
ANISOTROPIC ASPECTS OF HEAVY QUARKONIUM
POTENTIAL IN THERMAL QCDMEDIUM

By

JOBIN SEBASTIAN

PHYS11201704015

National Institute of Science Education and Research, Bhubaneswar

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

December, 2023





STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to bemade

available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgment the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Jobin Sebastian

ii



DECLARATION

I hereby declare that I am the sole author of this thesis in partial fulfillment of the require-

ments for a postgraduate degree from National Institute of Science Education and Research

(NISER). I authorize NISER to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Jobin Sebastian

iii



List of Publications arising from the thesis

Journal

1. “Liénard-Wiechert potential of a heavy quarkoniummoving in QGPmedium”, Jobin

Sebastian, Mohammad Yousuf Jamal, and Najmul Haque, Phys.Rev.D 107 (2023)

5, 054040.

2. “Heavy quarkonia in QGP medium in an arbitrary magnetic field”, Jobin Sebas-

tian, Lata Thakur, Hiranmaya Mishra, and Najmul Haque, Phys.Rev.D 108 (2023)

9, 094001.

Conferences

1. 8th International Conference on Physics and Astrophysics of Quark Gluon Plasma

(ICPAQGP-2023), 7-10 February 2023, Odisha, India.

2. Particles and Nuclei International Conference (PANIC 2021), 5 - 10 Sep 2021, Lis-

bon, Portugal.

3. DAE-BRNS symposium on Contemporary and Emerging Topics in High Energy Nu-

clear Physics (CETHENP 2022), VECC, Kolkata, India, November 15-17, 2022.

4. DAE-BRNS Symposium on High Energy Physics, NISER, Bhubaneswar, India, De-

cember 14-18, 2020.

5. DAE-BRNS symposium on Contemporary and Emerging Topics in High Energy Nu-

clear Physics (CETHENP 2019), VECC, Kolkata, India, November 25-27, 2019.

Others

1. “Stability and causality of the relativistic third order hydrodynamics”, Jobin Sebas-

tian, PoS PANIC2021, 250 (2022).

Jobin Sebastian

iv



Dedicated
to the

Indian heavy ion community

“Where the mind is without fear and the head is held high;
Where knowledge is free;

Where the world has not been broken up into fragments by narrow domestic walls;
Where words come out from the depth of truth;

Where tireless striving stretches its arms toward perfection;
Where the clear stream of reason has not lost its way into the dreary desert sand of dead habit;

Where the mind is led forward by thee into ever-widening thought and action -
Into that heaven of freedom, my Father, let my country awake.”

- Tagore, Gitanjali

v



ACKNOWLEDGEMENTS

First, I would like to express my heartfelt gratitude to Dr. Najmul Haque, my supervisor,

whose unwavering support and invaluable assistance made my doctoral research journey

much smoother. His friendly guidance was especially helpful during the most challenging

phases of my PhD. His mentorship was pivotal in my personal and professional growth,

for which I am genuinely thankful. I sincerely thank Dr. Amaresh Jaiswal for his support

throughout my doctoral program. His mentorship and encouragement were instrumental in

shaping my career outlook. I am grateful to my collaborative partners, Prof. Hiranmaya

Mishra, Dr. MohammadYousuf Jamal, andDr. Lata Thakur, for their exceptional teamwork

and contributions to my research endeavors. I thank my doctoral committee members, Prof.

Bedangadas Mohanty, Dr. Victor Roy, and Dr. Sandeep Chatterjee, for enthusiastically

supporting me.

I am profoundly grateful to Nithin S.Mony for his priceless support and companionship.

He stood by my side during the most difficult situations, pivotal in overcoming various ob-

stacles in my Ph.D. journey. My heartfelt thanks to Abu James for his insightful discussions

that greatly aided me in withstanding hardships. I am grateful to Jyothis V. V. for his tena-

cious support during hard times; his immediate presence was invaluable. I sincerely thank

Prafulla Saha for making my Ph.D. life memorable with wonderful experiences and enjoy-

able activities. His friendship has added a valuable dimension to my academic chapter, and

I sincerely appreciate it.

I sincerely thank my friends Sujith N. S. and Manu Kurian for their invaluable ad-

vice, unwavering friendship, and mentorship, which have greatly enriched my NISER life.

I’m sincerely thankful to Jishnu for his meaningful companionship and inspiration. A

special thanks to Renadheer and Stalin for their company and support. I thank my col-

leagues, Samapan and Manas, for their valuable academic aid. A special mention must

be made of the following individuals: Aritra, Ritesh, Vahid, Bikash, Tapas, Ashutosh,

Bichu, Chandiprasad, Azharudheen, Bindu, Dukhishyam, Ashish, Ankit, Lakshmi, Bidyad-

har, Raghu, Aldritt, Thomas, Tusaradri, Advaid, Mathew, and the members of the football

team, for adding depth and interest to my NISER life. Finally, I want to thank my family

for their devotion and support throughout my PhD journey.

vi



ABSTRACT

Quarkonia are bound states of heavy quarks (such as charm and bottom quarks), and

their antiquarks hold a prominent significance in the study of the quark-gluon plasma (QGP)

created in heavy-ion collision experiments. Their importance stems from their unique char-

acteristics in the extreme environment of a hot and dense plasma of quarks and gluons.

Quarkonia are predominantly produced in the very early stages of the heavy ion collision

due to their higher masses, and they subsequently behave almost independently as they

transit the various phases of the QGP. Their behavior is largely explained by the potential

model, which accounts for the interaction between quark and antiquark pairs within theQGP

medium. This potential model is a cornerstone of our understanding of the properties of the

thermal medium, as it allows us to infer crucial information about the medium temperature

and screening effects. By studying quarkonium-bound states in the QGP medium using the

potential model formalism, we gain valuable insights into the QGP characteristics, allow-

ing us to unravel the fundamental nature of matter at extreme conditions and contributing

to our understanding of the early universe evolution. Matsui and Satz first suggested the

concept of heavy quarkonium suppression in QGP, highlighting the Debye screening ef-

fect as a key factor in weakening the quark-antiquark interaction. This thesis explores the

anisotropic aspects of Debye screening and quarkonium potential arising due to the relative

motion between quarkonia and the thermal medium and the presence of strong magnetic

fields resulting from noncentral nuclear collisions.

The characteristics of the complex potential of a uniformly moving heavy quarkonium

through a hot and dense static QGP medium are investigated. The well-known notion of

the retarded potential in electrodynamics is extended to the context of the heavy quarkonia

by altering the static vacuum Cornell potential through Lorentz transformation to the static

frame of the QGP medium. The resulting potential in the vacuum is also corrected using

the medium dielectric permittivity to incorporate the Debye screening effect offered by the

QGP medium. To study the effect of the magnetic field, the one-loop gluon polarization

tensor is obtained in the presence of an external, constant, and homogeneous magnetic field

employing the Schwinger proper time formalism in Euclidean space. The gluon propagator

is calculated from the gluon polarization tensor and is used to calculate the dielectric permit-
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tivity in the presence of the magnetic field. The modified dielectric permittivity is then used

to compute the heavy quarkonium complex potential in static QGP. This research reveals

that the quarkonium potential exhibits an anisotropic nature, and it depends on the angle

between the quark-antiquark dipole axis and the direction of velocity and/or the magnetic

field direction. The velocity dependence and effect of the magnetic field on the quarkonium

potential and the thermal width are presented. The discussion includes numerical results for

both the real and imaginary components of the potential, accompanied by an examination

of the analytical expression of the potential, approximated under the constraint of a small

velocity limit. Further, the limitation of the strong-field approximation, as done in literature

in the light of heavy-ion observables, is discussed as the effect of the magnetic field is very

nominal to the quarkonium potential.
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Summary
We have examined the potential of a moving heavy quarkonium in a static QGP medium in

this thesis. Using the analogy of the Liénard-Wiechert potential in electrodynamics, where

the static potential is transformed using Lorentz transformation to find its form in a boosted

frame, we first derived the retarded potential of a uniformly moving heavy quark in the

vacuum. The resulting velocity and angular-dependent potential are then modified for the

inclusion of the Debye screening effect. The medium dielectric permittivity, a complex

quantity that results in a complex potential, has been used to accomplish this. Exact nu-

merical results are presented in the thesis, and the analytical expression for the real and

imaginary parts of the potential is derived in the small velocity limit. We have shown

how the potential varies with respect to a number of parameters, including temperature,

velocity, angular dependence, and the quark-antiquark distance. Additionally, taking into

account the existence or absence of string terms, we have provided a comparison between

the Cornell and Coulombic potentials. It is found that the string term dominates at a large

quarkonium separation distance, while the Coulombic contribution is dominated at a short

distance. Next, it is found that the anisotropy of the potential increases with increasing

velocity and that the spherical symmetry of the potential is broken by the motion of quarko-

nium through the QGP. It has also been observed that the potential’s velocity dependence

is just as significant as its temperature dependence. It turns out that the direction of motion

of quarkonium is where the real and imaginary parts of the potential from the correspond-

ing static case vary the most. At last, we determined the thermal width, which rises with

temperature and falls with velocity. This indicates that the velocity of quarkonium and the

medium temperature control the lifetime of a quarkonium-bound state.

Additionally, we have assessed the influence of a magnetic field on the heavy quarko-

nium complex potential. Firstly, we calculated the dielectric permittivity from the static

limit of the gluon propagator. The one-loop gluon self-energy in the presence of an exter-

nal magnetic field was used to derive this propagator in Euclidean space using Schwinger

proper time formalism. The quark-loop contribution to the gluon self-energy and coupling
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constant allows the magnetic field to enter the formalism. Then, we used the modified

dielectric permittivity to compute the in-medium heavy quarkonium complex potential.

Results showed that this potential becomes anisotropic and changes with magnetic field

strength and angle Θ between the quark-antiquark axis and the direction of the magnetic

field. At very high magnetic field strengths, the real part of the potential gets flattened due

to an increase in screening with eB. On the other hand, the imaginary part of the quarko-

nium potential undergoes a rise in magnitude at short distances, followed by a decrease at

long distances. Finally, we observed that the overall effect of the magnetic field on the com-

plex potential is rather small for any realistic magnitudes of the magnetic field generated

in heavy ion collisions. We computed the thermal widths of the ground and first excited

states of bottomonium (Υ,Υ′) and charmonium (J/ψ, ψ′) utilizing the imaginary part of the

potential. We found that the excited states (Υ′, ψ′) are more sensitive to the magnetic field

than the ground states (Υ, J/ψ). The effect of magnetic fields decreases with increasing

heavy quark mass and decreasing size, making the charmonium states more susceptible to

magnetic field strength than the bottomonium states. For the decay widths, as the tempera-

ture increases, the sensitivity to magnetic fields decreases, eventually disappearing at high

temperatures. We have further compared our results with the strong-field approximated

potential. We found that such an approximated potential does not even come close to the

potential without such an approximation for any realistic magnetic field value generated

in heavy ion collisions. This invalidates the strong magnetic field approximation usually

adopted in literature for the heavy quarkonium complex potential. For the realistic strengths

of magnetic fields, one needs to more general treatment, as has been attempted here. Also,

it should be mentioned that new divergences in the gluon propagators are introduced by the

weak-field expansion, and this requires regulation.
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Chapter 1

Introduction

1.1 A brief history

In the annals of modern physics, the early 1970s marked a pivotal period when the nature of

the strong force, one of the fundamental interactions governing the universe, was unveiled.

The development of Quantum Chromodynamics (QCD), a non-Abelian gauge theory that

concisely captured the complexities of the strong force, served as the trigger for this shift.

Exactly 50 years ago, three important papers were published in 1973 by David J. Gross

and Frank Wilczek [1, 2], and H. David Politzer [3], establishing a crucial turning point in

our comprehension of the strong force. The breakthrough idea of asymptotic freedom, a

cornerstone of QCD, was founded in these works. Asymptotic freedom was the profound

revelation that the coupling constant of the strong force decreases at high-energy scales,

rendering high-energy QCD processes perturbatively calculable. On the other hand, the

coupling constant rises at low energies, which accounts for the observed confinement of

quarks, one of the most mysterious phenomena in particle physics.

This was an era where the search for the strong force was entwined with an expand-

ing particle zoo that went beyond the protons and neutrons that make up atomic nuclei.

Physicists were bewildered by this zoo’s ever-growing collection of particles, all of which

were thought to be elementary. The theoretical framework that eventually brought order to

this chaotic ensemble was the “eightfold way,” an organizational structure drawn from the

SU(3) group representations [4]. This remarkable construct provided a successful ordering

of hadrons and predicted the existence of the omega baryon, which had been discovered
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1 Introduction

in 1964. Within this theoretical framework, the notion of quarks, elementary constituents

of hadrons, was born. The three flavors of quarks, up, down, and strange, were postulated

to support the intricacy of hadron structure [5]. To address the problem of constructing

specific hadrons while respecting the spin-statistics, a new quantum number called “color”

was attributed to the quarks [6, 7].

While the quark model provided sophisticated grounds for the observed hadrons, the

physical reality of these elementary particles remained purely theoretical [8]. The intro-

duction of the SLAC-MIT deep-inelastic scattering experiments, which involved electron

collisions with proton targets, marked the turning point [9, 10]. These investigations re-

vealed a scaling relation that could only be explained by presuming that the electrons scat-

tered off by pointlike non-interacting fermion constituents within the protons: the quarks.

It was a significant step towards confirming the existence of quarks as the fundamental

building blocks of matter [11–13].

With the emergence of quarks, it became apparent that the strong nuclear force ac-

countable for holding the quarks together within protons and other hadrons was surprisingly

weak at distances shorter than the radius of protons [14–16]. The need for a comprehensive

theory to explain this phenomenon, known as asymptotic freedom, was imperative. The

blueprint for this effort was found in Yang-Mills theory [17], a framework earlier success-

ful in describing the electroweak force. In 1973, Gross, Wilczek, and Politzer unveiled

the distinctive property, asymptotic freedom, of SU(3) Yang-Mills theory. This theoretical

framework, where quarks interact through the exchange of gluons, bore the name Quantum

Chromodynamics (QCD) and emerged as the backbone of the strong force [18].

A notable empirical anomaly of QCD was the absence of isolated colored quarks and

gluons in nature. KennethWilson offered a compelling explanation for thismystery, demon-

strating that SU(3) Yang-Mills theory yields an attractive potential that linearly increases

with the distance between quarks, thereby confining them [19]. Wilson’s work also intro-

6



1 Introduction

duced the revolutionary concept of lattice gauge theory, a tool instrumental in understand-

ing the low-energy behavior of QCD [20]. The first numerical simulations of SU(2) QCD,

based on lattice gauge theory and verifying the coexistence of confinement and asymptotic

freedom within a single theoretical framework, were carried out by 1980, largely due to the

efforts of Creutz [21]. The potential of quantum computer simulations of QCD, made pos-

sible by Kogut and Susskind’s Hamiltonian formulation of the lattice gauge theory, opens

up new avenues for investigation in this complex field [22].

A promising discovery in November 1973 confirmed the existence of the charm quark,

which was postulated by the consistency of electroweak interactions. A striking resonance

peak observed in electron-positron collisions at Brookhaven National Laboratory and Stan-

ford Linear Accelerator Center (SLAC) revealed the existence of the J/ψ particle [23–25].

This newly discovered quark species provided a convincing explanation of the J/ψ as a

bound state of charm and anticharm quarks, like the hydrogen atom, bound together by the

strong force (more about this particle in the context of QGP is the main topic of discussion

in this thesis). After that, the “top” and the “bottom” quarks were discovered, which added

to the particle spectrum’s richness and also added a source of CP violation to the standard

model [26–28]. These findings demonstrated how our knowledge of quark matter and its

crucial function in the subatomic universe is constantly changing.

On the other hand, the fundamental assumption of QCD is that the gluons are the carriers

of the strong force. This idea is hampered by the fact that gluons are color-charged particles

whose confinement prevents direct detection. Experimental confirmation of the spin-1/2

nature of quarks was achieved by detecting correlations in back-to-back hadronic jet events.

Observing three coplanar jets of hadrons arising from an underlying emission of a quark, an

antiquark, and a gluon, investigations at the PETRA collider at DESY built upon this and

marked a significant breakthrough [29–33]. This revealed the existence of gluons for the

first time, although only indirectly, and clarified the mysterious nature of the strong force

7



1 Introduction

carriers.

The spontaneous breaking of global symmetries emerged as a fundamental concept in

particle physics, resulting in massless Goldstone bosons. The classical version of QCD

with nearly massless light quarks has an approximate global SUL(2)×SUR(2)×U(1)×U(1)

chiral symmetry that rotates the up-down quark flavors and the left-right chiralities. Par-

ticularly, the vacuum of QCD spontaneously breaks this global chiral symmetry, yielding

the three massless bosons known as pions, which are about ten times lighter than protons.

This profound realization inspired about a decade before the birth of QCD by Nambu and

Jona-Lasinio, laid the foundation for an effective theory description of the long-distance

aspects of QCD [34], offering valuable insights into its nonperturbative aspects.

Another intriguing facet of QCD is its prediction that under certain conditions, a global

center symmetry can spontaneously break, which implies that quarks and gluons could be

liberated from the hadrons into a deconfined state known as quark-gluon plasma, potentially

occurring at extremely high temperatures [35]. The impact of dynamical quarks and their

chiral symmetry on the phase diagram of hadronic matter soon became apparent. This

theoretical understanding culminated in the experimental confirmation and exploration of

QGP in the heavy ion collision experiments at Brookhaven National Laboratory (BNL) and

the European Organization for Nuclear Research (CERN).

In this chapter, we venture on a journey to explore one of the fascinating realms of

the union of theory and experiment that has revolutionized our understanding of the strong

force. We delve into theworld of heavy quarkoniumwithin the context of QGP, amysterious

state of matter that challenges our understanding of the fundamental forces shaping the

universe.

8



1 Introduction

Figure 1.1: TheQCD running coupling constant plotted as a function ofmomentum transfer.
Figure taken from [36].

1.2 Heavy ion collision and quark-gluon plasma

QCD is a gauge field theory that is integral to the standard model of particle physics and

is specifically used to explain the complexities of strong interaction [37]. One remarkable

feature of QCD is the asymptotic freedom, which arises from the non-Abelian nature of the

SU(3) group that constitutes its basis. The principle of asymptotic freedom suggests that

when the momentum exchange between the quarks and gluons increases, the interactions

between them become weaker (see Fig. 1.1). This means the strength of the strong interac-

tion, quantified by the coupling constant αs, is inherently connected to the momentum scale

of the interaction. A perturbative technique (pQCD) can be used to investigate processes

where αs is small, and there are significant momentum transfers among partons [38]. This
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1 Introduction

method requires αs to be expanded to higher orders [3], where the contributions from lower

orders are quite significant.

Nevertheless, the perturbative framework of QCD breaks down when dealing with cal-

culations related to low-momentum events since higher orders become apparent. This shift

into a non-perturbative regime, in which the coupling constant grows, is an extremely im-

portant subject for comprehending important features of the strong interaction. Interest-

ingly, confinement arises in this non-perturbative regime, indicating that quarks and gluons

are still elusive and outside the direct observation. The only composite entities that are

the subject of detection are hadrons, which are free of any net color charge. Moreover,

spontaneous chiral symmetry breaking is a crucial aspect of strong interaction in the non-

perturbative domain [39]. This process adds a substantial amount to the mass of hadrons,

which includes protons and neutrons, among other particles. Effective Field Theories [40]

and Lattice QCD [41,42] are two theoretical approaches that show promise for exploring the

complexities of the non-perturbative features of strong interactions. These models provide

a foundation for understanding the non-perturbative terrain of strong interactions.

