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Summary

Hardy inequalities are of fundamental importance in many areas of mathematics
and theoretical physics. Since their discovery a rich theory has been developed
on Hardy inequalities and it became a broad area of mathematical research. The
original inequality on positive real numbers extended to N -dimensional Euclidean
space and more general domains. Several versions and improvements of classi-
cal Hardy inequality are available in the literature. Many of these Hardy type
inequalities have been studied in the Dunkl setting recently. S. Thangavelu, Y.
Xu, Ó. Ciaurri, F. Soltani, B. Amri, D. V. Gorbachev and A. Velicu are a few of
the authors studied about such Hardy type inequalities.

The Dunkl operators was first introduced by C. F. Dunkl in 1989. The Theory
of Dunkl operators in the study of special functions with reflection symmetries
is very young. In recent years this operator have found considerable attention
in various branches of mathematics and Physics. Dunkl transform is an ex-
tension of Fourier transform which defines an isometry on the weighted space
L2(Rd, dµk(x)). It enjoys many similar properties of classical Fourier transform.
The Dunkl Laplacian associated to a multiplicity function k on fixed root system
R and reflection group G is defined by ∆k =

∑N
j=1 T

2
j where Tj’s are the Dunkl

operators. Also the Dunkl gradient is defined as ∇k = (T1, T2, ..., TN). If the
multiplicity function k is identically equal to zero the operators Tj, ∆k and ∇k

reduce to ∂j, ∆ and to∇ respectively. We denote γk =
∑

α∈R+
k(α), dk = N+2γk

and dµk(x) as the Dunkl weighted measure.
The main theme of this thesis is to study different type of Hardy inequalities

associated with the Dunkl operators. We will establish Hardy inequalities, trace
Hardy inequalities and Stein-Weiss inequalities associated to Dunkl operators for
the Euclidean space, half-space and cone. We begin with Hardy type inequalities
for the L2 space. We prove classical Hardy inequality for G-invariant function.
Using this result we proved certain classical Hardy inequalities for half-space and
cone.

Let R be a root system on RN and k be a multiplicity function on R. Define a
root system R1 on RN+1

+ as R1 = R×{0}. Also define the multiplicity function k1
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on R1 as k1(x, 0) := k(x). Now with this root system on RN+1
+ the Dunkl gradient

is given as ∇̃k = (∇k, ∂xN+1
). To establish a Hardy inequality on the half-space

we always consider this Euclidean extension of the root system. Similarly to
establish a Hardy inequality on RN

l+
, we fix a root system on RN

l+
which is actually

an extension of a root system on RN−l. That is, if R is a root system on RN−l then
extend the root system R to a root system R′ of RN

l+
by defining R′ := {(x, 0) ∈

RN : x ∈ R}. Also the multiplicity function k on R can be extended to k′ on
R′ by k′(x, 0) = k(x). Now if ∇k is the Dunkl gradient on RN−l, with this root
system R′ we can write the Dunkl gradient on RN

l+
as ∇̃k = (∇k,

∂
∂xN−l+1

, ..., ∂
∂xN

).

For 0 < s < 1, the fractional Dunkl Laplacian (−∆k)
s is defined using Dunkl

transform, that is Fk((−∆k)
sf)(ξ) := |ξ|sFk(ξ). Caffarelli and Silvestre[2006]

developed an idea of Drichlet to Neumann map to study about the fractional
Laplacians. We extended this idea to the Dunkl setting and proved some trace
Hardy type inequalities by identifying proper extension problems. As a corollary
to this we also obtained fractional Hardy inequalities for the Dunkl Laplacian.
Also we found an independant method to prove fractional Hardy inequality for
Dunkl fractional Laplacian.

Using ground state substitution technique Frank and Seiringer [2008] proved
fractional Hardy inequalities for Lp space. Also he proved an improved Hardy
inequality for p > 2. The symmetry of the kernel |x− y|−(N+ps) plays a vital role
in proving these Hardy inequalities in Euclidean setting. Note that this kernel
is nothing but the translation of the function |x|−(N+ps). To work with Dunkl
case it is essential to consider the kernel which is Dunkl translation of |x|−(dk+ps).
Motivated by an article by Gorbachev[2019], we define the kernel Φδ(x, y), which
is actually Dunkl translation of |x|−(dk+δ) with δ 6= −dk. Extending Frank’s idea
to the Dunkl setting we first establish a Dunkl fractional Hardy inequality on
RN . Also we proved these results for upper half space and cone.

Since this Hardy inequality is strict for all non zero functions in C∞0 (RN) the
natural question to ask is whether the inequality can be improved on the com-
pletion of C∞0 (RN), that is, whether some positive term can be added to improve
the inequality. For p > 2, the answer is affirmative and there are many articles
investigated on different types of improved Hardy inequalities. We also obtain an
improved Dunkl type Hardy inequality in the case p > 2. Abdellaoui et al.[2014,
2016, 2017] proved a version of improved fractional Hardy inequalities where the
reminder term again is a norm of fractional gradient. We also proved such im-
proved fractional Hardy inequalities for fractional Dunkl Laplacian. We proved
certain types of Stein-Weiss inequalities and fractional Stein-Weiss inequalities
by extending the same technique.
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Chapter 1

Introduction and Preliminaries of

Dunkl Theory

1.1 Introduction

The main theme of this thesis is to study different type of Hardy inequalities

associated with the Dunkl operators. We will establish Hardy inequalities, trace

Hardy inequalities and Stein-Weiss inequalities associated to Dunkl operators for

the Euclidean space, half-space and cone. Hardy inequalities are of fundamental

importance in many areas of mathematics and theoretical physics. Since their

discovery a rich theory has been developed on Hardy inequalities and it became

a broad area of mathematical research. The original inequality on positive real

numbers extended to N -dimensional Euclidean space and more general domains.

The original Hardy inequality is first discussed by G. H. Hardy in [20] and it

is of the form ∫ ∞
0

|u′(x)|pdx > C

∫ ∞
0

|u(x)|p

|x|p
dx, (1.1.1)

where 1 < p < ∞ and u ∈ C∞0 (0,∞). The inequality is strict for any non zero

5



§1.1. Introduction

function u and C = (p − 1)/p is the best constant. Later it is generalized to

higher dimensions. For 1 < p <∞ the higher dimension analogue of (1.1.1) can

be stated as ∫
RN
|∇u(x)|p > λ(N, p)

∫
RN

|u(x)|p

|x|p
dx, (1.1.2)

where u ∈ C∞0 (RN). Let Ḣ1,p(RN) be the completion of C∞0 (RN) with the norm

‖u‖Ḣ1,p := ‖∇u‖p. The inequality in (1.1.2) can be extended to Ḣ1,p(RN). The

best constant λ(N, p) of (1.1.2) is obtained by

λ(N, p) = inf
u∈Ḣ1,p(RN )

u6=0

∫
RN |∇u(x)|pdx∫

RN
|u(x)|p
|x|p dx

.

When N > 2 and p = N the Hardy inequality does not hold. That is we can

find functions f in C∞0 (RN) such that the integral
∫
RN
|f(x)|N
|x|N dx diverges. For

instance, choose f such that 0 6 f(x) 6 1 for all x ∈ RN and f(x) = 1 inside the

ball B(0, r/2) and f(x) = 0 outside the ball B(0, r). Now a simple calculation

will give us
∫
RN
|f(x)|N
|x|N dx = ∞. For p = 2 the Hardy inequality (1.1.2) is also

known as uncertainty principle. One can also understand the Hardy inequality

as a continuous embedding of Ḣ1,p(RN) in Lp(RN) with respect to a weight |x|−p.

This embedding is known as Hardy-Sobolev embedding. For N > p the best

constant λ(N, p) is never achieved in the space Ḣ1,p(RN), that is, there does not

exist a non zero function u in Ḣ1,p(RN) such that the equality in (1.1.2) holds.

But still we can find a minimizing sequence in Ḣ1,p(RN) for the best constant.

For ε > 0, consider the functions uε := |x|−
N−p
p

+ε and we can see that

λ(N, p) = lim
ε→0

∫
RN |∇uε(x)|pdx∫

RN
|uε(x)|p
|x|p dx

=

(
N − p
p

)p
.

All uε’s are elements of Ḣ1,p(RN), but the limiting function u(x) = |x|−
N−p
p is

6



§1.1. Introduction

not in Ḣ1,p(RN). It is interesting to see that u(x) = |x|−
N−p
p is a solution of the

following equation

−div(|∇u|p−2∇u) =

(
N − p
p

)p
|u|p−1

in the sense of distributions. The expression on the left hand side is called

p−Laplace operator and denoted by ∆pu := div(|∇u|p−2∇u). When p = 2,

∆p reduces to the classical Euclidean Laplacian ∆. Since the inequality (1.1.2) is

strict for all non zero functions in Ḣ1,p(RN) the natural question to ask is whether

the inequality can be improved, that is whether some positive term can be added

on the right hand side of (1.1.2). For p > 2, the answer is affirmative and there

are many articles in which the authors investigated on different types of improved

Hardy inequalities. We would like to refer the article by Frank and Seiringer(see

[16]) .

The theory of Dunkl operators was first introduced in [11]. Dunkl Fourier

transform is an extension of the classical Fourier transform which defines an

isometry on the weighted space L2(Rd, dµk(x)). It enjoys many similar properties

of classical Fourier transform. The Dunkl Laplacian associated to a multiplicity

function k on a reflection group G is defined by ∆k =
∑N

j=1 T
2
j , where Tj’s are

the Dunkl operators. Also the Dunkl gradient is defined as ∇k = (T1, T2, ..., TN).

If the multiplicity function k is identically equal to zero the operators Tj, ∆k and

∇k reduce to ∂j, ∆ and to ∇ respectively. From the physical science point of

view, the Dunkl transform has applications in quantum many body problems.

We discuss all the necessary preliminaries for this thesis later in this chapter.

In Chapter 2 we will discuss certain Hardy inequalities in Dunkl setting with

p = 2. We need to fix a root system R and a multiplicity function k on R. Also
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§1.1. Introduction

associated to the root system R we define γk =
∑

α∈R+
k(α), dk = N + 2γk and

λk = (dk − 2)/2. An L2 analogue of (1.1.2) for the Dunkl gradient ∇k is stated

as follows.

Theorem 1.1.1. Let dk > 3. Let u be a G-invariant function such that u ∈

C∞0 (RN). We have the following inequality

∫
RN
|∇ku|2dµk(x) > λ2

k

∫
RN

|u|2

|x|2
dµk(x), (1.1.3)

where λ2
k is the optimal constant.

For 1 < p <∞, 1 6 l 6 N and α+ l > 0, a more generalized Hardy inequality

of the form

∫
RN
|∇u(x)|p|y|α+pdx > C

∫
RN
|u(x)|p|y|αdx, (1.1.4)

where x = (y, z) ∈ Rl × RN−l, with the optimal constant C = (α+l)p

pp
, was given

by Simone Secchi et al. in [28]. Now for fixed root systems R1 and R2 with

multiplicity functions k1 and k2 corresponding to the spaces Rl and RN−l respec-

tively. We define a root system R on RN and a multiplicity function k on R. If

1 6 l 6 N and if x ∈ RN we can write x = (y, z) where y ∈ Rl and z ∈ RN−l.

Now the following theorem is a generalization of the Theorem 1.1.1.

Theorem 1.1.2. Let l + 2γk1 − 2 > 0, then for each G-invariant u ∈ C∞0 (RN),

we have the following inequality:

∫
RN
|∇ku(x)|2dµk(x) >

(
l + 2γk1 − 2

2

)2 ∫
RN

|u(x)|2

|y|2
dµk(x).

Moreover the constant appearing above is optimal.

8



§1.1. Introduction

The half-space is defined as the set RN
+ = {(x1, ..., xN) ∈ RN : xN > 0}. A

Hardy inequality on the upper half-space can be written as

∫
RN+
|∇u(x)|2 dx >

1

4

∫
RN+

|u(x)|2

x2
N

dx.

Later in [39], J. Tidblom proved that, for all u ∈ C∞0 (RN
+ ) the following inequality

holds: ∫
RN+
|∇u(x)|2dx >

1

4

∫
RN+

|u(x)|2

x2
N

dx+
1

4

∫
RN+

|u(x)|2

x2
N−1 + x2

N

dx.

Using the above Hardy inequality (1.1.4), Jing-Wen Luan et al. proved the

following Hardy inequality for half-space in [23].

∫
RN+
|∇u|2dx >

1

4

∫
RN+

|u|2

x2
N

dx+
(l − 1)2

4

∫
RN+

|u|2

x2
N−l+1 + ...+ x2

N

dx, (1.1.5)

where (l−1)2

4
is the best constant.

Now we prove a generalized version of Hardy inequality on the half-space in

Dunkl setting. Let R be a root system on RN and k be a multiplicity function on

R. Define a root system R1 on RN+1
+ as R1 = R×{0}. Also define the multiplicity

function k1 on R1 as k1(x, 0) := k(x). Now with this root system on RN+1
+ the

Dunkl gradient is given as ∇̃k = (∇k, ∂xN+1
).

Theorem 1.1.3. Let ∇̃k be the gradient on RN+1 as mentioned above. For l ∈

{1/2, 1, 3/2, 2, ..., N/2, ..} and for any G-invariant u ∈ C∞0 (RN+1
+ ),

∫
RN+1
+

|∇̃ku|2dµk(x)dxN+1 + l(l − 1)

∫
RN+1
+

|u(x)|2

x2
N+1

dµk(x)dxN+1

>
(N + 2γk + 2l − 1)2

4

∫
RN+1
+

|u(x)|2

|x|2
dµk(x)dxN+1,

where (N+2γk+2l−1)2

4
is optimal.

9



§1.1. Introduction

If we put l = 1
2

and k = 0 in the above theorem we get the classical Hardy

inequality for half-space.

A cone is a subset of RN and is a generalization of upper half-space. It is

denoted by RN
l+

for 1 6 l 6 N and defined by RN
l+

= {(x1, ..xN) ∈ RN : xN−l+1 >

0, xN−l+2 > 0.., xN > 0}. In 2012, in [34], Dan Su et al. found the sharp Hardy

inequality for the cone. Their result states that, for N > 3 and u ∈ C∞0 (RN
l+

),

∫
RNl+

|∇u|2dx >
(N − 2 + 2l)2

4

∫
RNl+

|u|2

|x|2
dx, (1.1.6)

and the constant (N−2+2l)2

4
is sharp. Using a similar method used in the proof of

Theorem 1.1.3 we can extend the result to cone. To establish a Hardy inequality

on RN
l+

, we fix a root system on RN
l+

which is actually an extension of a root system

on RN−l. That is, if R is a root system on RN−l then extend the root system R

to a root system R′ of RN
l+

by defining R′ := {(x, 0) ∈ RN : x ∈ R}. Also the

multiplicity function k on R can be extended to k′ on R′ by k′(x, 0) = k(x). Now

if ∇k is the Dunkl gradient on RN−l, with this root system R′ we can write the

Dunkl gradient on RN
l+

as ∇̃k = (∇k,
∂

∂xN−l+1
, ..., ∂

∂xN
).

Theorem 1.1.4. Let N + 2γk > 3. Let u ∈ C∞0 (RN
l+

) and G−invariant. Then

the following inequality holds:

∫
RNl+

|∇̃ku|2dµk(x)dxN−l+1...dxN

>
(N + 2l + 2γk − 2)2

4

∫
RNl+

|u|2

|x|2
dµk(x)dxN−l+1...dxN ,

where the constant (N+2l+2γk−2)2

4
is sharp.

Fractional powers of linear operators appear in many areas of mathematics. In
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§1.1. Introduction

particular fractional powers of Laplacian are nowadays classical objects. In recent

years fractional powers of non local equations of fractional order, in particular,

fractional Laplacian, gained a lot of attention from partial differential equations

and harmonic analysis. For 0 < s < 1 the fractional power of Laplacian (−∆)s is

defined as ̂(−∆)sf(ξ) = |ξ|2sf̂(ξ). There are many more equivalent definitions for

fractional Laplacian. One of the references to understand the different equivalent

definitions is [24].

Using the classical Laplacian ∆, the Hardy inequality in the equation (1.1.2)

can also be written as

〈(−∆)u, u〉 >
(
N − 2

2

)2 ∫
RN

|u(x)|2

|x|2
dx. (1.1.7)

Analogous to (1.1.7) a Hardy inequality for the operator (−∆)s is stated as fol-

lows. For the functions u such that u, (−∆)su ∈ L2(RN),

〈(−∆)su, u〉 > 4s
Γ(N+s

4
)2

Γ(N−s
4

)2

∫
RN

|u(x)|2

|x|2s
dx. (1.1.8)

The constant 4s
Γ(N+s

4
)2

Γ(N−s
4

)2
is sharp and never achieved. The left-hand side of the

equation (1.1.8) can be written as

〈(−∆)su, u〉 =
4sΓ(N/2 + s)

2|Γ(−s)|πN/2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy. (1.1.9)

In view of this we can see that the fractional Hardy inequality in equation (1.1.8)

is equivalent to the inequality,

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy > 2πN/2

Γ(N+s
4

)2

Γ(N−s
4

)2

|Γ(−s)|
Γ(N/2 + s)

∫
RN

|u(x)|2

|x|2s
dx.

(1.1.10)

11



§1.1. Introduction

Another version of this Hardy inequality, in which the homogeneous weight |x|−2s

is replaced by (δ2 + |x|2)−s, is of the form

〈(−∆)su, u〉 >
Γ(N+s

2
)

Γ(N−s
2

)
δ2s

∫
RN

|u(x)|2

(δ2 + |x|2)s
dx, δ > 0, (1.1.11)

where the constant is sharp since it is achieved for the functions (δ2 + |x|2)−
N−s

2 .

Similar to the case of fractional Laplacian, the fractional powers of Dunkl

Laplacian can also be defined through Dunkl Fourier transform. For 0 < s < 1,

the fractional Dunkl Laplacian is defined as Fk((−∆k)
sf)(ξ) = |ξ|2sFk(ξ) for

suitable function f .

Theorem 1.1.5. F Let N > 1 and 0 < s < 1 be such that dk/2 > s. Then for

f ∈ C∞0 (RN) we have

〈(−∆k)
sf, f〉 > 4s

(
Γ(dk+s

2
)

Γ(dk−s
2

)

)2 ∫
RN

|f(x)|2

|x|2s
dµk(x).

The fractional Hardy inequality in the half-space has been investigated by

many authors. For suitable functions, a fractional Hardy inequality for the half-

space RN
+ is stated as

∫
RN+

∫
RN+

|u(x)− u(y)|2

|x− y|N+2s
dxdy > DN,2,s

∫
RN+

|u(x)|2

x2s
N

dx, (1.1.12)

where the constant DN,2,s, given by

DN,2,s = 2π(N−1)/2 Γ((1 + 2s)/2)

Γ((N + 2s)/2)

∫ 1

0

∣∣1− r(2s−1)/2
∣∣2 dr

(1− r)1+2s
,

is optimal. For further reading and improvements of fractional Hardy inequalities

we refer to [6, 8, 12, 15, 14, 16, 40]. To obtain a fractional Hardy inequality on

12



§1.1. Introduction

RN
+ , as we discussed above, we fix the root system R2 = R × {0} on RN

+ which

is an extension of the root system R on RN−1. With this root system the Dunkl

gradient ∆̃k2 on RN
+ looks like ∆̃k2 = ∆k + ∂2

∂x2N
.

