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ABSTRACT

The adiabatic following has been widely employed for achieving near-complete popula-

tion transfer in a ‘two-level’ quantum mechanical system. The theoretical basis could be

adopted in any equivalent system exhibiting special unitary (2) or SU (2) symmetry. We

have drawn an analogy of population transfer dynamics of a quantum two-level system

with that of light propagation in classical “one-dimensional photonic crystals” (1D-PC),

which are commonly known as distributed-Bragg-reflectors (DBRs). We show that there

exists a one-to-one correspondence between the coupled wave equations of a 1D PC with

the time-dependent Schrodinger equation of a quantum mechanical two-level system of

spin-1/2 particles in a homogeneous magnetic field. In 1D-PCs, the incident beam state

|i⟩ and reflected beam state |r⟩ are equivalent to the ground state |g⟩ and excited state |e⟩
of a two-level system. The propagation length (z) inside the 1D-PC is analogous to the

time (t) coordinate while the coupling strength (κ) and the phase-mismatch (∆K) between

the interacting waves represent the parameters equivalent to Rabi frequency and detuning

respectively. With this analogy, we employed the idea of rapid adiabatic passage (RAP)

which is a well-known technique in a two-level atomic system for realizing 100% power

transfer from the incident beam to the reflected beam for a broad spectral band. We de-

signed and explored the propagation of light in a chirped photonic crystal (CPC) in which

adiabatic constraints are completely satisfied and we found that the reflection spectrum of

the configuration exhibits substantial broadening of the photonic bandgap (PBG) as well

as suppression of sharp reflection peaks in the transmission band. When a thin plasmon-

active metal is placed adjacent to the CPC configuration, the backscattered phase undergoes

multiple π phase jumps which enable the excitation of multiple optical Tamm (OT) modes.

All the OT modes are separated in the spectral domain and their strong confinement results

in a reduced group velocity up to 0.17 times the velocity of light, thus allowing to trap

a broad spectrum with lifetime ≥ 2.8ps. In a separate study, we have focused on utiliz-

ing the topological features of the 1D-PC for carrying out beam wavefront shaping. The

light transmitted through 1D-PC acquires a ‘quantized’ geometric phase (0 or π) which is

also known as Zak phase. This gives rise to the structuring of optical beams over a broad

spectral bandwidth via suitably designing the 1D-PC structure. In the last section of the

vii



work, we explore a 1D PC-based optical system that obeys non-Hermitian dynamics and

we show that each photonic bandgap of an all-dielectric 1D-PC hosts at least two excep-

tional points in its eigenvalue spectrum. By introducing suitable apodization in the PC, the

geometry supports multiple exceptional points which distinguishes the PT-symmetric re-

gion from the region where PT-symmetry is broken. The interaction of eigenvalues around

the exceptional points provides a deeper knowledge of the electromagnetic-wave propaga-

tion dynamics.
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Summary
To summarize the work presented in this thesis, we have presented an approach to under-

standing the propagation characteristics of modes in a 1D photonic crystal using general

techniques adopted in various systems that exhibit SU (2) dynamical symmetry. We have

utilized the idea of adiabatic following, also known as rapid adiabatic passage (RAP), which

is a well-established technique for realizing 100% population transfer in a two-level atomic

system. We have shown that in suitably designed photonic crystal configurations the con-

cept of adiabatic following leads to the enhancement of the photonic bandgap. We have also

shown that the suitably designed photonic crystal configuration leads to the excitation of

multiple optical Tamm-like resonances and these Tamm resonances offer a favorable plat-

form for low-loss trapping of light with lifetimes up to 3ps. We have also presented a simple

and flexible route to generate a structured light beam (or the first-order Hermite-Gaussian

beam) by utilizing the topological features of the 1D-photonic crystal. Finally, we show the

existence of multiple exceptional points in a suitably designed 1D-PC and develop an ana-

lytical framework for ascertaining the possibility of exciting topologically-protected optical

edge modes.

xi
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Chapter 1

Introduction
1.1 Photonic crystals

Photonic Crystals (PCs) are periodic sub-wavelength architectures that are designed to in-

fluence the mobility of electromagnetic waves in a similar manner to how the periodic

potential in a semiconductor crystal influences electron motion through defining allowed

and forbidden electronic energy bands [1, 2]. PCs typically consist of periodic dielectric or

periodic metallo-dielectric sub-wavelength architectures with materials exhibiting alternat-

ing low and high dielectric constants in one, two, or three dimensions so as to influence the

propagation of electromagnetic (em) waves within the geometry. Due to this periodicity,

the transmission of light in a certain frequency region is absolutely zero which is called a

“Photonic Band Gap” (PBG). By introducing defects in these periodic structures, the PBG’s

continuity and PC periodicity is destroyed which enables the control and manipulation of

light in the spectral domain, as well as spatial domain [1, 2]. These defects may be point

defects, line defects, or both. Light is localized in the PBG region due to the presence of

these defects, which facilitates the creation of a variety of PC-based optical devices.

James Clark Maxwell in 1864, established a close relationship between optics and electro-

magnetism by summarizing the theory of em waves in a set of differential equations. He

explained the mechanism of wave propagation when it traverses through the medium [3].

Later, in 1887, Lord Rayleigh carried out the first analysis of em field propagation in a pe-

riodic system extending to infinity in one direction and derived a general one-dimensional

wave equation in a periodic media[4]. He observed that the plane wave propagating through

the structure is considered as the sum of multiple reflections and transmissions that occur

1



1 Introduction

at each interface. Such geometries tend to exhibit a range of frequencies that is prohibited

to propagate inside the periodic arrangement. The propagation of em radiation in periodic

structures exhibits many interesting and useful phenomena such as the diffraction of X-rays

in crystals, the photonic bandgap of light propagating through periodic layered media, and

the light scattering by fiber Bragg gratings. These phenomena are useful in many optoelec-

tronic devices including diffraction gratings, high-reflectance Bragg mirrors, vertical cavity

surface emitting lasers, distributed feedback lasers, distributed Bragg reflection lasers, fiber

Bragg gratings, and acousto-optic filters.

A century later, in 1987, a more general form of periodic geometries or PCs were intro-

duced independently by two researchers E. Yablonovitch and S. John. Yablonovitch [2]

proposed the possibility of prohibiting spontaneous emission of em radiation throughout a

broad spectrum using a three-dimensional periodic dielectric arrangement and this lattice

has regions of forbidden energy states for photons showing photonic band gaps. S. John

[1] proposed the concept of strong localization of photons in disordered dielectric super-

lattices and suggested that the defects in a lattice trap em radiations where certain energy

states for photons were forbidden. These two pioneering works are considered as the origin

of the “photonic crystals or photonic band gap materials”. Over the last four decades, pho-

tonic crystals have evolved as the backbone of many technological advancements which

essentially hinge upon manipulating the spatial and spectral characteristics of light beam

[5]. Nowadays, PCs have sparked a lot of interest and research due to their revolutionizing

applications in modern photonic engineering, such as optical communication and optoelec-

tronics. PCs have the ability to control and manipulate light due to this they have been

identified as the most promising candidates for the realization of compact all-optical com-

munication and computing systems [6].

The propagation characteristics of em waves in a periodically stratified dielectric medium

are strikingly similar to the features exhibited by the matter waves in crystalline solids

2



1 Introduction

[7, 8]. In crystals, the periodic Coulomb-potential leads to the formation of continuous en-

ergy bands separated by forbidden energy spectrum, also known as bandgaps. In a similar

fashion, the periodic variation of dielectric constant in PCs with the periodicity of the order

of the wavelength of light led to the formation of transmission (or pass) bands which are sep-

arated by forbidden spectral bands known as photonic bandgaps (PBGs) [9, 10]. PCs could

be thought of as semiconductors for the light beam. It is made up of a dielectric medium that

is arranged in a pattern similar to a periodic array of positive potential scatterers. In a peri-

odic potential of crystals, the energy-momentum relation for electrons modifies, especially

they are discernible at the Brillouin zone boundaries. In PCs, the PBG or the forbidden band

is centered around the frequency that fulfills the Bragg condition 2Λsin(θ) = nλ. Here,

Λ denotes the period of the index variation in space, θ is the angle of incidence, n is the

order of the Bragg reflection and λ denotes the operating wavelength. PCs are classified

primarily into three categories: one-dimensional (1D), two-dimensional (2D), and three-

dimensional (3D) photonic crystals, depending upon whether the periodicity is in one, two,

or three dimensions. Accordingly, the PBGs are direction dependent, meaning that light

propagation can only be modulated in the directions of periodically varying dielectric con-

stant. The schematic illustrations of 1D PC, 2D PC and 3D PC are shown in Fig.1.1

1D PC consists of periodic modulation of the refractive index in one direction only, while

the structure is homogeneous in the other two directions. Such photonic structures have

been fabricated by a variety of methods, such as chemical vapor deposition, magnetron

sputtering, etc [11, 12]. For electrically pumped vertical cavity surface emitting lasers (VC-

SELs), where high mobility defect-free semiconductors ie. GaAs and AlGaAs 1D PCs are

required, molecular beam epitaxy method is used [13]. In addition, pure silicon 1D multi-

layer PCs can be readily obtained via the electrochemical etching of crystalline silicon[14].

For any value of refractive index contrast i.e., the difference between the dielectric con-

stant of the materials, PBG appears in the direction of periodicity. The width of the PBG is

3
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Figure 1.1: Schematic illustrations of photonic crystals (a) 1-D (b) 2-D (c) 3-D

primarily dictated by the refractive index contrast of the constituting materials and the loca-

tion in the spectral band is governed by the thickness of constituting layers. 1D PCs can act

as a mirror for light having a frequency within the PBG and are also known as distributed-

Bragg-reflectors (DBRs) due to their analogy with the Bragg diffraction of X-rays from

various atomic planes. This type of PC can localize light modes in the presence of defects

in the structure. A defect in a 1D PC can be simply introduced by giving one of the layers a

slightly different refractive index or width than the others. The defect mode is then localized

in one direction but extends into the other two. These concepts are commonly employed

in dielectric mirrors [15, 16], optical filters [17, 18, 19], low-loss waveguides [20], and

lasers [21, 22, 23, 24] and also provide an efficient sensing platform for plasmonic-based

interactions [25, 26, 27]. Furthermore, such structures are widely used as anti-reflective

coatings, which greatly reduce surface reflectance and are used to improve the quality of

lenses, prisms, and other optical components [28]. Wave guiding configurations based on

the phenomena of Bragg reflection have been employed as polarization selection devices

in miniaturized optical sources [29, 30] and also, projected as possible hosts for future op-

tical particle accelerators driven by extremely high-power lasers [31]. On the other hand,
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the possibility of field confinement and therefore, reducing the em interaction volume to

sub-wavelength scale has led to the formation of stable spatial-solitons in nonlinear Bragg-

reflection-waveguides [32]. Recently, the bulk modes of Bragg-reflection waveguides or

optical surface states in DBR have been found to be promising candidates for optical para-

metric processes and higher harmonic generation [33, 34, 35, 36]. By introducing chirp

in a periodic DBR system, broadband distributed-feedback-lasers have been experimen-

tally realized and it finds widespread applicability in modern generation laser technology

[37, 38, 39]. Additionally, the chirped-DBR configurations have been explored for devising

group-velocity-compensating elements in broadband frequency conversion processes [40].

Optimally-designed chirped-DBR architectures have also been explored from the perspec-

tive of the generation of slow-light and realizing light-trapping schemes [41, 42, 43].

2D PC is periodic in two directions and homogeneous along the third direction as shown

in Fig.1.1(b). For 2D PCs the PBG appears in the plane of periodicity, inside this gap, no

em states are permitted and the light is reflected [9]. Light propagating in the plane of pe-

riodicity can be decoupled into TE modes (transverse electric, assuming the electric field

to be in the plane of periodicity) and TM modes (transverse magnetic, assuming the mag-

netic field to be in the plane of periodicity). Both TE and TM modes have very different

dispersion. We could make the photonic bandgaps overlap by adjusting the lattice geome-

try, resulting in a “complete band gap” i.e. a frequency region where em wave propagation

is completely prohibited for both TE and TM polarization. Light modes with frequencies

within the PBG can be localized by introducing point defects in the structure, but in this

case, one can localize light modes in two dimensions, rather than just in one dimension.

2D PCs can also be employed to guide light from one location to another by adding line

defects in the structure [44, 45]. Due to the widespread use of very advanced lithographic

techniques that have been refined over many years in the microelectronics sector, 2D PCs

have advanced the most among all known PC systems. Due to its manufacturing process,
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2D PCs are perfectly suited to be coupled with advanced electronic integrated circuitry,

enabling the creation of hybrid systems with simultaneous optical and electrical operation

[46].

3D PC is a full optical analog of a conventional crystal, which has periodicity along three

different axes as shown in Fig.1.1(c). A natural example of 3D PC is a stone known as opal.

This stone possesses unique optical properties of showing different colors from different an-

gles by virtue of the opal’s distinctive microstructure. A PBG appears in all directions when

conditions of sufficiently high dielectric contrast and suitable periodicity are met. Such 3D

PBGs can reflect light incident from any arbitrary direction for all the polarizations resulting

in the formation of a complete photonic bandgap. Just as in 2D PC, one can localize light

at a defect or at a surface but these defect modes are localized in the plane of periodicity

and extended in the third direction. 3D PC has the additional capability to localize light to

a single point in the crystal. It is trapped in all three dimensions. The first realization of a

complete PBG crystal operating at microwave frequencies, as confirmed by angle-resolved

reflectivity and transmissivity measurements were reported by Yablonovitch [47]. There

are various examples of 3D PCs with complete band gaps such as a diamond lattice of air

holes, a drilled dielectric known as Yablonovite, and a woodpile stack of orthogonal dielec-

tric columns [9]. 3D PCs are mainly fabricated via Direct laser writing (DLW) [48] and

interference lithography (IL) technique[49]. At present IL certainly stands as the preferred

method for preparing periodic and quasi-periodic patterns over large areas. In IL, the inter-

ference of four coherent laser beams creates a standing wave pattern in three dimensions,

which in turn can be recorded in a photoresist. The spatial period of the grating can be as

low as half the wavelength of the interfering light, allowing for structures of the order of 100

nm fromUVwavelengths; features as small as 30-40 nm are also possible with a deep ultra-

violet ArF laser [50]. The former method, DLW makes use of multiphoton polymerization

in a photoresist that is transparent to the wavelength of the laser employed and has emerged
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as a technique for the rapid, cheap, and versatile fabrication of photonic nanostructures. By

scanning and properly modulating the laser, polymerization occurs at the focal spot of the

laser and can be controlled to create an arbitrary 3D periodic pattern. Additionally, 3D PCs

have also been generated by deep X-ray lithography technique and this method has been

successful at replicating the Yablonovite structure [51].

1.2 Dissertation organization

The focus of the work presented in this thesis is the theoretical study of the peculiarities

of em wave propagation in a periodic dielectric medium, mainly focusing on the one-

dimensional photonic crystals. The whole work in this thesis has been organized into seven

chapters. In Chapter 1, we provide a brief introduction to the concept and principle behind

photonic crystals as well as the applications based on photonic crystals. In chapter 2, we

discuss the general properties of wave propagation in periodic media which is followed by

an explanation of the transfer matrix method (TMM), a broadly used method to study wave

propagation in periodic stratified media. In the second part, the coupled-mode formalism

is described with an aim to estimate the transmission and reflection spectrum for a one-

dimensional photonic crystal (PC). In chapter 3, we present an adiabatic mode-coupling

scheme between the forward and backward propagating modes of a photonic crystal and

present a chirped photonic crystal configuration in which the adiabatic constraints are satis-

fied by virtue of optimally chirping the PC. Then, we draw an equivalence of the two-level

atomic system and the spin-1/2 dynamics of a particle with that of light propagation in

a one-dimensional photonic crystal. Further, we discuss that this chirped photonic crys-

tal could be employed for trapping a broadband spectrum through the excitation of optical

Tamm modes in chapter 4. In chapter 5, we discuss the possibility of structuring optical

beams via tailoring the geometric phase of the photonic crystal. In chapter 6, we explore
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the possibility of creating asymmetric losses without adding gain in the system and study

a non-Hermitian system that led to the existence of multiple exceptional points. The last

chapter will highlight the overall conclusions and future research directions which could be

derived from this thesis.
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Chapter 2

Electromagnetic wave propagation in pe-
riodic media
In this chapter, we will discuss the em wave propagation in a one - dimensional periodic

medium. Wave propagation in periodic layered media has been studied by many groups.

The exact solution of the wave equation in periodic media can be obtained using the trans-

fer matrix method, a widely used method to study wave propagation in periodically strat-

ified media. However, there are a few geometries for which only approximate solutions

of Maxwell’s equations can be obtained. With this context in sight, the second part of the

chapter discusses the coupled-mode formalism for estimating the transmission, reflection

spectrum, and band structure for a one-dimensional photonic crystal.

2.1 The transfer matrix method

The TransferMatrixMethod (TMM) is awell-knownmethod for ascertaining the bandstruc-

ture and propagation characteristics of electromagnetic waves in one-dimensional periodic

structures [1, 2]. Using layer-by-layer estimation of propagation, it could handle PBG ma-

terials of finite thickness. In general, the PC geometries with defects could also be handled

using this recipe. The simplest periodically-stratified medium is one that consists of alter-

nating layers of high and low refractive index dielectric materials with an index of refraction

n1 and n2 respectively. The dielectric layers having thicknesses d1 and d2 respectively are

arranged periodically along the z-direction with lattice period Λ = d1 + d2 and the struc-

ture is homogeneous along the x and y direction as illustrated in Fig.2.1. Also, we assume

that the materials are isotropic and non-magnetic. The refractive index profile of the PC is
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2 Electromagnetic wave propagation in periodic media

Figure 2.1: Schematic design of 1D multilayer periodic structure

described through [3]

n(z) =

{
n1, 0 < z < d1
n2, d1 < z < Λ

(2.1)

with

n(z) = n(z + Λ) (2.2)

The propagation of em wave in a charge-free and current-free medium is described by

Maxwell’s equations,

∇⃗ · E⃗ = 0 (2.3)

∇⃗ · H⃗ = 0 (2.4)

∇⃗ × E⃗ = −µ0
∂H⃗

∂t
(2.5)

∇⃗ × H⃗ = ϵ
∂E⃗

∂t
(2.6)
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2 Electromagnetic wave propagation in periodic media

The wave equation for E could be obtained by taking the cross product of Eq.2.5 and

using Eq.2.6,

∇⃗ × (∇⃗ × E⃗) = −µ0ϵ
∂2E⃗

∂t2
(2.7)

The first term in the above equation could be expanded using vector triple product identity

as:

∇⃗ × (∇⃗ × E⃗) = ∇⃗(∇⃗ · E⃗)− ∇⃗2E⃗ (2.8)

For a charge-free isotropic media, the first term on the right-hand side of Equation2.8

is zero. Thus wave equation for electric field E⃗ becomes,

∇2E⃗ − µ0ϵ
∂2E⃗

∂t2
= 0 (2.9)

here, ϵ = ϵ0ϵr and c2 = 1
ϵ0µ0

.