Gaining insight into the characteristics of extended systems that are subjected to strong

interactions offers a special way to explore the depths of strong force. Condensed matter

physics examines emergent phenomena of electromagnetic interaction, such as magnetism

and superconductivity. These occurrences manifest as collective behaviors rather than di-

rectly arising frommicroscopic interactions. The development of a many-body systemwith

quarks and gluons at high energy density is the goal of “QCD condensed matter.” Raising

the temperature of the system, characterized by near-zero net baryon density, to levels ex-

ceeding 150–160 MeV (≳ 1012 K) brings about a state of plasma of quarks and gluons.

In QGP, two major basic characteristics of low-temperature QCD, confinement and chiral

symmetry breaking, cease to exist [43–45]. Calculations revealed that a strongly interacting

system featuring zero net baryon density evolves seamlessly from a hadronic state to the
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deconfined state of QGP as its temperature rises to approximately 155MeV.

As no discontinuities are observed in thermodynamic variables, a crossover transi-

tion unfolds, allowing deconfined and confined hadronic matter to coexist, as depicted in

Fig. 1.2. A substantial surge in the energy density normalized to the fourth power of tem-

perature per the Stefan-Boltzmann law indicates the liberation of considerable new degrees

of freedom around the deconfinement temperature. Interestingly, the QCD medium char-

Figure 1.2: A schematic QCDphase diagram and the phases of the expandingQGP traverses
in heavy ion collisions with different center of mass energy. Figure taken from [46].

acterized by zero net baryon number echoes the conditions of the early universe, where

deconfined quarks and gluons subsequently hadronized around cross-over temperature Tc.

A counterpart situation, marked by increased baryon density and relatively lower tempera-

ture, might also lead to the generation of the QGP. This state could potentially exist within

the cores of neutron stars [47]. In laboratory settings, a condition reproducing the early

universe can be replicated by colliding two heavy ions at energies in the multi-TeV range.

11
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The Large Hadron Collider (LHC) at CERN [48] and the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory are instrumental in enabling such collisions.

1.3 Stages of heavy ion collision experiment

We create QGP in the laboratory by colliding the two heavy nuclei ultra-relativistically.

This complex process can be outlined into distinct stages: (1) Initial State, characterized by

universal wave functions of the colliding nuclei; (2) Large-Q2 (the square of 4-momentum

transfer) interactions of partons from the initial projectiles, setting the stage for further inter-

actions; (3)Small-Q2 interactions leading to pre-equilibrated parton gas; (4) thermalization

and further expansion of the QGP; (5) Hadron formation as QGP cools down; (6) chem-

ical freeze-out of hadrons where the chemical composition of particle species stabilizes;

(7) kinetic freeze-out where interactions among hadrons cease away; (8) Free-Streaming of

stable particles to the detector unobstructed for measurement [49]. Figure 1.3 provides a

graphic representation of the details of this stage-by-stage process [50].

When heavy ions collide, they excite an extraordinarily dense parton region that deposits

energy and entropy in the collision overlap zone. The impact parameter of colliding nuclei,

denoting the separation between the centers of the Lorentz contracted nuclei as illustrated

in Fig. 1.3, defines the overlap zone and determines the number of nucleons participating

in initial inelastic interactions at least once and the total count of inelastic nucleon-nucleon

collisions. When the impact parameter is minimal, the participants and collisions are high,

and vice versa. The maximum value for participants is 2A if the colliding nuclei have an

equal number of nucleons (A). Nucleons not engaged in the collision are referred to as

spectators, prevailing in their path along the beam direction. A plethora of QCD processes

emerge in the context of inelastic nucleon-nucleon interactions, each with a discrete spec-

trum of momentum transfers and a specific role.
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Figure 1.3: The evolution of heavy-ion collision at LHC energy. Figure taken from [50]

The smaller-Q2 interactions take place immediately after the collision against the back-

ground of a weakly coupled pre-equilibrium stage. This, in turn, opens the door for these

processes to create increasingly softer partons, which in turn helps to develop a strongly

coupled QGP state. The hard processes stemming from the large-scale interactions, whose

rate is determined by the number of initial hard collisions, play a major role in generating

high-momentum gluons and heavy quarks. The heavy quarks generated in hard processes

can combine to form quarkonia, which are the bound states of heavy quarks and antiquarks.

Nevertheless, the production rate of quarkonia is suppressed due to the screening of the

binding force between the quark and antiquark by the presence of the color charge of quarks

and gluons of the QGPmedium. This suppression exhibits a close relationship with the tem-

perature of the QGP.

Investigating QGP evolution in processes dominated by soft interactions beyond 1 fm/c

yields fascinating findings. The QGP constituents are strongly coupled, and the mean free
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path is expected to be significantly smaller than the size of the QGP fireball. Consequently,

numerous interactions drive the expansion of the QGP. This expansion is largely affected

by the non-uniform distribution of energy density within the initial state across spatial di-

mensions, which results in a pressure gradient within the early stage of the QGP. The length

scales of these gradients exceed the mean free path, and the subsequent evolution exhibits

characteristics that are described by the principles of hydrodynamics. The hydrodynamic

expansion of QGP demonstrates a radial pattern as a consequence of higher pressure at the

center of the QGP compared to the periphery. The speed of this hydrodynamic expansion is

mainly influenced by the bulk viscosity of the QGP liquid drop, reflecting its resistance to

changes in volume. An anisotropic flow emerges as a consequence of directional-dependent

pressure gradients due to spatial anisotropies present in the initial state originating from

the noncentral collision of nuclei when the impact parameter is nonzero. These spatial

anisotropies transform into momentum anisotropies through the hydrodynamic response.

This transformation process is governed by the shear viscosity of the QGP, a quantity that

resists the deformation in the fluid context.

Due to the nuclei’s positive charge, the motion of the incoming beams induces a large

magnetic field. This magnetic field arises from the protons within the colliding nuclei,

which are moving with relativistic energies. While for central collisions, the magnetic fields

cancel out, for non-central collisions with finite impact parameters, the net magnetic field

can be very large, which can be of the order of QCD scale. This magnetic field can exert a

huge influence on the trajectory of quarks during theQGP phase. The chiralMagnetic Effect

(CME) is one interesting phenomenon that appears within this magnetic environment. The

CME is believed to result from strong parity violations locally and splits positively charged

and negatively charged quarks in the QGP. The electrically charged quarks can be moved

according to the electric field induced by the decaying magnetic field. According to Lenz’s

law, this effect prolongs themagnetic field decay. The high-temperature QGP also generates
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thermal radiation, which follows a distinctive behavior in the QGP as it doesn’t interact via

the strong force. This offers a valuable way to gain information regarding the temperature

at early to the later stages of QGP. Furthermore, there is a tendency towards the production

of strange quarks in the QGP stage. These quarks have masses less than the temperature

of the QGP and, therefore, below the deconfinement temperature. This enhancement of

strange quark production highlights the complexity of phenomena observed in this exotic

state of matter.

The hadronization process starts occurring in the regions of the QGP that gradually

cool below the critical transition temperature as the QGP expands. Since the temperature

and energy density of this medium are expected to decrease with the increase in distance

from the collision center, and lattice QCD insights suggest that the transition from the QGP

to hadrons occurs as a smooth cross-over, the hadronization process happens at different

times and different places of the phase-space. The extremely energetic components of a jet,

known as hard partons, will travel along a path of hadronization and fragmentation similar

to that of elementary collisions. The patrons at lower momenta can combine into hadrons

via coalescence if they share space and momenta like other partons. The recombination of

heavy quarks with their corresponding heavy antiquarks is also supported by this complex

fabric of interactions within the QGP. Quarkonia is created as a result of this fusion, pro-

viding a further route for producing closed heavy hadrons. This supplementary mechanism

is a counterbalance to the quarkonium suppression in the QGP.

A variety of particles are produced, including protons, kaons, and pions, as a result of

the hadronization process. Here, the energy density of the hadron gas reaches a level that

allows for inelastic collisions among the particles, which in turn would drive a change in

the chemical compositions of different particle species. In particular, the loosely bound

deuterons are subjected to these interactions, as their formation or dissolution can readily

take place. Such interactions continue until the chemical freeze-out temperature is reached;
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at that point, the composition of particles is finally fixed. Elastic collisions persist beyond

this stage and only terminate when the kinetic freeze-out temperature is achieved, generally

happening at 10 fm/c. Beyond this stage, the momenta of particles are fixed and traveled

toward the detectors to undergo detailed measurement.

1.4 Signatures of quark-gluon plasma

A variety of experimental approaches are utilized to investigate each phase of heavy-ion

collisions, spanning the initial state, the QGP phase, and the hadronic phase. These probes

demonstrate varying degrees of sensitivity to the distinct phases. A fundamental parame-

ter crucial to many of these probes is the Lorentz-invariant differential yield of final state

particles, which is defined as:

E
d3N

dp3
=

1

2πpT

d2N

dpTdy
, (1.1)

the number density of the particle momentum scaled by the energy (E). This will depend

upon the transverse momentum, pT , and rapidity, y, of the measured particle species under

consideration. Pseudorapidity (η = − ln tan (θ/2), θ is the polar angle of the particle with

respect to the beam axis) is employed in instances where the particle species is unknown,

and both are interchangeable when the particle energy significantly exceeds its mass. This

section will discuss only the probes to the QGP phase, not the initial state and hadronic

phase.

The formation of hot and dense nuclear matter occurs within an incredibly small region

of space, and it persists for a very short period, measuring just a few femtometers and

lasting for about ten femtoseconds due to the fast expansion and cooling. At the detector

end, the observations are restricted to the energies, momenta, and azimuthal dependences of

colorless particles, such as hadrons, leptons, and photons, which emerge when the nuclear

matter has transitioned into a relatively cold and non-interacting gas. This situationmay also
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manifest when excited nuclear matter is created instead of the QGP. Therefore, to validate

the creation of the QGP in heavy ion collision and analyze its thermodynamic and transport

properties, we rely solely on the observed signatures.

For precise observations, it is crucial to distinguish the medium effects from the other

stages of evolution. Based on the temperature, which is a pivotal parameter influencing the

medium expansion, observables can be classified into two groups: those associatedwith low

temperatures, referred to as soft probes, and those related to high temperatures, known as

hard probes. Soft probes are employed to describe collective behaviors and thermodynamic

properties, such as the average temperature of the medium, as they are produced throughout

the QGP evolution. These observables include low transverse momentum hadrons, thermal

photons, di-leptons, etc. In contrast, hard probes consist of high-momentum particles pro-

duced in the early stages of the collisions, like heavy quarks and quarkonia. They act as

independent degrees of freedom while traversing the created medium. A key observable re-

lated to hard probes is the suppression of quarkonia, which offers insights into the medium

temperature and color screening. Among the various indirect probes, the most powerful

ones include collective flow, jet quenching, and quarkonia dissociation. The observations

of these events in heavy-ion collision experiments at RHIC and LHC have explained the

near-perfect fluid and strongly coupled nature of the QGP.

1.4.1 Anisotropic flow

An experimental evidence for creatingQGP in heavy-ion collision experiments is the anisotropic

emission patterns of charged particles within the plane transverse to the beam direction.

The non-central collisions of the Lorentz contracted nuclei create an almond-shaped over-

lap region. Consequently, immediately after the collision, the initial state exhibits spatial

anisotropy. The initial momenta of the newly created particles are predominantly oriented

in the longitudinal direction, with transverse momenta distributed isotropically. The final
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distribution stays isotropic if there is no interaction between these particles. On the other

hand, local thermal equilibrium is probably reached when interactions take place, allow-

ing the system to be represented in terms of thermodynamic parameters such as temper-

ature and pressure. In such instances, the spatial anisotropy of the initial state causes an

anisotropic pressure gradient in the transverse plane due to these interactions and collisions

of the medium particles. Consequently, the medium undergoes evolution, resulting in a

momentum anisotropy in the final state as it approaches equilibrium [51,52].

Over the past two decades of heavy ion collision history, the anisotropic flow has been

observed by numerous experimental collaborations at facilities such as the Alternating Gra-

dient Synchrotron (AGS), Super Proton Synchrotron (SPS), RHIC, and, more recently, at

the LHC [53]. The collective flow phenomenon can be analyzed by expressing the observed

particle spectrum measured in the Fourier series, allowing researchers to extract valuable

insights into the features of the medium and its evolution,

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(
1 +

∞∑
n=1

2vn cos (n (ϕ− ψR))

)
, (1.2)

where ϕ is the azimuthal angle of an out going particle and ψR is the reaction plane angle.

The Fourier coefficients vn describe the various flow modes and can be measured as

vn = ⟨cos(nϕ)⟩. (1.3)

For example, v1 corresponds to directed flow, v2 gives elliptic flow, v3 refers to triangular

flow, and so forth. Hence, researchers have extensively analyzed the implications of mo-

mentum anisotropy, often referred to as elliptic flow, using a variety of methods. Elliptic

flow of different particle species in Pb–Pb collisions at √sNN = 5.02 TeV for different

centrality classes in comparison to various models are shown in Fig 1.4. It is essential to

mention that this momentum anisotropy is present at every stage of the space-time evo-

lution, gradually developing non-zero values as soon as the space-time evolution begins,
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predominantly within the hydrodynamical region [51, 52]. Moreover, it has been discov-

ered that the QGP displays an exceptionally small shear viscosity (η) to entropy density

(s) ratio, which may be among the smallest ratios in all of the known fluids in nature. A

wide range of theoretical studies, from kinetic theory to holographic theory, corroborate

this fascinating discovery [54, 55].

Figure 1.4: pT -differential v2 for different species of particles in Pb–Pb collisions at√
sNN = 5.02 TeV for various centrality classes in comparison to the EPOS 3.4 [54],

Catania [56], and CoLBT [57] models. Figure taken from [50]

1.4.2 Jet quenching

When a scattered parton possesses a transverse momentum greater than a few GeV/c, it

ventures on an independent evolutionary trajectory, starting the journey before the first

femtosecond of heavy ion collision. With a substantial spatial extent and lifespan of 10

femtoseconds, QGP serves as the environment through which this high-energy parton tra-

verses. It generates a jet shower that simultaneously goes through its own dynamic evolu-
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tion and passes through the rapidly cooling and expanding QGP. During this process, the

color-charged constituents of the jet shower interact with the medium color-charged con-

stituents, leading to modifications in the shower itself [58,59]. These modifications, called

“jet quenching,” provide a singular and profound insight into the structure and dynamics of

the QGP since they are both theoretically calculable and physically observable. From an

experimental perspective, there are a few unique manifestations that indicate jet quenching:

• Energy loss measured through inclusive yield suppression: medium-induced energy

transport to huge angles to the jet direction;

• Medium-induced modification of jet constituents distribution, observed via the radial

energy profile, fragmentation functions, and jet substructure;

• Jet centroid deflection caused by the soft multiple scattering within the QGP observed

as medium-induced acoplanarity of coincidence measurements.

As it provides a consistent and thorough understanding of this phenomenon, this multi-

modal method of evaluating jet quenching offers an invaluable opportunity. The contribu-

tion it makes to our comprehension of the fundamental mechanisms of jet quenching in the

QGP is substantial. Interactions between high-energy partons and the QGP can be broadly

categorized into elastic interactions involving the propagating parton and the constituents of

the medium. Additionally, there are inelastic interactions characterized bymedium-induced

gluon radiation events. The latter processes occur concurrently with the spontaneous split-

tings of the parton shower, a phenomenon also observed in proton-proton (pp) and other ele-

mentary collisions, even in the absence of the QGP, commonly referred to as vacuum emis-

sions. The radiative processes are the predominant energy loss mechanism at high pT . This

has been analyzed [60,61], and the results show that interference of scattering and emission

processes cause a distinctive energy loss dependence on the in-medium path length. These
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studies generally arrive at the conclusion that radiative energy loss predominates over col-

lisional energy loss, which means that the amount of energy lost by a fast-moving jet does

not depend linearly on the path traversed through the QGP medium [62]. Furthermore, the

experiment shows that the heavy quarks with radiative energy loss is strongly dragged in

the QGP medium [63].

1.4.3 Dileptons and Photons production in QGP

The quarks and anti-quarks interact in QGP to form virtual photons γ∗, which subsequently

decay into dilepton pairs (leptons l−and anti-leptons l+). The Drell-Yan process is the most

common mechanism of dilepton production in QGP:

q + q̄ → γ∗ → l+ + l−. (1.4)

The created leptons and anti-leptons pass through the collision region. Given that the lepton-

quark interaction is electromagnetic in QGP and the cross-section ∼ (α/
√
s)2 (where α =

1/137 is the fine-structure constant, and
√
s is the lepton center-of-mass energy) is much

smaller than the strong interaction cross-section. Leptons are, therefore, unlikely to interact

with the QGP after creation and to get at the detector directly. We can determine whether

a QGP state has been achieved by examining the lepton pairs, which also convey infor-

mation about the thermodynamic properties of the medium at the time of their generation.

The other probes of the early collision stage are real or virtual direct photons, which mate-

rialize a lepton-antilepton (l+l−). In the QGP, they are also generated by quark-antiquark

interaction:

q + q̄ → γ + g. (1.5)

This is known as the annihilation process. The analogous electromagnetic processes

qq̄ → γγ is permitted, but it has a very smaller cross-section compared to qq̄ → γg by

a factor αe/αs. Because photons do not further interact with the QGP once they are pro-
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duced, photon analysis provides exactly the same information as dilepton. Their production

cross-section is exceedingly modest since it is proportional to the square of the fine struc-

ture constant. Their mean free path, even in an extremely dense QGP, is approximately

50,000 fm, which is far larger than any heavy-ion fireball, as their interaction cross-section

is negligible. They convey pristine information about the momentum distributions of their

parent quarks and antiquarks into the detector and exit the collision zone without any further

interaction, in contrast to all other hadronic probes. Real and virtual photons are emitted

throughout the evolution of heavy ion collision, and their measured spectrum thus integrates

over the expansion history of the QGP fireball. Unfortunately, a huge background of in-

direct photons and a significant background of uncorrelated lepton pairs originating from

electromagnetic and weak decays of hadrons after hadronic freeze-out cause noise problems

for the directly emitted photons and dileptons. This makes determining the proper physics

from the measurement of these pure electromagnetic signals challenging [64–66].

1.4.4 Strangeness enhancement

One of the first signals proposed for the QGP formation is an enhanced strangeness produc-

tion in heavy-ion collisions relative to pp collisions [67–70]. This establishes a connection

between the hadronic and partonic phases as well. Due to the large mass of the strange

quark (ms ≃ 170MeV) compared to up and down quarks, the production of particles con-

taining strange quarks is typically suppressed in hadronic processes. The dominant pro-

duction mechanism of ss̄ pairs involves gluons only when the matter becomes QGP. The

temperature in QGP is of the order of strange quark mass, and the production of ss̄ pairs in

interactions of two gluons (gg → ss̄) should be favored by the quick filling of the phase

space available for up and down quarks. Strange quarks are created in pair-production pro-

cesses. Unlike the up and down quarks, they are produced in collisions between constituents

of the plasma. Therefore, the ss̄ pairs production is enhanced in the presence of QGP.
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A few of the strangeness possessing baryons are Λ(uds), Ξ(qss) and Ω(sss) etc. Some

collaborations WA97 [71] and NA49 [72] have clearly established the relative enhance-

ment of (anti-)hyperon yields (Λ,Ξ andΩ ) in Pb-Pb collisions compared to p-Pb collisions.

