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ABSTRACT

The effect of disorder on Ising spins has been extensively studied in the last many years.

Comparatively, spin-1 systems have been less explored. Pure spin-1 ferromagnetic model

with crystal field, the Blume-Capel model has a phase diagram that consists of a second or-

der transition line meeting the line of first order transitions at a tricritical point. This is the

simplest model exhibiting tricriticality. We have studied the effect of randommagnetic field

and random crystal field on the phase diagram of the spin-1 Blume-Capel model for infinite

range interactions. We find that even infinitesimal disorder changes the phase diagram. For

the random crystal field we found three different topologies of the phase diagram depend-

ing on the strength of the disorder. We report the emergence of a bicritical end point in

the presence of disorder in this system. We also studied different symmetric distributions

of the random magnetic field for the Blume-Capel model. Unlike the spin -1/2 systems,

the continuous and discrete symmetric distributions have different phase diagrams for the

spin-1 Blume-Capel model. We verified it also by looking at the zero-temperature phase

diagrams, where many new phases emerge for discrete disorder distribution. The phase

diagrams especially in the case of discrete distribution have many multicritical points and

multi-phase coexistence points.

Furthermore, we have studied the effect of biquadratic exchange interaction (K) in the

infinite range ferromagnetic spin-1 model, known as the Blume-Emery-Griffiths model.

We obtained the phase diagram in both the canonical and the microcanonical ensembles for

different values ofK. We found ensemble inequivalence in the system by not only looking

at the first order transition line, but also at the critical lines in the presence of external field.

We observed that the ensemble inequivalence vanishes for K < −1. Interestingly, we

observed that the presence of repulsive biquadratic interaction changes the phase diagram

similarly to the random crystal field disorder.
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Summary
All real systems in nature include some amount of local random inhomogeneities, which

breaks the translational symmetry of the system. Such systems are modelled by some frozen

or quenched disordered spin models. The disordered spin models are used as a prototype

model to study many physical systems in physics, biology as well as in computer science.

Study of such systems both using theoretical calculations as well as via simulations are

challenging due to the requirement of an additional disorder averaging over the disorder

degrees of freedom.

Over the years the effect of quenched disorder on phase transitions and critical phe-

nomena has been extensively studied for spin-1/2 models. It has been well established that,

depending on the dimension of the system or type of the disorder system’s critical phenom-

ena gets affected. The effect of disorder on first order transitions and multicritical points

are more drastic. An infinitesimal random field disorder can make a first order transition

gets smeared or can even destroy the transition all together.

The aim of this thesis is to report the effect of different types of field disorder on spin-

1 Blume-Capel model. Blume-Capel model is the spin-1 Ising model with an additional

crystal field interaction. This crystal field acts like a chemical potential of the system due

to which the model exhibits a rich phase diagram. In the two dimensional plane the phase

diagram consists of a line of second order transition meeting a line of first order transition at

a multicritical point, known as the tricritical point (TCP). In presence of external magnetic

field, two more critical lines meet at the TCP. The effect of disorder on spin-1 model has

been comparatively studied less. All the previous study has been done mostly on the two

dimensional phase diagram. But things become really interesting when we investigate the

effect of disorder on the three dimensional phase diagram to understand how the multicrit-

ical points get affected.

In this thesis, we study the infinite-range Blume-Capel model in the presence of random

crystal field and random field disorder using an approach based on large deviation principle.

We find that the effect of these two types of disorder are very different from each other. In

presence of random crystal field, we find that disorder is relevant always as soon as we

1



CONTENTS

switch on the disorder. Depending on the strength of disorder we find that there are three

different types of phase diagrams. The TCP persists only for very weak strength of the

disorder. As disorder increases further, the TCP vanishes and a different multiciritical point

known as biciritical end point (BEP) emerge along with a critical end point (CEP). We

observe that the BEP is actually a coexistence of two critical phases, which was wrongly

reported as a critical line before.

On the other hand, the random field disorder couples with the order parameter of the

system. Thus in presence of random field disorder we find that new phases arise in the phase

diagram along with multiple number of lines of first order transition, multicritical points

and multiphase coexistence points. We consider two symmetric random field distributions

: trimodal and Gaussian. We find that the phase diagrams are completely different for

different distributions for both in the ground state and finite temperature. This behaviour

contradicts the earlier conjecture by Aharony, which states that for N vector models in

presence of random field disorder, different symmetric distribution should shows similar

phase diagram.

We also investigate the effect of biquadratic exchange interaction (K) on spin-1 Blume-

Emery-Griffiths model. We consider both the canonical and microcanonical ensemble. We

mainly focus on the repulsive biquadratic exchange interaction (K < 0), as we find that

K < 0 interaction in the pure model creates the similar frustration like the random crys-

tal field disorder. We also observe that the system shows ensemble inequivalence for all

K > −1 in the three dimensional phase diagram. Remarkably, we observe that for strong

repulsive interaction, the phase diagram becomes two dimensional from three dimensional

and the ensemble inequivalence vanishes for allK < −1.

Finally, we revisit the scaling laws near the multicritical points like the TCP, BEP and

CEP to get more insight about these points for spin-1 models.
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Chapter 1

Introduction
Disordered systems have been widely studied in statistical physics. The ideas and method-

ologies used to study the disordered systems have huge applications in diverse fields like

computer science, neuroscience, quantum information, protein folding etc. This chapter is

dedicated to the introduction of disordered systems and its effect on the phase transitions

of a pure system. In the first section we will give a brief review of the phase transition

and critical phenomena for pure systems and disordered systems. In the second and third

sections, we will discuss about two important types of disorder and their effect on the phase

transition. In the fourth section, we will discuss about some of the methodologies which

are used to study the disordered systems. In the fifth section, we will introduce the spin-1

model we have studied in this thesis. In the last section we will give the outline of the thesis.

1.1 Some overview of the phase transitions and the disor-
dered systems

1.1.1 Phase transitions and critical phenomena

Phase transitions are defined as a singularity or a discontinuity in the thermodynamic prop-

erties of a system as the external parameters are changed. A phase transition is characterized

by its order parameter. The order parameter is defined as non-zero in the ordered (symme-

try broken) phase and zero in the disordered (symmetric) phase. The phase transitions can

be categorized into two categories : second order and first order transition. The second or-

der phase transition occurs when the order parameter of the system changes continuously.

Depending on the dimension and symmetry of the system, the second order transitions are
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classified into different universality classes [1, 2]. Near the critical transition point the cor-

relation length of the system diverges and the transition is associated with no latent heat.

Whereas, first order transitions are associated with non-zero latent heat and a finite corre-

lation lengths. This is a type of transition where the order parameter changes abruptly.

One of the examples of the phase transitions is the magnetic phase transition. The basic

model for such magnetic systems is the Ising model [3]. The model is described by the

following Hamiltonian :

H = −J
∑
i,j

sisj − h
∑
i

si (1.1)

here J is the exchange interaction between the spins responsible for the magnetic ordering,

h is the external magnetic field and the spin variables can take values si = ±1
2
. For a

J > 0 and h = 0 there is a critical temperature Tc of the system below which (T <

Tc) the spins align with each other and the phase is ordered ferromagnetic phase. And

for temperature T > Tc, the spins fluctuate between ±1
2
and thus the phase is disordered

paramagnetic phase. The order parameter here is the magnetization m. For T < Tc states

with magnetization m > 0 and m < 0 coexist and in presence of a finite h ̸= 0, there

is a field-driven abrupt jump in the magnetization. Thus the transition is first order for

T < Tc. At T = Tc the transition becomes second order. Near the Tc, the thermodynamic

quantities diverge and follows scaling laws with universal critical exponents, called the

Ising universality class.

Apart from these two types of transition there are higher order critical points, known

as multicritical points. Multicritical points are the critical points in a multi-dimensional

thermodynamic parameter space which can be reached by tuning two or more parameters

[4, 5, 6]. These points exhibit some novel features beyond what we observe near an ordinary

critical point. Physical systems that exhibits multicritical points are : multicomponent fluid
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mixtures [7, 8, 9, 10], binary alloys [11], liquid crystals [12, 13], semiconducting alloys

[14], metamagnets [15, 16, 17], super-fluidity [18, 19] etc to name a few.

1.1.2 Disordered systems

The studies of phase transition on the homogeneous matter has been well understood [20].

The presence of disorder is an ubiquitous phenomenon in nature. Some of the important

examples are the Anderson localization [21, 22], pinning of vortices in superconductors

[23, 24], structural defects in magnetic crystals [25], anomalous conductivity and diffusive

transport in porousmedia [26, 27], nonlinear properties in charge-density-waves in presence

of impurities [28, 29]. Study of disordered systems are useful in understanding many op-

timization problems in computer science [30], quantum systems [31] and non-equilibrium

phase transitions [32], as well as in biology like protein folding [33], transport processes in

biological cells [34, 35]. Hence a natural question arises that how a presence of random dis-

order can affect the phase transition of a system and the multicritical points? The study of

disordered magnetic systems and the effects of disorder on phases and critical phenomenon

are widespread in condensed matter physics [36, 37, 38]. The properties of such systems

are richer and more complex than their pure counterpart. In general, there is always some

quenched randomness present in real materials in the form of defects, vacancies, impuri-

ties, dislocations etc, which in turn breaks the transnational symmetry of the system and

also leads to frustration in the system. Therefore, studying a pure model is not sufficient to

compare the experimental data of a material with its theoretically expected value [39]. In

order to incorporate the disorder in a model some interactions with random variables are

considered in the Hamiltonian of a system. If the time scale of the fluctuations of these

random variables are smaller than the time of observation, then they are known as annealed

disorder. As a consequence, the disorder is in thermal equilibrium with the spin degrees

of freedom. The other kind of disorder is known as quenched disorder. The time scale of
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fluctuations of such random impurities are larger than the time of observation which means

the disordered variable remains frozen-in or static while the spins fluctuate. There are many

different types of quenched randomness that can be taken into account. Some of the widely

studied disordered systems are : spin glasses [40, 41], random anisotropic systems [42, 43],

dilute systems [44, 45] and magnets under a random field [38, 46].

Presence of quenched disorder in a system can drastically change the properties of the

system. The possible changes depend on the type and strength of the disorder [47] and

also on the dimension of the system. Even for weak disorder, the phase transition and the

critical properties of a system can change [48]. Disorder can affect the critical exponents,

smoothen first order transitions, new multicritical points can emerge, or they can be moved

lower in temperature [39, 49, 50, 51]. In the next two sections, we will discuss about the

random-bond disorder and random field disorder. And how they affect the phase transition

and order of the system.

1.2 Random-bond disorder

Random-bond disorder is a quenched disorder when the exchange interaction becomes in-

homogeneous and varies from bond to bond. Such disorder arises due to crystal defects or

random impurities which in turn effect the bond lengths and thus the exchange coupling

changes. For example, we consider the following random-bond Ising Hamiltonian in the

absence of external magnetic field

H = −
∑
i,j

Jijsisj (1.2)

here Jij is now a random variable and Jij > 0. This disorder does not break the up-down

symmetry of the Hamiltonian. Thus it does not change the phases of the system. It sim-

ply changes the local tendency towards the ferromagnetism. Which means it affects the
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local critical temperature of the system. Depending on the type of the transition, the bond

randomness is known to affect the system’s behavior significantly [49, 52, 51, 53, 54, 55].

1.2.1 Effect of disorder on second order transition and Harris crite-
rion

The quenched disorder coupling to the local energy density of the system has been ex-

tensively studied. For the pure models undergoing continuous transition, Harris argued a

criteria for the stability of the universality class of the pure model in presence of uncorre-

lated or short-range correlated disorder [49]. Harris considered a system at a temperature T

which is above the global critical temperature Tc of the system. The system is then divided

into blocks of size of the correlation length ξ. The volume of each block in d dimension is

thus V = ξd. As the bond disorder fluctuates the local critical temperature, each block has

a critical temperature Tc(i). Near the critical temperature Tc, the correlation length diverges

as the following scaling laws

ξ ∼ |T − Tc|−ν (1.3)

where ν is the correlation length critical exponent. And the fluctuation of the Tc(i) from

block to block can be calculated from the central limit theorem. As the Tc(i) is the average

of the large number of random variables (Jij in the Hamiltonian Eq. 1.2) in the block of

volume V , the variation of the Tc(i) is given by

∆Tc ∼ ξ−
d
2 (1.4)

The central concept of the Harris’ idea was to compare the∆Tc with T −Tc as we approach

the transition i.e ξ −→ ∞. In order to keep the critical behavior of the system to be stable,

the fluctuations in the critical temperature should follow
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∆Tc < T − Tc (1.5)

⇒ ξ−
d
2 < ξ−

1
ν (1.6)

So the criterion states that the fluctuation generated in the local critical temperature of

the system due to the presence of disorder is relevant if the critical exponents of the clean

system satisfies the inequality dν < 2, in other words when the specific heat exponent

α > 0 (using the hyper-scaling relation 2 − dν = α). This means that if the correla-

tion length near the phase transition is large enough it can average out the inhomogeneities

caused by the disorder, then it gives rise to pure-like transition, else the correlations gets

blocked by impurities and thus the nature of the transition changes and it belongs to a new

universality class. This criterion was proved to be correct for O(N) models using renoma-

lization group and ϵ expansion [56, 57, 58]. For the marginal case α = 0 or dν = 2 more

careful analysis are needed to confirm the stability of the critical exponents, an example of

such cases is the two dimensional Ising model [59, 60]. For long-range correlated disor-

der the above inequality gets modified and has been reported [61, 62, 63], which implies

that the effect of long-range correlated disorder are more drastic than the uncorrelated or

short-range correlated disorder.

1.2.2 Effect of disorder on first order transition

The Harris criterion holds only for second order transitions [49]. Despite being ubiquitous

in nature, the effect of quenched disorder on the first order transition has been studied com-

paratively less in literature. Due to finite correlation length the universal behaviour is not

expected near a first order transition. Extending the Harris’s argument, it was observed that

at a first order transition α = 1, which suggests that the disorder is strongly relevant [64].

Using the domain formation argument Imry and Wortis [52] showed that the formation of
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finite size domain is favoured even in presence of arbitrary weak quenched disorder when

the spatial dimension d ≤ 2 for systems with discrete symmetry and d ≤ 4 for systems

with continuous symmetry. This destroys the phase coexistence and suppresses the first

order transition. After further work based on renormalization group arguments and on the

consideration of the fluctuations, this argument was proven to be correct by Aizenman and

Wehr [53, 54] and by Hui and Berker [51, 55] by showing that the symmetry breaking first

order transition changes to a second order transition in presence of bond randomness. Soon

after this using Monte Carlo simulation it was shown for 2D Potts model [65, 66] and 2D

Askin-Teller model [67] that the induced second order transition belongs to the Ising uni-

versality class. However there are studies on the q-state Potts model using Monte Carlo

simulation where it was reported that the disorder-induced second order transition belongs

to a new universality class [64, 68, 69, 70]. For d > 2 (for discrete systems) and d > 4 (for

continuous systems), the rounding off of the first order transition to a second order transition

still occurs but above a threshold value of the random impurity [51, 55, 68, 71, 72, 73, 74].

This quenched disorder induced transition occurs only if the first order transition involves a

symmetry breaking [68]. Otherwise the transition gets destroyed above the threshold men-

tioned. Using renormalization group and simulations on Potts model, it was shown that for

d > 2 between the first order and the disorder induced second order transition regime the

system exhibits a tricritical point for a finite value of the disorder [51, 53, 69, 68, 64, 72, 75].

As shown above, the presence of bond randomness affects the systems universality class

only when the α > 0. The presence of field-disorder on the other hand are more drastic

than the bond randomness as it always affects the system’s critical exponents [76, 77]. The

random field disorder can even eliminate the phase transition of the system in lower dimen-

sions [46, 78, 79]. In the next section, we will discuss about the random field disorder in

more details.
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1.3 Random field disorder

A model with random field (RF) was first introduced in the literature by Larkin to explain

the pinning of the vortex lattice in type-II superconductors [23, 24]. The RF disorder cou-

ples with the order parameter of the system. Thus the effect of RF disorder is more drastic.

The random field disorder do not preserve the symmetry of the system that breaks at the

low temperatures (for example for Ising model, the random field disorder locally breaks

the up-down symmetry of the system). The fluctuations of the RF can dominate the macro-

scopic collective behaviour of the system. Spin systems with random field disorder are an

important class of models studied extensively as prototypes for collective phenomenon in

systems with quenched disorder [80, 81, 82, 83, 84, 85, 86, 87, 88]. They model diluted an-

tiferromagnets like Fex Zn1−x F2, Rb2 Cox Mg1−x F4 in the presence of a uniform magnetic

field [80, 81, 82]. In addition to this, many random systems like prewetting transition on a

disordered substrate [83], binary fluid mixtures in random porous media [84], phase tran-

sitions and interfaces in random media [85], structural phase transitions in random alloys

[86], binary fluids in gels [87], protein folding [89], collective effects induced by imitation

and social pressure on society via network models [88] are modelled by ferromagnets in

the presence of random field. Geophysical models of marine climate pattern [90], identi-

fication of subsurface soil patterns [91], analysis of molecular structures [92], biomedical

imaging [93, 94], population genetics [95], data science [96] and many more problems in

other disciplines [97] have also been modelled using random fields.

1.3.1 The random field Ising model and Imry-Ma argument

The simplest frustrated system which has been studied for years is the random field Ising

model (RFIM) [98, 99, 76, 100, 101, 102, 103, 104, 105, 106]. The Hamiltonian of the

RFIM is as follows
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Figure 1.1: Imry-Ma argument derivation by comparing the energy cost due to the domain
formation and energy gain due to the alignment of the up spins with the random field. Figure
taken from [107].

H = −J
∑
i,j

sisj −
∑
i

hisi (1.7)

here hi is considered as a random variable with zero mean and a finite variance. J is the

bilinear exchange interaction term. In spin models, the spins try to align due to the bilinear

exchange interaction and the random field tries to align them along the random field direc-

tion. Thus the presence of random field disorder creates a frustration in the system. The

thermal fluctuations are irrelevant in comparison to the random field fluctuations. That’s

why the critical properties at finite temperature can be deduced from the study of the zero

temperature phase diagrams.

For a long time there has been a confusion about the lower critical dimension of the

RFIM model, below which the random field destroys any long-range order. There were

arguments based on perturbative renomalization group theory that the lower critical dimen-

sion dl = 3 [108, 109, 110]. Later using the phenomenological argument about domain

formation it was shown by Imry and Ma [46] that for spatial dimension d > 2 there is an

ordered phase for low temperature and weak disorder. The basis of the argument of the

destruction of the first order transition in presence of bond randomness [52, 53, 51] was
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from the adaptation of the Imry-Ma argument on the effect of random fields [46]. The bond

randomness couples with the energy density of the system which is different for different

coexistence phases. This acts in the similar manner like the random field which couples

with the local magnetization of the system [51, 68, 55, 69].

Imry and Ma developed an argument on the stability of the ferromagnetic state against

domain formation [46]. They considered one spin-up domain of length L in d dimensions,

embedded in a large spin-down region shown in Fig. 1.1. Now the energy cost at the

interface of the domain generated due to the domain formation is proportional to the area

of the domain Ld−1. And each bond at the interface contributes energy +J . So the total

energy cost is

∆Edomain wall ∼ JLd−1 (1.8)

If the random field distribution has a zero mean ⟨hi⟩ = 0 and variance σ2, then the

energy gain in the spin-up domain aligning with random field is given by the central limit

theorem

|∆Erandom field| ∼ σL
d
2 (1.9)

Imry-Ma argued that, the ferromagnetic state against the domain formationwill be stable

if |∆Erandom field| < ∆Edomain wall. Which gives σL d
2 < JLd−1. For d > 2, the domain

wall interface energy increases with L compared to the random field energy and hence the

domain formation becomes unfavourable and the ferromagnetic state remains stable. And

the long range order destroys for d < 2.

Similar to the bond randomness it was concluded that for systems with composed of

n = 1 components of spins like Ising model (with n ≥ 2 components of spins like the XY

and Heisenberg model), the random field disorder converts a temperature driven first order
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transition into a second order transition for d ≤ 2 (for d ≤ 4) if the transition involves a

symmetry breaking [51, 53]. And above this dimension the first order transition vanishes

for a finite random field disorder [111]. Since this seminal work of Imry-Ma, a lot of studies

concluded using renormalization group calculations, perturbations around the upper critical

dimension, interface model and also using Monte Carlo simulations that the lower critical

dimension of RFIM is dl = 2 [78, 79, 112, 113, 114, 115, 116, 77]. Similar to the Harris

criterion, the Imry-Ma argument also gets modified in presence of the long-range correlated

random field disorder [117].

Another important topic has been the order of the transition at zero temperature and

how they depend on the type of field distribution. There are several probability distribution

that have been studied in the literature. Most common are the Gaussian [100] and the bi-

modal [76] probability distribution. Earlier, it was conjectured by Aharony [76] using the

mean-field theory and renormalization group argument that forO(N)models in presence of

random field disorder the phase transition at low temperature is first order (second-order) if

the random-field distribution function p(hi) is symmetric and has a minimum (maximum)

at zero field p′′(0) > 0 (p′′(0) < 0). Following this work, Andelman [101] extended

the condition based on the number of maxima of the random field distribution function. It

showed that if the distribution p(hi) has n maxima, then for even n, p′′(0) > 0 and the

transition is first order at lower temperature. On the other hand, for odd n > 1, p′′(0) < 0

and the transition is second order if is not take over by a first order transition. Later this

criterion for the maxima (p′′(0) < 0) was modified by Galam and Birman in [102] such that

if with p′′(0) < 0, the random field distribution also satisfies the following conditions for

pn
′
(0) = dnp(H)

d|H|n

∣∣∣∣∣
|H|=0

:

p4
′
(0) > 0, p6

′
(0) < 0 (1.10)

p′′(0) >
7

15
p4

′
(0)2/p6

′
(0) (1.11)

29



1 Introduction

then the transition is first order, otherwise it is second order. Thus the Gaussian and the

bimodal field distribution give rise to two different phase diagrams in RFIM. For Gaus-

sian field distribution, there is always a continuous line of transition. Whereas, for bimodal

distribution, the transition is continuous at the high temperature and first order at low tem-

perature. These two phase boundaries are separated by a tricritical point (TCP) [76].

There are other distributions also which have been studied for RFIM like the trimodal

distribution [105, 106, 118, 119], double Gaussian [120], triple Gaussian [121], asymmetric

trimodal distribution [122], asymmetric bimodal distribution [123] and so on. It has been

observed that, the phase topologies changes non-trivially with the symmetry of the probabil-

ity distribution function. The equal peak trimodal distribution has been argued to be a good

approximation of the Gaussian distribution in [105]. In [106, 118, 119, 124], for RFIM the

trimodal and the Gaussian distributions were found to have similar phase diagram with only

continuous transition at all temperatures. The experimental realisation of the RFIM is the

diluted antiferromagnetis in presence of uniform magnetic field [80, 82, 81]. It shows the

same critical behaviour and belongs to the universality class of RFIM [125, 126, 127]. In

three dimensions the nature of the transition is still debated [103, 104, 128, 129]. Most re-

cent numerical studies in three dimensions find the transition to be continuous independent

of the nature of the random field distribution [103, 104].

In the next section, we will discuss about some of the analytical methodologies which

are used to study the disordered systems.

1.4 Methods to study disordered systems

Since quenched disorder is static during the time of observation, the impurity degrees of

freedom are not in thermal equilibrium with the spin degrees of freedom. Due to this nature

the free energy and other thermodynamic functions depend on the certain realization of the
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quenched variable. For example, for the Hamiltonian given by Eq. 1.2 the partition function

for each realization of Jij is given by

ZJ =
∑
{s}

e−β HJ (s) (1.12)

and the free energy becomes

fJ = − 1

β
logZJ (1.13)

Hence to obtain the averaged thermodynamic quantities the free energy is needed to be aver-

aged over the all possible configurations of the quenched random variable. Or equivalently,

the logarithmic of the partition function needs to averaged over the different realizations of

the quenched disorder variable.

F ≡ ⟨fJ⟩P ({J}) = − 1

β
⟨logZJ⟩P ({J}) (1.14)

This averaging over the logarithmic function makes the problem of disordered system more

challenging. Simulations in the finite dimensions are also a difficult task due to the lack of

self-averaging [130, 131, 132, 133].

There are some analytical methods which are used to do the disorder averaging. Some of

the examples are replica trick [134, 40], cavitymethod [135], TAP approach [136, 137, 138],

the dynamical approach [139, 140], the distributional zeta-function method [141], large

deviations technique [142, 143]. In the next subsections we will discuss briefly about two

of such methods.

1.4.1 The replica trick

Instead of averaging over the logZ directly, the replica trick considers n identical and in-

dependent copies of the system called replica and uses the following logarithmic identity

to calculate the disorder averaged free energy :
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⟨logZJ⟩P ({J}) = lim
n→0

⟨Zn
J ⟩P ({J}) − 1

n
(1.15)

It thus calculates the disordered averaged free energy by averaging over the nth power of

the partition function Z and then taking the limit n → 0 by analytic continuation.

The replica trick was first introduced by Edward and Anderson [40] for the theory of

spin glasses. This method has been highly successful for example in the theory of spin

glasses. But there are some drawbacks. For example, Sherrington and Kirkpatrick (SK

model) [41] observed that for infinite range Ising spin glass gives unphysical results like

negative entropy at low temperatures. This problem happens due to the interchange of the

thermodynamic limit (N −→ ∞) and the n −→ 0 limit. To avoid this unphysical results,

later a scheme of replica symmetry breaking was introduced by Parisi [144, 145, 146].

1.4.2 The TAP approach

There is another approach called TAP, named after Thouless, Anderson and Palmer [136].

It does not first calculate the disorder average partition function. For a given realization of

the disordered variable, it constructs a mean-field equation for the local magnetization. For

example, for the following Hamiltonian in presence of an external magnetic field hi

H = −
∑
i,j

Ji,jsisj −
∑
i

hisi (1.16)

The approach starts by taking a Legendre transformation of the free energy for a given

realization of Jij , fJ({hi}) = − 1
β
logZJ({hi}) to obtain a function which only depends on

the magnetizationmi [138]

Γ({mi}) = min
{hi}

{
fJ({hi}) +

∑
i

hisi

}
(1.17)
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here hi fix the value of the magnetizationmi as the thermal expectation value of si for site

i defined asmi ≡ ⟨si⟩. And it obeys the following equation

∂fJ({hi})
∂hi

= −mi (1.18)

Once the Γ({mi}) is known the local magnetization is now fixed by the following inverse

Legendre transform

∂Γ({mi})
∂mi

= hi (1.19)

The Eq. 1.19 is known as the TAP equation and the TAP free energy of the system can be

introduced as

fJ({mi;hi})TAP = Γ({mi})−
∑
i

hisi (1.20)

whose minima is given by Eq. 1.19 and gives the value of stable local magnetization. For

example, for SK model [41] the N coupled TAP equations Eq. 1.19 were calculated [138]

to be

βhi = tanh−1 mi − β
∑
j

Jijmj−β2
∑
j

J2
ijmi(1−m2

j) (1.21)

which is very similar to the mean-field equations for the local magnetization of the Ising

model [1]. For high temperatures, all theN coupled equations only gives a solutionmi = 0,

which is a paramagnetic state. For lower temperatures, the zero eigenvalues of the Jacobian

of Eq. 1.19, Jij =
∂hi

∂mj
(which are related to the eigenvalues of Jij) are used to locate the

transition to spin glass state.

In the next section, we will now introduce the spin-1 Blume-Capel model which we

have used to study the effect of disorder and it’s phase diagram.
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1.5 Model used in this thesis : The Blume-Capel model

Blume-Capel model is the extension of spin-1 Ising model with a single-ion crystal field

anisotropy. This model was first introduced to explain the first order transition in UO2 by

Blume [147] and Capel [148]. It is the simplest spin model which exhibits higher order

critical point, the tricritical point (TCP). The Blume-Capel model has been investigated

extensively using various techniques like : mean-field approach [147, 148, 149], renomal-

ization group theory [150], Monte-Carlo simulation [151, 152], series expansion [153] and

so on. The Blume-Capel model is used as a prototype model of a wide range of physical

systems like : 3He −4 He mixtures [149], metamagnets [154, 4], phenomena of inverse

melting and freezing [155, 156, 157], multicomponent fluid mixture [158, 159], binary al-

loys [160, 161] and so on.

We have considered the Hamiltonian of an infinite range Blume-Capel model ofN spins

as the following :

H = − 1

2N
(
∑
i

si)
2 +∆

∑
i

s2i −H
∑
i

si (1.22)

where si can take values ±1, 0 and every spin is connected to every other spin. The first

term is the bilinear exchange interaction,∆ is the crystal field of the system which controls

the density of the magnetic and non-magnetic spins, H is the uniform external magnetic

field. There are two order parameters of the system. The magnetization m =
∑

i si
N

and

the spin density q =
∑

i s
2
i

N
. In the limit ∆ −→ −∞ the non-magnetic spins are suppressed

and the model becomes equivalent to Ising model. And for large positive ∆, the s = 0

spins dominates. In the ground state it can be straightforwardly shown that for ∆ < 1
2
, the

phase is ordered and for ∆ > 1
2
the phase is disordered. At ∆ = 0, the line of continuous

transitions cuts the temperature (T ) axis at T = 2
3
.

Due to the interplay between the bilinear exchange interaction and the crystal field in-
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Figure 1.2: Schematic phase diagram of pure Blume-Capel model in the T −∆ plane. The
solid line depicts the line of continuous transition and the dotted line is the line of first order
transition. The solid black circle denotes the TCP.

teraction the phase diagram of the Blume-Capel model is very interesting. The mean-field

solution of the Blume-Capel model is known to give the correct exponents of the TCP in

three dimensions [162]. And also this method predicts the phase diagram of the Blume-

Capel model correctly for all dimension d ≥ 2 [163, 151, 164, 165, 166, 167, 168].

In the next subsection we will discuss about the phase diagram of the pure Blume-Capel

model in the T −∆ and T −∆−H plane.

1.5.1 Phase diagram of the Blume-Capel model

The Blume-Capel model even in its pure form has a rich phase diagram. In the absence

of any external magnetic field H , the phase diagram of the pure Blume-Capel model in

the T − ∆ plane is shown in Fig. 1.22. For high T and lower values of ∆ there is a line

of continuous transition (shown by continuous line) which separates one ordered phase F

from a disordered phase P. This line is known as λ line. It belongs to the Ising universality

class. As ∆ increases, for low values of T , the transition changes to a first order transition
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Figure 1.3: Schematic phase diagram of pure Blume-Capel model in T − ∆ − H space.
The solid lines depicts the loci of the lines of continuous transition (λ, λ±). The dotted
line denotes the triple line. The shaded surfaces in the finite H plane denotes the wings
separating an ordered phase from a disordered phase.
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(shown by dotted lines). The first order transition line is known as triple line, as this line

is a coexistence of three phases : ±m and m = 0. The triple line meets the T = 0 axis at

∆ = 1
2
. The two type of transition lines meet at a TCP, shown by a solid circle in Fig. 1.2.

