-00436-5 [arXiv:2008.12326 [hep-lat]].

[16] D. J. Griffiths, Introduction to electrodynamics; 4th ed., Pearson, Boston, MA,

2013, https://cds.cern.ch/record/1492149, Re-published by Cambridge Univer-

sity Press in 2017, doi: 1108420419.

[17] H.Nariai andK. Tanabe, Propagators for a Scalar Field in aHomogeneous Expanding

Universe. I: Case of the FriedmannUniverses, Progress of Theoretical Physics 55 (1976)

1116–1132, Oxford University Press.

[18] T. Padmanabhan, Physical interpretation of quantum field theory in noninertial

coordinate systems, Phys. Rev. Lett. 64 (1990) 2471–2474, doi: 10.1103/Phys-

RevLett.64.2471.

[19] D. Rindori, L. Tinti, F. Becattini, and D. H. Rischke, Relativistic quantum

fluid with boost invariance, Phys. Rev. D 105 (2022) 056003, doi: 10.1103/Phys-

RevD.105.056003, eprint: arXiv:2102.09016 [hep-th].

[20] A. Sagnotti and B. Zwiebach, “Electromagnetic Waves in a Bianchi Type I Universe,”

Phys. Rev. D 24, 305-319 (1981) doi: 10.1103/PhysRevD.24.305.

[21] S. V. Dhurandhar, C. V. Vishveshwara, and J. M. Cohen, Electromagnetic, neutrino

and gravitational fields in the Kasner space-time with rotational symmetry, Classical

and Quantum Gravity 1 (1984) 61, doi: 10.1088/0264-9381/1/1/009.

[22] L. M. Burko, A. I. Harte and E. Poisson, Phys. Rev. D 65, 124006 (2002) doi:

10.1103/PhysRevD.65.124006 [arXiv:gr-qc/0201020 [gr-qc]].

143

https://doi.org/10.1140/epja/s10050-021-00436-5
https://cds.cern.ch/record/1492149
https://doi.org/10.1108420419
https://doi.org/10.1103/PhysRevLett.64.2471
https://doi.org/10.1103/PhysRevLett.64.2471
https://doi.org/10.1103/PhysRevD.105.056003
https://doi.org/10.1103/PhysRevD.105.056003
https://doi.org/10.1103/PhysRevD.24.305
https://doi.org/10.1088/0264-9381/1/1/009
https://doi.org/10.1103/PhysRevD.65.124006


REFERENCES

[23] Eric Poisson, Adam Pound, and Ian Vega, The motion of point particles in curved

spacetime, Living Reviews in Relativity 14 (2011) 1–190, Springer.

[24] A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh and V. Roy, “Anisotropic

transport properties of a hadron resonance gas in a magnetic field,” Phys. Rev. D 102,

no.1, 016016 (2020) doi:10.1103/PhysRevD.102.016016 [arXiv:2002.08781 [nucl-th]].

[25] J. Dey, S. Samanta, S. Ghosh and S. Satapathy, “Quantum expression for the electri-

cal conductivity of massless quark matter and of the hadron resonance gas in the pres-

ence of a magnetic field,” Phys. Rev. C 106, no.4, 044914 (2022) doi: 10.1103/Phys-

RevC.106.044914 [arXiv:2002.04434 [nucl-th]].

[26] S. Imaki, “Chiral magnetic effect in the hadronic phase,” Phys. Rev. D 101, no.7,

074024 (2020) doi: 10.1103/PhysRevD.101.074024 [arXiv:1906.08949 [hep-ph]].

144

https://doi.org/10.1103/PhysRevC.106.044914
https://doi.org/10.1103/PhysRevC.106.044914
https://doi.org/10.1103/PhysRevD.101.074024


Chapter 5

Effect of baryon stopping on the electro-
magnetic fields
It has been mentioned earlier that off-central relativistic heavy-ion collisions produce in-

tense transient electromagnetic fields, which are predominantly produced due to the motion

of spectators, reaching magnitudes of approximately ∼ 10m2
π at top RHIC energies [1, 2,

3, 4, 5, 6, 7, 8]. Notably, the peak values of the event-averaged electromagnetic field com-

ponents generated in these collisions exhibit an approximate linear proportionality with the

center-of-mass energy (√sNN ) [4]. These results, however, were obtained on the assump-

tion of near-perfect transparency of the colliding nucleons, as described by the Glauber

model [9]. For high √sNN , such as top RHIC and LHC energies, the elastic or diffractive

dissociation collisions lead to a minute loss of energy of the colliding nucleon, and hence it

is a good approximation to consider that the colliding nucleons move in a straight line with

almost constant velocity even after multiple collisions. However, for low√
sNN collisions,

baryon stopping can be sizeable [10, 11, 12, 13]. The baryon stopping must be consid-

ered while estimating the electromagnetic fields using the Glauber model at low √
sNN .

Particularly, the temporal evolution of the fields post-collisions will be affected due to the

decelerations of the protons after each binary collision.

Previous studies show that, on average, a proton loses half of its pre-collision energy,

about one unit of rapidity in each binary collision [14]. The maximum value of the net

baryon density atmid-rapidity is achieved for√sNN ≈ 6GeV [15, 16]. Above this collision

energy, the mid-rapidity net baryon density decreases with increasing energy due to the

higher transparency of the colliding nuclei. Hence, for higher collision energies, the effect
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5 Effect of baryon stopping on the electromagnetic fields

of deceleration in calculating electromagnetic fields is minimal. Some theoretical model

studies, including models based on color glass condensate, could successfully describe the

stopping effect [17, 18, 19]. However, in the current study, we do not use any of these

models; instead, we take a more pedagogical approach and parameterize the decelerated

motion of participants in the Monte-Carlo Glauber (MCG) model to mimic baryon stopping

and then calculate the electromagnetic fields for√sNN = 4-20 GeV.

This current chapter is organized as follows: In the first section, in Sec.(5.1), we dis-

cuss the theoretical formulation and the assumptions made for introducing the stopping of

baryons after the collisions. Then, in Sec.(5.2), we briefly discuss the Monte-Carlo Glauber

model. Next, in Sec.(5.3), we present the results. Finally, we conclude in Sec.(5.4).

5.1 Formulations

As mentioned in the introduction, we consider the deceleration of charged participants after

they undergo binary collision. The electromagnetic fields for a point particle with charge

Ze moving with velocity β = dr
dt
and a proper acceleration β̇ = dβ

dt
can be calculated at

position robs at time tobs from the well known formula [20].

eB(robs, tobs) = −CZαEM

[
R̂× β(t′)

γ2k3R2
+

(R̂ · β̇(t′))(R̂× β(t′)) + kR̂× β̇(t′)

k3R

]
t′

,

eE(robs, tobs) = CZαEM

[
R̂− β(t′)

γ2k3R2
+
R̂× [(R̂− β(t′))× β̇(t′)]

k3R

]
t′

,

(5.1)

where e is electronic charge, the fields are all in units of m2
π, and R is in fm. Here

C = fm−2/m2
π ∼ 2 is a numerical factor, αEM = 1

137
is the fine structure constant, and Z

is the atomic number of each nucleus (we consider symmetric collisions). The right-hand

side of the above expressions is evaluated at retarded time t′. The relation between t′ and
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tobs is given by

t′ +
√

(xobs − x′)2 + (yobs − y′)2 + (zobs − z′(t′))2 = tobs. (5.2)

The relative position R(t′) = robs − r′(t′), and the unit vector along it is defined as R̂ = R
R
,

the factor k = 1− R̂ · β(t′), and γ = 1√
1−β2

is the Lorentz factor.

To calculate the electromagnetic fields, we consider nucleons moving in a straight line

with a constant velocity βsNN
=
(
1.0− 4m2

sNN

)1/2
, m is the mass of the proton. Depending

on whether they are participants or spectators, we decelerate or let them continue moving

with constant initial velocity for a given √sNN . Below, we discuss a step-by-step process

for evaluating the total electromagnetic field using anMCGlaubermodel and parameterized

form for deceleration.

• We sample the positions of individual nucleons from the nuclear density distribution

of the Wood-Saxon type (the details of which are discussed later). This will give

us the initial positions x′0(t′), y′0(t′) and z′0(t′) of the nucleons inside the right and

left moving nucleus. We assume an Eikonal approximation where, even after binary

collisions, individual nucleons will continue moving along the beam’s direction. So

far, the calculation of the fields is done at some retarded time t′, and then we obtain

the corresponding fields at tobs using Eq.(5.2). Here, as we will be working with the

collision of individual nucleons tracking its trajectory, it is more convenient to work in

proper time τ where τ =
√
t2 − r2. Here, we choose τ = 0 at r = 0, corresponding

to t = 0 when the centers of the two nuclei overlap. In this scenario, individual

nucleon-nucleon collisions can occur for τ < 0 or τ > 0, assuming that just after the

collision, the nucleons that take part in the collision process would decelerate.

• If the proton is a participant, we apply a deceleration with the following parametrized
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form for the velocity profile as

β(τ) = A
[
1− tanh

(
τ − τh
∆τ

)]
, (5.3)

where, A =
βsNN

2
, ∆τ is a parameter used to control the time interval for the de-

celeration, τh is a parameter to control the time scale of the deceleration such that at

τ = τh the initial velocity βsNN
is reduced to half of its original value. Further we

define a starting time τs for individual nucleon-nucleon collision as the time when

β(τs)/βsNN
∼ 0.98. As per our definition, τs could be positive or negative depend-

ing on the location of the participants inside the colliding nucleus. The choice of the

starting time of collision, where velocity reduces to 98% of the initial velocity, is

reasonable. Firstly, it helps us to handle the discontinuity in velocities at the onset of

deceleration. Moreover, from a physical perspective, this reduction can be interpreted

as arising from Coulombic repulsion or due to the composite structure of the nucle-

ons. We further note that the definition τs is arbitrary. Still, it is a reasonable choice

because we assume the nucleons in the MC Glauber model are hard spheres with ra-

dius given by the inelastic nucleon-nucleon cross section as given later in Eq.(5.5).

A collision happens when they touch each other.

The starting time for individual nucleon-nucleon collisions in a given event is cal-

culated based on their relative distances ∆z = ztarget − zprojectile at τ = 0, and

considering straight line trajectories with velocity βsNN
. In Fig.(5.1) we display the

velocity profile β(τ) (solid lines) and the proper acceleration dβ
dτ

vs τ (dashed lines)

for ∆τ =1 fm (blue lines) and 3 fm (red lines) respectively.

• In Eq.(5.1), EM fields are evaluated at retarded time; hence we need to find the re-

tarded time and corresponding positions of the nucleons from β(τ) using the relations

dt′(τ)

dτ
=

1√
1− β2(τ)

,
dz′(τ)

dτ
=

β(τ)√
1− β2(τ)

.
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Figure 5.1: Parametrization of velocity β (τ ) (solid lines) and the corresponding dβ
dτ
(dashed

lines) as a function of τ for participants for∆τ = 1 fm (blue curves) and 3 fm (red curves).

• Finally, we obtained the electromagnetic fields at observation point robs ≡ (x, y, z) at

present tobs from Eq.(5.1). Calculating the electromagnetic field in an event-by-event

case may result in some nucleons being very close to the point of observation, making

|R| ≈ 0 leading to divergence for the fields. In practical calculations, different reg-

ularisation schemes have been used, and consistent results are obtained after taking

the event average [1, 3, 4, 21]. To address this issue, here we introduce a cutoff at

|R| ≈ 1 fm. This implies that the fields associated with nucleons within a distance of

|R| = 1 fm are discarded.

In this work, we calculate EM fields from an ensemble of a thousand events for a given

collision centrality.
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5.2 Monte-Carlo Glauber

As mentioned earlier, we use the MC Glauber model [9] to calculate the nucleon distri-

butions, participants, spectators, and number of binary collisions for a given √
sNN and

impact parameter, here we briefly discuss the essential features and parameters used in our

study. We sample the nucleon positions inside a given nucleus from the corresponding

Wood-Saxon density distribution (assuming spherical symmetry):

ρ(r) =
ρ0

1 + e
r−R
a

. (5.4)

Where ρ0 is the nucleon density in the center of the nucleus, R is the radius of the nu-

cleus, a is the skin depth, and r is the radial distance from the center of the nucleus.

For Au197 we use: ρ0 = 0.16 fm−3, R = 6.34 fm, a = 0.54 fm. We calculate partic-

ipant for a given nucleon-nucleon inelastic cross section σNN by considering individual

nucleons as a hard sphere; a collision takes place if the inter-nucleon transverse distance

r⊥ =
√

(xp − xT )2 + (yp − yT )2 ≤ rc, where

rc =

√
σNN

π
. (5.5)

The (xp, yp) and (xT , yT ) mentioned above are the transverse positions of projectile and

target nucleons respectively. The experimentally measured values of σNN are available for

selected energies, we fit the experimentally measured σNN vs √sNN with the following

three parameters form,

σf
NN = A (

√
sNN)

B
+ C. (5.6)

Here, from the fit we obtain the values A = 7.63, B = 0.22, C = 17.36 with χ2 ≈

0.05. The parametric fit and experimental data points (circles) are shown in Fig.(5.2). It

is worthwhile noting that throughout the rest of the paper, we assume that the trajectory

of the participants is governed by the Eq.(5.3) and each of the participants will eventually
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lose much of its energy within a time interval∆τ . However, the baryon usually loses about

one unit of rapidity in each collision, and it will take multiple collisions before they lose a

substantial amount of the initial energy [22, 23]. Such a realistic scenario of energy/rapidity

loss is beyond the scope of the present work and can be implemented in a future study.