NA49 collaboration has observed a prominent and sharp maximum in the excitation func-

tion ofK+/π+ ratio at 30A GeV [73]. This sharp maximum is referred to as “horn”, which

is not seen in p+p collisions. As the predominant carrier of anti-strangeness at SPS energy,

K+ serves as a reliable indicator of the overall strangeness production in the collision. The

strangeness to entropy ratio is expressed as K+/π+. The statistical model predicted a dra-

matic increase in this quantity, suggesting the early stage as a result of the transition to a

deconfined state. Ξ− and Λ′ are examples of other strange particles for which the same

collaboration has also observed a similar maximum at the same beam energy. The NA49

group’s investigation into the excitation function of strangeness production has rekindled a

thought-provoking discourse regarding the significance of strangeness as a signature for the

deconfinement phase. The analysis of the strangeness enhancement in heavy-ion collisions

is significantly enriched by complementary lattice investigations.

1.4.5 Quarkonium suppression

The bound states of a cc̄ pair (charmonium) or bb̄ pair (bottomonium), known as heavy

quarkonia, have been the focus of much research since their discovery in the 1970s. While

much progress has been made, a full understanding of their characteristics has to be at-

tained. Within the framework of QCD, the examination of their creation processes, the

rich spectroscopy of the many states, their decay modes, etc, is still a vibrant research

area [74]. Additionally, quarkonium states are indispensable for understanding the QGP

and its characteristics. It was discovered early on that immersing quarkonia in a deconfined

medium could have varying effects on the binding of the heavy-quark pair. The QCD force

is screened by the large density of free color charges in the QGP, which finally causes the
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quarkonium to dissolve [75]. A large number of theoretical and experimental research have

been inspired by this straightforward yet profound principle, and they have shown novel and

occasionally unexpected consequences. It was the goal of early research to directly relate

the temperature of the deconfined phase to the suppression of the quarkonium states [76].

The intricate spectroscopic structure of quarkonia, where binding energies range from a

few MeV (ψ(2S)) to more than 1 GeV (Υ(1S)), could result in a “sequential suppression”

as temperature rises, where the weakly bound states melt at near transition temperature

Tc, and the more tightly bound states survive up to a dissociation temperature ∼ 2Tc. In

nuclear collisions, the temperature of theQGP can, in principle, bemanipulated by adjusting

the centrality of the collision or its center-of-mass energy. Quarkonium could serve as an

ideal thermometer for the medium if theoretical investigations could precisely determine

the melting temperature for each state. The above views hold true when considering a

static picture of the medium in which the quarkonium states are submerged. Several effects

contribute to a more complex depiction when studying the dynamics of the bound states

and their interaction with an expanding medium. It is specifically a multi-stage process that

forms the quarkonium states [40] (creation of the qq̄ pairs and forming their bound states)

that extends across a period of time encompassing a substantial portion of the collision

history.

Moreover, the imaginary part of the quarkonium potential, computed at T > 0 in ef-

fective field theories, corresponds to the collisional damping of the states. This leads to a

loss of correlation in the pair and induces in-medium changes in the spectral functions [77].

Moreover, in a system with a high heavy quark multiplicity, the recombination of previ-

ously destroyed ones or the combination of uncorrelated pairs from various hard scattering

processes can result in a large increase of the quarkonium yields [78], counteracting the

suppression. Quarkonia generated through the recombination process can acquire collec-

tive flow effects if there is a partial or complete kinetic equilibrium among the deconfined
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heavy quarks within the medium [79]. Lastly, quarkonium-meson breakup effects may

also affect the yields during the hadronic stage of the collisions; these effects may be espe-

cially significant for weakly bound states [80,81]. Quarkonium generation in the hot QCD

medium is treated theoretically in a variety of ways, including statistical hadronization,

transport models, hydrodynamics, and the more modern technique of quantum dynamics.

A more detailed description of quarkonia, especially in the potential model formalism,

will be presented in the next chapter.

1.5 Magnetic field in heavy ion collision

Heavy-ion collision experiments offer a sound environment to study hot nuclear matter in

the magnetic field. Heavy-ion collisions are expected to produce an intense electromagnetic

field due to the oppositely moving ultra-relativistic protons, especially in the early stages

of the collision. The estimated peak value of the magnetic field strength for the Pb+Pb

collision is eB = 15m2
π = 1.5× 1019Gauss at the LHC energies [82] (The LHC produces a

magnetic field that is ten times greater than the RHIC). The ALICE collaboration studied the

directed flow ofD/D0 mesons and charged hadrons to probe the presence of this immensely

powerful magnetic field. Intriguing evidence of the presence of a strong magnetic field in

the heavy-ion collisions is provided by these LHC results in conjunction with the RHIC

observations [83]. The heavy-ion collision experiments produce magnetic fields that are

among the strongest known in the current universe, bigger than those produced by neutron

stars. In addition to gold, the RHIC has conducted collision tests with heavy nuclei such as

Cu+Au and U+U. The electromagnetic field generated in these systems has been studied in

Refs. [84–88].

Due to the larger charge and size of the Au nucleus compared to the Cu nucleus, the

collisions involving Cu+Au exhibit geometric asymmetry. This may generate a finite elec-
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tric field in addition to the magnetic field at the order ofm2
π in the reaction plane Au-to-Cu

direction [87]. However, the magnitude of the magnetic fields is in the same order as that

of Au+Au collisions. This has been observed that the event-averaged strength of the mag-

netic field in the U+U collisions at
√
sNN = 193 GeV is less than in Au+Au collisions at

√
sNN = 200 GeV [88]. The electrically charged heavy nuclei cause an electric current

while moving at relativistically high velocity vz =
√
1−

(
2mN/

√
sNN

)2 along the beam
direction (z- axis) ( mN is the nucleon mass) at a non-zero impact factor b which in turn

generate the magnetic field. The magnetic field produced in the heavy-ion collision can

approximately be estimated employing the Biot-Savart law and take the following form,

−qfBy = 2ZNγ
q2f
4π
vz

4

b2
, (1.6)

where γ−1 =
√

1− v2z is the Lorentz factor and ZN is the atomic number of the heavy

nuclei. The magnetic field is pointed perpendicular to the reaction plane. The expression

of the magnetic field from the Biot-Savart law is very primal. Better estimations of the

magnetic field have been done by combining the knowledge of nucleon distribution func-

tion in the nuclei [89, 90]. Such studies used the Liénard-Wiechert formula to estimate the

electromagnetic fields.

Advanced transport models have been used to study various aspects of electromagnetic

fields in a heavy-ion collision, including the correlation between matter geometry and the

fields, the event-by-event fluctuations of the fields, and the dependence of the impact factor

and collision energy on the generated electromagnetic fields [91, 92]. The life span of the

magnetic field in themedium is still unknown despite recent advances in measuring the field

strength. As of this point, there is no adequate theory or model to explain how the magnetic

field evolves during heavy-ion collisions. Analyses showed that the electrical conductivity

σ of the QGP medium strongly affects the decay time of the magnetic field in the medium

[93,94]. This can be comprehended from Faraday’s law of electromagnetic induction. The
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decay of a magnetic field induces an electric current in the plasma, subsequently generating

a new magnetic field. The time evolution of the magnetic field in the static QGP can be

expressed as,
∂B⃗

∂t
=

1

σ

(
∇2B⃗ − ∂2B⃗

∂t2
+ ∇⃗ × J⃗ext

)
, (1.7)

where J⃗ext is the external current due to the movement of protons. According to the equa-

tion, the magnetic field decays much more slowly in a highly conducting medium than it

does in a vacuum. The majority of investigations on the characteristics of magnetized QGP

assumed a constant magnetic field. The charged fermions move in a cyclotron fashion due

to the steady homogeneous magnetic field. The inverse Larmor radius quantifies the cur-

vature of the charged particle in the magnetic field. It is necessary to take into account

the Landau quantization of the cyclotron motion when the magnetic field is high enough.

This suggests that the thermal energy particles are substantially smaller than the cyclotron

frequency.
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Chapter 2

Quarkonia in quark gluon plasma

The QGP medium created in heavy-ion collision (HIC) experiments exhibit a remarkably

small size (∼ 10 fm) and an extremely brief duration (∼ 10−23 sec) [95–98]. The tran-

sient nature of this medium limits the feasibility of exploring its properties quantitatively

using external probes. Consequently, reliance is primarily placed on internal probes to

scrutinize the created matter. In this context, heavy quarks (charm and bottom) and their

bound states, namely heavy quarkonia, hold significant importance [99–102]. Due to their

elevated masses, these particles are predominantly produced at the early stages following

collisions and behave almost as independent degrees of freedom throughout the various

phases of the created matter. However, they are minimally affected by the QGP medium

as they pass through it, resulting in distinctive signatures observed in their final yields at

detectors. In the seminal work by Matsui and Satz [75], it was suggested that the produc-

tion of heavy quarkonia would be suppressed in high-energy heavy-ion collisions due to

the Debye screening provided by the plasma, reducing the effective interaction between

constituent particles. This suppression phenomenon has since become a central focus for

researchers aiming to unravel the complex interplay between heavy quarkonia and the QGP,

driving advancements in both theoretical frameworks and experimental methodologies.

2.1 Quarkonium bound states

The bound states of heavy quarks and their antiquarks are known as heavy quarkonia. The

discovery of the J/ψ meson, whose mass is around 3.1 GeV, was the first indication of the
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existence of heavy quarks. J/ψ is the bound state of a charm quark (c) and its antiquark (c̄),

where the masses of these quarks are estimated to be 1.27 GeV. Charmonium is the com-

mon term for the cc̄ bound state. Nearly simultaneously, J/ψ was found at Stanford Linear

Accelerator Center and at Brookhaven National Laboratory in 1974. The next mass level

up is represented by the Υ meson, which has a mass of roughly 9.5 GeV and is composed

of a bottom quark-antiquark pair (bb̄), which has a mass of 4.18 GeV. Bottomonium state is

the common terminology for the bb̄ bound state. Charmonium and bottomonium resonance

states have extended lifetimes because of their incredibly small widths. Because of this,

after they are formed in the collision, they would not start to decay until they have left the

collision zone. Nevertheless, the open charm mesons, D(cū), and beauty mesons, (B(bū),

can also result from the binding of charm and bottom quarks with light quarks. In compari-

son to the normal hadrons, the binding energies of cc̄ and bb̄ ground states are significantly

larger, and their sizes are much smaller than the typical hadronic scale Λ ∼ 0.2 GeV. Ad-

ditionally, a variety of stable bound states with various quantum numbers other than the

low-lying ground states of charmonium and bottomonium can be possible. The excited

states are larger than the ground state and less tightly bound.

The quarkonium masses are primarily caused by the heavy charm and bottom quark

masses, whereas the masses of light hadrons are typically produced by the interaction be-

tween the nearly massless quark constituents. This allows the non-relativistic potential

model to compute the quarkonium state properties. The separation between hadrons be-

comes smaller than their individual sizes as the energy density of matter increases. At this

point, their wave functions begin to overlap and form the deconfined medium of quarks and

gluons. Lattice studies confirm that heavy quarkonia can even survive in the deconfined

medium since their size is of the same order as parton separation in the deconfined state.

Once such a medium is created in an ultrarelativistic nucleus-nucleus collision, it expands,

cools, and harmonizes after crossing the confining point. Understanding the properties of
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the quarkonia in the deconfined medium using potential model formalism is the central idea

of this thesis.

2.1.1 Debye screening

The electric field inside a perfect conductor is zero, as is known from the classical picture of

electromagnetic theory. Conductors have an accumulation of free electrons. The chargewill

move to its surface if an external electric field is applied to cancel the electric field inside

the conductor. Also, a test charge placed inside a conductor will find its way to the surface.

The electric field is screened in a way. The screening prevents the electric field lines of

force from penetrating and entering the conductor. For an insulator, this phenomenon is

obviously not going to occur. When enough thermal energy is present, the intermolecular

bonds are broken, allowing molecules to move freely and become a gaseous state. We can

ionize the gas to have freely moving ions and electrons by increasing the temperature even

further. This state of matter is new because it differs from previous states in a few intriguing

ways. Previously suppressed degrees of freedom are introduced into the play during this

phase. Matter conducts electricity and is not electrically neutral when it is in the plasma

state.

Placing a test charge in the medium causes a fascinating phenomenon. The thermalized

medium alters the electric field that was created as a result of the test charge. The potential

now shifts from being Coulombic to Yukawa. As a result, a new scale that describes the

electric field shielding surrounding the test charge emerges. This new quantity characteriz-

ing plasma is referred to as Debye screening length. Anywhere beyond the Debye radius,

the electric field falls exponentially to zero. The electric field is now contained inside the

sphere of influence by the Debye screening. The electric field appears as follows for a test

charge Q in the medium,

V (r) = −
Q

4πϵ0r
e−r/rD , (2.1)
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where rD is the Debye radius, which describes the plasma screening. The influence of

the test charge is limited approximately within the Debye sphere. Imagine now an electric

dipole with a length greater than the Debye radius. It will dissociate into free charges and

cease to be a dipole, becoming a part of the medium instead.

When there are three distinct colors and randomly moving color charges, one could also

anticipate a similar effect in QGP. We shall now investigate a color dipole in a deconfined

medium instead of an electric dipole. They are tightly bound in a colorless environment or

a vacuum. The nonrelativistic potential, which will be presented shortly, can characterize

the bound state of such a heavy quark anti-quark pair. The prime motive is now to study

those bound states in QGP. The potential is modified by the plasma in a very similar manner

to electromagnetic plasma. This effective potential permits us to overlook the medium by

considering the influence of the medium in the modified potential. Additionally, bound

states of heavy quarkonia in the medium are provided by this potential. Clearly, none of

the bound states will be larger than the Debye sphere. Hence, those vacuum-bound states

with sizes greater than rD cannot exist in the medium. They are not present in the medium

and cannot be produced as long as the temperature stays unchanged. The missing bound

states can predict both the temperature of the plasma and the creation of QGP. H. Satz and T.

Masui originally suggested the concept of using suppression of quarkonia as a probe in static

plasma [75], and it is still one of the most important recommendations for comprehending

the medium.

The Debye radius can be decreased by raising the temperature. As a result, shorter

and shorter color dipoles might melt in the medium as the temperature rises. In essence,

a QGP thermometer is introduced by this sequential melting [103]. One can forecast the

medium temperature just by understanding which states are melted. Considerable research

has been done on the sequential suppression pattern for various charmonium [104] and bot-

tomonium [105] states. In the context of lattice QCD and a number of phenomenological
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models, the threshold temperature for various states is computed. To determine the dissoci-

ation temperature for various quark-antiquark bound states, more meticulous and accurate

calculations in lattice and other branches can be used to research quarkonium states in the

deconfined medium.

Figure 2.1: An illustration of the charmonium spectrum along with the decay channels of
each state [106]. Figure taken from [107]

2.2 The Potential model

Given the significantly larger mass of heavy quarks compared to the QCD scale, the non-

relativistic potential model proves to be a valuable tool for investigating the bound states of

quarkonium. This model offers a reliable framework for understanding quarkonium spec-

troscopy (see Fig. 2.1). The Cornell potential [108,109] can be used to define the potential

for a QQ̄ pair at separation distance r in vacuum (T = 0),

V (r) = −
α

r
+ σr. (2.2)

32



2 Quarkonia in quark gluon plasma

The coupling strength α and the strong coupling constant αs are related, i.e., α = 4
3
αs, and

the confining strength is denoted by the string tension σ = 0.18 GeV2. The Cornell poten-

tial, a composite of the Coulomb and linear potentials, plays a pivotal role by effectively

incorporating two fundamental features of Quantum Chromodynamics (QCD): asymptotic

freedom (at high energy or short distance) and quark confinement (at low energy or large

distance) [110]. Its significance extends to various aspects of heavy quarkonia studies, en-

compassing the exploration of the transition between confined and deconfined phases of

matter [111] and the computation of masses for diverse heavy quarkonium states.

The application of potential models to study quarkonia states at finite temperatures was

first introduced by the authors in Ref. [112]. Subsequently, quarkonium spectral func-

tions and meson current correlators have been derived from potential models [113–120]

and compared with first-principle lattice QCD calculations [121–123]. Additionally, the

imaginary part of the potential, arising from the interaction with the medium, contributes

to the thermal dissociation width of quarkonia states [77,124]. The dissociation of quarko-

nia in an anisotropic QCD medium has been explored by the authors in Ref. [125, 126].

Analyses on the velocity dependence of screening properties have been conducted in sev-

eral works [127–131]. The medium-modified potential of a static quarkonium in a moving

thermal bath and its velocity dependence was investigated in Refs. [133], considering the

orientation of the quark-antiquark pair with respect to the direction of the medium veloc-

ity. The solution of the Schrödinger equation provides insights into the characteristics of

quarkonium-bound states, analogous to the positronium system.

2.2.1 Quarkonium potential at finite temperature

Lattice QCD and potential model studies are the two methods used to ascertain the in-

medium properties of the various quarkonium states quantitatively. In finite temperature

lattice QCD, the quarkonium spectrum can be directly determined by building the Euclidean
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correlators for a given quarkonium state. Advancements in effective field theories (EFT)

have led to a better knowledge of integrating the successive scales associated with the heavy

quark-bound states to create prospective models, such as NRQCD, pNRQCD, etc. Rela-

tivistic effects have very little effect on these states because the relative velocities of the

heavy quarks in each quarkonium are sufficiently less. For charmonia (bottomonia), for

instance, the relative speed is around 0.3 (0.1) times the speed of light in the rest frame

of the respective quarkonia. Potential models were first used to calculate the masses and

radii of quarkonia states. The potential includes confinement in the long range, which can

be calculated using lattice simulations, and coincides with the Coulomb potential at short

distances, which can be estimated using perturbative QCD.

The screening in the form obtained in one-dimensional QED, a classic work by Karsch,

Mehr, and Satz (KMS), served as the foundation for the first quantitative studies of quarko-

nia at finite temperature [112]. Debye screening causes the potential to be screened when

quarkonia are immersed in a medium at a temperature T . At finite temperature T and sep-

aration distance r, the screened Cornell potential can be expressed as follows,

V KMS(r, T ) = −
α

r
e−mDr + σr(

1− e−mDr

mDr
), (2.3)

wheremD(T ) is the Debye screening mass, the inverse of the Debye radius. Upon utilizing

these inputs to solve the Schrödinger equation, it was shown that although J/ψ remained

stable until around 1.2 Tc, both ψ′ and χc fundamentally dissociate at T = Tc, where Tc

is the deconfinement temperature. Due to Debye screening, this method is highly effective

at estimating the dissociation temperatures of quarkonia, yet it has some drawbacks. For

example, the second term in the screened potential corresponds to the σr screening, where

a one-dimensional color flux tube structure was assumed. Only qualitative considerations

should be made while using the above potential at finite temperatures. The more accurate

potential is necessary for quantitative comprehension and should be obtained directly from
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QCD at finite temperature, much as the Cornell potential at zero temperature was obtained

from pNRQCD using the zeroth-order matching coefficient.