The TCP for the mean-field model is located at β = 3 and ∆ = ln 4
3
.

As the external magnetic fieldH get switched on, the phase diagram looks like Fig. 1.3

in the T −∆−H space. Two more lines of continuous transition in the finiteH ̸= 0 plane

meets the λ line at H = 0 at the TCP, where the first order line meets the λ line. So the

TCP is actually a confluence of three lines of continuous transition and thus justifies the

name. These two critical lines in the H ̸= 0 plane bounds two first order surfaces in the

H ̸= 0 plane. These surfaces separates a ferromagnetic phase from a paramagnetic phase

(shown by dark shaded surface). These surfaces appear symmetrically about the H = 0

plane like the wings of a bird, thus they are referred to as ”wings” [169, 149]. The lines of

continuous transition which bounds the wings are known as λ± lines. They are also from

the Ising universality class. The surface in the H = 0 on the other hand separates two

ferromagnetic phases with opposite magnetization (shown by light shaded surface). The

λ± lines exists only for the range of 1
4
≤ T ≤ 1

3
[149]. The wings continues to exist till

T = 0 and ∆ −→ ∞. This three dimensional phase diagram of the wings has been also

experimentally observed in many systems. For example : metamagnets like compounds of

UGe2 [170, 171], ZrZn2 [172], LaCrGe3 [173] to name a few.

The projection of the wings on the T = 0 plane is shown in Fig. 1.4. For H = 0, until

∆ = 1
2
, there is one first order transition line separating m = ±1. For ∆ > 1

2
, two more

first order line emerges in the finite H plane. These lines can be calculated by comparing

the energies of each phases. Them = 1 (orm = −1) phase is separated fromm = 0 phase

via H = ∆− 1
2
(or H = −∆+ 1

2
) line. These lines continues to exists for ∆, H −→ ∞.
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Figure 1.4: Ground state phase diagram of the Blume-Capel model on the ∆ − H plane.
Dotted lines represents the lines of first order transition. Until∆ = 1

2
, the line separates the

m = ±1 spins. For ∆ > 1
2
, them = 1 phase is separated

1.5.2 Tricritical point (TCP)

TCPs are the most widely studied and understood multicritical point. The TCP was first in-

troduced byGriffiths [174] in the context of the phase diagram of themixtures of 3He−4He.

TCP is actually a point where three phases become identical. TCPs are ubiquitous in na-

ture. Depending on the symmetry of the system the TCPs can either be symmetric TCP

or asymmetric TCP. Symmetric TCPs exists for example in metamagnets like Ni (NO3)2

. 2H2O [15], Dy Al garnet [16], FeCl2 [17], 3 He - 4 He mixture [18]. Whereas, for fluid

mixtures like NH4 Cl [7] the TCPs are asymmetric. There are systems like : alloys of

magnetic and non-magnetic materials [11], superconducting films [14], quantum metals

[175], polymer collapse [176], polymerized membranes [177], liquid crystal [12], ferroe-

lastic and ferroelectric phase transitions in materials of inorganic fluoro- and oxyfluoromet-

allates [178], piezoelectric materials [179] to name a few which also shows the presence

of TCP in the phase diagram. Apart from the Blume-Capel model, there are other solvable
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models which shows TCP. For example : Potts model [180], Blume-Emery-Griffiths model

[149], n-component vector model [181], compressible Ising model [182] and so on.

1.6 Objectives of this thesis

As the discussions from the above sections indicate, the study of the effect of different

types of disorder has been studied extensively for spin-1
2
Ising model [76, 100, 103, 105].

The effect of disorder on spin-1 models has been studied comparatively less. The pure

Blume-Capel model is the simplest spin model which shows a multicritical phase diagram.

Thus it becomes a very useful model to verify both the Harris criterion for the second order

transition and the criterion for the destruction of the first order transitions in presence of

disorder on equal footing. In the existing literature the Blume-Capel model has been mostly

studied in presence of random crystal field disorder [183, 184, 185, 186, 187, 188, 189, 190,

191, 192, 193, 194, 195, 196] and random-bond disorder [197, 198, 199, 200, 201, 202, 203,

204, 11]. Comparatively few studies have been done on the Blume-Capel model in presence

of random field disorder [205, 206, 207, 208, 209]. All these studies have been done in the

two dimensional plane phase diagram. Although the full phase diagram of the Blume-Capel

model is three dimensional. Hence it is important to study the effect of disorder on the three

dimensional space to understand what happens to the multicritical points.

In our thesis we address two very important questions :

• The crystal field interaction term controls themagnetic and the non-magnetic spins. It

is like the external field coupled with the order parameter q, shown in the Hamiltonian

of the pure Blume-Capel model (Eq. 1.22). As in presence of disorder destroys the

first order transitions and also affects the multicritical points, it is interesting to see

what happens to the first order transition line, the TCP and as well as in the λ± lines

as we introduce randomness in the crystal field interaction?
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• The random field disorder is an important class of disorder. It couples with the mag-

netization of the system and thus affect the phases of the system. The random crystal

field, on the other hand couples with the density of the spins which in turn affects the

entropy of the system. The effect of random field disorder is very different that of

the random crystal field disorder. The spin-1 RFIM has previously been investigated

using Monte-Carlo simulations in order to study the solid mixture of Co1−x(N2)x

[210]. Apart from that there have been study on transverse spin-1 RFIM [211] and

bond diluted spin-1 RFIM model [212]. But the role of the crystal field has not been

discussed there. The presence of the crystal field interaction acts as a chemical poten-

tial due to which the pure Blume-Capel model exhibits a first order transition lines.

On the other hand it is well established that presence of random field disorder can

destroy or replace a first order transition by a second order transition. So a basic

question arises that what happens when the crystal field interaction and the quenched

random field disorder interplay?

In this thesis we thus study the effects of random-crystal field [213] and random-field

[214] disorder on the spin-1 Blume-Capel model in the three dimensional space. We use

an approach based on large deviations methods [215]. This method allows one to calculate

the disorder averaged free energy directly from the probability distribution of the magne-

tization m and the spin desnity q. We mainly focus on the effects of different types of

disorder on the first order transition and on the multicritical points. We consider the model

on a fully connected graph. We discuss the properties of the new multicritical and multi-

coexistence points that emerge due to disorder. We also revisit the scaling laws near these

points. We also study the effect of higher order interactions on the spin-1 Blume-Capel

model and shows some interesting similarity between the effect of disorder and the higher

order interactions.
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1.7 Outline of the thesis

The plan of the thesis is as follows.

In Chapter 2 we introduce the method we have used to solve the spin-1 Blume-Capel

model in presence of disorder : the large deviations principle. We discuss about the rate

function and Gärtner-Ellis theorem. We introduce the titled large deviations principle which

we have used throughout in our work.

InChapter 3we introduce the randomness in the crystal field term of theHamiltonian of

the Blume-Capel model. We take a two peak δ distribution for the crystal field randomness.

We study the three field space phase diagram depending on the strength of disorder. We

then discuss about the effect of disorder on the multicritical points.

In Chapter 4 we introduce two types of symmetric random magnetic field disorder :

discrete and continuous in the infinite-range Blume-Capel model Hamiltonian and study the

effect of disorder on the phase diagram and the multicritical points. We study the ground

state and finite temperature phase diagrams for both types of disorder in the three-field space

depending on the strength of disorder. We then discuss about some interesting features of

the phase diagrams that emerge due to disorder.

InChapter 5, we consider the effect of higher order interactions on the generalized infi-

nite range Blume-Capel model, known as the Blume-Emery-Griffiths model. We study the

system in two ensembles : canonical and microcanonical in the three dimensional param-

eter space. We discuss the phase diagrams in both the ensembles. We then discuss about

the ensemble inequivalence of the phase diagram in the infinite ranged Blume-Capel model

both by looking at the first order as well as second order transition lines.

The nature of the multicritical points are different than an ordinary critical point. In

order to understand their nature one must investigate the singularities of the thermodynamic

quantities close to these multicritical points. There are well studied scaling hypothesis near
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the multicritical points. In Chapter 6 we show the scaling relations near the multicritical

points like tricriitcal point (TCP), critical end point (CEP) and bicritical end point (BEP)

that emerges in the disordered Blume-Capel model. We discuss about the earlier scaling

hypothesis near these points and revisit those arguments for the disordered spin-1 Blume-

Capel model.

Finally inChapter 7we summarize the results of the the thesis and propose some future

directions.
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Chapter 2

Large deviations theory
In this chapter we will present the theory of large deviations which we have used to study the

disordered spin models. The large deviations theory (LDT) deals with the exponential de-

cay of probabilities of large fluctuations in random systems. The theory of large deviations

was first developed by Cramér [216] and later by Donsker and Varadhan [217]. Since then it

has been found that it has many interesting applications in financial mathematics, statistics,

equilibrium and non-equilibrium statistical physics [218, 219, 215, 220, 221]. The LDT

gives a complete mathematical framework in which the problems of statistical mechanics

can be formulated and solved efficiently. The LDT can be viewed as a mathematical inter-

pretation of the entropy of a system.

To get the central idea of the LDT, we consider the following example. Suppose there

are a sequence of n independent and identically distributed (i.i.d.) random variables X1

,...,Xn drawn from a probability distribution with mean µ and variance σ2. Let Sn = X1+

X2+ .....+ Xn is the sum of the i.i.d. variables. Then according to the Strong Law of Large

Numbers (LLN) the sum for n −→ ∞ reduces to

lim
n−→∞

1

n
Sn −→ µ (2.1)

So as n grows the probability distribution of the function Sn peaks more and more at the

mean µ. The LLN thus gives the description of the most probable state of the system.

Similarly, the central limit theorem (CLT) gives the information about the states that differs

from the most probable value by an order≈
√
n. It states that the probability distribution of

the quantity 1
σ
√
n
(Sn−nµ) converges to a normal distribution with zero mean and variance
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2 Large deviations theory

σ as n −→ ∞ :

lim
n−→∞

P (
1

σ
√
n
(Sn − nµ) ∈ [x, x+ dx] ) =

1√
2πσ2

e−
x2

2σ2 dx (2.2)

The CLT is a very important theorem that deals with the small fluctuations of the random

variables of order
√
n. But CLT does not holdwhen the fluctuations from themean are larger

that
√
N . The Gaussian form in Eq. 2.2 becomes a very poor approximation at the extreme

tails. The information about the fluctuations of greater order is correctly given by the LDT,

which justifies the name large deviations theory. It not only describes the rare events but

also describe the typical events. To put it the other way, the LDT is the generalization of

the CLT.

In the first section of this chapter, we give the general definition of the large deviation

principle (LDP) and the rate function. We give some examples which illustrate the LDP. In

section 2, we introduce the Gärtner-Ellis Theoremwhich gives a systematic way to calculate

the rate function of the system. In section 3, we list some of the properties of the rate

function. In section 4, we introduce an important theorem: the tilted LDP, which has been

used throughout in our work. And finally in section 5, we give an illustrative example of

the tilted LDP on the infinite range RFIM.

2.1 General definition of large deviation principle (LDP)

The LDT concerns with the exponential decay of the probability for large system size and

the rate at which the probability decays to zero is known as the rate function. Let An be a

sequence of random variable indexed by integer n, and let P (An ∈ B) be the probability

that An takes on value from the set B. The probability that P (An ∈ B) satisfies large

deviations principle (LDP) with rate function IB iff the following limit exists.
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lim
n−→∞

− 1

n
ln [P (An ∈ B)] = I(B) (2.3)

Here I(B) is called the rate function. The number n is assumed to be large in the

condition that n I(B) >> 1. In statistical mechanics the n is the size of the system. The

probability of the occurrence of the event B becomes maximum when the rate function

IB = 0. The above expression can be approximated as the following scaling law of the

form

P (An ∈ B) ≈ e−n I(B) (2.4)

which means that the dominant behaviour of the probability P (An ∈ B) is a decaying

exponential in n, which means

− 1

n
lnP (An ∈ B) = I(B) + o(1) (2.5)

and for n −→ ∞, the contribution of the order o(1) is negligible. Thus if P (An ∈ B)

satisfies LDP, then the limit given in Eq. 2.3 should exist with a rate function I(B) ̸= 0. If

the limit does not exists then three possibilities might arise

• Either P (An ∈ B) is too singular to have a limit

• P (An ∈ B) decays with n faster than e−n a with a > 0. In such cases the P (An ∈ B)

decays super-exponentially with rate I(x) = ∞

• P (An ∈ B) decays with n slower than e−n a with a > 0. In such cases the P (An ∈

B) decays sub-exponentially with rate I(x) = 0

The cases which are relevant to the theory of large deviations are where the limit Eq.

2.3 holds with a non-trivial rate function I(B) which is different from 0 and∞.
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Figure 2.1: Application of the LDT for a coin tossing problem. Plot shows the rate function
I(x) and probability distribution P (Sn = x) of r heads for n tosses. The I(x) has a minima
at the most probable value which is x = 1

2
.

In the next subsections we will give some examples where the large deviation approxi-

mation holds.

2.1.1 Coin toss problem

For a coin toss problem each coin can have two possibilities. We consider a random variable

Xi taking two values P (Xi = 1) = P (Xi = 0) = 1
2
. Out of n tosses the probability that

the total number of heads are r is :

P (Sn = r/n) =
1

2n
n!

r!(n− r)!
(2.6)

Using Stirling’s approximation for n −→ ∞ and r −→ ∞, keeping the ratio x ≡ r
n
finite

we get the asymptomatic behavior of the probability for large n as :

P (Sn = x) ≈ e−nI(x) (2.7)
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which thus shows the exponential decaying form of the large deviation approximation with

the decay function non-negative I(x) given by

I(x) = x lnx+ (1− x) ln(1− x) + 2 ln 2 0 ≤ x ≤ 1 (2.8)

Fig. 2.1 shows the plot of the rate function I(x) as well as the probability P (Sn = x)

as a function of x. The probability is maximum (the most likely value) at x∗ = 1
2
, the same

position where the I(x) is minimum, which reminds us the LLN. So the zeros of the I(x)

provides the most probable values.

For fluctuations of order
√
n, we approximate the I(x) upto the first quadratic term as :

I(x) ≈ 1

2
I ′′(x∗)(x− x∗)2

≈ 2(x− 0.5)2 (2.9)

and the probability distribution leads to the following Gaussian distribution similar to the

CLT :

P (Sn = x) ≈ e−n 1
2
I′′(x∗)(x−x∗)2

≈ e−2n(x−0.5)2 (2.10)

2.1.2 Gaussian sample mean

We consider a sample mean of a sequence

Sn =
1

n

N∑
i=1

Xi (2.11)

and assume that the {Xi} are i.i.d random variables drawn from the following Gaussian

probability distribution

p(Xi = x) =
1√
2πσ2

e
−(x−µ)2

2σ2 (2.12)
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here µ is the mean and σ2 is the variance of Xi’s.

The probability distribution that Sn = s can be written as

P (Sn = s) =

∫
Rn

δ(Sn(x)− s) p(x) dx (2.13)

where p(x) = .p(x1, x2, ....., xn) = p(x1)p(x2).....p(xn) for the i.i.d random variables.

Thus the integration Eq. 2.13 turns out to be

P (Sn = s) =

√
n

2πσ2
e−

n(s−µ)2

2σ2 =

√
n

2πσ2
e−nI(x) (2.14)

here the rate function is I(x) = (s−µ)2

2σ2 .

2.2 Calculation of the Rate Function

In the previous section we calculated the rate function using Stirling’s approximation, it

is possible to calculate the rate function straight from the computation of the probability

distribution. In general, it could be challenging to obtain LDP using this direct approach.

There are other methods like by using Gärtner-Ellis Theorem [215] to calculate the rate

function. We will describe it briefly in this section.

2.2.1 Gärtner-Ellis Theorem

This theorem states that the rate function I(x) can be calculated from the Legendre-Fenchel

transformation of the scaled cumulant generating function (SCGF) of the random variable,

if the SCGF is differentiable.

The SCGF or a logarithmic moment generating function λ(k) for k ∈ R of a random

variable An is defined by

λ(k) = lim
n−→∞

1

n
ln ⟨enkAn⟩ (2.15)
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Figure 2.2: Self duality of the Legendre-Fenchel transformation. The slope of the I(a) at a
(which is I ′(a) = k(a)) is the point at which the slope of λ(k) is a. This happens when the
functions I(a) and λ(k) are differentiable and convex.

where the ⟨⟩ defines the average w.r.t the probability density of An :

⟨enkAn⟩ =
∫
R
enk a P (An ∈ da)

Gärtner-Ellis theorem states that, if λ(k) exists and is differentiable for all k ∈ R, then

An satisfies LDP with a rate function I(a) given by

I(a) = sup
k∈R

{k a− λ(k)}

The symbol ’sup’ stands for the supremum of the function. And the transformation is known

as the Legendre-Fenchel transformation [222, 223]. We note that the rate function I(x) is

always positive, as the negative I(x) will imply that the probability P (An ∈ da) diverges

as n −→ ∞.

This theorem can be proven in a heuristic way. If the LDP holds for the random variable

An, then

P (An ∈ da) ≈ e−n I(a) da (2.16)
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Putting this approximation to the expression ⟨enkAn⟩ we get

⟨enkAn⟩ =

∫
R
enk a P (An ∈ da)

≈
∫
R
en (k a−I(a) ) da (2.17)

The integration can be approximated for n −→ ∞ using the saddle-point approximation or

Laplace’s approximation [224] which is by locating the maximum of the expression (k a−

I(a) ). Therefore assuming that the maxima exists and unique, the approximated equation

now becomes

⟨enkAn⟩ ≈ exp
(
−n sup

a ∈ R
{k a− I(a)}

)
da (2.18)

So the SCGF is now can be written as

λ(k) = lim
n−→∞

1

n
ln ⟨enkAn⟩ = sup

a ∈ R
{k a− I(a)} (2.19)

Now to obtain the rate function I(a) from λ(k), the Legendre-Fenchel transformation can

be inverted as the λ(k) is differentiable [222]. Legendre-Fenchel transformation can be

self-dual if the rate function I(a) is convex and everywhere differentiable, as shown in Fig.

2.2. In this case the slope of the I(a) at a becomes the point at which the λ(k) has slope

a. As the expression (k a − I(a) ) has a unique maxima, the transformation now can be

self-inverted to

I(a) = sup
k ∈ R

{k a− λ(k)} (2.20)

This points out that the Gärtner-Ellis theorem is actually the consequence of the com-

bination of the LDP and the Laplace’s approximation.
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We now illustrate the theorem by calculating the rate function using the Gärtner-Ellis

theorem for the Gaussian sample mean.

Gaussian sample mean

We consider a sequence of i.i.d random variables {X1, X2, ....Xn}, drawn from the fol-

lowing Gaussian probability distribution

P (Xi = x) =
1√
2πσ2

e
−(x−µ)2

2σ2 (2.21)

To calculate the rate function for the Gaussian sample mean Sn =
∑

i
Xi

n
using the

Gärtner-Ellis theorem, we first calculate the SCGF as

λ(k) = lim
n−→∞

1

n
ln⟨ek

∑
i Xi⟩ = lim

n−→∞

1

n
ln

n∏
i=1

⟨ekXi⟩

= ln⟨ekX⟩ (2.22)

where X is any summands of Xi and k ∈ R. Using the distribution Eq. 2.21, we get the

expression of SCGF as

λ(k) = ln

[
1√
2πσ2

∫
R
ekXe

−(x−µ)2

2σ2 dx

]
= µk +

1

2
σ2k2 (2.23)

So the λ(k) is differentiable everywhere and according to Gärtner-Ellis theorem the rate

function I(x) can now be calculated as :

I(x) = sup
k

{kx− λ(k)} (2.24)

Minimizing the bracketed quantity, we get the fixed point as k = x−µ
σ

and hence the rate

function becomes
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Figure 2.3: Application of the LDT for a Gaussian sample mean. Plot shows the rate func-
tion I(x) and probability distribution P (Sn = x) of the sample mean Sn. The I(x) has a
minima at the most probable value which is the mean of the Gaussian distribution x = µ.

I(x) =
(x− µ)2

2σ2
(2.25)

This recovers exactly the rate function calculated for the Gaussian sample mean using

Stirling’s approximation given by Eq. 2.14 in Subsec. 2.1.2. The rate function of the

Gaussian sample mean and the corresponding probability distribution is shown in Fig. 2.3.

2.3 Some properties of the SCGF and the rate function

In this section we will show some of the properties of the SCGF and the rate function which

are obtained via the Gärtner-Ellis theorem.

2.3.1 Properties of the SCGF λ(k) at k = 0

One of the important hypothesis of the Gärtner-Ellis theorem is the differentiability of the

SCGF λ(k). Since

λ(k) = lim
n−→∞

1

n
ln ⟨enkAn⟩ (2.26)
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at k = 0, clearly λ(0) = 0. The first and second derivative of the SCGF at k = 0 can be

written as

λ′(0) = lim
n−→∞

⟨An enkAn⟩
⟨enkAn⟩

∣∣∣∣∣
k=0

= lim
n−→∞

⟨An⟩

λ′′(0) = lim
n−→∞

n
⟨A2

n enkAn⟩ − ⟨An enkAn⟩2

⟨enkAn⟩2

∣∣∣∣∣
k=0

= lim
n−→∞

n (⟨A2
n⟩ − ⟨An⟩2)

(2.27)

which gives the mean and the variance of the random variable An respectively at k = 0.

2.3.2 Convexity of λ(k)

In order to prove the convexity of the SCGF, we consider the following expression with

α ∈ [0, 1]

αλ(k1) + (1− α)λ(k2) = lim
n−→∞

1

n

(
α ln⟨enk1 An⟩+ (1− α) ln⟨enk2 An⟩

)
= lim

n−→∞

1

n

(
ln⟨enk1 An⟩α + ln⟨enk2 An⟩(1−α)

)
(2.28)

Now according to the Hölder’s inequality

∑
i

|yizi| ≤
(∑

i

|yi|1/p
)p (∑

i

|zi|1/q
)q

(2.29)

with 0 ≤ p, q ≤ 1 and p+ q = 1. Applying this inequality in the λ(k) it yields

αλ(k1) + (1− α)λ(k2) ≥ λ(αk1 + (1− α)k2) (2.30)

So the SCGF is a convex function which means it is continuous and differentiable ev-

erywhere.
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2.3.3 Positivity of the rate function

As λ(0) = 0, and λ can be expressed by the Legendre-Fenchel transformation of the I(a)

shown in Eq. 2.19. Hence,

λ(0) = sup
a∈R

{−I(a)} = − inf
a ∈ R

I(a) = 0 (2.31)

So the minima of the rate function is zero and for other x, I(x) ≥ 0.

2.3.4 Convexity of the rate function

The I(x) obtained from the Gärtner-Ellis theorem are necessarily strictly convex [223, 222].

Because of the Gärtner-Ellis theorem can not always yield a rate function (which are non-

convex in nature and in particular having two or more local or global minima) even though

λ(k) exists.

To prove it we consider λ(k) is differentiable and strictly convex which means λ′′(k) >

0. And the Legendre-Fenchel becomes self inverted where the slopes satisfy I ′(a) = k(a)

and λ′(k(a)) = a. These two equations then implies

I ′′(a) = k′(a) =
1

λ′′(k)
(2.32)

Hence the rate function I(a) is also convex with I ′′(a) > 0.

Since Legendre-Fenchel transformation obtain functions which are only convex, the

Gärtner-Ellis theorem has the limitation that it cannot calculate non-convex rate functions.

In the next section, we will introduce a theorem using which nonconvex rate functions can

also be calculated.
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2.4 Tilted LDP

The tilted LDP allows one to calculate a new LDP for a new sequence by ”tilting” or inte-

grating against an exponential function w.r.t. an old LDP generated by another sequence of

probability [225, 220]. The theorem is as follows :

Let Pn is the probability measure on a completely separable metric space X which

satisfies LDP with rate n and rate function I : X −→ R. Let G : X −→ R is a

continuous function which is bounded above. Then according to Varadhan’s lemma [220]

the asymptotic behaviour of sequences of integrals holds the following limit

lim
n−→∞

1

n
ln
∫
X

enG(x) Pn(dx) = sup
x∈X

[G(x)− I(x)] (2.33)

We now define Jn(A) ≡
∫
X
enG(x) Pn(dx), as a sequence of probability measure

PG
n (A) = Jn(A)

Jn(X)
for a Borel subset A of X , then according to tilted LDP the probability

measure PG
n on X satisfies LDP with rate n and rate function

IG(x) = I(x)−G(x)− inf
y∈X

[I(y)−G(y)] (2.34)

2.5 Calculation of the rate function for the random field
spin model using tilted LDP

For random field spin models, along with the spin variables si, there are other i.i.d. vari-

ables corresponding to the random field disorder. Hence, the magnetization
∑

i si
N

is not

anymore a i.i.d. variable w.r.t the probability distribution of a spin configuration. Thus us-

ing directly the Gärtner-Ellis theorem is quite complicated. Also the desired rate function

of the disordered models in general are not convex in nature [142] (as will be seen in the

later sections), so the Gärtner-Ellis theorem cannot be used to calculate them.
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2 Large deviations theory

In order to calculate the rate function of a random field spin model Löwe et al developed

a following method to calculate the rate function of the random field Curie-Weiss model in

two steps [142] :

• Prove the LDP w.r.t the probability measure of the non-interacting part of the disor-

dered Hamiltonian.

• Using tilted LDP the rate function of the full Hamiltonian is calculated from the rate

function of the non-interacting part of the Hamiltonian.

We will illustrate the tilted LDP in the next subsection by calculating the rate function

of the random field Ising model.

2.5.1 Rate function for the random field Ising model

We consider the following random-field Hamiltonian on a fully connected graph

H = − 1

2N
(
∑
i

si)
2 −

∑
i

(hi +H)si (2.35)

where si ∈ {−1, 1}, hi is the random field and H is the uniform external magnetic field.

The probability of the spin configuration CN = (s1, s2, ......, sN) for the full Hamiltonian

is given by

PN,β ∝ e−β H(CN ) (2.36)

The non-interacting part of the Hamiltonian is Hni = −
∑

i(hi +H)si. And the prob-

ability measure on {−1, 1}N is given by the product measure Q({si}) = ⊗N
i=1 Qi for each

i ∈ N with:
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2 Large deviations theory

Qi(1) =
eβ(H+hi)

2 cosh β(H + hi)
(2.37)

Qi(−1) =
e−β(H+hi)

2 cosh β(H + hi)
(2.38)

We first calculate the rate function w.r.t the probability measureQ({si}) for the sum of

the spins x =
∑

i si
N

(which is the order parameter of the system)

QHni
(CN : x =

∑
i

si

N
) ≈ e−N R(x) (2.39)

According to the Gärtner-Ellis theorem the rate function for the non-interacting Hamil-

tonian part R(x) is calculated using the Lengendre-Fenchel transformation of the SCGF

λ(y) with y ∈ R :

R(x) =

supy∈R
{xy − λ(y)} if 0 ≤ |x| ≤ 1

∞ otherwise

where the SCGF is

λ(y) = lim
N−→∞

1

N
ln⟨eNyx⟩

= lim
N−→∞

1

N

N∑
i=1

ln
(ey+βhi+βH + e−y−βhi−βH

2 cosh β(H + hi)

)
= lim

N−→∞

1

N

(
λN(y)− λN(y)

)
(2.40)

here

λN(y) =
N∑
i=1

ln
(
cosh (y + βhi + βH)

)
(2.41)

the limit lim
N−→∞

1
N
λN(y) can be approximated using the LLN to it’s expectation value w.r.t

the random field distribution. For a bimodal distribution of the random field hi

p(hi) =
1

2
(δ(hi − h) + δ(hi + h)) (2.42)
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2 Large deviations theory

(a) (b)

Figure 2.4: The plot of the rate function I(x) for the RFIM in presence of bimodal dis-
tributed random field disorder. The plots are for different values of β with fixed h = 0.1
and H = 0. (a) is for β = 1.01 and, (b) is the plot for β = 1.011.

the SCGF turns out to be

λ(y) =
1

2

(
ln (cosh (x+ βH + βh)) + ln (cosh (x+ βH − βh))

)
− 1

2

(
ln (cosh (βH + βh))− ln (cosh (βH − βh))

)
=

1

2

(
ln cosh 2(y + βH) + ln cosh 2βh

)
(2.43)

Now in order to calculateR(x), we estimate the supremum of the expression xy−λ(y)

w.r.t y, which gives

y∗ =
1

2
sinh−1

{ x

1− x2
(cosh 2βh+

√
1 + x2 sinh2 2βh)

}
− βH (2.44)

and the expression of R(x) at the supresum is given by

R(x) = x y∗ − λ(y∗) (2.45)

The probability for the full Hamiltonian given by Eq. 2.36 that x =

∑
i
si

N
for a given β,

h and H can be written in terms of Q({si})
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2 Large deviations theory

PN,β(x) =
eβNx2/2 Q({si} : x =

∑
i si
N

)
1∑

i=−1

eβNx2/2 Q({si} : x =
∑

i si
N

)

We thus note that the probability measure PN,β is the tilted version ofQ and the contin-

uous and upper bounded function G(x) : R −→ R is now given by

G(x) =

{
β
2
x2 if 0 ≤ |x| ≤ 1

β
2

otherwise

Now x satisfies LDP w.r.t the measure PN,β with rate N and rate function I according

to tilted LDP as:

I(x) = R(x)−G(x)− inf
y∈R

{
R(y)−G(y)

}
= R(x)− β

2
x2 − inf

y∈R

{
R(y)− β

2
y2
}

(2.46)

Putting the expression of the R(x) from Eq. 2.45, we get the expression for the rate

function I(x) as

I(x) = ln 2− β

2
x2 − βxH +

x

2
sinh−1

{ x

1− x2
(cosh 2βh+

√
1 + x2 sinh2 2βh)

}
+

1

2
ln
(1− x2

2

)
− 1

2
ln
(
cosh 2βh+

√
1 + x2 sinh2 2βh

)
− inf

y∈R

{
R(y)− β

2
y2
}

(2.47)

The plot of the rate function I(x) is shown in Fig. 2.4 for different values of β with

H = 0 and h = 0.1. The minima of the I(x) (where I ′(x) =0) gives the value of the stable

magnetization x. Below a βc = 1.01 the I(x) has one minima shown in Fig. 2.4a which is

the paramagnetic phase. Above βc there are two minimas in the rate function shown in Fig.

2.4b, which is like the ferromagnetic phase.

59



2 Large deviations theory

For Blume-Capel model Hamiltonian given by Eq. 1.22, there are two order parameters

x1 =
∑

i si
N

and x2 =
∑

i s
2
i

N
and the state space becomes {−1, 0, 1}N . For the random field

or random crystal field disorder the variablesH and∆ becomes site dependent respectively

: H = (Hi)i∈N and ∆ = (∆i)i∈N . The sequence of probability measures on {−1, 0, 1}N

can be written for each i ∈ N as

Qi(1) =
eβ(Hi−∆i)

1 + 2e−β∆i cosh βHi

(2.48)

Qi(−1) =
e−β(Hi+∆i)

1 + 2e−β∆i cosh βHi

(2.49)

Qi(0) =
1

1 + 2e−β∆i cosh βHi

(2.50)

the rate functions R(x1, x2) and I(x1, x2) are calculated in similar way [194].