Similarly, the equation for magnetic field H⃗ can be written as

∇2H⃗ − µ0ϵ
∂2H⃗

∂t2
= 0 (2.10)

Equations2.9 and 2.10 are the standard electromagnetic wave equations. They satisfy

the well-known plane wave solution for E⃗ and H⃗ i.e.

E⃗(r⃗, t) = E0e
i(ωt−k⃗·r⃗) and H⃗(r⃗, t) = H0e

i(ωt−k⃗·r⃗)

where, k⃗ defines the direction of propagation and ω is the angular frequency of the incident

light. For TE polarization, the wave equation for E⃗ in one-dimensional propagation (along

the z-direction) could be written as

d2

dz2
E(z) +

ω2

c2
ϵ(z)E(z) = 0 (2.11)

Similarly, for TM polarization, the wave equation for H⃗ propagating in a one-dimensional

case could be written as
d2

dz2
H(z) +

ω2

c2
ϵ(z)H(z) = 0 (2.12)
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2 Electromagnetic wave propagation in periodic media

For a 1D-periodic medium, we assume that the refractive index (or the dielectric constant)

varies only along the propagation (z) direction as shown in Fig.2.1. The electric field dis-

tribution E(z) within each homogeneous layer could be expressed as a sum of an incident

plane wave and a reflected plane wave. The complex amplitudes of these two waves con-

stitute the component of a column vector. The electric field in the 1st unit cell could be

written as [3]

E(z) =

{
A1e

−ik1zz +B1e
ik1zz, 0 < z < d1

C1e
−ik2z(z−d1) +D1e

ik2z(z−d1), d1 < z < Λ;
(2.13)

where k1z and k2z are the propagation constants in the z-direction in layers of refractive

index n1 and n2 respectively and they are defined as

k1z =
n1ω

c
cosθ1

k2z =
n2ω

c
cosθ2

(2.14)

where θ1 and θ2 are the angle of incidence in layers with refractive indices n1 and n2 re-

spectively. By imposing the continuity condition of Ex and Hy (with Hy ∝ ∂Ex/∂z) at

interfaces z = d1 and z = d2, we obtain

A1e
−ik1zd1 +B1e

ik1zd1 = C1 +D1

−ik1zA1e
−ik1zd1 + ik1zB1e

ik1zd1 = −ik2zC1 + ik2zD1

C1e
−ik2zd2 +D1e

ik2zd2 = A2 +B2

−ik2zC1e
−ik2zd2 + ik2zD1e

ik2zd2 = −ik1zA2 + ik1zB2

(2.15)

These four equations could be in matrix form as(
e−ik1zd1 eik1zd1

−ik1ze−ik1zd1 ik1ze
ik1zd1

)(
A1

B1

)
=

(
1 1

−ik2z ik2z

)(
C1

D1

)
(2.16)

(
e−ik2zd2 eik2zd2

−ik2ze−ik2zd2 ik2ze
ik2zd2

)(
C1

D1

)
=

(
1 1

−ik1z ik1z

)(
A2

B2

)
(2.17)
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In this matrix representation, the complex amplitudes of the two plane waves in each layer

constitute the components of a two-component column vector. The electric field in each

layer of the unit cell could be represented by a column vector. These column vectors are not

independent of each other. They are related through the continuity conditions at the inter-

faces. As a result, only one column vector could be chosen independently. By eliminating

this column vector given by (
C1

D1

)
The matrix equation is obtained as(

A1

B1

)
=

(
M11 M12

M21 M22

)(
A2

B2

)
= ¯̄M

(
A2

B2

)
(2.18)

Thematrix ¯̄M in this equation is called a unit cell translation matrix that relates the complex

amplitudes of the incident plane wave A1 and the reflected plane wave B1 in one layer of

the unit cell to those of the equivalent layer in the next unit cell. As this matrix relates the

field amplitudes of two equivalent layers with the same index of refraction, it is unimodular,

i.e. ∣∣∣∣M11 M12

M21 M22

∣∣∣∣ =M11M22 −M12M21 = 1 (2.19)

The form of matrix elements is given by

M11 = eik1zd1

[
cosk2zd2 +

1

2
i

(
γ +

1

γ

)
sink2zd2

]
,

M12 = e−ik1zd1

[
1

2
i

(
1

γ
− γ

)
sink2zd2

]
,

M21 = eik1zd1

[
− 1

2
i

(
1

γ
− γ

)
sink2zd2

]
,

M22 = e−ik1zd1

[
cosk2zd2 −

1

2
i

(
γ +

1

γ

)
sink2zd2

]
.

(2.20)

where γ is a parameter which is defined as γ = k1z
k2z

for TE mode and γ =
k1z×n2

2

k2z×n2
1
for TM

mode.

19



2 Electromagnetic wave propagation in periodic media

For N unit cells, the column vector of equivalent layers is related to that of the zeroth

unit cell by (
A0

B0

)
=

(
M11 M12

M21 M22

)N (
AN

BN

)
(2.21)

The above equation could be inverted to obtain(
AN

BN

)
=

(
M11 M12

M21 M22

)−N (
A0

B0

)
=

(
M22 −M12

−M21 M11

)N (
A0

B0

)
(2.22)

The matrix in this equation 2.22 is a translation or transfer matrix, for aN -period multilayer

structure, which relates the complex amplitudes of the plane waves in layer 1 of the zeroth

unit cell to those of the equivalent layer in the last unit cell of the PC.

2.1.1 Photonic bandstructure

The propagation of em waves in periodic media is similar to the motion of electrons in

crystalline solids. Hence, some of the physical concepts such as Bloch waves, Brillouin

zones, and energy bands used in solid-state physics could also be employed in this context.

A 1D periodic layered medium is equivalent to a 1D crystal, which is invariant under lattice

translations. If the translation operator T is defined as Tz = z+mΛ, wherem is an integer,

then the field in the layered medium obeys the relation

TE(z) = E(T−1z) = E(z −mΛ) (2.23)

According to the Bloch theorem, the electric field of the eigenwave in the periodic medium

is of the form

E⃗(r⃗, t) = E⃗K(z)e
−iKzei(ωt−kyy) (2.24)

where, E⃗K(z) is a periodic function with periodicity Λ i.e.

E⃗K(z) = E⃗K(z + Λ) (2.25)
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2 Electromagnetic wave propagation in periodic media

The subscriptK indicates that the function E⃗K(z) depends onK. The constantK is known

as the Bloch wavenumber and needs to be determined for ascertaining the propagation char-

acteristics within the PC. In terms of column vector representation, Eq. 2.25 for the Bloch

wave is simply given by

(
AN

BN

)
= e−iKΛ

(
An−1

Bn−1

)
(2.26)

By using equations 2.18 and 2.26, the column vector depicting the Bloch eigenwave satisfies

the following eigenvalue equation(
M11 M12

M21 M22

)(
AN

BN

)
= eiKΛ

(
An

Bn

)
(2.27)

The phase factor eiKΛ is thus the eigenvalue of unit-cell translationmatrix (M11,M12,M21,M22)

and satisfies the secular equation
∣∣∣∣M11 − eiKΛ M12

M21 M22 − eiKΛ

∣∣∣∣ = 0

The solutions are given by

eiKΛ =
1

2
(M11 +M22)±

([
1

2
(M11 +M22)

]2
− 1

) 1
2

(2.28)

The eigenvectors corresponding to the eigenvalues are obtained from 2.27 and they are

expressed as

(
A0

B0

)
=

(
M12

eiKΛ −M11

)
(2.29)

For N th unit cell the corresponding column vectors are given according to 2.26, as(
AN

BN

)
= e−iNKΛ

(
M12

eiKΛ −M11

)
(2.30)

According to equations 2.13 and 2.26, the resultant expression representing the Bloch wave

in layer 1 for the N th unit cell is given by

EK(z) = [(A0e
−ik1Z(z−NΛ) + b0e

ik1z(z−NΛ))eiK(z−NΛ)]e−iKz (2.31)
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2 Electromagnetic wave propagation in periodic media

where amplitudes A0 and B0 are given by Eq.2.29. It is important to note that the func-

tion inside the square bracket is independent of the number of unit cell (N) and hence, it is

periodic with period Λ which is in agreement with the Bloch theorem Eq.2.24. The Bloch

waves resulting from Eq. 2.31 could be considered as the eigenvectors of the unit cell trans-

lation matrix with eigenvalue eiKΛ. Since the transfer matrix 2.19 is unimodular, the two

eigenvalues are inversely related to each other. Equation 2.28 gives the dispersion relation

between frequency (ω), longitudinal component (conserved quantity) of the wavevector

(ky) and the Bloch wave numberK and it is expressed in the form

K(ω, ky) =
1

Λ
cos−1

[
1

2
(M11 +M22)

]
(2.32)

This dispersion relation results in the photonic bandstructure for a 1D periodic layered

medium or a 1D PC. Now, three cases may arise

Case1: |(M11 +M22)/2| < 1

This corresponds to real Bloch wavenumberK and thus, depict a propagating Bloch wave.

Case2: |(M11 +M22)/2| > 1

The Bloch wave number K becomes complex, i.e. K = mπ/Λ + iKi. Due to the non-

zero imaginary component (Ki), the Bloch wave has an evanescent envelope which cannot

propagate in the medium. These regions are known as photonic bandgaps or forbidden gaps

of the periodic medium.

Case3: |(M11 +M22)/2| = 1

This gives the photonic band edges, defining the band gaps of the periodic medium.

The dispersion relation 2.32 for TE and TM polarization could be written as [1, 2]

cosKΛ =

{
cosk1zd1cosk2zd2 − 1

2
(k2z
k1z

+ k1z
K2z

)sink1zd1sink2zd2 (TE)
cosk1zd1cosk2zd2 − 1

2
(
n2
1k2z

n2
2k1z

+
n2
2k1z

n2
1K2z

)sink1zd1sink2zd2 (TM) (2.33)

An example of the band structure for the special case ky = 0 i.e. for normal incidence is

shown in Fig.2.2. Case (a) shows the dispersion relation of a homogeneous medium, where
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2 Electromagnetic wave propagation in periodic media

Figure 2.2: Shows the dispersion relation between ω andK for normal incidence i.e. for ky
= 0. a) For homogeneous medium with refractive index n = 2.5. b) For a periodic medium
consisting of alternating layers of materials with refractive indices n1 = 2.5 & n2 = 1.5
and periodicity Λ = 400nm (d1 = d2 = 0.5Λ). The solid black line represents the real part
of K and the dotted maroon line represents the imaginary part ofK.

the refractive index is considered to be n = 2.5. This folding of the dispersion relation is

shown only for elucidating a comparison and it does not have any physical significance.

Fig.2.2(b) shows the dispersion relation for the periodic layered medium consisting of al-

ternating layers of TiO2 with refractive index n1 = 2.5 and SiO2 with refractive index

n2 = 1.5. The thicknesses of the layers are chosen to be d1 = d2 = 0.5Λ and the period

of the structure is taken as Λ = 400 nm. The bandstructure in Fig.2.2 represents the de-

pendence of the Bloch wave number (K) as a function of frequency (ω). For the periodic

multilayered structure, the transmission bands or allowed bands are separated by clearly

defined forbidden bands as shown in Fig.2.2(b). The imaginary part of K is shown by a

dotted maroon line and the real(K) is shown by the black line.

In this section, we obtained an exact solution for the propagation of em wave in a pe-

riodic layered medium. The bandstructure, reflection, and transmission coefficients could

be calculated easily using TMM. It is important to note that TMM is a purely numerical
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2 Electromagnetic wave propagation in periodic media

technique and as a result, this method has some limitations in terms of computational re-

quirements and its inability to get employed in two or three-dimensional geometries. Also,

this method devoid us to gain any physical insight into the em coupling taking place amongst

various modes (states) in the PC. To this end, a relatively less explored theory, known as the

coupled-mode theory may offer some useful and interesting insights into the propagation

features of em waves in PCs.

2.2 Coupled-mode theory (CMT)

In this section, we will discuss CMT-based formalism in which the periodic variation of

the dielectric function is considered through the first-order perturbation technique. This

dielectric perturbation gives rise to the coupling or energy exchange between the modes of

the unperturbed (or uniform)medium. A periodic variation (with periodicityΛ) in dielectric

constant (ϵ) along z-direction in a medium could be expressed as [3]

ϵ(x, y, z) = ϵ0(x, y) + ∆ϵ(x, y, z) (2.34)

where ϵ0(x, y) is the unperturbed part of the dielectric constant, and∆ϵ(x, y, z) defines the

periodic dielectric perturbation along the propagation or (z) direction. Since this dielectric

perturbation is periodic along z, we can expand it as a Fourier series expansion

∆ϵ(x, y, z) =
∑
m ̸=0

ϵm(x, y)e
(−im 2π

Λ
z) (2.35)

This dielectric (along z) perturbation gives rise to the possibility of intermodal interac-

tions. Let us consider any two modes, namely |p⟩ and |q⟩ propagating through the medium

described by the dielectric function in equation (2.34). Assuming the em modes are prop-

agating along z-direction, any arbitrary pth and qth mode could be expressed as

|p⟩ = Ep(x, y)Ap(z)e
i(ωt−βpz)

|q⟩ = Eq(x, y)Aq(z)e
i(ωt−βqz)

(2.36)
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2 Electromagnetic wave propagation in periodic media

Under the slowly varying approximation, the evolution of z-dependent mode-amplitude

Ap and Aq of pth and qth modes respectively could be expressed as [3]

dAp

dz
= −i βp

|βp|
∑
q

∑
m

κpq
(m)Aq(z)e

−i(βq−βp−m 2π
Λ
)z

dAq

dz
= −i βq

|βq|
∑
p

∑
m

κ∗pq
(m)Ap(z)e

−i(βp−βq−m 2π
Λ
)z

(2.37)

where βp and βq are the longitudinal components of wavevector kp and kq respectively.

κpq
(m) defines the magnitude of the coupling coefficient which couples the modes through

the mth Fourier component of dielectric function equation (2.34). The mth coupling coef-

ficient is expressed as

κpq
(m) =

ω

4

∫ ∫
E∗

p(x, y)ϵm(x, y)Eq(x, y)dxdy (2.38)

where ϵm is the mth component of the Fourier-series expansion of ϵ (see equation (2.35)).

The coupling between the interacting modes is maximum when the “longitudinal phase-

matching” condition is exactly satisfied i.e.

βp − βq −m
2π

Λ
= 0 (2.39)

2.2.1 Coupled-mode theory for photonic crystal

In the case of PC, the coupling between a forward propagating mode (Ap ≡ Ai) and a

backward propagatingmode (Aq ≡ Ar) is of interest. In the absence of any other intermodal

interactions, the forward-backward mode coupling (assuming m = 1) would be governed

by [3, 4, 5],
dAr

dz
= −i βr

|βr|
κAie

i∆βz

dAi

dz
= −i βi

|βi|
κ∗Are

−i∆βz

(2.40)

where we have dropped the indices from κ and ∆β = βr − βi − 2π
Λ
. In case, the PC con-

stituent materials are isotropic, the dielectric function (equation (2.34)) is a purely scalar
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2 Electromagnetic wave propagation in periodic media

Figure 2.3: Oblique incidence of em-wave on distributed-Bragg-reflector (DBR) or 1D-
photonic crystal. z-direction represents the optical axis.

and consequently, TE to TM mode-coupling (and vice-versa) is forbidden. It is worth not-

ing that the phase-matching condition for coupling the forward propagating mode (|i⟩) to a

backward propagating mode (|r⟩) or vice-versa is contra-directional in nature and therefore,

Eq. (2.39) could be expressed as ∆β = 2β − 2π
Λ

= 0 where βi = −βr = β [3, 2]. As

shown in Fig. 2.3, the phase-matching condition for the contra-directional coupling pro-

cess is modified to∆β = 2β cos θ− 2π
Λ

= 0 in case of oblique incidence (θ with respect to

z-axis). The coupled-mode equations (2.40) for contra-directional coupling will modify to

a new set of equations given by,

dAr

dz
= −iκAie

i∆βz

dAi

dz
= iκ∗Are

−i∆βz

(2.41)

For a simple case when the two layers of the DBR (with refractive indices n1 and n2) share

the same thickness i.e. d1 = d2, the coupling coefficient takes a simplified form given by
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2 Electromagnetic wave propagation in periodic media

[3],

κTE =
i

λ cos θ

√
2(n1

2 − n2
2)√

(n2
2 + n1

2)

κTM =
i

λ cos θ

√
2(n1

2 − n2
2)√

(n2
2 + n1

2)
cos 2θ

(2.42)

The solution of coupled-mode equations (2.41) for close-to-perfect phase-matched (∆β ≈ 0)

situation leads to a strong coupling from a forward propagating mode (|i⟩) to a backward

propagating mode (|r⟩) for a broad range of frequencies. This is realized for all the frequen-

cies within the PBG and consequently, we obtain a strong reflection band. It is apparent

from equations (2.42) that the contrast in refractive index (or dielectric constant) is the pri-

mary factor determining the strength of coupling and hence, the sharpness of band edges.

For a given choice of DBR constituents, |n2
1 − n2

2| is fixed and consequently, the width of

PBG remains unchanged.

In order to obtain the expression for the reflectivity, let’s suppose that the em-wave is inci-

dent at z = 0 which results in a boundary condition given by

Ai(0) = 1,

Ar(L) = 0,
(2.43)

where Ai is the amplitude of the forward (or incident) wave and Ar is the amplitude of the

backward (or reflected) wave and z = L is the interaction distance when the incident mode

is converted into the reflected mode. The solution of the coupled wave equation (2.41), is

represented as

Ar(z) = ei(∆β/2)z scoshs(L− z) + i(∆β/2)sinhs(L− z)

scoshsL+ i(∆β/2)sinhsL

Ai(z) = e−i(∆β/2)z −iκ∗sinhs(L− z)

scoshsL+ i(∆β/2)sinhsL

(2.44)

where s is given by s =
[
κ∗κ − (∆β/2)2

] 1
2 . According to Eq. (2.44), reflectivity (R) is

defined as

R =

∣∣∣∣∣Ar(0)

Ai(0)

∣∣∣∣∣
2

=
κ∗κsinh2sL

s2cosh2sL+ (∆β/2)2sinh2sL
(2.45)
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2 Electromagnetic wave propagation in periodic media

Figure 2.4: Shows the dispersion relation i.e. ω versus K relation for 1D-PC using CMT
with n1 = 2.5, n2 = 1.5 and d1 = d2 = 0.5Λ. Re(K) and Im(K) are represented by solid
black lines and dotted maroon lines, respectively.