In Ref. [134], Guo, Dong, Pan, and Moldes speculated that entropy could play a role in

the interquark interaction. Their heuristic reasoning, which relies on associating thermo-

dynamic quantities with the real part of the potential, led them to propose the in-medium

string part as

V GDPM (r, T ) =
2σ

mD

(1− e−mDr)− σre−mDr. (2.4)

Recently, a rigorous derivation of the generalized Gauss law for in-medium quarkonium

in a complex potential model integrating the nonperturbative aspects of the vacuum-bound

state with a weak coupling description of the medium degrees of freedom was presented in

Ref [135].

In this thesis, we follow the method developed by the authors in Ref. [132, 136]. The

foundation of potential models is the idea that a potential can adequately describe the inter-

action between a heavy quark and its anti-quark. We begin with the previously addressed

Cornell potential at T = 0. The Fourier transform of the heavy quark potential is where the

medium modification enters as

Ṽ (p) =
V (p)

ϵ(p)
, (2.5)

where V (p) is the Fourier transform of the Cornell potential, which has to be regularized.

We regulate both terms in the Cornell potential by multiplying with an exponential damping

factor, and it is switched off after the Fourier transform is evaluated. Therefore, the Fourier

transform is

V (p) = −
√

2/π
α

p2
− 4σ√

2πp4
. (2.6)

The inverse of dielectric permittivity ϵ−1(p) is pertained to the temporal part of the effective

gluon propagator Dµν by definition given in Ref. [186]

ϵ−1(p) = − lim
ω→0

p2D00(ω,p), (2.7)
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where p = |p|.The propagator in the presence of a thermal medium can be expressed as

D−1
µν = (D0

µν)
−1 − Πµν , (2.8)

where the Πµν is the gluon self-energy and theD0
µν is the bare gluon propagator. The gluon

self-energy tensor can be decomposed in terms of two scalar functions, the longitudinal

(ΠL) and transverse (ΠT ) self-energies,

Πµν(P ) = −ΠT (P )Tµν +
P 2

p2
ΠL(P )Lµν , (2.9)

where P = (ω,p) and the tensors Tµν and Lµν are

Tµν = gµν −
PµPν

P 2
− nµnν

n2
and Lµν =

nµnν

n2
. (2.10)

The four-vector nµ is

nµ = nµ −
n · P
P 2

Pµ. (2.11)

and satisfies P.n = 0 and n2 = 1−(n.P )2/P 2. In three dimensions, the static limit pertains

to the screening of fields, and the transverse component in the static limit ΠT (0, p→ 0, T )

vanishes; therefore, the gluon and ghost contribution to the longitudinal component of the

self-energies is reduced to

ΠL
g (ω,p) = m2

Dg

[
1− ω

2p
ln
(
ω + p

ω − p

)
+ iπ

ω

2p
Θ(p2 − ω2)

]
. (2.12)

The above Eq. 2.12 can be rewritten in terms of real and imaginary parts as

ℜΠL
g (ω,p) = m2

Dg

[
1− ω

2p
ln
(
ω + p

ω − p

)]
,

ℑΠL
g (ω,p) = m2

Dg

πω

2p
Θ(p2 − ω2). (2.13)

The total longitudinal component of gluon self-energy is the sum of the gluon and quark

contribution

ΠL(ωn,p) = ΠL
g (ωn,p) + ΠL

q (ωn,p), (2.14)
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which can be written in terms of real and imaginary parts. We compute the gluon self-

energy’s real and imaginary parts in the static limit (ω → 0). The real part of self-energy

reads

ℜΠL(ω,p) = ℜΠL
g (ω,p) + ℜΠL

q (ω,p), (2.15)

and the imaginary part of the self-energy ℑΠL reads

ℑΠL(ω,p) = ℑΠL
g (ω,p) + ℑΠL

q (ω,p). (2.16)

The imaginary contribution from the quark loop can be obtained by using the identity

ℑΠL
n,q(ωn,p) =

1

2i
lim
ε→0

[
ΠL

q (ωn + iε,p)− ΠL
q (ωn − iε,p)

]
. (2.17)

Further, we compute both the real and imaginary part of the longitudinal component of the

gluon propagator using the gluon self-energy. The spectral function approach, as defined

in Ref. [139], is used to obtain the imaginary part of the gluon propagator as

ℑDL(ω,p) = −π(1 + e−βω)AL, (2.18)

where AL is defined as

AL(ω,p) =
1
π

eβω

eβω − 1
ρL(ω,p). (2.19)

The spectral function ρL can be expressed in the Breit-Wigner form as

ρL(ωn,p) =
ℑΠL(ωn,p)

(p2 −ℜΠL(ωn,p))2 + ℑΠL(ωn,p)
2 . (2.20)

After substituting Eq. (2.20) in Eq. (2.18), we obtain the longitudinal component of the

gluon propagator, DL in terms of real and imaginary parts. In the static (ω → 0) and

massless light quark limit, we obtain

DL(p) =
−1

p2 +ΠL(p)
+

iπT ΠL(p)

p(p2 +ΠL(p))2
. (2.21)
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Using the gluon propagator, we obtain the dielectric permittivity as [136,141,186]

ϵ−1(p) =
p2

p2 +ΠL
− iπT

pΠL

(p2 +ΠL)2
, (2.22)

where ΠL ≡ ΠL(p) and

lim
p→0

Π = g2T 2

(
Nc

3
+
Nf

6

)
≡ m2

D. (2.23)

We use the dielectric permittivity expression Eq. (2.22) to compute the in-medium heavy

quarkonium complex potential in an arbitrary magnetic field. Given that the static limit of

the self-energy is momentum-independent, the pole of the inverse dielectric permittivity

corresponds to the gauge-invariant Debye mass. This leads to an exponential damping of

the potential. When non-perturbative phenomena like string tension are present, which

persists even above the deconfinement point, the dependence of Debye mass on dielectric

function may change. But for the Debye screened Coulomb and string part of the potential,

we take the same screening mass scalemD.

2.2.2 Real Part of the Potential

By correcting its short- and long-distance parts using a dielectric function ϵ(p) that accounts

for the effects of deconfinement, one can deduce the modifications to the vacuum potential

in the medium [141] as follows:

V (r, T ) =

∫
d3p

(2π)3/2
(eip.r − 1)

V (p)

ϵ(p)
, (2.24)

where the heavy quark free energy has been renormalized by subtracting r-independent

terms, which is the perturbative free energy of quarkonia at infinite separation. The real

part of the potential can be derived from Eq. (2.24) by substituting the dielectric permittivity

ϵ(p).

It’s important to note that this one-loop result in linear response theory is perturbative,

and the linear approximation in QCD is valid as long as the mean-field four-potential
(
Aa

µ

)
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is significantly smaller than the temperature. Substituting the real part of permittivity, we

obtain the medium-modified potential as,

ℜV (r, T ) =

∫
d3p

(2π)3/2
(
eip.r − 1

)(
−
√

(2/π)
α

p2
− 4σ√

2πp4

)(
p2

(p2 +m2
D)

)
≡ ℜVα(r, T ) + ℜVσ(r, T ), (2.25)

Here, ℜVα(r, T ) and ℜVσ(r, T ) represent the medium modifications of the Coulomb and

string terms, respectively. Upon performing the momentum integration, the Coulomb term

transforms into

ℜVα(r, T ) = −αmD

(
e−r̂

r̂
+ 1

)
. (2.26)

The string term is simplified into

ℜVσ(r, T ) =
2σ

mD

(
(e−r − 1)

r̂
+ 1

)
. (2.27)

The real part of the potential then becomes (with r̂ = rmD )

ℜV (r̂, T ) =

(
2σ

mD

− αmD

)
e−r̂

r̂
− 2σ

mDr̂
+

2σ

mD

− αmD. (2.28)

This potential is found to include an additional long-range Coulomb term, supplementing

the conventional Yukawa term. In the short-distance limit (r̂ ≪ 1), the above potential

approaches the Cornell potential, meaning the QQ̄-pair does not perceive the medium.

However, at large distances (r̂ ≫ 1), the potential simplifies, especially under the high-

temperature approximation (i.e., where σ/mD(T ) can be neglected):

ℜV (r, T ) ≈ − 2σ

m2
Dr

− αmD. (2.29)

Aside from a constant term, this expression resembles a Coulomb-like potential, with the

identification of 2σ/m2
D as the square of the strong coupling (g2).
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2.2.3 Imaginary part of the potential

Lattice QCD suggests that at finite temperature, as one transitions into the deconfined phase,

the real part not only gradually weakens but also reveals the existence of a finite imaginary

part beyond the pseudocritical temperature [137, 138]. The bound state peak can be made

weaker or reduced to a threshold enhancement by altering the imaginary part of the poten-

tial. This leads to a finite thermal width (Γ) for the resonance peak in the spectral function,

determining the dissociation temperature. Dissociation is expected to occur when the bind-

ing energy decreases with temperature and becomes equal to Γ. The imaginary part of the

dielectric function in the medium from Eq. 2.22 is

ℑϵ−1(p) = −πTm2
D

p2

p (p2 +m2
D)

2 . (2.30)

Similarly, the imaginary part of the potential can be determined using the definition of the

potential given in Eq. (2.24). The medium modification to the short-distance and long-

distance terms are

ℑVα(r, T ) = − α

2π2

∫
d3p

(
eip.r − 1

) [ πTm2
D

p (p2 +m2
D)

2

]
,

ℑVσ(r, T ) = − 4σ

(2π)2

∫
d3p

(2π)3/2
(
eip.r − 1

) 1

p2

[
πTm2

b

p (p2 +m2
D)

2

]
.

(2.31)

Following the integration, the contribution from the Coulomb term to the imaginary part is

given by (with z = p/mD)

ℑVα(r, T ) = −2αT

∫ ∞

0

dz

(z2 + 1)2

(
1− sin zr̂

zr̂

)
≡ −αTϕ0(r̂),

(2.32)

and the contribution due to the string term becomes

ℑVσ(r, T ) =
4σT

m2
D

∫ ∞

0

dz

z (z2 + 1)2

(
1− sin zr̂

zr̂

)
≡ 2σT

m2
D

ψ0(r̂),

(2.33)
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where the functions, ϕ0(r̂) and ψ0(r̂) at leading-order in r̂ are

ϕ0(r̂) = − r̂
2

9
(−4 + 3γE + 3 log r̂)

ψ0(r̂) =
r̂2

6
+

(
−107 + 60γE + 60 log(r̂)

3600

)
r̂4 +O

(
r̂5
)
.

(2.34)

In the limit of short distances (r̂ ≪ 1), both contributions, at the leading logarithmic order,

reduce to
ℑVα(r, T ) = −αT r̂

2

3
log
(
1

r̂

)
,

ℑVσ(r, T ) = −2σT

m2
D

r̂4

60
log
(
1

r̂

)
.

(2.35)

Therefore, the sum of the Coulomb and string terms provides the imaginary part of the

potential in the medium:

ℑV(r, T ) = −T
(
αr̂2

3
+

σr̂4

30m2
D

)
log
(
1

r̂

)
. (2.36)

It is immediately evident that for short distances, the imaginary part vanishes. Further-

more, its magnitude is greater than when only the Coulombic term is considered, thereby

amplifying the thermal width of the resonances in the thermal medium.
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Chapter 3

Liénard–Wiechert potential of quarkonia
in QGP

Drawing upon the research conducted by Jobin Sebastian, Mohammad Yousuf Jamal, and

Najmul Haque, as presented in Phys.Rev.D 107 (2023) 5, 054040.

This chapter delves into the characteristics of the complex retarded potential of a heavy

quarkonium traversing a hot and dense, stationary QGP medium. Drawing inspiration from

the well-established notion of the retarded potential in electrodynamics, we extend this no-

tion to heavy quarkonium, changing the static vacuum Cornell potential through Lorentz

transformation to the static frame of the QGP. The consequent potential in the vacuum is

further refined to account for the screening effect introduced by the thermal medium. To

achieve this, the dielectric function of the static QGP medium modifies the retarded Cor-

nell potential. We present the analytical formulation of the potential, approximated under a

small velocity limit, and provide numerical results for the real and imaginary components

of the potential. Considering the relative motion of a heavy quarkonium with respect to the

static QGP medium, we move beyond the spherical symmetry assumption for the potential.

We examine the angular dependence of the real and imaginary parts of the potential at vari-

ous velocities. Our observations reveal that the potential is more responsive to temperature

when the velocity is low, while it becomes highly sensitive to velocity in the relativistic

regime. Additionally, we note that the string term weakens the screening of the potential

compared to the Coulombic part alone, both in real and imaginary cases. Finally, we ex-

plore the thermal width of quarkonia in the QGP medium, calculated using the imaginary
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part of the potential, and investigate its dependence on velocity and temperature.

3.1 Context and Objectives

In the preceding chapter, we explored the temperature dependence of the quarkonium poten-

tial. This chapter focuses on the velocity dependence of the potential for heavy quarkonia

moving in a QGP medium. Our objective is to investigate the potential in a scenario where

the QGP medium is static and uniform while the heavy quarkonia are in motion relative to

the rest frame of the medium. This scenario mirrors the situation of the retarded potential

of a moving charged particle in electromagnetic plasma or the general Liénard-Wiechert

potential in the context of QCD. The outcomes derived in this static and uniform medium

context do not necessarily directly translate to a clean suppression signal in a rapidly ex-

panding QGP. However, it serves the purpose of capturing the relative motion between

heavy quarkonia and the QGP medium, introducing a departure from the spherical symme-

try of the potential. This analysis aids in understanding the modification of the binding of

quark and antiquark pairs, subsequently influencing the survival probabilities of quarkonia

states observed in an asymmetric emission pattern in anisotropic flow.

The motivation behind this study is to explore the interplay of temperature, screening,

and velocity on the retarded potential of moving quarkonia in a static QGP medium, ex-

amining its angular dependence during motion. In this work, we establish a framework for

studying the Liénard–Wiechert/retarded potential of a heavy quark, leading to the poten-

tial for quarkonium-bound states inside the QGP. To achieve this, we express the Cornell

potential in a covariant form and subsequently perform a Lorentz transformation to tran-

sition to the static QGP frame where the heavy quark is in motion. This potential is then

modified using the dielectric permittivity of the QGP medium, revealing both the real and

imaginary parts of the retarded potential. It’s important to note that this chapter primarily
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focuses on studying chromoelectric interactions, excluding considerations of color mag-

netic field effects. Within this framework, we investigate the complete angular dependence

of the retarded potential, presenting corresponding plots in the results section. Alongside

the derivation of the analytical expression within the small velocity limit, we provide full

numerical results to assess the validity of the assumption. Furthermore, we leverage the

imaginary part of the potential to calculate the thermal width of quarkonia and explore its

dependence on velocity and temperature.

3.2 Retarded Cornell potential

Establishing a correspondence with QED aids in maintaining theoretical consistency, en-

hancing our understanding of the hot QCD medium. Particularly, the QED plasma bears

resemblance to the QCD plasma in specific cases, such as at the soft scale where the field

fluctuation is on the order of √g and characterized by a small coupling [140]. In this con-

text, we draw upon the analogy of the Liénard–Wiechert potential from electrodynamics,

extending it to derive the retarded potential for heavy quarkonium within the QGPmedium.

We commence by considering the (static) Cornell potential that governs the binding of the

quark-antiquark pair in a vacuum, expressing it in a covariant form. Subsequently, we apply

Lorentz transformations to observe how the four-potential in a particular frame transforms

into any other frame, enriching our insight into the dynamics of heavy quarkonium in the

QGP medium. The four-potential corresponds to heavy quark-antiquark interaction in its

rest frame with the Cornell potential as the scalar part is given by

Aµ
0 =

(
−α
r
+ σr,0

)
, (3.1)

where r = |r| is the distance from heavy quark to the field point; α = CFαs with CF =

(N2
c − 1) /2Nc and αs is the strong coupling constant, σ is the string tension, and Nc is the

number of color degrees of freedom. The four-potentialAµ
0 in Eq. (3.1) can be written in the
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covariant form by introducing the four-velocity uµ0 ≡ (1,0) in the rest frame of the heavy

quark. So, in the rest frame of the quarkonium, the four-potential is

Aµ
0 =

(
− α

rνuν0
+ σ (rνu

ν
0),0

)
, (3.2)

Note that rνuν0 = r. Now, the Lorentz transformations of Eq. (3.2) to a frame where the

heavy quarkonia is moving with a velocity, v is given as

Aµ=γ

(
− α

rνuν
+ σ rνu

ν ,− αv

rνuν
+ σv rνu

ν

)
, (3.3)

where γ = 1/
√
1− v2 is the Lorentz factor. Rewriting Eq. (3.3) in a more compact form,

one gets

Aµ =

(
− α

(rνuν)
+ σ (rνu

ν)

)
uµ. (3.4)

Here, rµ is the position four-vector from the heavy quark (tr,x
′) at retarded time to some

field point (t,x), and uµ = γ(1,v) with v = |v|. It is crucial to emphasize that the two

events defining rµ are linked by a signal propagating at the velocity of light. Consequently,

these events exhibit null separation, rendering rµ a light-like vector. The modified form of

the Cornell potential, as indicated in Eq. (3.4), shares similarities with the Liénard–Wiechert

potential in electrodynamics, albeit lacking the string part in the latter. Now we have,

rνu
ν = γr − γr · v = rγ (1− r̂ · v) , (3.5)

where r̂ is the unit vector in the direction of r. Then the scalar potential, i.e., the zeroth

component of the four-potential, can be written as

Vvac(r, v) = − α

r (1− r̂ · v)
+ γ2σ r (1− r̂ ·v) . (3.6)

This formalism remains valid even when the heavy quark velocity is nonuniform. The cal-

culations in this section utilize a sequence of independent Lorentz transformations, each
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executed at a different point along the trajectory of the particle. To address the scenario of

a quarkonia traversing a QGP medium, we can assume the velocity to be constant. Further-

more, if we align our z-axis along the direction of velocity, then at t = 0,

r (1− r̂ · v) =
√
z2 + (1− v2)(x2 + y2). (3.7)

Here, for convenience, the heavy quark is set to pass through the origin at t = 0 and uses

the fact that rµ is a light-like vector. Now using Eq. (3.7) in Eq. (3.6) the retarded potential

in Cartesian coordinates becomes,

Vvac(x, y, z, v) = − α√
z2 + (1− v2)(x2 + y2)

+ γ2σ
√
z2 + (1− v2)(x2 + y2). (3.8)

The modified retarded potential in the medium can be accomplished in Fourier space by

dividing the potential by the dielectric permittivity. Consequently, the vacuum potential in

Fourier space is written as

Vp(px, py, pz, v) = −
√

2

π

(
α

p2x + p2y + (1− v2) p2z
− 2σ[

p2x + p2y + (1− v2) p2z
]2
)
. (3.9)

In spherical polar coordinates, the above equation becomes

Vp(p, v) = −
√

2

π

(
α

p2 (1− v2 cos2 θ)
− 2σ

p4 (1− v2 cos2 θ)2

)
. (3.10)

Here, θ represents the polar angle inmomentum space, i.e., the angle between pz andp. This

expression provides the retarded scalar potential of a moving quarkonium in the vacuum.