This method has been used to solve the random field Curie-Weiss model [142] and the

random field p−spin Ising model [143]. It has been shown [143] that the full rate function

I({xi}) is like the generalized free energy functional, the minima of which gives the free

energy of the system. This method relies on the fact that the disorder average can be done on

the non-interacting part of the Hamiltonian as the disorder couples with the order parameter,

which makes it easier to do the disorder averaging and thus this method can be extended

to any other spin models where the disorder couples with the non-interacting part of the

Hamiltonian.

In the next chapters we will apply the tilted LDP in order to calculate the free energy

functional of the disordered spin-1 Blume-Capel model.
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Chapter 3

Blume-Capel model with random crystal
field disorder
In this chapter we introduce the disorder in the crystal field interaction of the Blume-Capel

model mentioned in the previous chapter. We consider a double peak delta function distri-

bution. We calculate the free energy functional using the tilted LDP, mentioned in Chapter

2. We discuss the ground state phase diagram of the system. Next we study the finite

temperature phase diagram depending on the strength of disorder in the three dimensional

space. We also discuss about the multicritical points that emerge due to the presence of

disorder.

3.1 Random crystal field Blume-Capel model (RCFBC)

Random crystal field effect on the Blume-Capel model is not only theoretically interesting,

but also has experimental realizations. There are systems like aerogels i.e 3 He - 4He mix-

tures in random porous media [226, 190] which can be modelled using the RCFBC model.

The phase diagram of the model is known to change under the effect of disorder. In par-

ticular, random crystal field Blume-Capel model (RCFBC) has been studied extensively

for different bimodal distributions using mean-field method [183, 184, 185, 186], effective

field theory [187, 188, 189], cluster variation method [190], renormalization group study

[191], pair approximation method [192], Bethe lattice [193] and large deviations [194].

Also for Gaussian distribution [195] and double Gaussian distribution [196]. All these

work have focused on the (T,∆) plane. These different methods do not agree with each

fully in the prediction of the phase-diagram, most of them report that the first order line and
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3 Blume-Capel model with random crystal field disorder

hence the TCP disappears for higher strengths of disorder. Some of them predicted different

topologies of the phase-diagram depending on the strength and the type of disorder, with

multicritical points like critical end points, ordered critical point and double critical point

[183, 185, 187, 184, 196].

Since TCP is a point of confluence of three critical lines, it is important to look at the

effect of disorder on the other two lines meeting at the TCP. Hence, we revisit the prob-

lem and obtain the phase diagram in the space of three fields, on a fully connected graph

by solving the model exactly, using large deviation theory [215]. We study the Blume-

Capel model with random crystal field disorder in the presence of external field on a fully

connected graph. The Hamiltonian can be written for N spins as :

H(CN) = − 1

2N
(
∑
i

si)
2 −

∑
i

∆is
2
i −H

∑
i

si (3.1)

where∆i represent quenched random crystal field at each site,H is the external field and si

are spin−1 random variables which can take ±1, 0 values. We draw random crystal fields

from bimodal distribution of the kind:

P (∆i) = pδ(∆i −∆) + (1− p)δ(∆i +∆) (3.2)

Since p = 0 or 1 will imply no disorder and p = 1/2 would be the most random case, it

is enough to look for 0 ≤ p ≤ 0.5. We now solve the Hamiltonian Eq. 3.1 of the system

using the tilted LDP discussed in Chapter 2.

In the next section, we will show the detailed calculation of the rate function of the

RCFBC model.
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3 Blume-Capel model with random crystal field disorder
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Figure 3.1: Ground state phase diagram of the RCFBC model in presence of the bimodal
distribution in the ∆ − p plane. Two ordered phases exists for all 0 < p < 1. Those are
denoted by F withm = q = 1 and F1 withm = q = p. The F- F1 phases are separated by
the first order line denoted as black dashed line.

3.2 Calculation of the rate function

The rate function I(x1, x2) for bimodal random crystal field disorder in the absence of

external field was calculated using tilted LDP [194], discussed in Chapter 2. In this section

we will show the detailed calculation of the I(x1, x2) in presence of external magnetic field.

We start with the probability of a spin configuration CN with magnetization x1 =

∑
i
si

N
and

quadruple moment x2 =

∑
i
s2i

N
, which is proportional to e−βH, where H is the Hamiltonian

given in Eq. 3.1. This via large deviation principle (LDP) can be shown that [218, 215, 194]

in the limit of N → ∞ goes to

P (CN :
∑
i

si = x1N ;
∑
i

s2i = x2N) ∼ exp(−NI(x1, x2)) (3.3)
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3 Blume-Capel model with random crystal field disorder

the function I(x1, x2) here is the rate function which is like the generalized free energy

functional. To calculate I(x1, x2) we use two steps, as discussed in Chapter 2 :

1. We first start with the non-interacting part of the Hamiltonian. We calculate the rate

function R(x1, x2) corresponding to the probability PHni
(CN) ∼ e−NR(x1,x2). Here

Hni is the non-interacting part of the Hamiltonian i.e Hni = −
∑

i ∆is
2
i −H

∑
i si.

The functionR(x1, x2) is calculated using the Gärtner-Ellis (GE) theorem [215]. The

expression of R(x1, x2) is

R(x1, x2) = sup
k1,k2

[
x1k1 + x2k2 − λ(k1, k2)

]
(3.4)

Where the SCGF λ(k1, k2) for the random variables x1 and x2 is given by

λ(k1, k2) = (1− p) log
(
1 + 2ek2−β∆ cosh(k1 + βH)

)
+ p log

(
1 + 2ek2+β∆ cosh(k1 + βH)

)
(3.5)

Minimization of the expression x1k1 + x2k2 − λ(k1, k2) in w.r.t k1 and k2 gives the

following equations for the supremum (k∗
1 , k∗

2) as a function of x1 and x2

x1 = 2ek
∗
2 sinh(k∗

1 + βH)

(
peβ∆

1 + 2ek
∗
2+β∆ cosh(βH + k∗

1)
+

(1− p)e−β∆

1 + 2ek
∗
2+β∆ cosh(βH + k∗

1)

)
(3.6)

x2 = 2ek
∗
2 cosh(k∗

1 + βH)

(
peβ∆

1 + 2ek
∗
2+β∆ cosh(βH + k∗

1)
+

(1− p)e−β∆

1 + 2ek
∗
2+β∆ cosh(βH + k∗

1)

)
(3.7)
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3 Blume-Capel model with random crystal field disorder

2. We then calculate the full rate function of the interacting Hamiltonian via tilted LDP.

Using this principle we calculate the rate function I(x1, x2) from the old rate func-

tion (R(x1, x2)) using a change in measure by integrating against an exponential of a

continuous function G(x1, x2) which in our case is the interacting part of the Hamil-

tonian, G =
βx2

1

2
. The full rate function I(x1, x2) is given by

I(x1, x2) = R(x1, x2)−
βx2

1

2
− inf

y1,y2

(
R(y1, y2)−

βy21
2

)
(3.8)

After substituting R(x1, x2) and using a new variable z = 2ek
∗
2 cosh(k∗

1) as was done

in [194], we get the rate function of the system to be

I(x1, x2) = x1 tanh−1
(x1

x2

)
+ x2

[
ln

z

2 cosh
(
tanh−1 x1

x2

)]− βx2
1

2
− βHx1

−p ln
(
1 + zeβ△

)
− (1− p) ln

(
1 + ze−β△)+ p ln

(
1 + 2eβ△

)
+(1− p) ln

(
1 + 2e−β△)

(3.9)

where z is the solution of the equation:

x2

z
=

peβ∆

1 + zeβ∆
+

(1− p)e−β∆

1 + ze−β∆
(3.10)

In the limit, N → ∞, for a given β,∆ and H , the value of x1 and x2 that minimise

I(x1, x2) will give the value of magnetisation (m) and density(q). The minima of the

rate function in (x1, x2) plane gives the free energy for a given β(= 1/T ),∆ andH .

Hence the values of x1 and x2 which minimise I(x1, x2) are the value of m and q

respectively for a given set of thermodynamic variables. Minimising I(x1, x2) with

respect to x1 and x2 results in the following equations form and q:

tanh(β(m+H)) =
m

q
(3.11)
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3 Blume-Capel model with random crystal field disorder

z =
2√

1−m2/q2
(3.12)

where z is related to q via the Eq. 3.10, i.e:

q

z
=

peβ∆

1 + zeβ∆
+

(1− p)e−β∆

1 + ze−β∆
(3.13)

On substituting the above relations we get the free energy functional to be

f̃(m) =
βm2

2
−(1− p) log

(
1 + 2e−β∆ cosh β(m+H)

)
−p log

(
1 + 2eβ∆ cosh β(m+H)

)
(3.14)

In the next part we solve the ground state phase diagram of the RCFBC model.

3.3 Ground state phase diagram

For the ground state phase diagram, we take the limit β −→ ∞ in the free energy functional

given by Eq. 3.14. We get the ground state rate function as ϕ(m) = lim
β→∞

1
β
f̃(m)

ϕ(m) =
m2

2
− p (∆ +m)− (1− p) Θ(|m−∆|) (3.15)

where the Θ(x) is the Heaviside theta function with Θ(x) = 1 for x > 0, Θ(x) = 0

otherwise.

The minima of ϕ(m) w.r.t the m gives the ground state energy E of the system. We

found that there are two ordered phases for any 0 < p < 1. The first one is the F phase

with m = q = 1 and ground state energy E = −1
2
- (1 + 2p) ∆. This phase is stable for

∆ < 1
2
(p + 1). And the other phase is F1 with m = q = p and energy E = −p2

2
- p ∆.

The F1 phase appears due to the presence of the disorder and it is stable for∆ > 1
2
(p+1).

For ∆ > 1
2
(p + 1) the s = ±1 spins compete with the s = 0 spins and thus p fraction of

s = ±1 spins contribute in the magnetization and we get the F1 phase. The ground state
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3 Blume-Capel model with random crystal field disorder

phase diagram in the ∆ − p plane is shown in Fig. 3.1. The two phases are separated by

the first order line ∆ = 1
2
(p − 1), shown by the dashed line. Due to the symmetry of the

distribution, we plot the phase diagram only for 0 < p ≤ 1
2
.

In the next section, we will show the finite temperature phase diagram of the RCFBC

model.

3.4 Finite temperature phase diagram

In subsection 3.4.1wewill recap the results in the absence of external fieldwhichwas shown

in [194] and then build the equations for phase diagram in (T,∆, H) space in subsection

3.4.2

3.4.1 Two field phase diagram in the (T,∆) plane

For H = 0, the phase diagram has been studied earlier [194, 185]. We will briefly recap

those results here: Assumingm to be small the fixed point equations, Eq. 3.11 and 3.12 can

be linearized aroundm = 0. This gives q = 1/β and z = 2 at the critical point. Substituting

these values in Eq. 3.13, gives the equation for a line of continuous transition in theH = 0

plane. The line of continuous transition inH = 0 plane is known as the λ-line and satisfies

the following equation

5− 4β = 2(βp− 1)eβ∆ + 2(β − βp− 1)e−β∆ (3.16)

This is valid only when the higher order terms in the expansion can be ignored. Taking

q = (1 + ϵ)/β and expanding in powers of ϵ we find that the coefficient of linear term in ϵ

becomes zero when

12β − 17 + (3β − 10) cosh(β∆)− 3β(1− 2p) sinh(β∆) = 0 (3.17)
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3 Blume-Capel model with random crystal field disorder

Figure 3.2: Schematic phase diagram for different strengths of disorder. The value of p rep-
resents the strength of disorder(there is no disorder for p = 0 and the disorder is maximum
for p=0.5). Solid lines represent lines of critical points and dotted lines represent first order
transition lines. Solid dot represents TCP, solid square represents CEP and star represents
BEP. Wiggled lines are to show the infinite length of wings. λ represents the line of critical
points in H = 0 plane and λ+ and λ− represent the critical lines for H > 0 and H < 0
respectively. The value of p1 = 0.022 and p2 = 0.107875 for the model studied in this
paper
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Solving Eq. 3.16 and 3.17 together we get the condition for break down of linear ap-

proximation as

cosh(β∆) =
12β − 19

8
(3.18)

Hence for a given∆, there will be either no transition or a first order transition, beyond the

value of β that satisfy Eq. 3.18.

The value of (β,∆)(or equivalently (T,∆)) which satisfy Eqs. 3.16 and Eq. 3.18 si-

multaneously gives the location of TCP for a given p. It was found in [194] that beyond

pc = 0.0454 the two equations cannot be satisfied simultaneously and hence there is no

TCP, and the λ line in the (T,∆) plane extends to ∆ → ∞. This treatment is equivalent

to Taylor expanding the rate function to get an equivalent Landau free energy functional,

which we will discuss in Sec. 3.6.

3.4.2 Three field phase diagram in (T,∆, H) space

Let us now takeH ̸= 0 and look for the critical points in the full (T,∆, H) space. We know

that at the TCP there are two other continuous lines withH ̸= 0 which meet the λ line. We

call these, depending on the value of H , as λ+ and λ−.

We wish to understand the effect of disorder on the two critical lines λ+ and λ−. We

will focus on the effect of disorder on these two critical lines in this paper. Along these

lines, m ̸= 0 and one cannot look for continuous transition by expanding the free energy

functional like we did in the section 3.4.1.

Note that at the fixed point the value of m and q are related via Eq. 3.11. At the fixed

point, the free energy functional is given by the Eq. 3.14 and the self-consistent equation

form comes out to be :

m = 2 sinh β(m+H)

[
peβ∆

1 + 2eβ∆ cosh β(m+H)
+

(1− p)e−β△

1 + 2e−β∆ cosh β(m+H)

]
(3.19)

Sincem ̸= 0 along the λ+ and λ− lines, expanding f̃(m) in powers ofm to get a Landau
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free energy functional will not give the correct critical behaviour. But, in general along a

critical line, the first three derivatives of the free energy functional with respect to the order

parameter should be zero. This is because between two successive minimas, there must

exist two points of inflexion, i.e f ′′
= 0 and hence also a point where f ′′′

= 0. Hence at the

continuous transition, all three derivatives should vanish simultaneously. Hence to study

λ+ and λ− critical lines we equate the first three derivatives of f̃(m) w.r.t m to zero [162]

(and fourth derivative should be greater than zero). This is true also for the λ line, as for

H = 0 andm = 0 the third derivative is trivially zero and second derivative gives the same

condition as Eq. 3.16.

In general, equating second and third derivative of f̃(m) to zero we get the following

two conditions respectively:

p(2x2 + xy)

(1 + 2xy)2
+

(1− p)(2 + xy)

(x+ 2y)2
=

1

2β
(3.20)

p(x− 8x3 − 2x2y)

(1 + 2xy)3
+

(1− p)(x2 − 8− 2xy)

(x+ 2y)3
= 0 (3.21)

here x = exp(β∆) and y = cosh β(m +H). For p ̸= 0, the two equations are quartic and

hexic in x.

For p = 0 (pure Blume-Capel model), the equations reduce to the following simpler

equations :

2 + xy

[x+ 2y]2
=

1

2β
(3.22)

x2 − 8− 2xy

[x+ 2y]3
= 0 (3.23)

Solving these equations we get

y = cosh β(m+H) =
β − 2√
4− β

(3.24)

x = eβ∆ =
4√
4− β

(3.25)
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Figure 3.3: Concentration(q) vs ∆ plot for p = 0.2 for different values of T

Hence, we reproduce the classic results of Blume, Emery and Griffiths [149] already

mentioned in Chapter 1 : The λ± lines that exists for 4 ≥ β ≥ 3 for H ̸= 0. Above

β = 4 there is no value of x and y that can satisfy Eqs. 3.22 and 3.23 simultaneously. The

magnetisation along these two critical lines is not zero and is equal to

m = ±

√
β − 3

β
(3.26)

This can be used to get the value of H along the critical lines, which comes out to be

H = ± 1

β
log

(
β − 2 +

√
β2 − 3β√

4− β

)
−m (3.27)

These λ± lines meet in the H = 0 plane at the TCP co-ordinate of the pure Blume-Capel

model : TTCP = 1
3
and∆TCP = 0.462098. This is the well known TCP in (T,∆) plane for

p = 0 (can be obtained by solving Eq. 3.16 and 3.18 simultaneously for p = 0).

For p ̸= 0, we use Mathematica [227] to solve Eq (3.20) and Eq. 3.21 simultaneously

to get the two critical lines numerically. To solve the equations for any arbitrary p, we scan

different values of β and ∆ and hence x and solve Eq. 3.20 (corresponding to f̃ ′′(m) = 0)

exactly to get the corresponding value of y. Then we substitute the value of x and y in Eq.

3.21 to check if (x, y) satisfy the condition, f̃ ′′′(m) = 0.
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For each set of (x, y) that satisfy Eq. 3.20 and Eq. 3.21 simultaneously, we can calculate

m using the equation:

m = ±2
√

y2 − 1
[ px

1 + 2xy
+

(1− p)

y + 2x

]
(3.28)

The above equation is derived from Eq. 3.19 by taking coshβ(m+H) = y and exp(β∆) =

x. The corresponding value ofH along the critical lines can then be calculated by inverting

y = cosh β(m+H).

For a TCP to exist the two critical lines in theH ̸= 0 plane should meet inH = 0 plane

at the point where second order line ends in a first order transition line in the (T,∆) plane.

We can put H = 0 andm = 0 in Eqs. 3.20 and 3.21 to directly look for this point. Hence,

we separately solve the two equations for y = 1. Interestingly, we find that for y = 1,

the two equations can be solved simultaneously only for p ≤ pc(= 0.0454). This is also

the value of p beyond which linear stability analysis breaks down and Eq. 3.16 is not valid

anymore. More interestingly even though the two equations can be solved for H = 0 till

p ≤ 0.0454, we find that for p > 0.022, one more solution shows up, with m ̸= 0 and

H = 0. For p > 0.0454, all possible solutions havem ̸= 0.

We thus observed that the TCP persists only for very weak strength of the disorder. As

disorder increases, the TCP vanishes and instead different multicritical points : bicritical

end point (BEP) and critical end point (CEP) emerges. Depending on the values of p, we

found that there are three different phase topologies for the range 0 < p ≤ 0.5. We call it

strong (0.1078 < p ≤ 0.5), intermediate (0.022 < p ≤ 0.1078) and weak (0 < p < 0.022)

disorder regime. In the next subsections, we discuss the phase topologies for the different

disorder regimes separately.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Free energy functional(f̃(m)) as a function of m in different regions of the
phase diagram(see Fig. 3.2(c)). We have taken p = 0.2 for which BEP is at ∆ = 0.596376
and T = 0.2058. The numbers on the plots refer to the numbers in Fig. 3.2(c). In (a) we
plot f̃(m) in H = 0 plane just below the λ-line, in (b) just above the λ line. In (c) we
show f̃(m) at the BEP and one can see the coexistence of two critical phases and (d) shows
the f̃(m) along the quadruple coexistence line. In (e) we show the functional along the
first order wing surface for positive H and (f) shows the functional along the critical line
enclosing the wing. Figs (g) and (h) show the f̃(m) on two sides of the first order line in
H = 0 plane.
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3.4.3 Strong disorder regime : 0.1078 < p ≤ 0.5

We found that for all values of 0.022 < p ≤ 0.5, the λ± lines do not meet at the potential

TCP point as given by simultaneous solution of Eq 3.16 and 3.18. Instead they meet inside

the ordered plane i.e at a point wherem ̸= 0. This point hence is not a TCP, but a BEP. BEP

is a multicritical point where only two of the three critical lines end on a first order surface.

We will discuss about this emerging multicritical point in details in Section 3.5.

Furthermore, we find that for p > 0.022 there are two different kinds of phase diagrams

possible. The range 0.1078 < p ≤ 0.5 is the strong disorder regime. For this range of

p along the first order line in H = 0 plane there is a four phase coexistence, which ends

in a BEP (see Fig. 3.2(c)) shown by a solid star. This line is a first order transition line

between two ordered states with different values of magnetizations (F and F1). These two

different ordered states are a result of disorder and are not present in the pure system. At

low temperatures, the system prefers ±1 spin states when ∆ is small. As ∆ increases, due

to disorder, states with finite fraction of zero spins compete with the states with only ±1

spins. This can be seen by looking at the order parameter q as a function of∆, as shown in

Fig. 3.3.

One can see all the transitions clearly by plotting f̃(m) in different regions of the phase

diagram as shown in Fig. 3.4 for p = 0.2. From the plots we can see that the H = 0 line

separates the two ordered phases. Along the first order transition line there is a coexistence

of four phases (see Fig. 3.4d). Along the λ± lines, two of these phases become critical,

shown in Fig. 3.4f. And at the BEP the two critical phases coexist shown in Fig. 3.4c.

As p increases we find that the critical lines enclosing the wings become flatter and the

temperature at which they meet in H = 0 plane decreases. We have tabulated the range of

T for different p in Table 3.1.
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(a) (b)

(c) (d)

(e)

Figure 3.5: Free energy functional f̃(m) plots for p = 0.0044. (a) f̃(m) at the BEP with
T = 0.281532,∆ = 0.500195, H = 0;(b) f̃(m) along the first order line between BEP and
CEP1. (c) f̃(m) at the CEP1 with T = 0.27585,∆ = 0.500186, d) shows the functional
along the first order line from CEP1 to CEP2, e) shows functional along the first order line
from CEP2 at T = 0.02 to T = 0
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0.022 < p ≤ 0.5
p Tlc ∆lc Tuc δT

0.0453 0.28043 0.501175 0.23866 0.0417665
0.05 0.276396 0.50468 0.237473 0.038923
0.07 0.26185 0.518896 0.23245 0.029399
0.1 0.2451 0.538417 0.224972 0.020128
0.2 0.2058 0.596376 0.2 0.0058
0.3 0.17643 0.6490843 0.174978 0.001452
0.4 0.15024 0.69968 0.1499 0.000248
0.5 0.125016 0.7499884 0.12498 0.000036

Table 3.1: Width of the wing lines for different p. Tlc and∆lc represent the values of T and
∆ for H = 0 where the λ+ and λ− lines meet and Tuc is the value along the critical line as
∆ → ∞ and H → ∞.

3.4.4 Intermediate disorder regime : 0.022 < p ≤ 0.1078

For 0.022 < p ≤ 0.1078 the wings meet at BEP as mentioned in the previous section. Apart

from the BEP we also found that the model exhibits another multiciritcal point, known as

CEP. This is also a point where a first order and a second order line of transition meets. But

the difference between a TCP and a CEP is that, at the CEP the line of second order transition

abruptly terminates on the first order line. We will discuss more the CEP in Section 3.5.

In this region the the λ-line truncates on the first order quadruple line at CEP (we will

call this as CEP1). Below this temperature, the first order line becomes a line of triple

point (see Fig. 3.2 (b)). At low temperature the ferromagnetic phase F1 appears which is

bounded by another line of continuous transition. This continuous transition line truncates

on the triple line at a another CEP (we call as CEP2). The ferromagnetic phase that appears

in the higher temperature is due to the re-entrance phenomenon. This phase has a different

origin unlike the the ferromagnetic phase F1 at low temperature. At higher temperature

few s = ±1 spins become more entropically stable and gives rise to a ordered phase. The

details of such inverse phenomenon has been discussed in Chapter 4
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Figure 3.6: λ-line plotted along with ∆ = (1 + p)/2. For p <= 0.07 the ∆ = (1 + p)/2
line intersect the λ-curve only once. For 0.07 < p < 0.11 it intersects it three times and
only for p >= 0.11 it is fully on the left of the curve and hence doesn’t intersect

In Fig.3.5, we plot the free energy functional along the first order line. The BEP and

the CEP1 are connected by the quadrupole line, which separates two ferromagnetic phases

shown by Fig. 3.5b. And then there is a usual triple line between CEP1 and CEP2, as shown

in Fig. 3.5d. Between CEP2 and 0 temperature there is again a quadruple line as shown in

Fig 3.5e.

In [185], Santos et al also reported the presence of CEP1 and CEP2 for 0.022 < p <

0.074, by looking at the point of intersection of the λ-line with the first order line. We find

that this topology extends till p = 0.1078. In order to understand the discrepancy, we have

plotted λ-line given by Eq. 3.16 along with a line parallel to T -axis at∆ = (1+p)/2 in Fig.

3.6. The line ∆ = (1 + p)/2 is a good approximation to the first order line in the (T,∆)

plane as we found that the first order line is almost parallel to T -axis. As shown in Fig. 3.6,
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0.022 < p ≤ 0.107578
p TBEP △BEP TCEP1 △CEP1 TCEP2 △CEP2

0.03 0.2961208 0.489187 0.295197 0.489166 0.03 0.4977229
0.044 0.28153 0.500195 0.27585 0.500186 0.04401 0.521585
0.07 0.26185 0.518896 0.24036 0.519398 0.07099 0.533953
0.107 0.24166 0.542 0.15972 0.547514 0.13975 0.549068

Table 3.2: Co-ordinates of the BEP and CEP’s for 0.022 < p < 0.107.

∆ = (1 + p)/2 line crosses the λ-line once till p ≈ 0.07 and thrice for 0.07 < p < 0.11.

For p >= 0.11 there is no intersection. More careful analysis using the full free energy

functional, gives us the value to be around p = 0.1078. Thismatcheswith the value obtained

by equating the free energy functional and its first derivative along the λ-line, as described

in details in the Section 3.5.

In Table 2 we tabulate the location of BEP, CEP1 and CEP2 for different values of p.

The first order line between CEP2 and ∆- axis is similar to the first order line reported in

Sec 3.4.3, which separates the states with almost all ±1 spins from a state with p fraction

of ±1 spins. The presence of CEP1 and a four phase co-existence line between BEP and

CEP1 is due to the occurence of a new magnetic state. This state has more than p fraction

of ±1 spins, as it occurs at a higher temperature, very close to the λ line.

3.4.5 Weak disorder regime : 0 < p ≤ 0.022

Along the region 0 ≤ p ≤ 0.022 the wings meet the λ-line at the TCP and the phase diagram

is similar to the pure case. Along the first order line there is three phase coexistence. As p

increases, the TCP shifts towards smaller T and larger∆. At p = 0.022 the TCP becomes a

fourth order critical point. Again, at very low temperature there is a CEP, similar to the case

discussed (the CEP1) in the Subsection 3.4.4 for all p > 0, which is a state with p fraction

of ±1 spins and occurs at low temperatures on a complete graph. For 0.017 < p < 0.022,

there is re-entrance region in the phase diagram, as the TCP does not coincide with the
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Figure 3.7: Magnetization(m) vs T plot for p = 0.2 for different values of∆ forH = 0. At
BEP the first order jump vanishes and near T = TBEP one sees a change in slope for broad
range of ∆.

maximum of λ-line given by Eq. 3.16. The phase diagram for this region has been shown

in Fig. 3.2(a).

3.5 Bicritical end point (BEP) and critical end point (CEP)

In this section, we will give a detailed discussion about the emerging multicritical points in

RCFBC model.

3.5.1 Bicritical end point (BEP)

Bicritical end points (BEP) are the multicritical points where two critical lines intersects at

a first order surface [228, 229]. This point has been wrongly reported as an ordered critical

point in earlier studies in (T,∆) plane [185]. BEP has been comparatively less observed

and studied in the literature. Few examples where BEP has been observed are : anisop-

tropic continuous spin systems as an end point of the spin flop line [230], spin 3/2 systems

with crystal field [231, 232], metamagnet [233] FeBr2 [234], binary and quasi-binary sys-

tems of trifluoromethanewith n-alkanes, phenylalkanes and alkanols [235], antiferroelectric
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Figure 3.8: Magnetization(m) vs ∆ plot for p = 0.2 for different values of T .

squaric acid [236] and so on. According to mean-field approximation, antiferromagnetic

Ising model [228], metamagnets [237], RFIM [106] exhibits BEP, as in such systems the

TCP spilts into a CEP and a BEP. Such splitting of TCP has also been verified using Monte-

Carlo simulations in the antiferromagnet spin-1 Blume-Capel model for d = 3 [238, 239].

As shown in the plot of the free energy functional at the BEP, shown in Fig. 3.4c and

Fig. 3.5a, BEPs are actually a point of coexistence of two critical phases. To understand

the nature of transition especially at BEP, we looked at the magnetisation (m) and magnetic

susceptibility (χ) = ∂m
∂H

|H→0. The expression of the susceptibility can be calculated as :

m = G(β,m,H, p,∆)

⇒ χ = G′βχ+ βG′ ⇒ χ =
βG′

1− βG′ (3.29)

where

G(β,m,H, p,∆) ≡ 2 sinh β(m+H)

[
peβ∆

1 + 2eβ∆ cosh β(m+H)
+

(1− p)e−β△

1 + 2e−β∆ cosh β(m+H)

]
(3.30)

Let us first look at the magnetisation as a function of T in theH = 0 plane for different

fixed values of ∆ (see Fig. 3.7). We find that for ∆ < ∆BEP , the magnetisation changes

80



3 Blume-Capel model with random crystal field disorder

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

 

T

�BEP=0.596376

Figure 3.9: Magnetic susceptibility(χ) vs T plot at ∆BEP for p = 0.2

its slope near T = TBEP , the change becomes sharper as one approaches ∆ = ∆BEP . For

∆ > ∆BEP (but close to ∆BEP ), the magnetisation undergoes a first order transition as it

crosses the quadruple line and then changes slope near T = TBEP . For∆much larger than

∆BEP , as we increase T there is no first order jump or change of slope around T = TBEP .

We also looked at m as a function of ∆ for three different values of T (see Fig. 3.8). First

order jump as one crosses the quadruple line is clear for T < TBEP . For T > TBEP there

is no signature of any transition.

It is hard to deduce the nature of transition at BEP by looking at the magnetisation alone.

Hence we studied the magnetic susceptibility near BEP. First we look at it for fixed value

of ∆. As we fix ∆ = ∆BEP and vary T , we find that there is an infinite peak at the T of λ

transition. There is another peak at T = TBEP , but this peak is finite (see Fig. 3.9). This

behaviour can be contrasted with the behaviour at ∆ > ∆BEP as shown in Fig. 3.10. We

find a discontinuity where it crosses the first order line and a finite peak near T = TBEP .

We also studied magnetic susceptibility as we vary ∆ at TBEP , as shown in Fig. 3.11.

As expected, we found that there is a finite peak at ∆ = ∆BEP . For T < TBEP , there

was instead a first order jump in magnetic susceptibility. We scanned a large region in

(T,∆) plane near BEP. We find that the effect of the presence of BEP is felt even far away
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Figure 3.10: Magnetic susceptibility(χ) vs T plot for p = 0.2 for ∆ > ∆BEP

from the point. But the magnetisation and susceptibility plots are smooth near BEP (though

susceptibility shows a cusp). It was shown via scaling arguments [240] that if the two critical

lines meeting at BEP are in the same universality class and are symmetric, then the singular

behaviour contribution to the phase boundary cancels out [240, 231]. In our case the two

critical lines λ+ and λ− lie in the Ising universality class. Looking at the three dimensional

phase diagram it is clear that there is only one phase in the system in the sense that there

exist a path between any two non-singular points in the phase diagram which does not have

to encounter a singularity. At BEP the first three derivatives of f̃(m) w.r.t m are zero and

hence the free energy is not analytic at this point. Hence, we conclude that BEP is a point of

two phase co-existence and there is no critical transition from one phase to another at BEP.