As mentioned before, the reflectivity would be maximum when the phase matching condi-

tion is satisfied i.e. ∆β ≈ 0:

Rmax = tanh2|κ|L (2.46)

Using Eq. (2.44) and ∆β = 2kcosθ − m(2π
Λ
), we found that the z-dependent part of the

coupled wave solutions in 1D PC is exponential with the propagation constant and could

be written as

K = kcosθ ± is =
mπ

Λ
± i

√
κ∗κ−

(
∆β

2

)2

(2.47)

Equation(2.47) describes the propagation characteristics of em-modes in the PC. The mag-

nitude and width of PBG are derived by the values of κ and∆β. When∆β < 2|κ|, for cer-

tain range of frequencies K is complex. This region corresponds to the ‘forbidden’ region

or alternately, the PBG. Using equation (2.47), a plot of real and imaginary K for m = 1

and θ = 0 versus ω is shown in Fig.2.4. The structural parameters of the 1D PC in Fig.2.4
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are the same as mentioned previously in Fig.2.2 (n1 = 2.5, n2 = 1.5 and d1 = d2 = 0.5Λ).

It is important to note that for each value ofm there exists a PBG whose central frequency

satisfies kcosθ = mπ/Λ, (m = 1, 2, 3...) and the results from CMT are consistent with that

obtained through the Bloch-wave formalism.
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Chapter 3

Geometric representation of adiabatic dis-
tributed - Bragg - reflectors
3.1 Introduction

Adiabatic following, also known as rapid adiabatic passage (RAP), has been awell-established

technique for realizing near 100%population transfer in a two-level atomic systems [1]. For

example, RAP provides an efficient platform for ultrashort pulse frequency conversion as

well as tailoring the spatial characteristics of optical beams in optical nonlinear medium

[2, 3, 4, 5]. The theoretical basis, however, could be generalized to a broad class of systems

exhibiting SU(2) symmetry.

In this chapter, we present an analogy of population transfer dynamics of a two-level

atomic system with that of light propagation in a classical ‘one-dimensional’ photonic crys-

tal, also known as distributed Bragg-reflector (DBR). This formalism facilitates adapting

the idea of adiabatic following, more precisely RAP which is frequently encountered in

a broad class of quantum-mechanical systems. A PC is primarily characterized by PBG

whosemagnitude is primarily dictated by the refractive index contrast of the PC constituents

and the location in a spectral band is governed by the thickness of constituent layers [6].

Therefore, for a given pair of materials forming the PC, the magnitude of PBG is unique

and fixed. Within the limit of optical transparency for the constituent PC materials, we

present a formalism to broaden the PBG (and suppress the transmission band) by utilizing

the concept of adiabatic coupling to a backward propagating mode from a forward propa-

gating mode. Therefore, we draw an equivalence of the coupled-wave equations in a PC
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3 Geometric representation of adiabatic distributed - Bragg - reflectors ...

with that encountered while describing the dynamics of quantum two-level atomic systems.

Subsequently, we propose a plausible PC configuration for adopting the adiabatic follow-

ing in such systems which leads to the broadening of the PBG spectrum. The formalism

could be translated to any spectral band and the PBG broadening is limited by the restriction

imposed by material transparency only. Interestingly, this idea provides a viable platform

to tailor the backscattered phase from such systems as well. The intermodal coupling be-

tween counter-propagating modes as well as their phase-mismatch, for the photonic crystal

configuration, exhibits a longitudinal variation which is usually observed in ‘Allen-Eberly’

scheme of adiabatic population transfer in two-level atomic systems [1].

3.2 Adiabatic phase-matching in photonic crystal

The coupled-mode equations for 1D PC (described in section 2.2 of chapter 2) could be

transformed into a rotating frame through the following substitution:

Ar = ãre
i/2[∆β(0)z−

∫
0
zq(z̃)dz̃]

Ai = ãie
−i/2[∆β(0)z−

∫
0
zq(z̃)dz̃]

(3.1)

where

∆β(z)z = ∆β(0)z −
∫
0

z
q(z̃)dz̃

Here, ∆β(0) is the phase-mismatch at z = 0 and q(z) could be expressed as

〈
q(z)

〉
=

1

z

∫
0

z

q(z̃)dz̃ = ∆β(0)−∆β(z) =
4πn̄(z = 0)

λ
− 4πn̄(z)

λ
(3.2)

where n̄ is the average refractive index defined by n̄ =
√

d1Mn1
2+d2Mn2

2

Λ
(for theM th

unit cell). The complex amplitudes ãi and ãr represent the power contained in the forward

and backward propagating modes in the rotated frame of reference. It is worthwhile to

note that |ãi|2 = |Ai|2 and |ãr|2 = |Ar|2. The transformed coupled-mode equations (2.41)
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3 Geometric representation of adiabatic distributed - Bragg - reflectors ...

appear like
dãi
dz

− i∆kãi = iκ∗ãr

dãr
dz

+ i∆kãr = −iκãi
(3.3)

where ∆k = ∆β(0)−q(z)
2

. Equations (3.3) could be expressed through a single matrix equa-

tion given by,

i
d

dz

(
ãi
ãr

)
=

(
−∆k −κ∗
κ ∆k

)(
ãi
ãr

)
(3.4)

which is an equivalent representation of the time-dependent Schrödinger equation in quan-

tum mechanics i.e.

ih̄
∂

∂t
Ψ = Ĥ(t)Ψ (3.5)

If we define a state
∣∣Ψ〉 = (ãr

ãi

)
then,

i
d

dz
|Ψ⟩ = Ĥ |Ψ⟩ (3.6)

We could observe that Eq. (3.6) is similar to the equation (3.5), where time-dependence

is replaced by the z-dependence and the Hamiltonian can be represented as Ĥ = −σ⃗.B⃗.

Here, σ⃗ = (σx, σy, σz) is the triad comprising the Pauli-spinmatrices and B⃗ = (Re(κ), Im(κ),∆k)

represents a physical quantity equivalent to a source-driven magnetic field. Such symmetry

considerations allow us to draw a one-to-one correspondence of the propagation dynamics

of the photonic crystal with that of an interaction between spin-1
2
particle in a magnetic field.

Specifically, in the case of PC, the Eqs. (2.42) results in B⃗ = (0, Im(κ),∆k) due to a van-

ishing real component of κ. The representation in Eq. (2.42) also depicts that κ∗ = −κ.

The isotropy of parameter space leads to rotational invariance and therefore, a 90◦ rotation

of the state vector (defined below) around the z-axis would transform the magnetic field

analog to B⃗ = (κ̃, 0,∆k), where κ̃ is the imaginary part of κ. The eigenvectors of the

Hamiltonian (Ĥ) are a linear combination of |i⟩ and |r⟩ with a suitable phase difference.

The |i⟩ and |r⟩ are themselves eigenvectors of σz operator and are equivalent to the spin-up

(|↑⟩) and spin-down (|↓⟩) states in the spin-1
2
particle in a magnetic field case [7].
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3.3 Geometric representation

It is worth noting that
〈
q(z)

〉
given by equation (3.2) is zero for a conventional PC where

the duty cycle is identical for each unit cell and consequently, the average refractive index

(n̄) is same for each unit cell. When the phase-mismatch and coupling coefficient change

along the propagation direction z, the exact solution of the coupled-wave equations is not

obvious. In order to study the dynamics of such a system, we could adopt a geometric ap-

proach prescribed by Bloch [8] and Feynman et al. [9]. The geometric representation of the

transformed coupled-wave equation (3.4) could provide us with interesting physical insight

into the propagation dynamics of em-waves in a PC which would enable us to understand

the impact of spatially varying phase-mismatch and strength of coupling. It is worth noting

that the complex eigenvalues and eigenvectors of Hamiltonian Ĥ are abstract quantities that

are physically observable. In order to visualize the physical process, we define components

of a vector also known as the state vector, which are functions of the complex eigenvectors.

The state vectors provide us with a representational basis to describe the evolution of the

generated fields. These state vectors are also known as Stokes vector and it is represented

as S⃗ = (Sx, Sy, Sz) and are given by

Sx =
〈
σx
〉
= ãiãr

∗ + ãrãi
∗

Sy =
〈
σy
〉
= −i[ãiãr∗ − ãrãi

∗]

Sz =
〈
σz
〉
= |ãr|2 − |ãi|2

(3.7)

The z-dependent evolution of the state vector is dictated by the commutation relation of the

state vector components with the Hamiltonian (Ĥ) i.e.

∂Sx

∂z
= −i

〈[
σx, Ĥ

]〉
∂Sy

∂z
= −i

〈[
σy, Ĥ

]〉
∂Sz

∂z
= −i

〈[
σz, Ĥ

]〉 (3.8)
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The above three equations could be written as a single vector precession equation of the

form
˙⃗
S =

∂S⃗

∂z
= B⃗ × S⃗ (3.9)

Equation (3.9) represents that the B⃗-field exerts a torque on the system which leads to

the precession of the state vector (S⃗) about B⃗ with a frequency |B⃗| =
√
κ̃2 +∆k2. It is

important to mention that the quantity (ãiãi∗+ ãrãr∗) is the squared amplitude of the vector

S⃗ which is given by

|S⃗| = (S2
x + S2

y + S2
z )

1/2 (3.10)

|S⃗| is a unimodular constant of motion when the components of the state vector are

normalized. Equation (3.10) represents a sphere of the unit radius with a center at the ori-

gin and this sphere is known as the Bloch Sphere. The states and their evolution described

by equations (3.7) and (3.9) determine the evolution dynamics of the forward and back-

ward propagating modes. In other words, equations (3.7) and (3.9) could be mapped onto

an equivalent Bloch-sphere where |i⟩ (spin-up) and |r⟩ (spin-down) states are located the

south-pole and north-pole respectively. Any point of the PC Bloch-sphere represents a

particular superposition of eigenstates |i⟩ and |r⟩. Section 3.6 discusses the geometric rep-

resentation in detail for specific cases of the evolution of these states.

It is worthwhile to point out that the valueSz (equation (3.7)) determines themode-conversion

efficiency. The state S⃗ = [0, 0,−1] represents a situation where the incident beam contains

all the optical power i.e. ãi = 1 and the state S⃗ = [0, 0, 1] represents the case when all

the optical power is present in the reflected beam (ãr = 1). Therefore, the conversion

efficiency for the process of reflection is expressed as η = Sz+1
2
. Here, the dynamics is

primarily controlled by the parameters∆k and κ which are essentially equivalent to factors

detuning (∆) and Rabi-frequency (Ω) respectively which are commonly encountered in the

determining the population dynamics for a two-level atomic system.
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3.4 Adiabatic following in a PC

It is apparent that ∆k = 0 along the entire PC length for the central PBG frequency and

∆k ̸= 0 for all other frequencies. In a system where both the phase-mismatch (∆k) and

the coupling coefficient (κ) are changing slowly along the propagation direction (z) is of

immense interest. As a consequence of this z-varying phase-mismatch (∆k) and coupling

coefficient (κ), the angle (ϕ)made by B⃗ with the z-axis also changes. As the state vector S⃗

precesses about B⃗, at every instant when B⃗ changes its direction, there is a corresponding

change in the trajectory of S⃗ as depicted by Eq. (3.9). If we consider a situation where

phase-mismatch (∆k) and coupling coefficient (κ) are changing slowly enough so as to

bring about an adiabatic change in angle ϕ as a function of z then S⃗ will follow the path

of the B⃗ throughout its evolution. This phenomenon is known as the ‘adiabatic following’.

Under these conditions, B⃗ changes its direction very slowly as compared to the rotation

frequency (|B⃗| =
√
κ̃2 +∆k2) with which the S⃗ is precessing around B⃗. The aforemen-

tioned condition is known as the ‘rapid adiabatic passage’ (RAP) condition which ensures

the adiabatic following and it is given by [1, 10]

dϕ

dz
<< |B⃗| (3.11)

where Φ = tan−1( κ
∆k

). When the adiabatic following is ensured by satisfying the RAP

condition, an additional condition needs to be satisfied i.e. the phase-mismatch (∆k) should

exhibit a large negative value at the entry face of the structure and must be a large positive

value at the exit face of the structure.

In order to satisfy these conditions, we propose a PC configuration namely chirped

photonic crystal configuration that leads to slow variation in ∆k from a large negative

to a large positive value along the PC length such that the sweep always remains much
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smaller than the coupling (κ). This would ensure a nearly complete transfer of optical power

from a forward propagating mode to a backward propagating mode across a frequency band

extending much beyond the conventional PBG of a PC. Since both∆k and κ are changing

as a function of z in the chirped photonic crystal, the RAP condition is expressed as [1, 11]

|κ̃∆̇k −∆k ˙̃κ| << (κ̃2 +∆k2)
3/2 (3.12)

If |κ| is assumed to be constant (along z), the adiabaticity condition appears as |d∆k
dz

| <<
(κ̃2+∆k2)

3/2

|κ| . In order to achieve complete optical power transfer, it is essential that the two

states (modes) |i⟩ and |r⟩ are decoupled at the entry (z = 0) and exit (z = L) faces of the

PC. Alternately, this is mathematically expressed as

∣∣∣∆β
κ̃

∣∣∣ >> 2 at z = 0, L (3.13)

which is equivalent to satisfying the condition of autoresonance in ‘two-wave’ inter-

action system [12, 13]. In this case, autoresonance essentially ensures that the counter-

propagating modes remain in phase even when the parameters of the Hamiltonian undergo

an adiabatic change. This manifests into a complete transfer of optical power from the

forward to the backward propagating mode, resulting in η = 1.

3.4.1 Chirped photonic crystal configuration for adiabaticmode - con-
version

In order to adopt an adiabatic coupling scheme, we consider a PC configuration with a linear

variation (or chirp in phase-mismatch ∆k) in the duty cycle of each unit cell i.e. thickness

d1M = d1+Mδ and d2M = Λ−d1−Mδ define the thickness of layersA andB respectively

inM th unit cell as shown in Fig. 3.1. The unit cell period (Λ), however, remains unchanged.

Here,M = 0, 1, 2, 3, ..., (N − 1) where N is the total number of unit cells in the chirped-

PC (CPC). The monotonic change in ∆k is expressed through the average refractive index
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Figure 3.1: A schematic to describe the geometry of a chirped-DBR

change for an unit cell for which n̄ =
√

d1Mn1
2+d2Mn2

2

Λ
. It is worthwhile to note that the

variation of n̄ also manifests in the form z-dependence of κ. Using Eqs. (2.39) and (2.42),

the variation in ∆k and κ for normal incidence (θ = 0) would be expressed as [14]

∆k ≈ ∆β

2
=

2πn̄

λ
− π

Λ
(3.14)

κ =
i(1− cos (2πd1M

Λ
))

2λ

(n1
2 − n2

2)

n̄
(3.15)

For an arbitrarily chosen chirp-length of δ = 10 nm, d1 = 10 nm and N = 39, the

Figure 3.2: a) shows the variation of ∆β and κ̃ inM th unit cell. b) shows the variation of
LHS and RHS of the inequality given in Eq. (3.12) inM th unit cell. c) shows the variation
of ∆β

κ̃
as a function of unit cell no. (M ) for depicting a significant fraction of PC length

satisfies the (condition for auto-resonance).

variation in ∆k and κ for the CPC is shown in Fig. 3.2(a). It is apparent that ∆β (≈ 2∆k)

varies symmetrically from a large negative (at z = 0 orM = 0) to a large positive value (at

z = L orM = 38). The coupling coefficient (κ), on the other hand, reaches a maximum at
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the center of CPC geometry (M = 19) and is negligibly small at z = 0, L. Figure 3.2(b)

shows the variation of |κ̃d∆β
dz

−∆β dκ̃
dz
| inM th unit cell of CPC. It is apparent that this is much

smaller than (κ̃2+∆β2)3/2 at any point within the CPC. Therefore, the adiabaticity condition

described by equation (3.12) is completely satisfied in the case of CPC. It is interesting to

note that the auto-resonant condition i.e.
∣∣∆β

κ̃

∣∣ < 2 is satisfied in a significant fraction of

the CPC (M ≈ 10 toM ≈ 26) as shown in Fig. 3.2(c) [13].

Figure 3.3: a), b) and c) show a comparison between the reflection spectrum of a normal-
PC (blue line) of d1 = d2 = 200 nm with that for CPC (maroon line) having δ = 10 nm,
δ = 5 nm & δ = 2.5 nm respectively.

The impact of closely satisfying the adiabatic constraints has a profound impact on the

reflection spectrum shown in Fig. 3.3(a). In order to obtain the reflection spectrum, we

consider a cross-section as shown in Fig. 3.1 where N = 39 is considered. A broadband

plane wave is incident on the CPC from z = 0. The reflection spectrum was obtained

using the finite element method (FEM) (wave-optics module, COMSOL Multiphysics).

The periodic boundary condition is imposed along the transverse direction and a mesh size

of 5 nm is considered for the simulation. Also, we ignore the material dispersion in the

present case and assumed n1 = 1.5 (A ≡ SiO2) and n2 = 2.5 (B ≡ TiO2) across the

entire spectrum. In order to compare, the reflection spectrum for a normal PC (no-chirping

and Λ = 400 nm) is also shown in 3.3(a). It is evident that there is a≈ 40 THz increase in

PBG for CPC as compared to the normal PC. Also, the reflectivity drop at the band edges

is relatively smooth with complete suppression of small reflection resonances outside the
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PBG.

In fact, any alteration in structural parameters has an impact on ∆β and κ and conse-

quently, the adiabatic constraints are not satisfied closely. This is expected to reduce the

PBG in the reflection spectrum along with the appearance of sharp transmission resonance

(outside PBG). For example, when the chirp-length changes to δ = 5 nmwith d1 = 100 nm

and N = 39, the reflection spectrum is shown in Fig. 3.3(b) where the PBG shrinks to

≈ 30 THz. It is also worth noting that the reflection spectrum is accompanied by oscillat-

ing side bands with sharp transmission resonances on both sides of the PBG. On reducing

the factor determining the duty cycle i.e. δ = 2.5 nm (d1 = 150 nm andN = 39), the PBG

for CPC shrinks to 15 THz and discernibly sharper and intense transmission resonances

on both sides of the PBG which is similar to that exhibited by normal PC. The underlying

cause behind this observation could be traced to the variation of κ (see equation (3.15)). By

reducing the chirp length δ (without changing the PC length L), the minimum value of κ̃ (at

z = 0) and z = L) increases. Therefore, the forward and backward propagating modes are

not completely decoupled at the ends of C-DBR when δ = 5 nm and δ = 2.5 nm. How-

ever, the reduction of the chirp length δ has a weak impact on d∆β
dz

. Overall, the adiabaticity

conditions are partially satisfied for smaller chirp lengths and consequently, we obtain a

smaller PBG. The CPC, in general, could be viewed as a geometry comprised of a stacked

group of normal PCs with varying duty cycles. Accordingly, the PBG due to neighboring

unit cells in the CPC overlaps partially with each other. From this perspective, a random

variation in d1M and d2M , say up to 10% results in a negligible change in the overall PBG

of CPC.
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3.5 Equivalence with a two-level system

The analogy between a dynamical evolution of the population in a two-level atomic system

and the propagation dynamics in a DBR is apparent from Eqs. (3.7) and (3.9) where the

time-evolution has been replaced by evolution along z-axis. The ground-state and excited-

state populations are analogues to complex amplitudes ãi and ãr respectively. The pa-

rameters determining the geometrical path∆ (frequency detuning) and Ω (Rabi frequency)

are replaced by ∆k (phase-mismatch) and κ (coupling coefficient). Table 3.1 presents the

equivalent quantities for these two systems.