Theorem 1.1.6. Let u ∈ C∞0 (RN
+ ), 0 < s < 1 and N/2 + γk > s. We have

〈(−∆̃k2)
s/2u, u〉RN+ >

Γ(N+2+s
2

+ γk)

Γ(N+2−s
2

+ γk)

∫
RN+

u(x, xN)2

(1 + |x|2 + x2
N)s

dµk(x)dxN .

Let ∆̃k2 = ∆k +
∑N

j=N−l+1
∂2

∂x2j
be the Dunkl Laplacian on RN

l+
with the root

system R2 = R × {(0)l} defined on RN which is an extension of the root system

R on RN−l.

Theorem 1.1.7. Let 0 < s < 1 and N/2 + γk > s. For u ∈ C∞0 (RN
l+

) the

following inequality holds

〈(−∆̃k2)
s/2u, u〉RNl+

> Cγk,s

∫
RNl+

u2

(1 + |x|2 + x2
N−l+1 + ...+ x2

N)s
dµk(x)dxN−l+1...dxN ,

where Cγk,s =
Γ(N+2l+s

2
+γk)

Γ(N+2l−s
2

+γk)
.

We have already defined fractional Laplacian earlier. Since it is a non local

operator there are a lot of technical difficulties to deal with. In a recent paper [9]

in 2007, Caffarelli and Silvestre studied about fractional Laplacian through the

Dirichlet to Neumann map. Their idea is to relate fractional Laplacian to a local

operator by adding a new variable ‘ρ’. For any function f , the extension problem

13
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can be stated as follows.

div(ρ1−2s∇(x,ρ)u(x, ρ)) = 0, (x, ρ) ∈ RN+1
+

u(x, 0) = f(x),

the energy of which is given by

J [u] =

∫ ∞
0

∫
RN
ρ1−2s|∇(x,ρ)u(x, ρ)|2dxdρ.

Then the authors of [9] established that

lim
ρ→0

ρ1−2s∂u

∂ρ
(x, ρ) = −21−2sΓ(1− s)

Γ(s)
(−∆)sf(x). (1.1.13)

Using this idea many authors studied trace Hardy type inequalities on different

domains by identifying proper extension problems, for instance [13, 33, 36]. For

0 < s < 1 and suitable functions on RN × R+, the trace Hardy inequality states

that

∫ ∞
0

∫
RN
|∇u(x, ρ)|2ρ1−sdxdρ > 2

Γ(1− s/2)

Γ(s/2)

(
Γ((N + s)/4)

Γ((N − s)4)

)2 ∫
RN

|u(x, 0)|2

|x|s
dx.

(1.1.14)

Also the trace Hardy inequalities with non-homogeneous weight (δ2+|x|2)s, which

are of the form

∫ ∞
0

∫
RN
|∇u(x, ρ)|2ρ1−sdxdρ > 2

Γ(1− s/2)

Γ(s/2)

Γ((N + s)/2)

Γ((N − s)2)
δ2s

∫
RN

|u(x, 0)|2

(δ2 + |x|2)s
dx

(1.1.15)

with δ > 0, have also been studied.

We also use the idea of Dirichlet to Neumann map for the fractional Dunkl

14
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Laplacian after identifying a proper extension problem.

Theorem 1.1.8. Let 0 < s < 1 and u ∈ C∞0 (RN+1
+ ), then

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sdµk(x)dρ > C(dk, s, δ)

∫
RN

|u(x, 0)|2

δ(x)
dµk(x).

If we choose the function δ(x) = (1 + |x|2)s we get the trace Hardy in-

equality with non-homogeneous weight and the optimal constant C(dk, s, δ) =

2
Γ(1− s

2
)

Γ( s
2

)

Γ(N+s
2

+γk)

Γ(N−s
2

+γk)
. Similarly, when δ(x) = |x|s we get a trace Hardy inequality

with homogeneous weight with a constant C(dk, s, δ) = 2c−1
h

Γ(1− s
2

)

Γ( s
2

)

(
Γ(
N+2γk+s

4
)

Γ(
N+2γk−s

4
)

)2

.

By a suitable choice of f , we can prove the following Hardy inequality for (−∆k)
s/2.

Analogous to (1.1.13) we establish a relation between the extension problem and

fractional Dunkl Laplacian and obtain a Hardy inequality for fractional power of

Dunkl Laplacian.

Corollary 1.1.9. For f ∈ L2(RN , h2
k(x)) for which ∆

s/2
k f ∈ L2(RN , dµk(x)),

〈(−∆k)
s/2f, f〉 > 2s

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

∫
RN

|f(x)|2

(1 + |x|2)s
dµk(x).

Further the fractional Hardy inequality for Dunkl Laplacian for upper half

space and the cone with both homogeneous and non-homogeneous weights are

also proved in Chapter 2.

We will discuss in the next chapter certain Hardy inequality for Dunkl Lapla-

cian for L2(Ω), where Ω is RN , RN
+ or RN

l+
. In chapter 3 we are interested to prove

these Hardy inequalities for the space Lp(Ω) where 1 < p < ∞. First we give a

proof of the following classical Lp Hardy inequality in the Dunkl case.

Theorem 1.1.10. Let 1 6 p <∞. Let u be a real valued G− invariant function.

For u ∈ C∞0 (RN) when dk > p or u ∈ C∞0 (RN \ {0}) when dk < p, the following

15
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inequality holds

∫
RN
|∇ku(x)|pdµk(x) >

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN

|u(x)|p

|x|p
dµk(x). (1.1.16)

The constant
∣∣dk−p

p

∣∣p given in the inequality is optimal.

We also obtain an improved Hardy inequality in the case p > 2

Theorem 1.1.11. Let 2 6 p <∞. Let u be a real valued G−invariant function.

For u ∈ C∞0 (RN) when dk > p or u ∈ C∞0 (RN \ {0}) when dk < p, the following

inequality holds

∫
RN
|∇ku|pdµk(x)−

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN

|u|p

|x|p
dµk(x) > cp

∫
RN

|∇kv|p

|x|dk−p
dµk(x), (1.1.17)

where cp is given by

cp = min
0<τ<1/2

(
(1− τ)p − τ p + pτ p−1

)
. (1.1.18)

When p = 2 the equality holds and with c2 = 1.

Further we are also interested to prove a fractional weighted Lp Hardy in-

equality for the Dunkl Laplacian.

The equality in (1.1.9) allows us to write the L2 fractional Hardy inequality

as in (1.1.10). But when p 6= 2 one cannot have the equivalence of ‖(−∆s/2)u‖pp

and
∫
RN
∫
RN
|u(x)−u(y)|p
|x−y|N+ps dxdy. There are many studies in the literature regarding

the fractional Hardy inequality of the form

∥∥(−∆s/2)u
∥∥p
p
> C(N, s, p)

∫
RN

|u(x)|p

|x|ps
dx

for instance Herbst, in [21] calculated the sharp constant in the above inequal-

16
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ity. In case of fractional Lp Hardy inequality, instead of our Euclidean Lapla-

cian ∆, we are interested in a more general Laplace operator called p−Laplace

operator. The p−Laplace operator is denoted as ∆p and is defined as ∆pu =

div(|∇u|p−2∇u). For 1 < p < ∞ and u is smooth enough, the fractional power

of p−Laplacian,(−∆)sp, is defined as

(−∆)spu(x) := lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy.

In this thesis we are interested in the fractional Hardy inequalities of the form

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy > C ′(N, s, p)

∫
RN

|u(x)|p

|x|ps
dx

in the Dunkl setting. The basic study of fractional power of Dunkl Laplacian can

be done in a similar fashion to the Euclidean case. We adopt the ideas of Frank

et al. used in [16] in proving fractional Hardy inequality. The authors of [16] used

the technique of ground state substitution to establish the inequality. In general,

the idea is to find a Hardy inequality for the functional E[u], which is given by

E[u] :=

∫
RN

∫
RN
|u(x)− u(y)|pk(x, y)dxdy

where k(x, y) is a non-negative measurable function on RN × RN which is sym-

metric in x and y. The Euler-Lagrange equation of the functional E[u] is given

by

2

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))k(x, y)dy = V (x)w(x)p−1. (1.1.19)

for some real valued function V on RN . A positive function w satisfying (1.1.19)

17
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is known as ‘virtual ground state’ corresponding to the energy functional E[u]−∫
RN V |u|

pdx. In our case we are interested in the kernel k(x, y) of the form

k(x, y) = |x − y|−(N+ps). Since it is singular on the diagonal x = y, to overcome

the divergence of integral we have to use some regularization of principal value

of integrals.

The symmetry of the kernel |x − y|−(N+ps) play a vital role in proving these

Hardy inequalities. Note that this kernel is nothing but the translation of the

function |x|−(N+ps). To work with Dunkl case it is essential to consider the ker-

nel which is Dunkl translation of |x|−(dk+ps). Motivated from Gorbachev et al.

(see [17, Lemma 2.3]) we define the kernel Φps(x, y), which is actually Dunkl

translation of |x|−(dk+δ), as

Φδ(x, y) :=
1

Γ((dk + δ)/2)

∫ ∞
0

s
dk+δ

2
−1τ ky

(
e−s|.|

2)
(x)ds δ 6= −dk. (1.1.20)

The fractional Hardy inequality in Dunkl setting is stated as follows:

Theorem 1.1.12. Let dk > 1 and 0 < s < 1. For u ∈ Ẇ s
p (RN) when 2 6 p <

dk/s or u ∈ Ẇ s
p (RN \ {0}) when p > dk/s, the following inequality holds;

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y) > Cdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x),

where Φps(x, y) is given in ( 1.1.20) and

Cdk,s,p := 2

∫ 1

0

rps−1|1− r(dk−ps)/p|pΦN,s,p(r)dr,

18
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with

ΦN,s,p(r) :=
Γ(dk

2
)

√
πΓ(dk−1

2
)

∫ π

0

sindk−2θ

(1− 2r cos θ + r2)
dk+ps

2

dθ, N > 2,

Φ1,s,p(r) :=

(
τ kr
(
|.|dk+ps

)
+ τ k−r

(
|.|dk+ps

))
(1), N = 1. (1.1.21)

The constant Cdk,s,p is sharp. If p = 1, equality holds iff u is proportional to a

symmetric decreasing function. If p > 1, the inequality is strict for any function

0 6≡ u ∈ Ẇ s
p (RN) or Ẇ s

p (RN \ {0}), respectively. Further for p > 2 the following

inequality holds.

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

> Cdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

+cp

∫
RN

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

|x|(dk−ps)/2
dµk(y)

|y|(dk−ps)/2
, (1.1.22)

where v := |x|(dk−ps)/pu and cp is given in (1.1.18). c2 = 1 and the equality holds

in p = 2 case.

As in the case of classical Hardy inequality we will consider extended root

system to establish fractional Hardy inequalities on half-space and cone.

Set Gs(u) as

Gs(u) =

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − C(N, p, s)

∫
RN

|u(x)|p

|x|ps
dx,

where the constant CN,p,s is the sharp constant in the fractional Hardy inequality

obtained by Frank et al in [16]. For p > 2, 0 < s < 1 and cp R.L Frank and R.
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Seiringer have proved the sharp Hardy inequality with a remainder term in [16].

Gs(u) > cp

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps

dx

|x|(N−ps)/2
dy

|y|(N−ps)/2
,

where v := |x|(N−ps)/2u. The result is true for all u ∈ C∞0 (RN) if ps < N and for

all u ∈ C∞0 (RN \ {0}) if ps > N and the inequality turns out to be an equality if

p = 2. Combining three different articles [3, 1, 2] due to B. Abdellaoui et al. we

can get an improved fractional Hardy inequality for 1 < p < ∞. The combined

statement is as follows: For 0 < s < 1, ps < N and Ω ⊂ RN be a bounded

domain we have:

Gs(u) > C(N, q, s,Ω)

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
dxdy. (1.1.23)

The result is true for all 1 < q < p < ∞ and for all functions u ∈ C∞0 (Ω).

Note that this inequality is true for all 1 < p < ∞ and the remainder term

here is a p−norm of a fractional gradient. The inequality in (1.1.22) gives an

improved fractional Hardy inequality for p > 2 in the Dunkl setting. We look

for an improved term which is p−norm of a fractional Dunkl gradient for all

1 < p <∞.

Theorem 1.1.13. Let Ω ⊂ RN be a bounded domain and let 1 6 q < p < ∞.

Then for all u ∈ C∞0 (Ω)

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y), (1.1.24)
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where

Λdk,s,p = 2

∫ 1

0

rps−1|1− r(dk−ps)/p|pΦ(r)dr, (1.1.25)

with

Φ(r) =


Γ(
dk
2

)
√
πΓ(

dk−1)

2
)

∫ π
0

sindk−2 θ

(1−2r cos θ+r2)
dk+ps

2

for N > 2(
τ kr (|.|−dk−ps) + τ k−r(|.|−dk−ps)

)
(1) for N = 1

and C is a positive constant depending on Ω, dk, q and s.

Stein-Weiss inequality is one of the most important inequality in mathematics.

It states that for every 0 < β < N and for every ϕ ∈ L2(RN) there exists a positive

constant such that

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β2 |x− y|N−β|y|β2
dxdy 6 C‖ϕ‖2

2. (1.1.26)

Moreover the authors of [21] have found the optimal constant C = 1
2β

(
Γ(N−β

4
)

Γ(N+β
4

)

)2

.

We prove a more generalized version this inequality in the Dunkl setting.

Theorem 1.1.14. Let 0 < β < dk. Then for every ϕ ∈ L2(RN , dµk(x)) the

Stein-Weiss inequality is given by

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β2 |y|β2
Φ−β(x, y)dµk(x)dµk(y) 6

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2 ∫
RN
|ϕ|2dµk(x)

(1.1.27)

where the constant appearing on the right-hand side is optimal.

Let Ḣs(RN) denotes the fractional homogeneous Sobolev space equipped with

the norm

‖ϕ‖2
Ḣs :=

sΓ(N+2s
2

)

22(1−s)πN/2Γ(1− s)

∫
RN

∫
RN

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy. (1.1.28)
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In [25] V. Moroz and J. V. Schaftingen proved a fractional Stein-Weiss inequality

on Ḣs(RN). They adopted the ground state substitution techniques developed

by Frank et al. in [16]. the following theorem is the Stein Weiss potential for the

fractional Dunkl gradient estimate.

Theorem 1.1.15. Let s ∈ (0, 1), s < dk/2 and β < dk. The for all ϕ ∈ W s,2(RN)

the following inequality holds

1

2β+s

(
Γ(dk−2s

4
)Γ(dk−β

4
)

Γ(dk+2s
4

)Γ(dk+β
4

)

)2 ∫
RN

∫
RN
|ϕ(x)− ϕ(y)|2Φ2sdµk(x)dµk(y)

>
∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2s
2 |y|β+2s

2

Φ−β(x, y)dµk(x)dµk(y) (1.1.29)

and the constant is optimal.

1.2 Preliminaries of Dunkl Theory

In this section we give some basics on Dunkl theory which we will be using in this

thesis. We suggest readers [11, 27, 35, 38] to get more details of Fourier analysis

related to Dunkl operators. For α ∈ RN \ {0}, we denote σα as the reflection in

the hyper plane 〈α〉⊥ orthogonal to α, that is

σα(x) = x− 2
〈α, x〉
|α|2

α,

where |α| :=
√
〈α, α〉.

Definition 1.2.1. Let R ⊂ RN\{0} be a finite set. Then R is called a root

system, if

(1) R ∩ Rα = {±α} for all α ∈ R

(2) σα(R) = R for all α ∈ R.
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A root system can be written as the disjoint union of R+∪(−R+) and R+ and

(−R+) are separated by a hyper plane passing through the origin. R+ is called as

the set of positive roots of the root system. The subgroup G = G(R) ⊆ O(N,R)

which is generated by reflections {σα : α ∈ R} is called reflection group (or

Coxeter-group) associated with R.

For any root system R in RN , the reflection group G = G(R) is finite and the

set of reflections contained in G(R) is exactly {σα, α ∈ R}. For the convenience of

the calculations we assume that R is normalized, that is 〈α, α〉 = 2 for all α ∈ R.

A function k : R → C is said be a multiplicity function if it is invariant under

the natural action of G on R. In this thesis we consider only the multiplicity

functions from R to (0,∞).

Fix a root system R and a multiplicity function k on R. Then for ξ ∈ RN ,

the Dunkl operators Tξ is defined by

Tξf(x) = ∂ξf(x) + Eξf(x), f ∈ C1(RN)

where

Eξf(x) =
∑
α∈R+

k(α)〈α, ξ〉f(x)− f(σαx)

〈α, x〉
.

Here ∂ξ denotes the directional derivative corresponding to ξ. Since k is G-

invariant Tξ does not depend on the choice of R+. For the standard basis vector

we use the abbreviation Ti = Tei . For each i, Ti has the following properties:

i) TiTj = TjTi.

ii) For f, g ∈ C1(RN), Tξ(fg) = Tξ(f).g + f.Tξ(g), provided at least one of

them is G-invariant.

The Dunkl Laplacian ∆k is defined by ∆k =
∑N

j=1 T
2
j which can also be expressed
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as

∆kf(x) = ∆0f(x) + 2
∑
α∈R+

k(α)

(
〈∇0f(x), α〉
〈α, x〉

− f(x)− f(σα(x))

〈α, x〉2

)
, (1.2.1)

where ∆0 and ∇0 are the usual Euclidean Laplacian and gradient operators on

RN respectively.

For a fixed reflection group G and the multiplicity function k, the weight

function hk is defined by

hk(x) =
∏
α∈R+

|〈x, α〉|k(α), x ∈ RN .

This is a positive homogeneous function of degree γk :=
∑
α∈R+

k(α) and is invariant

under the reflection group G. Throughout this paper we assume that k(α) > 0

we denote the weighted measure h2
k(x)dx by dµk(x). By the G−invariance of k

we have k(α) = k(−α) for all α ∈ R and hence hk(x) does not depend on the

choice of R+.

For f ∈ C1
b , the space of bounded functions of class C1, and g ∈ S(RN), the

space of Schwartz class functions,

∫
RN

Tif(x)g(x)dµk(x) = −
∫
RN

f(x)Tig(x)dµk(x).

We use the notations dk = N + 2γk and λk = N−2
2

+ γk whenever required.

Using the spherical polar coordinates x = rx′, where x′ ∈ SN−1, we can write

∫
RN

f(x)dµk(x) =

∞∫
0

∫
SN−1

f(rx′)dµk(x
′)dσ(x′)r(2λk+1)dr
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and deduce that

c−1
k =

∫
RN

e−|x|
2/2dµk(x) = 2λkΓ(λk + 1)a−1

k , where a−1
k =

∫
SN−1

h2
k(x
′)(x′)dσ(x′).