As pointed out before, when the charged particle traverses a thermal medium, its properties

are influenced by the response of that medium. Therefore, when a heavy quarkoniummoves

through the QGPmedium (which is at rest in this scenario), the associated retarded potential

will be influenced by the response of the QGP medium. Consequently, we will proceed

to discuss the modification of the heavy quark potential given in Eq. (3.10) through the

dielectric permittivity of the QGP medium in Fourier space.
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3.3 Dielectric permittivity and the in-medium potential

The medium-modified potential in coordinate space V (r, v) is obtained [132, 136] by cor-

recting the vacuumpotential with the dielectric permittivity that encodes themedium screen-

ing property in Fourier space, followed by inverse Fourier transformation, i.e.,

V (r, v) =
1

(2π)3/2

∫
d3p (eip·r − 1)

Vp(p, v)

ϵ(p)
, (3.11)

where Vp(p, v) is the Fourier transform of the potential in coordinate space and ϵ(p) is the

dielectric permittivity of the medium. Here, we subtract the r−independent terms in order

to renormalize the heavy quark free energy [142]. The inverse of the dielectric permittivity

of the static QGP medium is given as [124],

ϵ−1(p) =
p2

p2 +m2
D

− iπT
m2

Dp

(p2 +m2
D)

2
, (3.12)

where p = |p| andmD is the Debye mass of QGP medium obtained from the static limit of

longitudinal polarisation tensor in the high-temperature limit [143],

mD = T

√
4παs

(
Nf

6
+
Nc

3

)
, (3.13)

where Nf is the number of flavor degrees of freedom, and T is the temperature of the

medium. Since the medium is assumed to be static, the Debye screening mass is only a

function of temperature, and no modification of the screening of gluonic modes is required.

We use one-loop strong coupling αs as [144,145],

αs =
12π

11Nc − 2Nf

1

ln (Λ/ΛMS)
2
, (3.14)

where ΛMS = 176MeV is the QCD scale fixing factor and Λ = 2πT .

To calculate the exact real part of the potential, we decompose the potential into the

Coulombic part and the string part, followed by performing separate integrations,

ℜV (r, v) = ℜVα(r, v) + ℜVσ(r, v). (3.15)
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The Coulombic part is written as

ℜVα(r, v) = −
√

2

π

∫
d3p

(2π)3/2

(
eip·r

p2 +m2
D

α

1− v2 cos2 θ
− m2

D

p2 +m2
D

α

p2 (1− v2 cos2 θ)

)
.

(3.16)

There are no diverging terms in the string part integration; therefore,

ℜVσ(r, v) = −
∫

d3p

(2π)3
(eip·r − 1)

1

p2 +m2
D

√
2

π

2σ

p2 (1− v2 cos2 θ)2
. (3.17)

In spherical polar coordinates,

p · r = rp
[
sinΘ sin θ cos(Φ− ϕ) + cosΘ cos θ

]
.

Here, the angles θ and ϕ denote the polar and azimuthal angles in Fourier space (momentum

space), respectively, while Θ and Φ represent the polar and azimuthal angles in coordinate

space. Given that the velocity of the heavy quark is along the z-axis, Θ signifies the an-

gle between the velocity v and the position of the field point r. The integration over the

azimuthal angle, ϕ, can be carried out analytically, yielding:

ℜV (r, v) = − 1

π

∫
sin θ dθ dp
p2 +m2

D

[
α
(
m2

D + p2eipr cos θ cosΘJ0(pr sin θ sinΘ)
)

1− v2 cos2 θ

−
2σ
(
1− eipr cos θ cosΘJ0(p r sin θ sinΘ)

)
(1− v2 cos2 θ)2

]
, (3.18)

where J0 represents the Bessel’s function of the first kind. The integration over p and θ in

Eq. (3.18) can be computed numerically, and the real part of the potential is plotted in the

figure 3.1. Similarly, the exact imaginary part of the potential is calculated by substituting

the imaginary part of the dielectric function in Eq. (3.11),

ℑV (r, v) =

∫
d3p

(2π)3/2
(eip·r − 1)

πTm2
Dp

(p2 +m2
D)

2

×
√

2

π

[
α

p2 (1− v2 cos2 θ)
+

2σ

p4 (1− v2 cos2 θ)2

]
. (3.19)
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Figure 3.1: Numerical results obtained for the real part of the potential at various velocities
and angles (Θ = 0 (left ), Θ = π/4 (middle ), Θ = π/2 (right) ).
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Figure 3.2: Numerical results obtained for the imaginary part of the potential at various
velocities and angles (Θ = 0 (left ), Θ = π/4 (middle ), Θ = π/2 (right) ).

After integrating over ϕ we obtain,

ℑV (r, v) = −m2
DT

∫
sin θ dθ dp
(p2 +m2

D)
2

[
αp

1− v2 cos2 θ
+

2σ

p (1− v2 cos2 θ)2

]
×
{
1− eipr cos θ cosΘJ0(pr sin θ sinΘ)

}
. (3.20)

The potentials’ real and imaginary parts are independent of Φ after ϕ integration, i.e., po-

tential has axial symmetry about the z-axis. The rest of the integration is done numerically,

and the results are plotted as shown in the figure for both real (figure 3.1) and imaginary

(figure 3.2) parts of the potential.
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Figure 3.3: Numerical results obtained for real (left) and imaginary (right) parts of the
potential, a comparison between Cornell and Coulomb potentials.
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Figure 3.4: Numerical results obtained for the angular variation of real (left) and imaginary
(right) parts of the potential at various velocities. Here, Θ is in units of radian

3.4 Potential at small velocities

The real and imaginary parts of the potential as obtained in Eqs. (3.18) and Eq. (3.20) can

be simplified at small velocities. Considering small velocity, one can expand the Vp(p, v)

in Eq. (3.10) and keep terms up to O (v2) as,

1

1− v2 cos2 θ
≈ 1 + v2 cos2 θ +O

(
v4
)
. (3.21)
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Figure 3.5: Numerical results obtained for the real part of the potential at various tempera-
tures and velocities, a comparison.
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Figure 3.6: Numerical results obtained for the imaginary part of the potential at various
temperatures and velocities, a comparison.

This approximation is valid for the case of a quarkonia moving in the QGP medium with

a relatively small velocity. Next, we can analytically perform the integration in Eq. (3.11)

using the approximation given in Eq. (3.21) to obtain the real part and imaginary part of the

potential. The modified form of the potential in Eq. (3.10) in small velocity limit is

Vp(p, θ, v) = −
√

2

π

1

p2

(
α + αv2 cos2 θ +

2σ

p2
+

4σv2 cos2 θ
p2

)
. (3.22)

Therefore, the real part of the potential at a small velocity is obtained as

ℜV (r, v) =

∫
d3p

(2π)3/2
(eip·r − 1)Vp(p, θ, v)Re[ϵ−1(p)]. (3.23)
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The integration in Eq. (3.23) is easy to calculate in spherical polar coordinates with cos θ =
pz/p. Doing so, the real part of the potential is computed as,

ℜV (ρ,Θ, v) ≈− αmDe
−ρ

ρ
− αmD − 2σ

mDρ

(
1− e−ρ

)
+

2σ

mD
− αv2mD

3
+

4σv2

3mD

− αmDv
2

ρ3
(
1− 3 cos2Θ

)
+

αmDv
2e−ρ

ρ

{
1

ρ
+

1

ρ2
−
(
1 +

3

ρ
+

3

ρ2

)
cos2Θ

}
− 2σv2

mDρ

(
1− cos2Θ

)
+

4σv2

mDρ3

(
1− 3 cos2Θ

)
+

4σv2e−ρ

mDρ

(
cos2Θ− 1− 3 cos2Θ

ρ
− 1− 3 cos2Θ

ρ2

)
, (3.24)

where ρ = mDr. At v = 0, the approximate real part of the potential in Eq. (3.24)

becomes the more familiar screened Cornell potential where the angular dependence has

also disappeared,

ℜV (r)|v=0 = −αe
−mDr

r
− αmD − 2σ

m2
Dr

(
1− e−mDr

)
+

2σ

mD

. (3.25)

The screened Cornell potential at v = 0 further converges to the vacuum Cornell potential

asmD → 0 with T → 0, we have

ℜV (r)|v=0;T=0 = −α
r
+ σr. (3.26)

Similarly, the imaginary part of the retarded potential in the small velocity approximation

can be obtained as,

ℑV (r, v) =

∫
d3p

(2π)3/2
(eip·r − 1)Vp(p, θ, v)Im[ϵ−1(p)]. (3.27)

After performing the ϕ and the θ integration, we obtain the following results for the imag-

inary part of the potential. For the static case, the potential is isotropic, and it is obtained

as

ℑViso = −2αT

∞∫
0

z

(z2 + 1)2

[
1− sin(mDrz)

mDrz

]
dz

− 4σT

m2
D

∫ ∞

0

dz

z (z2 + 1)2

[
1− sin(mDrz)

mDrz

]
, (3.28)
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where z = p/mD. In the small velocity limit, the imaginary part of the potential can be

expressed as [136,146]

ℑV = A(r, T, v) + B(r, T, v) cos(2Θ). (3.29)

In general, one can proceed with any angle Θ and evaluate the integration over p numeri-

cally. Here we are showing the results forΘ = 0 (parallel case) andΘ = π/2 (perpendicular

case) in a small velocity limits as

ℑV ∥ (v, r) = ℑViso +
2

3
v2T

(
α

3

∫ ∞

0

zdz

(z2 + 1)2
+

4σ

mD
2

∫ ∞

0

dz

z (z2 + 1)2

)

×
[
1− 3 sin(ρz)

ρz
− 6 cos(ρz)

ρ2z2
+

6 sin(ρz)
ρ3z3

]
, (3.30)

and

ℑV ⊥ (v, r) = ℑViso +
2

3
v2T

(
α

3

∫ ∞

0

zdz

(z2 + 1)2
+

4σ

mD
2

∫ ∞

0

dz

z (z2 + 1)2

)

×
[
1 +

3 cos(ρz)
ρ2z2

− 3 sin(ρz)
ρ3z3

]
. (3.31)

Therefore, we can write

A(r, T, v) =
[
ℑV ∥ (v, r) + ℑV ⊥ (v, r)

]
/2 (3.32)

and

B(r, T, v) =
[
ℑV ∥ (v, r)−ℑV ⊥ (v, r)

]
/2. (3.33)

It is evident from Eq. (3.30) and Eq. (3.31) that at v = 0, the approximate imaginary part

of the potential will contain only the isotropic part given in Eq. (3.28), which also vanishes

in the vacuum as T → 0. That means only the Cornell potential given in Eq. (3.1) remains

after taking the limit v → 0 and T → 0, the original potential we started with.
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3.5 Thermal Width

The thermal width of the quarkonium resonant state can be investigated using the imaginary

part of the potential. Assuming the imaginary part of the potential as the perturbation to

the vacuum potential, we calculate the thermal width in the first order of perturbation, as

outlined in previous studies [133, 147, 148]

ΓQQ̄(v) = −⟨Ψ|ℑV (v, r,Θ) |Ψ⟩, (3.34)

where Ψ(r) represents the wave function of the quarkonium bound states. Considering

that the dominant contribution to the potential for deeply bound quarkonium states in QGP

is Coulombic, the hydrogen atom wave function serves as a suitable approximation for

calculating the thermal width of quarkonium-bound states. Consequently, the quarkonium

wave function in theQGP frame is given by ground state hydrogen atomwavefunction [141]

as

Ψ(r) =
1√
πa30

e−q/a0 , (3.35)

where q = r
√

1 + v2 cos2 Θ
1−v2

is due to the Lorentz transformation of the wave function, a0 =

2/(CFmQαs) is the Bohr radius corresponds to the quarkonia and mQ is the quark mass.

Note that one can get the exact wave function solving the Schrödinger equation with the

real part of the potential (3.18), and we intend to do that in the near future. Substituting

Eq. (3.35) in Eq. (3.34) gives

ΓQQ̄(v) = − 1

πa30

∫
d3re−2q/a0ℑV (r, v,Θ) . (3.36)

Here, we obtain the exact results using full imaginary potential given in Eq. (3.20) as

ΓQQ̄(v) =
2m2

DT

a30

∫
dr dΘ r2 sinΘ e−2q/a0

∫
sin θ dθ dp
(p2 +m2

D)
2

×
[

αp

1− v2 cos2 θ
+

2σ

p (1− v2 cos2 θ)2

]
. (3.37)
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Figure 3.7: Decay width of the J/ψ(1s) and Υ(1s) with velocity (left) and temperature
(right).

Graphs depicting the thermal width of charmonium and bottomonium ground states are

presented, showcasing their dependence on temperature and velocity. The derived expres-

sion serves as the basis for these plots, and a detailed discussion follows in the subsequent

results sections.

3.6 Results and discussions

The heavy-quarkonium potential in the QGP medium is studied analytically and numeri-

cally with respect to various parameters, primarily the quarkonia velocity and angular de-

pendence. The thermal width of the quarkonium ground state is obtained, and its depen-

dence on velocity and temperature is studied. The illustration of results in various plots

used different temperature T = 1.5Tc, 2Tc, and 2.5Tc where the crossover temperature,

Tc = 0.155 GeV. The number of quark flavors Nf = 3 and σ = 0.18 GeV2. The tem-

perature dependence in the potential arises through the strong coupling (αs), the dielectric

function ϵ(p), and Debye mass (mD).

Figure 3.1 shows the variation of the real part of the potential with distance r at angle

Θ = 0 (left), Θ = π/4 (middle), and Θ = π/2 (right) and temperature T = 1.5 Tc. We

can observe that the potential and its variation are different in all three directions. Initially,
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the potential increases sharply and then saturates as the distance increases. The potential

decreases with an increase in velocity at a very short distance, whereas at a large distance,

the potential increases as velocity increases; this switching is more noticeable in the Θ =

π/2 case in Fig. 3.1. At small velocities, the deviation of the potential from the static case

(v = 0) is very small, but as the velocity becomes very high, a rapid shift in potential is

observed. As distance r increases, the potential becomes positive, and this sign flipping

happens quickly as velocity increases. This means the negative potential region is less for

fast-moving heavy quarks, and the probability of quarkonia formation is less. Also, as

we move from Θ = 0 to Θ = π/2, the potential becomes positive rather slowly. Similarly,

Fig. 3.2 shows the imaginary part of the potential against r at the same parametersmentioned

above. The imaginary potential is always negative, as expected, and its magnitude increases

as velocity increases. The quarkonium potential is more sensitive to the velocity along the

direction of motion, i.e., at Θ = 0.

Figure 3.3 illustrates the comparison between Cornell and Coulomb potential (σ = 0

case) along the heavy quark’s motion direction. Both the real and imaginary parts of the

Coulomb potential have nominal dependence on velocity, whereas the string part of the

potential has substantial dependence on velocity from static to relativistic case. This implies

the velocity dependence of the Cornell potential is almost solely due to the string part of

the potential.

Figure 3.4 shows the angular dependence of the real (left) and imaginary (right) part of

the potential at r=1 fm and T = 1.5 Tc, respectively. Both parts are symmetric about the

plane containing the particle and perpendicular to the direction of motion. It is interesting

to note that velocity dependence is most prominent along the direction of the velocity of

heavy quarks for both real and imaginary parts of the potential. There is little variation in

potential at low velocities, but as velocity increases, the spherical symmetry breaks down,

leading to an increase in anisotropy. The real part is minimum, and the imaginary part is

56



3 Liénard–Wiechert potential of quarkonia in QGP

maximum at Θ = π/2 direction. Therefore, the quarkonia are most likely to be oriented in

a plane perpendicular to its direction of motion.

In Fig. 3.5, we have made a comparison between velocity dependence and temperature

dependence of the real part of the potential. It is interesting to note that the effect of velocity

decreases with an increase in temperature in the case of the real part of the potential, espe-

cially atΘ = 0, i.e., the variation of potential with change in velocity is more at T = 1.5 Tc

than T = 2.5 Tc. In comparison to the static case, v = 0, the potential changes more at

finite/high velocity with temperature. Our results show that the velocity dependence of the

real part is as important as temperature dependence. Similarly, in Fig. 3.6, we compare

velocity dependence and temperature dependence of the imaginary part of the potential.

The potential variation with temperature at different angles and velocities is more or less

the same. The potential changes rapidly along the direction of motion Θ = 0 of the heavy

quark than the perpendicular direction Θ = π/2. Our results show that the heavy quark

velocity and the medium temperature highly influence the quarkonium potential.

Figure 3.7 shows the variation of the thermal width with velocity (left) and temperature

(right) of charmonium (J/Ψ) and bottomonium (Υ) ground states. Even though the mag-

nitude of the imaginary part of the potential increases with velocity, the thermal width de-

creases with velocity due to the phenomenon of time dilation. Note that the thermal width

obtained here qualitatively agrees with the thermal width calculated in Ref. [133] within

the real-time formalism using the hard thermal loop approximation and also with results in

Ref. [147] at the leading order in perturbative QCD. The width increases with temperature

for both the charmonium and bottomonium states. The mass of the charm quark (taken

Mc = 1.27 GeV) is less as compared to the bottom (takenMb = 4.18 GeV), one can notice

that the thermal width of J/Ψ is higher than Υ for the same parameters. This preserves

the fact that the lighter bound state, i.e., cc̄ dissociates faster than the comparatively heav-

ier one. The results clearly demonstrate the relevance and trends of velocity dependence
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though the calculations used approximations and are only valid for deep-lying bound states

corresponding to low temperatures. For the proper computation of the width, one must

solve the 3D Schrodinger equation including both the real and imaginary parts and solve

for the imaginary part of the eigenvalues.
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Chapter 4

Quarkonia in QGP and magnetic field

Drawing upon the research conducted by Jobin Sebastian, Lata Thakur, Hiranmaya Mishra,

and Najmul Haque, as presented in Phys.Rev.D 108 (2023), 094001.

This chapter explores the computation of the complex potential for heavy quarkonium

in the context of relativistic heavy-ion collisions with an accompanying magnetic field.

Initially, the one-loop gluon polarization tensor is derived using the Schwinger proper time

formalism in Euclidean space, assuming a constant and homogeneous external magnetic

field. With the obtained gluon polarization tensor, the gluon propagator is calculated, facil-

itating the determination of the dielectric permittivity in the presence of the magnetic field.

The modified dielectric permittivity is then utilized to compute the complex potential for

heavy quarkonia.

The results demonstrate the anisotropic nature of the heavy quarkonium potential, which

depends on the angle between the QQ̄ dipole axis and the direction of the magnetic field.

The chapter thoroughly discusses how the heavy quarkonium potential is influenced by the

strength of the magnetic field and the angular orientation of the dipole. Additionally, the

magnetic field influence on the thermal widths of quarkonium states is analyzed. Finally,

the chapter examines the limitations of the strong-field approximation commonly employed

in the literature related to heavy-ion observables, considering the nominal effect of the mag-

netic field on the quarkonium potential.
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4 Quarkonia in QGP and magnetic field

4.1 Context and Objectives

The presence of nonequilibrium effects, such as momentum space anisotropy due to vis-

cous effects, bulk viscosity, moving medium, and magnetic fields [158,159,161–169,220],

can significantly impact the screening phenomenon, leading to in-medium modifications

of quarkonium properties. Over the past decade, the properties of strongly interacting

matter have garnered considerable interest, particularly in the presence of magnetic field

backgrounds. Noncentral heavy-ion collision experiments at RHIC and LHC can gener-

ate a robust magnetic field normal to the reaction plane [82, 90, 91, 93, 170], motivating

numerous phenomenological studies. These investigations have revealed novel phenom-

ena, including magnetic catalysis [171–173], inverse magnetic catalysis [174, 175], chi-

ral magnetic effects [176–181], splitting of open charm directed flow [83, 182–184], and

modifications in the properties of heavy quarkonia and dynamics [185, 187–197]. The po-

tential models have proven successful in describing quarkonium properties in both vac-

uum and medium conditions [112, 198–200]. The Cornell potential effectively captures

quarkonium states, incorporating both perturbative Coulombic and nonperturbative confin-

ing terms [108, 109]. The emergence of an imaginary part of the potential in the presence

of the medium [77, 124, 201–205] has prompted investigations into the heavy quarkonium

complex potential [142, 206–210]. While lattice QCD has examined the real part of the

quarkonium potential in a magnetic field background in both the vacuum and at finite tem-

perature [211,212], as of now, no lattice QCD study has explored the imaginary part of the

heavy quarkonium potential.