0 50 100 150 200 250 300
sNN  (GeV)

0
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N
N
 (m

b)

Data
Fitted curve

Figure 5.2: σNN (nucleon-nucleon inelastic cross-section) vs √
sNN (circles) taken

from [9]. The red line is a fit with a three-parameter function (Eq.(5.6)).
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Figure 5.3: Snapshot of the participants in a given Au+Au collision event at τ = 0 for√
sNN= 8 GeV and b=8 fm.
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5.3 Results and Discussions

From now on, we denote ‘electronic charge times the fields’ simply as ‘Fields’ in our plots.

We primarily focus on event-averaged values of the electric E ≡ (Ex, Ey, Ez) ≡ Ei and

magnetic B ≡ (Bx, By, Bz) ≡ Bi field components to investigate the effect of baryon stop-

ping on the electromagnetic fields unless stated otherwise. For the event-averaged case, we

take ensemble of a thousand events, and to focus on the event-by-event contribution of each

field component, we consider their absolute values so that the random phase cancellation

during the averaging could be avoided.
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Figure 5.4: Evolution of E,B at robs = (0, 0, 0) over time for b = 3 (left) and 12 fm (right)
at√sNN = 4 GeV, with ∆τ = 1 fm.

Since the number of participants/collisions decreases monotonically with the impact

parameter/centrality of the collision, we expect the effects of baryon stopping with decel-

eration on the fields is minimal for peripheral collisions. Fig.(5.4) depicts the temporal

evolution of |Ei| and |Bi| at the center of the collision zone robs = (0, 0, 0), for ∆τ = 1 fm

at√sNN = 4GeV for two distinct impact parameters: 3 fm and 12 fm, respectively. Upon

comparison of both plots, a notable distinction emerges, particularly evident in the more

central collision (at b = 3 fm), showcasing the effect of deceleration being dominant at the

most central collision which can be attributed to the increased number of participants.
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Figure 5.5: Comparison of |Bx|, |By| (top panel), and |Ex|, |Ez| (bottom panel) with (blue
dashed lines) and without deceleration (red solid lines) at√sNN = 4 GeV with b = 3 fm at
robs = (0, 0, 0).

In the presence of deceleration the magnitude of |Bx|, |Ex|, |Ey|, and |Ez| are enhanced

in the presence of deceleration after τ ∼ 2 fm. Furthermore, electric fields seem to asymp-

totically reach a constant value for tobs ⪆ 4 fm. This late-time behavior arises from the

dominance of Coulombic fields as deceleration drives participant velocities towards non-

relativistic limits, and they may eventually come to rest. Additionally, a slight shift in the

peak values of |Bx|, |By|, |Ex|, and |Ey| is noticeable in the left plot compared to the right,

primarily attributed to the velocity profile of participants which start decelerating slightly

before the collision, i.e., τ < 0. To see the effect of baryon stopping, we show the com-

parison of the temporal evolution of the electromagnetic fields with and without baryon

stopping at √sNN = 4 GeV for b = 3 fm in Fig.(5.5). The solid red lines correspond to
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no stopping, and the blue dashed lines correspond to baryon stopping. It is evident that

|Ex| and |Ez| are significantly higher for the stopping scenario at late times (after 3-4 fm).

Whereas |By| does not show this type of asymptotic behavior at late times, as seen from the

right plot of the top panel in Fig.(5.5). This is understood as charges at rest won’t give rise

to any magnetic fields, unlike the Coulombic contribution to the electric fields.
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Figure 5.6: Variation of magnetic fields with√sNN for b= 3 (left panel), 12 fm (right panel)
at robs = (0,0,0).

We found |Ez| is most sensitive to deceleration and is enhanced substantially after col-

lisions for the baryon stopping scenario compared to the other components of the electric

fields. In case of no baryon stopping, the peak value of event averaged electromagnetic

field rises almost linearly as a function of √sNN [4]. To investigate whether this approx-

imate linear dependency on √
sNN still holds for baryon stopping scenario, we plot |Bi|’s

at (robs, tobs) = 0 as a function of √sNN in Fig.(5.6). The left panel is for b = 3 fm, and

the right is for b = 12 fm. From the comparison of these two plots, a clear dependence

is observed as we go from central to peripheral collisions. However, the approximate lin-

ear proportionality with √
sNN holds for peripheral collisions while the effect of baryon

stopping seems to break the apparent linearity. We found deceleration introduces a small

quadratic dependence. Fig.(5.7) on the other hand illustrates the impact parameter depen-
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dence of |Ei|, |Bi|’s at (robs, tobs) = (0, 0) for baryon stopping (dashed lines) and without

stopping (solid lines). The change in the number of participants with impact parameters

causes the observed difference between the two cases.
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Figure 5.7: Variation of Bx (red), By (green), Bz (blue), Ex (cyan), Ey (magenta), Ez

(yellow)with b for√sNN = 4 at (t, robs) = (0, 0)with (dashed lines) andwithout deceleration
(solid lines).

The parameter ∆τ used in Eq.(5.3) controls the timescale for the deceleration of the

participants. We study the effect of varying ∆τ on the electromagnetic field in Fig.(5.8).

The results for (|Bx|, |By|) (top two panels) and (|Ex| and |Ez|) (bottom two panels), are

shown for ∆τ = 1 fm (solid red lines) and ∆τ = 3 fm (solid blue lines). We kept b = 3

fm and √
sNN = 4 GeV constant in all these cases. We checked that |Ey| is quite similar

to that of |Ex| and hence not shown here. These results show a clear dependence of the

field strength and its time-evolution on∆τ . For comparison, we also show no deceleration

results by dashed red lines.

155



5 Effect of baryon stopping on the electromagnetic fields

4 2 0 2 4
tobs (fm)

10 4

10 3

10 2

|B
x| 

(m
2 )  = 1 fm

 = 3 fm
without 

4 2 0 2 4
tobs (fm)

10 4

10 3

10 2

|B
y| 

(m
2 )  = 1 fm

 = 3 fm
without 

4 2 0 2 4
tobs (fm)

10 4

10 3

10 2

|E
x| 

(m
2 )  = 1 fm

 = 3 fm
without 

4 2 0 2 4
tobs (fm)

10 4

10 3

10 2

|E
z| 

(m
2 )  = 1 fm

 = 3 fm
without 

Figure 5.8: Comparison of the components of the fields for ∆τ = 1 (solid red lines),
∆τ = 3 fm (solid blue lines), and without β̇ (red dashed lines) at √sNN = 4 GeV and
b = 3 fm at robs = (0, 0, 0).

Naively, one would expect a large∆τ correspond to longer deceleration time results in

longer-living fields, but we do not expect any dependency of the peakmagnitude of the elec-

tromagnetic fields on∆τ for τ ≤ 0. However, in Fig.(5.8), we found an apparent deviation

from this expectation, particularly evident in the bottom panel. The peak magnitude of |Ez|

appears to be higher for∆τ = 1 fm compared to∆τ = 3 fm. This disparity primarily arises

from the fact that in our parametrization for velocity Eq.(5.3) a larger ∆τ corresponds to a

smaller proper deceleration and vice versa and hence varying contribution in the production

of EM fields. Moreover, the lumpy charge distribution along the longitudinal direction and

the accumulation of these charges around the observation point robs = (0, 0, 0) after colli-

sion also depend on ∆τ . The influence of ∆τ seems to be more prominent on the electric

156



5 Effect of baryon stopping on the electromagnetic fields

fields, particularly on |Ez| shown in right most plot in the bottom panel of Fig.(5.8).
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Figure 5.9: Left panel: Fields at robs = (0, 3, 0) for √sNN= 4 GeV and ∆τ = 1 fm. Right
panel: same as left panel but for robs = (0, 0, 3).

Up until now, all the results shown were for robs= (0,0,0). In Fig.(5.9) we show the

temporal variation of the fields at two different observation locations robs = (0, 3, 0) (left

panel) and (0, 0, 3) (right panel) for√sNN= 4 GeV and∆τ = 1 fm. We found the temporal

evolution of fields is almost identical for the observation point located on the y axis in the

central transverse plane (left panel) as what was observed at robs = (0, 0, 0) (Fig.(5.4)). The

only exception is |Ey|, which is larger due to the the coherent superposition from the target

and projectile.

The passing of target and projectile nuclei through the observation point robs = (0, 0, 3)

on the z axis is expected to give rise to double-peaked (symmetrically situated around τ = 0)

structure of the temporal evolution of field components which is apparent from the right

panel of Fig.(5.9). |Ez| seems to dominate in this case compared to other components. The

asymmetry in the field values around tobs = 0 fm in Fig.(5.9) arises due to the post-collision

deceleration of nucleons.

So far, all the results shown here have been obtained by taking averages of the field com-

ponents over many (thousand) events. We plotted all six field components for a randomly
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Figure 5.10: Fields in a randomly selected event. Left panel: without deceleration at robs =
(0, 0, 0) for √sNN= 4 GeV and b= 3 fm. Right panel: same as left panel but with deceler-
ation and for the same event as above.

chosen event for√sNN= 4GeV and b= 3 fm in Fig.(5.10). The fact that field variations with

time is non-trivial due to the lumpy charge distribution and similar magnitude of the com-

ponents of electric and magnetic fields at robs = (0, 0, 0) is apparent from the figure. The

left panel corresponds to no deceleration, and the right panel corresponds to deceleration

case with ∆τ = 1 fm.

5.4 Conclusion

In this chapter, we use the Monte-Carlo Glauber model with post-collision baryon stop-

ping to investigate the vacuum space-time evolution of electromagnetic fields in low-energy

heavy-ion collisions. Several observations are in order: First, upon incorporating baryon

stopping via a parameterized form of the velocity of the colliding nucleons, with the key

parameter being the time interval for deceleration (∆τ ), visible effects are observed for

tobs ≥ 0. Secondly, as observed earlier for event-by-event calculations, due to the quantum

fluctuations in the nucleon positions, all components of the electromagnetic fields become

comparable in high-energy heavy-ion collisions at (τ = 0); in the present study, we found

temporal evolution of these electromagnetic fields retains this trend before and after the
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5 Effect of baryon stopping on the electromagnetic fields

collision. Specific field components dominate for a given collision impact parameter only

when taking the event average. One of the novel findings of the present investigation is

that even without any medium effects the deceleration enhances electric fields at late times

compared to the case of no deceleration; the effect of deceleration is most significant for

the longitudinal component of the electric fields at late times.

The presence of deceleration mostly reduces the strength of the magnetic fields post-

collisions. However, contrary to the other two components, we found Bx increases at late

times compared to the scenario of zero deceleration. We observed a slight shift of the peak

position of EM fields from τ = 0 for the baryon stopping scenario, perhaps akin to the par-

ticular form of the parameterized velocity used in this study. For higher √sNN , when the

nucleons move with almost constant velocity after each binary collision, a linear propor-

tionality of the peak value of magnetic fields (at τ = 0) with√sNN is observed. However,

in the presence of deceleration, this approximate linearity seems to be broken slightly at

lower energies. Owing to the lower velocities of the colliding nucleons for smaller √sNN

the crossing time for the two nuclei becomes longer and additionally, the fluctuating nu-

cleon positions along the longitudinal direction give rise to a non-trivial variation of the EM

field when measured on an event-by-event basis.

Lastly, in the concluding chapter of the present thesis (chapter.(6)), we will be investi-

gating the impact of electric fields on bulk observables such as spectra and flow harmonics.
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Chapter 6

Effect of electric fields on bulk observables

It is well known that medium properties are inferred from the experimental results via in-

direct probes, as discussed in chapter.(1). Out of which transverse momentum (pT ) spec-

tra and flow harmonics (specifically elliptic flow v2) are the most prominent ones. In the

current chapter, our focus remains on these two key observables. It is known that blast-

wave model incorporating one-particle distribution in Cooper-Frye prescription has proven

to be successful in describing the experimental findings [1, 2, 3, 4, 5, 6, 7]. Also on the

other hand, the influence of electric fields on bulk observables like pT spectra and flow

coefficients of charged hadrons have received limited attention, with only a few studies

available [8, 9]. Moreover, developing a Relativistic dissipative resistive magnetohydro-

dynamics (RDRMHD) numerical code presents a substantial challenge [10, 11], yet holds

immense potential for comprehensively studying all electromagnetic effects.

Hence, our approach here will be simple yet effective. Therefore, by using the blast-

wave model, we here intend to explore the effect of electric fields on spectra and flow

harmonics for charged pions and protons. We incorporate the first-order correction to the

single-particle distribution function due to the electric fields and the dissipative effects while

calculating the invariant yields of hadrons in the Cooper-Frye prescription at the freezeout

hypersurface. Further, the splitting of particles and antiparticles’ elliptic flow due to electric

fields is also discussed.

The current chapter is structured as follows: First, the blast-wave model is explored

in Section.(6.1). This is followed by a discussion on the Cooper-Frye prescription and
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6 Effect of electric fields on bulk observables

associated formulas, along with the setup, detailed in Sections.(6.2) and (6.3), respectively.

Section.(5.3) is dedicated to discussing results, while Section.(6.5) presents the summary

and conclusion of our study.

6.1 Blast-wave model

The blast-wave model represents a theoretical framework that considers the collective mo-

tion of the matter produced in heavy-ion collisions and parameterizes its four-velocity. It

further assumes that hadrons are produced from a constant-temperature freeze-out hyper-

surface, with the freeze-out temperature being a free parameter. The invariant yields of

hadrons are obtained from the Cooper-Frye formalism, which is described later. Despite its

simplicity, the blast-wave model can successfully describe experimental data of identified

hadrons, transverse-momentum spectra, and elliptic flow [1, 2, 3, 4, 5, 6]. In heavy-ion col-

lisions, one popular parametrization of the fluid’s four-velocity is inspired by the Bjorken

model of boost-invariant expansion in the longitudinal direction of the fluid. In this work,

we use the Milne coordinate (τ, η, r, ϕ), where τ is the proper time, η is the space-time ra-

pidity, r is the radial distance from the center of the fireball, and lastly, ϕ is the azimuthal

angle. The metric used here is gµν = diag (1,−τ 2,−1,−r2), and the transformation be-

tween the Cartesian and Milne coordinates is given as:
t
x
y
z

 =


coshη 0 0 0
0 0 cosϕ 0
0 0 sinϕ 0

sinhη 0 0 0



τ
η
r
ϕ

 .
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6 Effect of electric fields on bulk observables

Where

τ =
√
t2 − z2,

η = tanh−1 z/t,

r =
√
x2 + y2,

ϕ = arctan2(y, x).