3.5.2 Critical end point (CEP)

Critical end point (CEP) is a critical point where a line of second order transitions termi-

nates at a line of first order transitions [241, 20]. Alternately, it can also be defined as

a point where two phases become critical in the presence of one or more ordered phases,

known as the spectator phases [242], in systems with multiple phases. There are a variety

of physical systems which shows CEP. For example : superfluids [19], gel-fluid mixture
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Figure 3.11: Magnetic susceptibility(χ) vs ∆ plot for p = 0.044 at T = TBEP

[243], metamagnets [244], ferroelectrics [245], liquid crystals [13], binary fluid mixtures

[8, 9, 10], quantum chromodynamics [246] and so on.

The free energy functional at the CEP is shown in Fig. 3.5c, where two phases become

critical in presence of two non-critical phases. At CEP, f̃(m) for m = 0 and for m ̸= 0

should be equal (i.e f̃(m = 0) = f̃(m ̸= 0)) along with their derivative with respect to m

(f̃ ′(m = 0) = f̃ ′(m ̸= 0)). If this point lies on the λ line, then we get the condition for

CEP. Hence to find CEP, we explore the λ-line for a point where f̃(m = 0) = f̃(m ̸= 0)

along with f̃ ′(m = 0) = f̃ ′(m ̸= 0). We find that for p > 0.1078 the condition cannot be

satisfied. For 0 < p ≤ 0.022, we observe that there the condition satisfied once and for

0.022 < p ≤ 0.1078 it satisfies twice, giving rise to two CEPs (CEP1 and CEP2).

Similar to the BEPs, we plot themagnetic susceptibility as a function of∆ forT = TCEP

in H = 0 plane. In contrast to the BEP, the susceptibility near CEP shows an infinite peak

at at the CEP1 (see Fig. 3.12).

The scaling arguments for the different multicritical points like the TCP, CEP and BEP

are different from each other. We will give a detailed study of the scaling near the CEP and

BEP in Chapter 6. In the next section we will discuss about the Landau theory near these

multicritical points.

83



3 Blume-Capel model with random crystal field disorder

 0

 1000

 2000

 3000

 4000

 5000

 0.49  0.495  0.5  0.505  0.51

�CEP

 

TCEP=0.275852

Figure 3.12: Magnetic susceptibility(χ) vs ∆ plot for p = 0.044 at T = TCEP

3.6 Landau theory

In the previous sections we studied the phase diagram by looking at the full free energy

functional and its derivatives. Usually, Landau theory is a very useful tool to classify dif-

ferent kinds of transitions and even though it might not be accurate quantitatively, it helps in

understanding different possible topologies of the phase diagram. But while very successful

in explaining ordinary critical point, it is not always possible to find a Landau description

for higher order critical point, i.e. it is perhaps possible to define a free functional always,

but it might not always be Taylor expandable [247]. In this section we expand the free en-

ergy functional to check if we can explain the phase diagrams based on the coefficients of

different powers of the order parameter. For example, the Ising universality class critical

point can be determined easily by expanding upto fourth power inm, provided that the next

higher order coefficient is positive. For TCP one needs to expand till sixth order. A sixth

order Landau theory hence allows only for ordinary critical points and TCPs. We expect

that we need to keep more terms in the expansion, if we expect to find higher order critical

points like CEP and BEP . Hence we expanded the free energy functional till eighth power
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ofm. We get

f̃(m) = a2m
2 + a4m

4 + a6m
6 + a8m

8 (3.31)

where ai’s are Landau coefficients, as follows:

a2 =
β

2

(
1 +

2β(p− 1)

2 + c
− 2βpc

1 + 2c

)
(3.32)

a4 =
β4

12

(
(−4 + c)(p− 1)

(2 + c)2
+

p c(−1 + 4c)

(1 + 2c)2

)
(3.33)

a6 =
β6

360

(
(64− 26c+ c2)(p− 1)

(2 + c)3
− pc(1− 26c+ 64c2)

(1 + 2c)3

)
(3.34)

a8 =
β8

20160

(
(1188c− 2176− 120c2 + e3β∆)(p− 1)

(2 + c)4
+

pc(−1 + 120c− 1188c2 + 2176c3)

(1 + 2c)4

)
(3.35)

where c ≡ eβ∆. The second order transition is given by a2 = 0, provided a4 > 0. Equating

a2 = 0 gives us:

1 +
2β(p− 1)

2 + eβ∆
=

2βpeβ∆

1 + 2eβ∆
(3.36)

This equation is same as Eq. 3.16, obtained by linear expansion around m = 0. Ac-

cording to the Landau theory, a new universality class, namely the TCP occurs when a4

becomes equal to 0, provided a6 > 0. We find that the condition for a4 = 0 along the

λ-line is the same as given by substituting Eq. 3.16 into Eq. 3.18. For p > pc = 0.0454,
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a4 is never 0 and hence beyond pc the condition for occurrence of TCP cannot be satisfied.

For p > 0.022, a6 < 0 at the point where a4 = 0. Hence sixth order Landau theory while

sufficient for p < 0.022, is not enough for p > 0.022.

Hence for a6 < 0, we consider the expansion till eighth order, since a8 > 0 for all

ranges of the parameters. CEP will be a point along the λ-line (given by Eq. 3.36) where

the f̃(Tc,mc) = 0 and f̃ ′(Tc,mc) = 0 andmc ̸= 0. Solving these, we get the condition for

the existence of CEP to be

a26
4a4a8

= 1 (3.37)

We find that Eq. 3.37 can be satisfied only for 0.022 < p ≤ 0.0454, and that too at a

point very close to the point where a4 = 0. For example, for p = 0.044 from Eq. 3.37,

we get (TCEP1,∆CEP1) = (0.267, 0.497) and for p = 0.03 we get (TCEP1,∆CEP1) =

(0.294, 0.489). Hence we find that the value obtained via Eq. 3.37 are different from the

ones obtained by looking at the full free energy functional in Section (see Table 3.2). The

difference increases with increasing p. More importantly, in Section 3.4.3 we had found

numerically that CEP is present for a much larger range of p: 0.022 < p ≤ 0.1078.

To estimate BEP using truncated f̃(m), we equate the first three derivatives of the trun-

cated f̃(m) in Eq. 3.31 w.r.t m to 0. For m ̸= 0, this gives the condition for BEP to be:

a6 = −
√

8a4a8
3

. Again this condition gets satisfied only for 0.022 < p ≤ 0.0454. This

gives a BEP very close to CEP and the actual location does not match with the numerical

estimates of Section 3.4.3. Hence, a Landau description of this system predicts the phase

diagram correctly for p < 0.022 (except for CEP present at very low temperatures for all

p > 0) and gives qualitatively similar diagram for 0.022 < p < 0.0454, though the loca-

tion of BEP and CEPs does not match the actual value. For p > 0.0454 it is inadequate in

predicting the phase diagram. We tried including more terms in the expansion of f̃(m), but
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we could not locate BEP using a truncated f̃(m), suggesting that full f̃(m) is needed for

locating the BEP.

3.7 Summary and conclusion

The effect of disorder on first order transition has been less studied in literature. The spin-

1 Blume-Capel model is the simplest model which exhibits a multicritical point and has

a very rich phase diagram. The phase diagram of the Blume-Capel model on the T − ∆

plane in the presence of random crystal field disorder has studied extensively using many

different techniques [183]-[196]. And it was reported that the TCP as well as the first-order

transition line of the model disappears as the strength of the disorder increases [194]. As

the full phase diagram of the TCP is three dimensional, in this work we have investigated

the effect of crystal field disorder on the T − ∆ − H phase diagram of an infinite range

Blume-Capel model [213]. This study has not been done earlier.

We observe that the presence of disorder is relevant and affects the system’s critical

behavior drastically. We found that as depending on the strength of the disorder, there can

be three different types of phase diagrams. For small strength of disorder the TCP persists.

As disorder strength increases, the TCP vanishes but the wings as well as the first order

transition line persists. The TCP splits into a BEP and a CEP. And the two wings now

meet at a BEP. For further increase in the strength of disorder, we observe that the CEP also

disappears and the phase diagram is only consists of a BEP and the wings persist for all

strength of disorder.

The emergence of the BEP as a consequence of the disorder was some new observation

in this work. We showed that the BEP is actually a point of co-existence of two critical

phases, where the magnetic susceptibility is finite. Hence in-spite of the three derivatives

of the free energy being zero at BEP, it is not critical. This point was identified as an or-
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3 Blume-Capel model with random crystal field disorder

dered critical point in earlier studies [185, 196]. Another important observation was that the

Landau expansion of the free energy could not locate the multicritical points like BEP and

CEP precisely. The origin of BEP in our model is different than that for the pure anisotropic

continuous spin systems, where the BEP was seen as an end-point of spin flop transition

line [230]. A two parameter Landau theory description exists for spin-flop [20]. Our free

energy functional is a one parameter function which shows BEP. Due to this fact, despite

of observing three different topologies of the phase diagram for bimodal RCFBC model

[183, 185] , the authors couldn’t identify the BEPs and CEPs correctly.
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Chapter 4

Blume-Capelmodel with random field dis-
order
In this chapter we study the effect of random field disorder on the spin-1 Blume-Capel

model in presence of two different symmetric distribution : discrete and continuous. We

start with the introduction of the random field Blume-Capel (RFBC) model Hamiltonian

and solve it using tilted LDP. We first discuss the ground state phase diagram and then

go to the finite temperature phase diagrams for both the distributions. We show how the

different symmetric distributions give rise to different phase diagrams. We also discuss

many interesting features in the finite temperature phase diagram for the trimodal case.

4.1 Random field Blume-Capel model (RFBC)

The spin-1 random field Blume-Capel model (RFBC) has been studied in presence of bi-

modal random field distribution using the mean-field method [205, 206] in the T − h and

T −∆ plane respectively. It was reported that the phase diagrams in the T −∆ and T − h

plane are similar and there are five different phase diagrams depending on the values of h

and∆ respectively. The RFBCmodel has also been studied on the Bethe lattice in presence

of bimodal [207] and equal trimodal distribution [208]. Here the presence of two lines of

first order transition and one continuous line of transition was reported. Another study of

the RFBC model was in random network with finite connectivity in presence of bimodal

distribution [209].

In this work [214] we have considered the following Hamiltonian for the RFBC model

with N spins on a fully connected graph
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(a)
- 6 - 4 - 2 2 4 6

0.1

0.2

0.3

0.4
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Figure 4.1: Different symmetric random field distributions. (a) Discrete symmetric dis-
tribution : Trimodal distribution, and (b) Continuous distribution : Gaussian distribution.
Both the distributions has zero mean.

H = − 1

2N
(
∑
i

si)
2 +∆

∑
i

s2i −
∑
i

(hi +H)si (4.1)

where si can take values±1, 0,∆ is the crystal field of the systemwhich controls the density

of the magnetic and non-magnetic spins, H is the uniform external magnetic field and hi

is the quenched random field at site i. In this study we consider two different symmetric

distribution. For discrete distribution we consider the trimodal distribution as follows (see

Fig. 4.1a):

P (hi) = pδ(hi) +
1− p

2
(δ(hi + h) + δ(hi − h)) (4.2)

here 0 ≤ p ≤ 1. The random field take values ±h with probability 1−p
2
, and p fraction

of spins are free from the disorder. p = 1 is the pure Blume-Capel model and p = 0 is

known as bimodal distribution. δ is the Dirac-delta function. The first two cumulants of

this distribution are ⟨h⟩ = 0 and ⟨h2⟩ =
√
1− p h.

Whereas for continuous distribution we consider the following Gaussian distribution

with zero mean and variance σ (see Fig. 4.1b):

P (hi) =
1√
2πσ2

e
−h2i
2σ2 (4.3)

Trimodal RFIM is relevant in studying the diluted antiferromagnets in a uniform field,
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4 Blume-Capel model with random field disorder

where the field conjugate to the antiferromagnetic order parameter takes three values [82]. It

can be shown that the low order cumulants like the second and the fourth cumulants of both

the distributions are equal when p = 2
3
. So the trimodal distribution is a good approximation

of the the Gaussian distribution when p = 2
3
. It was conjectured [76] that for random field

O(n) models in presence of symmetric distribution gives similar phase diagrams. It has

been shown that for n = 1 i.e the RFIM the phase diagram becomes similar for trimodal and

Gaussian distribution [100] for 1
3
≤ p < 1 [105, 106, 118, 119, 124]. Recently for n = 2

random field XY model similarity in the phase diagram in presence of cubic symmetric

distribution has been reported [248].

We have studied the phase diagrams for both the symmetric distributions in the ground

state as well as in the finite T . We have considered all the ranges of p and σ and investigated

how the presence of different random field disorder affects the rich phase diagram of the

higher spin model like the Blume-Capel model.

In the next section we will show the calculation of the free energy functional of the

system using LDP.

4.2 Calculation of the rate function

We solve the Hamiltonian Eq. 4.1 using the tilted LDP as mentioned in Chapter 2. We first

start with the calculation of the rate functionR(x1, x2) corresponding to the non-interacting

part of the Hamiltonian Hni = ∆
∑

i s
2
i −

∑
i(hi + H)si. Using the Gärtner-Ellis (GE)

theorem the expression of R(x1, x2) is

R(x1, x2) = sup
k1,k2

[
x1k1 + x2k2 − λ(k1, k2)

]
(4.4)

where the logarithmic cumulant generating function λ(k1, k2) for the random variables

x1 and x2 is given by
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(a) (b) (c)

(d) (e)

Figure 4.2: Ground state phase diagram for the trimodal distribution. Solid blue lines are
the lines of first order transition. The purple triangles denote the A7 points, black squares
are the A5 points and the red squares are the A6 points. (a) Is the phase diagram for the
pure Blume-Capel model (p = 1). In this case there is a first order transition from the
F (m = q = 1) to the NM (m = q = 0) phase at ∆ = 0.5. (b), (c) and (d) are the
phase diagram for 0 < p < 1. Each of the phase diagram contains six phases: F, F1
(m = q = 1+p

2
), F2 (m = q = 1−p

2
), F3 (m = p, q = 1), P (m = 0, q = 1 − p), and,

NM. All the phases are separated by first order transition lines. Fig.(b) shows the phase
diagram for p = 1

10
. This qualitatively holds for all 0 < p < 1

3
. Fig.(c) shows the phase

diagram for p = 1
3
and Fig.(d) shows the phase diagram for p = 1

2
, this qualitatively holds

for all 1
3
< p < 1. Fig. (e) is the phase diagram for p = 0, the bimodal random field

distribution. In this case, the phases F1 and F2 become equal and we call it F1=F2 phase.
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λ(k1, k2) =

〈
log
(
1 + 2ek2−β△ cosh(k1 + βH + βhi)

)〉
h

(4.5)

⟨⟩h represents the average over the random field distribution.

Minimization of the expression x1k1 + x2k2 − λ(k1, k2) in w.r.t the k1 and k2 gives the

following equations for the supremum (k∗
1 , k∗

2) as a function of x1 and x2

x1 =

〈
2ek

∗
2−β∆ sinh(βhi + βH + k∗

1)

1 + 2ek
∗
2−β∆ cosh(βhi + βH + k∗

1)

〉
h

(4.6)

x2 =

〈
2ek

∗
2−β∆ cosh(βhi + βH + k∗

1)

1 + 2ek
∗
2−β∆ cosh(βhi + βH + k∗

1)

〉
h

(4.7)

We then calculate the full rate function of the interacting Hamiltonian I(x1, x2) via tilted

LDP. The full rate function I(x1, x2) is given by

I(x1, x2) = R(x1, x2)−
βx2

1

2
− inf

y1,y2

(
R(y1, y2)−

βy21
2

)
(4.8)

After substituting R(x1, x2) we get

I(x1, x2) = x1k
∗
1 + x2k

∗
2 −

βx2
1

2
−

〈
log
(
1 + 2ek

∗
2−β△ cosh(k∗

1 + βH + βhi)
)〉

h

(4.9)

here (k∗
1, k∗

2) are given by the solutions of Eq. 4.6 and Eq. 3.1. Minimizing the full rate-

function w.r.t the order parameters (x1, x2) we get k∗
1 = βm and k∗

2 = 0. The variables m
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and q represent the minimum of x1 and x2 respectively. On substituting k∗
1 and k∗

2 in we get

the free energy functional to be

f(m) =
βm2

2
−

〈
log
(
1 + 2e−β△ cosh β(m+H + hi)

)〉
h

(4.10)

m =

〈
2e−β∆ sinh β(hi +H +m)

1 + 2e−β∆ cosh β(hi +H +m)

〉
h

(4.11)

Another order parameter is the quadrupole moment (q). It is the expectation value of s2i ,

given by q = 1
β
∂f(m)
∂∆

. Using that we get

q =

〈
2e−β∆ cosh β(hi +H +m)

1 + 2e−β∆ cosh β(hi +H +m)

〉
h

(4.12)

In the next part we solve the ground state phase diagram for both the distributions.

4.3 Ground state phase diagram

4.3.1 Trimodal distribution

Using the distribution P (hi) from Eq. 4.2 in Eq. 4.1, the free energy functional of the

system at H = 0 becomes

f(m) =
βm2

2
− p log

(
1 + 2e−β∆ cosh βm

)
− 1− p

2
log

(
1 + 2e−β∆ cosh β(−h+m)

)

− 1− p

2
log

(
1 + 2e−β∆ cosh β(h+m)

)
(4.13)
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Phases Ground state energy
NM :m = q = 0 E(m) = 0
F :m = q = 1 E(m) = ∆− 1

2

F1 : m = q = 1−p
2

E(m) = 1−p
2

(
∆− h− 1

4
(1− p)

)

F2 : m = q = 1+p
2

E(m) = 1+p
2

(
∆− 1

4
(1 + p)

)
− 1−p

2
h

P :m = 0, q = 1− p E(m) = (1− p)(∆− h)

F3 : m = p, q = 1 E(m) = ∆− (1− p)h− p2

2

Table 4.1: Ground state phases and their corresponding ground state energies for any general
0 ≤ p < 1 in trimodal RFBCmodel. There are four ferromagnetic phases F, F1, F2, F3,
one paramagnetic phase P and one non-magnetic phase NM.

For β → ∞, the ground state rate function given by, Φ(m) = lim
β→∞

1
β
f(m) is

Φ(m) =
m2

2
− p | m−∆ | Θ(m−∆)− 1− p

2
| m+ h−∆ | Θ(m+ h−∆)

− 1− p

2
| h−∆−m | Θ(h−∆−m)− 1− p

2
| m− h−∆ | Θ(m− h−∆)

(4.14)

hereΘ(x) is the Heaviside step function withΘ(x) = 1 for x > 0, andΘ(x) = 0 for x ≤ 0.

The disorder averaged ground state energy is E = min
m

Φ(m). As soon as the disorder is

switched on, depending on the conditions on∆ and h we found that there are six phases in

the ground state phase diagram for all 0 ≤ p < 1.

• For ∆ > m+ h and ∆ > m : the phase is non-magnetic phasem = q = 0, denoted

by NM.

• For ∆ < m + h and ∆ < m: the phase is ferromagnetic phase m = q = 1, denoted

by F.

• For ∆ > m− h and ∆ > m : the phase ism = q = 1−p
2
, denoted by F2.
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Figure 4.3: Ground state phase diagram for the Gaussian field distribution. Dotted line is
the line of first order transitions and solid line is the line of second order transitions. Solid
circle is the TCP. There is one ordered phase (m ̸= 0) and one disordered phase (m = 0) in
the phase diagram. The transition is first order for small σ. As σ increases, the transition
changes to second order at a TCP with the coordinates σTCP = ∆TCP =

√
2
eπ
.

• For ∆ > m− h and ∆ < m : the phase ism = q = 1+p
2
, denoted by F1.

• h > m+∆ and∆ > m : the phase is paramagnetic phasem = 0, q = 1−p, denoted

by P.

• For h > m+∆ and ∆ < m : the phase ism = p, q = 1, denoted by F3.

All the six phases with their corresponding ground state energy are listed in Table 4.1.

For high values of h, the spins are more likely to be s = ±1 and distributed equally

at the same time. So the phase becomes a paramagnetic phase (P). On the other hand, for

large ∆ and small h, the s = 0 spins dominate, hence the phase becomes non-magnetic

(NM). An ordered phase F3 exists for all large values of h and small ∆ because of the p

fraction of spins which are free from the disorder field. For both large values of ∆ and h,

the ordered phase F2 appears and it continues to exist for all large values of h ≈ ∆. This

phase appears due to the competition between the ∆ and h.

In the next paragraphs we will discuss about the phase diagrams for all 0 ≤ p < 1.
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4 Blume-Capel model with random field disorder

p = 1 : Pure Blume-Capel model

The case p = 1 corresponds to pure Blume-Capel model. In this case there are two phases

: one ordered F and one disordered phase NM, separated by a first order transition line at

∆ = 1
2
. The ground state phase diagram for p = 1 is shown in Fig. 4.2a.

General p : 0 < p < 1

For all 0 < p < 1, there six phases in the ground state state phase diagram. All the phases

are separated by first order transition lines. These lines are computed by comparing the

ground state energy of all the phases. For all 0 < p < 1 there are six first order phase

boundaries that are always present. These are : the F3 phase is separated from the F phase

by a first order transition line parallel to the∆ axis at h = 1+p
2
, phases F1 and F2 and phases

F and NM are separated via a first order transition line parallel to h axis at ∆ = 1
2
, phases

P and F3 are separated by a first order transition line parallel to h axis at∆ = p
2
. The phase

F2 is separated from phase NM via the first order transition line ∆ − h = 1
4
(1 − p). The

phase F2 is separated from the phase P via the first order transition line h−∆ = 1
4
(1− p).

The phases F and F1 are separated by the first order transition line given by the solution of

the equation (1− p)(∆+ h) = 1
4
(3− p2 − 2p). Apart from these there are some other first

order transition lines in the phase diagrams which depend on the range of p.

• 0 < p < 1
3 : For the range 0 < p < 1

3
, there are two more first order phase bound-

aries apart from the ones mentioned above. The phases F1 and P are separated by the

first order transition line given by the equation : (3p− 1)∆+ (1− p)h = 1
4
(1 + p)2.

Another is the first order phase boundary between the phases F and P given by the

equation : p∆ + (1 − p)h = 1
2
. At the junction of these first order transition lines

there are multi-phase coexistence points. There is one A7 point at the junction of

the F-NM-F1-F2 phases located at (∆ = 1
2
, h = 1+p

4
), and three A5 points at the
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Figure 4.4: Plot of m vs ∆ for T = 0.05 and field h = 0.45 for p = 1, 1
3
and 0. The first

order transition from the F to NM phase for the pure case (p = 1) gets replaced by two and
three first order transitions for bimodal (p = 0) and trimodal (fixed at p = 1

3
) distributions

respectively.

junction of F-P-F1 phases at (∆ = 1−p2−2p
4(1−2p)

, h = p3+2p2−5p+2
4(1−2p)(1−p)

), F-P-F3 phases at

(∆ = p
2
, h = 1+p

2
), and P-F1-F2 phases at (∆ = 1

2
, h = 3−p

4
). Fig. 4.2b shows the

ground state phase diagram for p = 1
10
. The purple triangle represents the A7 point

and the solid black squares represent the A5 points.

• p = 1
3 : For 0 < p < 1

3
regime we saw that there is always a first order transition

line given by the equation p∆ + (1 − p)h = 1
2

from F to the P phase which

was bounded by two A5 points ( at the junction of P-F1-F and F-P-F3 phases). At

exactly p = 1
3
, these twoA5 points coincide and become aA7 point and the first order

transition line between them vanishes. So instead of three A5 points there are now

twoA7 points and oneA5 point. TheA7 points are : one at the junction of F-P-F1-F3

located at (∆ = p
2
, h = 1+p

2
) and the other at the junction of the F-NM-F1-F2 phases

located at (∆ = 1
2
, h = 1+p

4
). The A5 point is located at the junction of P-F1-F2 at

(∆ = 1
2
, h = 3−p

4
). The phase boundary between the phase F1 and phase P is given

by the first order transition line with h = 1+p
2

parallel to the ∆ axis (see Fig. 4.2c).
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• 1
3 < p < 1 : For 1

3
< p < 1, the F1 phase penetrates in between the phases F-F3

and F3-P and the new A7 point now breaks into a A6 and a A5 point and a new first

order transition line (1 − p)(∆ − h) = 1
4
(3p2 − 2p − 1) emerges, separating the

phases F1 and F3 as shown in Fig. 4.2d for p = 1
2
. The red square represents the

A6 point and it is located at (∆ = 1−p
4
, h = 1+p

2
), at the junction of F-F3-F1 phases

and the new A5 point is located at (∆ = p
2
, h = 1+5p

4
) at the junction of P-F3-F1

phases. The phases F1 and P are again separated by the first order transition line

(3p− 1)∆ + (1− p)h = 1
4
(1 + p)2.

p = 0 : Bimodal RFBC

For the bimodal distribution (p = 0) there are four phases in the ground state. One ordered

F, one NM and one P phase. Another ordered phase emerges for high values of h and ∆.

The phases F1 and F2 become equal and becomes a single phase. We call this F1=F2 phase.

The first order transition lines separating these phases are similar to the ones described in

the Subsection 4.3.1. There are two A5 points at (∆ = 1
2
, h = 1

4
) and (∆ = 1

4
, h = 1

2
) at

the junction of NM-F-(F1=F2) and F-P-(F1=F2) phases respectively (see Fig. 4.2e).

4.3.2 Gaussian distribution

For the Gaussian distribution on the other hand the phase diagram is rather simpler. The

T = 0 rate function for RFBC is :

Φ(m) =
m2

2
− m

2

(
erf
(m+∆√

2σ

)
− erf

(−m+∆√
2σ

))

+
∆

2

(
2− erf

(−m+∆√
2σ

)
− erf

(m+∆√
2σ

))

− σ√
2π

(
exp
[
−(−m+∆)2

2σ2

]
+ exp

[
−(m+∆)2

2σ2

])
(4.15)
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Here erf(x) = 2√
π

∫ x

0
e−t2dt is the error function. The min

m
Φ(m) gives the disorder av-

eraged ground state energy. The expression of magnetization (m) and quadrupole moment

(q) from Eq. 4.11 and Eq. 4.12 after taking β → ∞ limit are

m =
1

2

(
erf
(m+∆√

2σ

)
− erf

(−m+∆√
2σ

))
(4.16)

q =
1

2

(
2− erf

(m+∆√
2σ

)
− erf

(−m+∆√
2σ

))
(4.17)

We find that there is one ordered phase with m ̸= 0 and one disordered phase with

m = 0. The quadrupole moment q changes continuously from q = 1 to q = 0 as ∆ goes

from 0 to ∞. Thus there is no transition in q. On expanding Eq. 4.15 around m = 0, we

get

Φ(m) = a02m
2 + a04m

4 + a06m
6 + a08m

8 + .... (4.18)

where,

a02 =
−
√
2e

−∆2

2σ2 +
√
πσ

2
√
πσ

a04 = −e
−∆2

2σ2
(∆2 − σ2)

12
√
2πs5

a06 = −e
−∆2

2σ2
(∆4 − 6∆2σ2 + 3σ4)

360
√
2πs9

a08 = −e
−∆2

2σ2
(∆6 − 15∆4σ2 + 45∆2σ4 − 15σ6)

20160
√
2πs13

(4.19)

This expansion can be used to determine the continuous transitions in the system. The

line of second order transition is given by a02 = 0, provided a04 > 0. This gives the line of
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(a) 0 ≤ h < 0.257 (b) 0.257 ≤ h < 0.275 (c) 0.275 ≤ h < 0.452

(d) 0.452 ≤ h < 0.476 (e) 0.476 ≤ h < 0.5275 (f) 0.5275 ≤ h < 0.5281

(g) 0.5281 < h < 0.725 (h) h > 0.725

Figure 4.5: T −∆ phase diagram for different ranges of h for p = 1
10
. The solid line is the

loci of continuous transitions and the dotted line is the loci of first order transitions, solid
stars are the BEPs, solid circles are the TCPs, solid squares are the A5 points. There are
eight different phase diagrams depending on the range of h.
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Figure 4.6: Plot of the magnetization (m) as a function of ∆ corresponding to the Fig. for
p = 1

10
at a fixed h = 0.8 at two different temperatures. At T = 0.25 the magnetization

shows two continuous transitions, first from P phase to F2 and then to the NM phase. At
T = 0.02, for low ∆ there is an ordered phase (F3) due to the presence of p fraction of
magnetic spins. As ∆ increases, the phase undergoes a first order transition to P phase.
The phase P again undergoes a first order transition to F2 phase which is separated from
the NM phase by another first order transition line.

continuous transition to be

σc =

√
2

π
exp
(
−∆2

c

2σ2
c

)
(4.20)

This is valid as long as a04 > 0. For a04 ≤ 0we cannot ignore higher order terms in Eq. 4.18.

We find a02 = a04 = 0 at σTCP = ∆TCP =
√

2
eπ

= 0.483941. Since a06 > 0 at this point,

this is a tricritical point(TCP). It is shown in Fig. 4.3 by a solid circle. So the transition is

second order for σTCP < σ ≤ 1. For σ < σTCP , a04 < 0 and the three phases coexist. The

transition becomes first order for 0 ≤ σ < σTCP and the transition line can be found by

equating the free energy and its first derivatives w.r.tm on both sides. For σ → 0, the first

order transition line cuts the ∆ axis at ∆ = 1
2
. The phase diagram is shown in Fig. 4.3.
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4.4 Finite temperature phase diagrams

We observed that the ground state phase diagram are completely different for different sym-

metric distribution. In this Section we discuss about the finite temperature phase diagram

for both the distributions.

4.4.1 Trimodal distribution

We saw that for T = 0, there were five different phase diagrams depending on the value of

p. One interesting and non-trivial part of the phase diagram was the presence of multiple

ordered phases separated by first order transition lines. For finite temperature, the model

exhibits phase diagrams which show re-entrance and multiple phase transitions between the

ordered phases. We find that the phase diagrams can be classified into five categories just

like for T = 0. At finite temperature, multiple first order transition lines emerge separat-

ing the different ordered phases discussed in Sec. 4.3.1. At low temperatures, the system

undergoes two and three first order transitions as a function of both ∆ and h for bimodal

(p = 0) and trimodal (0 < p < 1) distributions respectively (see Fig. 4.4 as a function of

∆). Also, the system exhibits multiple TCPs. The origin of two of them is easy to under-

stand. One corresponds to the TCP present in the pure Blume-Capel model and the second

one is the ∆ → −∞ TCP present in the RFIM with bimodal distribution. Besides these

two other TCPs appear in the model. It also has BEPs and CEPs and nth order coexistence

points denoted by An.