This study aims to investigate the heavy quarkonium complex potential in the presence

of a generalmagnetic fieldwithout imposing any restrictions on its strength. Previous exam-

inations of the heavy quarkonium potential in magnetic fields focused on weak and strong

field regimes [186–188]. A recent study by Ghosh et al. [185] considered the modification
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4 Quarkonia in QGP and magnetic field

of the imaginary part of the potential in the presence of a general magnetic field, demon-

strating anisotropic behavior without discussing the real part. In this work, we compute

both the real and imaginary parts of the complex heavy quarkonium potential in a constant

magnetic field of arbitrary strength. Our approach utilizes the Schwinger proper time for-

malism to investigate the impact of an external constant magnetic field on both parts of the

potential [213]. Additionally, we explore the effect of an arbitrary magnetic field on the

thermal widths of heavy quarkonium states. This analysis is crucial as it considers the mag-

netic field generated in heavy-ion collisions, which may not necessarily be weak or strong

compared to the temperature.

4.2 Permittivity in the presence of magnetic field

In this section, we develop the formulation for the dielectric permittivity under the influence

of an arbitrary magnetic field—an essential component for calculating the in-medium heavy

quarkonium potential. Initially, we conduct computations for the gluon self-energies and

propagators, considering the impact of the arbitrary magnetic field.

4.2.1 Gluon self-energy in an arbitrary magnetic field

In the subsequent discussion, we revisit the calculation of the longitudinal component of

the gluon self-energy at the one-loop level, following the approach outlined in Ref. [213].

We extract the longitudinal component of the gluon self-energy and propagator in the static

limit, which corresponds to determining the Debye screening mass and gluon propagator in

this limit. To set the context, let’s consider a charged particle with charge qf and mass m

in the presence of an external, constant, and homogeneous magnetic field aligned along the
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4 Quarkonia in QGP and magnetic field

z-direction (B = Bẑ). Here, we choose the symmetric gauge; therefore, we have

A0(x) = 0, A1(x) = −B
2
y,

A2(x) =
B

2
x, A3(x) = 0. (4.1)

In coordinate space, the fermion propagator, as introduced by Schwinger, is given by [214]

S(x, x′) = eiex
µAµ(x′)S̃(x− x′), (4.2)

where the phase factor, Φ(x, x′) = eiex
µAµ(x′), does not contribute to the gluon self-energy

with this particular choice of the gauge Eq. (4.1); the self-energy is written in position space

as follows

Π(x, x′) = −g2 tr [γµs (x, x′) γνs (x′, x)] . (4.3)

Therefore, we can write

Π(x, x′) = −g2ei[Φ(x,x′)+Φ(x′,x)] tr
[
γµS̃ (x− x′) γγS (x′ − x)

]
. (4.4)

If the quark flavor f running in the loop remains the same, then Φ(x, x′) + Φ(x′, x) = 0.

Noting that Π(x, x′) is translation invariant, one obtains Π(x, x′) = Π (x− x′). Here, we

note that for any closed fermion loop, the phase factor cancels, making the gluon polariza-

tion tensor a translation invariant irrespective of the choice of the gauge. Therefore, it is

sufficient for our study to work with the translation invariant part of the propagator.

The Fourier transform S̃(k) of the translational invariant part of fermion propagator

S̃(x− x′) in the proper time formalism is

S̃(k) =

∫ ∞

0

ds eis[k
2
0−k23−k2⊥ tan(|qfB|s)/|qfB|s−m2]

×{(k0γ0 − k3γ3 +m)[1 + γ1γ2 tan(|qfB|s)]− k⊥γ⊥[1 + tan2(|qfB|s)]}, (4.5)

where k⊥ = (k1, k2) is the transverse momentum. For the finite temperature case, we

note that the bosonic Matsubara modes ωn = 2nπT and fermionic ones ω̂l = (2l + 1)πT ,
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respectively. The fermion propagator, in Euclidean space (k0 = iω̂l) along with s → −is

as followed in Ref. [213], becomes

S̃l(k) = −i
∫ ∞

0

ds e−s[ω̂2
l +k23+k2⊥ tanh(|qfB|s)/|qfB|s+m2]

×
{
(−ω̂lγ4 − k3γ3 +m)[1− iγ1γ2 tanh(|qfB|s)]− k⊥γ⊥[1− tanh2(|qfB|s)]

}
, (4.6)

where k = (k⊥, k3) and γµ(µ = 1, 2, 3, 4) are the Euclidean gamma matrices satisfy the

anticommutation relation {γµ, γν} = −2δµν .

Based on the fermion propagator Eq. (4.6), one can obtain the quark-loop contribution

to the one-loop gluon self-energy in the presence of a magnetic field as

Πµν
n (p, B) = −g2T

∑
f

∫
d3k
(2π)3

∞∑
l=−∞

tr{γµS̃l(k)γνS̃l−n(k− p)}+Qµν(p), (4.7)

where, with p = |p| and Qµν(p) is the “contact” term, which cancels the ultraviolet diver-

gences and is independent of both the temperature and magnetic field. Our focus now lies

on determining the longitudinal component of the gluon polarization tensor. This specific

component is crucial for subsequent calculations involving the dielectric permittivity and,

consequently, the in-medium heavy quarkonium potential. The longitudinal component of

the quark contribution to the one-loop gluon self-energy is obtained after integration over

k [213].

Π44
n,q(ωn,p, B) = −

∑
f

g2T

8π3/2
qfB

∞∫
0

du u1/2
1∫

−1

dv
∞∑

l=−∞

× exp
[
p2⊥
qfB

cosh(qfBuv)− cosh(qfBu)
2 sinh qfBu

− u

{
m2 +W 2

l +
1

4
(1− v2)(ω2

n + p23)

}]
×
[
p2⊥
2

cosh(qfBuv)− v coth(qfBu) sinh(qfBuv)
sinh(qfBu)

− 1

u
coth(qfBu)

×
(
1− 2 uW 2

l +
1

2
u v ωnWl − u(1− v2)p23

)]
+Q44(p), (4.8)

where Wl = ω̂l − [(1 − v)/2]ωn. The contact term Q44(p) is independent of temperature
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and magnetic field and hence can be obtained as both T and B approaches zero.

By employing Poisson resummation, it is possible to separate the temperature-independent

and temperature-dependent components of the longitudinal polarization tensor [213]. Since

our focus is on investigating the influence of the magnetic field on the medium’s heavy

quark-antiquark potential, we exclusively address the temperature-dependent portion of the

gluon self-energy. The temperature-dependent segment of the longitudinal polarization ten-

sor in the limit of massless quarks is then discussed.

Π44
n,q(ωn,p, B) = −

∑
f

g2

(4π)2
qfB

∫ ∞

0

du

∫ 1

−1

dv
∑
l≥1

(−1)l

× exp
[
− p2⊥
qfB

cosh(qfBu)− cosh(qfBuv)
2 sinh(qfB u)

− 1

4
u
(
1− v2

) (
p23 + ω2

n

) ]
e−

l2

4T2u

×
[
cos(πln(1− v))

{
p2⊥

cosh(qfBuv)− v coth(qfBu) sinh(qfBuv)
sinh(qfBu)

+ p23
(
1− v2

)
coth(qfBu)

}
− coth(qfBu)

u

{
l2

T 2u
cos πln(1− v)− 2π l n v sin πln(1− v)

}]
.

(4.9)

After evaluating the sum over l, the above Eq. (4.9) in the static limit becomes

Π44
q (0,p, B) = ΠL

q (p, B),

=
∑
f

g2

32π2
qfB

∫ ∞

0
du

∫ 1

−1
dv exp

[
−1

4
p23u(1− v2)−

p2⊥
qfB

cosh(qfBu)− cosh(qfBuv)

2 sinh(qfBu)

]

×
[
4 coth qfBu

∂

∂u
ϑ4(0, e

− 1
4T2u ) +

(
1− ϑ4

(
0, e−

1
4T2u

))
×
{
p2⊥

cosh(qfBuv)

sinh(qfBu)
+ coth(qfBu)

(
p23 − p23v

2 − p2⊥v
sinh(qfBuv)

sinh(qfBu)

)}]
, (4.10)

where ϑ4 is the Jacobi Theta function and obtained as

∞∑
l=1

(−1)le−al2 =
1

2

[
ϑ4(0, e

−a)− 1
]
. (4.11)
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In spherical polar coordinates, Eq. (4.10) becomes

ΠL
q (p, B) =

∑
f

g2qfB

32π2

∫ ∞

0
du

∫ 1

−1
dv

× exp
[
−p2 cos2 θu(1− v2)

4
−

p2 sin2 θ(cosh(qfBu)− cosh(qfBuv))

2 qfB sinh(qfBu)

]
×
[
4 coth(qfBu)

∂

∂u
ϑ4(0, e

− 1
4T2u ) +

{
p2 sin2 θ cosh(qfBuv)csch(qfBu)

+p2 coth(qfBu)

(
cos2 θ(1− v2)− v sin2 θ

sinh(qfBuv)

sinh(qfBu)

)}(
1− ϑ4(0, e

− 1
4T2u )

)]
.

(4.12)

Here the coupling constant g depends upon magnetic field, i.e., g2(Λ2, B) = 4παs(Λ
2, B),

where αs is the one-loop running coupling constant in the magnetic field background as

followed in [215,216]

αs(Λ
2, |eB|) = αs(Λ

2)

1 + b1αs(Λ2) ln
(

Λ2

Λ2+|eB|

) , (4.13)

and the one-loop strong coupling in the absence of any magnetic field is

αs(Λ
2) =

1

b1 ln
(

Λ2

Λ2
MS

) , (4.14)

where b1 =
(11Nc−2Nf )

12π
and ΛMS = 176 MeV for Nf = 3. Here we take Λ for quarks as

Λq = 2π
√
T 2 + µ2/π2 and for gluons as Λg = 2πT . We take the zero chemical potential

(µ) here. The quark loop contribution to the gluon self-energy, ΠL
q (p) for B = 0 case can

be written as

ΠL
q (p) = −3 g2

2 π2

∫ ∞

0

k dk

ek/T + 1
×
[
2 +

(p2 − 4k2)

2 k p
log
(
p− 2 k

p+ 2 k

)]
. (4.15)

The magnetic field dependence only comes through the quark loop contribution to the gluon

self-energy, as gluons do not interact with the magnetic field. Therefore, the gluon contri-

bution to the self-energy remains the same as without the magnetic field.

ΠL
g (ω,p) = m2

Dg

[
1− ω

2p
ln
(
ω + p

ω − p

)
+ iπ

ω

2p
Θ(p2 − ω2)

]
, (4.16)
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wherem2
Dg =

g′2T 2Nc

3
with g′2 = 4παs(Λ

2) with αs(Λ
2) defined in Eq. (4.14).

The above equation (4.16) can be rewritten in terms of real and imaginary parts as

ℜΠL
g (ω,p) = m2

Dg

[
1− ω

2p
ln
(
ω + p

ω − p

)]
,

ℑΠL
g (ω,p) = m2

Dg

πω

2p
Θ(p2 − ω2). (4.17)

The total longitudinal component of gluon self-energy is the sum of the gluon and quark

contribution

ΠL(ωn,p, B) = ΠL
g (ωn,p) + ΠL

q (ωn,p, B), (4.18)

which can be written in terms of real and imaginary parts. We compute the gluon self-

energy’s real and imaginary parts in the static limit (ω → 0). The real part of self-energy

reads

ℜΠL(ω,p, B) = ℜΠL
g (ω,p) + ℜΠL

q (ω,p, B), (4.19)

and the imaginary part of the self-energy ℑΠL reads

ℑΠL(ω,p, B) = ℑΠL
g (ω,p) + ℑΠL

q (ω,p, B). (4.20)

The imaginary contribution from the quark loop can be obtained by using the identity

ℑΠL
n,q(ωn,p) =

1

2i
lim
ε→0

[
ΠL

q (ωn + iε,p)− ΠL
q (ωn − iε,p)

]
. (4.21)

Further, we compute both the real and imaginary part of the longitudinal component of the

gluon propagator using the gluon self-energy. The spectral function approach, as defined

in Ref. [139], is used to obtain the imaginary part of the gluon propagator as

ℑDL(ω,p) = −π(1 + e−βω)AL, (4.22)

where AL is defined as

AL(ω,p) =
1
π

eβω

eβω − 1
ρL(ω,p). (4.23)
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The spectral function ρL can be expressed in the Breit-Wigner form as

ρL(ωn,p, B) =
ℑΠL(ωn,p, B)

(p2 −ℜΠL(ωn,p, B))2 + ℑΠL(ωn,p, B)2
, (4.24)

where p = |p|. After substituting Eq. (4.24) in Eq. (4.22), we obtain the longitudinal

component of the gluon propagator, DL in terms of real and imaginary parts. In the static

(ω → 0) and massless light quark limit, we obtain

DL(p, B) =
−1

p2 +ΠL(p, B)
+

iπT ΠL(p, B)

p(p2 +ΠL(p, B))2
. (4.25)

Using the gluon propagator, we obtain the dielectric permittivity as [136,141,186]

ϵ−1(p, B) =
p2

p2 +ΠL
− iπT

pΠL

(p2 +ΠL)2
, (4.26)

where ΠL ≡ ΠL(p, B).

We use the dielectric permittivity expression (4.26) to compute the in-medium heavy quarko-

nium complex potential in an arbitrary magnetic field.

4.3 In-medium heavy quarkonium potential

This section is dedicated to deriving the in-medium heavy quarkonium potential, incorpo-

rating the effects of a magnetized thermal medium. It is worth to note here that quarkonium

states do not have a conserved center-of-mass momentum in an external magnetic field.

Instead there is a new conserved quantity called the pseudomomentum which takes into

account the Lorentz force on the particles in the system [219, 220]. The correction to the

Cornell potential in Fourier space is achieved by multiplying it with the dielectric permit-

tivity, as previously computed [132,133,141].

V (r, T, B) =

∫
d3p

(2π)3/2
(eip·r − 1)

VCornell(p)

ϵ(p,B)
, (4.27)
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where VCornell(p) is the Fourier transform of the Cornell potential VCornell(r) = −α/r+ σ r,

which is given by

VCornell(p) =

√
2

π

α

p2
− 2

√
2

π

σ

p4
, (4.28)

where α and σ are the strong coupling constant and the string tension, respectively. Here
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Figure 4.1: The real part of the potential as a function of the separation r between the quark
and antiquark for Θ = 0 (left) and Θ = π/2 (right) at T = 170MeV.
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Figure 4.2: The imaginary part of the potential is depicted as a function of the separation r
between the quark and antiquark for Θ = 0 (left) and Θ = π/2 (right) at T = 170MeV.

we takeα = 4/3αs(Λ
2, B) and σ = 0.18GeV2 and ϵ(p) is the dielectric permittivity, which

is defined in Eq. (4.26). After substituting Eqs. (4.26) and (4.28) in Eq. (3.11), we obtain

both the real as well as imaginary part of the potential, which contains both the perturbative
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Figure 4.3: The complex potential is shown as a function of magnetic field strength for
different values of Θ when r = 1 fm and T = 200 MeV. The left panel illustrates the
variation of the real part of the potential, while the right panel displays the variation of the
imaginary part of the potential.

Coulombic and nonperturbative string terms. The real part of the potential can be written

in terms of Coulombic and string terms as

ℜV (r, T, B) = ℜVc(r, T, B) + ℜVσ(r, T, B), (4.29)

where the Coulombic term is

ℜVc(r, T, B) = − α

2π2

∫
d3p

[
eip·r

p2 +ΠL
− ΠL

p2(p2 +ΠL)

]
, (4.30)

and the string term reads

ℜVσ(r, T, B) = − σ

π2

∫
d3p

(2π)3
(eip·r − 1)

1

p2(p2 +ΠL)
. (4.31)

Here p · r = rp
[
sin θ sinΘ cos(ϕ − Φ) + cos θ cosΘ

]
and the angles θ(Θ) and ϕ(Φ) are

polar and azimuthal angles in momentum (coordinate) space, respectively. After integrating

over the azimuthal angle, we obtain

ℜV (r, T,B,Θ) = − 1

π

∫
sin θ dθ dp
p2 +ΠL

[
(αΠL − 2 σ)

×(α p2 + 2 σ)eipr cos θ cosΘJ0(pr sin θ sinΘ)
]
, (4.32)

69



4 Quarkonia in QGP and magnetic field

where J0 is the Bessel’s function of the first kind.

Similarly, we compute the imaginary part of the quarkonium potential. The imaginary

part of the potential is given by

ℑV (r, T, B) = T

∫
d3p

2π

(eip·r − 1)ΠLp

(p2 +ΠL)2

[
α

p2
+

2σ

p4

]
. (4.33)

After integrating over the azimuthal angle, we obtain

ℑV (r,Θ, T, B) = −T
∫

sin θ dθ dp
(p2 +ΠL)2

ΠL

[
αp+

2σ

p

]{
1− eipr cos θ cosΘJ0(pr sin θ sinΘ)

}
.

(4.34)

We numerically solve the real (4.32) and imaginary (4.34) parts of the potential. In Fig. 4.1,
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Figure 4.4: The thermal widths of bottomonium (left) and charmonium (right) states as
functions of temperature at B = 0 and 15m2

π are presented.

we plot the real part of the potential as a function of separation distance r for different

magnetic field strengths eB. The left panel shows the QQ̄ dipole axis alignment along the

direction of the magnetic field (Θ = 0), whereas the right panel shows its perpendicular

alignment with respect to the magnetic field (Θ = π/2). We find that the real part of the

potential becomes flattened with the magnetic field due to an increase in screening with B.

The effect of screening is seen to be slightly higher in the perpendicular case than along the

direction of the magnetic field.
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In Fig. 4.2, we plot the the imaginary part of the potential forΘ = 0 (left) andΘ = π/2

(right) for the different values of the magnetic field. The imaginary part of the potential

shows different behavior at smaller and larger r; it increases with the magnetic field at

smaller r and decreases in magnitude with the increase in the magnetic field at larger r.

The decrease in magnitude with the magnetic field is observed to be higher for Θ = π/2

compared to Θ = 0. Note that the magnetic field dependence is insignificant for the poten-

tial, especially in the range eB = 0 to eB = 15m2
π.

Figure 4.3 shows the potential’s real and imaginary parts as a magnetic field function

for different Θ values at r = 1 fm. We observe that the real part of the potential varies in

response to a magnetic field at different rates according to direction. The magnetic field

dependence is found to be maximum in the Θ = π/2 direction and minimum along the

direction of the magnetic field, which establishes the anisotropy of the potential in the mag-

netic field. The magnitude of the imaginary part of the potential initially increases with the

magnetic field and decreases as the field intensifies. While both components of the poten-

tial exhibit some dependence on the magnetic field magnitude and angle, this dependency

is relatively weak.