It is known that for any y ∈ RN , there exists a unique real analytic solution

f = Ek(·, y) of system Tif = yif 1 6 i 6 N satisfying f(0) = 1. Ek(x, y) is called

the Dunkl kernel and it is a generalization of the exponential function e<x,y>. We

list some of the important properties of Ek(x, y) below:

i) Ek(x, y) = Ek(y, x).

ii) Ek(λx, y) = Ek(x, λy) where λ ∈ C.

iii) Ek(σx, σy) = Ek(x, y) for all σ ∈ G.

iv) |Ek(x, y)| 6 e|x||y|.

v) |Ek(ix, y)| 6 1 for all x, y ∈ RN .

Dunkl Fourier transform is a generalization of classical Fourier transform and

it is defined in terms of the Dunkl kernel. For f ∈ L1(RN , dµk(x)), it’s Dunkl

Fourier transform is defined by

Fkf(ξ) = c−1
k

∫
RN

f(x)Ek(−iξ, x)dµk(x). (1.2.2)

It possess many analogous properties of Fourier transform.

i) Dunkl Fourier transform is a topological automorphism of the Schwartz

space S(RN).

ii) (Plancheral formula) Dunkl Fourier transform can be extended to a unitary

operator on L2(RN , dµk(x)).
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iii) (Inversion formula) If Fkf ∈ L1(RN , dµk(x)) then f(x) = Fk(Fkf)(−x).

Dunkl translation operator τyf is defined by Fk(τyf)(ξ) = Ek(iy, ξ)Fkf(ξ) and

it makes sense for all f ∈ L2(RN , dµk(x)) as Ek(iy, ξ) is a bounded function.

But forf ∈ S(RN) the above equation makes sense pointwise. The property

τyf(x) = τ−xf(−y) of the translation operator will be used later. Dunkl trans-

lation operator is bounded on L2(Rn, dµk(x)) . However, Lp boundedness of the

Dunkl translation operator is not known. We define Dunkl convolution of f, g in

Schwartz space by

f ∗k g(x) =

∫
RN

τ kxf(−y)g(y)dµk(y). (1.2.3)

Convolution operator is associative and commutative and it satisfies the following

properties:

i) For f, g ∈ S(RN), f ∗k g ∈ S(RN) and Fk(f ∗k g) = Fk(f)Fk(g).

ii) Let 1 6 p, q, r 6 ∞ such that 1
r

= 1
p

+ 1
q
− 1 and f ∈ Lp(RN , dµk(x)), g ∈

Lq(RN , dµk(x)) is radial then f ∗k g ∈ Lr(RN , dµk(x)) and moreover it

satisfies

‖f ∗k g‖r 6 ‖f‖p‖g‖q. (1.2.4)

The Riesz potential in the Dunkl setting is defined by S. Thangavelu and Y. Xu

in [38]. Let α be a real number such that 0 < α < dk, then for every u ∈ S the

weighted Riesz potential Ikαu is defined as

Ikαu(x) := (γkα)−1

∫
RN
τ ky u(x)|y|α−dkdµk(y), (1.2.5)

26



§1.2. Preliminaries of Dunkl Theory

where γkα = 2α−dk/2Γ(α/2)/Γ((dk − α)/2).
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Chapter 2

Hardy and Trace Hardy

Inequalities for L2(RN , dµk(x))

In this chapter we will study Hardy inequality, trace Hardy inequality, fractional

Hardy inequality for Dunkl operators. We start with the optimal classical Hardy

inequality for Dunkl gradient in the space L2(RN , dµk(x)). Using this result

we prove the optimal Hardy inequalities for the half-space and cone. Later we

will establish a trace Hardy inequality and fractional Hardy inequality using the

technique of extension problem developed by Caffarelli and Silvestre in a well

celebrated paper [9].

2.1 Introduction

For N > 3 and u ∈ C∞0 (RN), the classical Hardy inequality states that

∫
RN
|∇u(x)|2dx >

(
N − 2

2

)2 ∫
RN

|u(x)|2

|x|2
dx, (2.1.1)
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where ∇ is the classical gradient on RN and the constant (N−2
2

)2 is sharp. For

1 < p <∞, 1 6 l 6 N and α+ l > 0, a more generalized Hardy inequality of the

form

∫
RN
|∇u(x)|p|y|α+pdx > C

∫
RN
|u(x)|p|y|αdx, (2.1.2)

where x = (y, z) ∈ Rl × RN−l, with the optimal constant C = (α+l)p

pp
, was given

by Simone Secchi et al. in [28].

Let RN
+ = {(x1, ..., xN) ∈ RN |xN > 0} be the half-space. A Hardy inequality

on the upper half-space can be written as

∫
RN+
|∇u(x)|2 dx >

1

4

∫
RN+

|u(x)|2

x2
N

dx.

Later in [39], J. Tidblom proved that, for all u ∈ C∞0 (RN
+ ) the following inequality

holds: ∫
RN+
|∇u(x)|2dx >

1

4

∫
RN+

|u(x)|2

x2
N

dx+
1

4

∫
RN+

|u(x)|2

x2
N−1 + x2

N

dx.

Using the above Hardy inequality (2.1.2), Jing-Wen Luan et al. have proven the

following Hardy inequality for half-space in [23].

∫
RN+
|∇u|2dx >

1

4

∫
RN+

|u|2

x2
N

dx+
(l − 1)2

4

∫
RN+

|u|2

x2
N−l+1 + ...+ x2

N

dx, (2.1.3)

where (l−1)2

4
is the best constant. Later in 2012, in [34], Dan Su et al. found the

sharp Hardy inequality for the cone RN
l+

= {(x1, ..., xN) : xN−l+1 > 0, ..., xN > 0},

1 6 l 6 N . Their result states that, for N > 3 and u ∈ C∞0 (RN
l+

),

∫
RNl+

|∇u|2dx >
(N − 2 + 2l)2

4

∫
RNl+

|u|2

|x|2
dx, (2.1.4)
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and the constant (N−2+2l)2

4
is sharp.

For the classical Laplacian ∆ = −
∑N

j=1 ∂
2
j the Hardy inequality in the equa-

tion (2.1.1) can be also written as

〈∆u, u〉 >
(
N − 2

2

)2 ∫
RN

|u(x)|2

|x|2
dx. (2.1.5)

There are many results regarding the Hardy inequalities of fractional powers

of Laplacian. For 0 < s < 1, a Hardy inequality for ∆s, the fractional power of

Laplacian, is stated as

〈∆su, u〉 > 4s
Γ(N+s

4
)2

Γ(N−s
4

)2

∫
RN

|u(x)|2

|x|2s
dx, (2.1.6)

for the functions u such that u,∆su ∈ L2(RN). The constant 4s
Γ(N+s

4
)2

Γ(N−s
4

)2
is sharp

and never achieved. Another version of this Hardy inequality, in which the ho-

mogeneous weight |x|−2s is replaced by (δ2 + |x|2)−s, is of the form

〈∆su, u〉 >
Γ(N+s

2
)

Γ(N−s
2

)
δ2s

∫
RN

|u(x)|2

(δ2 + |x|2)s
dx, δ > 0, (2.1.7)

where the constant is sharp since it is achieved for the functions (δ2 + |x|2)−
N−s

2 .

The left-hand side of the equation (2.1.6) can be written as

〈∆su, u〉 =
4sΓ(N/2 + s)

2|Γ(−s)|πN/2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy. (2.1.8)

In view of this we can see that the fractional Hardy inequality in equation (2.1.6)
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is equivalent to the inequality

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy > 2πN/2

Γ(N+s
4

)2

Γ(N−s
4

)2

|Γ(−s)|
Γ(N/2 + s)

∫
RN

|u(x)|2

|x|2s
dx.

(2.1.9)

The fractional Hardy inequality in the half-space has been investigated by many

authors. For suitable functions, a fractional Hardy inequality for the half-space

RN
+ is stated as

∫
RN+

∫
RN+

|u(x)− u(y)|2

|x− y|N+2s
dxdy > DN,2,s

∫
RN+

|u(x)|2

x2s
N

dx, (2.1.10)

where the constant DN,2,s given by,

DN,2,s = 2π(N−1)/2 Γ((1 + 2s)/2)

Γ((N + 2s)/2)

∫ 1

0

∣∣1− r(2s−1)/2
∣∣2 dr

(1− r)1+2s
,

is optimal. For further reading and improvements of fractional Hardy inequalities

we refer to [6, 8, 12, 15, 14, 16, 40]. For 0 < s < 1 and suitable functions on

RN × R+, the trace Hardy inequality states that

∫ ∞
0

∫
RN
|∇u(x, ρ)|2ρ1−sdxdρ > 2

Γ(1− s/2)

Γ(s/2)

(
Γ((N + s)/4)

Γ((N − s)4)

)2 ∫
RN

|u(x, 0)|2

|x|s
dx.

(2.1.11)

Also the trace Hardy inequalities with non-homogeneous weight (δ2+|x|2)s, which

are of the form

∫ ∞
0

∫
RN
|∇u(x, ρ)|2ρ1−sdxdρ > 2

Γ(1− s/2)

Γ(s/2)

Γ((N + s)/2)

Γ((N − s)2)
δ2s

∫
RN

|u(x, 0)|2

(δ2 + |x|2)s
dx

(2.1.12)

with δ > 0, have also been studied. The inequalities in (2.1.11) and (2.1.12) are
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obtained by means of the solution of an initial value problem, for 0 < s < 1

(−∆ + ∂2
ρ +

1− s
ρ

∂)v(x, ρ) = 0, x ∈ RN , ρ > 0; v(x, 0) = f(x).

(2.1.13)

The initial value problem given above is known as the extension problem for the

Laplacian. Caferalli and Silvestre studied about the solution of the extension

problem in [9] and they established the relationship

lim
ρ→0

ρ1−s∂ρv(x, ρ) = 21−sΓ(1− s/2)

Γ(s/2)
∆s/2f(x). (2.1.14)

Their techniques have been used in many papers to study the different extension

problems and certain types of trace Hardy type inequalities; we refer for instance

[13, 33, 36].

This chapter is organized as follows. In Section 2.2 we will prove the Hardy

inequality and a few uncertainty principles and in Section 2.3 we will prove Hardy

inequalities for half-space and cone. In Section 2.4 our idea is to prove the trace

Hardy inequalities and Hardy inequalities for the Dunkl fractional Laplacian.

To obtain the above we solve the extension problem related to Dunkl fractional

Laplacian and establish the connection between the solution of the extension

problem and fractional Dunkl Laplacian. In Sections 2.5 and 2.6 we prove the

fractional Hardy inequalities on half-space and cone.
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§2.2. Hardy Inequality and Uncertainty Principles

2.2 Hardy Inequality and Uncertainty Princi-

ples

In this section we will first prove a general theorem which offers Hardy inequality,

uncertainty principle and a few other theorems as corollary.

Theorem 2.2.1. Let w be a positive radial function and let V be a function

satisfying −∆kw + V w > 0 in RN . Then for all G-invariant u ∈ C1
0(RN)

∫
RN

(|∇ku|2 + V |u|2)dµk(x) >
∫
RN
|∇k(w

−1u)|2w2dµk(x). (2.2.1)

Proof. Let u = wv and w is a radial function. Then we have

∫
RN
|∇ku|2dµk(x)

=

∫
RN
|w∇kv + v∇kw|2dµk(x)

=

∫
RN

(
|∇kv|2w2 + v2|∇kw|2 + 2wv

∑
j

TjvTjw

)
dµk(x). (2.2.2)

We will consider each of the integral separately and finally substitute it in the

original equation and get the inequality. First we consider the following integral

∫
RN
v2TjwTjwdµk(x)

= −
∫
RN
wTj(v

2Tjw)dµk(x)

= −
∫
RN
w(∂j + Ej)(v

2∂jw)dµk(x)

= −
∫
RN
wv2∂2

jwdµk(x)−
∫
RN
wEj(v

2∂jw)dµk(x)−
∫
RN

2wv∂jv∂jwdµk(x)

= −
∫
RN
wv2∂2

jwdµk(x)−
∫
RN
wEj(v

2w
′(r)

r
xj)dµk(x)−

∫
RN

2wv∂jv∂jwdµk(x)
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= −
∫
RN
wv2∂2

jwdµk(x)−
∫
RN

ww′(r)

r
Ej(v

2xj)dµk(x)−
∫
RN

2wv∂jv∂jwdµk(x)

= −
∫
RN
wv2∂2

jwdµk(x)− 2

∫
RN
wv∂jv∂jwdµk(x)−

∫
RN

ww′(r)

r
×{

v2(σαx)
∑
α∈R+

k(α)
α2
j

|α|2

}
dµk(x).

Taking the summation over j,

∫
RN

∑
j

v2TjwTjwdµk(x) = −
∫
RN
wv2∆2

0wdµk(x)− 2

∫
RN
vw∇ov.∇0vwdµk(x)

−2γk

∫
RN

ww′(r)

r
v2(x)dµk(x). (2.2.3)

Since w is radial and v is G-invariant, we have

∑
j

TjvTjw =
∑
j

∂jv∂jw. (2.2.4)

Substituting (2.2.3) and (2.2.4) into (2.2.2) we get

∫
RN
|w∇kv + v∇kw|2dµk(x)

=

∫
RN
|∇kv|2w2dµk(x)−

∫
RN
wv2∆0wdµk(x)− 2

∫
RN
vw∇0v.∇0wdµk(x)

− 2γk

∫
RN

ww′(r)

r
v2(x)dµk(x) + 2

∫
RN
wv∇0v.∇0wdµk(x)

=

∫
RN
|∇kv|2w2dµk(x)−

∫
RN
wv2∆0wdµk(x)− 2γk

∫
RN

ww′(r)

r
v2(x)dµk(x).

Simplifying, we get

∫
RN
|∇ku|2dµk(x) =

∫
RN
|∇kv|2w2dµk(x)−

∫
RN
wv2∆kwdµk(x). (2.2.5)
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By substitution −∆kw + V w > 0, we get the desired inequality

∫
RN
|∇ku|2dµk(x) >

∫
RN
|∇kv|2w2dµk(x)−

∫
RN
V u2dµk(x).

2.2.1 Applications of the Theorem

In this section we will assume that the function u is G−invariant and u ∈

C∞0 (RN). By using the above theorem we can prove some important theorems

by simply choosing the appropriate functions w and V .

Hardy Inequality

Assume that λk = N−2
2

+ γk > 0. Choose w(x) = |x|−λk . Since it is a radial

function we can directly calculate the Dunkl Laplacian of the function w(x). The

Dunkl Laplacian for the radial function is given by

∆k =
∂2

∂r2
+

2λk + 1

r

∂

∂r
.

So,

∆kw = λk(λk + 1)|x|−(λk+2) − (2λk + 1)(λk)|x|−(λk+2)

= −λ2
k|x|−2|x|−λk .

Now choose the function V as V (x) = −λ2
k|x|−2 so that the equality−∆kw+V w =

0 holds. Substituting in the Theorem 2.2.1, we obtain

∫
RN
|∇ku|2dµk(x) > λ2

k

∫
RN

|u|2

|x|2
dµk(x). (2.2.6)
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Remark 2.2.2. The optimality of the Hardy inequality in the Euclidean case for

N > 1 has been done by I. Peral and J.L. Vazquez in [26]. We can adapt the

similar technique in the case of Dunkl setting too. Use the following sequence of

radial functions, Uε,k,

Uε,k(x) =


AN,ε if 0 6 |x| 6 1

AN,ε|x|−
N−2

2
−γk−ε if |x| > 1,

where AN,ε = 2/(N − 2 + 2γk + 2ε), and proceed as in the proof Lemma 4.1 of

[26].

Heisenberg Uncertainty Principle

Now let

w(x) = e−
α|x|2

2 .

Using the Dunkl Laplacian for radial functions and get

∆kw = α2r2e−α
|x|2
2 − αe−α

|x|2
2 − (2λk + 1)αe−α

|x|2
2

= e−α
|x|2
2 (α2|x|2 − (2λk + 2)α) = (α2|x|2 − (2λk + 2)α)w(x).

So we choose V (x) = α2|x|2 − (2λk + 2)α. Using the Theorem 2.2.1

∫
RN
|∇ku|2dµk(x) > −

∫
RN

(
α2|x|2 − α(2λk + 2

)
|u|2dµk(x).

Now optimizing for α we get

(∫
RN
|∇ku|2dµk(x)

)1/2(∫
RN
|x|2|u|2dµk(x)

)1/2

>

(
2λk + 2

2

)∫
RN
|u|2dµk(x).
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Hydrogen Uncertainty Principle

In this case let us choose

w(x) = e−α|x|,

then the Dunkl Laplacian of w is given by

∆kw(x) = α2e−α|x| − (2λk + 1)
α

|x|
e−α|x|

= e−α|x|
(
α2 − (2λk + 1)

α

|x|

)
w(x).

So we choose

V (x) = α2 − α

|x|
(2λk + 1)

and using the Theorem 2.2.1 to obtain the inequality,

∫
RN
|∇ku|2dµk(x) > −

∫
RN

(
α2 − α

|x|
(2λk + 1)

)
|u|2dµk(x).

Now optimize for α we get

(∫
RN
|∇ku|2dµk(x)

)1/2(∫
RN
|u|2dµk(x)

)1/2

>
2λk + 1

2

∫
RN

|u|2

|x|2
dµk(x).

Linear Sobolev Inequality

Let N + 2γk > 2 and let

w(x) = (1 + |x|2)−
N−2

2
−γk = (1 + |x|2)−t.
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§2.3. Hardy Inequality on the Half-Space and Cone

∆kw(x) = (1 + |x|2)−t−2

(
4t(t+ 1)|x|2 − (1 + |x|2)(2t+ 2(2λk + 1)t)

)

identify that λk is nothing but t. Then by replacing λk by t we get

∆kw(x) = (1 + |x|2)−t−2

(
4t(t+ 1)|x|2 − 4t(t+ 1)(1 + |x|2)

)
= −4t(t+ 1)(1 + |x|2)−t−2

= (1 + |x|2)−t
(

(1 + |x|2)−2(4t(t+ 1)

)
.

Substituting the value of t and simplifying we get

∆kw(x) = (1 + |x|2)−
N−2

2
−γk
(
− (N + 2γk)(N − 2 + 2γk)(1 + |x|2)−2

)

and now choose

V (x) = −(N + 2γk)(N − 2 + 2γk)(1 + |x|2)−2,

to satisfy the equation ∆kw(x) = V (x)w(x). By substituting in the Theorem

2.2.1 we obtain

∫
RN
|∇ku|2dµk(x) > (N + 2γk)(N − 2 + 2γk)

∫
RN

|u|2

(1 + |x|2)2
dµk(x).