The parameterized form of the velocity four vector with longitudinal boost-invariance

is given as

ur = u0
r

R

[
1 + 2

∞∑
n=1

cn cosn [ϕ− ψn]

]
Θ(R− r) ,

uϕ = uη = 0,

uτ =

√
1 + (ur)2. (6.1)

Where uτ , ur, uϕ, uη are the components of the fluid’s four velocity; u0 and cn’s are

free parameters used to reproduce the pT spectra (invariant yield) and the flow harmonics

of charged hadrons. Θ(R− r) is the Heaviside function, which imposes the condition

that if r > R, ur = 0. R is the radius of the freezeout hypersurface, ϕ is the azimuthal

angle in coordinate space, and ψn is the n-th order participant plane angle. As we do not

consider event-by-event fluctuations in this work, we set ψn = 0, i.e., the minor axis of the

participant planes coincides with the direction of the impact parameter. We parametrized

the temperature to

T (τ, η, r, ϕ) = T0Θ(R− r) ,

where T0 denotes the temperature at the freezeout hypersurface.
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6 Effect of electric fields on bulk observables

6.2 Cooper-frye formalism

As mentioned earlier, the invariant yield of hadrons is obtained from the Cooper-Frye for-

mula [12], which assumes that the freeze-out hypersurface is a timelike vector dΣµ given

by (τdηdrrdϕ, 0, 0, 0). The invariant yield is given by the following equation:

dN

d2pTdy
=

G
(2π)3

∫
pµdΣµf(x, p). (6.2)

Here, f(x, p) is the single-particle distribution function, and x and p are the position and

momentum four-vectors of the particles, respectively. G is the degeneracy factor.

Suppose the system is not in local thermal equilibrium. In that case, as is the case for a

rapidly expanding fireball, the single-particle distribution function must consider the devi-

ation from equilibrium when calculating hadron yields using the Cooper-Frye prescription.

The distribution function is usually decomposed into an equilibrium part f0 and a small

non-equilibrium part δf , so the total distribution function becomes f = f0 + δf . The

second-order correction to f gives rise to new transport coefficients due to the external

magnetic field. The temperature and mass dependence of the transport coefficients’ were

also discussed in chapter (3).

However, this work considers terms up to first-order in gradients, as is presented in

chapter.(3). In this case, the invariant yield (Eq. (6.2)) becomes

dN

d2pTdy
=

G
(2π)3

∫
pµdΣµ

(
f0 + δf 1

)
. (6.3)

Where δf 1 ≪ f0. In chapter.(3), δf 1 is calculated using the Boltzmann equation using the

Relaxation Time Approximation (RTA). We give the expression for δf 1 in Appendix.(B.2)

for the sake of completeness.
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6.3 Setup

For the current study, we consider only n = 2 in the expression for ur (Eq.(6.1)), resulting

in

ur = u0
r

R
[1 + 2c2 cos(2ϕ)]Θ (R− r) .

The equilibrium distribution is f0 =
(
eβu·p−α + l

)−1, where β is the inverse temperature,

l = ±1 corresponds to fermions and bosons, respectively. We use the parameters given in

Table (6.1) to obtain the invariant yield of π+ that matches the ALICE measurement shown

as red circles in the top panel of Fig.(6.1)[13]. Earlier hydrodynamic model studies [14]

have shown that it is not possible to simultaneously describe π+ and p spectra for zero

baryon chemical potential, so we use a different set of values for u0, c2, and T (given in the

rightmost column of Table (6.1)) to explain the proton spectra. The blast-wave model with

these parameters reasonably well explains the experimental data [2, 3, 4, 5, 6]. The bottom

panel of Fig. (6.1) shows the blast-wave results for v2 of π+ and p. It is clear from the

bottom panel of Fig. (6.1) that the ideal blast-wave model over-predicts the experimental

data (shown by circles), as was also observed for ideal hydrodynamics results [15, 16]. It

is known that the inclusion of shear viscosity improves the agreement between theoretical

and experimental results.

After setting up the parameters for the ideal case (zero viscosity), we can now explore

the effect of viscosity (through the relaxation time τc) and electric fields on spectra and flow

harmonics by comparing the corresponding results with the ideal results. In our model, τc

and the electric field qE appear in δf 1, giving rise to additional corrections to the invariant

yields and flow harmonics of charged hadrons. We compute the pT differential n-th order

flow coefficient using the usual formula:

vn(pT , y) =

∫ π

−π
dφ cos(nφ) dN

d2pT dy∫ π

−π
dφ dN

d2pT dy

. (6.4)
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Figure 6.1: Top plot is the comparison of the experimentally measured π+ (red filled circles)
and protons (black triangles) for Pb+ Pb collision at

√
s = 2.76 TeV for 20-30 % centrality

with the ideal blast-wave results (lines) for the parameters in Table 6.1. The lower panel
shows the corresponding v2 vs pT for π+ (blue line) and protons (red dashed line) from
Blastwave with the Data points (ALICE [13]) are plotted with Blue (for π+) and Red (for
proton) with the bands showing the experimental errors.

As we need the electric field distribution on the freezeout hypersurface to be used in the

Cooper-Frye formula (Eq.(6.2)), we use a parameterized form of the EM field. In principle,

the fields generated in the initial stages of heavy-ion collisions due to the charged protons

inside the two colliding nuclei would evolve with the QGP fluid, but the blast-wave model

does not allow any such self-consistent dynamical evolution of fields. Here we use param-
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π+ p
u0 1.2 1.22
T 130 MeV 140 MeV
R 10 fm 10 fm
τ 6 fm 6 fm
m 139.5 MeV 938 MeV
c2 0.1 0.15

Table 6.1: The fit parameters for π+ and p respectively at mid-rapidity.

eterized electric fields of four different configurations in the transverse plane (XY plane)

while calculating the invariant yields.
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Figure 6.2: Electric field configurations in the transverse plane. Detailed expressions for
different configurations are given in Appendix-(B.3). Magnitude of electric fields (in GeV2)
are shown using colour map.
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Some of these configurations do not represent the actual scenario encountered in heavy-

ion collisions, but we use them for exploratory purposes. Here we discuss the different

configurations used in the calculations, as shown in Fig.(6.2).

• config-1: The top left panel of Fig.(6.2) represents isotropic (Ey = Ex) Coulomb

fields due to a point charge of large magnitude at the origin. The elliptic flow har-

monic is expected to be mostly unaltered due to the symmetry of the field in the

transverse plane.

• config-2: The top right panel of Fig.(6.2) closely resembles the field configuration

expected in a symmetric heavy-ion collision which gives rise to an approximately

prolate-like field (Ey > Ex) configuration. Due to the larger force from the electric

field along the out-of-plane direction, we expect a decrease in the elliptic flow for

this case.

• config-3: The bottom left panel of Fig.(6.2) represents the rotated version of config-

2 by an angle π/2 in the plane, which represents approximately an oblate-like field

(Ex > Ey) configuration. Following the same logic as config-2, we expect an in-

crease in the elliptic flow in this case.

• config-4: The bottom right panel of Fig.(6.2) represents a constant unidirectional

electric field (making an angle 450 with the x axis); this configuration mimics upto

some extent an asymmetric nuclear collision such d+Au or p+Pb collisions. This

configuration is sometimes denoted as directional fields in the text, and we expect it

to alter the directed flow for the apparent reason.
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6.4 Results

Here we discuss our main results for different configurations of electric fields (described in

the previous section) on the spectra and v2 for pions and protons.
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Figure 6.3: Upper panel represents the pT spectra for π+ and lower panel for protons with
different transverse field configurations as in Fig.(6.2) and for the case of viscosity for
tc = 1 fm.

The top panel of Fig.(6.3) shows the dependence of the pT spectra of π+ on the electric
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fields for the ideal case, for comparison we also show the results for non-zero viscosity but

with no electric fields. The magnitude of viscosity in our model is controlled through tc,

which is set to 1 fm for the results shown here. Here we see that the pT spectra hardly show

any dependence on different transverse electric field configurations (solid orange, black,

and red lines correspond to config-1, config-2, and config-3 respectively). As expected,

the effect of finite viscosity is comparatively more prominent on the pT spectra; we see a

suppression at higher pT regions for the viscous case. Since both bulk and shear viscosity

are present, In our case, the slope of the spectra is determined by the relative contributions

of these two viscosities [17, 18]. The bottom panel of Fig.(6.3) shows the pT spectra for

protons for ideal (with electric fields) and viscous (without electric field) cases, where we

see a small suppression in the lower pT region for the case of config-2 and config-3 for the

ideal case. We also see a suppression at higher pT for the viscous case, as was seen for π+.

At this point, we would like to clarify a few points regarding the relative contributions of

various corrections to the pT spectra of identified hadrons. We note that both viscosity and

electric fields may alter fluid velocity and the single-particle distribution function, which

is used in converting the fluid elements into particles (hadrons) on the freeze-out hyper-

surface. Since in the blast-wave model we fix the flow profile by choosing appropriate

parameterization, the corrections due to electric field and viscosity only appear in the freeze-

out distribution function δf . From the expression of δf (as given in Appendix-(B.2)), we

see that the correction due to the electric field is∝ pT while the viscous correction is∝ p2T .

Hence, at low pT , the correction due to the electric field dominates, whereas the viscous

corrections are large for high pT . For mid pT the two effects compete, and the result depends

on the exact values of the coefficient appearing in the corresponding corrections.

Before discussing the differential v2 for different cases, it is worthwhile to explore the

dependence of pT integrated (0-3 GeV) dN/dϕ on different field configurations and vis-

cosities. In the top panel of Fig.(6.4), we show the dN/dϕ of π+ as a function of ϕ for
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Figure 6.4: Top panel: dN/dϕ as a function of ϕ for π+ for various field configurations.
Bottom panel: Same as the top panel but for protons.
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various cases. As expected, we have a pure cosine-like dependence of dN/dϕ for the ideal

case (shown by the solid blue line); the viscosity reduces the multiplicity as well as the

amplitude (shown by the red dashed line). config-1 the isotropic field configuration (solid

orange line) almost coincides with the ideal result, but we see a noticeable change in the

amplitude of dN/dϕ for config-2, config-3 as expected. Things become more interesting

for config-4 (black dashed line); here, we generate finite directed flow-like behavior; this

is understood from the fact that a unidirectional force shifts the center of mass of the dis-

tribution. Similar behavior was observed for protons also shown in the bottom panel of

Fig.(6.4).

A more concrete way to study the angular dependence of dN/dϕ for config-4 can be

achieved by using a finite Fourier series decomposition of dN/dϕ as shown in Eq.(6.5).

f(Φ) = N

[
1 + 2

3∑
n=1

vncos(nΦ) + 2
3∑

n=1

wnsin(nΦ)

]
. (6.5)

Using a non-linear least squares fit with vn, wn, and N as free parameters, we obtain the

best fit for dN/dϕ with the values of these parameters given in Table (6.2). Here we note

that the directional force v1 is larger than v2 for π+, and they are similar in magnitude for

protons. Moreover, we notice that, unlike other cases, the azimuthal distribution breaks

reflection symmetry with respect to the Y axis, which gives rise to the non-zero wn shown

in Table (6.2). We also observe a mass dependence of the directional flow as π+ has a larger

v1 compared to the protons.

To have a visual understanding of the goodness of fit, we show a comparison of the

fitted values (using Eq.(6.5)) (solid blue line) and the dN/dϕ from the blast-wave model

(dotted-dash orange line) for π+ (top panel) and proton (bottom panel) in Fig.(6.5).

More familiar and useful observables in experiments are centrality and pT dependent

flow harmonics. In Fig. (6.6), we show the dependence of the second-order flow harmonics

v2 (a.k.a. elliptic flow) for different configurations. Here we see that there is almost no
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π+ p
N 11.907 ± 2.7e-05 0.672 ± 7.1e-08
v1 0.218 ± 1.0e-07 0.081 ± 7.9e-08
v2 0.064 ± 9.8e-08 0.096 ± 7.9e-08
v3 0.017 ± 9.7e-08 0.005 ± 7.8e-08
w1 0.213 ± 1.0e-07 0.081 ± 7.9e-08
w2 0.000 ± 9.8e-08 0.000 ± 7.8e-08
w3 0.017 ± 9.8e-08 0.005 ± 7.8e-08

Table 6.2: Fit parameters for π+ and proton for config-4 from Eq.(6.5).

deviation from the ideal case for the isotropic (config-1) and directed field cases (config-

4). However, the situation is different for the other two cases; we can clearly see an increase

in v2 for config-3 and a suppression for config-2. We also note that viscosity suppresses

the elliptic (red dashed line) flow for π+ and elavates that for proton.

The effect of electric fields becomes more interesting when we examine the difference

in v2 for particles (π+, p) and antiparticles (π−, p̄). This difference ∆v2 = v2(h)− v2(�h) is

shown in Fig.(6.8) as a function of pT . We observe a non-monotonic variation in ∆v2 as

a function of pT for both pions and protons. Interestingly, a similar observation was made

in [19].