The magnetization in the system satisfies the fixed point equation ∂f(m)
∂m

= 0, where

f(m) is the functional given by Eq. 4.13. This gives the following self-consistent equation

for m

m

a
=

1− p

2

(
y2x2 − 1

yx+ ay2x2 + a
+

x2 − y2

xy + ax2 + ay2

)
+ p

x2 − 1

x+ ax2 + a
(4.21)
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(a) −∞ < ∆ ≤ 0.05 (b) 0.05 < ∆ ≤ 0.238 (c) 0.238 < ∆ < 0.247

(d) 0.247 ≤ ∆ < ln 4/3 (e) ln 4/3 ≤ ∆ ≤ 0.493 (f) 0.493 < ∆ < 1
2

(g) ∆ > 1
2

Figure 4.7: T −h phase diagram for different regimes of∆ for p = 1
10
. The solid line is the

line of second order transitions, the dotted lines are lines of first order transition, solid stars
are the BEPs, solid circles are the TCPs, solid squares are the A5 points and green circles
are CEPs. There are seven different phase diagrams depending on the range of ∆.
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Figure 4.8: Plot of the magnetization (m) as a function of h corresponding to the Fig.
at ∆ = 0.8 and p = 1

10
at two different temperatures. At T = 0.2 the magnetization

undergoes two second order transitions, NM to F2 phase and F2 to P phase. At T = 0.02,
the magnetization shows two first order jumps.

here a = e−β∆, x = eβ(m+H) and y = eβh.

Linearizing Eq. 4.21 aroundm = 0, we get the line of continuous transition as

1

2β
=

ap

2a+ 1
+

(1− p)a(2a+ z1)

(1 + 2az1)2
(4.22)

where zn = coshnβh. This equation is valid only as long as the coefficients of the third

order term in the expansion of Eq. 4.21 in powers ofm is positive.

At TCP the line of continuous transitions (known as the λ line) given by Eq. 4.22 meets

the two other lines of continuous transitions in the T −∆−H space [162, 213]. These are

the λ± lines. At a TCP the λ, λ+ and λ− lines meet in the T − ∆ plane. TCP is also the

end point of the λ line given by equating the second and fourth coefficient to zero in the

power series expansion of f(m) for H = 0. The BEP occurs when the λ+ and λ− lines do

not meet the λ line, and instead meet at a point in the ordered region in the T − ∆ plane.

In order to locate the BEP we use the general condition of criticality by equating the first

three derivatives of the free energy to zero (f ′(m) = f ′′(m) = f ′′′(m) = 0) along with the

condition, f ′′′′(m) > 0. We get the following two equations by equating f ′′(m) = 0 and
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f ′′′(m) = 0 respectively

1− p

2

(
4ayx+ y2x2 + 1

(yx+ ay2x2 + a)2
+

4axy + x2 + y2

(xy + ax2 + ay2)2

)
y + p

4ax+ x2 + 1

(x+ ax2 + a)2
=

1

βax

(4.23)

1− p

2

(
(xy − 8a2yx− ay2x2 − a)(x2y2 − 1)

(yx+ ay2x2 + a)3
+

(xy − 8a2yx− ax2 − ay2)(x2 − y2)

(yx+ ax2 + ay2)3

)
y

+p
(x− 8a2x− ax2 − a)(x2 − 1)

(x+ ax2 + a)3
= 0

(4.24)

Numerically solving Eq.4.21, Eq.4.23 and Eq.4.24 simultaneously for T , ∆ and h by

taking H = 0 we find the coordinates of the point of intersection of the λ± lines. Ifm = 0

at the point of intersection, then it is a TCP, else it is a BEP.

We have studied the entire range of p and we find many different phases, depending on

the values of T ,∆ and h. We give the details of all possible phase diagrams in this section.

Phase diagram of pure Blume-Capel model : p = 1

The phase diagram of the pure Blume-Capel model in the T −∆ plane is well known . It

is similar to Fig. 4.3 , with x−axis being the temperature T . There is a line of second order

transition which meets the line of first order transition at a TCP (TBC = 1
3
, ∆BC = ln 4

3
).

The first order transition line continues till T = 0, with the first order transition at ∆ = 1
2

for T = 0.

Phase diagrams for p = 1
10

Fig. 4.5 shows different phase diagrams in the T − ∆ plane for different ranges of h for

p = 1
10
. There are eight different phase diagrams depending on the value of h. For 0 ≤
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(a) 0 ≤ h < 0.325 (b) 0.325 ≤ h < 0.33 (c) 0.33 ≤ h < 0.333

(d) 0.333 ≤ h < 0.6079 (e) 0.6079 ≤ h ≤ 0.63 (f) 0.63 < h < 0.658

(g) 0.658 ≤ h < 0.66 (h) 0.66 ≤ h < 0.666 (i) h > 0.666

Figure 4.9: T −∆ phase diagram for different regions of h for p = 1
3
. The solid line are the

lines of second order transitions, the dotted lines are the lines of first order transitions, solid
stars are the BEPs, solid circles are the TCPs and solid squares are the A5 points. There are
nine different phase diagrams depending on the range of h.
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(a) −∞ < ∆ ≤ 0.154 (b) 0.154 < ∆ < 0.163 (c) 0.163 ≤ ∆ < 0.167

(d) 0.167 ≤ ∆ < 0.18 (e) 0.18 ≤ ∆ < ln 4/3 (f) ln 4/3 ≤ ∆ < 0.498

(g) 0.498 ≤ ∆ < 1
2 (h) ∆ > 1

2

Figure 4.10: T − h phase diagram for different regimes of ∆ for p = 1
3
. The solid lines

are the lines of second order transitions, the dotted lines are first order transitions, the solid
stars are the BEPs, the solid circles are the TCPs, solid squares are the A5 points and red
squares are the A6 points. There are eight different phase diagrams depending on the range
of ∆.
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h < 0.257, the phase diagram is similar to the pure model (see Fig. 4.5a). As h increases,

new multicritical points arise. For 0.257 ≤ h < 0.275, another first order transition line

emerges (shown by dotted lines) separating F-F1 phases, which ends at a BEP. The two first

order transition lines meet at a A5 point (Fig. 4.5b ). For 0.275 ≤ h < 0.452, the phase

diagram consists of three first order transition lines separating F-F1, F1-F2 and F2-NM

phases respectively as ∆ increases (see Fig. 4.5c ). For 0.452 ≤ h < 0.476 (shown in Fig.

4.5d ), the λ line (shown by a continuous line) separates into two parts, which are connected

by a first order transition line. This gives rise to three TCPs in the system. As we increase

h further, one of the TCP vanishes and the phase diagram consists of two TCPs and two

BEPs (see Fig. 4.5e). For 0.5275 ≤ h < 0.5281 one of the BEP gets replaced by aA5 point

(Fig. 4.5f).

At ∆ = 0.5281 the A5 point moves to T = 0 and the phase diagram divides into two

parts. The ordered phase F3 exists for small ∆. And for large ∆ the phases F1 and F2 are

separated by a first order transition line which ends at a BEP. These phases are bounded by

the two disordered phases : for higher ∆ the phase is NM and the intermediate disordered

phase between the two parts is P (Fig. 4.5g). For h > 0.725, the BEP vanishes and the

phase diagram contains two TCPs (see Fig. 4.5h). The plot of the magnetization for Fig.

4.5h is shown in Fig. 4.6.

The T − h phase diagrams for different values of ∆ are shown in Fig. 4.7. There

are seven different phase diagrams depending on the value of ∆. For −∞ < ∆ < 0.05,

the phase diagram consists two lines of continuous transition, a TCP and a CEP. The F3

phase occurs at low T bounded by a line of second order transitions. This second order

transition line meets the first order transition line at a CEP (shown in Fig. 4.7a). CEP is a

point where a second order transition line abruptly terminates onto a first order transition

line. As ∆ increases, the CEP vanishes (Fig. 4.7b). On increasing ∆ further, a first order

transition line arises separating F-F1 phases and ends at a BEP (Fig. 4.7c, ). At exactly
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(a) 0 ≤ h < 0.374 (b) 0.374 ≤ h < 0.378 (c) 0.378 ≤ h < 0.4

(d) 0.4 ≤ h < 0.577 (e) 0.577 ≤ h ≤ 0.6 (f) 0.6 ≤ h < 0.625

(g) 0.625 ≤ h < 0.875 (h) h > 0.875

Figure 4.11: T −∆ phase diagram for different regimes of h for p = 1
2
. The solid line is the

line of second order transition, the dotted lines are first order transitions, the solid stars are
the BEPs, solid circles are the TCPs, black solid squares are the A5 points and green circles
are the CEPs. There are eight different phase diagrams depending on the range of h.
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∆ = ∆BC = ln 4/3, another TCP emerges at β = 3 and h = 0, corresponding to the TCP

of the pure model. For∆BC ≤ ∆ ≤ 0.493, there are two TCPs and one BEP (see Fig. 4.7d

). As ∆ increases further, the BEP turns into a A5 point (Fig. 4.7e).

Fig. 4.7f is the phase diagram for ∆ > 0.5. There is only one ordered phase F2 which

exists for high values of h. This phase is separated from the two disordered phases by

two first order transition lines with P phase for higher h and NM phase for lower h. The

behaviour of the magnetization for some fixed values of T along the h axis is shown in Fig.

4.8.

For all p < 1
3
we find similar phase diagrams. Although, depending on p, the exact

location of the transitions for different phase diagram changes.

Phase diagrams for p = 1
3

Fig. 4.9 shows the different phase diagrams in the T −∆ plane for different ranges of h for

p = 1
3
. There are now nine different phase diagrams. Four of the phase diagrams (Fig. 4.9a,

Fig. 4.9b, Fig. 4.9d and Fig. 4.9e) are similar to the phase diagrams for p = 1
10
(Fig. 4.5a

- Fig. 4.5d ). In the intermediate values of h between Fig. 4.9b and Fig. 4.9d, the phase

diagram has three first order lines, two of them are inside the ordered region separating the

phases F-F1 and F1-F2. These two lines start at differentA5 points and end at two different

BEPs (see Fig. 4.9c). For 0.63 < h < 0.658, the phase diagram consists of three BEPs and

two TCPs, see Fig. 4.9f. As h increases, one BEP turns into a A5 point (Fig. 4.9g) and as

h increases further another BEP turns into a A6 point (Fig. 4.9h). Finally, for all h > 2
3
,

there is always an ordered phase F2 for large ∆ separated from the disordered phases by

two first order transition lines, and another ordered phase F3 for small ∆. Thus there are

three TCPs in this range of h (see Fig. 4.9i).

Similarly, the projection of the phase diagrams in the T − h plane can be divided into

eight categories depending on the ranges of ∆, shown in Fig. 4.10. Four of the phase
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(a) −∞ < ∆ ≤ 0.116 (b) 0.116 < ∆ < 0.125 (c) 0.125 ≤ ∆ < 0.23

(d) 0.23 ≤ ∆ < 0.25 (e) 0.25 ≤ ∆ < 0.255 (f) 0.255 ≤ ∆ < ln 4/3

(g) ln 4/3 ≤ ∆ < 0.4988 (h) 0.4988 ≤ ∆ < 1
2 (i)∆ > 1

2

Figure 4.12: T −h phase diagram for different regimes of h for p = 1
2
. The solid line is the

line of second order transitions, dotted lines are the lines of first order transitions, solid stars
are the BEPs, solid circles are the TCPs, black squares are the A5 points and red squares
are the A6 points. There are nine different phase diagrams depending on the range of ∆.
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(a) 0 ≤ h < 0.2382 (b) 0.2382 ≤ h < 0.25 (c) 0.25 ≤ h < 0.414

(d) 0.414 ≤ h < 0.4389 (e) 0.4389 ≤ h < 0.4927 (f) 0.4927 ≤ h < 0.5

(g) h > 0.5

Figure 4.13: T −∆ phase diagram for different ranges of h for p = 0. The solid line is the
loci of continuous transitions and the dotted line is the loci of first order transitions, solid
stars are the BEPs, solid circles are the TCPs, solid square is the A5 point. There are seven
different phase diagrams depending on the range of h.
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diagrams (Fig. 4.10e, Fig. 4.10f, Fig. 4.10g and Fig. 4.10h) are similar to the T − h

phase diagrams of the p = 1
10

case (Fig. 4.7d, Fig. 4.7e, Fig. 4.7f and Fig. 4.7g). For

−∞ < ∆ ≤ 0.154, there is one first order transition line separating F-F3 phases ending

at a BEP. The F3 phase exists for all values of h (Fig. 4.10a). For 0.154 < ∆ < 0.163, a

TCP arises (Fig. 4.10b). For 0.163 ≤ ∆ < 0.167 another first order transition line appears

separating F1-F3 phases, and the two first order transition lines meet at a A6 point, see Fig.

4.10c. As ∆ increases further, two of the first order transition lines meet at a A5 point and

the phase diagram now has no ordered phases at low T for high values of h (Fig. 4.10d).

We find re-entrance in the phase diagrams shown in Fig. 4.10c and Fig. 4.10d. We have

studied the magnetization, susceptibility, free energy and specific heat in the re-entrance

region. The details are given in Sec. 4.5.

Phase diagrams for p = 1
2

The Fig. 4.11 shows the different phase diagrams in the T −∆ plane for different ranges of

h for p = 1
2
. There are eight different phase diagrams depending on the ranges of h. Three

of them, Fig. 4.11a, Fig. 4.11d and Fig. 4.11e are similar to the T −∆ phase diagrams of

p = 1
3
(Fig. 4.9a, Fig. 4.9d and Fig. 4.9i). For 0.375 < h < 0.378, there are three first order

transition lines separating F-F1, F1-F2 and F2-NM phases. The phase diagram contains

one BEP, one TCP and one A5 point (Fig. 4.11b). As h increases, the TCP breaks into a

CEP and a BEP. Thus there are two BEPs, one A5 point and one CEP for 0.378 ≤ h < 0.4

(see Fig. 4.11c). For 0.4 ≤ h < 0.577, the CEP and the A5 point vanish (Fig. 4.11f) and a

TCP emerges. For 0.577 ≤ h ≤ 0.6, the second order transition line breaks into two parts

and one BEP turns into a new TCP and a CEP (Fig. 4.11g). For 0.6 ≤ h < 0.625, the CEP

breaks up into another TCP and a A5 point and there are three TCPs, one BEP and one A5

point in the phase diagram (Fig. 4.11h).

In the T − h plane projection (Fig. 4.12), there are nine different phase diagrams de-
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pending on the ranges of ∆. Six of them (Fig. 4.12a and Fig. 4.12e - 4.12i) are similar

to the T − h phase diagrams for p = 1
3
(Fig. 4.10a and Fig. 4.10d - Fig. 4.10h). For

0.116 < ∆ < 0.125, another first order transition line appears and the phase diagram con-

sists of two BEPs and oneA6 point, see Fig. 4.12c. For 0.23 ≤ ∆ < 0.25 one TCP emerges.

Thus there are two BEPs and one TCP, see Fig. 4.12d.

Phase diagrams for p = 0

The bimodal distribution has been previously studied for the T − h plane and the T − ∆

plane in [205] and [206] respectively. In [206] the T −∆ plane phase diagram was reported

for some distinct values of h. In Fig. 4.13 we show the T − ∆ phase diagram for p = 0.

There are seven different phase diagrams depending on the values of h. We re-obtain the

five phase diagrams mentioned in [206] shown in Fig. 4.13a, Fig. 4.13c, Fig. 4.13e - 4.13g.

We find two additional phase diagrams, one for 0.2382 ≤ h < 0.25 similar to Fig. 4.13b

and another for 0.414 ≤ h < 0.4389 as shown in Fig. 4.13d, consist of three TCPs and one

BEP. The phase diagram in Fig. 4.13d appears due to the non-monotonic behaviour of the

locus of TCP. We will discuss this further in Sec. 4.6.

We find that, in the T −h plane there are six different phase diagrams depending on the

values of∆ shown in Fig. 4.14. Five of these phase diagrams Fig. 4.14a, Fig. 4.14c - 4.14f

are similar as reported in [205]. In addition we find that for 0.244 < ∆ < 0.25, there is a

phase diagram shown in Fig. 4.14b. These phase diagrams are similar to Fig. 4.7b - 4.7g

for p = 1
10
in the T − h plane.

4.4.2 Gaussian distribution

Unlike the trimodal case, the phase diagrams in T − ∆ and T − h plane for Gaussian

distribution contain only one TCP.

Free energy functional for the Gaussian distribution at H = 0 is,
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(a) 0.0 < ∆ ≤ 0.244 (b) 0.244 < ∆ < 0.25 (c) 0.25 ≤ ∆ < ln 4/3

(d) ln 4/3 ≤ ∆ ≤ 0.4929 (e) 0.4929 < ∆ < 1
2 (f) ∆ > 1

2

Figure 4.14: T − h phase diagram for different regimes of ∆ for p = 0. The solid line is
the line of second order transitions, the dotted lines are lines of first order transition, solid
stars are the BEPs, solid circles are the TCPs, and solid squares are the A5 points. There
are six different phase diagrams depending on the range of ∆.
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(a)∆ = 0.3 (b) ∆ = 0.465

Figure 4.15: Plot of the Landau coefficients a4 and a6 when a2 = 0 in the β−σ plane. Fig.
(a) shows the plot for ∆ = 0.3. Here a4 is always positive at the coordinates of a2 = 0.
So the transition is always second order. Fig. (b) shows the plot for ∆ = 0.465. For high
values of σ, the a4 is positive. So the transition is second order for this range of σ. As σ
decreases, a4 crosses a4 = 0 at σth = 0.16 and βth = 3.2499 provided a6 > 0. So the
second order transition ends at a TCP and becomes first order transition for 0 ≤ σ < 0.16.
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f(m) =
βm2

2
− 1√

2πσ2

∫ ∞

−∞
log
(
1 + 2e−β△ cosh β(m+ hi)

)
e

−h2i
2σ2 dhi (4.25)

Expanding Eq. 4.25 aroundm = 0 upto 8th order we get the following Landau coeffi-

cients

a2 =
β

2
− aβ2

√
2πσ2

∫ ∞

−∞

z1 + 2a(
1 + 2az1

)2 e−
h2

2σ2 dh (4.26)

a4 =
aβ4

12
√
2πσ2

∫ ∞

−∞

4a(4a2 − 1)(1− z2)− a2(z3 − 16a) + (13a2 − 1)z1(
1 + 2az1

)4 e−
h2

2σ2 dh

(4.27)

a6 = − aβ6

360
√
2πσ2

∫ ∞

−∞

(
6a(352a4 − 69a2 + 1) + (898a4 − 146a2 + 1)z1

− 26a(64a4 − 20a2 + 1)z2 − 3a2(113a2 − 33)z3

+ 2a3(32a2 − 13)z4 + a4z5

)(
1 + 2az1

)−6

e−
h2

2σ2 dh

(4.28)

where a = e−β∆ and zn = coshnβh.

Integrating a2 numerically and then equating it to zero, we get the line of continuous

transition, provided that a4 > 0 at those coordinates. Similarly, integrating a4 at the coordi-

nates of a2 = 0 and then equating it to zero gives the location of the TCP, provided a6 > 0.

In order to obtain the coordinates of the λ line and the TCP in the T − σ plane and T −∆

plane we plot the values of the a4 and a6 coefficients after substituting the coordinates for

which a2 = 0 for different values of ∆ and σ respectively.
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Figure 4.16: Phase diagrams of the Gaussian RFBC model. The solid lines are the lines
of second order transition and the dotted lines are the first order transition lines. Solid
circles are the TCPs. (a) Is the T − ∆ phase diagram for different values of σ. For σ <
σTCP ≈ 0.4839 the phase diagram exhibits a TCP. This TCP moves to T = 0 at σTCP . For
σ > σTCP there is only a line of continuous transition in the phase diagram. (b)Denotes the
T−σ phase diagram for different values of∆. Below∆ = ∆BC = ln 4

3
≈ 0.462098, there is

only a line of second order transition. For∆ > ∆BC , TCP emerges and moves to T = 0 at
∆TCP = σTCP ≃ 0.4839. There are only first order transition lines for 0.5 ≥ ∆ > ∆TCP .
For ∆ > 0.5, there is no ordered state and hence no transition.

To illustrate the procedure, in Fig. 4.15 we plot the a4 and a6 values for the condition

a2 = 0 at two values of ∆. Fig. 4.15a shows the plot of a4 and a6 for fixed ∆ = 0.3.

In this case a4 > 0 and the transition is always second order. Fig. 4.15b shows the plot

for ∆ = 0.465. Here we find a4 > 0 for σ > 0.16. At σth = 0.16 and βth = 3.2499,

a4 = 0with a6 > 0. This hence is the locus of the TCP. For σ < σth the transition is always

first order. The coordinates of the first order transition can be found by equating the free

energies (f(m = 0) = f(m ̸= 0)) and also their first order derivative on both side. We use

this method to obtain the phase diagram in the entire T − σ and T −∆ planes by fixing the

values of ∆ and σ respectively.

We find that for small values of σ, the transition in theT−∆ plane is second order at high

temperature and first order at low temperature. These two transition lines meet at a TCP.

As σ increases, the first order transition line decreases and above σc =
√

2
eπ

∼ 0.483941..,
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Figure 4.17: Thermodynamic quantities near the re-entrance regime of Fig. for p = 1
3
at

∆ = 0.165. Fig. (a) shows themagnetization (m), spin density (q) and entropy as a function
of T for h = 0.708. The magnetization at the second order transition at Tc = 0.131407 fits
with the scaling function 2.008 | T − Tc |0.5 and the second transition at Tc = 0.1615509
fits with the scaling function 0.628833 | T − Tc |0.5. Fig. (b) is the susceptibility (χ) plot.
χ shows two divergences at the two continuous transition points and the inset shows the
discontinuity in χ at the low T due to the first order transition. Fig. (c) is the plot of the
specific heat (Cv). There are three jumps in the Cv plot at the three transition points.

the transition becomes second order. This is same as the value of σTCP in Sec. 4.3.2. There

σTCP was the TCP value of σ for T = 0, below which the transition is always first order.

For σ < σc, there is always a TCP in the T −∆ phase diagram shown in Fig. 4.16a.

Similarly in the T −σ plane, the phase diagram consists of a second order transition for

∆ < ∆BC(=
ln 4
3
), which is the value of ∆ at the TCP of pure BC model. For ∆ ≥ ∆BC ,

one TCP emerges in the phase diagram and the phase diagram consists of first and a second

order transition lines meeting at a TCP. The TCP moves to lower temperature with the

increasing∆. At exactly∆ = ∆TCP =
√

2
eπ

∼ 0.483941.. (TCP value at T = 0), the TCP

moves to zero and there is only a first order transition line in the phase diagram (shown in

Fig. 4.16b). For ∆TCP < ∆ ≤ 1
2
, the transition is always first order and for ∆ > 1

2
, there

is no transition in the T − σ plane.

In a recent study of spin-s random field Blume Capel model using the Gaussian dis-

tribution using effective field theory only continuous transition lines were reported [249].

They did not find the lines of first order transition and the TCP.

Interestingly, it can be seen that similar to the ground state phase diagram, the finite
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Figure 4.18: Thermodynamic quantities near the re-entrance regime of Fig. for p = 1
3
at

∆ = 0.17. The blue solid line is for h = 0.692 and red solid line is for h = 0.665. Fig.
(a) shows the magnetization (m). At h = 0.692, the phase diagram shows re-entrance inm
and for h = 0.665 m has two transitions : a first order transition at lower temperature and
a continuous transition at higher temperature. Fig. (b) the susceptibility (χ) is plotted for
both the values of h. It confirms the nature of transition inm. Fig. (c) and Fig. (d) are the
plot of the specific heat (Cv) for h = 0.692 and h = 0.665 respectively. Cv is discontinuous
at all transition points.
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temperature phase diagrams are also different for different distributions. This behavior of

the spin-1 RFBCmodel contradicts the conjecture for the random fieldO(n)models. Apart

from this there are some other novel features that emerge for the trimodal RFBC model. In

the following sections we will discuss about them in details.

4.5 Re-entrance for equal peak trimodalRFBCmodel (p =
1
3)

Re-entrance is a phenomena where a more ordered phase becomes stable than a less or-

dered phase as temperature increases. Usually it is expected that as temperature increases,

the ordered state of a system like crystalline or ferromagnetic state should transform to a

disordered state like fluid or paramagnetic state respectively. But for re-entrance phenom-

ena for some values of the thermodynamic parameter the disordered phase transforms to an

ordered state as temperature increases. Due to this reason it is also known as inverse melting

or inverse freezing transition. This behaviour happens when the entropy of the ordered state

becomes more than the disordered phase, as temperature increases. Re-entrance has been

observed experimentally in different systems. Some of the examples where such inverse

transitions can be seen are : ferroelectricity in Rochelle salt [250], high T superconductors

[251], polymer solutions [252, 253, 254, 255], colloidal mixtures [256], cold denaturation

in proteins [257, 258] and so on. There are some theoretical models which has been studied

to explain such behaviors observed experimentally in the above examples [259, 260, 261].

Spinmodels in presence of random interactions has been shown to incorporate all the feature

of inverse melting transitions [262, 155, 156, 157]. Such models are beneficial because of

their simplicity and yet gives a broad insight about the inverse transitions. The mean-field

Blume-Capel model are known to show re-entrance in the presence of strong degeneracy

of the s = ±1 spins [155, 156].

In our case the RFBC model shows re-entrance in presence of trimodal distribution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.19: The plot of the free energy functional around the multi-phase coexistence
points. (a) - (c) Shows the plot of the free energy functional around and at the A5 points for
p = 1

2
. TheA5 point is situated at∆A5 = 0.4999, βA5 = 23.66 and hA5 = 0.377. (a) Shows

the plot at hA5, βA5 ∆ < ∆A5, (b) is at theA5 point, and (c) for hA5, βA5 ,∆ > ∆A5. (d)
- (f) Shows the plot of the free energy functional around and at theA6 points for p = 1

2
(only

the positive m side is shown here). The A6 point is situated at ∆A6 = 0.12, βA6 = 17.15
and hA6 = 0.74996. (d) Shows the plot for βA6 , ∆A6, h < hA6, (e) is at the A6 point, and
(f) for h > hA6, βA6 , ∆A6. (g) - (i) Shows the plot of the free energy functional around
and at the A7 points for p = 1

3
. The A7 point is at ∆A7 = 0.1666 and hA7 = 0.6666. (g)

Shows the plot for h < hA7, ∆A7, (h) at the A7 point, and (i) for h > hA7, ∆A7.
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For the p = 1
3
, the T − h plane phase diagram shows re-entrance of the ordered phase for

certain values of ∆. For example, in Fig. 4.10c and Fig. 4.10d the phase diagram shows

re-entrance.

We study some thermodynamic quantities near the re-entrance regions (marked with

red cross in 4.10c and Fig. 4.10d) in order to understand the underlying mechanism. The

4.10c shows the double re-entrance phenomena of the phases ordered-disordered-ordered-

disordered as T increases. In Fig. 4.17, we plot of the two order parameters : magnetization

(m) and spin density q, entropy, susceptibility (χ) and specific heat (Cv) for h = 0.708 and

∆ = 0.165 (see Fig. 4.10c). In 4.17a them shows a first order jump at low T from F3 to P

then a small ordered region F3 appears for higher T (shown by solid red line). Similarly q

shows a first order jump for low T . As T increases the q increases and shows a maxima near

the re-entrant F3 phase, then again decreases with increasing T (shown by solid blue line).

From the corresponding entropy plot (shown by solid green line) it can be explained that as

T decreases, the s = ±1 increases and thus entropy decreases. For further decrease in T ,

the energy gain due to s = ±1 spins is unable to compensate the entropy loss and thus the

system chooses to increase the entropy by increasing the density of s = 0 spins. And thus

the system becomes paramagnetic. Near the two continuous transition the m can be fitted

with the scaling function 2.008 | T −Tc |0.5 with Tc = 0.131407 and 0.628833 | T −Tc |0.5

with Tc = 0.1615509 respectively. Both continuous transitions lie in the mean-field Ising

universality class.

In Fig. 4.18 we plot the magnetization(m), susceptibility(χ) and specific heat plot(Cv)

for two fixed values of h = 0.692, 0.695 at ∆ = 0.17 (see Fig. 4.10d). The red and blue

curves show the thermodynamic quantities for h = 0.692 and h = 0.665 respectively. For

h = 0.692 a small ordered region F3 appears for higher T , showing re-entrance. Whereas

for h = 0.665, the magnetization (m) undergoes two transitions, a first order at low T and

a continuous transition at higher T as shown in Fig. 4.18a. There is no re-entrance in the
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Figure 4.20: Projection of the coordinates of the TCPs in the T −∆, T −h and∆−h plane
respectively for different values of p. (a), (b) and (c) shows the projections for p = 1

10
. (d),

(e) and (f) shows the projections for p = 1
3
. (g), (h) and (i) shows the projecions for p = 1

2
.

magnetization in this case.

4.6 Multicritical points andmulti-phase coexistence points
for trimodal RFBC model

For the trimodal random field distribution, the RFBC model exhibits six phases, multicriti-

cal points like BEP, CEP and multi-phase coexistence points like A5, A6 and A7 along with

the TCPs.
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4.6.1 Multi-phase co-existence points

Fig. 4.19 shows the plot of the free energy functional around the multi-phase coexistance

points. A5 point is a five phase coexisting point : two ordered and one disordered, shown

in Fig. 4.19a - 4.19c. At the A5 point the Landau co-efficients are: a4 is negative, and all

the other coefficients (a2, a6, and a8) are positive. This point exists for all 0 ≤ p < 1. The

existence of this multi-phase coexistence point was reported earlier in [205] and [206]. On

the other hand, A6 point is a six phase coexisting point : three ordered phase, shown in Fig.

4.19d-4.19f. This point persists for all 1
3
≤ p < 1. AndA7 point is a seven phase coexisting

point: three ordered and one disordered, shown in 4.19g-4.19i. At the A7 point the Landau

co-efficients are: a2 is positive, and all the other coefficients (a4, a6, and a8) are negative.

This is observed for all 0 < p < 1. For only p = 1
3
the A7 point emerges twice.

4.6.2 TCPs and BEPs

The multicritical points like BEP and TCPs emerges in multiple number depending on the

values of p. In Fig. 4.20 we plot the projection of the co-ordinates of the TCPs for different

values of p on the T −∆, T −h, and∆−h plane respectively. We have not shown the pure

case (p = 1) as there is only one TCP which appears at T = 1
3
, ∆ = 0.462098, h = 0. As

we switch on disorder by taking p less than 1, the coordinate of this TCP (we call it as TCP1)

increases monotonically in ∆ as h increases, shown by solid purple lines. Another line of

TCP emerges for all 0 ≤ p < 1 (we call it as TCP2) represented by the solid green line.

Fig. 4.20a- 4.20c shows the projections for p = 1
10
, Fig. 4.20d- 4.20f shows the projections

for p = 1
3
, and Fig. 4.20g- 4.20i shows the projections for p = 1

2
. For all values of p the

trajectories of the TCP2 co-ordinate shows non-monotonicity. The non-monotonicity of the

TCP2 lines are more sensitive to the ∆ and h than T .