The next section utilizes the imaginary part of the potential to derive the thermal widths

of the quarkonium states.

4.4 Thermal Width

In this section, we calculate the thermal widths of the quarkonium states by treating the

imaginary part of the potential as a perturbation of the vacuum potential. The decay width,

ΓQQ̄, for the quarkonium states is computed as [141,142]

ΓQQ̄(T,B) = −⟨ψ(r)|ℑVQQ̄(r, T,B,Θ)|ψ(r)⟩, (4.35)
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Figure 4.5: Thermal widths of bottomonium (left) and charmonium (right) states as a func-
tion of magnetic field for T = 170MeV and 250MeV.

where ψ(r) is the unperturbed Coulombic wave function. The use of Coulomb wave func-

tions is justified as the leading contribution to the imaginary potential for a deeply bound

heavy-quark state is Coulombic. The wave functions for the ground and excited states are

expressed as

ψ1s(r) =
1

(πa30)
1/2
e−r/a0 ,

ψ2s(r) =
1

4(2πa30)
1/2

(
2− r

a0

)
e−r/2a0 , (4.36)

where a0 = 2/CFmQαs is the Bohr radius of the QQ̄ system and mQ is the heavy quark

mass. After substituting Eqs. (4.36) and (4.34) in Eq. (4.35), we obtain the thermal width

of the quarkonium states for the ground state as

Γ1s(T,B) = − 1

πa30

∫
d3r e−2r/a0ℑV (r, T,B,Θ) ,

=
2T

a30

∫
dr dΘ r2 sinΘe−2r/a0

∫
sin θ dθ dp
(p2 +ΠL)2

ΠL

[
αp+

2σ

p

]
, (4.37)

and for the first excited states (2S) as

Γ2s(T,B) =
T

16a30

∫
dr dΘ r2 sinΘ

(
2− r

a0

)2

e−r/a0

∫
sin θ dθ dp
(p2 +ΠL)2

ΠL

[
αp+

2σ

p

]
. (4.38)
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We numerically compute the thermal widths of the ground (4.37) and excited (4.38) states

of the bottomonium and charmonium states. In Fig. 4.4, we present plots of the thermal

widths of the ground and first excited states of bottomonium (on the left) and charmonium

(on the right) as a function of temperature for both eB = 0 and eB = 15m2
π.

It is observed that the thermal width increases with an increase in temperature, as an-

ticipated. The magnetic field effect is more pronounced on the first excited state than the

ground state for both the bottomonium and charmonium states. The effect of the magnetic

field on the imaginary part of the potential is more significant due to the larger size of the

excited states. Hence, the excited states are more sensitive to the magnetic field than the

ground state. Figure 4.5 illustrates the variation of thermal width with the magnetic field at

different temperatures for bottomonium (left) and charmonium (right) states. We find that

the thermal widths are more sensitive to the magnetic field at lower temperatures than at

higher temperatures. The magnetic field effects decrease with the increase in heavy quark

mass and decrease in the size of bound states. It can be concluded from the figures that the

magnetic field has only a negligible effect on the thermal width compared to the tempera-

ture.

4.5 Strong field approximation

In this section, we compute the longitudinal component of the gluon self-energy in the

strong magnetic field approximation (T ≪
√

|eB|). In the strong magnetic field limit

(|eB| → ∞), the fermion propagator [Eq. (4.6)] for massless case becomes

S̃l(k) = −i
∫ ∞

0

ds e−s[ω̂2
l +k23+k2⊥/|qfB|s](−ω̂lγ4 − k3γ3)[1− iγ1γ2],

= ie−k2⊥/|qfB| ω̂lγ4 + k3γ3
ω̂2
l + k23

[1− iγ1γ2], (4.39)

which is similar to the expression for the fermion propagator computed for the lowest Lan-

dau level approximation in Refs. [217,218]. In |eB| → ∞ limit, the temperature-dependent
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Figure 4.6: The real part of the potential as a function of r is plotted on the left side for
an arbitrary (black solid) and strong magnetic field approximation (red dashed) at T =
170 MeV and Θ = 0. The right side depicts the same potential as a function of eB at
r = 0.5 fm.

part of the longitudinal component of the gluon self-energy (4.9) reduces to the dominant

term as

ΠL
q (ωn, p, B) = −

∑
f

g2

(4π)2
(qfB)2

T 2
e−p2⊥/2qfB

∫ ∞

0

du

u2

×
∫ 1

−1

dv e−cu
∑
l≥1

(−1)(l+1)l2e−d/u cos πln(1− v), (4.40)

where c = (1− v2)(p23 + ω2
n)/(4 qfB) and d = l2qfB/4T 2. The integration over u can be

done analytically using the relation∫ ∞

0

du

u2
e−cu−d/u = 2

√
c

d
K1(2

√
c d). (4.41)

Here Kn(z) represents the modified Bessel function of the second kind. Therefore, the

longitudinal component of the gluon self-energy (4.40) for the strong magnetic field ap-
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proximation in the static limit (ωn → 0) becomes

ΠL
q (p, B) = −

∑
f

g2qfB

8π2T
e−p2⊥/2qfB

∑
l≥1

(−1)(l+1)

×
1∫

−1

dv l p3
√
1− v2K1

(
l p3
2T

√
1− v2

)
. (4.42)

Further, we compute the Debye screening mass from Eq. (4.9) in the limit p → 0, for the

regime where T ≪
√
eB

m2
D(T,B) = − lim

p→0
ΠL

q (p, B),

=
∑
f

g2qfB

8π2T 2

∫ ∞

0

du

u2
coth qfB u

∑
l≥1

(−1)l+1l2e−l2/4uT 2

,

=
∑
f

g2qfB

4π2
. (4.43)

In the absence of a magnetic field, the Debye screening mass becomes

m2
D(T ) =

1

3
CAg

2T 2 +
∑
f

g2

8π2T 2

∫ ∞

0

du

u3

∑
l≥1

(−1)l+1l2e−l2/4uT 2

,

=
1

3
CAg

2T 2 +
1

6
Nfg

2T 2. (4.44)

The longitudinal component of gluon self-energy in strong field approximation obtained in

Eq. (4.42) can be substituted in Eq. (3.11) to study the behavior of quarkonium potential in

the strong field approximation. In Fig. 4.6, we show the effect of arbitrary magnetic fields

and the strong field approximation on the real part of the potential. We find that the real

part of the potential is more suppressed in the case of an arbitrary magnetic field compared

to the strong field approximation due to larger screening in an arbitraryB. It is evident that

the potential with the approximation differs significantly for large magnetic field magni-

tudes from the exact potential, and this difference gradually reduces as the magnetic field

increases. Hence, we can conclude that the strong field approximation is invalid, and one

should consider the general case when studying the properties of quarkonium states.
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Chapter 5

Summary and Conclusions

The QGP produced in heavy-ion collisions undergoes a hydrodynamic expansion, cools

down, and eventually transforms into hadron gases. Since the final observables related to

hadrons provide insights into the entire evolution of the system, it is crucial to develop

comprehensive dynamic models that can accurately describe each stage of these collisions.

The standardmethodology for modeling heavy-ion collisions involves an initial-state model

followed by applying hydrodynamic expansion and, subsequently, a hadronic cascade. This

methodology ensures a holistic understanding of the complex processes occurring during

heavy-ion collisions, allowing researchers to interpret experimental results and gain deeper

insights into the behavior of matter under extreme conditions. The QGP produced in these

experiments is distinguished by its remarkably compact dimensions, typically 10fm, and

its exceedingly transient nature, with a fleeting existence of just around 10−23 S. Given the

exceptionally brief persistence of the QGP medium that emerges in high-energy heavy-ion

collisions, it presents a formidable set of challenges for quantitative property analysis.

Due to the higher masses, quarkonia are mostly created at the very early stages after

the collisions and behave more or less as an independent degree of freedom while passing

through the various phases of the created matter. However, they are slightly affected by

the QGP medium while passing through it, resulting in distinctive signatures in their final

yields observed at the detectors. In the context of this thesis, it is important to highlight that

the investigation of heavy quarkonia serves as one of the initial and pivotal signals proposed

for scrutinizing the QGP generated through heavy-ion collisions. In the realm of quarko-
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nium research, potential models have exhibited remarkable success in characterizing these

particles, whether they exist in a vacuum or within a medium. At the forefront of these

models is the Cornell potential, as detailed in references [108, 109]. The Cornell poten-

tial, endowed with both perturbative Coulombic and non-perturbative confining elements,

offers a robust framework for accurately describing quarkonium states. Furthermore, the

advent of an imaginary component in the potential has catalyzed investigations into the

intricate domain of complex potentials governing heavy quarkonium [77, 124]. Beyond

these technical merits, Cornell potential has played an indispensable role in advancing our

comprehension of various aspects of heavy quarkonia.

This thesis investigated two significant scenarios that could lead to anisotropy in the

heavy quarkonium potential. These scenarios arise from the relative motion between the

quarkonium and the QGP medium and a strong magnetic field in the noncentral collision

that is normal to the reaction plane. In the rapidly expanding QGP, the dynamic Debye

screening of heavy quarkonium is important as the quark-antiquark potential depends on

the velocity of the quarkonia in the medium. This is the motivation to study the veloc-

ity dependence of the potential and the modifications of quarkonium-bound states, which

becomes relevant in a relativistically expanding medium. The velocity dependence was

brought into the picture through the concept of retarded potential. The thesis undertook

a comprehensive analysis of the effects of temperature, velocity, and screening on the re-

tarded potential of moving quarkonia in the static medium of QGP, including its angular

dependence during motion. Additionally, the study utilized the imaginary part of the po-

tential to estimate the thermal width of quarkonia and explored its dependence on velocity

and temperature. Another significant aspect addressed in the thesis was the influence of a

magnetic field on the heavy quarkonium complex potential, allowing for a general magnetic

field without restricting its strength. Through the Schwinger proper time formalism, the re-

search investigated the impact of an arbitrary magnetic field on both the real and imaginary
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parts of the complex heavy quarkonium potential, along with a discussion on its effects on

the thermal widths of heavy quarkonium states.

In Chapter 3, the study focused on the potential of a moving heavy quarkonium in a

static QGP medium. Initially, the retarded potential of a uniformly moving heavy quark

in the vacuum was derived, drawing an analogy to the Liénard-Wiechert potential in elec-

trodynamics. This involved performing Lorentz transformations on the static potential to

express its form in a boosted frame. Subsequently, the velocity and angular-dependent po-

tential were adjusted to incorporate the screening effect of the QGP medium. This adjust-

ment was made through the medium dielectric permittivity, resulting in a complex potential.

The chapter presented both exact numerical results and derived analytical expressions in the

small velocity limit for both the real and imaginary parts of the potential. Various param-

eters, including the distance between quark-antiquark, temperature, velocity, and angular

dependence, were explored through plots illustrating the potential variation.

Furthermore, a comparison between the Coulombic and Cornell potentials, accounting

for the presence or absence of string terms, was provided. As anticipated, the Coulombic

contribution prevailed at short distances, while the string term dominated at larger quarko-

nium separation distances. The study also revealed that the motion of quarkonium through

the QGP disrupts the spherical symmetry of the potential, with an increasing anisotropy in

the potential observed as velocity rises. Notably, the velocity dependence of the potential

was established to be equally significant as the temperature dependence. The maximum

variation in both the real and imaginary parts of the potential from the corresponding static

case was found to align with the direction of quarkonium motion. Lastly, the thermal width

was computed, showing a decrease with velocity and an increase with temperature. This

insight suggests that the lifetime of a quarkonium-bound state is influenced by both the ve-

locity of the quarkonium and the temperature of the medium. The real part of the potential

was observed to turn positive rapidly as distance increased with velocity, particularly pro-
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nounced in the direction of quarkonium motion, leading to the contraction and deformation

of the Debye sphere.

Continuing from the current study, the next step would involve utilizing the potential

derived in this chapter to delve into the dynamics of heavy quarkonia propagation within

the QGP medium. The calculation of the binding energy can be accomplished by solving

the Schrödinger equation, making use of the real part of the potential. It is anticipated that

the velocity and angular dependence of the potential will play a crucial role in modifying

the survival probabilities of quarkonia, warranting further investigation in this direction.

In Chapter 4, the impact of a magnetic field on the heavy quarkonium complex potential

was examined. Initially, the dielectric permittivity was computed from the static limit of

the gluon propagator. This propagator was derived from the one-loop gluon self-energy in

the presence of an external magnetic field using Schwinger proper time formalism in Eu-

clidean space. The magnetic field’s influence was introduced through the quark-loop con-

tribution to the gluon self-energy and the coupling constant. Later, the in-medium heavy

quarkonium complex potential was computed using the modified dielectric permittivity.

The results highlighted the anisotropic nature of this potential, showcasing variations with

magnetic field strength and the angleΘ between the quark-antiquark axis and the magnetic

field direction. For very high magnetic field strengths, the real part of the potential exhib-

ited flattening due to increased screening with eB. Conversely, the imaginary part of the

quarkonium potential displayed an initial increase in magnitude at short distances followed

by a decrease at long distances. Additionally, the inclusion of a magnetic field introduced

angular dependence on the potential. Ultimately, it was observed that the overall effect of

the magnetic field on the complex potential remained relatively small for realistic strengths

of the magnetic field generated in heavy-ion collisions.

The decay widths of the ground and first excited states of bottomonium (Υ,Υ′) and

charmonium (J/ψ, ψ′) were computed using the imaginary part of the potential. It was
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observed that the excited states (Υ′, ψ′) aremore sensitive tomagnetic fields than the ground

states (Υ, J/ψ). The sensitivity to magnetic fields decreases with increasing heavy quark

mass and decreasing size, making the charmonium states more responsive to magnetic field

strength than the bottomonium states. As temperature increases, the effect of magnetic

fields on decay widths diminishes, eventually disappearing at high temperatures.

A comparison with the strong-field approximated potential revealed significant devia-

tions. The strong-field approximated potential did not align with the potential without such

an approximation for any realistic magnetic field value generated in heavy-ion collisions.

The approximation resulted in weaker screening compared to the estimation for an arbitrary

magnetic field, and this screening gradually increased with magnetic field strength. This

investigation challenged the validity of the strong magnetic field approximation commonly

employed in the literature for the heavy quarkonium complex potential. Considering the

effects of a general magnetic field, as explored in this study, becomes essential for realis-

tic strengths of magnetic fields. Additionally, it was noted that the weak-field expansion

introduces new divergences in gluon propagators, necessitating regulation. The gluon prop-

agator with momentum K in a weak field, i.e.,
√
|eB| < (T ∼ K), can be written up to

O [(eB)2] as (See the Ref. [218] for details)

Sw
m(K) =

/K

K2
+
qfB (γ5{(K · n)/u− (K · u)/n})

K4

+ 2 (qfB)2
[
{(K · u)/u− (K · n)/n} − /K

K6
− k2⊥ /K

K8

]
+O

[
(eB)3

]
,

where uµ is the four- velocity of the heat bath and nµ is associated with the electromagnetic

field tensor and represents the direction of the magnetic field. Note that O(eB0) term is

∼ 1/K, whereas O(eB2) term is ∼ 1/K3. So, the weak field expansion introduces an

extra infrared divergence in the computation. To avoid the infrared divergence, an arbitrary

strength of magnetic field is used in the thesis and also future work aims to extend this

computation to a moving medium in the presence of an arbitrary magnetic field.

80



References
[1] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633-3652 (1973).

[2] D. J. Gross and F. Wilczek, Phys. Rev. Lett.30, 1343-1346 (1973).

[3] H. D. Politzer, Phys. Rev. Lett. 30, 1346-1349 (1973).

[4] M. Gell-Mann, Phys. Rev. 125, 1067-1084 (1962).

[5] V. E. Barnes, et al. Phys. Rev. Lett. 12, 204-206 (1964).

[6] O. W. Greenberg, Phys. Rev. Lett. 13, 598-602 (1964).

[7] M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006-B1010 (1965).

[8] M. Gell-Mann, Physics Physique Fizika 1, 63-75 (1964).

[9] M. Breidenbach, et al. Phys. Rev. Lett. 23, 935-939 (1969).

[10] E. D. Bloom, et al. Phys. Rev. Lett. 23, 930-934 (1969).

[11] J. D. Bjorken, Phys. Rev. 179, 1547-1553 (1969).

[12] C. G. Callan, Jr. and D. J. Gross, Phys. Rev. Lett. 22, 156-159 (1969).

[13] K. G. Wilson, Phys. Rev. 179, 1499-1512 (1969).

[14] I. B. Khriplovich, Sov. J. Nucl. Phys. 10, 235-242 (1969).

[15] G. ’t Hooft, Nucl. Phys. B 35, 167-188 (1971).

[16] G. ’t Hooft, Nucl. Phys. B 33, 173-199 (1971).

[17] C. N. Yang and R. L. Mills, Phys. Rev. 96, 191-195 (1954).

81



REFERENCES

[18] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365-368 (1973).

[19] K. G. Wilson, Phys. Rev. D 10, 2445-2459 (1974).

[20] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

[21] M. Creutz, Phys. Rev. D 21, 2308-2315 (1980).

[22] J. B. Kogut and L. Susskind, Phys. Rev. D 11, 395-408 (1975).

[23] J. J. Aubert et al. [E598], Phys. Rev. Lett. 33, 1404-1406 (1974).

[24] J. E. Augustin et al. [SLAC-SP-017], Phys. Rev. Lett. 33, 1406-1408 (1974).

[25] T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975).

[26] S. W. Herb et al. [E288], Phys. Rev. Lett. 39, 252-255 (1977).

[27] F. Abe et al. [CDF], Phys. Rev. Lett. 74, 2626-2631 (1995).

[28] S. Abachi et al. [D0], Phys. Rev. Lett. 74, 2632-2637 (1995).

[29] R. Brandelik et al. [TASSO], Phys. Lett. B 86, 243-249 (1979).

[30] C. Berger et al. [PLUTO], Phys. Lett. B 86, 418-425 (1979).

[31] W. Bartel et al. [JADE], Phys. Lett. B 91, 142-147 (1980).

[32] G. Hanson et al., Phys. Rev. Lett. 35, 1609-1612 (1975).

[33] D. P. Barber et al. Phys. Rev. Lett. 43, 830 (1979).

[34] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345-358 (1961).

[35] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338-341 (1984).

[36] S. Bethke, Prog. Part. Nucl. Phys. 58, 351-386 (2007).

82



REFERENCES

[37] F. Wilczek, Rev. Mod. Phys. 71, S85-S95 (1999).

[38] D. J. Gross, Proc. Nat. Acad. Sci. 102, 9099-9108 (2005).

[39] J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965-970 (1962).

[40] G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D 51, 1125-1171 (1995).

[41] S. Muroya, A. Nakamura, C. Nonaka and T. Takaishi, Prog. Theor. Phys. 110, 615-

668 (2003).

[42] C. Ratti, Rept. Prog. Phys. 81, 084301 (2018).

[43] N. Cabibbo and G. Parisi, Phys. Lett. B 59, 67-69 (1975).

[44] E. V. Shuryak, Sov. Phys. JETP 47, 212-219 (1978). IYF-77-34.

[45] A. Bazavov et al. [HotQCD], Phys. Rev. D 90, 094503 (2014).

[46] A.Aprahamian et al. “Reaching for the horizon: The 2015 long range plan for nuclear

science.”

[47] E. Annala, T. Gorda, A. Kurkela, J. Nättilä and A. Vuorinen, Nature Phys. 16, 907-

910 (2020).