If we refer to Fig.(6.3) and (6.6), we see that the effect of electric field and viscosity

show different behavior for pT spectra and v2. For the pT spectra, the effect of viscosity

is visible for both π+ and p, but it appears as though the electric field barely modifies the

spectra relative to the ideal case. On the other hand, the effect of viscosity on v2 is marginal

for p, while for π+, it shows a significant deviation from the ideal case at high pT . In

contrast, electric field effects on v2 are substantial for both π+ and p. We can understand

these nontrivial features if we refer to the expressions for the correction to the freeze-out

distribution function as given in Appendix-(B.2). When we consider both the corrections

(field and viscous), as mentioned above, they show different dependencies at different pT s.

If we calculate the percentage correction by the electric field, it is about 7-8 % for pions,
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Figure 6.5: Blast-wave results and the fitted curves using Eq.(6.5) for config-4 for π+ (top
panel) and proton (bottom panel).

but at lower pT , whereas the viscous correction dominates at high pT . In spectra, the log

scaling on the y-axis gives us the impression that the field is not affecting the spectra at
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Figure 6.6: v2 vs pT for π+ (top panel) and proton (bottom panel) for the transverse electric
field configurations shown in Fig.(6.2).

all. This can again be verified from Fig.(6.4), which shows the pT integrated azimuthal

variation of multiplicity, where we can clearly see a sizeable correction due to the fields.

Note that the pT spectra do not contain information about the azimuthal dependency of the

distribution, whereas v2 (⟨cos(2φ)⟩) measures azimuthal variation in the flow. Hence, the

effect in spectra might not be as prominent as in flow. Also, the δf contains contributions
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Figure 6.7: v2 vs pT for π+ (top panel) and proton (bottom panel) for the viscosity and
transverse electric field configurations shown in Fig.(6.2) taken individually and also si-
multaneously.

from both shear and bulk viscosity together, and they are known to suppress and enhance

v2 at large pT , respectively. The viscous correction also depends on the mass; hence, the

cancellation of bulk and shear corrections is more prominent for proton than for pion.

If we now consider the effects of viscosity and electric field simultaneously, as shown

in Fig.(6.7), we see that there is competition between the corrections due to viscosity and

electric field. In Fig.(6.7) config-3, independently, electric field enhances v2 and viscosity

suppresses v2. The combined effect puts a v2 value in between the independent contribu-

tions. Whereas in config-2, both electric field and viscosity suppress v2, and their combined

effect suppresses v2 further. We also observe that the relative corrections for the proton are

smaller than those for the pion. This is because the value of these corrections is a function

ofmT =
√
m2 + p2T , which can be readily seen from the δf in Appendix.(B.2).
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6 Effect of electric fields on bulk observables

Throughout this study, we only consider the effect of electric fields and the first-order

correction in the δf . As mentioned earlier, it has been shown that there are new transport

coefficients at higher order corrections to f , which may alter the results obtained here and

can be further studied.
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Figure 6.8: v2(h)− v2(h̄) as a function of pT for config-2 (red) and config-3 (blue). Solid
and dashed lines correspond to π and p respectively.

6.5 Conclusion

Here in this chapter, we have studied the effect of electric fields on the bulk observables in

heavy-ion collisions, such as pT spectra and the directed and elliptic flow of charged pions

and protons. We use the blast-wave model and different configurations of electric fields on

the transverse plane to carry out this exploratory study. The pT spectra of hadrons in the

blast-wave model are obtained using the Cooper-Frye prescription, where we incorporate

non-equilibrium correction δf due to the viscosity and the electric fields. Since the blast-

wave model does not include space-time evolution, the fluid velocity, and the electric fields

are parameterized on the freezeout hypersurface to calculate experimental observables. In
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6 Effect of electric fields on bulk observables

our case, fluid velocity fields are modulated to dominantly generate the elliptic flow. We

use four different configurations of transverse electric fields: isotropic fields (Ex = Ey),

prolate-like fields (Ey > Ex), oblate-like fields (Ex > Ey), and directed fields (Ex = Ey =

constant). The typical maximum electric field value for all these configurations is ∼ m2
π.

Flow harmonics for isotropic fields remain unchanged for both pions and protons. Both

prolate and oblate-like field configurations alter the flow harmonics, and the directed field

gives rise to large directed flow v1 for both pions and protons. The directed field case is

particularly interesting as it breaks the mirror symmetry of the azimuthal distribution of the

spectra and gives rise to parity odd-terms (terms proportional to sin(φ)), along with the di-

rected flows. This is of importance for the Chiral Magnetic Effect (CME) search, especially

considering that it has already been reported earlier in the literature for Cu+Au collisions,

showing that the effect of electric fields leads to the suppression of the ∆γ correlator [20].

We also observed a mass dependence of v1 generated due to the electric fields and calcu-

lated the ∆v2 vs. pT . This ∆v2 vs. pT might be important to constrain the strength of the

electromagnetic fields that can be measured in heavy-ion collisions.
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Chapter 7

Summary and Outlook
This thesis mainly delves into various aspects such as generation and effects due to elec-

tromagnetic fields on the QGP medium in the context of high-energy heavy-ion collisions.

Firstly we developed a causal second-order ideal and resistive MHD formalism where we

evaluated the various evolution equations governing the dissipative stresses such as bulk,

diffusion, and shear within the QGP medium for both particles and anti-particles. These

evolution equations are of paramount importance as they are used in hydrodynamical codes

for evaluating these dissipative stresses, which again acts as an input for evaluating various

observables (spectra and flow-harmonics).

The derivation of these second-order evolution equations, akin to the Israel-Stewart

formalism, serves as a vital methodology to circumvent the causality issues inherent in the

Navier-Stokes limit for all dissipative stresses. This was done by employing relativistic

magnetohydrodynamics (RMHD) with the underlying microscopic theory which is a rela-

tivistic kinetic theory, central to which is the relativistic Boltzmann equation, along with

the contribution from external forces. The collision kernel on the right-hand side of the

Boltzmann equation is taken to be a relaxation time approximation (RTA). Here we derived

all these macroscopic evolution equations by calculating the off-equilibrium distribution

function (f ) employing the Boltzmann equation. This derivation is based on the approxi-

mation that the system is very close to the equilibrium state which is given by equilibrium

distribution function f0, with off-equilibrium distribution function defined as f = f0 + δf ,

where δf is defined as a small deviation from the equilibrium distribution function. This ap-

proximation is mainly taken care of via the Knudsen number (τcT ) and other dimensionless
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quantities (χ = qBτc
T
, ξ = qEτc

T
) which serve as the expansion parameter. These dimension-

less quantities also ensure that the formalism works pretty well in the weak field limit (qE

and qB → 0) as opposed to the strong field approximation.

It is known that in any interacting medium consisting of microscopic particles, collide

against each other, there is a momentum, heat, and mass transfer taking place. Hence, any

external force applied to the medium gets transferred within it carrying important informa-

tion about the way the medium responds to the applied force. This response is generally

captured via the transport coefficients. As was discussed in the chapter.(1) and (3) the ther-

modynamic flux can be related to the thermodynamic forces via:

J = γX, (7.1)

where X is the thermodynamic force which acts on the medium and J is the flux generated,

with γ being the transport coefficient. This transport coefficient in general can be a tensor,

which can be further expanded in terms of the available basis (or projection tensors) in the

following manner:

γαβ =
(
γ∥P

∥
δγ + γ⊥P

⊥
δγ + γ×P

×
δγ

)
, (7.2)

where the γ∥, γ⊥, γ×, P
∥
δγ , P⊥

δγ , P
×
δγ are the parallel, perpendicular and hall terms corre-

sponding to the transport coefficients and projection tensors respectively. This can be how-

ever generalized to higher rank tensors (given in Appendix.(A)). For the isotropic case

γ∥ = γ⊥ and γ× is zero without external fields. However, the introduction of external

forces disrupts this isotropy, leading to directional preferences. Hence in this thesis, we

investigated the influence of the external electromagnetic fields, predominantly generated

from spectator charges, on the transport coefficients. To gain insights into the behavior of

the primary transport coefficients in the presence of external fields we study the Navier-

Stokes limit where we found that the longitudinal components (along the direction of the
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external magnetic fields) and bulk viscosity are not affected by the external EM fields at

all. Other components like the transverse and Hall components (denoted by ⊥ and × re-

spectively) are however affected. The transverse terms were found to be even functions of

magnetic fields, whereas the Hall terms were odd functions of magnetic fields (that is ∝ B

in our case). These Hall coefficients are indeed found to be non-dissipative which can be

readily verified by simply applying time reversal symmetry transformations on the relation

Jµ = σµνEν and studying σµν . We further found that at second-order in gradient expansion,

the dissipative stresses contain many additional transport coefficients that couple to the ex-

ternal electromagnetic fields apart from the usual second-order transport coefficients that

were found previously. To get some insights into the behavior of the transport coefficients

we also studied its variation against the mass, temperature, and EM fields. Additionally,

the values of these transport coefficients were also evaluated for a massless Boltzmann

gas. Lastly, we also retrieved the Wiedemann-Franz law from our theory, which states that

σ = q2βκ, where σ and κ represent the electrical and thermal conductivity, respectively,

and q denotes the electrical charge.

Moving forward the calculation of the electromagnetic fields was previously done as-

suming both the spectators and participants move with a constant velocity before and after

the collisions. Most of the calculations have considered participants taken from the geo-

metric overlap region of the collision and with a constrain on their rapidity coverage (that is

less than the beam rapidity Yb) [1] due to some rapidity loss by the participants. However,

many model calculations take care of the participants in a variety of other ways [2, 3, 3].

Since participants contribute to the bulk of the medium formation and flow with a ve-

locity (fluid velocity) that is different from that of the initial velocity calculated using

v =

(
1.0− 4m2

(
√
sNN)

2

)1/2

, m is the mass of the proton and √
sNN is the center of mass

energy of the colliding nucleus. It is thus imperative to take into account the fluid velocity

(specifically at low-energies) while calculating the electromagnetic fields for the charged
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participants using Maxwell’s equations. Hence, in chapter.(4), a comprehensive examina-

tion of the complete 3+1D spatio-temporal evolution of electromagnetic fields generated

by participants in heavy-ion collisions was conducted, assuming a Bjorken expansion of

the fluid with no back reaction from electromagnetic fields on fluid velocity. We adopt

the Bjorken flow assumption primarily for its mathematical convenience in understanding

the behavior of the generated fields. While this assumption can be violated in practice,

hence we introduce a parameter, denoted by β−1 = B2

2P
, to quantify the deviation from this

assumption. This parameter represents the ratio of pressure induced by magnetic fields to

that induced by the fluid. A value less than 1 provides an optimal scenario for our formalism

to excel.

In this formalism we neglected the dissipative effects due to diffusion; that is, we set

V µ(diffusion current) = 0. Our analysis revealed that the fields generated by participants

exhibit distinct temporal behavior compared to those generated by spectators. Here, fields

generated after the collisions grow and then decay with time, as opposed to the decaying

nature of the electromagnetic fields in the case of spectators. A naive comparison of the

strength of the fields produced at late times at τ = 10 fm at space-time rapidity η = 1, gives

the values of the order ofO(10−3) (for participants) compared toO(10−5) (in units ofm2
π)

for the spectators at τ ≈ 2 fm [1]. This gives us the impression that at the initial stage, the

field strengths are mainly due to the spectators, but at a later stage, the strength is primarily

governed by the participant charges.

Continuing on the same line of investigation that is calculating the various components

of electromagnetic fields, in chapter.(5), we turn towards low-energy nuclear collisions,

where the phenomenon of baryon stopping has been experimentally observed. Previous

theoretical studies have also indicated that electromagnetic fields persist for a longer dura-

tion in such collisions (low-energies) compared to high-energy collisions, such as those at
√
sNN ≈ 200 GeV or 2.76 TeV, even in a vacuum. Thus, we focus on two key aspects: the
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nuclear stopping effect and the prolonged existence of electromagnetic fields in low-energy

collisions. Making an amalgamation of both things, we investigated the impact of baryon

stopping on electromagnetic fields at low center-of-mass energy collisions by parametrizing

the velocities of participant charges in a Monte-Carlo Glauber model calculation. Our anal-

ysis reveals distinct effects of stopping on various components of electromagnetic fields,

particularly during or after collisions. We mainly calculated the behavior of the electro-

magnetic fields for√sNN between 4 to 20 GeV. Here are a few of the observations that we

made:

• We found that even without any medium effects the deceleration enhances electric

fields at late times (at tobs ≥ 4 fm) compared to the case of no deceleration.

• The effects of deceleration are most significant for the longitudinal component of

the electric fields, which can be mainly attributed to the fact that the particles con-

tinue to be in the z-direction even after the collisions where the deceleration seems

to dominate.

• The linear proportionality of the values of magnetic fields at τ = 0 with √
sNN is

found to be slightly broken in the presence of deceleration.

• In more central collisions the number of participants experiencing the deceleration

effects is more in number. Hence while estimating the behavior of all the field com-

ponents with impact parameter for two different scenarios with and without decelera-

tion, we found a notable difference between the two mainly at most central collisions.

In high-energy heavy-ion collisions, studies primarily focus on the two most important

experimental observables that is the flow harmonics and transverse spectra measurements.

In chapter.(6), we conducted a detailed investigation into the influence of electric fields on

these bulk observables by taking various configurations of fields on the transverse plane.
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Utilizing a blast-wave model, our analysis revealed substantial effects of electric fields on

the bulk-observables for identified particles (pions and protons) with transverse momen-

tum (pT ). One interesting observation was in the case of directed fields (especially relevant

in the case of asymmetric collisions like d+Au, p+Au, etc.). Here, such fields break the

symmetry in the azimuthal distribution of the charged multiplicities. This symmetry break-

ing thus generates new odd flow harmonics and introduces new parity odd terms in the

Fourier series expansion of the multiplicities in the azimuthal plane, which may be relevant

for the search for CME signals. Moreover, we investigated the difference between parti-

cle and antiparticle’s elliptic flow, denoted as ∆v2, as a function of transverse momentum

(pT ), where ∆v2 = v2(h+) − v2(h−). We found that ∆v2 initially increases and reaches a

saturation around pT = 3 GeV.