In order to understand the origin of the multiple BEP and TCPs we projected the coor-
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dinates of TCPs and BEPs on the ground state phase diagram in the∆−h plane (Fig. 4.21).

The solid blue line shows the phase boundaries in the ground state, black and purple dashed

lines are the projections of the coordinates of the TCP1 and TCP2s and red, blue and green

dotted lines are the projections of the coordinates of the BEPs. Fig. 4.21a is the plot for

the projection of the TCP and BEP coordinates for p = 1
2
. The TCP1 line moves along the

phase boundaries of F1 - NM , F1 - NM and F2 - NM . And the TCP2 line moves along

the phase boundaries of F2 - P , F1 - P and F3 - P . Along with the TCP2 line, three BEP

lines also emerge along the separation of the phases F-F3, F-F2, F-F1, F1-F3 denoted by

blue, red and green dotted lines respectively.

On further decreasing p, the BEP line along the phase separations of F3-F1 vanishes

and there are now three BEP lines along the phase separation lines of F1-F2 and F-F3

and F-F1. The TCP1 behaves similarly to the p = 1
2
case. And the TCP2 starts from

(∆ ≃ p
2
, h → ∞). As h decreases, the TCP2 line remains close to ∆ ≃ p

2
until h ≃ 1+p

2
.

Below h ≃ 1+p
2
, the TCP2 line shows an extrema at ∆ ≈ 0.375, h ≈ 0.607, T ≈ 0.24 and

then increases in∆ as h increases. Due to this extrema the TCP2 line shows non-monotonic

behaviour. Fig. 4.21b shows the projection of the BEPs and TCPs for p = 1
3
.

For p moving towards the bimodal value p = 0, the line of BEPs along the F-F3 phase

separation vanishes and the phase diagram now consist of two lines of BEP along the phase

boundaries of F1-F2 and F-F1. The TCP1 behaves similar to as for p = 1
3
. The TCP2 line

starts from∆ → −∞ instead of∆ ≃ p
2
and then∆ increases as h increases (shown in Fig.

4.21c for p = 1
10
).

At exactly p = 0, we get back the two TCP lines (TCP1 and TCP2) of the bimodal

distribution (shown in Fig. 4.21d). TCP1 starts from the pure Blume-Capel model TCP

and then increases monotonically with increasing ∆ and h. The TCP2 starts at the TCP

of the RFIM ∆ → −∞, T = 2
3
, h ∼ 0.43899 and increases non-monotonically in ∆ as

h increases. The phase diagram also exhibits one BEP line along the phase separation of
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(a) p = 1
2 (b) p = 1

3

(c) p = 1
10 (d) p = 0

Figure 4.21: Projection of the TCP and BEP coordinates at different T onto the ground state
phase diagram for (a) p = 1

2
, (b) p = 1

3
, (c) p = 1

10
, and (d) p = 0. The solid blue lines

are the ground state phase boundaries, the black dashed lines are the projection of the TCP1
coordinates, the purple dashed lines are the projection of the TCP2 coordinates, and the
red, green and blue dashed lines are the projection of the BEP coordinates along the phase
boundaries of the different phases. The TCP2 coordinate is non-monotonic depending on
the value of p.
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(a) h = 0.603 (b) h = hc = 0.6079 (c) h = 0.615

Figure 4.22: Contour plot of the λ line (Eq. 4.22) shown by dashed lines and the solutions
for a4 = 0 given by Eq. 4.29 (solid blue line) for p = 1

3
in the β − ∆ plane for h close

to hc. Here hc is the value of the random field at which the double TCP emerges. (a) For
h = 0.603, the two curves intersect only once (shown by solid green circle), hence the
phase diagram Fig. shows only one TCP (which is TCP1). (b) For h = hc = 0.6079, the
two curves intersect at TCP1 for higher ∆ and for low ∆ the two curves are tangential to
each other. (c) For h = 0.615, the two curves intersect at three points giving rise to one
TCP1 and two TCP2s in the phase diagram Fig. .

F-(F1=F2).

By studying the projection of TCPs and BEPs on the ground state phase diagram, we

find that their coordinates closely follow the phase boundaries present in the T = 0 phase

diagrams. We hence show that the multicritical points arise due to the presence of first order

transition lines in T = 0 phase diagram.

Non-monotonicity of the TCP co-ordinates

The TCP2 line shows a non-monotonic dependence of ∆ on H for all 0 ≤ p < 1. As a

result as we cross the TCP2 line along∆ axis near the non-monotonic regime, we get three

TCPs in the phase diagrams of T −∆ plane for some values of h (i.e Fig. 4.5d for p = 1
10
,

Fig. 4.9e and Fig. 4.9f for p = 1
3
, Fig. 4.11f for p = 1

2
and Fig. 4.13d for p = 0). Two

intercepts come from the TCP2 line and the other comes from the TCP1 line. These two

TCP2 points emerge in the phase diagram as a pair. For example in Fig. 4.22 we plot the
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Figure 4.23: T − ∆ − H phase diagram for p = 1
3
at a fixed h = 0.63. It only shows

the wings originated from the TCPs and BEPs of the Fig. 4.9e in the finite and uniform
external field H . Blue solid lines depicts lines of continuous transitions. Solid circels are
TCPs, stars are BEPs. (a) Shows there are four wing surfaces. two originating from two
BEPs, one coming from the TCP1, and the last one is generated by the paired TCP2s. (b)
Shows the zoomed in region of the wings existing between the paired TCP2s. Here the
critical line bounding the first order surface form a loop like structure and it exists only for
very small values of H .

values of (β,∆) at which the second order term (a2) equals zero. These are the coordinates

of the λ line (Eq. 4.22). We also plot the values of (β,∆) at which the third order term (a4)

equals zero in the expansion of Eq. 4.13. The equation for a4 = 0 is

β4a

12

(
p(4a− 1)

(2a+ 1)2
− (1− p)(a2(z3 − 13)− 16a3(2 + z1) + 4a(1− z2) + z1)

(1 + 2az1)4

)
= 0

(4.29)

We plot the solutions of Eq. 4.22 (shown by red dashed line) and Eq. 4.29 (shown by

solid blue line) in the β−∆ plane for h values very close to the value hc at which two TCP2

emerge for p = 1
3
. Fig. 4.22a shows for h < hc, the two curves intersect only at one point

and the phase diagram (Fig. 4.9d) consists of only TCP1. Near h ≈ hc, the two curves

almost become tangential, see Fig. 4.22b. For h ≥ hc the curves intersect thrice giving rise

to two TCP2s and one TCP1 in the phase diagram (Fig. 4.9e), see Fig. 4.22c.

The first order wings that emerges due to the paired TCP2s in the T −∆ phase diagrams

in Fig. 4.5d, Fig. 4.9e, Fig. 4.9f, Fig. 4.11f, and Fig. 4.13d can be seen by applying
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Figure 4.24: Projection of the lines of second order transition near the paired TCP2s of Fig.
4.23 in the (a) T − ∆ and (b) H − ∆ plane. The solid blue lines represent the λ line and
the solid red lines represent the second order transition lines in the finiteH plane generated
from the paired TCP2s. These lines form a loop-like structure and exists only for a very
small ranges of H and T . (c) Shows the ground state phase diagram in the ∆ − H plane
for Fig. 4.23. The blue dashed lines represent the lines of first order transition which are
generated from the two BEPs and the TCP1 of Fig. 4.23. There are no first order transition
lines for the paired TCP2s.
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a uniform non-zero external magnetic field H (similar to [213]). Fig. 4.23a shows the

T − ∆ − H phase diagram for p = 1
3
for h = 0.63, corresponding to the T − ∆ phase

diagram of Fig. 4.9e. We zoomed in the region of the first order surface generated due to

the pair TCP2s in Fig. 4.23b. It shows that the second order transition lines which bounds

the first order surfaces form a loop-like structure and this loop exists for very small ranges

of H and T . Fig. 4.24c and 4.24a shows the projection of the second order transition lines

near the paired TCP2s on the T − ∆ and ∆ − H plane respectively. The blue solid line

represents the λ line near the paired TCP2s and the solid red lines are the loop generated

from the paired TCP2s. These loop-like second order transition lines are not similar to the

usual ”wings” which extends till T = 0. As h increases, the TCP2s get detached from

each other and so does the loop formed by the lines of second order transition. The wings

generated by the TCP2s has no projection in the T = 0 plane. For example Fig. 4.24b the

ground state phase diagram of Fig. 4.23 on the∆−H plane. The first order transition lines

separating the phases are present due to the existence of the wings generated by the two

BEPs and one TCP1.

4.7 Summary and conclusion

Effect of random-field disorder with different distributions on spin -1
2
Ising model (RFIM)

has been studied earlier using various techniques. It was reported that the phase topology of

the system depends on the form of the distribution function. Effect of the random-field dis-

order on the spin-1 Blume-Capel model has been studied less. In the earlier work [205, 206]

presence of the bimodal random-field distribution in the RFBC model has been discussed.

It was shown that a novel phase emerges at sufficiently strong random field.

In the present work we try to address the question of how the different form of dis-

tribution functions affect the phase topology of the pure Blume-Capel model on a fully
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connected graph [214]. In order to answer that question, we consider two types of symmet-

ric random-field distribution: trimodal and Gaussian. We have reproduced the results of the

bimodal case which is just a special case of the trimodal distribution. We have studied the

phase diagrams for both the distribution in the ground state as well as in the finite T . We

observed that the presence of the crystal field interaction plays an important role. Due to

the interplay of the random field disorder and the crystal field interaction new phases arises

for the trimodal random field disorder and an ordered state always persists for strong field

disorder. The presence of these new phases make the first order transition gets divided into

many small jumps. Whereas, in the Gaussian case, no such new phase exists. The phase

diagram is rather simpler for the Gaussian distribution. The first order transition gets de-

stroyed as disorder increases. Also, the TCP in the Gaussian case vanishes as the disorder

strength increases. On the other hand in the trimodal case, the TCP never vanishes. Instead

new multicritical point emerges in the system.

It was shown in the RFIM case that for p = 1
3
, the trimodal distribution and the Gaussian

distribution becomes equivalent [105, 263, 118, 119, 124]. Interestingly, in our work we

couldn’t find any resemblance in the phase diagram of the two distributions. The phase

topology of the above distributions are entirely different. This behavior contradicts the

earlier conjecture given by Aharony for O(n) models in presence of symmetric random

field distribution [76]. The possibility of such contradiction could be due to the artefact of

the mean-field nature of the solutions, or the argument that was given based on ϵ expansion

study of the O(n) models might not hold for higher spin models like the Blume-Capel

model.

The trimodal random-field Blume-Capel model shows very rich phase topologies de-

pending on the strength of the field. For some values of the parameter the phase diagram

shows re-entrance phenomenon. Also the trimodal RFBC model exhibits multiple number

of multicritical points. We observed the TCPs and BEPs that observed at the finite T closely
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follows the ground state phase boundaries in the ∆− h plane. This indicates how the ran-

dom field dominates the low temperature behavior and therefore all the critical properties in

finite T can be understood just by studying the T = 0 phase diagram. Another interesting

behavior is that for some values of the parameters, two paired TCPs emerge in the phase

diagram simultaneously and as the parameter changes they get shifted from each other via

a first order line. This unique behavior has not been reported earlier. Recently, this kind of

behavior has been observed in non-equilibrium transitions in resetting problems [264]. This

suggests that such phase diagrams are not only limited to equilibrium systems but can also

be seen for non-equilibrium systems. We also studied the lines of second order transition

generated by these paired TCPs by switching on the external magnetic field. We observed

that they kind of form a loop-like structure and exists only for a small parameter values. The

behavior of this first order surface generated by the paired TCPs are interestingly different

from the usual wings which extends till T = 0.

134



Chapter 5

Spin-1 model with higher order interac-
tions
In this section we will discuss about the effect of biquadratic excahnge interactions in the

spin-1 Blume-Capel model. We will consider a infinite range generalized Blume-Emery-

Griffiths model. We will discuss about the behavior of the phase diagrams in two ensembles

: canonical and microcanonical. We will then show the ensemble inequivalence that arises

from the long-range interactions.

5.1 Blume-Emery-Griffiths model

As shown in the previous chapters, the multicritical points emerge in the presence of the

disorder. These points are also seen in fluid mixtures containing three or more components

[265, 241]. The phase diagram of such systems can be described using spin models in pres-

ence of some higher order interactions [266, 158, 267, 268, 269]. Some of the higher order

interactions are : biquadratic exchange interactions, crossed quadrupolar-dipolar interac-

tions and so on. Presence of biquadratic exchange interaction is known to be relevant to

understand the properties of the rare-earth compounds. The biquadratic exchange was first

suggested by Kittel in the theory of magnetoelastic effect in NiAs type structures [270],

and by Anderson in the superexchange interaction of iron group oxides and flurides [271].

In rare-earth compounds, the unpaired 4f electrons lie deep inside the 5d and 5s orbital.

So these electrons do not experience the strong crystal field generated by other ions in the

crystal. Hence their spherically symmetric potential is not completely destroyed. As a re-

sult the orbital angular momentum is not entirely quenched. The super-exchange between
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5 Spin-1 model with higher order interactions

these unquenched orbital momentum gives rise to a biquadratic exchange interaction term

in the Hamiltonian [272]. Other interactions such as phonon exchange between ions [273]

and the Schrodinger’s spin-one exchange operator[274] can also result in the inclusion of

such interaction. Both attractive and repulsive biquadratic interactions are of interest. The

requirement of small repulsive exchange interaction in a Hamiltonian was first mentioned

by Harris and Owen [275] and Rodbell et.al [276] in order to explain the paramagnetic

resonance of the Mn ion pairs which are present as an impurity in the crystals of MgO.

Biquadratic exchange interaction is represented by a term that is fourth order in spin

operators. The Blume-Emery-Griffiths (BEG) model is the simplest model which incor-

porates biquadratic interactions [266]. The Hamiltonian of the BEG model on a complete

graph in the presence of external magnetic field is given by:

H = − 1

2N
(
∑
i

si)
2 − K

2N
(
∑
i

s2i )
2 +△

∑
i

s2i −H
∑
i

si (5.1)

where K is the biquadratic interaction coefficient. Here the spins si = ±1, 0 represents

thethree components of a fluid mixtures. The K represents the mean interactions b. The

BEGmodel is the generalization of the Blume-Capel model (K = 0). At finite temperature,

whenK < 0, both the biquadratic term and the crystal field term prefer 0 spins. Hence the

λ transition occurs at a lower ∆ as K decreases. On the other hand, for positive K the

magnetic spins are more likely to be chosen. Hence, when K > 0 there is a competition

between the biquadratic and crystal field term in the Hamiltonian and the λ transition occurs

at a higher ∆ for positive K.

The attractive biquadratic exchange interaction(K > 0) BEG model has been exten-

sively studied. Its phase diagram changes with the value of K. For small K, there is a

transition from a ferromagnetic to paramagnetic phase in the (T −∆) plane. This transition

line changes from a continuous to a first order transition line at a tricritical point (TCP). As
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K increases further, another paramagnetic state emerges and the two paramagnetic states

are separated by another first order line. The two first order lines meet at a triple point. For

larger value ofK, the continuous transition line terminates on the first order line at a critical

end point (CEP), and the TCP disappears. The phase diagram has been well studied using

various techniques like mean-field [266, 277, 278, 158, 279], cluster variation [280], Bethe

lattice [281], high-temperature series expansion [282] etc. Apart from the mean-field, the

phase diagram has also been studied in the finite dimensions using renormalization group

[283, 284], Monte-Carlo simulations in two and three dimensions [285, 286, 168]. How-

ever, the simulations have been done mostly on the Blume-Capel model to study the con-

tinuous transition line and the TCP. The other multicritical points have not been studied as

they are hard to locate in the simulations.

For repulsive biquadratic interaction (K < 0) the competition between the biquadratic

and the bilinear interactions gives rise to a very different behaviour from the behaviour for

positive K. The negative K term chooses the non-magnetic spins over the magnetic ones.

This creates a competition between the magnetic and non-magnetic spins. In a recent study

on a complete graph [287] in the (T − ∆) plane it was shown that as K becomes more

negative, the TCP changes to a quadrupolar point at K = −0.0828 and K = −0.1838 in

microcanonical and canonical ensembles respectively. They studied the system for small

negative values ofK uptoK = −0.4.

In this work [288] we will first discuss about the phase diagram of pure BEG model for

both attractive and repulsiveK in canonical as well as in the microcanonical ensemble, with

emphasis on large negative K regime in the (T − ∆ − H) space. Since the multicritical

points occur in systems described by three or more thermodynamic fields, it is useful to

study them in (T −∆−H) space. We will also discuss about the ensemble inequivalence

that appears due to the infinite-range interactions.

In the next section we will discuss about the ground state phase diagram of the BEG
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5 Spin-1 model with higher order interactions

Figure 5.1: Ground state phase diagram of the BEG model in the ∆−K plane. There are
three stable phases : two ferromagnetic and one paramagnetic. The red dashed lines depict
the co-ordinate of the first order transition and the solid blue line represents the second order
transition.

model for all ranges ofK.

5.2 Ground state phase diagram of the BEG model

First let us look at the zero temperature phase diagram of the system. The ground state

energy per particle can be written as (from the Hamiltonian Eq. 5.1):

ϵ = −1

2
(m2 +Kq2) + ∆q −Hm (5.2)

ForH = 0 depending on the values and signs ofK, there are three phases in the ground

state phase diagram. Fig. 5.1 shows the ground state phase diagram of the BEG model

for all values of K. When all the spins are zero the energy is ϵ = 0. Apart from this

paramagnetic phase (which is m = 0), there are other states which are possible depending

on the parameter values. For −1 ≤ K ≤ ∞, the ferromagnetic state, m = ±1 and q = 1
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5 Spin-1 model with higher order interactions

dominates. Energy of this state is ϵ = −1
2
(1 + K) + ∆. If 2∆ > 1 + K, then the phase

is paramagnetic, for 2∆ < 1 + K, the phase is ferromagnetic. At exactly 2∆ = 1 + K

there is a first order phase transition, shown by the red dashed line. For H ̸= 0, the phases

m = 0 and m = 1 are separated by the first order transition line : H = ∆ − 1
2
(1 + K).

Similarly, the phases m = 0 and m = −1 are separated by the first order transition line :

H = −∆+ 1
2
(1 +K). And them = ±1 phases are separated by H = 0. Fig. 5.2a shows

the ground state phase diagram in the ∆−H plane for all −1 ≤ K < ∞.

For K < −1, the term −1
2
(1 + K) in the energy contributes a positive value. So for

any∆ ≥ H , the ϵ has a minima atm = 0. So the paramagnetic phase is the stable state for

∆ ≥ H . When ∆ < H , there is another ferromagnetic state emerges with |m| = q < 1

: m∗ = ∆−H
1+K

. It becomes stable when ∆ − H < 1 + K. The phases ±m∗ and m = 0

are separated by a second order transition line H = ±∆. For ∆ − H > (1 + K), the

phase m∗ changes continuous to m = 1 phase and thus there is a second order transition

line now between these two ferromagnetic states ±m∗ and m = 1 at ∆ = ±H ∓ (1 +K)

respectively. The solid blue lines in Fig. 5.1 represent the lines of continuous transition in

the∆−K plane for allK < −1. And the Fig. 5.2b shows the ground state phase diagram

in the ∆−H plane for allK < −1.

In the next sections, we will discuss about the finite temperature phase diagram for all

ranges of K for both canonical and microcanonical ensemble.

5.3 Canonical ensemble

Given the Hamiltonian (Eq. 5.1), we solve it using the large deviation principle (LDP) [215]

similar to the previous chapters. We find the scaled cumulant generating function (CGF) is:

Λ(k1, k2) = log
(
1 + 2ek2−β△ cosh(k1 + βH)

)
− log

(
1 + 2e−β△ cosh βH

)
(5.3)
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(a) (b)

Figure 5.2: Ground state phase diagram of the BEG model in the ∆ − H plane. The red
dashed lines denote first order transition lines and the solid blue line denotes lines of con-
tinuous transition. for (a) −1 ≤ K < ∞ and, (b) K < −1.

The rate functionR(x1, x2) for the non interacting Hamiltonian then can be evaluated using

Gärtner Ellis theorem [215] and is given by :

R(x1, x2) = sup
k1,k2

[x1k1 + x2k2 − log
(
1 + 2ek2−β△ cosh(k1 + βH)

)
]

+ log
(
1 + 2e−β△ cosh βH

)
] (5.4)

Minimizing the above equation w.r.t k1 and k2 gives the following relations between the

order parameters and the minimas of k1 and k2 :

x1 =
2ek

∗
2−β∆ sinh k∗

1

1 + 2ek
∗
2−β△ cosh k∗

1

(5.5)

x1 =
2ek

∗
2−β∆ cosh k∗

1

1 + 2ek
∗
2−β△ cosh k∗

1

(5.6)
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Figure 5.3: Plot of f1, f2 and f3 in β −∆ plane. (a)K = −0.4 atH = 0. The intersection
of the three derivative lines give the critical point at a non-zero value ofm, which gives the
locus of the BEP at which the λ± lines meet in the H = 0 plane. (b) K = −2 at H = 0.
The three lines never intersect simultaneously for any value of m, which shows that there
are no critical points.
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Using tilted LDP we generate a new large deviation principle (LDP) from an old LDP by a

change of measure and we find the full rate function to be :

I(x1, x2) = x1k
∗
1 + x2k

∗
2 − Λ(k∗

1, k
∗
2)−

βx2
1

2
− βKx2

2

2
− inf

k1,k2
[R(k1, k2)−

βk2
1

2
− βKk2

2

2
]

(5.7)

Minimization of the rate function w.r.t x1 and x2 gives the following two coupled equations

for the two order parameters:

m =
2eβ(Kq−∆) sinh β(m+H)

1 + 2eβ(Kq−∆) cosh β(m+H)
(5.8)

q =
2eβ(Kq−∆) cosh β(m+H)

1 + 2eβ(Kq−∆) cosh β(m+H)
(5.9)

where m and q are the extremums of x1 and x2. For m ̸= 0, the two fixed point equations

are connected via:

q = m coth β(m+H) (5.10)

and the minima of the rate function I(x1, x2) gives the free energy functional at the fixed

point and can be written as (using Eq. 5.10);

f(m) =
βm2

2
+

βKm2 coth2 βm
2

+ log
(
1 + 2e−β∆ cosh βH

)
− log

(
1 + 2eβ(Km cothβm−∆) cosh β(m+H)

)
(5.11)

For H = 0, the system has a line of continuous transition (λ line) in the (T − ∆) plane.

The equation of this line can be obtained by linearizing Eq. 6.3. On linearizing we get the

equation of the λ line to be:

2(β − 1) = eβ(∆−K) (5.12)

ForH ̸= 0, we calculate the λ± lines using the condition mentioned in Chapter 3 : f ′(m) =

f ′′(m) = f ′′′(m) = 0 and f ′′′′(m) > 0. This gives the following equations:
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Figure 5.4: The value of temperature (T ) and the crystal field (∆) as a function ofH along
the λ+ line in canonical ensemble forK = −0.6. The main plot shows that the temperature
decreases exponentially withH and it saturates towards a certain temperature (Tsat) for high
magnetic field. The inset shows how ∆ increases linearly with H .

f1 ≡ m− az

C
= 0 (5.13)

f2 ≡
1

zaβ
− azy2 +

√
y2 + 1y + yK(

√
y2 + 1− βmy2)

C2
= 0 (5.14)

f3 ≡
β3z

C3

(
azK2 3

2

√
y2 + 1−K(y2 + 1)y

[
(2 +K) + 2az(1 +K)myβ

]
+
√

y2 + 1
[
az(1 + 2K) + 2βK2my3 + β2azK2m2y4

]
−y
[
1− 2a2z2 + 2βKazym− 2Ky2 − 2βazKmy3 + β2K2m2y4

])
= 0(5.15)

where a = e−β∆, y = cosechβ(H +m), z = 2eβKm cothβ(H+m), andC =
√

y2 + 1za+

y. For K = 0, the above equations reduce to the equations for pure Blume-Capel model

(shown in Chapter 3 given by Eqs. 3.22, 3.23, 3.24, 3.26, 3.27):

For K ̸= 0 solving Eq. 5.13- 5.15 is not possible analytically. Hence we use graphical

methods to get the co-ordinates of the critical points in the (T −∆−H) space for a given
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K. We plot f1, f2 and f3 in (β−∆) plane form, fixingK and changing different values of

H . The value of m for a fixed value of H and K at which three equations meet gives the

co-ordinates of the critical point. If we now takeH = 0 in Eq. 5.13, 5.14 and 5.15, then we

will get the co-ordinates of the point of intersection of the λ± lines in the (T − ∆) plane.

We can hence use this to locate the multicritical points (TCP and BEP) in the (T −∆) plane.

We use this to obtain the phase diagram for various values of K. For example: Fig. 5.3(a)

is the contour plot of f1, f2 and f3 in the (β − ∆) plane at K = −0.4 and H = 0. The

intersection of the three functions gives the co-ordinates of the critical point. We find that

for K > −0.1838 the functions intersect only for m = 0, which is the point where the λ±

lines meet the λ line. Hence this point is the TCP. For the range −0.1838 > K > −1 we

find that the intersection occurs form ̸= 0. Thism ̸= 0 solution gives the locus of the BEP

where the λ± lines meet the H = 0 plane in this regime of K. Interestingly, we find that

for K < −1 the three functions never intersect at the same point for any m. For example

in Fig. 5.3(b) we plot three functions for K = −2. We will discuss these results in detail

in the next section (Sec. 5.3.1).

5.3.1 Repulsive Blume-Emery-Griffiths model

In this section we analyze the results of the repulsive BEG model. We find that for 0 ≥

K ≥ −0.1838 two critical lines (λ±) at H ̸= 0 meets the λ line (at H = 0) at the TCP.

Temperature decreases exponentially and∆ increases linearly with increasingH along the

λ± lines, as shown in Fig. 5.4. As K becomes more negative (for −0.1838 > K > −1),

the (λ±) lines no longer meet the λ line, instead they enter into the ordered region and meet

at the first order surface (H = 0) at a BEP. The λ line in this case terminates on the first

order line at a CEP.

As K approaches −1, the wing width in temperature (which is the difference between

the temperature at the BEP (TBEP ) and the saturation value of the temperature (Tsat) at
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Figure 5.5: The width of the wings in temperature (Tw) as a function ofK for the repulsive
BEG model. The main plot shows that as K decreases, the width in temperature goes to
zero. The inset is the semi-log plot for the same.

which both the ∆, H → ∞) denoted as Tw, starts to shrink. At exactly K = −1 the BEP,

CEP, and the Tw reach zero. As we decreaseK further, we find that there are no transitions

in the H plane. This is also supported by the fact that now there are no multicritical points

in the (T − ∆) plane. Hence we conclude that for K < −1 the wing surfaces completely

disappear. The phase diagram consists of only a continuous transition line (λ line) from

ferromagnetic phase to paramagnetic phase in the H = 0 plane. For large negative K,

the area enclosed by the λ line in the (T − ∆) plane shrinks. At K → −∞, there is no

phase transition, only the s = 0 state dominates. The decreasing width of the wings with

decreasing K is shown in Fig. 5.5. We also observe that the Tsat can be approximated

numerically as Tsat ≃ (K + 1)/4. This will be discussed in more detail in Sec. 5.4.1,

where we obtain the similar results in the microcanonical ensemble. The values of the Tw,

Tsat and the co-ordinates of themulticritical points (TCP, BEP) for the repulsive BEGmodel

are listed in Table 5.1.

Absence of phase transition for K < −1 in the H plane can also be seen by looking
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5 Spin-1 model with higher order interactions

Figure 5.6: Schematic phase diagram of the repulsive BEGmodel in the (T −∆−H) space
for both canonical and microcanonical ensembles. Solid lines represent the critical lines (λ,
λ±) and the dashed lines represent the lines of first order transition. The λ line is the line of
continuous transition between the ferromagnetic phase (m ̸= 0) and the paramagnetic phase
(m = 0) in theH = 0 plane, whereas the λ± lines are the line of continuous transition in the
±H planes respectively. The solid circle represents the tricritical point (TCP), where the λ
and λ± lines meet. The star symbol represents the bicritical end point (BEP), where the λ±
lines meet inside the ordered region. The square symbol represents the critical end point
(CEP), where the λ line terminates on the first order line. (a) Shows the phase topology
in the Canonical ensemble, for the range: −0.1838 ≤ K ≤ 0 and in the, Microcanonical
ensemble for: −0.0828 ≤ K ≤ 0. In this regime the critical lines (λ±) meet the λ line at
the TCP. (b) Is the phase topology in the Canonical ensemble for the range: −1 < K <
−0.1838 and, in the Microcanonical ensemble for the range: −1 < K < −0.0828. Here
the λ± lines move inside the ordered region and meet at the BEP. The λ line terminates
on the first order line at a CEP. (c) Shows the phase topology for both Canonical and,
Microcanonical ensembles atK = −1. In both the ensemble the wings as well as the BEP
and CEP reaches T = ∆ = 0. (d) Topology of the phase diagram for K < −1 for both
the Canonical and, Microcanonical ensembles. Only the λ transition remains. The only
transition is from the ferromagnetic state to the paramagnetic state in the H = 0 plane.
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Canonical: −1 ≤ K ≤ 0
K TCP / BEP Tsat Tw

T ∆ ≃ (K + 1)/4 (= TTCP/BEP − Tsat)
0 0.33333 0.462098 0.25 0.0833333

-0.05 0.3103448 0.44741 0.237501 0.072843316
-0.1 0.2857142 0.431268 0.2250124 0.0607018
-0.2 0.2312737 0.391831 0.2 0.03127376
-0.3 0.1875335 0.346377 0.17499956 0.01253394
-0.4 0.15446222 0.298727 0.14999925 0.00446297
-0.6 0.100192068 0.199958 0.1 0.000192068
-0.7 0.075009189 0.149998 0.07500018 0.000009009
-0.8 ≃ 0.05000025 ≃ 0.1 ≃ 0.049999875 ≃ 0.000000375
-0.9 ≃ 0.024999969 ≃ 0.05 ≃ 0.024999968 ≃ 0.000000001
-0.999 ≃ 0.00025 ≃ 0.0005 ≃ 0.00025 ≃ 0.00

Table 5.1: Co-ordinates of the TCP and BEP for different K’s. Tsat is the saturation value
of the temperature at which both the ∆ and H → ∞ . Tw is the width of the wing lines for
differentK

at the magnetization and susceptibility. We find that the magnetic susceptibility diverges

around the expected critical point for K > −1. On the other hand for K ≤ −1 magnetic

susceptibility is finite in the entireH plane. We plot the magnetization and the susceptibility

for H = 0.5 at K = −0.6 and K = −1.2. In Fig. 5.7(a) we plot them as a function of ∆

forK = −0.6, by fixing T = 0.1. The susceptibility shows singular behaviour at∆ = 0.7.

The point of divergence matches with the co-ordinates of the transition obtained from Eq.