Parameters Population dynamics in
two-level atomic system

Wave propagation in
photonic crystal

Evolution parameter t z
States |g⟩ , |e⟩ |ai⟩ , |ar⟩
Detuning/phase-mismatch ∆ ∆k
Rabi frequency/coupling
strength

Ω κ

Torque creating field (B⃗) (Re(Ω), Im(Ω), ∆) (Re(κ), Im(κ), ∆̃k)

Table 3.1: Shows an equivalence between the parameters determining the population dy-
namics of a two-level atomic system and a photonic crystal

3.6 Geometric representation of propagation characteris-
tics in PC

3.6.1 On-resonance

The dynamical trajectory on the Bloch-sphere for a perfectly phase-matched (∆k = 0)

interaction in the PC should resemble an on-resonance interaction in a two-level atomic

system. Due to the fact that we have a one-to-one mapping between the respective param-

eters in a two-level atomic system with that for a PC, we expect identical solutions for Eq.

(3.9) in the context of resonant interaction as well as interaction under adiabatic constraints
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in a PC [1]. Therefore, the dynamics exhibited by the state vector (S⃗) corresponding to the

central PBG frequency (∆β = 0 and κ is a constant) for a normal PC is given by [1]

Sx = 0
Sy = sin(κ̃z)
Sz = −cos(κ̃z)

(3.16)

It is apparent from Eq. (3.16) that if the PC is truncated at a length (z = L) such that

Figure 3.4: Shows the evolution of state vector S⃗ on the Bloch sphere for the normal PC at
frequencies a) νc = 181.8 THz (central frequency) b) ν = 200 THz c) ν = 300 THz d)
ν = 120 THz .

(κ̃.L = π), there will be a complete conversion of |ãi⟩ to |ãr⟩ at that point. However,R = 1

is not a completely correct assertion as the reflectivity is defined at z = 0. In the resonant

(∆k = ∆β = 0) interaction case for a normal PC, a complex κ (see Eqs. (2.42)) ensures

a finite return of power to the forward propagating mode (|ãi⟩) whenever |ãr| > |ãi|.

Consequently, the reflectivity (R) or the conversion efficiency (η) of a conventional PC

with finite length will always be less than unity (< 1). Fig. 3.4(a) represents such an

evolution where the state vector (S⃗) traverses from the south pole to the north pole along

the great circle (red-curve). This pertains to a complete transfer of optical power from the

incident beam to the reflected beam in the PC. Here, the PC has periodicity Λ = 400 nm,

d1 = d2 =
Λ
2
with n1 = 2.5 & n2 = 1.5 and the PBG central frequency is νc = 181.8 THz

(where ∆k = 0).
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3.6.2 Off-resonance

Any non-zero ∆k (analogous to detuned interaction in a two-level system) would essen-

tially imply a smaller mode conversion. We again assume that the coupling coefficient κ

is constant in this case. The solutions for the different components of the state vector are

given by [1]
Sx = ∆kκ

|B⃗|2
[1− cos(|B⃗|z)]

Sy = − κ

|B⃗|
sin(|B⃗|z))

Sz = −∆k2+κ2cos(|B⃗|z))
|B⃗|2

(3.17)

The trajectory described by equation (3.17) makes an angle ϕ = tan−1(κ̃/∆k)with respect

to the z axis. Consequently, the trajectory will not follow a semicircular rotation on the

Bloch sphere. As a result the state vector never reaches the north pole of the Bloch sphere.

This implies that a complete transfer of power from the incident mode (|i⟩) to the reflected

mode (|r⟩) is not possible for an off-resonant case. For the frequencies within the PBG (say

ν = c
λ
= 200 THz), the dynamical trajectory would result in termination of the state-vector

(S⃗) at some point on the surface of northern-hemisphere of the PC Bloch sphere as shown

in Fig. 3.4(b). Interestingly, for frequencies outside the PBG (|∆k| >> 0) or in the trans-

mission band (say ν = 300 THz or ν = 120 THz), the dynamical trajectory traced by S⃗

terminates within the southern hemisphere which could be observed in Figs. 3.4(c) and (d)

respectively.

3.6.3 Adiabatic coupling

In order to represent the mode-coupling dynamics in a CPC, we seek the solutions to Eq.

(3.9) under the constraints imposed by the adiabatic following. When the angle (Γ) between
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Figure 3.5: Shows the evolution of state vector S⃗ on the Bloch sphere for the CPC at fre-
quencies (a) νc = 181.8 THz (b) ν = 200 THz (c) ν = 300 THz and (d) ν = 120 THz
respectively.

.

B⃗ field and the state vector S⃗ is very small, the exact solutions could be expressed as [1],

Sx = −κ̃cos(Γ)√
κ̃2+∆k2

Sy =
κ̃sin(Γ)√
κ̃2+∆k2

Sz =
∆k√

κ̃2+∆k2

(3.18)

Therefore, R (or η) could be exactly unity if κ̃ = 0 or ∆k → ∞ at z = L. From

Fig. 3.2(a), it is apparent that the former condition is exactly satisfied in the case of the

designed CPC and consequently, we would haveR = 1. Due to the fact that κ̃ = κ̃(z) and

∆β = ∆β(z) (see Fig. 3.2(a)), S⃗ follows a spiraling trajectory from the south-pole to the

north-pole. The geometric representation for a CPC is shown in Fig. 3.5 for frequencies

within the PBG (Fig. 3.5a,b) as well as outside the PBG (Fig. 3.5c,d). Since, the parameters

∆k and κ exhibit a slow longitudinal variation, S⃗ always remain perpendicular to B⃗ at each

z. Figure 3.5(a) represents a dynamical trajectory of S⃗ (at νc = 181.8 THz) for the variation

in ∆k (or ∆β) shown in Fig. 3.2(a). In this case, S⃗ traverses from the south pole to the

north pole through a spiraling trajectory and this results in the complete conversion of |i⟩

to |r⟩ as shown in Fig. 3.6(b).
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Figure 3.6: a) and b) shows the variation of conversion efficiency as a function of propa-
gation distance for normal PC and CPC at frequencies used in Fig. 3.4 and 3.5. The black
solid line represents the evolution of the central frequency of the PBG and the green solid
lines for the frequency that lies closer to the band edges. The blue/purple solid lines corre-
spond to frequencies that lie outside the PBG.

3.6.4 Conversion efficiency

The conversion efficiency or the reflectivity (η = Sz+1
2
) as a function of propagating dis-

tance (z) for all the aforementioned frequencies in normal PC is shown in Fig.3.6(a). It could

be noted that η < 1 for all the frequencies except central PBG frequency (νc = 181.8 THz)

which is consistent with the description in Fig. 3.4. In the case of CPC, the conversion

efficiency reaches unity through a different path as shown in Fig. 3.5(b).

3.6.5 Oblique incidence and angular dispersion

A detailed comparison of the reflection spectrum and the dispersion for a normal PC and

a CPC (with δ = 10 nm) is elucidated in Fig. 3.7(a)-(d). The dependence of the reflec-

tion spectrum on angle-of-incidence (AOI) for TE and TM polarization in a normal PC

is shown in Fig. 3.7(a) and (b) respectively. The oblique incidence essentially leads to a

smaller value of projection of the normal component of the wavevector. Consequently, the

PBGs shift to higher frequencies at higher AOIs. As expected, the PBGs tend to broaden

for the TE polarization on oblique incidence. On the other hand, the low-frequency PBGs

for TM polarization tend to reduce up to an AOI ≈ 60◦ and increase thereafter. The drop
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in PBG for TM polarization is essentially due to Brewster’s angle effect at the interface of

high and low-index layers. Figure 3.7(c) and (d) represent the reflection spectrum for the

TE and TM polarization respectively for the CPC. A comparison between Fig. 3.7(a) and

(c) reveals that the CPC exhibits appreciably broad PBGs with appreciably narrow trans-

mission bands separating them. At oblique incidence, the PBG in CPC broadens further and

Figure 3.7: a) and b) shows the variation reflection spectrum for TE and TM polarization
respectively in a normal PC ( Lambda = 400 nm and d1 = d2) as a function of angle of
incidence. c) and d) shows the reflection spectrum for TE and TM polarization respectively
in CPC as a function of the angle of incidence. The CPC parameters are δ = 10 nm and
d1 = 10 nm. In all the cases, the total number of units is N = 39.

shifts to higher frequencies. This is accompanied by the shrinking of transmission bands.

In fact, the PBGs tend to overlap for AOI ≥ 50◦, thereby leading to a high-reflection band

extending from 150 THz to 750 THz (1600 nm band). Such broad PBGs are usually not

found in normal PC, even with very wide refractive index contrast. It is also interesting to
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note that the reflection spectrum (in Fig. 3.7(c)) exhibits three omnidirectional PBGs which

are located in 200− 250 THz, 310− 400 THz and 490− 550 THz frequency range. The

PBG, in this case (for normal as well as oblique incidence), is limited by the material trans-

parency window and could be extended further (on both spectral ends) through a suitable

choice of materials. A similar comparison between Fig. 3.7(b) and (d) depicts broadened

PBG in the case of TM polarization in CPC and narrow transmission bands. However, Fig.

3.7(d) exhibits a sharp transmission resonance at Brewster’s angle (≈ 60◦). By taking ma-

terial dispersion into consideration, we expect a small change (± 1◦) in Brewster’s angle

and hence, an insignificant change in the transmission spectrum. The PBGs tend to merge

thereafter (≥ 65◦) giving rise to a broad high reflection band. A comparison between Fig.

3.7(c) and (d)reveals that the CPC could be employed as a broadband (≈ 150− 750 THz)

polarization filter for ≈ 60◦ AOI.

3.7 Conclusions

In conclusion, we present an approach to understand the propagation characteristics of

modes in a PC using general techniques adopted in a wide variety of systems exhibit-

ing SU(2) dynamical symmetry. The coupled-mode equations describing the forward and

backward propagating modes in a PC could be represented in the form of a single optical

Bloch-equation where the evolution of the state vector depicts the dynamical behavior of

the wave propagation. This provides a platform to draw an analogy with a two-level atomic

system and consequently, adopt a formalism for adiabatic evolution in PC-based configura-

tions. In order to realize conditions imposed by adiabatic constraints, CPC configurations

have been investigated in detail. This PC variant exhibit enhancement of PBG along with

varying degrees of suppression of sharp transmission resonances in the reflection spectrum.

The impact of alteration of the physical parameters for the PC is explored in detail. It is
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worth pointing out that the CPC configuration involves a discernible longitudinal variation

in mode-coupling coefficient κ in addition to the sweep in ∆k (or ∆β).

References

[1] L. Allen and J. H. Eberly. Optical Resonance and Two-Level Atoms. Dover Publica-

tions, 1987.

[2] Haim Suchowski, Dan Oron, Ady Arie, and Yaron Silberberg. Geometrical represen-

tation of sum frequency generation and adiabatic frequency conversion. Phys. Rev. A,

78:063821, 07 2008.

[3] Aviv Karnieli and Ady Arie. Fully controllable adiabatic geometric phase in nonlinear

optics. Opt. Express, 26(4):4920–4932, Feb 2018.

[4] Aviv Karnieli and Ady Arie. All-optical Stern-Gerlach effect. Phys. Rev. Lett.,

120:053901, 01 2018.

[5] Yongyao Li, Ofir Yesharim, Inbar Hurvitz, Aviv Karnieli, Shenhe Fu, Gil Porat, and

Ady Arie. Adiabatic geometric phase in fully nonlinear three-wave mixing. Phys.

Rev. A, 101:033807, Mar 2020.

[6] Amnon Yariv and Pochi Yeh. Photonics Optical Electronics in Modern Communica-

tions. Oxford University, 6th edition, 2007.

[7] R. Feynman, F. Vernon, and R. Hellwarth. Geometrical representation of the

Schrödinger equation for solving maser problems. J. Appl. Phys., 28:49–52, 1957.

[8] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946.

47



REFERENCES

[9] Richard P. Feynman, Jr. Vernon, Frank L., and Robert W. Hellwarth. Geometrical

Representation of the Schrödinger Equation for Solving Maser Problems. Journal of

Applied Physics, 28(1):49–52, January 1957.

[10] Yongyao Li, Ofir Yesharim, Inbar Hurvitz, Aviv Karnieli, Shenhe Fu, Gil Porat, and

Ady Arie. Adiabatic geometric phase in fully nonlinear three-wave mixing. Phys.

Rev. A, 101:033807, Mar 2020.

[11] Eyal Bahar, Xiaoyue Ding, Asaf Dahan, Haim Suchowski, and Jeffrey Moses. Adi-

abatic four-wave mixing frequency conversion. Opt. Express, 26(20):25582–25601,

Oct 2018.

[12] Andrey Markov, Anna Mazhorova, Holger Breitenborn, Andrew Bruhacs, Matteo

Clerici, Daniele Modotto, Ottavia Jedrkiewicz, Paolo di Trapani, Arkady Major,

François Vidal, and Roberto Morandotti. Broadband and efficient adiabatic three-

wave-mixing in a temperature-controlled bulk crystal. Opt. Express, 26(4):4448–

4458, Feb 2018.

[13] O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti. Complete energy

conversion by autoresonant three-wave mixing in nonuniform media. Opt. Express,

21(2):1623–1632, Jan 2013.

[14] Amnon Yariv and Pochi Yeh. Optical Waves in Crystals Propagation and Control of

Laser Radiation. New York Wiley, 1984.

48



Chapter 4

Infrared rainbow trapping via optical Tamm
modes
4.1 Introduction

Rainbow trapping is a phenomenon of slowing down (in principle stopping) a broadband

optical radiation in one- or two-dimensional stratified photonic systems [1, 2, 3]. The exci-

tation of surface-plasmon (SP) modes in a PC provides a plausible mechanism for trapping

electromagnetic (em) radiation. Consequently, the configurations deployed for rainbow

trapping are predominantly metallo-dielectric or all-metallic [4, 5, 6, 7]. Although a sig-

nificant reduction in group velocity (vg ≤ 0.1c) is achieved in such configurations, the

absorption losses (α) in plasmon-active metals limit the trapped-mode lifetime (Tr) in the

visible spectral band [1, 5, 8, 9]. The impact turns more significant in the infrared (IR) band

(≥ 1 µmwavelength) where the absorption losses (by metals) are very high. Therefore, the

recurring challenge is to develop plausible strategies which offer appreciably low loss along

with small vg over broad bandwidth in metallo-dielectric configurations. All-dielectric PCs

have been proposed for trapping light in the visible and IR band but they exhibit maximum

Tr ∼ 0.2−0.3 pswhich limits their applicability in a variety of settings [1, 10]. The graded-

Si based composite gratings with SiO2 spacer-layers offer a reliable platform for slowing

down wavelengths ≥ 2 µm in the IR band [11]. Recently, through graphene-incorporated

graded-Si gratings, the phenomenon of rainbow trapping in the 10 − 50 THz range is re-

alized with slowdown factors ∼ 0.001c [11]. However, the trapped plasmon modes still

exhibit a sub-picosecond lifetime essentially due to higher losses. The all-dielectric PCs of-
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fer a low-loss flexible platform for light-trapping through the excitation of optical surface

states. Such states could be excited at the interface of two different topologically non-trivial

PCs or at the interface of a topologically non-trivial PC and homogeneous medium [12, 13].

Optical Tamm (OT) states, which exist at the interface between a plasmon-activemetal and a

1D PC, could be classified in the second category [12]. The OT states are strongly confined

near the PC-metal interface and exhibit a parabolic dispersion curve. Importantly, their dis-

persion lies within the light cone given by k|| = ω
c
, where k|| is the in-plane wavevector

component and ω is the angular frequency of light. Consequently, TE, as well as TM polar-

ization, could be excited through free-space coupling at normal incidence [14, 12]. Due to

the possibility of free-space coupling to OT modes, the coupling efficiencies are very high

(≥ 90%)which allows efficient device realization [15]. In the last decade, OT states/modes

have attracted a wide range of applications which include high-sensitivity optical sensing

devices, narrowband tunable filters, optical switches, harmonic generators, slow-light de-

vices, etc. [16, 17, 18, 19, 20]. The nature of OT resonance in a 1D PC yield localization of

em-field at one resonant frequency only and therefore, any light trapping mechanism using

OT states would be narrow band [20]. Many processes such as rainbow trapping or non-

degenerate frequency conversion essentially require multiple non-degenerate OT states in

the same PC for broadband applications.

4.2 Theoretical framework

Here, we considered a 1D linearly chirped all-dielectric PC, described in section3.4.1 of

chapter 3 which supports multiple optical Tamm-like modes. The OT modes are spatially

separated within the PC and facilitate a broad spectrum to be trapped. As we have discussed

in Chapter 3, this system is equivalent to a ‘two-level’ quantum system, the propagation

characteristics of a PC with well-defined periodicity could be described using the Bloch-

50



4 Infrared rainbow trapping via optical Tamm modes....

Figure 4.1: a) A schematic of the chirped-PC geometry with a fixed periodicity (Λ) but a
variable duty cycle.

wavevector given by K = mπ
Λ

± i

√
κ∗κ−

(
∆β
2

)2

[21]. Consequently, the width of PBG

as well as the reflected beam amplitude is governed by the values of κ and ∆k(≈ ∆β/2).

Since K is complex within the PBG, then |κ|2 ≥ (∆β
2
)2) defines the edges of PBG for the

PC. In analogy with adiabatic population transfer in two-level atomic system, a plausible

route formaximizing η is to vary∆k such that the adiabatic constraint given by d∆k
dz

<< |κ|2

is obeyed at each z. The longitudinal variation in ∆k is brought about by a linear chirp in

the thickness of layers A and B described before in section 3.4.1 of chapter 3. The CPC

configuration which ensures adiabatic following has two distinct features. (a) PBG for an

optimally CPC increases (b) CPC exhibits multiple phase-jumps ([0 → π] or [0 → −π])

within the PBG. These points will be apparent in the example considered below.