In summary, this thesis tries to deepen our understanding of how electromagnetic fields

influence the evolution of quark-gluon plasma and how it gets affected by the QGPmedium,

thereby contributing to the overall advancement in our knowledge of the behavior of these

fields in the context of heavy-ion collisions.

However, there are several promising avenues for further exploration beyond the scope

of our current investigations.

• At ultra-relativistic energies, the colliding nuclei carry a large initial global angular

momentum of the order of 104 to 105ℏ, accompanied by the formation of an intense

electromagnetic field. Hence, taking both the global rotation of the medium along

with the electromagnetic fields into account and studying their relative effects on

the transport coefficients could offer valuable insights into the behavior of fields and

angular momentum on the QGP medium.

• Measuring the effect of EM fields via the bulk observables has been quite challeng-

ing, though several advancements have been made in this direction. A very inter-
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esting work in this direction could be in constraining or putting an upper bound on

the strength of the fields that can be measured in such collisions. One possible way

of doing this is by comparing ∆v2 vs. pT results from various model calculations,

including the electromagnetic fields, with the available or forthcoming STAR data.

• It has been seen previously that in asymmetric collisions (d+Au, Cu+Au, etc) the∆γ

correlator (defined in chapter.(1)) value is suppressed in the presence of electric fields

in such scenarios. Hence, a comprehensive exploration of the significance of electric

fields in probing the Chiral Magnetic Effect (CME) is imperative.

All these phenomena mentioned above can be further explored by a consistent mag-

netohydrodynamics (MHD) code; however, developing such a consistent code is pretty

challenging. Still, several attempts have been made in this direction [5, 6, 7, 8].

• Further considering conserved charges beyond electric charges, such as baryons and

strangeness, it would be intriguing to investigate the interplay of all these conserved

charges on final bulk observables specifically in low-energy heavy-ion collisions.

Also, a comparative analysis between the effects of electromagnetic fields and baryon

diffusion could enhance our understanding of their impact onmedium properties, par-

ticularly on the splitting of flow harmonics with transverse momentum (pT ), rapidity

(y) and impact parameter (b). This may further clarify the limitations of the above

proposed observable for seeing the effects of the electromagnetic fields in these low-

energy heavy-ion collisions.

• In chapter.(5), where stopping is introduced via velocity parametrization, several im-

provements are conceivable. One of them can be relaxing the assumption that nu-

cleons come to a halt within a few femtometers post-collision. This could lead to

a more realistic scenario where nucleons attain a reduced velocity, possibly experi-

encing further energy loss or maintaining this diminished velocity depending on the
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7 Summary and Outlook

circumstances. This adjustment could improve the model’s agreement with experi-

mentally measured net baryon density with rapidity, enabling an accurate estimation

of ∆τ . Additionally, studying the behavior of electromagnetic fields by considering

both the medium and stopping effects could provide fascinating insights.
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Chapter 8

Units and conversions
In the study of heavy-ion collisions, it is often advantageous to work with natural units.

In natural units, fundamental physical constants such as the speed of light, Planck’s con-

stant, and the gravitational constant are set to unity, simplifying mathematical expressions

and theoretical calculations. This choice of units eliminates the need to carry around cum-

bersome numerical factors and allows physicists to focus on the underlying physics of the

system. In this current chapter, we will briefly review most of the conversions and units

that are used in the context of heavy ion collisions.

8.1 Conversion

Natural units assume that certain values are constants which are mentioned below and using

those we get proper conversion factors. Here we consider: ℏ = c = kB = µ0 = ϵ0 = 1.

That means 3× 108m/s = 1 , hence:

1m = 0.333× 10−8s. (8.1)

Also, we know that 1.055× 10−34Js =1.

=⇒ 1J = 0.947867299× 1034s−1. (8.2)

Now employing Eq.(8.1), Eq.(8.2) we can get the relationship between Joule and meter

which is given as:

=⇒ 1J =
0.947867299× 1034

3× 108
m−1 = 0.31595× 1026m−1. (8.3)
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Again we know that 1 eV = 1.6 ×10−19 J. Hence the relationship between Joule and eV is

given as:

=⇒ 1J = 0.625× 1019eV. (8.4)

Equating Eq.(8.3) and Eq.(8.4) we get:

0.625× 1019eV = 0.31595× 1026m−1,

1eV = 0.50552× 107m−1,

1GeV = 0.50552× 1016m−1. (8.5)

We also know that:

1fm = 10−15m,

1GeV = 5fm−1,

5fm−1 = 1000MeV,

1fm−1 = 200MeV.

Using the equations in (8.5) and Eq.(8.1) we get:

1GeV =
0.50552× 1016

0.333× 10−8
s−1,

1GeV = 1.5180× 1024s−1. (8.6)

The relation between GeV and Kg can be found using Eq.(8.1), Eq.(8.6) as given below:

ℏ = 1.055× 10−34kg
m2

s
= 1,

1.055× 10−34kg
(0.333× 10−8s)2

s
= 1,

0.11698× 10−50Kg = 1s−1,

0.11698× 10−50Kg = 0.6587× 10−24GeV,

1GeV = 0.17776× 10−26Kg. (8.7)
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The cosmological constant Λ = 1.1056× 10−52m−2 can also be written in GeV units in the

following way by using Eq.(8.1):

Λ =
1.1056× 10−52 × (10−32)

(0.50552)2
GeV 2.

8.2 Units of Quantities

Here, we have summarized all the quantities used in this thesis with their notations, units,

and formulas below:

Quantities Notations Formula Units
Fluid velocity u gµνu

µuν = 1 Dimensionless
Energy density ϵ ϵ = T µνuµuν

GeV
fm3

Isotropic pressure P P= c2sϵ
GeV
fm3

Shear viscosity η πµν = η∇<µuν> GeV
fm2

Bulk viscosity ζ −ζ∇µu
µ GeV

fm2

Chemical potential α α = µ
T

Dimensionless

Net-number density n Nµ = nuµ + V µ 1
fm3

Diffusion V V µ = κ∇µα 1
fm3

Diffusion coefficient κ κ = V µ

∇µα
1

fm2

Charge q Potential energy= 1
4πr
q1q2 Dimensionless

Electric field E Lorentz force: dp
dt

= q(E + v × B) (GeV )2

Magnetic field B Lorentz force: dp
dt

= q(E + v × B) (GeV )2

Electrical conductivity σ Jµ = qV µ = σµνEν
1

(GeV )2(fm)3

Entropy density s Entropy current: Sµ = suµ 1
fm3

Rapidity ηs Space-time rapidity: ηs = 1
2
ln
(
t+z
t−z

)
Dimensionless

Mometum rapidity yp yp= 1
2
ln
(

E+p
E−p

)
Dimensionless

rigidity - momentum of the particle
charge GeV
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Appendix A

(Chapter-3 appendix)
A.1 Thermodynamic Integrals

The n-th moments integral for the distribution function is defined as:

I(m)±
µ1µ2···µn

=

∫
dp

(u · p)m
pµ1pµ2 · · · pµn

(
f0 ± f̄0

)
, (A.1)

which can be docomposed as:

I(m)±
µ1µ2...µn

= I
(m)±
n0 uµ1 · · · uµn + I

(m)±
n1 (∆µ1µ2uµ3 · · · uµn + perm.) + · · ·

· · ·+ I(m)±
nq

(
∆µ1µ2∆µ3µ4 · · ·∆µn−1µn + perm.

)
. (A.2)

where n ≥ 2q.

Similarly the auxiliary moments integral

J (m)±
µ1µ2···µn

=

∫
dp

(u · p)m
pµ1pµ2 · · · pµn

(
f0f̃0 ± f̄0

˜̄f0

)
, (A.3)

can be decomposed as:

J (m)±
µ1µ2...µn

= J
(m)±
n0 uµ1 · · · uµn + J

(m)±
n1 (∆µ1µ2uµ3 · · · uµn + perm.) + · · · (A.4)

· · ·+ J (m)±
nq

(
∆µ1µ2∆µ3µ4 · · ·∆µn−1µn + perm.

)
. (A.5)

where f̃0 = 1− rf0. Here we define the thermodynamic integrals as follows:

I(m)±
nq =

1

(2q + 1)!!

∫
dp(u · p)n−2q−m(∆αβp

αpβ)q
(
f0 ± f̄0

)
, (A.6)

and

J (m)±
nq =

1

(2q + 1)!!

∫
dp(u · p)n−2q−m(∆αβp

αpβ)q
(
f0f̃0 ± f̄0

˜̄f0

)
. (A.7)
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One can write the J in terms of I as:

J (0)±
nq =

1

β

[
−I(0)±n−1,q−1 + (n− 2q)I

(0)±
n−1,q

]
. (A.8)

The general expression of Dnq used in eq. (3.9) and eq. (3.9) is given by: Dnq =

J
(0)+
n+1,qJ

(0)+
n−1,q − J

(0)−
nq J

(0)−
nq .

A.2 Second order relaxation equation for dissipative stresses

In this appendix we discuss the detail calculation of the second order dissipative stresses.

The contribution due to the antiparticles are not shown explicitly for simplicity but they

appear in the final expressions.

A.2.1 Shear stress

The second order shear stress πµν
(2) is given by eq. (3.69):

πµν
(2) = ∆µν

αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

]
+

τc
u · p

qF γηpη
∂

∂pγ

[
τc
u · p

pσ∂σf0

])
.(A.9)

For convenience, we write them into two parts as:

πµν
(2) = I1 + I2. (A.10)

Here

I1 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

])
, (A.11)

I2 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

qF γηpη
∂

∂pγ

[
τc
u · p

pσ∂σf0

])
, (A.12)

Let us first evaluate the integral I1:

I1 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

])
,

= A+ B + C, (A.13)
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where

A = ∆µν
αβ

∫
dppαpβτcD

[
τc
u · p

pσ∂σf0

]
,

B = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τcḟ0

]
,

C = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τc
u · p

pσ∇σf0

]
.

A straight forward calculation gives:

A = −∆µν
αβ

∫
dpf0f̃0p

αpβτcD

[
τc
u · p

pσ { βpγ∂σuγ + (u · p) ∂σβ − ∂σα}
]
.

We can rewrite the above expression in terms of the thermodynamic integrals given in Ap-

pendix A.1 and eq. (3.9) as:

A = −τcπ̇⟨µν⟩ − 2τ 2c

(
nf

ϵ+ P
J
(0)−
31 − J

(1)−
31

)
u̇⟨µ∇ν⟩α + τ 2c∆

µν
αβJ

(0)+
31 u̇β

[
βqBbασ

ϵ+ P
Vσ

]
+τ 2c∆

µν
αβJ

(0)+
31 u̇α

[
βqBbβσ

ϵ+ P
Vσ

]
. (A.14)

Similarly for B we have:

B = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τcḟ0

]
,

= −∆µν
αβ

∫
dpf0f̃0p

αpβ
τc
u · p

pρ∇ρτc

[
βpγu̇γ + (u · p)β̇ − α̇

]
.

Using the thermodynamics integral discussed in Appendix A.1 we get:

B = −2τ 2c

[(
J
(0)+
31 + J

(1)+
42

)
β̇ −

(
J
(1)−
31 + J

(2)−
42

)
α̇
]
σµν − 2τ 2c∇⟨µ

(
u̇ν⟩βJ

(1)+
42

)
,

= −2τ 2c

[(
J
(0)+
31 + J

(1)+
42

)
X −

(
J
(1)−
31 + J

(2)−
42

)
Y
]
θσµν − 2τ 2c∇⟨µ

(
u̇ν⟩βJ

(1)+
42

)
,

(A.15)

where in the last line we have used the expression for α̇ and β̇ given in eq. (3.9) and eq. (3.9).

The X and Y are same as eq. (3.26). Finally, for C we have

C = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τc
u · p

pσ∇σf0

]
,

= −∆µν
αβ

∫
dpf0f̃0p

αpβ
τc
u · p

pρ∇ρ

[
τc
u · p

pσ (βpγ∇σuγ + (u · p)∇σβ −∇σα)

]
.
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Like the previous cases we use the thermodynamic integrals given in Appendix A.1 along

with eq. (3.9) and eq. (3.1) to rewrite the above expression:

C = 2∇⟨µ
(
u̇ν⟩βτ 2c J

(1)+
42

)
+ 2∇⟨µ

[
∇ν⟩ατ 2c

(
J
(2)−
42 − 1

h
J
(1)−
42

)]
− 4βτ 2c

(
2J

(3)+
63 + J

(1)+
42

)
σ⟨µ
ρ σ

ν⟩ρ

−20

3
βτ 2c J

(1)+
42 θσµν − 28

3
βτ 2c J

(3)+
63 θσµν − 4βτ 2c

(
J
(1)+
42 + 2J

(3)+
63

)
σ⟨µρων⟩

ρ

+2τ 2c∇⟨µ
[
J
(1)+
42

(
βqBbν⟩γVγ
ϵ+ P

)]
, (A.16)

Now let us evaluate the second integral I2:

I2 = −∆µν
αβ

∫
dppαpβ

((
τc
u · p

)2

qBbγηpη
∂

∂pγ
[pσ∂σf0]

)
,

= ∆µν
αβ

∫
dpf0f̃0p

αpβ

((
τc
u · p

)2

qBbγηpη
(
(βpρ∂σuρ + (u · p)∂σβ − ∂σα)∆

σ
γ

)
+ β∂σuρp

σ∆ρ
γ

)
,

= 2τ 2c qBb
γηβJ

(2)−
42

(
∆µν

ηβg
βρ +∆µν

αηg
αρ
)
σγρ, (A.17)

where we have used ∂
∂pγ
pσ∂σf0 = ∂σf0∆

σ
γ + pσ ∂

∂pγ
∂σf0 and the expression for ∂σf0 to

arrive at the final expression.