2.3 Hardy Inequality on the Half-Space and Cone

Let R1 and R2 be root systems and k1, k2 be multiplicity function corresponding

to the space Rl and RN−l respectively. Then R = (R1 × (0)N−l) ∪ ((0)l × R2)

will be a root system on RN . Let us define the multiplicity function k on R by
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natural extension of k1 and k2. Let x = (y, z) ∈ Rl × RN−l, then it is easy to

observe that h2
k(x) = h2

k1
(y)h2

k2
(z).

If 1 6 l 6 N and if x ∈ RN we can write x = (y, z) where y ∈ Rl and

z ∈ RN−l.

Theorem 2.3.1. Let l + 2γk1 − 2 > 0, then for each G-invariant u ∈ C∞0 (RN),

we have the following inequality:

∫
RN
|∇ku(x)|2dµk(x) >

(
l + 2γk1 − 2

2

)2 ∫
RN

|u(x)|2

|y|2
dµk(x).

Moreover the constant appearing above is optimal.

Proof. For u ∈ C∞0 (RN) we have

∫
RN

|u(x)|2

|y|2
dµk(x) =

∫
RN−l

h2
k2

(z)dz

∫
Rl

|u(x)|2

|y|2
h2
k1

(y)dy.

Using the Hardy inequality we get

∫
RN

|u(x)|2

|y|2
dµk(x) 6

4

(l + 2γk1 − 2)2

∫
RN−l

h2
k2

(z)dz

∫
Rl
|∇k1,yu(y)|2h2

k1
(y)dy

6
4

(l + 2γk1 − 2)2

∫
RN
|∇ku(x)|2dµk(x).

The last inequality hold since |∇ku(x)| > |∇k1,yu(y)|.

To prove the constant (
l+2γk1−2

2
)2 is optimal, consider u(y, z) = v(y)w(z),

where v ∈ C∞0 (Rl) and w ∈ C∞0 (RN−l). It is clear that

∫
RN
|∇ku(x)|2dµk(x) =

∫
RN

[
|∇k1v(y)|2|w(z)|2 + |∇k2w(z)|2|v(y)|2

]
dµk(x).

Consider the convex function from [0,∞) × [0,∞) to [0,∞) defined as, (s, t) 7→
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(s2 + t2). Now by the convexity we have

(s2 + t2) 6 (1− λ)−1s2 + λ−1t2,

for all s, t > 0 and 0 < λ < 1. By using this relation we obtain,

∫
RN |∇ku(x)|2dµk(x)∫

RN
|u(x)|2
|y|2 dµk(x)

=

∫
RN
[
|∇k1v(y)|2|w(z)|2 + |∇k2w(z)|2|v(y)|2

]
dµk(x)∫

RN
|u(x)|2
|y|2 dµk(x)

6 (1− λ)−1

∫
RN |∇k1v(y)|2|w(z)|2dµk(x)∫

RN
|u(x)|2
|y|2 dµk(x)

+ λ−1

∫
RN |∇k2w(z)|2|v(y)|2dµk(x)∫

RN
|u(x)|2
|y|2 dµk(x)

= (1− λ)−1

∫
Rl |∇k1v(y)|2h2

k1
(y)dy∫

Rl
|v(y)|2
|y|2 h2

k1
(y)dy

+ λ−1

∫
RN−l |∇k2w(z)|2h2

k2
(z)dz

∫
Rl |v(y)|2h2

k1
(y)dy∫

RN−l |w(z)|2h2
k2

(z)dz
∫
Rl
|v(y)|2
|y|2 h2

k1
(y)dy

.

Since w is radial we have

inf
w∈C∞0 (RN−l)

w 6=0

∫
RN−l |∇kw(z)|2h2

k2
(z)dz∫

RN−l |w(z)|2h2
k2

(z)dz
= inf

w∈C∞0 (RN−l)
w 6=0

∫
RN−l |∇0w(z)|2dz∫
RN−l |w(z)|2)dz

= 0.

Hence for 0 < λ < 1, by the optimality of the Hardy inequality on Rl with the

root system R1, we get

inf
u∈C∞0 (RN )

u6=0

∫
RN |∇ku(x)|2dµk(x)∫

RN
|u(x)|2
|y|2 dµk(x)

6 (1− λ)−1 inf
v∈C∞0 (Rl)

v 6=0

∫
Rl |∇kv(y)|2h2

k1
(y)dy∫

Rl
|v(y)|2
|y|2 h2

k1
(y)dy

6 (1− λ)−1

(
l − 2

2
+ γk1

)2

.

Letting λ→ 0 and we get the constant
(
l−2
2

+ γk1
)2

in Theorem 2.3.1 is optimal.
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2.3.1 Hardy Inequality on the Half-Space RN+1
+

A straight forward calculation gives the following relations which will be used to

prove the next theorem.

(
√
xN+1)−1

(
−∆k −

∂2

∂x2
N+1

− 1

4x2
N+1

)
(
√
xN+1g(x))

= −∆kg(x)−
( ∂2

∂x2
N+1

+
1

xN+1

∂

∂xN+1

)
g(x). (2.3.1)

− x−lN+1

( N∑
j=1

T 2
j +

∂2

∂x2
N+1

− l(l − 1)

x2
N+1

)
xlN+1g(x)

= −
( N∑

j=1

T 2
j +

∂2

∂x2
N+1

+
2l

xN+1

∂

∂xN+1

)
g(x). (2.3.2)

−
N∏

i=N−l+1

x−1
i

( N−l∑
j=1

T 2
j +

N∑
j=N−l+1

∂2

∂x2
j

) N∏
i=N−l+1

xig(x)

= −
N−l∑
j=1

T 2
j g(x)−

N∑
j=N−l+1

(
∂2

∂x2
j

+
2

xj

∂

∂xj

)
g(x). (2.3.3)

Extend the root system R of RN to RN+1 by R×{0} and extend the corresponding

multiplicity function to RN+1 by k(x, 0) = k(x), where x ∈ RN . Let ∇̃k =

(∇k,
∂

∂xN+1
) be the gradient on RN+1, where ∇k is the Dunkl gradient on RN .

With this notation we have the following theorem which can be considered as a

Hardy inequality in the upper half space.

Theorem 2.3.2. write x̃ = (x, xN+1). Let u ∈ C∞0 (RN+1
+ ) such that u is G-
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invariant. Then

∫
RN+1
+

|∇̃ku(x̃)|2 dµk(x)dxN+1

>
1

4

∫
RN+1
+

|u(x̃)|2

x2
N+1

dµk(x)dxN+1

+
(N + 2γk)

2

4

∫
RN+1
+

|u(x̃)|2

x2
1 + ...+ x2

N+1

h2
k(x)dxdxN+1.

Proof. Let ∇̃ = (∇k,∇0) be the gradient on RN
x × R2

y where ∇k be the Dunkl

gradient on RN and ∇0 be the Euclidean gradient on R2
y. Using the optimal

Hardy inequality given in the equation (2.2.6) for v ∈ C∞0 (RN × R2):

∫
RN×R2

|∇̃v(x, y)|2dµk(x)dy >
(N + 2γk)

2

4

∫
RN×R2

|v(x, y)|2

x2
1 + ...+ x2

N + y2
1 + y2

2

dµk(x)dy.

Let v(x, y) = v(x, |y|) and using the above relations we get

∫
RNx ×R2

y

|∇̃v(x, y)|2dµk(x)dy

= −
∫
RNx ×R2

y

(
∆k +

∂2

∂x2
N+1

+
1

xN+1

∂

∂xN+1

)
v(x, y).v(x, y)dµk(x)dy

= −
∫
RNx ×R2

y

(
√
xN+1)−1

(
−∆k +

∂2

∂x2
N+1

− 1

4x2
n+1

)
√
xN+1v(x, |y|).v(x, |y|)dµk(x)dy

= −
∫
RN+1
+

(
√
xN+1)−1

(
−∆k +

∂2

∂x2
N+1

− 1

4x2
n+1

)
√
xN+1v(x, |y|)v(x, |y|)xN+1

∫ 2π

0

dθ.
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Using the above relation (2.3.1) and substituting u =
√
xN+1v we obtain

∫
RN×R2

|∇kv(x, y)|2dµk(x)dy

=

(∫
RN+1
+

|∇̃ku(x, xN+1)|2 − 1

4

∫
RN+1
+

|u(x, xN+1)|2

x2
N+1

)∫ 2π

0

dθ

>
(N + 2γk)

2

4

∫
RNx ×R2

y

|v(x, y)|2

x2
1 + ...+ x2

N + y2
1 + y2

2

dµk(x)dy

=
(N + 2γk)

2

4

∫
RN+1
+

|u(x, xN+1)|2

x2
1 + ...+ x2

N+1

dµk(x)dxN+1

∫ 2π

0

dθ.

So we have the inequality

∫
RN+1
+

|∇̃ku(x, xN+1)|2 − 1

4

∫
RN+1
+

|u(x, xN+1)|2

x2
N+1

dµk(x)dxN+1

>
(N + 2γk)

2

4

∫
RN+1
+

|u(x, xN+1)|2

x2
1 + ...+ x2

N+1

dµk(x)dxN+1.

Now we can prove a slightly generalized version of above theorem. If we put

l = 1
2

in the following lemma we will get the above result and the l = 1 case will

be used to prove the Hardy inequality for the cone.

Lemma 2.3.3. Let ∇̃k be the gradient on RN+1 as mentioned earlier. For l ∈

{1/2, 1, 3/2, 2, ..., N/2, ..} and for all G-invariant u ∈ C∞0 (RN+1
+ ),

∫
RN+1
+

|∇̃ku|2dµk(x)dxN+1 + l(l − 1)

∫
RN+1
+

|u(x)|2

x2
N+1

dµk(x)dxN+1

>
(N + 2γk + 2l − 1)2

4

∫
RN+1
+

|u(x)|2

|x|2
dµk(x)dxN+1,

where (N+2γk+2l−1)2

4
is sharp.

Proof. Let ∇̃ = (∇k,∇0) be the gradient on RN
x × R2l+1

y where ∇k is the Dunkl
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gradient over RN
x and ∇0 is the Euclidean gradient over R2l+1

y . From the Hardy

inequality (2.2.6) it follows that, for v ∈ C∞0 (RN
x × R2l+1

y ),

∫
RNx ×R

2l+1
y

|∇̃v(x, y)|2dµk(x)dy

>
(N + 2γk + 2l − 1)2

4

∫
RNx ×R

2l+1
y

|v(x, y)|2

x2
1 + ...+ x2

N + |y|2
dµk(x)dy.

(2.3.4)

Consider the functions with v(x, y) = v(x, |y|) and write xN+1 = |y|. Then, we

have

∫
RNx ×R

2l+1
y

|∇̃v(x, y)|2dµk(x)dy

= −
∫
RNx ×R

2l+1
y

(
∆k +

2l+1∑
m=1

∂2

∂y2
m

)
v(x, y).v(x, y)dµk(x)dy

= −
∫
RNx ×R

2l+1
y

(
∆k +

∂2

∂x2
N+1

+
2l

xN+1

∂

∂xN+1

)
v(x, |y|).v(x, |y|)dµk(x)dy.

Substituting u = xlN+1v in the above equation and using the relation (2.3.2) we

obtain

∫
RNx ×R

2l+1
y

|∇̃v|2dµk(x)dy

=

∫
RNx ×R

2l+1
y

x−lN+1

(
−∆k −

∂2

∂x2
N+1

+
l(l − 1)

x2
N+1

)
xlN+1v(x, |y|).v(x, |y|)dµk(x)dy

= ‖S2l+1‖
∫
RN+1
+

(
−∆k −

∂2

∂x2
N+1

+
l(l − 1)

x2
N+1

)
xlN+1v(x, xN+1).xlN+1v(x, xN+1)dµk(x)dxN+1

= ‖S2l+1‖
(∫

RN+1
+

|∇̃ku(x, xN+1)|2 + l(l − 1)

∫
RN+1
+

|u|2

x2
N+1

)
dµk(x)dxN+1

>
(N + 2γk + 2l − 1)2

4

∫
RNx ×R

2l+1
y

|v(x, y)|2

x2
1 + ...+ x2

N + |y|2
dµk(x)dy

= ‖|S2l+1‖(N + 2γk + 2l − 1)2

4

∫
RN+1
+

|u(x, xN+1)|2

|x|2 + x2
N+1

dµk(x)dxN+1.
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Hence the required inequality

∫
RN+1
+

|∇̃ku(x, xN+1)|2 + l(l − 1)

∫
RN+1
+

|u|2

x2
N+1

dµk(x)dxN+1

>
(N + 2γk + 2l − 1)2

4

∫
RN+1
+

|u(x, xN+1)|2

|x|2 + x2
N+1

dµk(x)dxN+1. (2.3.5)

Since the the Hardy inequality in (2.3.4) is sharp, the constant in (2.3.5) is sharp.

2.3.2 Hardy Inequality on the Cone RN
l+

Let ∇̃k = (∇k,
∂

∂xN−l+1
, ..., ∂

∂xN
) be the gradient on RN . Now we are going to prove

Hardy inequality for the cone using the Lemma 2.3.3.

Theorem 2.3.4. Let N + 2γk > 3. Let u be a G-invariant function and u ∈

C∞0 (RN
l+

). Then the following inequality holds:

∫
RNl+

|∇̃ku|2dµk(x)dxN−l+1...dxN

>
(N + 2l + 2γk − 2)2

4

∫
RNl+

|u|2

|x|2
dµk(x)dxN−l+1...dxN ,

where the constant (N+2l+2γk−2)2

4
is sharp.

Proof. As in the previous cases, without abusing the notation, we use ∇̃ =

(∇k,∇0) where ∇k is the Dunkl gradient on RN−l
x and ∇0 is Euclidean gradi-

ent on R3l
y . The sharp Hardy inequality for v ∈ C∞0 (RN−l

x × R3l
y ) is given by

∫
RN−lx ×R3l

y

(|∇kv|2 + |∇0v|2)h2
k(x)h2

k(y)dxdy

>
(N + 2l + 2γk − 2)2

4

∫
RN−lx ×R3l

y

|v|2

|x|2 + |y|2
h2
k(x)h2

k(y)dxdy,
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where x ∈ RN−l
x and y ∈ R3l

y . Set

xN−l+1 =
√
y2

1 + y2
2 + y2

3, xN−l+2 =
√
y2

4 + y2
5 + y2

6, · · · , xN =
√
y2

3l−2 + y2
3l−1 + y2

3l

and let v(x, y) = v(x1, ..xN). Consider the integral

∫
RN−lx ×R3l

y

|∇̃v|2dµk(x)dy

= −
∫
RN−lx ×R3l

y

(
∆k +

3l∑
j=1

∂2

∂y2
j

)
v(x, y).v(x, y)dµk(x)dy

= −
∫
RN−lx ×R3l

y

(
∆k +

N∑
j=N−l+1

∂2

∂x2
j

+
2

xj

∂

∂xj

)
v(x, y).v(x, y)dµk(x)dy.

For convenience we will denote the operator ∆k +
∑N

j=N−l+1
∂2

∂x2j
by Mk and the

surface area measure of S3 by ‖S3‖. Now using the relation (2.3.3) and putting

u =

(∏N
j=N−l+1 xj

)
v we have

∫
RN−lx ×R3l

y

|∇̃v|2dµk(x)dy

= −
∫
RN−lx ×R3l

y

N∏
j=N−l+1

x−1
j Mk

N∏
j=N−l+1

xjv(x1, · · · , xN).v(x1, · · · , xN)dµk(x)dy

= −‖S3‖l
∫
RN+1
+

N∏
j=N−l+1

xjMk

N∏
j=N−l+1

xjv(x1, · · · , xN).v(x1, · · · , xN)dµk(x)dxN−l+1 · · · dxN

= −‖S3‖l
∫
RNl+

|∇̃ku|2dµk(x)dxN−l+1 · · · dxN

>
(N + 2l + 2γk − 2)2

4

∫
RN−lx ×R3l

y

|v|2

|x|2 + |y|2
dµk(x)dy
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= ‖S3‖l (N + 2l + 2γk − 2)2

4

∫
RNl+

|u|2

x2
1 + ...+ x2

N

dµk(x)dxN−l+1 · · · dxN .

Hence the theorem.

Remark 2.3.5. The proof of Theorem 2.3.2, Lemma 2.3.3 and Theorem 2.3.4 are

mainly based on the Hardy inequality proved in the Subsection 2.2.1. The proof

of all these theorems are given in such a way that the optimality follow from the

optimality of the Hardy inequality.

2.4 Trace Hardy Inequality and Fractional Hardy

Inequality

The Hardy inequality for the upper half space is stated as

∫
RN+
|∇u|2dx >

1

4

∫
RN+

|u|2

x2
N

dx

for u ∈ C∞0 (RN) and RN
+ = {(x1, x2, · · · , xN) : xN > 0} and 1

4
is the best possible

constant. In the recent times a lot of attention is given to the analysis of fractional

power of Laplacians. Fractional Laplacian, (−∆)s, for s ∈ (0, 1) can be defined

using Fourier transform as ̂(−∆)sf(ξ) = |ξ|2sf̂(ξ). It also can be expressed as

(−∆)sf(x) = cN,sP.V.

∫
RN

f(x)− f(ξ)

|x− ξ|N+2s
dξ,

where

cN,s =
s2sΓ(N+2s

2
)

πN/2Γ(1− s)
.
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Similarly in the case of Dunkl setting we can define the fractional power of Dunkl

Laplacian in a number of ways. For 0 < s < 1, the fractional power of Dunkl

Laplacian is defined as Fk((−∆k)
sf)(ξ) = |ξ|2sFk(f)(ξ). One of the other equiv-

alent definitions that we will use is

(−∆k)
sf(x) =

1

Γ(−s)

∫ ∞
0

(e−t∆kf(x)− f(x))
dt

t1+s
.

Our aim is to prove the trace Hardy inequality in Dunkl case. In order to do this

we first calculate

∫ ∞
0

∫
RN
|∇k,ρu−

u

v
∇k,ρv|2ρadµk(x)dρ,

where ∇k,ρ := (∇k, ∂ρ) and we assume that u and v are real valued and u is

G-invariant. Now consider the integral

∫
RN

(Tju−
u

v
Tjv)2dµk(x) =

∫
RN

(Tju)2 +
u2

v2
((Tjv)2 − 2

u

v
TjuTjv)dµk(x).

Let us consider terms of the right hand side of the equation separately. Assume

that v is radial and use the integration by parts formula for Dunkl operator given
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in Section 1.2,

∫
RN

u2

v2
(Tjv)2dµk(x) =

∫
RN

u2

v2
∂jv(Tjv)dµk(x) = −

∫
RN
∂j(

1

v
)u2Tjvdµk(x)

= −
∫
RN
Tj(

1

v
)u2Tjvdµk(x) =

∫
RN

1

v
Tj(u

2Tjv)dµk(x)

=

∫
RN

1

v
Tj(u

2∂jv)dµk(x)

=

∫
RN

1

v
(∂j + Ej)(u

2∂jv)dµk(x)

=

∫
RN

1

v
(2u∂ju∂jv + u2∂2

j v +
v′(r)

r
Ej(xju

2))dµk(x)

=

∫
RN

(
2
u

v
∂ju∂jv +

u2

v
∂2
j v +

v′(r)

rv
Ej(xju

2)

)
dµk(x).