4.3 Photonic bandgap computation and results

Let us consider layer A ≡ TiO2 and layer B ≡ SiO2. The linear chirp leads to a lon-

gitudinally varying average refractive index (n̄ =
√

d1mn1
2+d2mn2

2

Λ
). We assume Λ =

400 nm, δ = 10 nm, N = 39 and m = 1, 2, 3, ...(N − 1) and subsequently, we simu-

late the reflection spectrum using finite element technique (COMSOL Multiphysics). In

the simulations, the periodic boundary condition is imposed in the transverse direction and

a mapped mesh is used with a maximum element size of 30 nm. The material dispersion

51



4 Infrared rainbow trapping via optical Tamm modes....

for TiO2 and SiO2 is obtained from [22]. The blue-solid curve in Fig. 4.2(a) represents

the broadband (≈ 80 THz broad) reflection spectrum for the CPC. The reflection spec-

trum is marked by discernible suppression of sharp reflectivity peaks outside the PBG. The

peaks are distinct features of finite periodic PCs. In fact, the transmission band (charac-

terized by ν ≤ 150 THz or ν ≥ 260 THz) is reasonably flat, and the transmission

T ≥ 95%. A comparison of the reflection spectrum (not shown here) for a periodic 1D PC

(d1 = d2 = 200 nm) shows that the PBG for CPC is approximately≈ 40 THz broader than

that for a periodic PC. In order to appreciate this point, we represent the spectral variation

Figure 4.2: a) The reflection spectrum of CPC (solid blue line) for N = 39 unit cells and
Au-CPC (red line) and the inset shows the zoomed figure of one of the OT modes. b)
Represents dispersion relation i.e. Bloch-wavevector (K) versus frequency (ν) for periodic
TiO2/SiO2 based PC geometries when d1 = 10 nm (green curve), d1 = 100 nm (black
curve), d1 = 200 nm (purple curve), d1 = 300 nm (blue curve) and d1 = 390 nm (maroon
line). All the PCs (with different d1) have identical periodicity (Λ = 400 nm).

in the real part of the Bloch-wavevector (K) of periodic 1D PCs with different values of d1

such that d1 + d2 = Λ = 400 nm for all the PCs in Fig. 4.2(b). The flat region (for each

d1) depicts the PBG (where K is complex and its real part is constant = 2π
Λ
) for each PC.

It is apparent that the PBGs for each PC (having different d1 and d2) approximately span

the wide spectral band from 150 THz to 250 THz. This explains the origin of broad PBG

as well as the suppression of reflectivity peaks outside the PBG in CPC. It is worthwhile to

point out that the linear-chirp in PC ensures a symmetric variation of ∆k from a negative
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to a positive value and d∆k
dz

<< |κs|2 at any z (as shown in figure 3.2(a)).

In order to excite OT-like states/modes in the CPC, we place a thin Au-layer (dm =

30 nm) adjacent to the first TiO2 layer (A) as shown in Fig. 4.1(a). The simulated reflec-

tion spectrum using COMSOL Multiphysics is represented by the red curve in Fig. 4.2(a)

which is characterized by a sharp drop in reflectivity within the PBG of CPC. Such sharp

resonances are a signature of OT modes in metallo-dielectric geometries and usually, the

OT mode-field decays away from the metal-dielectric interface [23]. The mode-field dis-

tribution at a few OT resonant frequencies is shown in Fig. 4.3 which depicts that the field

localization at different resonant frequencies is spatially separated. The mode-field at the

smallest resonant frequency νr1 = 172 THz resembles a conventional OT mode whereas

the higher frequency modes (such as the ones at νr2 = 194.1 THz, νr3 = 202.3 THz,

νr4 = 222.6 THz, etc.) are localized progressively away from the Au-TiO2 interface

(along +z direction).

Figure 4.3: Normalized mode-field intensity distribution (∝ |E|2) for different OT modes
(see Fig. 4.2a) in Au-CPC geometry.

For the geometry under investigation, we obtain 11 sharp OT resonances within the
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Figure 4.4: a) A schematic of the normal PC. b) The reflection spectrum of normal PC (solid
blue line) and Au-PC (red line). c) Normalized mode-field intensity distribution (∝ |E|2)
for OT mode resonance in normal PC.

PBG. In order to make a comparison of OT mode excitation in CPC and normal PC, we

have considered a normal PC with periodicity Λ = 400nm and placed a thin gold layer

(≈ 30nm) adjacent to the high index layer (TiO2) as shown in Fig.4.4(a). The resulting

reflection spectrum of the PC without metal and with metal is shown by blue and red lines

respectively (Fig.4.4(b)). So, the conventional PC leads to the excitation of only one OT

mode, the mode field intensity is strongly localized at the metal-dielectric interface and

decays away from the interface as shown in Fig.4.4(c).

The origin of OT resonance is governed by the condition that ϕPC + ϕM = 2mπ for

m = 0, 1, 2, 3, ... where ϕPC and ϕM are the phase acquired by the reflected beam from

a semi-infinite PC and metal respectively [22]. It is worth noting that ϕM , in general, is

negative for visible to the mid-IR spectral band. On the other hand, the sign of ϕPC (in the

PBG) exhibits a topological connection [22]. In fact, the sign of ϕPC (for a certain PBG)

is dictated by the algebraic sum of the topological (Zak) phase for all the pass (transmis-

sion) bands below that PBG. Only those PBGs for which ϕPC is positive could support OT

modes. In Fig. 4.2(b), we observed that the CPC could be decomposed into multiple pe-

riodic PCs (with different d1, d2) and their overlapping PBGs result in a broader PBG for
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the CPC. Within the PBGs of these PCs, ϕPC traverses from [0 → π] (anti-clockwise) or

[0 → −π] (clockwise). From a topological perspective, PBGs in the former category only

could support OT modes. Periodic PCs constituted using such d1 and d2 values could only

support OT modes. Consequently, we obtain field localization due to OT mode formation

in CPC near certain values of d1, d2. The field localization in Fig. 4.3 is in agreement

with this argument and the OT mode-field amplitudes exhibit maxima in different unit cells

(characterized by different d1 and d2).

For the case of CPC, ϕPC = γ+α, where γ and α are the geometric and dynamic phases

acquired by the reflected beam respectively. For a conventional 1D PC, the geometric phase

of a transmission band is quantized i.e. it can take value either 0 or π and is known as the

‘Zak’ phase. In this context, the geometric interpretation of the reflection phase is trivial.

In the case of CPC, different spectral components within the PBG reflects from different

unit cells along the propagation direction as shown in Fig.4.3. Also, the state-vector S⃗ goes

from [0,0,-1] to [0,0,1] for all the frequencies within the PBG by virtue of satisfying the

adiabatic-following constraints or we can say that the B⃗ goes from [0, 0,−∆k] to [0, 0,∆k]

in the parameter space as discussed in section3.6.3 of chapter 3. As the S⃗ adiabatically

follows the path of B⃗, the initial and final values of B⃗ in parameter space could also yield

the geometric phase. It is known that γ is estimated from angle ϕ (subtended by B⃗ at the

origin ∆k = κ = 0) through the relation γ = ϕ
2
. In that case, the geometric phase for

each spectral component within the PBG is π
2
. In order to elucidate this point, we plot B⃗ at

different z in the parameter space for ν = 220THz as shown in Fig.4.5. The evolution of

B⃗ in Fig. 4.5(a) yields ϕ = π and consequently, γ = π
2
. In a similar manner, γ for all the

frequencies within the PBG would be π
2
by virtue of adhering to the constraints imposed

by adiabatic following. On the contrary, the variation in B⃗ is plotted as a function of z for

ν = 280 THz which is outside the PBG of CPC (see Fig. 4.5(b)). B⃗(z = 0) (black arrow)

55



4 Infrared rainbow trapping via optical Tamm modes....

Figure 4.5: Represents the evolution of B⃗ as a function of length (L) of CPC in parameter
(∆k−κ) space for a) ν = 220 THz and b) ν = 280 THz. ϕ represents the angle subtended
by curve B⃗ at the origin.

and B⃗(z = L) (red dashed arrow) are co-parallel in this case. Consequently, the geometric

phase γ = ϕ
2
= 0 for frequencies lying in the pass band. However, the dynamic phase of

the reflected beam is estimated through the relation

α =
2πν

c

T∑
M=0

[n1d1M + n2d2M ] (4.1)

The knowledge of field localization in the T th unit cell of CPC would accurately yield the

dynamic phase for any frequency (ν). In conjunctionwith the estimate of γ, this information

would allow us to determine the OT mode resonance frequencies.

The em-field localization implies a drop in group velocity (vg) of OTmodes. In order to

ascertain vg, we allow a 100 fsGaussian pulse centered at different OT resonant frequencies

(νr in Fig. 4.2(a)) to be incident on the thin Au-layer and perform a finite-difference time-

domain (FDTD) simulation to obtain the evolution of the pulse. We used a spatial resolution

of∆x = 5nm,∆y = ∆z = 10nm and a temporal resolution of∆t = 1.34815e−5ps in our

FDTD simulations. Figure 4.6 shows the result for such a simulation where a comparison is

made between a bare CPC and CPC with Au-film (Au-CPC) at two different νr. The time

(in ps) on the y-axis represents the time of arrival of pulse-peak at the respective locations.
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Figure 4.6: a) Shows the simulated mode-field intensity (∝ |E|2) distribution in the time-
position plane along propagation (z) direction for a Gaussian pulse with width 100 fs cen-
tered at νr = 216.4 THz propagating through (a) CPC (b) Au-CPC geometry. Similar
mode-field intensity distribution at νr = 243.8 THz in (c) CPC and (b) Au-CPC.

Figures 4.6(a) and (c) show that the electric field intensity of pulses at νr = 216.4 THz and

νr = 243.8 THz in the bare CPC exhibit short-lived (≈ 0.1 − 0.2 ps) localization. This

implies, in absence of terminatingAu-layer, the frequencies within the PBG reach a certain

unit cell of CPC and instantaneously reflect [10]. Identical pulses at the same OT resonant

frequencies (in Au-CPC) exhibit localization over a prolonged period (≥ 2 ps) as shown

in Figs. 4.6(b) and (d). The Au-film creates a resonant cavity for the OT modes and con-

sequently, they exhibit longer lifetimes. The time-domain simulations allow us to directly

obtain vg for each OT mode by noting the time (t) taken by the pulse (peak) to arrive at any

point (z) in the CPC (Fig. 4.7(a)). By using this, the variation in vg for νr = 243.8 THz

along the propagation direction is shown in Fig. 4.7(a). From this figure, it could be as-

certained that vg minimizes near the unit cell with d1 = 140 nm and d2 = 260 nm which

is consistent with the field localization observed in Fig. 4.3 for the same OT resonant fre-
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Figure 4.7: shows the time of arrival (green square dots) at any z-coordinate in Au-CPC
geometry for a 100 fs Gaussian pulse-peak and variation in vg (red asterisk-like dots) as a
function of z when the pulse central frequency is νr = 243.8 THz. b) shows the trapped-
mode lifetime (green square dots) and minimum group velocity vg(min) (blue circular dots)
attained by different OT modes in Au-CPC.

quency. Theminimum group velocity (vg(min)) attained by different OTmodes (in Au-CPC)

is shown in Fig. 4.7(b). The vg(min) attained by OT mode at νr = 243.8 THz is ≈ 0.22c.

Figure 4.7(b) shows that vg(min) varies over a range of≈ 0.05c amongst all the OT resonant

frequencies with the smallest value of ≈ 0.17c at νr = 202.3 THz. The exact values of

νr, vg(min), and Tr for each OT mode are listed below in the table. The conventional rain-

OT resonant Frequency
νr (THz)

Minimum group velocity
(vg(min)) (in units of c)

Trapping time (Tr) (ps)

202.3 0.16 2.782
209.7 0.18 2.763
216.4 0.20 2.764
222.6 0.21 2.750
228.5 0.21 2.713
233.9 0.21 2.692
239.1 0.22 2.683
243.8 0.22 2.480

Table 4.1: Shows the minimum group velocity and trapping time attained by different OT
resonances.

bow trapping techniques utilize graded-indexed plasmonic gratings or waveguides which
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comprise ingrained absorptive metallic components. Although they dictate the drop in vg

through surface-plasmon excitation, they introduce unavoidable absorption loss (α) which

puts a restriction on the time for which an optical pulse could be stored. Typically, the

trapped-mode lifetime Tr = 1
αvg

≤ 1 ps for plasmon-based metallo-dielectric architec-

tures. In our case, the Au-layer (plasmon-active metal film) at the terminating CPC layer

leads to the excitation of several OTmodes. As shown in Fig. 4.3, such modes are primarily

localized within the all-dielectric CPC architecture and have a very small presence in the

metal layer. Therefore, the dominant source of loss in such OT modes (in Au-CPC) is the

transmission loss due to the finite length of the photonic crystal. Since different OT modes

are spatially separated, they exhibit different transmission losses which could be estimated

from the throughput modal power for a particular OT resonant frequency. Alternately, this

Figure 4.8: Shows the variation of angular frequency as a function of in-plane wavevector
(K||) for the TE (solid red curve) and TM (dashed black curve) polarized OT modes in Au-
CPC.

also provides an estimate of the trapped-mode lifetime (Tr) for different OT modes. From

the time-domain simulations in Figs. 4.6(b) and (d), Tr could be determined by monitor-
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ing the fall in pulse-peak to 1/e2-th of its maximum value. For example, the OT mode at

νr = 243.8 THz has a trapped lifetime Tr ≈ 2.48 ps. Due to different vg(min) for differ-

ent OT modes, the trapped lifetime for OT modes varies which is shown in Fig.4.7(b). Tr

maximizes to 2.78 ps at νr = 202.3 THz and varies by about 0.35 ps across the frequency

tunable range. It is also apparent that the OT modes localized closer to theAu layer exhibit

longer trapped lifetimes which is essentially a consequence of smaller transmission losses.

The dispersion characteristics of such resonant frequencies are shown in Fig. 4.8 where

K|| represents the in-plane (or tangential) component of the wavevector. All the OT modes

exhibit a parabolic dispersion curve and the polarization degeneracy is lifted for higher val-

ues of the in-plane component of the wavevector. This behavior is similar to conventional

OT modes localized at the metal-dielectric interface. The low energy OT modes exhibit a

small splitting between TE and TM polarizations at higher K|| values. The splitting tends

to increase for high-frequency OT modes due to appreciable redistribution of the TE/TM

polarized mode fields.

4.4 Experimental results

In order to realize the existence of multiple optical Tamm-like modes, we have fabricated

two CPC with different numbers of unit cells i.e. for N=22 and for N=31. The CPC con-

sists of alternating layers of TiO2 and SiO2 with refractive index n1 and n2 respectively

with a constant period of Λ = 400 nm (see Fig. 4.1). However, the duty cycle of each

unit cell varies by δ = 10 nm. The CPC terminates with the TiO2 (high index). In order

to excite OT modes, we have deposited a thin Au layer of thickness dAu = 10 nm adja-

cent to the TiO2 layer as shown in Fig. 4.1. In order to obtain the reflection spectrum, we

used a supercontinuum source generating coherent broadband spectrum from ≈ 400 nm

to ≈ 2200 nm and the broadband beam is incident normally on the fabricated multilayer

60



4 Infrared rainbow trapping via optical Tamm modes....

Figure 4.9: Shows the experimental setup for measuring the reflection and trans-
mission spectrum; s: source; F: Filter; NPBS:non-polarizing beam splitter; SM1,
SM2:spectrometers.

geometry. The reflection as well as the transmission spectrum was measured using an ex-

perimental setup presented in Fig. 4.9. A neutral-density (ND) filter was employed for

controlling the light being incident on the CPC as well as Au-CPC geometry. Two spec-

trometers SM1 and SM2 were used to collect the reflected and transmitted light from the

multilayer films respectively. The reflected beam was delivered to the spectrometer (SM1)

using a 50 : 50 beam splitter. The diameter of the light beam incident on the sample is

≈ 3mm and CPC cross-sectional area is ≈ 12 mm. The measured reflection spectrum

was normalized with a reflection standard (RS-2, M/S Avantes Inc., Netherlands) in order

to account for the non-uniform spectrum of the supercontinuum source. Figures 4.10 (a)

and (b) show the measured reflection and transmission spectrum for CPC with N = 31

and N = 22 respectively. The black curve shows the reflection spectrum for bare CPC

and the reflection spectrum for Au-CPC is presented by the maroon curve, which exhibits

multiple sharp reflectivity minima within the PBG of CPC. The PBG of CPC extends from

≈ 1150−1600 nmwhich is obtained from the transmission spectrum (represented by green
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Figure 4.10: Reflection spectrum for CPC (AU-CPC) is shown by the black (maroon) line.
Green circles show the transmission spectrum for CPC and Au-CPC (a) for N = 31 unit cells
and (b) for N = 22 unit cells.

circles).

Such sharp resonanceswithin the PBG corresponds to theOTmodes inmetallo-dielectric

geometries. For N = 31 unit cells, the AU-CPC exhibits 5 distinct OT resonances within

the PBG of CPC (see Fig. 4.10(a)). Multiple excitations of OT modes are essentially a

consequence of multiple phase jumps (= π) within the PBG suffered by the backscattered

beam. This allows for satisfying the OT resonance condition at multiple frequencies within

the PBG. It is worth noting that the OT resonances reduce to 3 for CPC with unit cells

N = 22 (see Fig. 4.10). This drop is essentially brought about by a smaller PBG in the

case of CPC with N = 22 unit cells.

4.5 Conclusion

In conclusion, we presented an optimally-designed CPCwhich closely follows the adiabatic

constraints and consequently, manifests into PBG broadening and multiple π-jumps in the

backscattered phase. This allows the excitation of multiple sharp OT mode resonances in

the case of Au-CPC configuration. All the OTmodes are spatially separated in the CPC and
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exhibit a topological connection. These OT mode resonances provide a favorable platform

for low-loss trapping of light with lifetimes as large as ≥ 2.8 ps. In addition to this,

we have also verified experimentally that the Au-CPC-like architectures support multiple

optical Tamm-like modes.
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Chapter 5

Optical beam shaping using one-dimensional
photonic crystals
5.1 Introduction

Electromagnetic waves essentially possess multiple degrees of freedom namely frequency

or wavelength, polarization, amplitude, and spatial extent. Through a strong interaction

between polarization and spatial degrees of freedom, unique spatial configurations have

been generated which represent different forms of singularities. Over a period of last two

decades, such spatially structured beams have attracted significant attention owing to their

wide spectrum of applications in particle trapping, particle guiding [1], free-space optical

communication[2, 3], optical tweezers[4, 5], super-resolution imaging[6, 7], quantum in-

formation processing [8]. In order to generate beams with unique spatial variations, orthog-

onally polarized laser beams interact with each other’s spatial counterparts through an arti-

ficially structured medium which could be liquid crystal-based phase-retarders/modulators

or optimally-designed metasurface gratings [9, 10]. This could also be achieved by sharply

focusing a beam with an inhomogeneous wavefront [11, 12]. In structured light beams, the

phase varies across the spatial extent of the wavefront and an interesting situation appears

when the phase exhibits a singularity at r = 0 in cylindrical and spherical coordinates. Such

beams are characterized by a spiraling wavefront and are termed as optical vortex beams.