5.13, 5.14 and 5.15. On the other hand for K = −1.2, we find no such divergence. In

Fig. 5.7(b) for K = −1.2 by fixing T = 0.025 we plot the magnetization and find that

it changes continuously along ∆ and the susceptibility shows a cusp but does not diverge.

Though we plot only for a fixed T , we have checked the entire plane by changing the values

of T . Magnetic susceptibility has no divergence for any T .

The vanishing of the wings can also be anticipated from the ground state phase diagram

of the BEG model in Sec. 5.2. For any −1 ≤ K < ∞, the ∆ − H phase diagram at
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the ground state shows first order transition lines separating the different phases (see Fig.

5.2a). These lines of first order transition extend to the finite temperature and gives rise

to the wings. Whereas, the ground state phase diagram in the finite H plane consist only

of lines of second order transition (shown in Fig. 5.2b) which might not extend to finite

temperatures.

5.3.2 Attractive Blume-Emery-Griffiths model

The attractive BEG model has been extensively studied earlier by various authors [266,

270, 271, 272, 273, 274, 275, 276, 147, 148, 289, 277, 278, 158] and the topology of the

phase diagram is known as a function of K in the (T − ∆) plane. We observe the similar

topology of the phase diagram. We study the (T − ∆ − H) phase diagram and find that

the topology of the phase diagram for different K’s are similar to [158]. To recap we find

: For 0 < K ≤ 2.78, the phase diagram is similar to what we find for 0 ≥ K ≥ −0.1838.

The λ± meets at the TCP. For 2.78 < K < 3 a new first order surface appears separating

two paramagnetic states: P2 (m = 0, q− < 0.5) and P1 (m = 0, q+ > 0.5). This surface

meets the first order line (atH = 0) at a triple point. This new first order surface terminates

on a line of critical points(at H ̸= 0 plane). As K changes from K = 2.78, this line

of critical points in the paramagnetic region moves higher in temperature and at exactly

K = 3 it intersects the λ± lines and then extends to infinity. For 3 < K ≤ 3.8, the λ±

lines terminates at the first order surface which separates the P1 and P2 phase, and becomes

finite. ForK > 3.8, the λ line terminates at a CEP, and thus the wings vanish.

We observe that for K > 1, the wings show non-monotonic behaviour in temperature

in contrast to what happens in the range of −1 < K < 1(Fig. 5.4). For small values of

H , the λ± lines go towards lower T and higher ∆. As H becomes larger, these lines start

moving towards higher∆ and higherT as shown in Fig. 5.8. This non-monotonic behaviour

observed in the wings for allK ≥ 1 values can be interpreted as follows : For any positive
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Figure 5.7: Magnetization (m) and magnetic susceptibility (χ) as a function of ∆ for (a)
K = −0.6, T = 0.1 andH = 0.5. This shows that them goes to zero continuously around
∆ = 0.7. Also the χ has a singularity at the same ∆ which suggests that there is a second
order transition in the H ̸= 0 plane, (b) K = −1.2, T = 0.025 and H = 0.5. Both the
m and χ changes continuously as a function of ∆. Magnetic susceptibility (χ) shows no
singularity or discontinuity and there is no phase transition in the finite H plane.
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Figure 5.8: Plot for the non-monotonic behaviour of temperature (T ) as a function of mag-
netic field (H) along the λ+ line for K = 2.89. The inset shows that for lower H , T
decreases with H like before, but for higher H it increases and saturates to a higher value
(Tsat) shown in the main plot.

K, there are two possible solution of q for a fixed value of energy, q± (more details are in

Sec. 3.6) with q+ > q−. When K ≥ 1, the first term in the energy ϵ (mentioned in Sec.

5.1) dominates over the crystal field term and the density of s = ±1 spin increases. For

smaller values ofH the q− solution dominates in the system and the wings show monotonic

behaviour like before. As H increases further the q+ solution becomes favorable which in

turn lowers the energy. Thus the energy-entropy balance occurs at a higher temperature.

5.4 Microcanonical ensemble

In order to analyze the system in the microcanonical ensemble, we need to express the

energy in terms of the number of particles with spin±1 and 0. Let us assume the number of

particles with±1 spin areN± and the number of particles with zero spins areN0, such that

N = N+ + N− + N0, where N is the total number of particles in the system. The energy
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of the system can thus be written as,

E = ∆Q− 1

2N
M2 − K

2N
Q2 −HM (5.16)

whereM = N+ −N− is the total magnetization and Q = N+ +N− is the spin density of

the system. In terms ofm (= M/N) and q (= Q/N), the expression for the energy will be,

ϵ = ∆q − 1

2
m2 − K

2
q2 −Hm (5.17)

where, ϵ = E
N
is the energy per particle, m and q are the single site magnetization and

density(as mentioned in Sec. 5.1). The total number of microstates of the system can be

written in terms of N , N+, N− and N0 as,

Ω =
N !

N+!N−!N0!
(5.18)

In the limit when N+, N−, N0 are large, the expression for entropy, i.e., S = kB ln(Ω)

can be written by using Stirling approximation as,

s =
S

kBN
= q ln(2)−(1−q)ln(1−q)− 1

2
(q+m)ln(q+m)− 1

2
(q−m)ln(q−m) (5.19)

where, s is the entropy per particle of the system. The equilibrium entropy can be obtained

by maximizing the entropy of Eq. 5.19 with respect tom and q. We can express q in terms

ofm and the other variables as,

q± =
∆

K
± γ1/2 (5.20)

where, γ =
(

∆
K

)2
− 2ϵ

K
− m2

K
− 2Hm

K
. ForK = 0, the expression has a much simpler form,

q = 1
∆

(
ϵ+ 1

2
m2 +Hm

)
.

Since, there are two values of q, the one which is in the range [0, 1] will be accepted.

There is also a possibility that both the q values are in the range [0, 1], then the equilibrium
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entropy will be the one with maximum value at its corresponding equilibrium m. We find

that for K < 0, only q− is acceptable, however, for K > 0, both the q± solutions are

acceptable.

Next, we aim to find the second order transition line in the (T − ∆ − H) space. In

the H = 0 plane, the value of the magnetization m on the line of continuous transition

is zero, however, for any nonzero H , the magnetization m will have a nonzero value on

the continuous transition line. In order to obtain this continuous transition line, we need to

equate the first three derivatives of s (with respect tom) to zero, with the constraint that the

fourth derivative will be negative. The first four derivatives of the entropy s are:

∂s

∂m
= q′ ln

{ 2(1− q)√
q2 −m2

}
− ln

√
q +m

q −m
(5.21)

∂2s

∂m2
= q′′ ln

{
2(1− q)√
q2 −m2

}
− q′2

1− q
− 1

2

{
(q′ + 1)2

q +m
+

(q′ − 1)2

q −m

}
(5.22)

∂3s

∂m3
= q′′′ ln

{
2(1− q)√
q2 −m2

}
− q′3

(1− q)2
+

1

2

{
(q′ + 1)3

(q +m)2
+

(q′ − 1)3

(q −m)2

}
− 3

2

{
2q′q′′

1− q
+

q′′(q′ + 1)

q +m
+

q′′(q′ − 1)

q −m

}
(5.23)

∂4s

∂m4
= q

′′′′
ln

{
2(1− q)√
q2 −m2

}
− 2q′′′

{
q′ + 1

q +m
+

q′ − 1

q −m
+

2q′

1− q

}
+ 3q′′

{
(q′ + 1)2

(q +m)2
+

(q′ − 1)2

(q +m)2
− 2q′2

(1− q)2

}
− 3

2
q′′2
{

2

1− q
+

1

q +m
+

1

q −m

}
− (q′ + 1)4

(q +m)3
− (q′ − 1)4

(q −m)3
− 2q′4

(1− q)3
(5.24)

where, q′, q′′ ...... are partial derivatives of q w.r.t. m. We solve the above first three

equations numerically and obtain a set of physical solutions (∆, ϵ,m ), such that the fourth

derivative is negative. We then calculate the temperature, using the relation β = ∂s
∂ϵ
,
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Figure 5.9: The value of crystal field (∆) and temperature (T ) along the λ+ line at K =
−0.4 in the microcanonical ensemble. The main plot shows the λ+ line in the ∆ − H
plane, where the value of∆ increases almost linearly withH . From our numerical data, the
variation of this line comes out to be ∆ ≃ (K + 1)/2 +H . Bottom Inset: The λ+ line in
the ϵ−H plane. The value of ϵ decreases and finally saturates at ϵsat, which is numerically
predicted to be (K + 1)/8. Top Inset: The λ+ line in the T − H plane, showing similar
qualitative behaviour as in the ϵ−H plot. The value of T saturates for largeH at (K+1)/4.

β = ∓ 1

Kγ1/2
ln

{
2(1− q±)√
q2± −m2

}
(5.25)

which gives the equivalent phase diagram in the (T −∆−H) space.

5.4.1 Repulsive Blume-Emery-Griffiths Model

In this section, we show our results for repulsive BEG model in the microcanonical ensem-

ble in the (T−∆−H) space. In the absence of magnetic field, this model has been recently

studied in [277, 287]. We find that for −0.0828 ≤ K ≤ 0 the phase diagram consists of a

TCP where the λ± lines meet the λ line in the H = 0 plane. As the K decreases further,

for −1 < K < −0.0828, it was reported earlier in [287] that a critical point (CP) appears

in the ordered region of the system along with a CEP. In this topology, as we switch on the

field H , we note that the λ± lines meet at the proposed CP. Thus, the CP is actually a BEP.
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5 Spin-1 model with higher order interactions

We show our results forK = −0.4 in the (∆, H), (ϵ,H) and (T,H) plane in Fig. 5.9. Here,

we show the behaviour of the λ+ line for positive H . We note that the value of ∆ on the

λ+ line increases with H almost linearly in the large H limit. The values of ϵ and the T

decreases with H and saturates for large H . We note that the variation of ∆ in the large H

limit is of the type,∆ ≃ (K +1)/2+H . Also, the saturation values are, ϵsat ≃ (K +1)/8

and Tsat ≃ (K + 1)/4. The values of (∆, ϵ, T ) for BEP and the saturation values of ϵ and

T are listed in Table 5.2.

On the λ± line, the variation of ∆ and ϵ (or T ) in the limit H → ∞ can be explained

in a simple way. In the limit H → ∞, we can safely assume that there are no particles

with spin −1, or in other words, N− = 0. Thus, q will be equal to m. In this limit, the

entropy of the system (per particle) can be written as, s = −(1−m)ln(1−m)−mln(m),

having a maximum atm = 1/2. Now, the energy per particle, in this limit, turns out to be,

ϵ → {(∆ − H)/2 − (K + 1)/8}. In order for the energy (per particle) to be finite on the

transition line, ∆ should also increase linearly with H . We indeed get the linear variation

of∆ withH on the λ± line. If we use the variation of∆ as approximated numerically, i.e.,

∆ ≃ (K+1)/2+H , we can estimate the saturation value of ϵ → ϵsat ≃ (K+1)/8. Using

these values in the expression for calculating the temperature (Eq. 5.25), it can be easily

shown that the saturation of T will be Tsat ≃ (K + 1)/4. Hence, the saturation values of ϵ

and T will become zero forK = −1.

We measure the width of the wings in energy(and temperature). We denote it by ϵw (and

Tw). We also list the saturation values of ϵ and T and the width of the wings (ϵw and Tw) in

Table 5.2. We plot the BEP and the width of the wings (ϵw and Tw) in Fig. 5.10. We note

that the BEP tends to ϵ = T = 0 as K → −1. The width of the wings are also found to

decrease exponentially and tends to zero asK tends to−1. From all the above observations,

it is clear that atK = −1 the width of the wings vanish and BEP reaches ϵ = T = 0. Thus,

for K ≤ −1, there is no phase transition in the non-zero H plane for a finite T .
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Figure 5.10: Variation of BEP and the width of the wings (ϵw and Tw) with K. (a) ϵBEP

decreases as K tends to −1, and appears to meet at ϵ = 0 at K = −1. Inset show the
variation of the width of wings in ϵ. We note that the width decreases exponentially as K
tends to −1. (b) TBEP with K showing similar qualitative behaviour as ϵBEP . Inset show
the width of the wings in temperature Tw, which also decreases exponentially as K tends
to −1.

5.4.2 Attractive Blume-Emery-Griffiths model

The attractive BEG model has been studied earlier in microcanonical ensemble in [277],

in the (T −∆) plane. The full phase diagram(T −∆ −H) was not studied before for the

microcanonical ensemble as of our knowledge. In this section, we present results for the

attractive BEG model in the (T −∆−H) space. We find that, in the range 0 < K < 3, the

phase diagram is similar to the case 0 > K ≥ −0.0828. For K > 3, the λ line truncates

on the first order line at a CEP. The first order line continues to exist in the paramagnetic

region and becomes a surface in the (T −∆−H) space which separates two paramagnetic

phases P1 and P2(discussed before in Sec.5.3.2) and the wings no longer exist.

For small positiveK, the variation of ϵ is monotonic withH on the λ± lines, similar to

negativeK. For large positiveK(≥ 1), however, the variation in ϵ is non-monotonic on the

transition line as shown in Fig.5.11(a). This can be understood by separating the expression

of ϵ into two parts: ϵ = ϵ1+ϵ2, where, ϵ1 = ∆q− 1
2
m2−Hm and ϵ2 = −K

2
q2. We note that

the variation of ϵ1 remains similar for small as well as large K, however, the variation of
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Figure 5.11: Non-monotonic variation of the ϵ as a function of H along the λ+ line for
positiveK. (a) The variation of ϵ along the λ+ line for variousK. For smallK, the curve is
monotonic; ϵ decreases withH and then saturates. For largeK, ϵ varies non-monotonically
with H . (b) Variation of ϵ1 and ϵ2 for K = 0.20 and K = 2.0. The variation of ϵ1 is
similar for small and large K values, however, the qualitative nature in the variation of ϵ2
is different for small and largeK. This is the cause of the non-monotonic variation in ϵ.

ϵ2 is different for small and largeK. It decreases with H for small K while increases with

H for largeK (see Fig. 5.11(b)). The variation in ϵ2 is mainly due to the variable q, which

itself shows such behaviour. In ϵ1 also, we have the variable q, but it appears with other

terms. ϵ1 does not change its qualitative behaviour when we changeK. For smallK, since

both the ϵ1 and ϵ2 decreases withH , the sum also decreases withH . For largeK, there is a

competition between ϵ1 and ϵ2. In the smallH regime, the variation in ϵ2 dominates, which

gives rise to an increase in ϵ with H . For large H , the variation in ϵ1 starts dominating and

ϵ decreases with H . For very large H , ϵ1, ϵ2 and ϵ will all finally saturate. The saturation

values of ϵ follow similar relationship withK as obtained for the negativeK. The variation

of T also shows similar non-monotonic behaviour in the same range ofK. We made similar

observations in the canonical ensemble in Sec.5.3.2.
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5.5 Ensemble inequivalence

Systems with long-range interactions shows some unusual characteristics compared to the

short-range systems. For such systems the energy and other thermodynamic potentials (en-

tropy, free energy, etc.) are non-additive, means the system cannot be divided into indepen-

dent macroscopic parts which is the case for short range systems. Due to the non-additive

nature of the interactions, it shows ensemble inequivalence. That means the phase diagrams

can be different for different ensembles. There are numerous examples of long-range sys-

tems which shows ensemble inequivalence like : 2D geophysical flows [290], plasmas

[291, 292], mean-field spin models [293, 294, 295, 296, 297] (where every spins interacts

with other spins equally) and so on.

The inequivalence of different ensembles in themean-field Blume-Emery-Griffithsmodel

has been reported earlier in [277, 287] in the absence of magnetic field. In the (T−∆) plane,

while the λ line equation is same in both the ensembles, the first order line and the mul-

ticritical points are known to be located differently [298, 299, 293, 300]. It was reported

that the TCP and other multicritical points are different for canonical and microcanonical

ensembles for a given value ofK [277, 287].

In this work, we have looked at all the three continuous transition lines(λ, λ+, λ−) and

the first order surfaces. We find that not just the multicritical points, the continuous transi-

tion lines λ+ and λ− are also different in the two ensembles. In fact, the ensemble inequiva-

lence of the two ensembles can be seen as a consequence of this inequivalence. ForK = 0,

which corresponds to the Blume-Capel model, in Fig. 5.12, we plot the locus of the λ+ line

in two ensembles and one can see that they are different (λ− line also behaves in a similar

way). We plot the product of β∆ on the λ+ line as a function ofH for both the ensembles,

and note that forH → 0, these lines meet at different points, which is the TCP of their cor-

responding ensembles. For canonical ensemble, these λ± lines meet at (β∆)TCP ≃ 1.3863,
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Figure 5.12: Ensemble inequivalence in the Blume-Capel model (K = 0). We show the
locus of the λ+ line (product of β∆) as a function of H , which is different for the two
ensembles. In the inset, we plot the difference in the value of β∆ for the two ensembles, as
a function of H . This value decreases to zero almost exponentially.

while for microcanonical ensemble, these lines meet at (β∆)TCP ≃ 1.3998 (see Fig. 5.12).

We also note that the λ+ lines for the two ensembles become close to each other for largeH .

We plot the difference in the value of β∆ for the two ensembles for a given K, and plot it

as a function ofH in the inset of Fig. 5.12. We note that this value decreases exponentially

to zero as H becomes large.

For non-zero K, the λ± lines meet the λ line at the TCP. This topology persists for

0 ≥ K ≥ −0.1838 in the canonical ensemble, whereas for microcanonical ensemble this

topology occurs for 0 ≥ K ≥ −0.0828. As K decreases further (for canonical ensemble

−0.1838 < K < −1 and for microcanonical ensemble −0.0828 < K < −1), the λ±

lines move inside the ordered region and meet at BEP in the H = 0 plane. Interestingly,

we find that the difference in the position of BEP and CEP in the two ensembles decreases

with decreasingK and forK = −1 the two ensembles become equivalent. In Fig. 5.13(a),

we plot the value of β∆ at the BEP for both the ensembles. We note that the value of
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βBEP∆BEP for the two ensembles becomes closer asK → −1. In the inset of Fig. 5.13(a),

we also plot the difference in the value of βBEP∆BEP for microcanonical and canonical

ensembles, and note that this difference decreases exponentially as K → −1. Thus, for

K ≤ −1, we find that there is no ensemble inequivalence in the H = 0 plane.

We have shown in Sec. 5.3.1 and Sec. 5.4.1 that forK ≤ −1, there is no phase transition

for finite magnetic field in either of the ensembles and hence there are no wings. Thus there

is no inequivalence in the H ̸= 0 plane as well. For K > −1, however, we do have wings

and the continuous transition lines λ+ and λ−, meet at its corresponding TCP or BEP for

canonical and microcanonical ensembles in the limit H → 0. Thus, the critical lines in

the H plane are different for the two ensembles for K > −1. In Fig. 5.13(b), we plot the

value of β∆ on the continuous transition line for K = −0.3, as a function of H for both

the ensembles. We note that the two lines are different for small H , however, these lines

tend to meet each other for large H . We measure the difference between the value of β∆

for the two ensembles for a given K, and plot it as a function of H in Fig. 5.13(b) inset.

We note that this difference reaches zero almost exponentially asH increases. Thus, in the

limit H → ∞, these critical lines for both the ensembles become equivalent.

From the above discussion, it is clear that the ensemble inequivalence is observed for

K > −1 with small H values, however, for K ≤ −1, the phase diagrams in the two en-

sembles become equivalent. In previous literature [301, 302, 299, 303], where ensemble

inequivalence with long-range interactions are studied, it was found that whenever the two

ensembles (either micro-canonical/canonical or canonical/grand-canonical) have a contin-

uous transition, the transition occurs at the same point. The phase diagrams of the two en-

sembles can however be different from each other when the phase transition becomes first

order in one of the ensembles. This kind of behaviour is observed in many systems such

as the spin-1 Blume-Emery-Griffiths (BEG) model [301, 302], the ABC model [299, 303]

etc.
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Figure 5.13: Ensemble inequivalence in the Blume-Emery-Griffiths model (K ̸= 0). (a)
The product of β∆ at the BEP, as a function of K. We note that the difference in the
βBEP∆BEP decreases to zero as K → −1. (b) The locus of λ+ line (product of β∆) for
K = −0.3, for the two ensembles. These lines are different in the two ensembles in the
small H regime, however, the lines tend to become closer as H increases. In the inset,
we plot the difference in the value of β∆ as a function of H , for the two ensembles. The
difference decreases with increasing H .

However, this is not always true. Even the continuous transition point can be differ-

ent in the two ensembles. For example in a generalized ABC model in Ref. [304], the

canonical and grand-canonical ensembles are found to exhibit a second-order phase tran-

sition at different points in the phase space. In [298], a general statement is provided to

check the possibility of ensemble inequivalence for continuous transition using Landau

theory. The transition is observed for a system undergoing phase transition governed by

some order parameter, ‘µ1’ (say) in a given ensemble. This parameter can be the average

magnetization in the case of a magnetic transition, or the difference in the density of the

two phases for a liquid-gas phase transition. Then the model is considered within a ‘higher’

ensemble, where a certain thermodynamic variable, denoted by ‘µ2’, is allowed to fluctu-

ate, (within the ‘lower’ ensemble, ‘µ2’ was kept at a fixed value). In the case where µ2

is the energy, the two ensembles would correspond to the canonical and micro canonical

ensembles, while in the case when µ2 is the particle density, they would correspond to the

grand-canonical and canonical ensembles. The system is thus described by the Landau free
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5 Spin-1 model with higher order interactions

energy denoted by f(µ1, µ2). They found that [298] if f(µ1, µ2) = f(−µ1, µ2), the two

ensembles will be equivalent, when any of them shows a continuous transition. If on the

other hand, f(µ1, µ2) = f(−µ1,−µ2), the system will show ensemble inequivalence even

for continuous transition.

In our case, µ1 is the magnetizationm, and µ2 is the energy ϵ of the system. The lower

ensemble in our case is thus the microcanonical ensemble and the higher one is the canon-

ical. If we check the above symmetries, we note that neither of the conditions studied in

[298] is satisfied. When we add a magnetic field term, the symmetry of the problem is bro-

ken and we find that we have ensemble inequivalence even when the two ensembles show

second order transition.

5.6 Summary and conclusion

Spin-1 BEGmodel has been shown to successfully capture the physics of some higher order

interactions and has been widely studied. The interplay between the different interaction

terms gives rise to very interesting phase diagrams. We have studied the effect ofK on an

infinite range BEG model for both all the ranges of −∞ < K < ∞ in the T − ∆ − H

space. We have considered the canonical and microcanonical ensemble. The repulsive and

attractive BEG model in both the ensemble has been studied earlier. This model is known

to exhibit many multicritical points along with the first and second order line of transition.

The attractive BEG model has been well studied and we find results similar to as re-

ported in the earlier studies in the (T −∆) plane [266, 277, 278, 279, 283, 284, 285, 280,

281, 282]. The full phase diagram in the (T − ∆ − H) space was studied only for the

attractive BEG model in the presence of external field in the canonical ensemble [158]. We

revisited the model and in our study of the (T −∆−H) space, we found a non-monotonic

behaviour of the wings in terms of temperature asK becomes greater thanK = 1. This as
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5 Spin-1 model with higher order interactions

far as we know has not been reported earlier.

Though we have explored the phase diagram for the entire range of K, we mainly fo-

cused on the repulsive BEG model. We found that the competition introduced by the repul-

sive biquadratic interaction makes it a very interesting model to study. For small and inter-

mediate negativeK (−1 < K ≤ 0), the model exhibits phase diagram similar to the topol-

ogy of the phase diagram for the RCFBCmodel shown in Chapter 3 for the intermediate and

weak disorder regime [213]. For the canonical ensemble the range ofK for the first topol-

ogy is 0 ≥ K ≥ −0.1838, whereas for microcanonical ensemble it is 0 ≥ K ≥ −0.0828.

And for the second topology the range of K for canonical is −0.1838 > K > −1 and for

microcanonical −0.0828 > K > −1. We also observed that as K → −1, the width of the

wings decreases. At exactly K = −1, the wing width in temperature becomes zero along

with the CEP and BEP reaching T = ∆ = 0 in both canonical and microcanonical ensem-

ble. And for all K < −1 there is no phase transition in the H ̸= 0 plane. Interestingly for

K > −1, we observe that the λ± lines are different in the two ensembles and they meet

at different multicritical points in the H = 0 plane. For K ≤ −1, we find that there is no

phase transition in theH plane for both the ensembles. This indicates that the the ensemble

inequivalence that are being observed in the T −∆ plane are actually the consequence of

the ensemble inequivalence that occurs in the finite H plane.

Absence of transition in the finite H plane for K ≤ −1 can be argued by looking at

the ground state phase diagram shown in Sec. 5.2. The ∆ − H phase diagram for the

finite H values are first order only for K ≤ −1, which extends in the finite temperature

and terminates at the wings. Whereas, the phase diagram for all K < −1 consists of only

second order line of transition for the H ̸= 0 values which does not extend till finite T .
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Chapter 6

Scaling behavior near different multicrit-
ical points
In this section we will study behaviour near different multicritical points that we encoun-

tered in our study of the disordered spin models. We will verify all the scaling arguments

that has been reported earlier for TCP, CEP and BEP using the disordered spin-1 Blume-

Capel model.

6.1 Multicritcal points

Multicritical points are ubiquitous in nature. There are many physical systems which ex-

hibits multicritical point. Multicomponent fluid mixtures [7, 8, 9, 10], binary alloys [11],

liquid crystals [12, 13], semiconducting alloys [14], metamagnets [15, 16, 17], super-fluidity

[18, 19] etc to name a few. Multicritical points are critical points in a thermodynamic param-

eter space which can only be reached after tuning two or more thermodynamic parameters.

In other way it can be said that the full phase diagram of a multicritical point is multidimen-

sional [4, 6, 5].

An ordinary critical point (CP) is defined by an end of a coexistence region, where the

two phases become a single phase. The signature of a CP is that it shows singularities

in some of the thermodynamic observables. These singularities are expressed in terms of

universal critical exponents, critical amplitude, critical amplitude ratio, scaling function etc.

Depending on the dimensionality and symmetry of the system the CP falls into a universality

class. The scaling relations near the CP are well studied and well understood [1, 2].

Tricritical point (TCP) is one of the most widely studied and well understood multicrit-

164



6 Scaling behavior near different multicritical points

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
e

m
p

e
ra

tu
re

 (
T

)

Magnetization (m)

(a)

0.25

0.3

0.35

0.4

0.45

0.5

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
e
m

p
e
ra

tu
re

 (
T
) 

Density (q)

(b)

Figure 6.1: (a) Temperature(T) vs. magnetization (m) plot for Blume-Capel model. The
red line is the magnetization coexistence region. The peak of the coexistence region ends at
a critical point (CP). (b) Temperature(T) vs. density(q) plot for Blume-Capel model. The
blue line denotes the co-ordinates of the λ line and the area under the red line is the density
coexistence region. The λ line truncates at the peak of the coexistence region at a TCP.

ical points [6, 4]. As discussed in Chapter 1, TCP is an example of a multicritical point

where three critical lines meet in the space of three fields (T,∆, H in our model). Alter-

natively it can also be defined as a multicritical point at which a λ line meets at the peak

of a phase separation curve. We also encountered other multicritical points in our study of

disordered Blume-Capel model namely the critical end point (CEP) and bicritical end point

(BEP). The CEPs are points where two phases become critical in presence of one or more

non-critical phases, known as spectator phases [20]. On the other hand a BEP is a point of

coexistence of two critical phases [213]. Presence of disorder or higher order interaction in

a Hamiltonian can cause the emergence of such multicritical points in a system [213, 288].

The scaling hypothesis and universality class near the TCPs are well understood and

have been verified in many models [305, 306, 307, 4]. In the T −∆ plane, both TCP and

CEP separate line of CPs from a triple line of first order transition. It is generally accepted

that the bulk critical exponents near a CEP are same as that of a CP [308]. Field-theoretic

renormalization group theory has confirmed this realization on continuum models [309,
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6 Scaling behavior near different multicritical points

310]. Though there are further singularities that arise near a CEP in the bulk [311, 312, 313,

314, 5, 9, 10] and interfacial or surface tensions [242, 315, 316, 317]. The singularities in

the bulk thermodynamics has been pointed out to be characterized by universal parameters

[311, 312, 313, 314, 5, 9, 10], which is in contrast with the behaviour of the interfacial

singularity [242, 315]. It was argued by Fisher [311] using scaling arguments that the non-

analyticities of the first order surface near a CEP is related to the singularities of the critical

line. This prediction was verified using spherical models [312, 313, 314, 5] and using

eighth order Landau free energy expansion for isomorphous transitions [318, 240] and two

order parameter Landau free energy expansion for ferroelectric materials [319]. Later, using

an extensive Monte-Carlo simulation Wilding provided the first evidence of the singular

behaviour on the first order phase boundary near CEP for a symmetrical binary fluid [9, 10].

Both the Fisher and the Wilding conjecture was verified for an asymmetric Ising model

using Wang-Landau study on a triangular lattice [320, 321].

BEP is expected to fall in the Ising universality class [228, 322, 323]. Using the eighth

order Landau expansion for isomophous transition it was asserted that near the BEP the

phase boundary is analytic if the λ± lines that meet at the BEP are symmetric in nature and

under same universality class [240]. And the critical exponents lies in the same universal-

ity class of the mean-field values of a critical point. Later, using extensive Monte-Carlo

simulation this argument was proved by Plascak et. al [231] for spin 3/2 Blume Capel

model.

The analysis of the above mentioned scaling relations has been done only on pure mod-

els. The emergence of a CEP and a BEP is completely different than that of a pure model

as we observed in Chapter 3, 5. In such cases the TCP splits into a CEP and a BEP. We

have studied the scaling hypothesis of these multicritical points for the spin-1 Blume-Capel

model in presence of disorder (considering RCFBC model) and in presence of higher order

interactions (the BEG model). Both of these models exhibits TCP as well as CEP depend-
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Figure 6.2: Blume capel model exponents (β, γ, δ) of the λ line and near the TCP. The
solid circle shows the data points and the solid lines depicts the power law fitting functions.
(a) and (c) Shows the plot of the magnetisation (m) and the inverse of the magnetic sus-
ceptibility (χ−1) w.r.t reduced temperature (T ) fitted using power law fitting for λ line and
TCP respectively. Exponents β and γ are mentioned in the plot with errorbars. (b) and (d)
Shows the plot of the magnetisation (m) w.r.t the external magnetic field H fitted with the
scaling exponent δ = 3.063547 ± 0.0005584 and δ = 4.98611 ± 0.000415 for λ line and
TCP respectively.
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ing on the strength of the disorder or higher order interactions. So it is easier to verify the

scaling hypothesis near the multicritical points and distinguish the behaviour of the phase

boundary near a TCP and a CEP.

The plan of the chapter is as follows. In section 2 we briefly discuss about the scaling

relations near a CP and TCP and verify them for the Blume-Capel model. In section 3, we

discuss about the scaling relations near CEP.We revisit the Fisher-Barbosa argument for the

scaling hypothesis near a CEP and the Wilding’s argument briefly. In section 4, we show

our observations near the CEP for RCFBC and for BEG model and compare them with the

corresponding quantities near a TCP. In section 5, we show the scaling near a BEP. We then

summarize the conclusions briefly in section 6.