By applying the definition of Ej and summing over j we get

N∑
j=1

Ej(xju
2) =

∑
α∈R+

k(α)(u2(x) + u2(σαx)).

Using this, we can arrive at

∫
RN

u2

v2
|∇kv|2dµk(x)

=

∫
RN

2
u

v
∇0u.∇0vdµk(x) +

∫
RN

u2

v
∆0vdµk(x)

+

∫
RN

v′(r)

rv

∑
α∈R+

k(α)(u2(x) + u2(σαx))dµk(x)

=

∫
RN

2
u

v
∇0u.∇0vdµk(x) +

∫
RN

u2

v
∆0vdµk(x) + 2γk

∫
RN

v′(r)

rv
u2(x)dµk(x).
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On the other hand

− 2

∫
RN

u

v
TjuTjvdµk(x)

= −2

∫
RN

u

v
(∂j + Ej)(u)∂jvdµk(x)

= −2

∫
RN

u

v
∂ju∂jvdµk(x)− 2

∫
RN

u

v
∂jv

∑
α∈R+

k(α)
u(x)− u(σα(x)

〈x, α〉
αjdµk(x).

Summing over j gives

−2

∫
RN

u

v
∇ku.∇kvdµk(x)

= −2

∫
RN

u

v
∇0u.∇0vdµk(x)− 2

∫
RN

u

v

v′(r)

r

∑
α∈R+

k(α)(u(x)− u(σαx))dµk(x).

The above two simplified expression will lead to

∫
RN

u2

v2
|∇kv|2dµk(x)− 2

∫
RN

u

v
∇ku.∇kvdµk(x)

= 2

∫
RN

u

v

v′(r)

r

∑
α∈R+

k(α)u(σαx)dµk(x) +

∫
RN

u2

v
∆0vh

2
k(x).

Finally we obtain

∫
RN
|∇ku−

u

v
∇kv|2dµk(x)

=

∫
RN
|∇ku|2dµk(x) + 2

∫
RN

u

v

v′(r)

r

∑
α∈R+

k(α)u(σαx)dµk(x) +

∫
RN

u2

v
∆0vdµk(x).

50



§2.4. Trace Hardy Inequality and Fractional Hardy Inequality

Using the G-invariance of u and the expression of Dunkl Laplacian for radial

function, we obtain

∫
RN
|∇ku−

u

v
∇kv|2dµk(x)

6
∫
RN
|∇ku|2dµk(x) + 2γk

∫
RN

u2

v

v′(r)

r
dµk(x) +

∫
RN

u2

v
∆0vdµk(x)

=

∫
RN
|∇ku|2dµk(x) +

∫
RN

u2

v
∆kvdµk(x).

On the other hand doing a similar calculation with ρ-derivative gives

∫ ∞
0

(
u2

v2
(
∂v

∂ρ
)2 − 2

u

v

∂u

∂ρ

∂v

∂ρ

)
ρadρ

=

∫ ∞
0

u2

v

∂

∂ρ
(ρa

∂v

∂ρ
)dρ+

|u(x, 0)|2

v(x, 0)
lim
ρ→0

(ρa∂ρv)(x, ρ).

We can write

∫ ∞
0

∫
RN
|∇k,ρu−

u

v
∇k,ρv|2ρadµk(x)dρ

=

∫ ∞
0

∫
RN

[ N∑
j=1

(Tju−
u

v
Tjv)2 + (

∂u

∂ρ
− u

v

∂v

∂ρ
)2

]
ρadµk(x)dρ.

Now substitute the above equations and adding up we get

∫ ∞
0

∫
RN
|∇k,ρu−

u

v
∇k,ρv|2ρadµk(x)dρ

6
∫ ∞

0

∫
RN
|∇ku|2ρadµk(x)dρ+

∫ ∞
0

∫
RN

u2

v
ρaLkavh

2
k(x)dxdρ

+

∫
RN

|u(x, 0)|2

v(x, 0)
lim
ρ→0

(ρa
∂v

∂ρ
)(x, 0)dµk(x),
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where Lka is the differential operator

Lka = ∆k + ∂2
ρ +

a

ρ
∂ρ. (2.4.1)

Therefore, if v satisfies the equation Lkav = 0 on RN+1
+ , then the above inequality

reduces to

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρah2

k(x)dxdρ > −
∫
RN

|u(x, 0)|2

v(x, 0)
lim
ρ→0

(ρa
∂v

∂ρ
)(x, ρ)dµk(x).

(2.4.2)

Now we are interested in solving Lkav = 0 with a given initial condition, say

v(x, 0) = f(x). This is actually the extension problem for Dunkl Laplacian. We

use the techniques developed by L. Caffarelli and L. Silvestre in [9] to obtain the

solution of the extension problem for the Dunkl Laplacian and relation of the

extension problem with the fractional power of Dunkl Laplacian.

When a = M − 1 is a positive integer, note that Lka is given by the action of

∆k,x + ∆0 on RN+M on functions v(x, y) which are radial in the y variable.

(∆k,x + ∆0)v(x, y) = ∆k,xv + (∂2
ρ +

M − 1

ρ
∂ρ)v(x, y)

with |y| = ρ. Then the solution of Lkav = 0 can be obtained by considering the

fundamental solution of ∆k + ∆0 on RN+M . That is, the function

v(x, ρ) = (ρ2 + |x|2)−
N+M

2
−γk+1
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solves Lkav = 0 even if a is not a positive integer. The choice a = 1− s leads to

the solution

v(x, ρ) = (ρ2 + |x|2)−
N−s

2
−γk = ρ−(N−s)−2γk(1 + ρ−2|x|2)−

N−s
2
−γk .

Define ψα, for any α > 0 by ψα(x) = (1 + |x|2)−α. Then we can see

v(x, ρ) = ρ−(N−s)−2γk(1 + ρ−2|x|2)−
N−s

2
−γk = ρ−(N−s)−2γkψN+s

2
+γk

(ρ−1x).

By taking convolution we see that f ∗k ρ−(N+2γk−s)ψN−s
2

+γk
(ρ−1.) also satisfies the

extended equation (2.4.1) with a = 1−s. The function ρ−(N+2γk−s)ψN−s
2

+γk
(ρ−1x)

does not give an approximate identity as ψN−s
2

+γk
is not integrable. Hence the

convolution f ∗k ρ−(N+2γk−s)ψN−s
2

+γk
(ρ−1.) does not converge to f as ρ → 0. It

can be observed that

ρs(ρ2 + |x|2)−
N+s
2
−γk = ρ−N−2γkψN+s

2
+γk

(ρ−1x). (2.4.3)

and this function satisfies the equation (2.4.1) with a = 1− s. It also defines an

approximate identity. Therefore, we have

f ∗k ρ−NψN+s
2

+γk
(ρ−1.)→ f

as ρ→ 0. If 0 6 s 6 N/2 + γk, the function ψN−s
2

+γk
∈ L2(RN , dµk(x)) and so we

can talk about Fk(ψN−s
2

+γk
).

Theorem 2.4.1. For 0 < s < N/2 + γk

∆
s/2
k ψN−s

2
+γk

(x) = 2s
Γ(N+s

2
+ γk)

Γ(N−s
2

+ γk)
ψN+s

2
+γk

.
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Proof. This relation can be proved by calculating the Dunkl transforms of ψN+s
2

+γk

and ψN−s
2

+γk
. The gamma integral

a−α =
1

Γ(α)

∫ ∞
0

e−attα−1dt, a > 0, α > 0

gives

ψN+s
2

+γk
(x) =

1

Γ(N+s
2

+ γk)

∫ ∞
0

e(1+|x|2)tt
N+s
2

+γk−1dt.

We know that

e−t|ξ|
2

= ch
−1

∫
RN

1

(2t)λk+1
e−
|x|2
4t Ek(x,−iξ)dµk(x). (2.4.4)

Using the definition of Dunkl Fourier transform

FkψN+s
2

+γ(ξ) = c−1
h

1

Γ(N+s
2

+ γk)

∫
RN

∫ ∞
0

e−(1+|x|2)tt
N+s
2

+γ−1Ek(x,−iξ)dµk(x)dt.

Using the equation (2.4.4) we calculate

FkψN+s
2

+γ(ξ) =
2−(λk+1)

Γ(N+s
2

+ γk)

∫ ∞
0

e−te−
1
4t
|ξ|2t

s
2
−1dt.

Now apply the change of variable t→ 1
4t
|ξ|2 to obtain

FkψN+s
2

+γ(ξ) =
2−(λk+1)2−s|ξ|s

Γ(N+s
2

+ γk)

∫ ∞
0

e−
1
4t
|ξ|2e−tt−s/2−1dt.

Hence we conclude that

FkψN+s
2

+γk
(ξ) = 2−s

Γ(N−s
2

+ γk)

Γ(N+s
2

+ γk)
|ξ|sFkψN−s

2
+γk

(ξ).
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Since Fk(f ∗k g) = Fk(f)Fk(g) we obtain

f ∗ ψN+s
2

+γk
= 2−s

Γ(N−s
2

+ γk)

Γ(N+s
2

+ γk)
∆
s/2
k f ∗k ψN−s

2
+γk

. (2.4.5)

Now we let

vs,ρ(x) = ρs(ρ2 + |x|2)−
N+s
2
−γk = ρ−N−2γψN+s

2
+γk

(ρ−1x)

and using the change of variable we get

Fk(vs,ρ)(ξ) = Fk(ψN+s
2

+γk
)(ρξ) = 2−s

Γ(N−s
2

+ γk)

Γ(N+s
2

+ γk)
ρs|ξ|sFk(ψN−s

2
+γk

)(ρξ).

Therefore, it follows that

f ∗k vs,ρ(x) = 2−s
Γ(N−s

2
+ γk)

Γ(N+s
2

+ γk)

(
(∆

s/2
k f) ∗k ρ−N−2γ+sψN−s

2
+γk

(ρ−1.

)
(x).

Since ρ−(N+2γk−s)ψN−s
2

+γk
(ρ−1x) satisfies the equation Lkau = 0, vs,ρ and f ∗k vs,ρ

also satisfies the same equation. Since vs,ρ is an approximate identity we obtain

lim
ρ→0

f ∗k vs,ρ = aN(s)f

in Lp(RN , h2
k(x)), 1 6 p 6∞ , where

aN(s) =

∫
RN

(1 + |x|2)−
N+s
2
−γkdx.

We are going to calculate aN(s) explicitly. In fact

aN(s) = a−1
k

∫ ∞
0

(1 + r2)−
N+s
2
−γkrN−1+2γkdr.
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Changing the variable to r by substituting r2 = t we obtain

aN(s) =
a−1
k

2

∫ ∞
0

(1 + t)−
N+s
2
−γkt

N
2

+γk−1dr. (2.4.6)

In view of the formula

∫ ∞
0

(1 + t)−bta−1dt =
Γ(a)Γ(b− a)

Γ(b)
,

aN(s) can be written as

aN(s) =
a−1
k

2

Γ(N+2γk
2

)Γ( s
2
)

Γ(N+2γk+s
2

)
. (2.4.7)

Therefore,

lim
ρ→0

f ∗k vs,ρ(x) =
a−1
k

2

Γ(N
2

+ γk)Γ( s
2
)

Γ(N+s
2

+ γk)
f(x).

Since

(ρ2 + |x|2)−
N−s

2
−γk = ρ−N−2γk+sψN−s

2
+γk

(ρ−1x),

we have

ρ1−s∂ρ(f ∗k vs,ρ)(x)

= ρ1−s∂ρ

(
2−s

Γ(N−s
2

+ γk)

Γ(N+s
2

+ γk)
(∆

s/2
k f) ∗k ρ−N−2γk+sψN−s

2
+γk

(ρ−1.)

)
(x)

= −21−sΓ(N−s
2

+ γk)

Γ(N+s
2

+ γk)

(
N − s

2
+ γk

)
(∆

s/2
k f) ∗k ρ2−s(ρ2 + |x|2)−

N+(2−s)
2

−γk

= −21−sΓ(N−s
2

+ γk)

Γ(N+s
2

+ γk)

(
N − s

2
+ γk

)
(∆

s/2
k f) ∗k v2−s,ρ(x).
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Consequently it yields

lim
ρ→0

ρ1−s∂ρ(f ∗k vs,ρ) = −21−sΓ(N−s
2

+ γk)

Γ(N+s
2

+ γk)

(
N − s

2
+ γk

)
aN(2− s)(∆s/2

k f).

Using the explicit values of aN(s) and aN(2− s) we get

lim
ρ→0
−ρ

1−s∂ρ(f ∗k vs,ρ)
f ∗k vs,ρ

= 21−sΓ(1− s
2
)

Γ( s
2
)

(∆
s/2
k f)

f
.

Now using these results we get the following inequality:

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ

> 21−sΓ(1− s
2
)

Γ( s
2
)

∫
RN

|u(x, 0)|2

f(x)
(∆

s/2
k f)(x)dµk(x). (2.4.8)

The choice of f(x) = (1 + |x|2)−
N−s

2
−γk leads to the following theorem

Theorem 2.4.2. Let 0 < s < 1 and u ∈ C∞0 (RN+1
+ ) and G-invariant, then

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sdµk(x)dρ

> 2
Γ(1− s

2
)

Γ( s
2
)

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

∫
RN

|u(x, 0)|2

(1 + |x|2)s
dµk(x).

By a suitable choice of f we can prove the following Hardy inequality for ∆
s/2
k .

Corollary 2.4.3. For f ∈ L2(RN , h2
k(x)) for which ∆

s/2
k f ∈ L2(RN , dµk(x)),

〈∆s/2
k f, f〉 > 2s

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

∫
RN

|f(x)|2

(1 + |x|2)s
dµk(x).

Proof. Since u = f ∗ vs,ρ satisfies

(∆k + ∂2
ρ +

1− s
ρ

∂ρ)u = 0,
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with u(x, 0) = aN(s)f(x) integrating (∆k + ∂2
ρ + 1−s

ρ
)u with ρ variable and then

integrate with x variable we get

∫ ∞
0

∫
RN
|∇k,ρu|2ρ1−sdµk(x)dρ = −

∫
RN
u(x, 0) lim

ρ→0
(ρ1−s∂ρu)(x, ρ)dµk(x).

Now use the above theorem and simplify to get

Γ(N−s
2

+ γk)

Γ(N+s
2

+ γk)
(
N − s

2
+ γk)aN(2− s)aN(s)

∫
RN

∆
s/2
k f(x)f(x)dµk(x)

> 2
Γ(1− s

2
)

Γ( s
2
)

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)
aN(s)2

∫
RN

|f(x)|2

(1 + |x|2)s
dµk(x).

Therefore, we arrive at the inequality

〈∆s/2
k f, f〉 > 2s

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

∫
RN

|f(x)|2

(1 + |x|2)s
dµk(x).

Theorem 2.4.4. For 0 < s < 1 and u ∈ C∞0 (RN+1
+ ) and G-invariant, then

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ

> 2c−1
h

Γ(1− s
2
)

Γ( s
2
)

(
Γ(N+2γk+s

4
)

Γ(N+2γk−s
4

)

)2 ∫
RN

|u(x, 0)|2

|x|s
dµk(x).

Proof. From the above trace Hardy inequality for non-homogeneous weight we

have,

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ > 2
Γ(1− s

2
)

Γ( s
2
)

∫
RN

|u(x, 0)|2

f(x)
(∆

s/2
k f)(x)dµk(x).
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For any ϕ ∈ C∞0 (RN) we take f = ϕ ∗k u−s,δ(x) where

u−s,δ(x) = (δ2 + |x|2)−
N−s

2
−γk , − 1 < s < 1.

Then

∆
s/2
k f(x) = ∆

s/2
k (ϕ ∗k u−s,δ)(x) = 2s

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)
δs(ϕ ∗k us,δ)(x).

Hence we have

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ

> 2
Γ(1− s

2
)

Γ( s
2
)

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

∫
RN
u2(x, 0)

δsϕ ∗k us,δ(x)

ϕ ∗k u−s,δ(x)
dµk(x).

Now we take ϕ(x) = ψ(x)|x|−r, 0 < r < N + 2γk ,where ψ ∈ C∞0 (RN \ {0}).

Then as δ → 0

δsϕ ∗k us,δ(x)→ aN(s)ϕ(x) = aN(s)ψ(x)|x|−r,

where aN(s) is given by (2.4.7)

Let ψ has the further property that 0 6 ψ 6 1 and ψ = 1 on the support of

u(x, 0). On the other hand

lim
δ→0

ϕ ∗k u−s,δ(x)

=

∫
RN
ψ(y)|y|−rτy(|.|−N−2γk+s)(−x)h2

k(y)dy

6
∫
RN
|y|−rτy(|.|−N−2γk+s)(−x)h2

k(y)dy = |x|−r ∗k |x|−N−2γk+s.
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Now using the Plancheral theorem and Lemma 4.1 of [38]

lim
δ→0

ϕ ∗k u−s,δ(x) 6 F−1
k

(
Fk
(
|.|−r ∗k |.|−N−2γk+s

))
(x)

= F−1
k

(
Γ(N+2γk−r

2
)Γ(s/2)

2r−sΓ(N+2γk−s
2

Γ(r/2))
|.|−N−2γk−(r−s)

)
(x)

= Dk(N, r, s)|x|−(r−s),

where

Dk(N, r, s) =
2−

N
2
−γkΓ( r−s

2
)Γ(N+2γk−r

2
)Γ( s

2
)

Γ(N+2γk−(r−s)
2

)Γ(N+2γk−s
2

)Γ( r
2
)
. (2.4.9)

Using this now we have

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ > 2
Γ(1− s

2
)

Γ( s
2
)

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)

aN(s)

Dk(N, r, s)∫
RN

|u(x, 0)|2ψ(x)|x|−r

|x|−(r−s) dµk(x).

Choose r = N+2γk+s
2

and use the fact that ψ = 1 on the support of u(x, 0), we

get the desired inequality

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sdµk(x)dρ

> 2c−1
h

Γ(1− s
2
)

Γ( s
2
)

(
Γ(N+2γk+s

4
)

Γ(N+2γk−s
4

)

)2 ∫
RN

|u(x, 0)|2

|x|s
dµk(x).
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§2.5. Sharp Fractional Hardy Inequality for the Dunkl Laplacian with
Homogeneous Weight

Remark 2.4.5. If we put f = u−s,δ in equation (2.4.8) we will get,

∫ ∞
0

∫
RN
|∇k,ρu(x, ρ)|2ρ1−sh2

k(x)dxdρ

> 2
Γ(1− s

2
)

Γ( s
2
)

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)
δ2s

∫
RN
|u(x, 0)|2 us,δ(x)

u−s,δ(x)
dµk(x).