A simpler form of the structured optical beam is a Hermite-Gaussian (HGmn) beam where

m and n represent the zeroes in beam-wavefront along x-direction and y-direction respec-

tively. Alternately, the spatial variation of an HGmn beam follows a variation resembling
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a Hermite-polynomial of mth-order in x-direction and nth-order in the y-direction. Con-

ventionally, the generation of structured Gaussian beams such as HG beams of any or-

der (any m or n) is carried out by interference of different Gaussian beams with optimum

phase differences on the observation plane. In order to create an optimum phase differ-

ence, a straightforward route is to manipulate the dynamic phase for the interfering beams

through propagation in a high-index dispersive medium or in an optimally designed cav-

ity that scales up the optical path length or a hybrid strategy involving the aforementioned

possibilities [1, 13]. A plausible alternative route is to manipulate the geometric phase

acquired by the interfering beams through an optimally designed interferometric config-

uration. The geometric phase, alternately known as Pancharatnam-Berry (PB) phase is

acquired by a light beam when one or more dynamic variables change during the propaga-

tion of light through the medium. In the optical domain, such dynamic variables include

propagation constant and coupling strength between the associated degrees of freedom. The

spiral phase-plates (or q-plates), holograms, and liquid crystal-based spatial light modula-

tors, etc. are examples of such devices [14, 9, 15]. By exploiting the winding topology in

the bandstructure for a two-dimensional photonic crystal slab, the geometric-phase assisted

beam restructuring has been recently demonstrated [16]. Interestingly, the geometric phase

(ϕg) acquired by a propagating mode in a 1D PC is quantized i.e. ϕg = 0 or ϕg = π). This

quantized geometric phase is also termed as the topological phase or Zak phase [17, 18].

It is important to note that the Zak phase (ZP), through the bulk-boundary correspondence,

determines the reflection phase for a forbidden band of a photonic crystal [19, 20]. This

relationship has been employed for exciting the topologically-protected optical edge modes

which facilitate the development of robust disorder-resistant optical configurations such as

optical sensors, frequency converters, slow-light devices, spontaneous emission inhibitors,

and photovoltaic devices [21, 22, 23]. The strong field localization at a PC-plasmonic ma-

terial interface facilitates coherent and directional emission from quantum emitters in TE
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as well as TM polarizations [24]. Such schemes have been extensively employed using

1D PC for a broad range of applications involving wavelength-selective filters, bandpass

filters, and optical waveguides [25, 26]. It is worth noting that the primary focus of all such

investigations in 1D PCs involves tailoring the spectral characteristics of the propagating

or localized (surface) modes existing at the metal-dielectric interface. In a recent investi-

gation, A. Karnieli et al. showed that the geometric phase acquired by a conjugate pair of

nonlinear frequency-converted beams could be employed for generatingHG beams located

in a widely separated spectral band [27]. In the present work, we show that the topological

phase associated with a photonic pass (transmission) band of 1D PC has the potential to

generate spatially structured beams such as theHG beam in the reflection as well as trans-

mission geometry.

5.2 Analytical framework and Design principle

We consider a 1D PC (PC) with periodically-stacked alternating layers of two different

dielectric materials having refractive indices na and nb with thicknesses da and db as shown

in Fig. 5.1(a). The unit cell length is given by Λ = da + db. A measure of the bandstruc-

ture could be ascertained from the simulated reflection spectrum for the PC depicted by

the maroon-colored curve in Fig. 5.2(a) which is characterized by 4 high-reflectivity spec-

tral bands, namely BGn (n = 1, 2, 3, 4) are separated from each other by ‘max(n) + 1’

(or 5) high-transmission bands. The simulation considers N = 20 unit cells of periodic

multilayers of SiO2 (na) and TiO2 (nb) with arbitrarily chosen thicknesses da = 420 nm

and db = 190 nm respectively. The sign of the phase acquired by the reflected beam (for

frequencies within BG1, BG2, BG3 or BG4) is dictated by the topological phase or ZP

(θZak
n ) of the transmission band(s) situated at wavelengths longer than the corresponding
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PBG [19]. In accordance with the above description, the PC contains ‘max(n) + 1’ high-

transmission bands and the reflection phase for frequencies within the nth bandgap BGn

(i.e. Φn) is the sum of ZP for all the transmission bands from 0 to (n − 1). Quantitatively

this is expressed as,

sgn(Φn) = (−1)nexp(i
n−1∑
m=0

θZak
m ) (5.1)

where Φn is the phase of the reflected wave (beam) from the nth PBG. It is important to

note that the ZP for a band n (θZak
m ) is obtained by integrating the Berry’s connection over

the entire Brillouin-zone i.e.

θZak
m =

∫ π/Λ

−π/Λ
[i
∫
unit cell

n2
r(z)ψ

∗
m,K(z)

∂
∂K
ψm,K(z)dz]dK

where ψm,K is the Bloch eigenfunction for the Bloch wavevectorK and nr is the refractive

index function varying along z [19]. Due to the cyclic nature of Bloch eigenfunctions,

θZak
m takes binary values i.e. 0 or π. In order to derive (5.1), we assume that (a) the origin

is located at the center of layer a in a unit cell (b) PBG does not close at Brillouin zone

boundary [19]. In absence of any permeability in the dielectric medium i.e. µ = µ0, the ZP

of lowest transmission band (n = 0) is given by [19],

exp(iθZak
0 ) = sgn

[
1− n2

a

n2
b

]
(5.2)

A simpler route to obtain the ZP for n > 0 transmission bands is to ascertain the wavelength

(λ) within the transmission band which satisfies the condition

sin
(
2πnbdb
λ

)
= 0 (5.3)

If a wavelength (or frequency) within a transmission band (n) satisfies (5.3), θZak
n = π,

otherwise θZak
n = 0 [19]. Using (5.1), (5.2) and (5.3), the phase acquired by the reflected

beam, as well as the geometric phase acquired by the transmitted beam in a 1D PC, could be

ascertained. With respect to Fig. 5.1(a), the θZak
0 = π, θZak

1 = π, θZak
2 = 0 and θZak

3 = π.
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Figure 5.1: a) Shows a schematic of 1D PC (b) shows a schematic of the composite PC with
PC1 and PC2 being placed adjacent to each other.

It is worth reiterating the point that the aforementioned inferences are true only if any unit

cell of the 1D PC exhibits mirror reflection symmetry about the center of layer a. In other

words, if the choice of origin is such that the 1D PC exhibits a mirror reflection symmetry

about the center of layer b then θZak
n would change without affecting the spectral positions

of bandgaps and transmission bands.

5.3 Computational Results

The aforementioned observation motivates us to investigate the transmission (and reflec-

tion) properties of two 1D PCs placed adjacent to each other (along x-direction) as shown in

Fig. 5.1(b). The PC1 is identical to that shown in Fig. 5.1(a) and PC2 has identical values

of da and db (as well as na = 2.5 and nb = 1.5) but translated by a factor of Λ
2
along the

propagation (z) direction. Both PC1 and PC2 contain an identical number of unit cells as

well. This essentially results in identical PBGs for PC1 and PC2 but the Zak phase of trans-

mission bands are interchanged. In other words, θZak
0 = 0 for PC1 and θZak

0 = π for PC2.

Consequent upon this, two beams (at the same wavelength) propagating separately through

PC1 and PC2 would acquire a phase difference of π which is essentially the difference of

Zak phase for the respective transmission band in that 1D PC. The ZP for all the transmis-

sion bands is mentioned in Table 5.1. This arrangement also ensures that the difference

between the reflection phase for any wavelength (or frequency) situated in BG1 or BG3 of
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Figure 5.2: (a) Reflection spectrum and (b) reflection phase for PC1 (solid curve) and PC2

(dashed curve).

PC1 (maroon line) PC2 (black line)
θZak
0 = 0 θZak

0 = π
θZak
1 = 0 θZak

1 = π
θZak
2 = π θZak

2 = 0
θZak
3 = 0 θZak

3 = π

Table 5.1: Shows the zak phase (θZak) of the transmission bands for PC1 and PC2.
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Figure 5.3: Shows the simulatedmode-field intensity (∝ |E|2) distribution (or beam profile)
for incident Gaussian beam at wavelengths (a) λ = 2.25 µm, (b) λ = 1.1 µm and (c) λ =
2.8 µm (d) and (e) represent the intensity distribution for the reflected beam at λ = 2.25 µm
and λ = 1.1 µm respectively (f) mode-field intensity distribution for the transmitted beam
at wavelength λ = 2.8 µm.

PC1 and PC2 would be π. This point is elucidated in Fig.5.2(b) where the reflection phase

in BG1 and BG3 exhibit a similar spectral variation but differ by a factor of π with respect

to each other. In general terms, it could be inferred that all the PBG with odd m (order)

would exhibit this feature for any two 1D PCs described in Fig. 5.1(b). With regard to this

observation, the incidence of Gaussian wavefront which is symmetric about x = 0 in the

x−y plane (see Fig. 5.1(b)) at any frequency within theBG1 orBG3 (in Fig. 5.2(a)) would

lead to a symmetric two-lobed beam. This would be essentially due to interference of re-

flected wavefronts from PC1 and PC2 that have a phase difference of π. On the other hand,

the phase-difference between reflected beams for wavelengths in BG2 and BG4 would be

< π, and consequently, the interference between two reflected beams would result in an

asymmetric two-lobed beam. In order to illustrate this point, we have performed FDTD

simulations in 3D using commercial Ansys Lumerical software. The FDTD modeling con-

siders a composite geometry shown in Fig. 5.1(b) with 20 unit cells in PC1 as well as in
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PC2. The simulation domain is a 20× 20× 20 µm3 volume which contains discreet grids

of dimension≤ 50 nm for achieving desirable convergence. A Gaussian pulsed beam with

a pulse-width of 0.1 ns is incident on the composite geometry in Fig. 5.1(b). In order to

obtain the mode-field intensity distribution, perfectly-matched layer (PML) boundary con-

ditions are imposed along x, y, and z directions. The incident and simulated mode-field

distributions at three different wavelengths are shown in Fig. 5.3. Figs. 5.3(a-c) represent

the incident symmetric Gaussian beam on the geometry shown in Fig. 5.1(b) at wavelengths

λ = 2.25 µm (within BG1), λ = 1.1 µm (within BG2) and λ = 2.80 µm (in the transmis-

sion band n = 0). Figures 5.3(d) and (e) show the mode-field distribution of the reflected

beam which distinctly shows the appearance of a zero (minima) between two bright lobes.

The conversion to HG10 mode is brought about by the phase difference accumulated by

the beams reflected from PC1 and PC2. As discussed before, there exists an asymmetry in

the field distribution in Fig. 5.3(e) which is mainly due to the fact that the phase-difference

is < π between the reflected beams situated in BG2 of the reflection spectrum (see Fig.

5.2(a)). Figure 5.3(f) shows the transmitted beam at λ = 2.80 µm which also exhibits an

asymmetric two-lobed HG10-like field distribution. This essentially happens due to the

difference of π between the ‘Zak’-phases (θZ0 ak) of PC1 and PC2 for n = 0 transmission

band. The asymmetry, in this case, is essentially due to the small difference in the absolute

value of transmittance in PC1 and PC2 at λ = 2.80 µm. In the next case, we consider a

PC1 (maroon line) PC2 (black line)
θZak
0 = π θZak

0 = π
θZak
1 = π θZak

1 = π
θZak
2 = 0 θZak

2 = 0
θZak
3 = π θZak

3 = π

Table 5.2: Shows the zak phase (θZak) of the transmission bands for PC1 with na = 2.5
and nb = 1.5 and PC2 with na = 2.6 and nb = 1.4.

situation where the Zak-phase for the corresponding transmission (or pass) bands in PC1
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Figure 5.4: (a) Shows the simulated reflection spectrum and (b) phase of the reflected beam
from PC1 having na = 2.5, nb = 1.5 (dashed line) and PC2 with na = 2.6,nb = 1.4 (solid
line) respectively.

and PC2 are identical as given in Table 5.2. This could be achieved by considering PC1

with na = 2.5 and nb = 1.5 and that for PC2 being na = 2.6 and nb = 1.4. The layer

thicknesses da and db are the same for PC1 as well as PC2. Due to this, the reflection spec-

trum for PC1 (dashed line) and PC2 (solid line) are slightly different which is shown in

Fig. 5.4(a). However, they exhibit a significant overlap of PBGs. As a consequence of PC

design, the phase (Φ) of the reflected beam (from corresponding PBGs) are very close to

each other as shown in Fig. 5.4(b). In a few PBGs, Φ could be the same at one wavelength

as shown in Fig. 5.4(b) (encircled region). We consider an arrangement identical to that

shown in Fig. 5.1(a) and a Gaussian beam (dimensions same as before) is incident on the

configuration. At a wavelength of λ = 3.1 µm (in the transmission band n = 0), the inci-

dent and transmitted mode-field pattern is shown in Fig. 5.5(a) and (b) respectively. Due

to identical Zak-phase of lowest (n = 0) transmission band for both PC1 and PC2, the

mode-field profiles corresponding to the incident or the transmitted beam remain the same.
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Figure 5.5: Shows the simulated mode-field intensity distribution for the composite PC
geometry presented in Fig. 5.1(b) for (a) incident beam at λ = 3.1 µm (b) transmitted
beam at λ = 3.1 µm (c) incident beam λ = 2.5 µm and (d) reflected beam respectively at
λ = 2.5 µm.
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Figure 5.6: (a) Schematic of the experimental set-up for Machzehnder interferometer;
M1,M2: alignment mirrors, M3,M4:steering mirrors; HWP: half-wave-plate; PBS: polariz-
ing beam splitter; NPBS1,NPBS2: non-polarizing beam splitter; CCD1, CCD2: camera;D:
photodetector. (b) Image of the experimental arrangement in the laboratory.

Further, for the reflected beam at λ = 2.5 µm (where the reflection phases intersect in Fig.

4(b)), the beam profile mimics the incident beam as shown in 5.5(c) and (d). The obser-

vations made in Figs. 5.3 and 5.5 elucidate the role played by the topological (Zak) phase

towards altering the spatial beam profile for propagation in composite PC geometries such

as that shown in Fig. 5.1(b).

5.4 Experimental set-up and observations

In order to experimentally realize the aforementioned idea, we set up a Mach-Zehnder

interferometer (MZI) shown in Fig.5.6(a) and (b) and carry out the measurements in the

visible spectral band. This essentially allows us to employ commercially available and

economical dielectric-coated mirrors for the experiment. The optical source (for MZI)

is a 1064 nm Nd : Y V O4 Q-switched diode-pumped-solid-state (DPSS) laser emitting

linearly-polarized beam with pulse-width ∆τ ∼ 1 ns. A combination of a half-wave plate

(HWP) and a polarizing beam splitter (PBS) is used for controlling the optical power inci-

77



5 Optical beam shaping using one-dimensional photonic crystals

dent on MZI. The MZI consists of two 50 : 50 non-polarizing beam splitters (NPBS1 and

NPBS2) and two steering mirrors (M3 andM4) as shown in Fig. 5.6. We choose two com-

mercially available mirrors as PC1 (Laseroptik, Model: 06105UR1) and PC2(Laseroptik,

Model: 13083ke2) on CaF2 substrates which transmits ≥ 95% of light at 1064 nm. PC1

and PC2 are of equal thickness and are positioned normally (angle of incidence = 0◦) in the

two arms of MZI (see Fig. 5.6). The CCD cameras (CCD1 and CCD2) record the beams

emerging out of NPBS2. Both the mirrors (PC1 and PC2) have identical material con-

stituents with different thicknesses of layers. It is worthwhile tomention that themirrorPC1

exhibits two PBGs (1350− 1650 nm and 580− 660 nm) and PC2 exhibits only one PBG

which spans from 700− 850 nm. In order to determine the Zak-phase for the transmission

band around 1064 nm wavelength in PC1, we deposited a thin (≈ 20 nm) silver (Ag) film

on the last layer of PC1 and recorded the reflection spectrum using incoherent broadband

optical sources in the visible (400− 1000 nm) as well as in the infrared (1250− 1800 nm)

spectral band. The recorded reflection spectrum exhibits one reflectivity minimum within

each PBG depicting the excitation of a Tamm-plasmon-polariton (TPP) mode. From this,

it could be inferred that the phase of the reflected beam (Φ) from both the PBGs (of PC1)

bears a positive sign. Consequently, the ZP for the transmission band around 1064 nm sit-

uated in between the two PBGs is π by virtue of the relation exp(iθZak
n ) = −sgn

(
Φm−1

Φm

)
[19]. The Zak-phase for the transmission band around 1064 nm wavelength in PC2 is

determined through (5.2) and it is estimated to be 0. In this calculation, it is assumed that

PC2 is composed of periodic multilayers of CaF2/TiO2 and CaF2 is the terminating layer.