6.2 Scaling near a CP and a TCP

6.2.1 Critical point (CP)

An ordinary critical point (CP) is a point where the magnetization coexistence region ends

(shown in Fig. 6.1a). Near a CP the measurable thermodynamic quantities such as the mag-

netisationM , magnetic susceptibility χ, specific heat Cv etc shows a power law behaviour.

Close to the CP, the free energy can be expressed as the sum of a analytic boundary term

and a singular term.

f(T, h) ∼ fns(T, h)−Q |t|2−α W±

[
Uh

|t|∆

]
(6.1)

where +(−) sign refers to T > Tc (T < Tc) and t is the scaled temperature : t = T−Tc

Tc
.

The singularities near a CP are expressed in terms of some universal critical exponents and

critical amplitudes as the following
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6 Scaling behavior near different multicritical points

Figure 6.3: Schematic phase diagram of the spin-1 ferromagnets in the g − t plane, where
the scaled fields are t = T−Tc(g)

Tc(g)
and g = −∆. Solid line depicts lines of second order

transition and dotted lines are lines of first order transition. The first order phase boundary
π separates the two ordered phases m1 and m2 and the τ separates the phase m1 and the
disordered phase p. Solid star represents BEP and the solid red square is CEP. Figure taken
from [240].

M ≈ B|t|β (6.2)

M ≈ B±h
1/δ (6.3)

χ ≈ C±|t|−γ (6.4)

Cv ≈ A±|t|−α (6.5)

The α, β, γ, δ are the critical exponents of the system. And these exponents are related to

each other by

α + 2β + γ = 2 (6.6)

βγ = β + γ (6.7)

known as the Rushbrooke and the Widom identity respectively [1]. The coefficients A±,

B±, C± are called critical amplitudes, they itself are non-universal but their ratio is an
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6 Scaling behavior near different multicritical points

universal quantity. For example, C+

C−
= 2 for mean-field Ising model. Systems under the

same universality class show same values of the critical exponents. For example, Fig. 6.2a

and 6.2b shows the values of the exponents β, γ and δ for the λ line of the mean-field pure

Blume-Capel model by plotting the magnetisation m and susceptibility χ as a function of

the reduced temperature T and m as a function of the external magnetic field H . It shows

that the exponents of the λ line fall under the mean-field Ising universality class, where

β = 1
2
, γ = 1 and δ = 3.

6.2.2 Tricritical point (TCP)

The tricritical point (TCP), on the other hand are the multicritical points where a λ line

terminates on the peak of the coexistence curve in the temperature (T) vs density (q) plane

(shown in Fig. 6.1b). At the TCP the λ line meets the peak of the coexistence region at a

finite angle [4].

The universality class of TCP is different than the ordinary critical point [4]. For the

TCP at the pure Blume-Capel model located at (H = 0, T = 1/3,∆ = 0.46209812),

we get the following critical exponents near TCP by fitting : β = 0.257325 ± 0.001927,

γ = 1.00266 ± 0.0002046 and δ = 4.98611 ± 0.000415 from the power law fitting (Fig.

6.2c , 6.2d) consistent with the mean-field values of : β = 0.25, γ = 1 and δ = 5. The

solid blue line denotes the λ line and the red shaded region is the co-existence region of the

densities of the magnetic and non-magnetic spins.

6.3 Scaling hypothesis near a CEP

Critical end points (CEP) are the multicritical points where the λ line is truncated by a first

order transition line [20]. CEPs are present in systems with more than two thermodynamic

parameter. For spin-1 ferromagnets, there are three thermodynamic fields : temperature

(T ), crystal field (∆) and external magnetic field (H). Fig. 6.3 shows the schematic plot
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6 Scaling behavior near different multicritical points

Figure 6.4: Schematic phase diagram of the spin-1 ferromagnets in presence of the external
magnetic field h, in the g − t − h plane. Solid lines represent the lines of second order
transition (λ and λ±), dotted line represents line of first order transition, red square is the
CEP and black star is the BEP. ρ is the spectator phase boundary. Figure taken from [240].
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in the the scaled fields t = T−Tc(g)
Tc(g)

and g ≡ −∆. Here t is a function of g. The π line is

the coexistence of two ferromagnetic states: m1 and m2 and the τ line is the coexistence

of a disordered phase (p) and the ordered statem1. The p phase and them2 phase becomes

critical in presence of a non-critical phase m1 at the CEP. m1 is the spectator phase here.

The separation between the two ordered phase (m1,m2) becomes zero at the BEP, shown

by a black star in Fig. 6.3.

In presence ofH , the three dimensional diagram is shown in Fig: 6.4. In the g− t−H

plane the lines of first order transition π and τ becomes a surface ρ. The first order phase

boundary ρ, specified by the function gρ(T, h) shows non-analyticity as a function of T and

h as we approach the CEP. It was shown by Fisher et.al [311, 312] that the curvature of the

first order surface ρ shows singularity and the singularities can be expressed by the universal

critical exponent and the critical amplitude ratios of the λ line. In the next subsection we

will discuss about the scaling argument given by Fisher near the vicinity of CEP.

6.3.1 Derivation of the scaling argument near CEP by Fisher et.al

The critical temperature Tc of the λ line is a function of the non-ordering field g, i.e. Tc(g).

The free energy near the λ line can be written as :

fp(T, h, g) ∼ f0(T, h, g)−Q|t|2−αW±

[
Uh

|t|∆

]
(6.8)

The f0 is the non-singular part of the free energy. The spectator phasem1 boundary can be

expressed as the Taylor expansion around the CEP (Te, 0, ge):

fm1(T, h, g) = fe + fm1
1 ∆g + fm1

2 ∆t̂+ fm1
3 h+ ....... (6.9)

where t̂ = T−Te

Te
and ∆g = g − ge. Similarly the f0 can be expanded near the CEP:

f0(T, h, g) = fe + f 0
1∆g + f 0

2∆t̂+ f 0
3h+ ....... (6.10)
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Also t, U , and Q can be expanded as the following

t = t̂+ q1∆g + q2∆g2 + q3t̂∆g + q4t̂
2 + q5h

2 + ...... (6.11)

U(T, h, g) = Ue + U1∆g + U2t̂+ U3h+ ..... (6.12)

Q(T, h, g) = Qe +Q1∆g +Q2t̂+Q3h+ ..... (6.13)

here q1 is the slope of the λ line at the CEP

q1 =
1

Te

∂Tc(g)

∂g

∣∣∣∣∣
e

(6.14)

The first order phase boundary can be calculated by equating and solving the free energies

of p andm1 : fm1(T, h, g) = fp(T, h, g), which in turn gives

fe + fm1
1 ∆g + fm1

2 ∆t̂ + fm1
3 h+ .......

= fe + f 0
1 ∆g + f 0

2 ∆t̂+ f 0
3 h+ .......−Q |t|2−α W±

[
Uh

|t|∆

]
(6.15)

Defining Di = fm1
i − f 0

i and gi = −Di+1

Di
, the above equation for the phase boundary of ρ

can be rewritten as

gρ(T, h) ≈ ge + g1t̂+ g2h+ ...−R(T, h) |t|2−α W±

[
Uh

|t|∆

]
(6.16)

where

R(T, h) ≡ Q[T, h, gρ(T, h)]

(D1 +D′
2t̂+D′

3h+ .....)
= Re +R1t̂+R2h+ .... (6.17)

where the D′
2, D′

3, R1, R2 etc are the coefficients which can be expressed in terms of the

coefficients in Eq. 6.11 - 6.3.1 . The slope of the phase boundary gρ(T, h) at the CEP
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{gρ(T, 0), h = 0} is given by

g1 = Te
∂gρ(T, h)

∂T

∣∣∣∣∣
e

(6.18)

For h= 0

Q[T, h, gρ(T, h)] also contains t and h which is are functions of gρ(T, h). So the spectator

phase boundary at h = 0 can be found by considering only the leading order terms when

t̂ −→ ±0:

gρ(T )− g0(T ) = − Re |t̂+ q1gρ(T )− q1ge|2−α W±[0]

= −X± |t̂|2−α
(
1 +O(|t̂|1−α)

)
(6.19)

where g0(T ) = ge + g1t̂+ g2h+ ....

The singularity in the phase boundary is expressed by the term X± |t̂|2−α of the above

equation. The amplitude of the singular term X± is related to the curvature of the phase

boundary as

X± = Re W±(0) |e0|2−α (6.20)

with the parameter e0 related to the curvature of the phase boundary to be

e0 = 1 + g1q1 = 1−

[
∂gρ
∂T

]
e

[
∂Tc

∂g

]
e

(6.21)

Now from the scaling function of the free energy Eq. 6.8, the critical amplitudes in Eq. 6.2

- 6.5 can be expressed as

A± = (2− α) (1− α) W±(0) Q[Tc(g), 0, gρ] (6.22)

B = W ′
−(0) Q[Tc(g), 0, gρ] U [Tc(g), 0, gρ] (6.23)

C± = W±(0) Q[Tc(g), 0, gρ] U2[Tc(g), 0, gρ] (6.24)
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and the ratio of the critical amplitudes can be expressed in terms of the scaling functionW±

as

A+

A−
=

W+

W−
and

C+

C−
=

W ′′
+

W ′′
−

(6.25)

Comparing the ratio of the critical amplitudeA± in Eq. 6.25 and the ratio of the amplitudes

of the curvature of the phase boundary ρ X± in Eq. 6.20, it turns out that

X+

X−
=

A+

A−
(6.26)

As the critical amplitude ratios A+

A−
are universal, X+

X−
which is related to the curvature of the

phase boundary is also universal.

For h ̸= 0

Now for small and h ̸= 0, the scaling function can be Taylor expanded around h = 0,

gρ(T, h)− g0(T, h) = −Re |t̂+ q1gρ(T )− q1ge|2−α

(
W±[0] +

hUe

|t|∆
W ′

±[0] +
1

2

(hUe

|t|∆
)2
W ′′

±[0] + ...

)
(6.27)

As B = 0 for t̂ −→ 0+, thusW ′
+ = 0. So only for t̂ −→ 0+ Eq. 6.27 can be written as

gρ(T )− g0(T ) ≈ −X+|t̂|2−α − 1

2
Z+h

2|t̂|−γ + ... (6.28)

Similarly for t̂ −→ 0−, the expression Eq. 6.27 becomes

gρ(T )− g0(T ) ≈ −X−|t̂|2−α − Y |h||t̂|β − 1

2
Z−h

2|t̂|−γ + ... (6.29)

where the amplitudes Z±, Y related to the phase boundary ρ can be shown be

Z± = Re W ′′
±(0) |e0|2−α−2∆ = Re W ′′

±(0) |e0|−γ (6.30)

Y = Re W ′
−(0) |e0|2−α−∆ = Re W ′

−(0) |e0|β (6.31)
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using the scaling relations Eq. 6.6. Similar to the ratio X+

X−
, the other amplitude ratios can

also be expressed in terms of the critical amplitude ratios by comparing Eq. 6.23, 6.24, 6.25

to Eq. 6.30, Eq. 6.31. This can be expressed as

Z+

Z−
=

C+

C−
(6.32)

ζ1 ≡
X+Z+

Y 2
=

A+C+

(1− α)(2− α)B2
(6.33)

So near the vicinity of the CEP the equation of the phase boundary ρ is expressed as

gρ(T, h) = ge + g1 t̂+ g2 h+ ...−X± |t̂|2−α − Y |h| |t̂|β − 1

2
Z± h2 |t̂|−γ + ... (6.34)

This is the argument which was given by Fisher [311] using the phenomenological theory

of scaling and thermodynamic arguments. It states that the divergent curvature of the phase

boundary ρ near the CEP is expressed in terms of the amplitudes X±, Y , Z±. The ratio

of these amplitudes are related to the universal critical amplitude ratio of the critical phase

boundary λ. Therefore, the singularity in gρ(T, h) of the phase boundary ρ can be verified

by calculating the derivatives ∂ gρ(T,h)

∂T
, ∂2 gρ(T,h)

∂T 2 , ∂ gρ(T,h)

∂h
, ∂2 gρ(T,h)

∂h2 near the CEP.

This predictions were verified using the spherical models [312, 313, 314, 5] and using

eighth order Landau free energy expansion for isomorphous transitions [318, 240] and two

order parameter Landau free energy expansion for ferroelectric materials [319].

6.3.2 Wilding’s scaling theory around CEP

A straightforward extension of the Fisher’s scaling argument was done by B.Wilding [9, 10]

in order to study the singularities in the thermodynamic density q conjugate to g (or −∆).

It was first shown using Monte-Carlo simulation for a binary fluid mixture that additional

to the singularity of the phase boundary gρ(T, h) proposed by Fisher et al there are an-

other singularities in the diameter of the coexistence curve. It showed that the temperature
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Figure 6.5: Temperature (T) vs. density (q) plot for (a) RCFBC model at p = 0.044 and (b)
BEG model atK = −0.6. The blue line denotes the co-ordinates of the λ line and the area
under the red line is the density coexistence region. The coexistence region ends at a BEP
and the λ line truncates at the coexistence region at a CEP shown above.

derivative of the coexistence diameter diverges at the CEP and this divergence occurs in first

derivative of the coexistence diameter. The diameter of the coexistence curve is defined as

qd(T ) ≡
1

2

(
qp/m2(gρ(T )) + qm1(gρ(T ))

)
(6.35)

where the density q can be obtainable from the free energy as

q = − 1

V

(
∂f(T, h, g)

∂g

)
T,h

(6.36)

and qm1 , qp/m2 are the densities of the spectator phase m1 and the phases p and m2 which

becomes critical at the λ line respectively shown in Fig. 6.5. Using the Eq. 6.8, 6.9, 6.35

and 6.36, the singular behaviour of the diameter qd can be written as

qd(T ) ≈ U±|t̂|1−α + terms analytic at Te (6.37)

where the non-universal amplitudes U± can be expressed in terms of the scaling function

W± of Eq. 6.8.

Thus the scaling argument shows that the coexistence curve diameter qd(T ) exhibits a
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6 Scaling behavior near different multicritical points

divergence near the CEP and it can be verified by plotting the derivative of the qd(T )

∂qd(T )

∂T
≈ Ũ±|t̂|−α (6.38)

near the vicinity of a CEP. As the divergence occurs in the first derivative of observable

qd(T ), it is more visible experimentally rather than the second derivative of the phase bound-

ary gρ(T, h).

6.4 Our observation near CEP

In our work, we verify the scaling arguments of the Fisher et al and Wilding for disordered

spin-1 ferromagnets. We have considered RCFBC model and BEG model in presence of

repulsive biquadratic exchange interaction (K).

6.4.1 Scaling argument verification by Fisher et al

For the spin-1 model, the phase boundary gρ(T, h) is the function −∆(T, h). In order to

observe the singularity in the phase boundary ρ, we plot the in the co-ordinates of the first

order phase boundary ∆ρ(T, 0) and the second order derivative ∂2∆ρ(T,0)

∂T 2 in Fig. 6.6 for

RCFBC model for the strength of disorder p = 0.044, p = 0.07 and for BEG model at

K = −0.6. In all the cases, the phase diagram exhibits a CEP and a BEP.

In Fig. 6.6a, 6.6c, 6.6e we plot the co-ordinates of the phase boundary ∆ as a function

of temperature (T ). In this case the ∆ continuously decreases with T . In Fig. 6.6b, 6.6d,

6.6f we plot the second derivative of the phase boundary ∂2∆
∂T 2 as a function of T . It shows

that the phase boundary shows a discontinuity at the TCEP . The discontinuity observed in

the ∂2∆
∂T 2 is similar to the jump in the specific heat plot (Cv) as a function of temperature T

at the λ line, shown in Fig. 6.7.

Thus according to the Eq. 6.34 of the phase boundary ρ near the CEP in absence of
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Figure 6.6: Fisher-Barbosa scaling argument verification for RCFBC model at p = 0.044
and p = 0.07. And for BEG model at K = −0.6. Fig. (a), (c) and (e) shows the plot
of the spectator phase boundary ∆ρ(T, 0) as a function of temperature (T ). Fig. (b), (d)
and (f) shows the plot of the second derivative of the phase boundary ∂2∆

∂T 2 as a function of
temperature (T ).
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external field h, the curvature of the phase boundary ∆ρ(T, 0) diverges as

∂2∆ρ(T, 0)

∂T 2
= X±|t̂|−α with α = 0 (6.39)

and X± is given by the jump of ∂2∆ρ(T,0)

∂T 2 at TCEP .

6.4.2 Scaling argument verification by Wilding

In order to verify the Wilding’s scaling argument we first plot the density coexistence curve

as a function of temperature (T ) for RCFBC model at p = 0.044 in Fig. 6.5a and for BEG

model at K = −0.6 in Fig. 6.5b. The coexistence curve (shown in red line) ends at a

BEP and the λ line (shown by blue line) truncates on the coexistence curve at a CEP. The

co-existence curve near the CEP shows a kink (shown in the inset of Fig. 6.5b).

In Fig. 6.8, we plot the the co-ordinates of the diameter qd and the first derivative ∂qd
∂T

of the co-existence curve of Fig. 6.5 as a function of temperature (T ). We consider the

RCFBC model for p = 0.044, p = 0.07 and BEG model for K = −0.6. In Fig. 6.8a,
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Figure 6.8: Wilding scaling argument verification for RCFBC model at p = 0.044 and
p = 0.07. And for BEG model at K = −0.6. Fig. (a), (c) and (e) shows the plot of the
co-existence diameter (qd) as a function of temperature (T ). Fig. (b), (d) and (f) shows the
plot of the derivative of the diameter ∂qq

∂T
as a function of temperature (T ).
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Figure 6.9: The behaviour of the phase co-existence region near a CEP and a TCP. Plot of
the temperature (T ) vs. density (q) (a) for RCFBC model for a range of p and (b) for BEG
model for a range of K.

6.8c and 6.8e we plot the diameter qd of the density coexistence region as a function the

temperature (T ). We observe that at the TCEP it shows a kink in qd. In Fig. 6.8b, 6.8d and

6.8f we plot the corresponding derivative ∂qq
∂T

as a function of T . It shows a discontinuity at

the CEP. This discontinuity is again similar to the jump of Cv vs T (Fig. 6.7) plot with the

critical exponent α = 0.

6.4.3 Comparison of the scaling arguments near a CEP and a TCP

Both the TCP and CEP are points where a λ line meets at the phase coexistence region. In

order to distinguish between these two multicritical points one can compare the behaviour

phase boundaries near these points. For example, the shape of the phase coexistence curve

is different for a CEP and a TCP. In Fig. 6.9 we plot the phase coexistence curve for the

RCFBC model and BEG model for a range of p and K respectively. We observe that, for

all the ranges of parameter (0 ≤ p ≤ 0.022 for RCFBC model shown in Fig. 6.9a and

−0.1838 ≤ K ≤ 0 for BEG model shown in Fig. 6.9b) for which the TCP exists, the λ

line meets at the peak of the coexistence region, where the phase coexistence continuously

goes to zero. For the rest of the parameters the λ line does not terminates at the peak of the
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Figure 6.10: Plot of the coexistence diameter qd, the derivative of the diameter ∂qq
∂T

and
phase boundary ∆ρ(T, 0) as a function of temperature T in order to compare the scaling
arguments near a TCP for RCFBC model at p = 0 and p = 0.022. (a) and (c) Shows the
plot of qd as a function of T . (b) and (d) Shows the plot of ∂qq

∂T
as a function of T . The

derivative shows a divergence at the TCP. We plot the co-ordinate of∆ρ(T, 0) for (e) p = 0

and (f) p = 0.022. Near the TCP, the ∆ρ(T, 0) decreases linearly with T and thus the ∂2∆
∂T 2

is zero for both the values of p.
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coexistence region. The peak is now becomes a BEP and the λ line truncates on either side

of the coexistence region giving rise to a kink at the CEP.

The distinction between these two multicritical points can also be done quantitatively

by plotting the quantities related to the scaling arguments of the CEP and compare them. In

order to compare the Wilding’s scaling argument, we plot the diameter of the coexistence

region qd and it’s derivative ∂qq
∂T

as a fuction of T for the RCFBC model at p = 0 and

p = 0.022 in Fig. 6.10a - 6.10d. We observe that the qd decreases continuously as a

function of T , shown in Fig. 6.10a and Fig. 6.10c for p = 0 and p = 0.022 respectively.

The derivative of the diameter qd shows a divergence at the TCP shown in Fig. 6.10b and

Fig. 6.10d for p = 0 and p = 0.022 respectively. Which is in contrast with the behaviour

of qd and ∂qq
∂T

shows a jump near a CEP.

Similarly, in order to check the Fisher’s scaling argument, we plot the similar quantities

near the TCP (∆ as a function of the T ). In Fig. 6.10e and Fig. 6.10f we plot them for

p = 0 and p = 0.022 respectively. In Fig. 6.10f, the ∆ along the coexistence region

changes linearly for p = 0. For p = 0.022, the ∆ shows a non-monotonicity. But in both

cases, the second derivative of the ∆ as a function of T gives zero near the TCP. Which

is in contrast with Fig. 6.6b, 6.6d for the similar quantities near a CEP, where the second

derivative shows a jump.

6.5 Scaling near BEP

Bicritical end point (BEP) is a point of coexistence of two critical phases. This point is

where two critical lines meet. It a point of finite magnetisation. We first try to get an

idea of the behaviour of BEP in mean field theory. Using Landau free energy functional

expanding upto 6th order in presence of an external magnetic field:
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f(m) = mh+ a2m
2 + a4m

4 + a6m
6 + a8m

8 (6.40)

a2 ∝ (T − Tc). Taking first derivative of f(m) to be zero:

h = 2m(a2 + 2a4m
2 + 3a6m

4 + 4a8m
6) (6.41)

Now to know the behaviour around the BEP, we take h = 0, and definem′ ≡ m2. Eq:6.41

has a form form ̸= 0, with α = a2, β = 2a4, γ = 3a6, δ = 4a8 :

α + βm′ + γm′2 + δm′3 = 0 (6.42)

This cubic equation has a double root and one simple root. The solutions are:

Simple root:

m′ =
4βγδ − 9δ2α− γ3

δ(γ2 − 3δβ)
(6.43)

Double root:

m′ =
9δα− βγ

2(γ2 − 3δβ)
(6.44)

So the magnetisationm, from the above equations can be scaled as:

m2 ∼ a2 → m ∼ (T − Tc)
1
2 (6.45)

To get the susceptibility we take derivative of Eq:6.41 w.r.t h:

1 = 2(a2 + 6a4m
2 + 15a6m

4 + 28a8m
6)χ

χ =
1

2(a2 + 6a4m2 + 15a6m4 + 28a8m6)
∼ 1

T − Tc

(6.46)

At the critical point T = Tc, a2 = 0. Eq:6.41 can now be written as:
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Figure 6.11: Calculation of the critical exponents β, γ and δ at the BEP using power law
fitting for RCFBC model at p = 0.2. The solid circles are the data plots and the solid
lines are the fitting function. (a) Shows the m and χ−1 plot as a function of the reduced
temperature τ . Exponents β and γ are mentioned in the plot with error bars. (b) Shows the
m−H plot with scaling exponent δ = 3.184013704± 001052. This shows that the critical
exponents of a BEP falls under the mean-field Ising universality class.

h = 2(2a4m
3 + 3a6m

5 + 4a8m
7) (6.47)

The leading term of m gives the dependence in h to be: m ∼ h
1
3 . which implies the BEP

to be in the mean-field Ising universality class.

Next in order to observe the behaviour near the BEP from the full free energy, we plot

the magnetisation and the susceptibility at the BEP of RCFBC model for p = 0.2. In

Fig. 6.11 we plot the rescaled magnetisation m ≡ M − M0 and rescaled susceptibility

χ ≡ χ− χ0 near the BEP co-ordinate : β = 4.8589227251599, ∆ = 0.596375976333334

for p = 0.2. Where the values of the constants are M0 = 0.577133329708503, and χ0 =

3.752999689475423×1014. We then do a power law fitting for the observables. We get the

exponents near the BEP similar to the mean-field Ising universality class.

186



6 Scaling behavior near different multicritical points

6.6 Summary and conclusion

The scaling hypothesis has been done earlier near the multicritical points like TCP and CEP.

The scaling near the TCP is well studied [305, 306, 307, 4]. On the other hand the scaling

hypothesis for the singularities near a CEP has been conjectured and has been proved in

some examples [312, 313, 240, 9].

In this work [324] we have revisited the scaling hypothesis for the spin-1 RCFBCmodel

and the BEG model. We have determined the first order phase boundaries near the CEP

and studied the behaviour of the phase co-existence diameter and the their derivatives. The

phase boundary curvature and it’s double derivative shows a jump at the CEP which con-

firms the predictions by Fisher et al [311, 312]. This jump is similar to the specific heat

(Cv) plot as a function of T with the critical exponent α = 0. We also checked theWilding’s

arguments near the CEP separately [9]. We observed that the diameter of the coexistence

curve shows a kink and it’s derivative shows a jump at the CEP similar to Cv − T plot as

predicted by Wilding [9].

We have done a comparative study between the TCP and CEP in order to distinguish

between the twomulticritical points just by observing the behaviour of the phase boundaries

near these multicritical points. We observed that the phase coexistence diameter shows a

kink near the CEP whereas the diameter continuously goes to zero near a TCP.

We have also studied the scaling behavior near the BEP both using the Landau free

energy expansion and also by plotting the observables near the BEP. We observed that the

critical exponents belongs to the same universality class as the mean-field Ising universality

class.
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Chapter 7

Summary and Conclusions
Quenched randomness has a significant impact on a system’s critical behaviour, particularly

at first order transitions and multicritical points. Spin models with random field disorder are

a good representation of many systems with quenched randomness [97]. While there have

been a lot of work on effect of disorder on Ising spins, effect on spin-1 has been studied

less. The spin-1 model has a richer phase diagram than the spin-1
2
model. They have many

applications in modelling of different physical systems like : 3He −4 He mixtures [149],

inverse melting [155, 156], semiconducting alloys [160], and so on. In this thesis, we have

focused on the study of the effect of random crystal field and random field disorder on a

infinite-ranged spin-1 Blume-Capel model using large deviation techniques [215]. It is the

simplest spin model which exhibits multicritical behavior.

In Chapter 3 we investigated the effect of bimodal random crystal field disorder on

a infinite-ranged Blume-Capel model (RCFBC) [213]. We observed that the disorder is

always relevant and the phase diagrams can be divided into three categories depending on

the value of p. Weak (0 < p ≤ 0.022), intermediate (0.022 < p ≤ 0.107875), and strong

(0.107875 < p ≤ 0.5) disorder regime. However, the wings never disappear, even though

the TCP of the system vanishes for p > 0.022. Instead different multicritical points like

CEP and BEP emerges. We observed that the BEP is a point of coexistence of two critical

phases. This was earlier reported as an ordered critical point [185] in the T −∆ plane. One

interesting observation was that the one-parameter 8th order Landau theory cannot locate

the co-ordinates of the CEP and BEPs accurately.

In Chapter 4 we investigated the effect of different symmetric random field distribu-
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7 Summary and Conclusions

tions on the infinite-ranged Blume-Capel model (RFBC) [214]. We found that the effect of

the random field disorder is very different than the effect of random crystal-field disorder.

In presence of the random crystal-field disorder the system consists of a TCP which van-

ishes as disorder increases and a BEP emerges [213]. Whereas, in the random-field disorder

multiple new phases emerge which are separated by multiple first order transition lines. As

a result, first order transition of the pure model gets replaced by two or more small jumps

in magnetization. We considered a trimodal and a Gaussian distribution. We studied both

the T = 0 and finite T phase diagram for both the distributions. We observed that for the

trimodal distribution, three new ordered phases emerge. The phase diagram consists of 4

ordered and 2 disordered phases for all 0 < p < 1. We classified the phase diagram into

five categories depending on p : p = 0, 0 < p < 1
3
, p = 1

3
, 1

3
< p < 1 and p = 1.

We found that the phase diagrams consist of multiple numbers of first order transition lines

along with multiple numbers of multicritical points like TCPs, BEPs, and multi-phase co-

existence points which we designate as An points. On the other hand we found that the

phase diagram for Gaussian distribution is rather simpler. It has one ordered phase and one

disordered phase, and its phase diagram resembles that of the pure Blume-Capel model.

Interestingly, we discovered that the phase diagrams are not similar for different symmet-

ric distributions. This contradicts the earlier conjecture by Aharony for O(n) models in

presence of symmetric random field distribution [76].

In Chapter 5 we studied the effect of higher order interactions on infinite range spin-

1 BEG model in the T − ∆ − H space [288]. We solved the system in both canonical

and microcanonical ensembles. We found that the phase diagrams can be divided into four

categories. The presence of negative K creates a frustration in this pure model which we

find affects the phase diagram in a similar way like the random crystal field disorder [213]

and for small negative values of K, the first two phase diagrams are similar to the phase

diagrams of the RCFBC model for weak and intermediate regimes respectively. As K
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decreases further, the co-ordinates of the CEP and BEP move towards T = 0 and exactly at

K = −1 they reach T = 0. ForK < −1, the multicritical points as well as the wings vanish

and the phase diagram becomes two dimensional in the T −∆−H space. Interestingly, we

found that the model exhibits ensemble inequivalence only for K > −1. The co-ordinates

of the λ± lines are different for different ensembles which inH = 0 plane meet at different

multicritical points. For K < −1 the wings vanish and hence the ensemble inequivalence

also disappears.

In conclusion, we studied the effect of disorder and higher order interaction on infinite

range spin-1 models. We observed that even in presence of an infinitesimal amount of

disorder changes the system’s critical behavior. A plethora of different phase diagrams

emerge. We also observed that the BEG model being a pure model in presence of repulsive

biquadratic exchange interaction creates the similar frustration in the system like the random

crystal field disorder. In presence of disorder and as well as in presence of frustration we

observed that many multicritical points like TCP, BEP and CEP emerges. In order to get

more insight near themulticritical points a proper scaling theory near these points is required

to differentiate between different multicritical points. The scaling theory near a TCP shows

that it has a different universality class than the ordinary critical point [4]. A scaling theory

near the CEP has been proposed earlier by Fisher et al [311, 312, 313] and later by Wilding

[10]. In Chapter 6 we revisited these scaling theories and verified the scaling behavior

around the CEP and TCP for the disordered spin-1 Blume-Capel model both for the RCFBC

and BEG model [324].

Our investigations has been focused on the effects of different random field disorder in

the spin-1 Blume-Capel model on a fully connected graph. Study on the fully connected

graph is relevant because the upper critical dimension of the TCP is du = 3 and also the

simulations are challenging. It will be interesting to study the system in finite dimensions

to check if such interesting behavior arises or not. For example : emergence of different
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multicritical points, existence of an ordered state even for strong random field disorder, dif-

ferences in phase diagrams for different symmetric random field distributions. The method

used in this thesis can be straightforwardly applied to study other spin models as well, like

the Potts model, BEG model, Ashkin Teller model in presence of disorder.
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