It can be verified that the function f(x) = u−s,δ(x) will optimize inequality. Using

the above inequality and the Theorem 2.4.2 we get the following type of Hardy

type inequality with non-homogeneous weight,

〈∆s/2
k f, f〉 > 2s

Γ(N+s
2

+ γk)

Γ(N−s
2

+ γk)
(δ)2s

∫
RN

f(x)2

(δ2 + |x|2)s
dµk(x).

The constant is sharp since we obtain the equality for the functions f = u−s,δ.

2.5 Sharp Fractional Hardy Inequality for the

Dunkl Laplacian with Homogeneous Weight

We have already proven the Hardy inequality for Dunkl fractional Laplacian with

non-homogeneous weight as a corollary of trace Hardy inequality. In this section

we will prove the fractional Hardy inequality for Dunkl Laplacian when the weight

function is homogeneous. We adopt the techniques from [35].

Let x ∈ RN and t > 0 let Gk
t denotes the Dunkl heat kernel on RN , that is,

Gk
t (x) =

1

(2t)γk+N/2
e
−|x|2

4t .

For a function good enough the heat semigroup e−t∆k is defined as the convolution
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Gk
t ∗k f(x). Now,

e−t∆kf(x) =

∫
RN
f(y)τyG

k
t (−x)dµk(y)

and also e−t∆k1 = 1.

For 0 < s < 1. We define another kernel Gsk by

Gks (x) =
1

|Γ(−s)|

∫ ∞
0

Gk
t (x)t−s−1dt.

Let 0 < α < N/2 + γk and we define

gkα(x) =
1

Γ(α)2
N
2

+γk

∫ ∞
o

e
−|x|2

4t tα−1−N/2−γkdt

Lemma 2.5.1. Let N > 1. Let α ∈ R be such that 0 < α < N/2 + γk. We write

for any x ∈ RN

gkα(x) =
Γ(N/2 + γk − α)

Γ(α).22α−N
2
−γk
|x|2α−2γk−N .

Then Gks can be expressed as,

Gks (x) =
4sΓ(N/2 + γk + s)

Γ(−s)2−N2 −γk
|x|−2s−2γk−N .

Also by using Lemma 4.1 of [38] we get Fk(gkα)(ξ) = |ξ|−2α.

Proposition 2.5.2. Let N > 1 and 0 < s < 1. Then, for all f ∈ S, we have the

following point wise representation

∆s
kf(x) = P.V

∫
RN

(f(x)− f(y))τyGs(−x)dµk(y)dy.
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Proof. Using the definition of e−t∆k and the fact that e−t∆k1 = 1 we have

e−t∆kf(x)− f(x) = e−t∆kf(x)− f(x)e−t∆k1(x)

=

∫
RN
τyG

k
t (x)f(y)dµk(y)− f(x)

∫
RN
τyG

k
t (−x)dµk(y).

Recall the definition of fractional power of Laplacian motivated by the numerical

identity

λs =
1

Γ(−s)

∫ ∞
0

(e−tλ − 1)
dt

t1+s
, λ > 0.

Now we have

∆s
kf(x) =

1

Γ(−s)

∫ ∞
0

(e−t∆kf(x)− f(x))
dt

t1+s

=
1

Γ(−s)

∫ ∞
0

∫
RN
τyG

k
t (−y)(f(y)− f(x))dy

dt

t1+s

=
1

Γ(−s)

∫
RN

(f(y)− f(x))

(∫ ∞
o

τyG
k
t (−y)

dt

t1+s

)
dµk(y)

=

∫
RN

(f(x)− f(y))τyGs(−x)dµk(y).

Lemma 2.5.3. Let N > 1 and 0 < s < 1 be such that N/2 + γk > s. Then, for

f ∈ C∞0 (RN)

〈∆s
kf, f〉 =

1

2

∫
RN

∫
RN
|f(x)− f(y)|2τyGks (x)dµk(x)dµk(y).
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Proof. Since τyGs(x) = τ−xGs(−y), it follows that

〈∆s
kf, f〉 =

∫
RN

∆s
kf(x)f(x)dµk(x)

=

∫
RN

∫
RN

(f(x)− f(y))τyGs(−x)f(x)dµk(y)dµk(x)

= −
∫
RN

∫
RN

(f(x)− f(y))τyGs(−x)f(y)dµk(x)dµk(y)

=
1

2

∫
RN

∫
RN
|f(x)− f(y)|2τyGs(−x)dµk(x)dµk(y).

Let the corresponding ground level representation Hk
s [f ] for f is given by

Hk
s [f ] = 〈∆s

kf, f〉 − EN,s
∫
RN

|f(x)|2

|x|2s
dµk(x),

where EN,s is given by

EN,s = 4s
(

Γ(N
4

+ γk
2

+ s
2
)

Γ(N
4

+ γk
2
− s

2
)

)2

.

Now, if we prove Hk
s [f ] is positive then it is done.

Theorem 2.5.4. Let 0 < s < 1, s < N/2 + γk and α > s. If u ∈ C∞0 (RN) and

v(x) = u(x)(gkα(x))−1. Then

Hk
s [u] =

1

2

∫
RN

∫
RN
|v(x)− v(y)|2τyGks (x)gkα(x)gkα(y)dµk(x)dµk(y).

Proof. Polarize the expression given in Lemma 2.5.3 and obtain for any f, g ∈

C∞0 (RN),

〈∆s
kf, g〉 =

1

2

∫
RN

∫
RN

(f(x)− f(y))(g(x)− g(y))τyGks (−x)dµk(x)dµk(y).(2.5.1)
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We take g(x) = gkα(x) and f(x) = |u(x)|2(gkα(x))−1. By Lemma 4.1 of [38] and

Plancheral theorem for the Dunkl transform, the left hand side of the above

Equality (2.5.1) become,

〈∆s
kf, g〉 =

∫
RN
|ξ|2sFk(f)(ξ)Fk(g)(ξ)dµk(ξ)

=

∫
RN
Fk(f)(ξ)|ξ|−2(α−s)dµk(ξ)

=

∫
RN
f(x)gkα−s(x)dµk(x)

=

∫
RN
|u(x)|2

gkα−s(x)

gkα(x)
dµk(x). (2.5.2)

Substituting f and g in the right hand side of (2.5.1) and see that,

1

2

∫
RN

∫
RN

(f(x)− f(y))(g(x)− g(y))τyGks (−x)dµk(x)dµk(y)

=
1

2

∫
RN

∫
RN

(
|u(x)− u(y)|2 −

∣∣∣∣ u(x)

gkα(x)
− u(y)

gkα(y)

∣∣∣∣ gkα(x)gkα(y)

)
τyGks (−x)dµk(x)dµk(y).

(2.5.3)

Now we use the Equations (2.5.1), (2.5.3), Lemma 2.5.1 and Lemma 2.5.3 to get

the required result.

Corollary 2.5.5. Let N > 1 and 0 < s < 1 be such that N/2 + γk > s. Then for

f ∈ C∞0 (RN) we have

EN,s

∫
RN

|f(x)|2

|x|2s
dµk(x) 6 〈∆s

kf, f〉,

where the constant EN,s is given above.
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Proof. By Lemma 2.5.1 and Theorem 2.5.4 we can write, for α > s,

〈∆s
kf, f〉 >

∫
RN
|f(x)|2

gkα−s(x)

gkα(x)
dµk(x)

=
4sΓ(N/2 + γk − α + s)Γ(α)

Γ(α− s)Γ(N/2 + γk − α)

∫
RN

|f(x)|2

|x|2s
dµk(x).

Now choose α = N
4

+ γk
2

+ s
2

and obtain the Hardy inequality.

Remark 2.5.6. It is easy to see from the ground state representation Hk
s [f ] that

the constant EN,s is sharp. The sharpness in the classical Euclidean case is

discussed in [14]. Considering the functions which are converging to |x|−N−2s
2
−γk

and applying the limit in Theorem 2.5.4, we obtain the optimality for the Dunkl

case.

2.6 Fractional Hardy Inequality for Half-space

and Cone

Let (x, y) ∈ RN−1 ×R3 and R be a root system on RN−1. Now let R1 and R2 be

two root systems on RN+2 and RN respectively defined as R1 = {(x, 0) ∈ RN+2 :

x ∈ R} and R2 = {(x, 0) ∈ RN : x ∈ R}. Let ∆̃k1 be the Dunkl Laplacian on

RN−1
x ×R3

y according to the root system R1 which given by ∆̃k1 = ∆k +
∑3

j=1
∂2

∂y2j
,

where ∆k is the Dunkl Laplacian on RN−1. Similarly the Dunkl Laplacian on RN

with respect to the root system R2 is given by ∆̃k2 = ∆k + ∂2

∂x2N
.

Theorem 2.6.1. Let u ∈ C∞0 (RN
+ ) and G-invariant. Also let 0 < s < 1 and

N/2 + γk > s. We have

〈∆̃s/2
k2
u, u〉RN+ >

Γ(N+2+s
2

+ γk)

Γ(N+2−s
2

+ γk)

∫
RN+

u(x, xN)2

(1 + |x|2 + x2
N)s

dµk(x)dxN .
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Proof. Let us begin with the following calculation

∫
RN−1
x ×R3

y

∆̃
s/2
k1
v(x, y).v(x, y)dµk(x)dµk(y)

=

∫ ∞
0

∫
RN−1
x ×R3

y

(
e−t∆̃k1v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

=

∫ ∞
0

∫
RN−1
x ×R3

y

(
e
−t(∆k+

∑3
j=1

∂2

∂y2
j

)

v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

=

∫ ∞
0

∫
RN−1
x ×R3

y

(
e
−t(∆k+ ∂2

∂x2
N

+ 2
xN

∂
∂xN

)
v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

.

We can directly calculate that

(
∆k +

∂2

∂x2
N

+
2

xN

∂

∂xN

)m
v(x, y) = x−1

N

(
∆k +

∂2

∂x2
N

)m
xNv(x, y).

for every m ∈ N. So

e
−t(∆k+ ∂2

∂x2
N

+ 2
xN

∂
∂xN

)
v(x, y) = x−1

N e
−t(∆k+ ∂2

∂x2
N

)
xNv(x, y).

Further, assign that v(x, y) = v(x, |y|), |y| = xN , u = u(x1, ..., xN) = xNv(x, xN)

and use the fractional Hardy inequality given in the Corollary 2.4.3 to obtain the
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desired Hardy inequality for the half-space.

∫
RN−1
x ×R3

y

∆̃
s/2
k1
v(x, y).v(x, y)dµk(x)dy

=

∫ ∞
0

∫
RN−1
x ×R3

y

x−1
N

(
(e
−t(∆k+ ∂2

∂x2
N

)
xNv(x, y)− xNv(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

= ‖S3‖
∫ ∞

0

∫
RN+
xN

(
(e
−t(∆k+ ∂2

∂x2
N

)
xNv(x1, ..., xN)− xNv(x1, ..., xN)

)
v(x1, ..., xN)dµk(x)dxN

dt

t1+ s
2

= ‖S3‖
∫
RN+

(
∆k +

∂2

∂x2
N

)s/2
xNv(x1, ..., xN).xNv(x1, ..., xN)dµk(x)dxN

= ‖S3‖
∫
RN+

∆̃
s/2
k2
u(x1, ..., xN)u(x1, ..., xN)dµk(x)dxN

>
Γ(N+2+s

2
+ γk)

Γ(N+2−s
2

+ γk)

∫
RN−1
x ×R3

y

v(x, y)2

(1 + |x|2 + |y|2)s
dµk(x)dy

> ‖S3‖
Γ(N+2+s

2
+ γk)

Γ(N+2−s
2

+ γk)

∫
RN+

v(x, y)2x2
N

(1 + |x|2 + x2
N)s

dµk(x)dxN

= ‖S3‖
Γ(N+2+s

2
+ γk)

Γ(N+2−s
2

+ γk)

∫
RN+

u(x, xN)2

(1 + |x|2 + x2
N)s

dµk(x)dxN .

Let (x, y) ∈ RN−l × R3l and R be a root system on RN−l. Now let R1 and

R2 be two root systems on RN+2l and RN respectively and defined as R1 =

{(x, 0) ∈ RN+2l : x ∈ R} and R2 = {(x, 0) ∈ RN : x ∈ R}. Let ∆̃k1 be

the Dunkl Laplacian on RN−l
x × R3l

y according to the root system R1 which is

given by ∆̃k1 = ∆k +
∑3l

j=1
∂2

∂y2j
, where ∆k is the Dunkl Laplacian on RN−l.

Similarly the Dunkl Laplacian on RN with respect to the root system R2 is given

by ∆̃k2 = ∆k +
∑N

j=N−l+1
∂2

∂x2j
.

Theorem 2.6.2. Let 0 < s < 1 and N/2 +γk > s. For any G-invariant function
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u such that u ∈ C∞0 (RN
l+

), the following inequality holds

〈∆̃s/2
k2
u, u〉RNl+

>
Γ(N+2l+s

2
+ γk)

Γ(N+2l−s
2

+ γk)

∫
RNl+

u2

(1 + |x|2 + x2
N−l+1 + ...+ x2

N)s
dµk(x)dxN−l+1...dxN .

Proof. Let v ∈ C∞0 (RN−l
x × R3l

y ),

∫
RN−lx ×R3l

y

∆̃
s/2
k1
v(x, y).v(x, y)h2

k(x)h2
k(y)dxdy

=

∫ ∞
0

∫
RN−lx ×R3l

y

(
e−t∆̃k1v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

=

∫ ∞
0

∫
RN−lx ×R3l

y

(
e
−t(∆k+

∑3l
j=1

∂2

∂y2
j

)

v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

=

∫ ∞
0

∫
RN−lx ×R3l

y

(
e
−t(∆k+

∑N
j=N−l+1

∂2

∂x2
j

+ 2
xj

∂
∂xj

)

v(x, y)− v(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

.

As in the previous theorem by taking the positive integer powers of ∆k + ∂2

∂x2N
+

2l
xN

∂
∂xN

we can verify that

e
−t(∆k+

∑N
j=N−l+1

∂2

∂x2
j

+ 2
xj

∂
∂xj

)

v(x, y) =
N∏

i=N−l+1

x−1
i e
−t(∆k+

∑N
j=N−l+1

∂2

∂x2
j

)

ṽ(x, y),

where ṽ(x, y) =
(∏N

i=N−l+1 xiv(x, y)
)
. Assume that v(x, y) = v(x, xN−l+1, ..., xN)

with xN−l+j =
√
y2

3j−2 + y2
3j−1 + y2

3j for 1 6 j 6 l.

Furthermore, put u = u(x1, ..., xN) =
∏N

i=N−l+1 xiv(x1, ..., xN) and use the Corol-

69



§2.6. Fractional Hardy Inequality for Half-space and Cone

lary 2.4.3 for the functions in RN−l
x × R3l

y .

∫
RN−lx ×R3l

y

∆̃
s/2
k1
v(x, y).v(x, y)dµk(x)dy

=

∫ ∞
0

∫
RN−lx ×R3l

y

N∏
i=N−l+1

x−1
i

(
e−t(∆̃k2

)ṽ(x, y)− ṽ(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

= ‖S3‖l
∫ ∞

0

∫
RNl+

N∏
i=N−l+1

xi

(
e−t(∆̃k2

)ṽ(x, y)− ṽ(x, y)

)
v(x, y)dµk(x)dy

dt

t1+ s
2

= ‖S3‖l
∫
RNl+

∆̃
s/2
k2

( N∏
i=n−l+1

xiv(x1, ..., xN

)
.

N∏
i=N−l+1

xiv(x1, ..., xN)dµk(x)dxN−l+1...dxN

= ‖S3‖l
∫
RNl+

∆̃
s/2
k2
u(x1, ..., xN)u(x1, ..., xN)dµk(x)dxN−l+1...dxN

>
Γ(N+2l+s

2
+ γk)

Γ(N+2l−s
2

+ γk)

∫
RN−lx ×R3l

v(x, y)2

(1 + |x|2 + |y|2)s
dµk(x)dy

> ‖S3‖l
Γ(N+2l+s

2
+ γk)

Γ(N+2k−s
2

+ γk)

∫
RNl+

v(x, y)2
∏N

i=N−l+1 x
2
i

(1 + |x|2 + x2
N−l+1 + ...x2

N)s
dµk(x)dxN−l+1...dxN .

We have proven Hardy inequality for fractional Dunkl Laplacian on the Half

space and cone in the non-homogeneous case. We can prove the Hardy inequality

in the homogeneous case with exactly similar arguments by using the Hardy

inequality for the fractional Dunkl Laplacian in the homogeneous case.

We will just state fractional Hardy inequality for Dunkl Laplacian with homo-

geneous weight on the half-space and cone without proof. The same arguments

used for non-homogeneous case can be applied. Instead of using the Hardy in-

equality with non homogeneous weight given in the Corollary 2.4.3 use the homo-

geneous version given the Corollary 2.5.5 in the proof. Also since the G-invariance

is not assumed in Corollary 2.5.5 we don’t assume it here either.

Let ∆̃k2 be the Dunkl Laplacian on RN defined above in the beginning of the
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Section 2.6.

Theorem 2.6.3. Let u ∈ C∞0 (RN) and N/2 + γk > s. Then for 0 < s < 1 we

have

〈∆̃s
k2
u, u〉RN+ > 4s

(
Γ(N+2

4
+ γk

2
+ s

2
)

Γ(N+2
4

+ γk
2
− s

2
)

)2 ∫
RN+

|u(x, xN)|2

|x|2s
dµk(x)dxN .

As in the Theorem 2.6.2 we use the same notation ∆̃k2 for the Laplacian on

RN
l+

with the corresponding root system R2 explained there.

Theorem 2.6.4. Let u ∈ C∞0 (RN) and N/2 + γk > s. Then for 0 < s < 1 we

have

〈∆̃s
k2
u, u〉RNl+ > 4s

(
Γ(N+2l

4
+ γk

2
+ s

2
)

Γ(N+2l
4

+ γk
2
− s

2
)

)2 ∫
RNl+

|u(x, xN)|2

|x|2s
dµk(x)dxN .

Remark 2.6.5. From the Remark 2.4.5 it is clear that the constants in the The-

orem 2.4.2, Corollary 2.4.3 are optimal. By the construction of the proof, this

optimality is carried to the constants of Theorem 2.6.1 and the Theorem 2.6.2.

Also since the constant in the Corollary 2.5.5 is sharp, and so constants appearing

in the Theorem 2.6.3 and the Theorem 2.6.4 are optimal.
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Chapter 3

Lp Hardy Type Inequalities and

Stein-Weiss Inequalities for

Dunkl Operators

In this chapter we discuss Lp Hardy inequalities, fractional Hardy inequalities

and Stein-Weiss inequalities for the Dunkl gradient. We will first prove a classical

Lp Hardy inequality for G-invariant functions with weighted measure. We will

adopt the techniques of R. frank and R. Seiringer used in the article [16] to prove

fractional Hardy inequalities. As in [16] we also obtain an improved inequality

for p > 2. We extend this result to half space and cone by choosing suitable

root systems. Also we will prove some Stein-Weiss inequalities in this chapter by

using some ‘ground state substitution’ techniques.
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3.1 Introduction

Hardy inequality is of fundamental importance in many areas of mathematical

analysis and mathematical physics. A general Hardy inequality is of the form

∫
RN
|∇u|pdx >

(
|N − p|

p

)p ∫
RN

|u(x)|p

|x|p
dx,

for u ∈ C∞0 (RN) or u ∈ C∞0 (RN \ {0}) respectively with respect to 1 6 p < N

or p > N . It is known that the constant
( |N−p|

p

)p
is sharp and never attained in

the corresponding spaces Ẇ 1
p (RN) or Ẇ 1

p (RN \ {0}) respectively. A lot of work

concerning fractional Hardy inequality has been developed in the literature. A

remarkable work on the same is done by R.L Frank and R. Seiringer in [16].