Now using eqs. (A.14)-(A.17) we get the final expression:

πµν
(2) = −τcπ̇⟨µν⟩ − 2τ 2c u̇

⟨µ∇ν⟩α

(
nf

ϵ+ P
J
(0)−
31 − J

(1)−
31

)
+ τ 2c∆

µν
αβJ

(0)+
31 u̇β

[
βqBbασ

ϵ+ P
Vσ

]
+τ 2c∆

µν
αβJ

(0)+
31 u̇α

[
βqBbβσ

ϵ+ P
Vσ

]
− 2τ 2c

[(
J
(0)+
31 + J

(1)+
42

)
X −

(
J
(1)−
31 + J

(2)−
42

)
Y
]
θσµν

−2τ 2c∇⟨µ
(
u̇ν⟩βJ

(1)+
42

)
+ 2∇⟨µ

(
u̇ν⟩βτ 2c J

(1)+
42

)
+ 2∇⟨µ

[
∇ν⟩ατ 2c

(
J
(2)−
42 − nf

ϵ+ P
J
(1)−
42

)]
−20

3
βτ 2c J

(1)+
42 θσµν − 4βτ 2c

(
2J

(3)+
63 + J

(1)+
42

)
σ⟨µ
ρ σ

ν⟩ρ − 28

3
βτ 2c J

(3)+
63 θσµν

−4βτ 2c

(
J
(1)+
42 + 2J

(3)+
63

)
σ⟨µρων⟩

ρ + 2τ 2c∇⟨α
[
J
(1)+
42

(
βqBbβ⟩γVγ
ϵ+ P

)]
+2τ 2c qBb

γηβJ
(2)−
42

(
∆µν

ηβg
βρ +∆µν

αηg
αρ
)
σγρ. (A.18)

Here we kept terms only upto second-order in gradients.
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A.2.2 Bulk stress

Let us now consider the bulk viscous case. From eq. (3.63) we get:

Π(2) = −1

3
∆αβ

∫
dppαpβ

(
τc
u · p

pµ∂µ

[
τc
u · p

pρ∂ρf0

]
+

τc
u · p

qF µνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

])
,

= I1 + I2, (A.19)

where

I1 = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∂µ

[
τc
u · p

pρ∂ρf0

]
,

I2 = −∆αβ

3

∫
dppαpβ

τc
u · p

qF µνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

]
.

Note that for our case F µν = −Bbµν . Let us first evaluate I1 by breaking it into three parts

I1 = A+ B + C where

A = −∆αβ

3

∫
dppαpβτcD

[
τc
u · p

pρ∂ρf0

]
,

B = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ

(
τcḟ0

)
,

C = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ

(
τcp

ρ

u · p
∇ρf0

)
.

We evaluate each of the above integrals one-by-one:

A = −∆αβ

3

∫
dppαpβτcD

[
τc
u · p

pρ∂ρf0

]
,

=
∆αβ

3

∫
dpf0f̃0p

αpβτcD

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)

]
,

= −τcΠ̇ +
2τ 2c
3
J
(0)−
31

nf

ϵ+ P
∇ααu̇α − 2τ 2c

3
J
(0)−
21 ∇ααu̇α − 2τ 2c β

3(ϵ+ P )
J
(0)+
31 u̇αqBb

αβVβ

(A.20)

We have used the thermodynamic integrals given in Appendix.A.1 along with eq. (A.2) and

eq. (3.9) to arrive at the final expression eq. (A.20). Now let us evaluate B with the help of
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thermodynamic integrals and its properties given in Appendix A.1:

B = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ(τcḟ0),

=
5τ 2c
3

∇µ

(
βJ

(1)+
42 u̇µ

)
+

5τ 2c
3
θ
[(
J
(0)+
31 + J

(1)+
42

)
β̇ −

(
J
(1)−
31 + J

(2)−
42

)
α̇
]
.

(A.21)

Similarly for C we have

C = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ(
τcp

ρ

u · p
∇ρf0),

=
∆αβ

3

∫
dpf0f̃0p

αpβ
τc
u · p

pµ∇µ

(
τcp

ρ

u · p
(βpγ∇ρuγ + (u · p)∇ρβ −∇ρα)

)
,

=
5τ 2c β

9

(
7J

(3)+
63 +

23

3
J
(1)+
42

)
θ2 +

5τ 2c
3

∇µ

[
∇µα

(
J
(1)−
42

nf

ϵ+ P
− J

(2)−
42

)]
+
τ 2c β

3

(
7J

(3)+
63 + J

(1)+
42

)
σµνσµν +

5τ 2c
3

∇µ

[
−J (1)+

42 βu̇µ − J
(1)+
42 βqBbµνVν

ϵ+ P

]
. (A.22)

Needless to say, here we kept only terms upto the second-order. The remaining integral I2

is evaluated in a similar fashion,

I2 =
∆αβ

3

∫
dppαpβ

τc
u · p

qBbµνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

]
,

= −∆αβ

3

∫
dpf0f̃0p

αpβ
τc
u · p

qBbµνpν
∂

∂pµ

[
τc
u · p

pρ (pγβ∂ρuγ + (u · p)∂ρβ − ∂ρα)

]
,

= −∆αβ

3
τ 2c qBb

µ
ν

(
βJαβνγ

(2)− ∇µuγ + βJαβνρ
(2)− ∂ρuµ

)
, (A.23)

using the expansion given in eq. (A.2) and the anti-symmetric property of bµν we get:

I2 = −qBτ
2
c

3
βJ

(2)−
42 (5bµγ∇µuγ + 5bµρ∇ρuµ) = 0. (A.24)
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Finally using eqs. (A.20)-(A.22) and eq. (A.24) we have:

Π(2) = −τcΠ̇ +
2τ 2c
3h

J
(0)−
31 u̇α∇αα− 2τ 2c

3
J
(0)−
21 u̇α∇αα− 2τ 2c β

3 (ϵ+ P )
J
(0)+
31 u̇αqBb

αβVβ

+
5τ 2c β

9

(
7J

(3)+
63 +

23

3
J
(1)+
42

)
θ2 +

5τ 2c
3

[(
J
(0)+
31 + J

(1)+
42

)
β̇ −

(
J
(1)−
31 + J

(2)−
42

)
α̇
]
θ

+
τ 2c β

3

(
7J

(3)+
63 + J

(1)+
42

)
σµνσµν +

5τ 2c
3

∇µ

[(
1

h
J
(1)−
42 − J

(2)−
42

)
∇µα

]
−5τ 2c

3
∇µ

[
J
(1)+
42 βqBbµνVν

ϵ+ P

]
. (A.25)

eq. (A.25) is the second-order relaxation equation for the bulk-viscous stress.

A.2.3 Diffusion current

In this section we discuss the detail derivation of the diffusion current. From eq. (3.33) we

get:

V µ
(2) = ∆µ

α

∫
dppα

(
τc
u · p

pσ∂σ

[
τc
u · p

pρ∂ρf0

]
+

τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ∂ρf0

])
,

(A.26)

where

I1 = ∆µ
α

∫
dppα

τc
u · p

pσ∂σ

[
τc
u · p

pρ∂ρf0

]
,

I2 = ∆µ
α

∫
dppα

τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ∂ρf0

]
.

Let us first calculate the I1 by breaking it up into three parts as: I1 = A+ B + C where

A = ∆µ
α

∫
dppατcD

[
τc
u · p

pρ∂ρf0

]
,

B = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ

(
τcḟ0

)
,

C = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ

(
τcp

ρ

u · p
∇ρf0

)
.
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For A we get:

A = −∆µ
α

∫
dpf0f̃0p

ατcD

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)

]
,

= −∆µ
αD

[∫
dpf0f̃0p

ατc
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)

]
,

= −τcV̇ ⟨µ⟩ − τ 2c∆
µ
γD

[
nfqBb

γνVν
ϵ+ P

]
. (A.27)

We have used the thermodynamic integrals and its expansion given in the Appendix A.1,

along with eqs. (3.9) and (3.9) to arrive at the final expression. Similarly for B we get:

B = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ

(
τcḟ0

)
,

= ∆µ
α∇σ

(∫
dppα

τc
u · p

pστcḟ0

)
+∆µ

α∇σuγ

(∫
dppαpγ

τc
(u · p)2

pστcḟ0

)
,

= −τ 2c∇µ
(
J
(0)−
21 β̇ − J

(1)+
21 α̇

)
− τ 2c βu̇

µθ

(
4

3
J
(0)−
21 +

5

3
J
(2)−
42

)
− τ 2c βJ

(0)−
21 u̇γω

γµ

−τ 2c βu̇γσγµ
(
J
(0)−
21 + 2J

(2)−
42

)
. (A.28)

Lastly for C we get:

C = ∆µ
α

∫
dppα

τ 2c
u · p

pσ∇σ

(
pρ

u · p
∇ρf0

)
,

= ∆µ
α∇σ

(∫
dppα

τ 2c
u · p

pσ
pρ

u · p
∇ρf0

)
+∆µ

α∇σuγ

(∫
dppαpγ

τ 2c
(u · p)2

pσ
pρ

u · p
∇ρf0

)
.
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Substituting the expression for∇ρf0 and using the usual thermodynamic integrals and their

expansion along with eq. (3.9) and eq. (3.1) the above expression takes the following form:

C = −4τ 2c
3

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇µα) θ +

4τ 2c
3
J
(0)−
21 βu̇µθ + τ 2c J

(0)−
21 βu̇γσµ

γ

− τ 2c

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇γα) σµ

γ − τ 2c

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇γα)ωµ

γ + τ 2c J
(0)−
21 βu̇γωµ

γ

+ τcJ
(0)−
21 ωµ

γ

[
βqBbγνVν
ϵ+ P

]
− 2τ 2c

(
J
(2)+
42 nf

ϵ+ P
− J

(3)+
42

)
(∇γα) σµ

γ + 2τ 2c J
(2)−
42 βu̇γσµ

γ

− 5τ 2c
3

(
J
(2)+
42 nf

ϵ+ P
− J

(3)+
42

)
(∇µα) θ +

5τ 2c
3
J
(2)−
42 βu̇µθ − 2τ 2c∆

µ
ρ∇γ

(
βJ

(2)−
42 σργ

)
− 5τ 2c

3
∇µ
[
βJ

(2)−
42 θ

]
+

4τc
3
J
(0)−
21 θ

[
βqBbµνVν
ϵ+ P

]
+ τcJ

(0)−
21 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+ 2τcJ

(2)−
42 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+

5τc
3
J
(2)−
42 θ

[
βqBbµνVν
ϵ+ P

]
. (A.29)

Now let us calculate the integral I2:

I2 = −∆µ
α

∫
dpf0f̃0p

α τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p)∂ρβ − ∂ρα)

]
,

= τ 2c qB

[
1

h
J
(1)−
21 bγµ∇γα− J

(2)−
21 bγµ∇γα−

βJ
(1)+
21 bγµ∆σ

γ∂
kπkσ

ϵ+ P
− βJ

(1)+
21 bγµΠu̇γ
ϵ+ P

+
βJ

(1)+
21 bγµ∇γΠ

ϵ+ P

]
. (A.30)
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Adding eqs. (A.27)-(A.30) together we get the final expression for the diffusion current

(which after simplification becomes eq.(3.34) ) :

V µ
(2) = −τcV̇ ⟨µ⟩ − τ 2c∆

µ
γD

[
nfqBb

γνVν
ϵ+ P

]
− τ 2c∇µ

(
J
(0)−
21 β̇ − J

(1)+
21 α̇

)
− τ 2c βu̇

µθ

(
4

3
J
(0)−
21 +

5

3
J
(2)−
42

)
− τ 2c βJ

(0)−
21 u̇γω

γµ − τ 2c βu̇γσ
γµ
(
J
(0)−
21 + 2J

(2)−
42

)
− 4τ 2c

3

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇µα) θ

+
4τ 2c
3
J
(0)−
21 βu̇µθ − τ 2c

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇γα) σµ

γ + τ 2c J
(0)−
21 βu̇γσµ

γ + 2τ 2c J
(2)−
42 βu̇γσµ

γ

− τ 2c

(
J
(0)+
21 nf

ϵ+ P
− J

(1)+
21

)
(∇γα)ωµ

γ + τ 2c J
(0)−
21 βu̇γωµ

γ − 2τ 2c

(
J
(2)+
42 nf

ϵ+ P
− J

(3)+
42

)
(∇γα) σµ

γ

− 5τ 2c
3

(
J
(2)+
42 nf

ϵ+ P
− J

(3)+
42

)
(∇µα) θ +

5τ 2c
3
J
(2)−
42 βu̇µθ − 2τ 2c∆

µ
ρ∇γ

(
βJ

(2)−
42 σργ

)
− 5τ 2c

3
∇µ
[
βJ

(2)−
42 θ

]
+

4τc
3
J
(0)−
21 θ

[
βqBbµνVν
ϵ+ P

]
+ τcJ

(0)−
21 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+ 2τcJ

(2)−
42 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+

5τc
3
J
(2)−
42 θ

[
βqBbµνVν
ϵ+ P

]
+ τcJ

(0)−
21 ωµ

γ

[
βqBbγνVν
ϵ+ P

]
+ τ 2c qB

[
J
(1)−
21 bγµ

h
∇γα− J

(2)−
21 bγµ∇γα−

βJ
(1)+
21 bγµ∆σ

γ∂
kπkσ

ϵ+ P
− βJ

(1)+
21 bγµΠu̇γ
ϵ+ P

+
βJ

(1)+
21 bγµ∇γΠ

ϵ+ P

]
.