In the absence of PC1 and PC2, the recorded beams in CCD1 and CCD2 (using a suit-

able beam expander) are shown in Fig. 5.7(a) and (b). The complimentary fringe pattern,

which is a signature of π phase difference between the interfering beams, ensures a perfect

alignment for the configuration. The insertion of PC1 and PC2 (as per Fig. 5.6) results

in a fringe pattern shown in Fig. 5.7(c) and (d). A comparison between Fig. 5.7(a) and
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Figure 5.7: (a) and (b) Shows the interference fringe pattern recorded by CCD1 and CCD2
respectively (as per Fig. 5.6) when PC1 and PC2 are not present. (c) and (d) represents the
interference fringe pattern in the presence of PC1 and PC2 as per the description in Fig.
5.6.
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Figure 5.8: Shows the far-field intensity distribution recorded by CCD1 and CCD2 (without
beam expander) when a small shear exists between the two interfering beams (a) and (b)
represents without PC and c) & d) with PC. e)-h) shows the measured beam profile along
x-direction. The solid curves represent the theoretical fitting of a Gaussian andHG10 beam

Table 5.3: Shows a comparison between the important features for widely-used techniques
(q-plate-based and liquid-crystal based) used for shaping wavefronts and that for the 1D-PC
presented here
q-plate liquid-crystal 1D-Photonic crystal
Polarization-dependent Polarization-dependent Polarization-independent
Utilizes anisotropic prop-
erties of medium

Could be fabricated using
isotropic medium

Could be fabricated using
isotropic medium

Vortex beam order de-
pends on the constituent
medium

Vortex beam order de-
pends on the constituent
medium

Vortex beam order does
not depends on the con-
stituent medium

Highly frequency-
selective

Works over the moderately
narrow spectral band

Works over broad spectral
range

Operates at low optical
power level (a few mW)

Operates at low to moder-
ate optical power levels (a
few tens of mW)

Could be designed for op-
eration at high (Watt-level)
optical power

Works in transmission
mode

Works in transmission
mode

Works in reflection as well
as transmission mode

80



5 Optical beam shaping using one-dimensional photonic crystals

Fig. 5.7(c) shows that the fringe pattern undergoes a phase-shift of π which is essentially

brought about by the (geometric) phase difference between the beams propagating in two

arms of the MZI. A similar observation could also be made with respect to Fig. 5.7(b) and

Fig. 5.7(d). It is worth noting that a 0.5 mm thick etalon (on a rotating stage) is used for

compensating the additional dynamic phase and subsequently, improving the contrast be-

tween the central (x = y = 0) fringe in Figs. 5.7(c) and (d). In the absence of the beam

expander, we misalign the interfering beams marginally (in NPBS2) for generating a small

shear. This would essentially result in a drop in intensity (to 0) in the region where the

two beams overlap if the two wavefronts have a π phase difference. On the other hand,

the overlapping region would brighten if the interfering wavefronts have a phase difference

of 0 or 2π. Figures 5.8(a) and (b) show the recorded beam profiles (without the beam ex-

pander) in the absence of PC1 and PC2. The observation depicts that the two interfering

beams have a phase difference of π which is consistent with the observations in Fig. 5.7(a)

and (b). When PC1 and PC2 are inserted in the two arms of MZI, the beam profiles are

modified which are shown in Fig. 5.8(c) and (d). It is apparent that the beam traveling

through the arm containing PC1 acquires an additional phase of π (equal to the Zak-phase)

that leads to a change in the beam-profile i.e. CCD2 records a double-lobed beam which

resembles anHG10 (orHG01) mode and CCD1 records a Gaussian-like beam profile. The

ellipticity in the spatial beam profile is due to the small misalignment between the inter-

fering beams. With respect to the center (x = y = 0) of the incident Gaussian beam, the

recorded beam profile along x-direction (only) is shown in Fig. 5.8(e)-(h) (black dots). A

Gaussian function for the Fig. 5.8(f) and (g)) and a first-order Hermite polynomial func-

tion for Fig. 5.8(e) and (h)) is theoretically fitted to elucidate the beam shaping mechanism

using the PC configuration. As predicted in Fig. 5.3(f), there exists a small but discernible

asymmetry (with respect to the intensity distribution) in the measured beam profile in Fig.

5.8(d). This is accompanied by a significant (non-zero) value at x = 0 which appears as
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a consequence of ‘non-exact’ destructive interference of partially overlapping wavefronts

within the NPBS2. The experimental evidence elucidated here provides a basis for gener-

ating more complex wavefronts by manipulating the Zak-phase via an appropriate 1D-PC

design. For example, a PC design with a suitable radial (r) dependence of Zak-phase could

allow us to generate a vortex beam of a particular order. In Table-5.3, we tabulate the es-

tablished wavefront-shaping techniques and their important features. The comparison in

table-5.3 facilitates the inference that the proposed 1D PC-based beam-shaping technique

provides greater flexibility in terms of broader spectral coverage. This method could be

employed in high optical-power applications and additionally removes the polarization de-

pendency for the process. In addition, table-5.3 also suggests that the 1D PC-based method

partially eases the constraints on the optical medium.

5.5 Conclusions

We presented a plausible route for carrying out beamwavefront-shaping using the topologi-

cal features of a 1D photonic crystal. The PC design is based on the possibility of acquiring a

topological phase (Zak-phase) by a transmitted beam through a PC and this allows the wave-

front shaping along the transverse (x−y) plane. We experimentally observe the generation

ofHG01 (HG10) beams in the reflection as well as transmission mode. TheHG10 beam ex-

hibit one zero across the transverse plane. The experimental results are consistent with the

wavefront shapes obtained using FDTD-based simulations for beam propagation through

the designed PC. Within the constraints imposed by material transparency, the scalability

of PC geometries to a desirable spectral band provides sufficient flexibility for reshaping

optical beams in any desirable wavelength region. Further, this wavefront-shaping scheme

is quite robust and disorder-resistant owing to the fact that it is achieved through employing

the topological invariants associated with the photonic crystal architecture.

82



REFERENCES

References

[1] Shota Mochizuki, Xiaodong Gu, Kenji Tanabe, Akihiro Matsutani, Moustafa Ahmed,

Ahmed H. Bakry, and Fumio Koyama. Generation of vortex beam using bragg reflec-

tor waveguide. Applied Physics Express, 7:022502, 2014.

[2] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao,

Z. Zhao, J.Wang,M. P. J. Lavery, M. Tur, S. Ramachandran, A. F.Molisch, N. Ashrafi,

and S. Ashrafi. Optical communications using orbital angular momentum beams. Adv.

Opt. Photon., 7(1):66–106, Mar 2015.

[3] Graham Gibson, Johannes Courtial, Miles J. Padgett, Mikhail Vasnetsov, Valeriy

Pas’ko, Stephen M. Barnett, and Sonja Franke-Arnold. Free-space information trans-

fer using light beams carrying orbital angular momentum. Opt. Express, 12(22):5448–

5456, Nov 2004.

[4] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia. Con-

trolled rotation of optically trapped microscopic particles. Science, 292(5518):912–

914, 2001.

[5] Miles Padgett and Richard Bowman. Tweezers with a twist. Nature Photonics, 5:343–

348, 08 2011.

[6] Mio Yoshida, Yuichi Kozawa, and Shunichi Sato. Subtraction imaging by the com-

bination of higher-order vector beams for enhanced spatial resolution. Opt. Lett.,

44(4):883–886, Feb 2019.

83



REFERENCES

[7] Yuichi Kozawa, Daichi Matsunaga, and Shunichi Sato. Superresolution imaging via

superoscillation focusing of a radially polarized beam. Optica, 5(2):86–92, Feb 2018.

[8] A Mair, A Vaziri, G Weihs, and A Zeilinger. Entanglement of the orbital angular

momentum states of photons. Nature, 412(6844):313–316, 2001.

[9] Haotong Ma, Haojun Hu, Wenke Xie, and Xiaojun Xu. Study on the generation of a

vortex laser beam by using phase-only liquid crystal spatial light modulator. Optical

Engineering, 52(9):1 – 10, 2013.

[10] Mikhail Shalaev, Jingbo Sun, Alexander Tsukernik, Apra Pandey, Kirill Nikolskiy,

and Natalia Litchinitser. High-efficiency all-dielectric metasurfaces for ultra-compact

beam manipulation in transmission mode. Nano letters, 15, 08 2015.

[11] Shuang-Yin Huang, Guan-Lin Zhang, Qiang Wang, Min Wang, Chenghou Tu, Yong-

nan Li, and Hui-Tian Wang. Spin-to-orbital angular momentum conversion via light

intensity gradient. Optica, 8(9):1231–1236, Sep 2021.

[12] Yiqiong Zhao, J. Scott Edgar, Gavin D. M. Jeffries, David McGloin, and Daniel T.

Chiu. Spin-to-orbital angular momentum conversion in a strongly focused optical

beam. Phys. Rev. Lett., 99:073901, Aug 2007.

[13] Naresh Sharma, Govind Kumar, Vivek Garg, Rakesh Mote, Vijaya Ramarao, and

Shilpi Gupta. Translationally invariant generation of annular beams using thin films.

IEEE Photonics Technology Letters, PP:1–1, 08 2020.

[14] Pravin Vaity, A. Aadhi, and R. P. Singh. Formation of optical vortices through super-

position of two gaussian beams. Appl. Opt., 52(27):6652–6656, Sep 2013.

[15] Victor V. Kotlyar, Anton A. Almazov, Svetlana N. Khonina, Victor A. Soifer, Henna

Elfstrom, and Jari Turunen. Generation of phase singularity through diffracting a

84



REFERENCES

plane or gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A, 22(5):849–861,

May 2005.

[16] Bo Wang, Wenzhe Liu, Maoxiong Zhao, Jiajun Wang, Yiwen Zhang, Ang Chen,

Fang Guan, Xiaohan Liu, Lei Shi, and Jian Zi. Generating optical vortex beams by

momentum-space polarization vortices centred at bound states in the continuum. Na-

ture Photonics, 14:1–6, 10 2020.

[17] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62:2747–2750, Jun

1989.

[18] J. Arkinstall, M. H. Teimourpour, L. Feng, R. El-Ganainy, and H. Schomerus. Topo-

logical tight-binding models from nontrivial square roots. Phys. Rev. B, 95:165109,

Apr 2017.

[19] Meng Xiao, Z. Q. Zhang, and C. T. Chan. Surface impedance and bulk band geometric

phases in one-dimensional systems. Phys. Rev. X, 4:021017, Apr 2014.

[20] Wensheng Gao, MengXiao, Baojie Chen, Edwin Y. B. Pun, C. T. Chan, andWingYim

Tam. Controlling interface states in 1d photonic crystals by tuning bulk geometric

phases. Opt. Lett., 42(8):1500–1503, Apr 2017.

[21] Samir Kumar, Mukesh Shukla, Partha Maji, and Ritwick Das. Self-referenced re-

fractive index sensing with hybrid-tamm-plasmon-polariton modes in sub-wavelength

analyte layers. Journal of Physics D: Applied Physics, 50, 07 2017.

[22] Boris Afinogenov, A. Popkova, V. Bessonov, B. Lukyanchuk, and Andrey Fedyanin.

Phase matching with Tamm plasmons for enhanced second- and third-harmonic gen-

eration. Phys. Rev. B, 97:115438, 03 2018.

85



REFERENCES

[23] Shailja Sharma, Abhishek Mondal, and Ritwick Das. Infrared rainbow trapping via

optical Tamm modes in an one-dimensional dielectric chirped photonic crystals. Opt.

Lett., 46(18):4566–4569, Sep 2021.

[24] B. J. Lee, C. J. Fu, and Z.M. Zhang. Coherent thermal emission from one-dimensional

photonic crystals. Applied Physics Letters, 87(7):071904, 2005.

[25] S. Hadi Badri, M. M. Gilarlue, Saeid Gholami Farkoush, and Sang-Bong Rhee. Re-

configurable bandpass optical filters based on subwavelength gratingwaveguides with

a ge2sb2 te5 cavity. J. Opt. Soc. Am. B, 38(4):1283–1289, Apr 2021.

[26] C. M. Fabre, P. Cheiney, G. L. Gattobigio, F. Vermersch, S. Faure, R. Mathevet, T. La-

haye, andD.Guéry-Odelin. Realization of a distributed bragg reflector for propagating

guided matter waves. Phys. Rev. Lett., 107:230401, Nov 2011.

[27] AvivKarnieli, Sivan Trajtenberg-Mills, GiuseppeDi Domenico, andAdyArie. Exper-

imental observation of the geometric phase in nonlinear frequency conversion. Optica,

6(11):1401–1405, Nov 2019.

86



Chapter 6

Exceptional points in 1D-photonic crystal
6.1 Introduction

The optical systems obeying non-Hermitian dynamics have been the subject of intense and

concerted investigation over the last two decades owing to their broad implications in pho-

tonics, acoustics, electronics as well as atomic physics. Optical systems which are governed

by non-Hermitian Hamiltonian dynamics through an engineered gain and dissipation mech-

anism, provide a route to overcome the limitations imposed by closed optical systems that

obey the Hermitian-Hamiltonian led dynamics. The eigenvalues of the Hamiltonian for the

Hermitian system are real, while they are generally complex for non-hermitian systems.

However, when the Hamiltonian in optical systems commutes with the parity-time (PT )

operator, then the non-Hermitian systems give rise to a real eigenvalue spectrum. A con-

tinuous change in the parameter governing the Hermiticity (of the Hamiltonian) breaks the

PT symmetry which manifests in the form of complex eigenvalues for the system. In the

phase space, such points where the real and complex eigenvalues coalesce are termed excep-

tional points (EPs) also known as “branch point singularities” [1, 2]. Interestingly not only

eigenvalues but also their corresponding eigenvectors of a system’s Hamiltonian coalesce

simultaneously at EP. This spontaneous PT -symmetry breaking has catalyzed a plethora

of non-intuitive outcomes such as directional invisibility [3, 4], coherent perfect lasing and

absorption [5, 6, 7, 8, 9], negative refraction [10], single-particle based sensing [11, 12, 13],

distortion-free wireless optical power transfer [14] and a fewmore [15, 16, 17, 18, 19]. It is,

however, worth noting that the incommensurate gain and loss distribution in non-Hermitian
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systems imposes the primary limitation on the practical applications due to unpredictable

signal-to-noise ratio near EP [20, 21, 22, 23]. In order to circumvent such bottlenecks,

a few possibilities have been explored. One such promising route is to create an asym-

metric loss in the system (without gain) whose dynamics could be explored using a non-

Hermitian Hamiltonian with a uniform background loss [20, 24, 25]. Such configurations

would exhibit PT -symmetry which could be broken through scaling up the loss asymme-

try. In a different scheme, a pseudo-Hermitian system was explored which allowed strong

coupling between a large number of modes via manipulation of the parameters governing

the Hamiltonian [24]. This led to the existence of EPs of multiple order and the interac-

tion of eigenvalues around each EP provides a robust control on the propagation dynamics

[26, 27, 28]. In spite of the aforementioned developments, a useful and practical proposition

would be to devise a configuration hosting a multitude of EPs with the constraint that the

electromagnetic em energy lost due to the non-Hermitian dynamics is stored in a reservoir.

This essentially implies that the dissipative channel associated with a non-Hermitian system

drives a separate Hermitian system which could allow reverse flow of em energy by virtue

of cyclical dynamics. Such systems have been explored in the area of parametric frequency

conversion processes where the em energy lost in one of the parametric processes (obeying

non-Hermitian dynamics) is coherently added to the other parametric process that follows

a Hermitian dynamics [29].

A plausible translation of such an idea in the non-absorptive linear systems would be

to introduce a virtual loss in an intermodal interaction process thereby generating multiple

EPs in the parameter space. One of the simplest configurations imitating such a process is

a multimodal interaction in an all-dielectric 1D PC with a gradually varying duty cycle (for

each unit cell). In such a 1D PC, the forward (source) to backward (sink) mode-coupling

dynamics is essentially governed by a pseudo-Hermitian Hamiltonian whose Hermiticity

is determined by the change in duty cycle along the propagation direction. In this chapter,
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6 Exceptional points in 1D-photonic crystal

we show the existence of multiple EPs in a CPC and develop an analytical framework for

ascertaining the possibility of exciting topologically-protected optical edge modes in such

aperiodically stratified configurations.

6.2 Theoretical framework

As we have discussed earlier in Chapter 3 that for a 1D PC comprised of periodic bilayers

with refractive indices n1 and n2 with thicknesses d1 and d2 the equivalent Schrödinger

equation derived from the coupled-wave equation is written as

i
d

dz

(
ãi
ãr

)
=

(
−∆k −κ∗
κ ∆k

)(
ãi
ãr

)
(6.1)

and

Ĥ =

(
−∆k −κ∗
κ ∆k

)
(6.2)

Here, κ∗ = −κ and ∆k (= ∆β
2
) which remains constant (for a given frequency) across

the 1D-PC which has a fixed duty cycle. The autonomous Hamiltonian Ĥ = −σ⃗ · B⃗ with

σ⃗ ≡ [σx, σy, σz] are the Pauli’s spin matrices and B⃗ ≡ [0, Im(κ),∆k] represents a pseudo-

Hermitian evolution dynamics. In order to appreciate this point, the eigenvalues of Ĥ are

given by
e1 =

√
∆k2 − κ̃2

e2 = −
√
∆k2 − κ̃2

(6.3)

whereas the corresponding eigenfunctions are given as

|ψ1⟩ =

(
−i (∆k+

√
∆k2−κ̃2)

κ̃

1

)

|ψ2⟩ =

(
+i

(−∆k+
√

∆k2−κ̃2)

κ̃

1

) (6.4)

Here, κ̃ = iκ. It is apparent that ∆k > κ̃ (modes in the pass bands) have real eigen-

values and hence, the forward-to-backscattered mode-coupling is cyclic (with respect to
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z). On the other hand, ∆k < κ̃ defines a spectrum where the forward-to-backscattered

mode-coupling is unidirectional. In other words, the Hamiltonian Ĥ commutes with the

parity-time (PT ) operator for ∆k > κ̃, and therefore, it is termed as PT -symmetric with

respect to the forward-to-backscattered mode-coupling process. Here, the parity operator

is defined as P ≡
(
0 1
1 0

)
and T is an anti-linear operator that performs the complex con-

jugation operation. For ∆k < κ̃, the Hamiltonian Ĥ does not commute with PT operator,

and consequently, the propagation characteristics pertain to PT -symmetric broken phase.

A closer look into the eigenvectors reveals that the equality κ̃ = ±∆k manifests as coa-

lescing of eigenvectors accompanied by vanishing eigenvalues. Such points in parameter

space where κ̃ equals±∆k are termed as the exceptional points (EPs) and they distinctly de-

marcate the regions exhibiting Hermitian (PT -symmetric phase) and non-Hermitian (PT -

broken phase) dynamical evolution of states. In order to appreciate the idea mentioned

Figure 6.1: a) Shows the reflection spectrum of the normal 1D-PC. b) Shows the real part
(black line) and imaginary part (maroon line) of eigenvalues e1 (dotted lines) and e2 (solid
lines) as a function of frequency. c) and d) Shows the electric field intensity for frequencies
lying within the PBG (240 THz) and outside the PBG (310 THz) respectively.

above, we consider a practical 1D PC with n1 ≡ TiO2 layer and n2 ≡ SiO2 layer.
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The layer thicknesses are d1 = d2 = 150 nm. The reflection spectrum for N = 20 unit

cells is plotted in Fig. 6.1(a) which exhibits a high reflection band (or PBG) spreading over

a 75 THz bandwidth. In order to obtain the reflection spectrum, finite element method

(FEM) based simulations were carried out using the commercially available computational

tool (COMSOL Multiphysics). In the simulations, the periodic boundary condition is im-

posed along the transverse direction, and a mesh size of 5 nm is considered. We ignore

the material dispersion for the simulations and assume n1 = 2.5 (≡ TiO2) and n2 = 1.5

(≡ SiO2) across the entire spectrum. For this 1D PC, we also plotted the eigenvalues e1

and e2 (see Fig. 6.1(b)) as a function of the frequency of the incident electromagnetic wave.