They have proven the sharp Hardy inequality with sharp constants as follows:

for p > 1, 0 < s < 1 and u ∈ C∞0 (RN)

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy > CN,s,p

∫
RN

|u(x)|p

|x|ps
dx,

where the constant CN,s,p is sharp. Also they proved the fractional Hardy in-

equality with remainder term. That is, for p > 2 and u ∈ C∞0 (RN)

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − CN,s,p

∫
RN

|u(x)|p

|x|ps
dx

> cp

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps

dx

|x|(N−ps)/2
dy

|y|(N−ps)/2
,

where v := |x|(N−ps)/2u and cp is as in (3.2.19).

The same authors of [16] have proven the fractional Hardy inequality in

half-spaces RN
+ with and without remainder terms in [16], where RN

+ = {x =

(x1, x2, ..., xN) ∈ RN : xN > 0}. They have proven that, for some sharp constant
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DN,p,s

∫
RN+

∫
RN+

|u(x)− u(y)|p

|x− y|N+ps
dxdy > DN,p,s

∫
RN+

|u(x)|p

xpsN
dx,

for all u ∈ Ẇ s
p (RN) with ps 6= 1. Similar to the case of RN they obtained an

improved fractional Hardy inequality which states for p > 2

∫
RN+

∫
RN+

|u(x)− u(y)|p

|x− y|N+ps
dxdy −DN,p,s

∫
RN+

|u(x)|p

xpsN
dx

> cp

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps

dx

x
(1−ps)/2
N

dy

y
(1−ps)/2
N

,

where v := x
(1−ps)/p
N u and cp is given in (3.2.19).

Our aim in this chapter is to prove both Hardy and fractional Hardy inequality

in Dunkl setting. We cite few papers in which authors studied some of the related

inequalities in Dunkl setting. Pitts inequality for fractional Dunkl operator is

studied by D. V. Gorbachev et al. in [18]. F. Soltani et al. have proven certain

inequalities, namely Stein-Weiss inequality, Hardy-Littlewood-Sobolev inequality,

uncertainty principles and some Pitts inequalities in the Dunkl setting in the

papers [29, 30, 31]. In [10] Óscar Ciaurri et al. studied the Hardy-type inequalities

for Dunkl Hermite operator. We mainly adapt the techniques used in [14] to prove

the Hardy and fractional Hardy inequalities.

The chapter is organized as follows. In Section 3.2 we prove a generalized

version of the classical Lp Hardy inequality in the Dunkl setting. We use the

‘ground state substitution’ technique to achieve it. For p > 2 we obtain an

improved version of Hardy inequality in (3.2.21). In Section 3.3 we obtained an

optimal fractional Hardy inequality for the Dunkl Laplacian. As in the Section

3.2 we obtain a fractional Hardy inequality with a remainder term for p > 2. The
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Section 3.4 and Section 3.5 deals with similar type of fractional Hardy inequalities

on half-space and cone respectively.

3.2 Lp Hardy Inequality

In this section we prove optimal Lp Hardy inequality for 1 6 p <∞ and an im-

proved Hardy inequality for p > 2 for G− invariant real valued smooth function

having compact support. Also we will prove a generalized Lp Hardy inequality

with optimal constant for the same function space. However we can relax the

condition G− invariant function for certain case. We define the p−Dunkl Lapla-

cian ∆k,p by ∆k,pf = divk(|∇kf |p−2∇kf), where divk(f1, f2, · · · , fN) =
N∑
j=1

Tjfj.

We will compute ∆k,pw for a radial function w which is needed to prove Hardy

inequality. For a radial function w

divk(|∇kw|p−2∇kw)

=
N∑
j=1

Tj
(
|w′(r)|p−2w′(r)

xj
r

)
=

N∑
j=1

(∂j + Ej)
(
|w′(r)|p−2w′(r)

xj
r

)
=

N∑
j=1

(
(p− 1)|w′(r)|p−2w′′(r)

(xj
r

)2

+ |w′(r)|p−2w′(r)
(1

r
− 1

r2

x2
j

r

))
+
|w′(r)|p−2w′(r)

r

N∑
j=1

Ej(xj)

= (p− 1)|w′(r)|p−2w′′(r) +
(N − 1

r
+ 2γk

)
|w′(r)|p−2w′(r).

Hence for a radial function w we have

∆k,pw = (p− 1)|w′(r)|p−2w′′(r) +

(
dk − 1

r

)
|w′(r)|p−2w′(r). (3.2.1)

Theorem 3.2.1. Let 1 6 p < ∞. Let u be a real valued G-invariant function.

75



§3.2. Lp Hardy Inequality

If u ∈ C∞0 (RN) if dk > p and u ∈ C∞0 (RN \ {0}) if dk < p then the following

inequality holds:

∫
RN
|∇ku(x)|pdµk(x) >

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN

|u(x)|p

|x|p
dµk(x). (3.2.2)

The constant
∣∣dk−p

p

∣∣p given in the inequality is optimal.

Proof. Let w be a positive radial function and let v be a G-invariant real valued

function with u = vw. Use the inequality for real numbers a and b and for p > 1,

|a+ b|p > |a|p + p|a|p−2a.b, we obtain

|∇ku|p = |∇k(vw)|p (3.2.3)

= |v∇kw + w∇kv|p

> |v|p|∇kw|p + p|v|p−2|∇kw|p−2vw∇kv.∇kw.

Since w is radial we write w(x) = w(r) with r = |x| and denote the derivatives

as w′(r) = dw
dr

and w′′(r) = d2w
dr2

. First we will prove an inequality of the form

∫
RN
|∇ku|pdµk(x) >

∫
RN
V |u|pdµk(x) (3.2.4)

for the given radial function w and a function V , where w is a weak solution of

the following equation

divk

(
|∇kw|p−2∇kw

)
+ V wp−1 = 0. (3.2.5)

After proving the inequality (3.2.4) for the functions which satisfy (3.2.5), we will

look for some explicit V and w which provide us the Hardy inequality.

In order to estimate the integral
∫
RN |∇k(u)|pdµk(x) we estimate the integral
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of each term in the right hand side of (3.2.3).

We start with

∫
RN
|v|p|∇kw|pdµk(x) =

∫
RN
|v|p|∇kw|p−2

( N∑
j=1

TjwTjw

)
dµk(x) (3.2.6)

=
N∑
j=1

∫
RN
|v|p|∇kw|p−2TjwTjwdµk(x)

= −
N∑
j=1

∫
RN
wTj

(
|v|p|∇kw|p−2Tjw

)
dµk(x).

Let ∇0 be the Eucledian gradient. Calculating Tj
(
|v|p|∇kw|p−2Tjw

)
separately,

we obtain

Tj

(
|v|p|∇kw|p−2Tjw

)
= (∂j + Ej)

(
|v|p|∇0w|p−2∂jw

)
(3.2.7)

=

(
p|v|p−1∂jv

)
|∇ow|p−2∂jw + |v|p∂j

(
|∇0w|p−2∂jw

)
+Ej

(
|v|p|w′(r)|p−2w

′(r)

r
xj

)
.

Since |w
′(r)|p−2w′(r)

r
is radial we can write

Ej

(
|w′(r)|p−2w′(r)

r
|v|pxj

)
=
|w′(r)|p−2w′(r)

r
Ej(|v|pxj). (3.2.8)

Using the definition of Ej and reflection one can easily calculate

N∑
j=1

Ej(|v|pxj) =
∑
α∈R+

k(α)
[
|v(x)|p + |v(σα(x))|p

]
. (3.2.9)

Substituting (3.2.7), (3.2.8) and (3.2.9) in (3.2.6) and denoting the Euclidean
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divergence as div0,

∫
RN
|v|p|∇kw|pdµk(x) (3.2.10)

= −p
∫
RN
w|v|p−1|∇0w|p−2∇0v.∇0wdµk(x)

−
∫
RN
w|v|pdiv0(|∇0w|p−2∇0w)dµk(x)

−
∑
α

k(α)

∫
RN

w(r)|w′(r)|p−2w′(r)

r

(
|v(x)|p + |v(σαx)|p

)
dµk(x).

Since radial functions and the Dunkl measure are invariant under reflection, a

change of variable in the third integral on the right-hand side gives us

∫
RN
|v|p|∇kw|pdµk(x) (3.2.11)

= −p
∫
RN
w|v|p−2v|∇0w|p−2∇0v.∇0wdµk(x)

−
∫
RN
w|v|pdiv0(|∇0w|p−2∇0w)dµk(x)

−2γk

∫
RN

|w′(r)|p−2w′(r)w(r)

r
|v(x)|pdµk(x).

Since w is radial we can write from (3.2.1)

divk

(
|∇kw|p−2∇kw

)
= div0

(
|∇0w|p−2∇0w

)
+ 2γk

|w′(r)|p−2w′(r)

r
.

Now we can write the above equation (3.2.11) as

∫
RN
|v|p|∇kw|pdµk(x)

= −p
∫
RN
w|v|p−2v∇0v.∇0w|∇0w|p−2dµk(x)

−
∫
RN
w(x)|v(x)|pdivk

(
|∇kw|p−2∇kw

)
dµk(x).
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Consider the second term on the right-hand side of (3.2.3) and integrating

p

∫
RN
|v|p−2|∇kw|p−2vw∇kv.∇kwdµk(x)

= p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x)

+p

∫
RN
|v|p−2|∇0w|p−2vw

w′(r)

r

( N∑
j=1

Ej(v)xj

)
dµk(x).

Using the definition of Ej we find that

N∑
j=1

Ej(v)xj =
∑
α∈R+

k(α)
(
v(x)− v(σαx)

)
.

Since v is G−invariant we can write

p

∫
RN
|v|p−2|∇kw|p−2vw∇kv.∇kwdµk(x) (3.2.12)

= p

∫
RN
|v|p−2|∇0w|p−2vw∇0v.∇kwdµk(x)

+p

∫
RN
|v|p−2||∇0w|p−2vw

w′(r)

r

∑
α∈R+

(k(α)(v(x)− v(σαx))dµk(x)

= p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x).

Substituting all the above calculated estimations and integrals to the inequality

(3.2.3),

∫
RN
|∇k(vw)|pdµk(x) > −p

∫
RN
w|v|p−2v∇0w.∇0v|∇0w|p−2dµk(x)

−
∫
RN
w(x)|v(x)|pdivk

(
|∇kw|p−2∇kw

)
dµk(x)

+ p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x).
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That is, we end up with

∫
RN
|∇k(vw)|pdµk(x) > −

∫
RN
w(x)|v(x)|pdivk

(
|∇kw|p−2∇kw

)
dµk(x).

(3.2.13)

Now if w is a weak solution of the equation

divk

(
|∇kw|p−2∇kw

)
+ V wp−1 = 0

for some function V , the above inequality (3.2.13) becomes

∫
RN
|∇ku|pdµk(x) >

∫
RN
V |u|pdµk(x).

Now we will choose a w and V explicitly to obtain the desired Hardy inequality.

Let us choose w(x) = |x|−(dk−p)/p, that is w(r) = r−(dk−p)/p. By a straightfor-

ward calculation we get w′(r) = − (dk−p)
p

r−(dk−p)/p−1 and w′′(r) =
( (dk−p)

p

)( (dk−p)
p

+

1
)
r−((dk−p))/p)−2. Using the Dunkl p-Laplacian for radial functions given in (3.2.1)

we find that for r 6= 0

∆k,pw(r) = −
∣∣∣∣dk − pp

∣∣∣∣pr−(( (dk−p)
p

)
(p−1)+p

)
.

Choose V (x) =
∣∣dk−p

p

∣∣p|x|−p then w is a weak solution of ∆k,pw = −V wp−1 .

Substituting V and w in (3.2.4) and obtain the desired Hardy inequality

∫
RN
|∇ku|pdµk(x) >

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN

|u|p

|x|p
dµk(x).

To prove the optimality consider the functions uε below and take the limit as
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ε→ 0;

uε(x) =


1, if|x| 6 1

|x|−
|dk−p|
p
−ε, if |x| > 1.

Remark 3.2.2. 1. We assumed that the function u in the Theorem 3.2.1 is

G−invariant. Assume that u ∈ C∞0 (RN \{0}) and u = vw with some v and

a radial function w with w′(r) > 0. Now by using the Hölder’s inequality

we obtain

∫
RN
|v|p−2v(x)v(σαx)

w(r)w′(r)

r
|∇0w|p−2dµk(x)

=

∫
RN
|v|p−2v(x)w(r)

w′(r)|w′(r)|p−2

r
v(σαx)dµk(x)

=

∫
RN

(
|w′(r)|p−2w′(r)w(r)

r

) p−1
p

v(x)|v|p−2 (3.2.14)(
|w′(r)|p−2w′(r)w(r)

r

) 1
p

v(σαx)dµk(x)

6

(∫
RN

|w′(r)|p−1

r
|v(x)|pdµk(x)

) p−1
p

(∫
RN

|w′(r)|p−1w(r)

r
|v(σαx)|pdµk(x)

) 1
p

.

Therefore we conclude that

∫
RN
|v|p−2v(x)v(σαx)

w(r)w′(r)

r
|∇0w|p−2dµk(x)

6
∫
RN

|w′(r)|p−1w(r)

r
|v(x)|pdµk(x).
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Using this we can rewrite the equation (3.2.12) as

p

∫
RN
|v|p−2|∇kw|p−2vw∇kv∇kwdµk(x) (3.2.15)

> p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x)

+ pγk

∫
RN
|v|p−2v2(x)w(x)

w′(r)

r
|∇kw|p−2dµk(x)

− pγk
∫
RN
|v|p |w

′(r)|
r

w(x)|∇kw|p−2dµk(x)

= p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x).

Now by repeating exactly same steps of the proof for Theorem 3.2.1 we get

the generalized Hardy inequality

∫
RN
|∇ku|pdµk(x) >

∫
RN
V |u|pdµk(x)

with some function V and w satisfies (3.2.5).

2. Let w(x) = |x|−
dk−p
p with dk < p. Then w′(r) > 0 and by using the Remark

3.2.2(1) we get the Hardy inequality

∫
RN
|∇k(u)|pdµk(x) >

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN
|u|pdµk(x).

The above inequality is optimal and it is true for all u ∈ C∞0 (RN \ {0}).

3. If w′(r) < 0 the Equation (3.2.15) will be of the form

p

∫
RN
|v|p−2|∇kw|p−2vw∇kv∇kwdµk(x) (3.2.16)

(3.2.17)
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> p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x)

+ pγk

∫
RN
|v|p−2v2(x)w(x)

w′(r)

r
|∇kw|p−2dµk(x)

− pγk
∫
RN
|v|p |w

′(r)|
r

w(x)|∇kw|p−2dµk(x)

= p

∫
RN
|v|p−2|∇kw|p−2vw∇0v.∇0wdµk(x)

+ 2pγk

∫
RN
|v|p(x)w(x)

w′(r)

r
|∇kw|p−2dµk(x).

Now using (3.2.11) and (3.2.16)

∫
RN
|∇k(vw)|pdµk(x)

> −
∫
RN
w|v|pdiv0(|∇0w|p−2∇0w)dµk(x)

+ 2γk(p− 1)

∫
RN
|v|p(x)w(x)

w′(r)

r
|∇kw|p−2dµk(x)

= −
∫
RN
w|v|p

(
div0(|∇0w|p−2∇0w)− 2γk(p− 1)

|w′(r)|p−2w′(r)

r

)
dµk(x).

If w is a weak solution of the equation Lpw + V wp−1 = 0 where

Lpw := div0(|∇0w|p−2∇0w)− 2γk(p− 1)
|w′(r)|p−2w′(r)

r

= divk(|∇0w|p−2∇0w)− 2γkp
|w′(r)|p−2w′(r)

r
,

we have the Hardy inequality

∫
RN
|∇k(u)|pdµk(x) >

∫
RN
V |u|pdµk(x).

4. Let u ∈ C∞0 (RN). Let w := |x|−
dk−p
p with dk > p and v = |x|

dk−p
p u. Now
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using the calculation carried out in (3.2.1) we can write

div0(|∇0w|p−2∇0w) = (p− 1)|w′(r)|p−2w′′(r) +
(N − 1)

r
|w′(r)|p−2w′(r)

= −
(
dk − p
p

)p−1(
dk − p
p
− 2γk

)
r−
((

(dk−p)
p

)
(p−1)+p

)
.

Using this and the expression for Lp we can write

Lp(w) = −
(
dk − p
p

)p−1(
dk − p
p
− 2γk(p− 1)

)
r−
((

(dk−p)
p

)
(p−1)+p

)
.

Now for V (x) = −
(
dk−p
p

)p−1(
dk−p
p
− 2γk(p− 1)

)
|x|−p we have the Hardy

inequality

∫
RN
|∇k(u)|pdµk(x) >

(
dk − p
p

)p−1(
dk − p
p
− 2γk(p− 1)

)∫
RN

|u|p

|x|p
dµk(x).

(3.2.18)

We don’t know about the sharpness of the constant appearing in (3.2.18).

Recall the algebraic inequality given in [16, Equation 2.13]; for p > 2

|a+ b|p > |a|p + p|a|p−2a.b+ cp|b|p,

where a and b are real numbers and constant cp is given by

cp := min
0<τ<1/2

(
(1− τ)p − τ p + pτ p−1

)
(3.2.19)

and is sharp for this inequality. Using this the inequality (3.2.3) can be written
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as

|∇ku|p = |∇k(vw)|p > |v|p|∇kw|p + p|v|p−2|∇kw|p−2vw∇kv.∇kw + cp|w|p|∇kv|p.

(3.2.20)

For radial function w and reflection invariant function v such that u = vw ∈

C∞0 (RN) if we use the inequality (3.2.20) instead of (3.2.3), the inequality (3.2.13)

turns out to be

∫
RN
|∇k(vw)|pdµk(x) > −

∫
RN
w(x)|v(x)|pdiv

(
|∇kw|p−2∇kw

)
dµk(x)

+ cp

∫
RN
|w|p|∇kv|pdµk(x).

This improves the following Hardy inequality with a remainder term for p > 2.

Corollary 3.2.3. Let 2 6 p <∞. Let u be a real valued G− invariant function.