(A.31)

A.3 Projection tensors

The definition of the second and fourth rank projection tensors used in the text is shown in

this section.

A general antisymmetric second rank tensor bµν can be defined by

bµν ≡ εµλνb
λ, (A.32)
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where bµ is a unit axial four vector. The second rank projection tensors are then defined as

P (0)
µν = bµbν ,

P (+1)
µν =

1

2
(∆µν − bµbν − ibµν) ,

P (−1)
µν =

1

2
(∆µν − bµbν + ibµν) .

where i =
√
−1. They satisfy the following properties

P (m)
µκ P

(m′),κ
ν = δmm′P (m)

µν , (A.33)(
P (m)
µν

)†
= P (−m)

µν = P (m)
νµ , (A.34)

1∑
m=−1

P (m)
µν = ∆µν , P (m)

µµ = 1, (A.35)

wherem,m′ = 0,±1. The projection tensorsP (m)
µν satisfy the following eigenvalue equation

(see ref. [20])

P (m)
µκ b

κ
ν = imP (m)

µν , (A.36)

where m is the eigenvalue. Also bµν can be represented as a linear combination of the

projection tensors

bµν =
1∑

m=−1

imP (m)
µν . (A.37)

It is also easy to generalize them to the fourth rank projection tensor which are defined in

terms of the second rank projection tensor as

P
(m)
µν,µ′ν′ =

1∑
m1=−1

1∑
m2=−1

P
(m1)
µµ′ P

(m2)
νν′ δ (m,m1 +m2) , (A.38)

where δ (m,m1 +m2) = 1 for m = m1 +m2 and zero otherwise. Notice that m1 +m2

assumes the five values m = −2,−1, 0, 1, 2 which in turn result in the five shear viscous

coefficients dicussed in the text. A generalization to higher ranks is also possible using the

above basis if need arises.
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A.4 General expressions of transport coefficients

τππ
2β
βπ

(
2J

(3)+
63 + J

(1)+
42

)
δππ

β
3βπ

(
7J

(3)+
63 + 5J

(1)+
42

)
λπΠ

2
βΠ

[(
J
(0)+
31 + J

(1)+
42

)
X −

(
J
(1)−
31 + J

(2)−
42

)
Y + β

3

(
7J

(3)+
63 + 5J

(1)+
42

)]
lπV

2
βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)
δπB 2J

(2)−
42 /J

(1)+
42

δπV B 2βJ
(1)+
42 /(ϵ+ P )

Table A.1: Transport coefficients appearing in shear-stress equation eq. (3.30).

δΠΠ
5

3βΠ

[
(J

(0)+
31 + J

(1)+
42 )X − (J

(1)−
31 + J

(2)−
42 )Y + β

3
(7J

(3)+
63 + 23

3
J
(1)+
42 )

]
λΠπ

β
3βπ

(
7J

(3)+
63 + J

(1)+
42

)
lΠV

5
3βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)
δΠV B

5J
(1)+
42 β

3(ϵ+P )

Table A.2: Transport coefficients appearing in bulk equation eq. (3.32).
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λV V 1 + 2
βV

(
nf

ϵ+P
J
(2)+
42 − J

(3)+
42

)
δV V

4
3
+ 5

3βV

(
nfJ

(2)+
42

ϵ+P
− J

(3)+
42

)
lV π − β

βπ
J
(2)−
42

τV π −β ∂
∂β
lV π

λV π − 1
h

∂
∂β
lV π

lVΠ − 1
βΠ

(
XJ (0)−

21 − YJ (1)+
21 + 5β

3
J
(1)−
42

)
δV B −

(
nfJ

(1)−
21

ϵ+P
− J

(2)−
21

)
/βV

lV πB −βJ (1)+
21 /(ϵ+ P )

τVΠB −βJ (1)+
21 /(ϵ+ P )

lVΠB −βJ (1)+
21 /(ϵ+ P )

λV V B − β
ϵ+P

(
J
(0)−
21 + 2J

(2)−
42

)
ρV V B −βJ (0)−

21 /(ϵ+ P )

τV V B nf/ (ϵ+ P )

Table A.3: Transport coefficients appearing in diffusion equation eq. (3.34).

A.5 Second order relaxation equations for resistive case

Here we give the detailed calculations of the second order dissipative quantities. The ex-

plicit dependence of the anti-particles is not shown in the calculation, but they appear in our
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final results.

A.5.1 Bulk stress

Let us consider the bulk viscous case first. From Eq. (3.63) we get:

Π = −∆αβ

3

∫
dppαpβ

(
δf (2) + δf̄ (2)

)
, (A.39)

Π = I1 + I2 + I3 + I4. (A.40)

For convenience we split I1 into three terms as follows:

I1 = A+ B + C, (A.41)

where

A = −∆αβ

3

∫
dppαpβτcD

[
τc
u · p

pρ∂ρf0

]
,

B = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ

(
τcḟ0

)
,

C = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ

(
τcp

ρ

u · p
∇ρf0

)
.

We carry out these integrals one-by-one and we get:

A = −τcΠ̇ +
2τ 2c
3h

J
(0)+
31 u̇α∇αα− 2τ 2c

3
J
(0)−
21 u̇α∇αα

−2τ 2c β

3h
J
(0)+
31 u̇αqBb

αβVβ +
2τ 2c β

3(ϵ+ P )
J
(0)+
31 u̇αqE

α,

B =
5τ 2c
3

∇µ

(
βJ

(1)+
42 u̇µ

)
+

5τ 2c
3
θ
[(
J
(0)+
31 + J

(1)+
42

)
β̇ −

(
J
(1)−
31 + J

(2)−
42

)
α̇
]
,

C =
5τ 2c β

9

(
7J

(3)+
63 +

23

3
J
(1)+
42

)
θ2 +

5τ 2c
3

∇µ

[
∇µα

(
1

h
J
(1)−
42 − J

(2)−
42

)]
+
τ 2c β

3

(
7J

(3)+
63 + J

(1)+
42

)
σµνσµν +

5τ 2c
3

∇µ

[
−J (1)+

42 βu̇µ − J
(1)+
42 βqBbµνVν

ϵ+ P

]

+
5τ 2c
3

∇µ

[
J
(1)−
42 βqEµ

h

]
. (A.42)
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For the rest three terms after some algebra we get:

I2 = −2

3
τ 2c qβEµJ

(1)−
31 u̇µ − 5

3
τ 2c q∇µ(βJ

(2)−
42 Eµ),

I3 = −qτ 2c
[ 1

3h

(
5J

(2)−
42 + 2J

(1)−
31 − 5J

(3)+
42 − 2J

(2)+
31

)
Eµ∇µα +

qβ

3h

(
5J

(2)−
42 + 2J

(1)−
31

)
EµEµ

+
qβ

3hnf

(
5J

(2)−
42 + 2J

(1)−
31

)
EµBµνV

ν
f

]
,

I4 =
q2τ 2c
3

(
5βJ

(3)+
42 + 2βJ

(2)+
31

)
EµE

µ. (A.43)

A.5.2 Diffusion

The second order diffusion current V µ
(2) is given by Eq. (3.66):

V µ
(2) = ∆µ

α

∫
dppα

(
δf (2) − δf̄ (2)

)
,

V µ
(2) = I1 + I2 + I3 + I4. (A.44)

Like the previous case we split I1 into three terms as follows:

I1 = A+ B + C, (A.45)

where

A = ∆µ
α

∫
dppατcD

[
τc
u · p

pρ∂ρf0

]
,

B = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ

(
τcḟ0

)
,

C = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ

(
τcp

ρ

u · p
∇ρf0

)
.
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After integrating we have:

A = −τcV̇ ⟨µ⟩ − τ 2c∆
µ
γD

[
qnfBb

γνVν
ϵ+ P

]
−∆µ

νD
[
qβτ 2cE

νJ
(1)−
21

]
,

B = −τ 2c∇µ
(
J
(0)−
21 β̇ − J

(1)+
21 α̇

)
− τ 2c βu̇

µθ

3

(
4J

(0)−
21 + 5J

(2)−
42

)
− τ 2c βJ

(0)−
21 u̇γω

γµ

−τ 2c βu̇γσγµ
(
J
(0)−
21 + 2J

(2)−
42

)
,

C = −4τ 2c
3
θ

(
1

h
J
(0)+
21 − J

(1)+
21

)
∇µα +

4τ 2c
3
J
(0)−
21 βu̇µθ − τ 2c

(
1

h
J
(0)+
21 − J

(1)+
21

)
σµ
γ∇γα

+τ 2c J
(0)−
21 βu̇γσµ

γ − τ 2c

(
1

h
J
(0)+
21 − J

(1)+
21

)
ωµ
γ∇γα + τ 2c J

(0)−
21 βu̇γωµ

γ

+τcJ
(0)−
21 ωµ

γ

[
βqBbγνVν
ϵ+ P

]
− 2τ 2c

(
1

h
J
(2)+
42 − J

(3)+
42

)
σµ
γ∇γα

+2τ 2c J
(2)−
42 βu̇γσµ

γ − 5τ 2c
3
θ

(
1

h
J
(2)+
42 − J

(3)+
42

)
∇µα +

5τ 2c
3
J
(2)−
42 βu̇µθ

−2τ 2c∆
µ
ρ∇γ

(
βJ

(2)−
42 σργ

)
− 5τ 2c

3
∇µ
(
βJ

(2)−
42 θ

)
+
4τ 2c
3
J
(0)−
21 θ

[
βqBbµνVν
ϵ+ P

]
+ τ 2c J

(0)−
21 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+2τ 2c J

(2)−
42 σµ

γ

[
βqBbγνVν
ϵ+ P

]
+

5τ 2c
3
J
(2)−
42 θ

[
βqBbµνVν
ϵ+ P

]
−τ 2c

(
4

3
J
(1)+
31 +

5

3
J
(2)+
42

)
θ

(
qβnfE

µ

ϵ+ P

)
−2τ 2c J

(2)+
42 σµ

γ

(
qβnfE

γ

ϵ+ P

)
− τ 2c J

(1)+
31

(
ωµ
γ + σµ

γ

) qβnfE
γ

ϵ+ P
. (A.46)

The rest of the terms give:

I2 = qτ 2cD
(
βJ

(1)+
21 Eµ

)
+ qτ 2c βJ

(1)+
21 Eαuµu̇α + qτ 2c βJ

(2)+
31

(
Eν

(
ωνµ + σνµ +

∆νµ

3
θ

)
+ Eµθ

)
+qτ 2c βJ

(3)+
42

(
Eµθ + 2Eρ

(
σµρ +

∆µρ

3
θ

))
,

I3 = qτ 2c

(
βJ

(2)+
31 Bµν

(
1

ϵ+ P

[
nf

β
(∇να)− Πu̇ν +∇νΠ−∆νµ∂ρπ

ρµ + qnfEν − qBbµνVfµ

]))
+qτ 2c

(
βJ

(2)+
31 Eµθ + J

(1)+
20 Eµβ̇

)
+ qτ 2c

(
−J (2)+

20 Eµα̇− J
(2)+
21 Bµ

ν∇να
)

+qτ 2c

(
βEνJ

(3)+
42

(
2σµν +

5

3
∆µνθ

)
+ EµJ

(2)+
31 β̇

)
− qτ 2c

(
EµJ

(3)+
31 α̇

)
,

I4 = −βq2τ 2c J
(2)−
21 EνBµ

ν . (A.47)
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A.5.3 Shear stress

The second order shear stress πµν
(2) is given by Eq. (3.69):

πµν
(2) = ∆µν

αβ

∫
dppαpβ

(
δf (2) + δf̄ (2)

)
= I1 + I2 + I3 + I4. (A.48)

Again the first term can be divided into three parts and is given by :

I1 = A+ B + C, (A.49)

where

A = ∆µν
αβ

∫
dppαpβτcD

[
τc
u · p

pσ∂σf0

]
,

B = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τcḟ0

]
,

C = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ

[
τc
u · p

pσ∇σf0

]
.