[48] L. Evans and P. Bryant, JINST 3, S08001 (2008).

[49] W. Busza, K. Rajagopal andW. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339-376

(2018).

[50] [ALICE], [arXiv:2211.04384 [nucl-ex]].

[51] H. Song and U. W. Heinz, Phys. Rev. C 78, 024902 (2008).

[52] P. Romatschke, Eur. Phys. J. C 52, 203-209 (2007).

83



REFERENCES

[53] K. Aamodt et al. [ALICE], Phys. Rev. Lett. 106, 032301 (2011).

[54] S. Ryu et al. Phys. Rev. Lett. 115, 132301 (2015).

[55] G. Denicol, A. Monnai and B. Schenke, Phys. Rev. Lett. 116, 212301 (2016).

[56] L. Adamczyk et al. [STAR], Phys. Rev. C 92, 014904 (2015).

[57] W. Zhao, W. Ke, W. Chen, T. Luo and X. N. Wang, Phys. Rev. Lett. 128, 022302

(2022).

[58] X. N. Wang, Nucl. Phys. A 750, 98-120 (2005).

[59] M. Gyulassy and M. Plumer, Phys. Lett. B 243, 432-438 (1990).

[60] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Nucl. Phys. B 483,

291-320 (1997).

[61] B. G. Zakharov, JETP Lett. 65, 615-620 (1997).

[62] M. G. Mustafa and M. H. Thoma, Acta Phys. Hung. A 22, 93-102 (2005).

[63] S. S. Adler et al. [PHENIX], Phys. Rev. Lett. 96, 032301 (2006).

[64] S. Ghosh and V. Chandra, Phys. Rev. D 98, 076006 (2018).

[65] [CMS], CMS-PAS-EXO-18-004, (2018).

[66] J. D. Bjorken and H. Weisberg, Phys. Rev. D 13, 1405 (1976).

[67] J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 (1982).

[68] P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167-262 (1986).

[69] P. Koch, B. Muller and J. Rafelski, Z. Phys. A 324, 453-463 (1986). UCT-TP-38-

1986.

84



REFERENCES

[70] J. Rafelski, Phys. Lett. B 262, 333-340 (1991).

[71] E. Andersen et al. [WA97], Phys. Lett. B 449, 401-406 (1999).

[72] S. V. Afanasiev et al. [NA49], Phys. Rev. C 66, 054902 (2002).

[73] C. Alt et al. [NA49], Phys. Rev. C 77, 024903 (2008).

[74] N. Brambilla et al. Eur. Phys. J. C 71, 1534 (2011).

[75] T. Matsui and H. Satz, Phys. Lett. B 178, 416-422 (1986).

[76] S. Digal, P. Petreczky and H. Satz, Phys. Rev. D 64, 094015 (2001).

[77] M. Laine, O. Philipsen, P. Romatschke and M. Tassler, JHEP 03, 054 (2007).

[78] R. L. Thews, M. Schroedter and J. Rafelski, Phys. Rev. C 63, 054905 (2001).

[79] K. Zhou, N. Xu, Z. Xu and P. Zhuang, Phys. Rev. C 89, 054911 (2014).

[80] A. Capella et al. Eur. Phys. J. C 58, 437-444 (2008).

[81] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Nucl. Phys. A 748, 209-225

(2005).

[82] V. Skokov, A. Y. Illarionov andV. Toneev, Int. J. Mod. Phys. A 24, 5925-5932 (2009).

[83] J. Adam et al. [STAR], Phys. Rev. Lett. 123, 162301 (2019).

[84] W. T. Deng and X. G. Huang, Phys. Lett. B 742, 296-302 (2015).

[85] S. Chatterjee and P. Tribedy, Phys. Rev. C 92, 011902 (2015).

[86] V. Voronyuk, V. D. Toneev, S. A. Voloshin and W. Cassing, Phys. Rev. C 90, 064903

(2014).

85



REFERENCES

[87] Y. Hirono, M. Hongo and T. Hirano, Phys. Rev. C 90, 021903 (2014).

[88] J. Bloczynski, X. G. Huang, X. Zhang and J. Liao, Nucl. Phys. A 939, 85-100 (2015).

[89] X. G. Huang, Rept. Prog. Phys. 79, 076302 (2016).

[90] W. T. Deng and X. G. Huang, Phys. Rev. C 85, 044907 (2012).

[91] A. Bzdak and V. Skokov, Phys. Lett. B 710, 171-174 (2012).

[92] J. Bloczynski, X. G. Huang, X. Zhang and J. Liao, Phys. Lett. B 718, 1529-1535

(2013).

[93] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).

[94] U. Gursoy, D. Kharzeev and K. Rajagopal, Phys. Rev. C 89, 054905 (2014).

[95] J. Adams et al. [STAR], Nucl. Phys. A 757, 102-183 (2005).

[96] K. Adcox et al. [PHENIX], Nucl. Phys. A 757, 184-283 (2005).

[97] B. B. Back et al. [PHOBOS], Nucl. Phys. A 757, 28-101 (2005).

[98] I. Arsene et al. [BRAHMS], Nucl. Phys. A 757, 1-27 (2005).

[99] J. Prakash, M. Kurian, S. K. Das and V. Chandra, Phys. Rev. D 103, 094009 (2021).

[100] F. Prino and R. Rapp, J. Phys. G 43, 093002 (2016).

[101] G. Montagnoli and A. M. Stefanini, Eur. Phys. J. A 53, 169 (2017).

[102] A. Dumitru, Y. Guo and M. Strickland, Phys. Lett. B 662, 37-42 (2008).

[103] H. Satz, J. Phys. G 32, R25 (2006).

[104] H. T. Ding et al. PoS LATTICE2010, 180 (2010).

86



REFERENCES

[105] G. Aarts et al. Phys. Rev. Lett. 106, 061602 (2011).

[106] J. Beringer et al. [Particle Data Group], Phys. Rev. D 86, 010001 (2012).

[107] A. Mocsy, P. Petreczky and M. Strickland, Int. J. Mod. Phys. A 28, 1340012 (2013).

[108] E. Eichten et al. Phys. Rev. Lett. 34, 369-372 (1975).

[109] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Phys. Rev. D 21,

203 (1980).

[110] G. X. A. Petronilo et al. Int. J. Mod. Phys. A 36, 2150121 (2021).

[111] A. Vega and J. Flores, Pramana 87, 73 (2016).

[112] F. Karsch, M. T. Mehr and H. Satz, Z. Phys. C 37, 617 (1988).

[113] A. Mocsy and P. Petreczky, Eur. Phys. J. C 43, 77-80 (2005).

[114] C. Y. Wong, Phys. Rev. C 72, 034906 (2005).

[115] A. Mocsy and P. Petreczky, Phys. Rev. D 73, 074007 (2006).

[116] D. Cabrera and R. Rapp, Phys. Rev. D 76, 114506 (2007).

[117] A. Mocsy and P. Petreczky, Phys. Rev. Lett. 99, 211602 (2007).

[118] W. M. Alberico, A. Beraudo, A. De Pace and A. Molinari, Phys. Rev. D 77, 017502

(2008).

[119] A. Mocsy, Eur. Phys. J. C 61, 705-710 (2009).

[120] F. Karsch, M. G. Mustafa and M. H. Thoma, Phys. Lett. B 497, 249-258 (2001).

[121] M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).

87



REFERENCES

[122] S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Phys. Rev. D 69, 094507 (2004).

[123] G. Aarts, C. Allton, M. B. Oktay, M. Peardon and J. I. Skullerud, Phys. Rev. D 76,

094513 (2007).

[124] A. Beraudo, J. P. Blaizot and C. Ratti, Nucl. Phys. A 806, 312-338 (2008).

[125] M. Y. Jamal, I. Nilima, V. Chandra and V. K. Agotiya, Phys. Rev. D 97, 094033

(2018).

[126] V. K. Agotiya, V. Chandra, M. Y. Jamal and I. Nilima, Phys. Rev. D 94, 094006

(2016).

[127] M. A. Escobedo, J. Soto and M. Mannarelli, Phys. Rev. D 84, 016008 (2011).

[128] M. A. Escobedo, F. Giannuzzi, M. Mannarelli and J. Soto, Phys. Rev. D 87, 114005

(2013).

[129] H. Liu, K. Rajagopal and U. A. Wiedemann, Phys. Rev. Lett. 98, 182301 (2007).

[130] P. Chakraborty, M. G. Mustafa and M. H. Thoma, Phys. Rev. D 74, 094002 (2006).

[131] E. Caceres, M. Natsuume and T. Okamura, JHEP 10, 011 (2006).

[132] V. Agotiya, V. Chandra and B. K. Patra, Phys. Rev. C 80, 025210 (2009).

[133] L. Thakur, N. Haque and H. Mishra, Phys. Rev. D 95, 036014 (2017).

[134] Y. Guo, L. Dong, J. Pan and M. R. Moldes, Phys. Rev. D 100, 036011 (2019).

[135] D. Lafferty and A. Rothkopf, Phys. Rev. D 101, 056010 (2020).

[136] L. Thakur, N. Haque, U. Kakade and B. K. Patra, Phys. Rev. D 88, 054022 (2013).

[137] Y. Burnier, O. Kaczmarek and A. Rothkopf, JHEP 12, 101 (2015).

88



REFERENCES

[138] Y. Burnier, O. Kaczmarek and A. Rothkopf, Phys. Rev. Lett. 114, 082001 (2015).

[139] H. A. Weldon, Phys. Rev. D 42, 2384-2387 (1990).

[140] J. P. Blaizot and E. Iancu, Phys. Rept. 359, 355-528 (2002).

[141] L. Thakur, U. Kakade and B. K. Patra, Phys. Rev. D 89 (2014), 094020.

[142] A. Dumitru, Y. Guo and M. Strickland, Phys. Rev. D 79, 114003 (2009).

[143] M. G. Mustafa, M. H. Thoma and P. Chakraborty, Phys. Rev. C 71, 017901 (2005).

[144] M. Laine and Y. Schroder, JHEP 03, 067 (2005).

[145] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G. Mustafa, M. Strickland and

N. Su, JHEP 05, 027 (2014).

[146] A. Dumitru, Y. Guo, A. Mocsy and M. Strickland, Phys. Rev. D 79, 054019 (2009).

[147] T. Song, Y. Park, S. H. Lee and C. Y. Wong, Phys. Lett. B 659, 621-627 (2008).

[148] K. Bitaghsir Fadafan and S. K. Tabatabaei, J. Phys. G 43, 095001 (2016).

[149] Q. Du, A. Dumitru, Y. Guo and M. Strickland, JHEP 01, 123 (2017).

[150] L. Thakur, N. Haque and Y. Hirono, JHEP 06, 071 (2020).

[151] L. Thakur and Y. Hirono, JHEP 02, 207 (2022).

[152] A. Islam, L. Dong, Y. Guo, A. Rothkopf and M. Strickland, EPJ Web Conf. 274,

04015 (2022).

[153] L. Dong, Y. Guo, A. Islam, A. Rothkopf and M. Strickland, JHEP 09, 200 (2022).

[154] M. Singh, M. Kurian, S. Jeon and C. Gale, Phys. Rev. C 108, 054901 (2023).

89



REFERENCES

[155] J. Sebastian, M. Y. Jamal and N. Haque, Phys. Rev. D 107, 054040 (2023).

[156] S. Chakraborty and N. Haque, Nucl. Phys. B 874, 821-851 (2013).

[157] B. K. Patra, H. Khanchandani and L. Thakur, Phys. Rev. D 92, 085034 (2015).

[158] J. Adam et al. [ALICE], Phys. Rev. Lett. 116, 222301 (2016).

[159] K. Marasinghe and K. Tuchin, Phys. Rev. C 84, 044908 (2011).

[160] J. Alford and M. Strickland, Phys. Rev. D 88, 105017 (2013).

[161] C. S. Machado, F. S. Navarra, E. G. de Oliveira, J. Noronha and M. Strickland,

Phys. Rev. D 88, 034009 (2013).

[162] S. Cho, K. Hattori, S. H. Lee, K. Morita and S. Ozaki, Phys. Rev. Lett. 113, 172301

(2014).

[163] X. Guo, S. Shi, N. Xu, Z. Xu and P. Zhuang, Phys. Lett. B 751, 215-219 (2015).

[164] T. Yoshida and K. Suzuki, Phys. Rev. D 94, 074043 (2016).

[165] A. V. Sadofyev and Y. Yin, JHEP 01, 052 (2016).

[166] C. Bonati et al. Phys. Rev. D 95, 074515 (2017).

[167] C. Bonati, M. D’Elia and A. Rucci, Phys. Rev. D 92, 054014 (2015).

[168] R. Rougemont, R. Critelli and J. Noronha, Phys. Rev. D 91, 066001 (2015).

[169] D. Dudal and T. G. Mertens, Phys. Rev. D 91, 086002 (2015).

[170] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227-253

(2008).

90



REFERENCES

[171] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys. Rev. Lett. 73, 3499-3502

(1994).

[172] F. Bruckmann, G. Endrodi and T. G. Kovacs, JHEP 04, 112 (2013).

[173] B. Chatterjee, H. Mishra and A. Mishra, Phys. Rev. D 84, 014016 (2011).

[174] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz and A. Schafer, Phys.

Rev. D 86, 071502 (2012).

[175] A. Bandyopadhyay and R. L. S. Farias, Eur. Phys. J. ST 230, no.3, 719-728 (2021).

[176] G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaefer, JHEP 04, 130

(2013).

[177] V. Voronyuk et al. Phys. Rev. C 83, 054911 (2011).

[178] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

[179] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).

[180] M. Kurian, S. Mitra, S. Ghosh and V. Chandra, Eur. Phys. J. C 79, 134 (2019).

[181] R. Ghosh, B. Karmakar and M. Golam Mustafa, Phys. Rev. D 103, 074019 (2021).

[182] S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina and V. Greco, Phys. Lett.

B 768, 260-264 (2017).

[183] S. Acharya et al. [ALICE], Phys. Rev. Lett. 125, 022301 (2020).

[184] K. K. Gowthama, M. Kurian and V. Chandra, Phys. Rev. D 103, 074017 (2021).

[185] R. Ghosh, A. Bandyopadhyay, I. Nilima and S. Ghosh, Phys. Rev. D 106, 054010

(2022).

91



REFERENCES

[186] B. Singh, L. Thakur and H. Mishra, Phys. Rev. D 97, 096011 (2018).

[187] M. Hasan, B. Chatterjee and B. K. Patra, Eur. Phys. J. C 77, 767 (2017).

[188] M. Hasan and B. K. Patra, Phys. Rev. D 102, 036020 (2020).

[189] G. Huang, J. Zhao and P. Zhuang, Phys. Rev. D 107, 114035 (2023).

[190] J. Zhao, K. Zhou, S. Chen and P. Zhuang, Prog. Part. Nucl. Phys. 114, 103801 (2020).

[191] A. Mishra and S. P. Misra, Phys. Rev. C 102, 045204 (2020).

[192] Y. Chen, X. L. Sheng and G. L. Ma, Nucl. Phys. A 1011, 122199 (2021).

[193] S. Iwasaki, M. Oka and K. Suzuki, Eur. Phys. J. A 57, 222 (2021).

[194] K. Fukushima, K. Hattori, H. U. Yee and Y. Yin, Phys. Rev. D 93, 074028 (2016).

[195] M. Kurian, V. Chandra and S. K. Das, Phys. Rev. D 101, 094024 (2020).

[196] M. Kurian, S. K. Das and V. Chandra, Phys. Rev. D 100, 074003 (2019).

[197] I. Nilima, A. Bandyopadhyay, R. Ghosh and S. Ghosh, Eur. Phys. J. C 83, 30 (2023).

[198] W. Lucha, F. F. Schoberl and D. Gromes, Phys. Rept. 200, 127-240 (1991).

[199] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005).

[200] P. K. Srivastava, O. S. K. Chaturvedi and L. Thakur, Eur. Phys. J. C 78, 440 (2018).

[201] M. Laine, O. Philipsen and M. Tassler, JHEP 09, 066 (2007).

[202] Y. Burnier, M. Laine and M. Vepsalainen, JHEP 01, 043 (2008).

[203] N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Phys. Rev. D 78, 014017 (2008).

[204] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, JHEP 12, 116 (2011).

92



REFERENCES

[205] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, JHEP 05, 130 (2013).

[206] M.Margotta, K.McCarty, C.McGahan, M. Strickland and D. Yager-Elorriaga, Phys.

Rev. D 83, 105019 (2011).

[207] A. Rothkopf, T. Hatsuda and S. Sasaki, Phys. Rev. Lett. 108, 162001 (2012).

[208] Y. Burnier and A. Rothkopf, Phys. Rev. D 86, 051503 (2012).

[209] Y. Burnier and A. Rothkopf, Phys. Lett. B 753, 232-236 (2016).

[210] A. Rothkopf, Phys. Rept. 858, 1-117 (2020).

[211] C. Bonati et al. Phys. Rev. D 98, 054501 (2018).

[212] C. Bonati et al. Phys. Rev. D 94, 094007 (2016).

[213] J. Alexandre, Phys. Rev. D 63, 073010 (2001).

[214] J. S. Schwinger, Phys. Rev. 82, 664-679 (1951).

[215] A. Ayala et al. Phys. Rev. D 98, 031501 (2018).

[216] A. Bandyopadhyay, B. Karmakar, N. Haque and M. G. Mustafa, Phys. Rev. D 100,

034031 (2019).

[217] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Nucl. Phys. B 462, 249-290

(1996).

[218] B. Karmakar, A. Bandyopadhyay, N. Haque and M. G. Mustafa, Eur. Phys. J. C 79,

658 (2019).

[219] J. Avron, I. Herbs, B. Simon, Annals Phys. 114 (1978) 431 doi:10.1016/0003-

4916(78)90276-2

93



REFERENCES

[220] J. Alford and M. Strickland, Phys. Rev. D 88 (2013), 105017

doi:10.1103/PhysRevD.88.105017 [arXiv:1309.3003 [hep-ph]].

94


	b53b2eb4f2f5046f22346e7c49d96bd743ec91a1ab83e915048f65f604818269.pdf
	80ed822759e49040459539230beeb7c84b8ed67ed54c681d6abada0fc9ec27ff.pdf
	b53b2eb4f2f5046f22346e7c49d96bd743ec91a1ab83e915048f65f604818269.pdf
	Summary
	List of Figures
	Introduction
	A brief history
	Heavy ion collision and quark-gluon plasma
	Stages of heavy ion collision experiment
	Signatures of quark-gluon plasma
	Anisotropic flow
	Jet quenching
	Dileptons and Photons production in QGP
	Strangeness enhancement
	Quarkonium suppression

	Magnetic field in heavy ion collision

	Quarkonia in quark gluon plasma
	Quarkonium bound states
	Debye screening

	The Potential model
	Quarkonium potential at finite temperature
	Real Part of the Potential
	Imaginary part of the potential


	Liénard–Wiechert potential of quarkonia in QGP
	Context and Objectives
	Retarded Cornell potential
	Dielectric permittivity and the in-medium potential
	Potential at small velocities
	Thermal Width
	Results and discussions

	Quarkonia in QGP and magnetic field
	Context and Objectives
	Permittivity in the presence of magnetic field
	Gluon self-energy in an arbitrary magnetic field

	In-medium heavy quarkonium potential 
	Thermal Width 
	Strong field approximation

	Summary and Conclusions
	References