It is apparent that the eigenvalues vanish at ν1 ≈ 210 THz and ν2 ≈ 285 THz. These two

frequencies (ν1 and ν2) define the EPs (κ = +∆k and κ = −∆k) for the periodic 1D

PC. A closer look would also reveal that the eigenvalues are purely imaginary within the

PBG and the band edges (Fig. 6.1 (a)) coincide with ν1 and ν2. The mode fields for fre-

quencies lying inside the PBG (240 THz) and outside the PBG (310 THz) are presented in

Figs. 6.1(c) and (d) respectively. Figure 6.1(c) represents strong reflection from unit cells

close to the entry face (z = 0) of the unit cell whereas Fig. 6.1(d) represents high delocal-

ization of mode-field in the 1D-PC. In order to provide an analytical insight, we note that

the extent of decay of mode-field for frequencies (ν) within the PBG is governed by the

Bloch-wavevector (K) [30]. The couple-mode formalism connects to the Bloch wavevec-

tor through the relation K = 2π
Λ
+ e1,2 which is complex within the PBG and purely real

in the transmission bands [30, 31]. In other words, ∆k is much smaller than κ within the

PBG, and for ν = 240 THz,∆k ≈ 0. Therefore, solely κ determines the value of e1,2 and

in that case, the imaginary component ofK maximizes. This essentially manifests through

a rapid decay of mode-field for ν = 240 THz along z (propagation direction).

It is worth noting that the investigations on systems exhibiting PT -symmetry (or PT -

broken symmetry) led dynamics in photonics essentially involve optimally balanced gain-
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loss architectures such as segmented waveguides and photonic crystals. In such systems,

a complex relative permittivity in different sections depicting actual gain or loss for the

propagating light beam gives rise to the PT -symmetry (or PT -broken symmetry). The

present configuration involving 1D PC does not include an actual dissipative component

for achieving the PT -symmetric to PT -symmetry broken phase transition. Alternatively,

the coupling of optical power to the reflected mode |r⟩ is analogous to a virtual loss for

a forward propagating or incident |i⟩ mode. When this coupling is relatively weak i.e.

∆k > κ̃, |i⟩ and |r⟩ exhibits cyclic exchange of optical power (as a function of z) which is

a primitive outcome for a PT -symmetric dynamics. On the other hand, a strong coupling

regime where ∆k < κ̃ manifests through a monotonic growth of reflected mode (|r⟩) that

is a signature of PT -symmetry broken phase. It is worthwhile to reiterate the point that

the two regimes depicted by the inequality of ∆k and κ̃ (in the parameter space) could

be mapped onto the PBG and passband (s) in the reflected spectrum. Subsequently, each

PBG is necessarily bounded by two EPs in this framework. Additionally, these two EPs are

fixed and could not be tailored for a given 1D PC with a fixed duty cycle and fixed period.

Also, the conventional 1D PC geometry excludes the possibility of realizing higher-order

exceptional points [28]. Taking a clue from this critical viewpoint, we note that a gradual

change in dielectric filling fraction (ζ = d1M
Λ
) of each unit cell of the 1D PC would allow us

to realize discretely spaced (multiple) EPs at different optical frequencies (or wavelengths).

In order to elucidate this point, we recall that ∆k, as well as κ̃, is a function of ζ . An

optimum spatial variation in ζ could essentially give rise to the possibility of EPs at different

physical locations (along z) in a 1D-PC. As an example, we show below that an optimally

chirped photonic crystal (CPC) that satisfies the adiabatic constraints enables us to observe

EPs at discreetly separated points along z.
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6.3 Exceptional points in 1D-chirped photonic crystal

We consider a CPC configuration as described in section3.4.1 that exhibits varying dielec-

tric filling fraction (ζ) in each unit cell. This CPC could be visualized through a longitu-

dinal variation in ∆k as well as κ̃ by virtue of a monotonic change in average refractive

index (n̄) for an unit cell. This variation in ∆k and κ̃ in a CPC geometry leads to an adia-

batic evolution of the Stokes vector along the propagation direction and manifests through

a broader PBG (≈ 140 THz) in comparison with a conventional (periodic) 1D PC [31].

This is presented in Fig. 6.2(a) which shows a broader reflection spectrum for the CPC

in comparison with the conventional 1D PC (Fig.6.1(a)). In addition, a flat transmission

band and the absence of sharp transmission resonances are distinct features of CPC. The

mode-propagation characteristics for the frequencies within the PBG (of CPC) are explored

by drawing a comparison with the mode-field distributions for the equivalent modes within

the PBG of a conventional 1D PC. Figures 6.2(b) and (c) show the mode-field distribution

for two frequencies νa = 250 THz and νb = 300 THz which are within the PBG of CPC.

In comparison with the mode-field distribution shown in Fig. 6.1(c), it could be observed

that different modes are reflected from spatially separated z values. The smaller frequency

(νa = 250 THz) is reflected from the regions which are closer to z = 0 edge of the CPC

in comparison to that for νb = 300 THz. From an analytical viewpoint, it is worthwhile to

recall that the Bloch-wavevector is expressed asK = 2π
Λ
+e1,2. It is complex when∆k < κ

happens for all the frequencies within the PBG for a conventional 1D-PC. The imaginary

component ofK maximizes when∆k = 0 and accordingly, the mode-field decays sharply

within one or two unit cells which could be seen in Fig. 6.1(c). Since, ∆k ≡ ∆k(z) for

1D-APC,∆k vanishes in different unit cells (d1M ) for different frequencies (ν). Therefore,

in the case of 1D-APC, the mode-field at different frequencies (within the PBG) strongly

decays in different unit cells which is apparent in Fig. 6.2(b) and (c) This variation is indica-
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Figure 6.2: a) Shows the reflection spectrum for CPC (Λ = 300nm). b) and c) Shows the
electric field intensity for two different frequencies lying within the PBG. d) and e) Shows
the real part (black line) and imaginary part (maroon line) of eigenvalues e1 (dotted lines)
and e2 (solid lines) as a function of d1M for frequencies lying inside the PBG i.e. 250 THz
and 300 THz respectively.
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tive of the fact that the field is localized and exhibits instantaneous localization in different

CPC sections.

From a different perspective, it is apparent that the variation in dielectric filling fraction

(ζ) would result in different eigenvalues (and corresponding eigenvectors) for each unit

cell. Accordingly, we plot the eigenvalues e1 and e2 as a function of d1M for two frequen-

cies νa = 250 THz (Fig. 6.2(d)) and νb = 300 THz (Fig. 6.2(e)) which are within the

PBG of CPC. Each one of the figures shows that the eigenvalues (e1 and e2) vanish at two

different values of d1M i.e. at the location of two different unit cells. Therefore, the CPC

geometry hosts two EPs for every d1M . Consequently, for a multitude of ζ , there would be

multiple EPs in the CPC for a forward-propagating mode to a backscattered mode-coupling

process. As discussed before, the regions where ℜe1 and ℜe2 are non-zero in Figs. 6.2(d)

and 6.2(e) exhibit a PT -symmetric coupling dynamics between the forward-propagating

and backscattered modes. On the other hand, in the regions where e1 and e2 are purely

imaginary, the mode-coupling process exhibits PT -symmetry broken manifolds. The il-

lustrations presented in Figs. 6.2(d) and 6.2(e) show that for each frequency within the

PBG, the CPC hosts two EPs at two different d1M . Therefore, for each unit cell of the CPC,

there exists one or more EPs, and consequently, CPC hosts multiple EPs. All such EPs are

characterized by coalescing eigenvalues at different operating frequencies within the PBG

of CPCs.

6.4 Conclusions

We show that an all-dielectric lossless 1D-photonic crystal exhibit a non-Hermitian dy-

namics and hosts at least two EPs in its eigenvalue spectrum. This method of realizing

an interaction process obeying non-Hermitian dynamics is very different with respect to

conventional methods such as the balanced loss-gain architectures which are essentially
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a consequence of relative complex permittivity in different sections of the geometry. The

present configuration i.e. all-dielectric 1D-photonic crystal does not include any dissipative

component for achieving thePT -symmetry toPT -symmetry broken phase transition. This

provides a basis for developing systems which involve virtual loss induced PT -symmetric

phase-transitions and therefore, carry out a wide-variety of optical manipulations without

inducing a real loss or dissipation in the system.

References

[1] M.V. Berry. Physics of nonhermitian degeneracies. Czechoslovak Journal of Physics,

54:1039–1047, 01 2004.

[2] W D Heiss. The physics of exceptional points. Journal of Physics A: Mathematical

and Theoretical, 45(44):444016, oct 2012.

[3] Xue-Feng Zhu, Yu-Gui Peng, and De-Gang Zhao. Anisotropic reflection oscillation in

periodic multilayer structures of parity-time symmetry. Opt. Express, 22(15):18401–

18411, Jul 2014.

[4] Zin Lin, Hamidreza Ramezani, Toni Eichelkraut, Tsampikos Kottos, Hui Cao, and

Demetrios N. Christodoulides. Unidirectional invisibility induced by PT -symmetric

periodic structures. Phys. Rev. Lett., 106:213901, May 2011.

[5] WenjieWan, Yidong Chong, Li Ge, HeesoNoh, A.Douglas Stone, andHui Cao. Time-

reversed lasing and interferometric control of absorption. Science (New York, N.Y.),

331:889–92, 02 2011.

[6] Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone. Coherent perfect absorbers: Time-

reversed lasers. Phys. Rev. Lett., 105:053901, Jul 2010.

96



REFERENCES

[7] Stefano Longhi. PT -symmetric laser absorber. Phys. Rev. A, 82:031801, Sep 2010.

[8] Y. D. Chong, Li Ge, andA. Douglas Stone. PT -symmetry breaking and laser-absorber

modes in optical scattering systems. Phys. Rev. Lett., 106:093902, Mar 2011.

[9] Yong Sun, Wei Tan, Hong-qiang Li, Jensen Li, and Hong Chen. Experimental demon-

stration of a coherent perfect absorber with pt phase transition. Phys. Rev. Lett.,

112:143903, Apr 2014.

[10] Romain Fleury, Dimitrios L. Sounas, and Andrea Alù. Negative refraction and planar

focusing based on parity-time symmetric metasurfaces. Phys. Rev. Lett., 113:023903,

Jul 2014.

[11] Jan Wiersig. Sensors operating at exceptional points: General theory. Phys. Rev. A,

93:033809, Mar 2016.

[12] Weijian Chen, Sahin Ozdemir, Guangming Zhao, Jan Wiersig, and Lan Yang. Ex-

ceptional points enhance sensing in an optical microcavity. Nature, 548:192–196, 08

2017.

[13] Jan Wiersig. Enhancing the sensitivity of frequency and energy splitting detection

by using exceptional points: Application to microcavity sensors for single-particle

detection. Phys. Rev. Lett., 112:203901, May 2014.

[14] H. Xu, David Mason, Luyao Jiang, and Jack Harris. Topological energy transfer in an

optomechanical system with exceptional points. Nature, 537, 02 2016.

[15] Li Ge, Y. D. Chong, and A. D. Stone. Conservation relations and anisotropic transmis-

sion resonances in one-dimensional PT -symmetric photonic heterostructures. Phys.

Rev. A, 85:023802, Feb 2012.

97



REFERENCES

[16] Jörg Doppler, Alexei Mailybaev, Julian Böhm, Ulrich Kuhl, Adrian Girschik, Florian

Libisch, Thomas Milburn, Peter Rabl, Nimrod Moiseyev, and Stefan Rotter. Dynami-

cally encircling exceptional points in a waveguide: asymmetric mode switching from

the breakdown of adiabaticity. Nature, 537, 02 2016.

[17] Yasutomo Ota, Ryota Katsumi, Katsuyuki Watanabe, Satoshi Iwamoto, and Yasuhiko

Arakawa. Topological photonic crystal nanocavity laser. Communications Physics, 1,

11 2018.

[18] Li Ge and A. Douglas Stone. Parity-time symmetry breaking beyond one dimension:

The role of degeneracy. Phys. Rev. X, 4:031011, Jul 2014.

[19] Xuefeng Zhu, Hamidreza Ramezani, Chengzhi Shi, Jie Zhu, and Xiang Zhang. PT -

symmetric acoustics. Phys. Rev. X, 4:031042, Sep 2014.

[20] Kun Ding, Z. Q. Zhang, and C. T. Chan. Coalescence of exceptional points and

phase diagrams for one-dimensional PT -symmetric photonic crystals. Phys. Rev.

B, 92:235310, Dec 2015.

[21] Tamar Goldzak, Alexei A. Mailybaev, and Nimrod Moiseyev. Light stops at excep-

tional points. Phys. Rev. Lett., 120:013901, Jan 2018.

[22] Jia-Rui Li, Lian-Lian Zhang, Wei-Bin Cui, and Wei-Jiang Gong. Topological prop-

erties in non-hermitian tetratomic su-schrieffer-heeger lattices. Phys. Rev. Research,

4:023009, Apr 2022.

[23] Fatemeh Mostafavi, Cem Yuce, Omar S. Maganã Loaiza, Henning Schomerus, and

Hamidreza Ramezani. Robust localized zero-energy modes from locally embedded

PT -symmetric defects. Phys. Rev. Research, 2:032057, Sep 2020.

98



REFERENCES

[24] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez,

G. A. Siviloglou, and D. N. Christodoulides. Observation of PT -symmetry breaking

in complex optical potentials. Phys. Rev. Lett., 103:093902, Aug 2009.

[25] B Peng, SK Özdemir, S Rotter, H Yilmaz, M Liertzer, F Monifi, CM Bender, F Nori,

and LYang. Loss-induced suppression and revival of lasing. Science (New York, N.Y.),

346(6207):328—332, October 2014.

[26] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and

A. Richter. Experimental observation of the topological structure of exceptional

points. Phys. Rev. Lett., 86:787–790, Jan 2001.

[27] Soo-Young Lee, Jung-Wan Ryu, Sang Wook Kim, and Yunchul Chung. Geometric

phase around multiple exceptional points. Phys. Rev. A, 85:064103, Jun 2012.

[28] Arnab Laha, Dinesh Beniwal, Sibnath Dey, Abhijit Biswas, and Somnath Ghosh.

Third-order exceptional point and successive switching among three states in an opti-

cal microcavity. Phys. Rev. A, 101:063829, Jun 2020.

[29] Noah Flemens and Jeffrey Moses. Hermitian nonlinear wave mixing controlled by a

pt-symmetric phase transition. Phys. Rev. Lett., 129:153901, Oct 2022.

[30] Amnon Yariv and Pochi Yeh. Optical Waves in Crystals Propagation and Control of

Laser Radiation. New York Wiley, 1984.

[31] Shailja Sharma, Abhishek Mondal, and Ritwick Das. Infrared rainbow trapping via

optical Tamm modes in an one-dimensional dielectric chirped photonic crystals. Opt.

Lett., 46(18):4566–4569, Sep 2021.

99



Chapter 7

Conclusion and future plans
7.1 Conclusions

We present an approach to understanding the propagation characteristics of electromag-

netic waves or modes in a one-dimensional photonic crystal (1D-PC) using widely-known

techniques adopted in a wide variety of systems that exhibit SU(2) dynamical symmetry.

We have drawn an analogy of population transfer dynamics of an atomic two-level system

interacting with light to that for light propagation in classical “one-dimensional photonic

crystal”. We show that there exists a one-to-one correspondence between the coupled-wave

equations of a 1D-PC with the time-dependent Schrodinger equation describing the evolu-

tion of an atomic two−level system of spin-1
2
particles in a conventional source-drivenmag-

netic field. The coupled-mode equations describing the forward and backward propagating

modes in a 1D-PC are represented in the form of a single optical Bloch equation where the

evolution of the state-vector depicts the dynamical evolution of incident and backscattered

waves. This provides a platform to draw an analogy with a two-level atomic system and

adopted a formalism for the adiabatic evolution of electromagnetic waves in the photonic

crystal. In order to practically satisfy the conditions imposed by adiabatic constraints, a

chirped photonic crystal (CPC) configuration has been investigated. The CPC exhibits a

linearly varying duty cycle for each unit cell with identical periodicity for each unit cell.

The CPC configuration exhibits substantial enhancement of PBG along with the varying

degree of suppression of sharp transmission resonances in the reflection spectrum. The im-

pact of alteration in the physical parameters of the PC is explored in detail. Interestingly,

the CPC configuration involves a discernible longitudinal variation in the mode-coupling
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coefficient in addition to the sweep in phase-mismatch that is described using the ‘Allen-

Eberly’ scheme of adiabatic population transfer in two-level atomic systems. The CPC

configuration could be employed for trapping a broad spectrum of light. When a plasmon-

active metal is placed adjacent to the terminating layer of CPC, the backscattered phase

undergoes multiple π phase jumps, which enables the excitation of multiple optical Tamm

(OT)-like resonances. All the OT resonances are spatially separated in the CPC and their

strong confinement manifests into group velocities as low as 0.17 times the velocity of light.

These OT mode resonances provide a favorable platform for low-loss trapping of light with

a lifetime of up to ≈ 3 ps. The light transmitted through a periodically-stratified medium

or 1D-PC results in acquiring a ‘quantized’ geometric phase (0 or π) which is also known

as the Zak phase or topological phase. This gives rise to the possibility of structuring opti-

cal beams over a broad spectral bandwidth via suitably designing the 1D-PC structure. We

have explored a simple and flexible route to generate Hermite-Gaussian (HG01 or HG10)

beams by utilizing the light transmitted from conventional 1D PCs and provide a theoreti-

cal insight using finite-difference-time-domain (FDTD) based simulations. Lastly, we have

also investigated that the Hamiltonian describing the counter-propagating modes in a PC is

pseudo-Hermitian and dynamical evolution is characterized by the presence of exceptional

points. We have explored the exceptional points present in the 1D photonic crystal system

due to virtual loss and gain mechanisms. This knowledge was employed to ascertain with

the origin of optical Tamm plasmon modes and the localization of field in the position of

exceptional points.

7.2 Future plans

Novel PC designs extending into two-dimensions could further be explored which satisfy

the adiabatic constraints. An interesting extension of this proposal would be to investigate
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the evolution of the geometric phase in such PC configurations and the possibility to control

the backscattered (reflection) phase through suitable PC designs. This promises to provide

a unique and flexible platform for tailoring the spatial features of an optical beam using

adiabatic PC configurations. Nevertheless, a natural extension of this proposal would be to

explore the viability of this formalism in two- and three-dimensional photonic crystals with

a focus on applications such as sensing and enhanced nonlinear optical interactions.
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