A = −τcπ̇⟨µν⟩ − 2τ 2c

(
nf

ϵ+ P
J
(0)−
31 − J

(1)−
31

)
u̇⟨µ∇ν⟩α + τ 2c∆

µν
αβJ

(0)+
31 u̇β

[
βqBbασ

ϵ+ P
Vσ

]
+τ 2c∆

µν
αβJ

(0)+
31 u̇α

[
βqBbβσ

ϵ+ P
Vσ

]
− τ 2c∆

µν
αβJ

(0)−
31 u̇β

[
qβEαnf

ϵ+ P

]
− τ 2c∆

µν
αβJ

(0)−
31 u̇α

[
qβEβnf

ϵ+ P

]
,

B = −2τ 2c

[(
J
(0)+
31 + J

(1)+
42

)
β̇ −

(
J
(1)−
31 + J

(2)−
42

)
α̇
]
σµν − 2τ 2c∇⟨µ

(
u̇ν⟩βJ

(1)+
42

)
,

C = 2∇⟨µ
(
u̇ν⟩βτ 2c J

(1)+
42

)
+ 2∇⟨µ

[
∇ν⟩ατ 2c

(
J
(2)−
42 − 1

h
J
(1)−
42

)]
− 4βτ 2c

(
2J

(3)+
63 + J

(1)+
42

)
σ⟨µ
ρ σ

ν⟩ρ

−20

3
βτ 2c J

(1)+
42 θσµν − 28

3
βτ 2c J

(3)+
63 θσµν − 4βτ 2c

(
J
(1)+
42 + 2J

(3)+
63

)
σ⟨µρων⟩

ρ

+2τ 2c∇⟨µ
[
J
(1)+
42

(
βqBbν⟩γVγ
ϵ+ P

)]
− 2τ 2c∇⟨µ

[
J
(1)−
42

(
βqEν⟩nf

ϵ+ P

)]
. (A.50)

The rest of the terms give:
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I2 = qτ 2c βJ
(1)−
31 ∆µν

αβ

(
Eαu̇β + Eβu̇α

)
+∇⟨µ

(
qτ 2c βE

ν⟩J
(2)−
42

)
,

I3 = ∆µν
αβqτ

2
c

(
J
(1)−
31

(
β̇
(
Bαβ +Bβα

)
+ Eβ∇αβ + Eα∇ββ

))
+∆µν

αβqτ
2
c

(
J
(2)−
42

(
Eβ∇αβ + Eα∇ββ

)
+ βJ

(2)−
41 Eαu̇β

)
+∆µν

αβqτ
2
c

(
βJ

(2)−
42

(
θBαβ +Bα

ν∇βuν +Bα
ν∇νuβ

))
+∆µν

αβqτ
2
c

(
βJ

(2)−
41 Eβu̇α + βJ

(2)−
42

(
θBβα +Bβ

ν∇αuν +Bβ
ν∇νuα

))
−∆µν

αβqτ
2
c J

(2)−
31

(
α̇Bαβ + Eα∇βα + α̇Bβα + Eβ∇αα

)
+∆µν

αβqτ
2
c βJ

(3)−
52

(
Eβu̇α + Eαu̇β

)
−∆µν

αβqτ
2
c J

(3)−
42

(
Eα∇βα + Eβ∇αα

)
,

I4 = −2∆µν
αβq

2τ 2c βE
αEβ

(
J
(3)+
42 + J

(2)+
31

)
.
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A.6 General expressions of transport coefficients

τΠV −β ∂
∂β

[
5

3βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)]
−[

2
3βV

(
J
(0)−
31

h
− J

(1)−
31

)
− β ∂

∂β

(
5

3hβV
J
(1)−
42 − 5

3βV
J
(2)−
42

)]

λΠV

(
∂
∂α

+ h−1 ∂
∂β

) [
5

3βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)]
−

1
3ββV

(
5J

(3)+
42 − 5

h
J
(2)−
42 + 2J

(2)+
31 − 2

h
J
(1)−
31

)
−(

∂
∂α

+ h−1 ∂
∂β

) [
5

3hβV
J
(1)−
42 − 5

3βV
J
(2)−
42

]

lΠV
5

3βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)
− 1

ββV

[
5β
3h
J
(1)−
42 − 5

3
βJ

(2)−
42

]

λΠV B
1
βV

(
∂
∂α

+ h−1 ∂
∂β

)[
5J

(1)+
42 β

3(ϵ+P )

]
+ 1

βV

[
−1

3(ϵ+p)

(
5J

(2)−
42 + 2J

(1)−
31

)]

χΠEE
−β
3

(
5J

(3)+
42 + 2J

(2)+
31 − 5

h
J
(2)+
42 − 2

h
J
(1)+
31

)

Table A.4: Transport coefficients appearing in bulk-stress equation Eq. (3.65).
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λV V −
(
1 + 2

βV

(
nf

ϵ+P
J
(2)+
42 − J

(3)+
42

)
− 1

βV

{ (
J
(2)+
31 + 4J

(3)+
42

)
− 1

h

(
2J

(2)+
42 + J

(1)+
31

)})

δV V
4
3

+ 5
3βV

(
nfJ

(2)+
42

ϵ+P
− J

(3)+
42

)
+ 1

ββV

[
β
h

(
4
3
J
(1)+
31 + 5

3
J
(2)+
42

)]
−

1
ββV

[
β
(

7
3
J
(2)+
31 + 10

3
J
(3)+
42

)
−
(
J
(1)+
20 + J

(1)+
21

)
X −

(
J
(2)+
20 + J

(2)+
21

)
Y
]

δV B

(
nfJ

(1)−
21

ϵ+P
− J

(2)−
21

)
/βV + 1

βV

(
J
(1)−
21

h
− J

(2)−
21

)

χV E ββV

ρV E −
(

nf

D20

[(
J
(0)+
20

∂χV E

∂α
+ J

(0)+
10

∂χV E

∂β

)
h−

(
J
(0)+
30

∂χV E

∂α
+ J

(0)+
20

∂χV E

∂β

)])

Table A.5: Transport coefficients appearing in Diffusion evolution equation Eq. (3.68).

τπV β ∂
∂β

[
2
βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)]
− 2

βV

[
J
(1)−
31 − J

(0)−
31

h

]
−

β ∂
∂β

1
χV E

[
−βJ (2)−

42 + 2J
(1)−
42

(
β
h

)]
λπV

(
∂
∂α

+ h−1 ∂
∂β

) [
2
βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)]
+ 2

hββV

(
J
(1)−
31 + J

(2)−
42

)
−

2
ββV

(
J
(2)−
31 + J

(3)−
42

)
−
(

∂
∂α

+ h−1 ∂
∂β

)
1

χV E

[
−βJ (2)−

42 + 2J
(1)−
42

(
β
h

)]
lπV − 2

βV

(
J
(2)−
42 − nf

ϵ+P
J
(1)−
42

)
+ 1

χV E

[
−βJ (2)−

42 + 2J
(1)−
42

(
β
h

)]
λπV B

1
βV

(
∂
∂α

+ h−1 ∂
∂β

) [
2βJ

(1)+
42 /(ϵ+ P )

]
+ 1

ββV

[
− 2β

(ϵ+P )

(
J
(1)−
31 + J

(2)−
42

)]
χπEE 2β

((
J
(1)−
31 +J

(2)−
42

)
h

−
(
J
(3)+
42 + J

(2)+
31

))

Table A.6: Transport coefficients appearing in shear-stress evolution equation Eq. (3.71).
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Appendix B

(Chapter-6)
B.1 Formulas and Conversions used in Chapter-6

In Chapter 6 of the thesis, we have used the Milne coordinate system (τ, η, r, ϕ), where

τ =
√
t2 − z2,

r =
√
x2 + y2,

η = tanh−1(z/t),

ϕ = tan−1(y/x).

Due to the coordinate transformation, various equations changed forms compared to the

Cartesian coordinates. Here, we give the details about the Jacobian and Christoffel symbols

used in this study due to the above coordinate transformation: the Jacobian for the volume

element is
√
−g = τr, and the non-vanishing Christoffel symbols are

Γτ
ηη = τ, Γη

τη =
1

τ
,

Γr
ϕϕ = −r, Γϕ

rϕ =
1

r
.

The space-like projection is defined as∆µν = gµν−uµuν ; for the Milne coordinate system,

different components of ∆µν are

∆ττ = − (ur)2 , ∆ηη = − 1

τ 2
,

∆rr = −1− (ur)2 , ∆ϕϕ = − 1

r2
,

∆τη = ∆τϕ = ∆ηr = ∆ηϕ = ∆rϕ = 0,

∆τr = −
√

1 + (ur)2ur.
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The expansion scalar is given by θ = Dµu
µ = ∂µu

µ + Γµ
µαu

α.

We consider real particles, and the on-shell condition is given by gµνpµpν = (pτ )2 −

τ 2(pη)2 − (pr)2 − r2(pϕ)2 = m2. Following the convention used in heavy-ion collisions,

we express the components of the four-momentum pµ as:

(E, px, py, pz) = (mT cosh y, pT cosφ, pT sinφ,mT sinh y), where pT =
√
p2x + p2y,mT =√

m2 + p2T , and y = tanh−1(pz/E). The components of the four-momentum in Milne

coordinates are

pτ = mT cosh(y − η), τpη = mT sinh(y − η),

pr = pT cos(φ− ϕ), rpϕ = pT sin(φ− ϕ). (B.1)

Here, (pτ , pη, pr, pϕ) are the momentum components in the Milne coordinate with y being

the rapidity in momentum space, η being the space-time rapidity, ϕ being the azimuthal

angle in coordinate space, and φ being the azimuthal angle of the particle in momentum

space.

In Eq. (6.2), we have the term pµdΣµ, which in our case is given by pµdΣµ = gµνp
µdΣν =

mT cosh(y − η)τdηrdrdϕ.
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B.2 First-order (δf ) Correction to the Single-Particle Dis-
tribution

In Eq. (6.3), we introduced the first-order correction to the single-particle distribution while

calculating the invariant yield using the Cooper-Frye formula. Here, we give the detailed

expression of δf in terms of gradients of fluid variables and fields:

δf = − τc
u · p

(
pµ∂µf0 + qF µνpν

∂f0
∂pµ

)
=
τcf0f̃0
u · p

(βpµpαDµuα + (u · p)pµ∂µβ − pµ∂µα)−
τcf0f̃0
u · p

qβEνpν

=
τcf0f̃0
u · p

(
βpµpα

[
uµu̇α + σµα + ωµα +

∆µαθ

3

]
+ (u · p)pµ∂µβ − pµ∂µα

)
− τcf0f̃0

u · p
qβEνpν

=
τcf0f̃0
u · p

(
βpµpα∂µuα + βpϕpϕrur − βpηpητuτ + (u · p)pµ∂µβ − pµ∂µα

)
− τcf0f̃0

u · p
qβEνpν

=
τcf0f̃0
u · p

(
βpϕpϕrur − βpηpητuτ + (u · p)pµ∂µβ − pµ∂µα

)
− τcf0f̃0

u · p
qβEνpν

+
τcf0f̃0
u · p

(
βpτpr∂τur + βprpr∂rur + βpϕpr∂ϕur

)
+
τcf0f̃0
u · p

(
βpτpτ∂τuτ + βprpτ∂ruτ + βpϕpτ∂ϕuτ

)
.

=
τcf0f̃0
u · p

(
β

(
pT sin (φ− ϕ)

r

)2

rur − β

(
mT sinh (y − η)

τ

)2

τuτ + (u · p)pµ∂µβ − pµ∂µα

)

− τcf0f̃0
u · p

qβEνpν +
τcf0f̃0
u · p

(
βmT cosh(y − η)pT cos(φ− ϕ)

(ur)2

ruτ
− β(pT cos(φ− ϕ))2

ur

r

)
+
τcf0f̃0
u · p

β
pT sin(φ− ϕ)

r
pT cos(φ− ϕ)u0

2r

R

∑
ncn sinn [ϕ− ψn]

+
τcf0f̃0
u · p

(
−β(mT cosh(y − η))2

(ur)3

r(uτ )2
+ βmT cosh(y − η)pT cos(φ− ϕ)

(ur)2

ruτ

)
− τcf0f̃0

u · p
β
pT sin(φ− ϕ)

r
mT cosh(y − η)

ur

uτ
u0

2r

R

∑
ncn sinn [ϕ− ψn].
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δf =
τcf0f̃0
u · p

β

(
ur
r

+
sin(φ− ϕ) cos(φ− ϕ)

r
u0

2r

R

∑
cnn sinn [ϕ− ψn]

)
p2T

−τcf0f̃0
u · p

qβEνpν +
τcf0f̃0
u · p

((u · p)pµ∂µβ − pµ∂µα)

+
τcf0f̃0
u · p

β

(
2 cosh(y − η) cos(φ− ϕ)

(ur)2

ruτ

− cosh(y − η) sin(φ− ϕ)
ur

ruτ
u0

2r

R

∑
cnn sinn [ϕ− ψn]

)
mTpT

−τcf0f̃0
u · p

β

(
sinh2 (y − η)

uτ
τ

+ cosh2(y − η)
(ur)3

r(uτ )2

)
m2

T , (B.2)

where β = 1
T
and α = µ

T
with Γτ

ηη = τ along with Γr
ϕϕ = −r. The contribution due to

the electric field E · p in the above equation, when expanded, takes the following form:

δf = −τcf0f̃0
u · p

qβE · p,

δf = −τcf0f̃0
u · p

qβ
(
Eτpτ − τ 2Eηpη − Erpr − r2Eϕpϕ

)
.

B.3 Co-ordinate transformation of Electric four vector

The electric field components in Milne-coordinates (Eτ , Eη, Er, Eϕ) are connected to the

Cartesian components (Et, Ex, Ey, Ez) through the following transformation



Eτ

Er

Eϕ

Eη


=



Cosh[η] 0 0 −Sinh[η]

0 Cos[ϕ] Sin[ϕ] 0

0 −Sin[ϕ]
r

Cos[ϕ]
r

0

−Sinh[η]
τ

0 0 Cosh[η]
τ





Et

Ex

Ey

Ez


.

We also note E.u = 0 and this gives rise to :
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Et =
EzSinhη

coshη
+

(cosϕEx + sinϕEy)ur

coshηuτ
,

Eη =
Ez

τCoshη
− tanhηErur

τuτ
.

As mentioned in the main text we use four different configuration of transverse electric

fields, they are parameterised as :

eEx =
BZαem(x− x0)Cosh[η − η0]

((x− x0)2 + (y − y0)2 + (τSinh[η − η0])2)3/2
,

eEy =
AZαem(y − y0)Cosh[η − η0]

((x− x0)2 + (y − y0)2 + (τSinh[η − η0])2)3/2
,

eEz = 0,

where Z is the atomic number (for our case we choose Z=82), αem= 1
137

, A and B are the

modulation factors which controls the spatial configuration of the field in the transverse

plane, and α is the fine structure constant. We get the first 3 configurations in Fig.(6.2)

by choosing (i) A=B=10 for config-1, (ii) A=20 , B=1 for config-2 (iii) A=1 , B=20 for

config-3, and qEx = qEy = m2
π for config-4.
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