If u ∈ C∞0 (RN) if dk > p and u ∈ C∞0 (RN \ {0}) if dk < p then the following

inequality holds:

∫
RN
|∇ku|pdµk(x)−

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN

|u|p

|x|p
dµk(x) > cp

∫
RN

|∇kv|p

|x|dk−p
dµk(x), (3.2.21)

where cp is given by (3.2.19). When p = 2 the equality holds and with c2 = 1.

Remark 3.2.4. By observing the Remark 3.2.2 we can make another remark on

the Corollary 3.2.3. If w(x) = |x|−
dk−p
p with dk < p, we obtain the following

improved Hardy inequality for all u ∈ C∞0 (RN \ {0})

∫
RN
|∇ku|pdµk(x)−

∣∣∣∣dk − pp

∣∣∣∣p ∫
RN
|u|pdµk(x) > cp

∫
RN

|∇kv|p

|x|dk−p
dµk(x).

Also if u ∈ C∞0 (RN) and if w := |x|−
dk−p
p with dk > p and v = |x|

dk−p
p u. Now
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again by the Remark 3.2.2, we obtain the following improved Hardy inequality

∫
RN
|∇k(u)|pdµk(x)−

(
dk − p
p

)p−1(
dk − p
p
− 2γk(p− 1)

)∫
RN

|u|p

|x|p
dµk(x)

> cp

∫
RN

|∇kv|p

|x|dk−p
dµk(x).

Now we will prove a generalized Hardy inequality which generalize the The-

orem 3.2.1. Fix 1 6 l 6 N , we write x ∈ RN as x = (y, z) with y ∈ Rl and

z ∈ RN−l. Let R1 be a root system on Rl, and k1 be multiplicity function on

R1. The Dunkl weight function associated with R1 and k1 is given by h2
k1

(x) =∏
α∈R1,+

|〈x, α〉|2k1(α). Since k1 is G−invariant we have k1(α) = k1(−α) and thus

the choice of any arbitrary positive subsystem R1,+ does not make any impact

on the weight function. Now similarly for a root system R2 and a multiplicity

function k2 on RN−l, we have the weight function h2
k2

(x) =
∏

α∈R2,+
|〈x, α〉|2k2(α).

Define a root system on RN as R :=
(
R1 × (0)N−l

)
∪
(
(0)l × R2

)
. Also define

the multiplicity function k on R as, k(y, 0) = k1(y) and k(0, z) = k2(z), where y

and z belongs to R1 and R2 respectively. It is straightforward to check that R

is a root system on RN and k is a multiplicity function from R to positive reals.

Corresponding to this R and k one can see that the Dunkl weighted measure

on RN , denoted by dµk(x), is nothing but the product of the Dunkl weighted

measures on Rl and RN−l. That is,

dµk(x) = dµk1(y)dµk2(z) = h2
k(x)dx = h2

k1
(y)h2

k2
(z)dydz.

With this preparation we state the following theorem.

Theorem 3.2.5. Let 1 6 p < ∞ and let 1 6 l 6 l 6 N . Let u be a real

valued G−invariant function. Assume that u ∈ C∞0 (RN) if dk1 > p and u ∈
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C∞0 (RN \ {0}) if dk1 < p. Then the following inequality holds

∫
RN
|∇ku(x)|pdµk(x) >

∣∣∣∣dk1 − pp

∣∣∣∣p ∫
RN

|u(x)|p

|y|p
dµk(x). (3.2.22)

The constant
∣∣dk1−p

p

∣∣p given in the inequality is optimal.

Proof. The root system R with which we started allows us to write

∫
RN

|u(x)|p

|y|p
dµk(x) =

∫
RN−l

dµk1(z)

∫
Rl

|u(x)|p

|y|p
dµk2(y). (3.2.23)

Let ∇k1,y and ∇k2,z be the Dunkl gradient on Rl and RN−l respectively. It is

easy to see that |∇k1,yu(y, z)| 6 |∇ku(x)|. By applying Theorem 3.2.1 to (3.2)

we obtain the inequality (3.2.5). Now by using Lemma 3.2.1 and following the

arguments from [28] we can prove that
∣∣dk1−p

p

∣∣p is optimal.

.

Remark 3.2.6. Remark 3.2.2 can be extended to the Theorem 3.2.5 similarly.

3.3 Fractional Hardy Inequality for Lp(RN , dµk(x))

We have already seen that

∆su(x) = C P.V.

∫
RN

(u(x)− u(y))

|x− y|N+2s
dy,

for some constant C. Using the symmetricity of the kernel |x− y|−(N+2s) with a

constant C̃

‖(−∆s/2)u‖2
2 = 〈∆su, u〉 = C̃

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy, (3.3.1)
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and thus the fractional L2 Hardy inequality takes the form

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy > C(N, s)

∫
RN

|u(x)|2

|x|2s
dx,

the constant depends on N and s. One of the references to see the explicit calcu-

lation of this L2 fractional Hardy inequality is [35, Appendix A]. However when

p 6= 2 one cannot have the equivalence of ‖(−∆s/2)u‖pp and
∫
RN
∫
RN
|u(x)−u(y)|p
|x−y|N+ps dxdy

which we stated for p = 2 in (3.3.1). There are many studies done in the literature

regarding the fractional Hardy inequality of the form

∥∥(−∆s/2)u
∥∥p
p
> C(N, s, p)

∫
RN

|u(x)|p

|x|ps
dx;

for instance Herbst in [21] calculated the sharp constant in the above inequality.

But in this paper we are interested in the fractional Hardy inequalities of the

form

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy > C ′(N, s, p)

∫
RN

|u(x)|p

|x|ps
dx (3.3.2)

in the Dunkl setting.

The basic study of fractional power of Dunkl Laplacian can be done in a similar

fashion to the Euclidean case. The kernel |x− y|−(N+ps) in (3.3.2) is actually the

translation of the function |x|−(N+ps). We are motivated to consider the kernel

which is Dunkl translation of |x|−(dk+ps). taking the idea from [17, Lemma 2.3]

we define the kernel Φδ(x, y) as

Φδ(x, y) :=
1

Γ((dk + δ)/2)

∫ ∞
0

s
dk+δ

2
−1τ ky

(
e−s|.|

2)
(x)ds dk 6= δ. (3.3.3)
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Theorem 3.3.1. Let dk > 1 and 0 < s < 1. If u ∈ Ẇ s
p (RN) when 2 6 p < dk/s

or u ∈ Ẇ p,s
k (RN \ {0}) when p > dk/s, the following inequality holds;

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y) > Cdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x),

(3.3.4)

where Φps(x, y) is given in ( 3.3.3) and

Cdk,s,p := 2

∫ 1

0

rps−1|1− r(dk−ps)/p|pΦN,s,p(r)dr, (3.3.5)

with

ΦN,s,p(r) :=
Γ(dk

2
)

√
πΓ(dk−1

2
)

∫ π

0

sindk−2θ

(1− 2r cos θ + r2)
dk+ps

2

dθ, N > 2,

Φ1,s,p(r) :=

(
τ kr
(
|.|dk+ps

)
+ τ k−r

(
|.|dk+ps

))
(1), N = 1. (3.3.6)

The constant Cdk,s,p is sharp. If p = 1, equality holds iff u is proportional to a

symmetric decreasing function. If p > 1, the inequality is strict for any function

0 6≡ u ∈ Ẇ s
p (RN) or Ẇ s

p (RN \ {0}), respectively. Further for p > 2 the following

inequality holds.

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

> Cdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

+ cp

∫
RN

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

|x|(dk−ps)/2
dµk(y)

|y|(dk−ps)/2
,

(3.3.7)

where v := |x|(dk−ps)/pu, Cdk,s,p is given by (3.3.5) and cp is given in (3.2.19).

c2 = 1 and the equality holds in p = 2 case.
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Remark 3.3.2. The case when we choose the multiplicity function k ≡ 0 the Dunkl

case will reduce to the classical case. So in that case we get the main results in

[16] as a corollary of above theorems. That is [16, Theorem 1.1] and [16, Theorem

1.2] are obtained as a corollaries to Theorem 3.3.1.

Here is an auxiliary lemma which is proven in [16].

Lemma 3.3.3 (R. Frank, R. Seiringer). Let p > 1. Then for all 0 6 t 6 1 and

a ∈ C one has

|a− t|p > (1− t)p−1(|a|p − 1). (3.3.8)

For p > 1 this inequality is strict unless a = 1 or t = 0. Moreover, if p > 2 then

for all 0 6 t 6 1 and all a ∈ C one has

|a− t|p > (1− t)p−1
(
|a|p − t

)
+ cpt

p/2|a− 1|p, (3.3.9)

with 0 < cp 6 1 and cp is given in (3.2.19). For p = 2, (3.3.9) is an equality with

c2 = 1. For p > 2, (3.3.9) is a strict equality unless a = 1 or t = 0.

For N, p > 1, let Φε(x, y) be symmetric positive real-valued functions defined

on RN × RN such that Φε → Φps as ε → 0 with Φε 6 Φps. Let us define the

energy functional E[u] as

E[u] :=

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y),

where Φps(x, y) is the kernel given in (3.3.3). Let us define the functions Vε and
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V as

Vε(x) := 2w(x)−p+1

∫
RN

(w(x)− w(y))|w(x)− w(y)|p−2Φε(x, y)dµk(y) (3.3.10)

and
∫
RN V fdµk(x) := limε→0

∫
RN Vεfdµk(x) for every f ∈ C∞0 (RN). Following a

similar argument as in the proof of [16, Proposition 2.2, Proposition 2.3] gives us

the following two lemmas.

Lemma 3.3.4. Let u ∈ C∞0 (RN). If E[u] and
∫
V |u|p are finite we have

E[u] >
∫
RN
V (x)|u(x)|pdµk(x). (3.3.11)

Lemma 3.3.5. Let p > 2 and u ∈ C∞0 (RN). If E[u],
∫
V |u|p are finite and

∫
RN
|v(x)− v(y)|pw(x)

p
2w(y)

p
2 Φps(x, y)dµk(x)dµk(y) <∞, (3.3.12)

then we have

E[u]−
∫
RN
V (x)|u(x)|pdµk(x)

> cp

∫
RN
|v(x)− v(y)|pw(x)

p
2w(y)

p
2 Φps(x, y)dµk(x)dµk(y), (3.3.13)

where cp is as in (3.2.19). If p = 2, (3.3.11) becomes an equality with c2 = 1.

We will prove the following lemma which states that w(x) = |x|−
dk−ps
p solves

the Euler-Lagrange equation related to the equation (3.3.4). For convenience in

calculations we write α := (dk − ps)/p. Let Φε := Φpsχ||x|−|y||>ε, then Φε’s are

positive symmetric real valued functions which converges to Φps, with 0 < Φε 6

Φps.
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Lemma 3.3.6. Let w(x) = |x|−
dk−ps
p . The following limit converges uniformly

for any compact subsets of RN ;

2 lim
ε→0

∫
||x|−|y||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φε(x, y)dµk(y) =
Cdk,s,p
|x|ps

w(x)p−1.

(3.3.14)

Proof. Let |x| = r and |y| = ρ and write x = rx′ and y = ρy′. Using polar

coordinates we obtain;

∫
||x|−|y||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y) (3.3.15)

=

∫
|ρ−r|>ε

∫
SN−1

(r−α − ρ−α)|r−α − ρ−α|p−2Φps(rx
′, ρy′)ρ2λk+1dρdσk(y

′)

where dσk(y
′) = h2

k(y
′)dσ(y′) with dσ(y′) is the (Euclidean) surface measure on

the sphere SN−1. If ρ < r we use the fact from [17, Lemma 2.3] that Φps(rx
′, ρy′) =

r−dk−psΦps(x
′, ρ
r
y′) we get

∫
||x|−|y||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y) (3.3.16)

=

∫
|ρ−r|>ε

∫
SN−1

sgn(ρα − rα)|ρ−α − r−α|p−1

rdk+ps
Φps(x

′,
ρ

r
y′)ρ2λk+1dσk(y

′)dρ, .

Similarly, if r < ρ from [17, Lemma 2.3] it follows that

∫
||x|−|y||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y) (3.3.17)

=

∫
|ρ−r|>ε

∫
SN−1

sgn(ρα − rα)|ρ−α − r−α|p−1

ρ1+ps
Φps(

r

ρ
x′, y′)dσk(y

′)dρ,
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It follows from [17, Lemma 2.3] that

∫
SN−1

Φps(rx
′, ρy′)dσk(y

′) =
Γ(dk

2
)

√
πΓ(dk−1

2
)

∫ π

0

sindk−2θ

(r2 − 2rρ cos θ + ρ2)
dk+ps

2

dθ.

(3.3.18)

Using (3.3.16), (3.3.17) and (3.3.18) we can write (3.3.15) as

∫
||x|−|y||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y) (3.3.19)

=
1

rdk−1

∫
|ρ−r|>ε

sgn(ρα − rα)

|ρ− r|2−p(1−s)
ϕ(ρ, r)dρ,

where ϕ(ρ, r) is given by

ϕ(ρ, r) = |ρ
−α − r−α

r − ρ
|p−1.


ρdk−1(1− ρ

r
)1+psΦN,s,p(

ρ
r
), if ρ < r,

rdk−1(1− r
ρ
)1+psΦN,s,p(

r
ρ
) if ρ > r,

(3.3.20)

with ΦN,s,p is given in (3.3.6).

We need to show the convergence of the integral

∫
|ρ−r|>ε

sgn(ρα − rα)

|ρ− r|2−p(1−s)
ϕ(ρ, r)dρ. (3.3.21)

It is enough to show that the function φ(ρ, r) is Lipschitz continuous as a

function of ρ at ρ = r. Writing t = ρ/r it is sufficient to show the function

(1 − t)1+psΦN,s,p(t) and its t-derivative is bounded at t → 1−. As N = 1 it is

trivial we do it for N > 2. The identity in [19, 3.665] states that

∫
RN

sin2µ−1xdx

(1 + 2a cos x+ a2)ν
= B

(
µ,

1

2

)
F
(
ν, ν − µ+

1

2
, µ+

1

2
; a2
)
, (3.3.22)

where F is a hypergeometric function with Re µ > 0 and |a| < 1. Using (3.3.22)
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we can write

ΦN,s,p(t) =
Γ(dk

2
)

√
πΓ(dk−1

2
)
B

(
dk − 1

2
,
1

2

)
F

(
dk + ps

2
,
ps+ 2

2
;
dk
2

; t2
)
. (3.3.23)

Using the property that both (1−z)a+b−cF (a, b, c; z) and its derivative has a limit

at z → 1− if a+ b− c > 1 we conclude (1− t)1+psΦN,s,p(t) and its t-derivative is

bounded at t→ 1−.

Continuing the same argument from [16] we get (3.3.14) with

Cdk,s,p = 2 lim
ε→0

∫
|ρ−1|>ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ.

Now we will prove that this constant coincides with the constant given in (3.3.5).

2 lim
ε→0

∫
|ρ−1|>ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ

= 2 lim
ε→0

[∫ 1−ε

0

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ+

∫ ∞
1+ε

sgn(ρα − 1)

|ρ− 1|2−p(1−s)
ϕ(ρ, 1)dρ

]

= 2

[∫ 1

0

sgn(ρα − 1)

(1− ρ)2−p(1−s)ϕ(ρ, 1)dρ+

∫ 1

0

sgn(1− ρα)ρ−p(1−s)

(1− ρ)2−p(1−s) ϕ(ρ−1, 1)dρ

]

= 2sgn(α)

∫ 1

0

(
ρ−p(1−s)ϕ(ρ−1, 1)− ϕ(ρ, 1)

)
(1− ρ)2−p(1−s) dρ.

A straightforward calculation gives

(
ρ−p(1−s)ϕ(ρ−1, 1)− ϕ(ρ, 1)

)
= |1− ρα|p−1(1− ρα)ΦN,s,p(ρ)(1− ρ)2−p(1−s)

and it follows that

Cdk,s,p = 2

∫ 1

0

ρps−1|1− ρα|pΦN,s,p(ρ)dρ.
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3.3.1 Proof of the Theorem 3.3.1

Now the Hardy inequalities (3.3.4) and (3.3.7) will follow by repeating the argu-

ments of [16]. In case of the strictness, p > 2 due to the positive remainder term

in (3.3.7), it is immediate that the inequality in (3.3.4) is strict. With similar

arguments used to obtain [16, (2.18)], in our case we obtain

E[u] =

∫
RN

∫
RN
φu(x, y)Φps(x, y)dµk(x)dµk(y) +

∫
RN
V |u|pdµk(x), (3.3.24)

for all u ∈ C∞0 (RN \ {0}) with

φu(x, y) =|w(x)v(x)− w(y)v(y)|p

− (w(x)|v(x)|p − w(y)|v(y)|p)(w(x)− w(y))|w(x)− w(y)|p−2.

It can be proven easily that φu > 0 (see [16]). This can be extended to Ẇ p,s
k (RN \

{0}) when dk < ps and to Ẇ p,s
k (RN) when dk > ps by approximation.

Suppose E[u] =
∫
RN V |u|

pdµk(x) for some u ∈ Ẇ p,s
k (RN \ {0}). Then it is

true for |u|. Observing that Φ|u| > 0 and Φps(x, y) is positive in (3.3.24) we can

see that Φ|u| ≡ 0. From the Lemma 3.3.3 we obtain that v is a constant function

and since v = w−1u we conclude that u ≡ 0. This gives that for any non-zero

u ∈ Ẇ p,s
k (RN \{0}) in case dk < ps or u ∈ Ẇ p,s

k (RN) in case dk > ps the inequality

(3.3.11) is strict.

Now for p = 1, we shall prove that the equality of (3.3.4) holds if and only if

u is proportional to a symmetric decreasing function. Let χt be the characteristic

function of a ball centered at origin with radius R(t). Define u =
∫∞

0
χtdt. Then
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for p = 1, we can write right hand side of the inequality (3.3.4) as

∫
RN

|u(x)|
|x|s

=
‖SN−1‖k
dk − s

∫ ∞
0

R(t)dk−sdt,

where ‖SN−1‖k is the surface measure of SN−1 with Dunkl weighted measure;

one can calculate ‖SN−1‖k = c−1
k /(2(

dk
2
−1)Γ(dk/2)). Now the left-hand side of the

same inequality (3.3.4) can be written as

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

= 2

∫∫
{|x|<|y|}

∣∣∣∣ ∫ (χt(x)− χt(y))dt

∣∣∣∣Φpsdµk(x)dµk(y)

= 2

∫∫∫
{|x|<R(t)<|y|}

Φps(x, y)dµk(x)dµk(y)dt

= 2

∫∫
{|x|<1<|y|}

Φps(x, y)dµk(x)dµk(y)

∫ ∞
0

R(t)dk−sdt.

It gives the equality of (3.3.4) for the function u and p = 1.

The sharpness of the constant Cdk,s,p can be proved by the same arguments

in [16]. But for the completion we give the proof here. To prove this, we will use

the trial functions un and will show that, as n→∞,

∫
RN
∫
RN |un(x)− un(y)|pk(x, y)dµk(x)dµk(y)∫

RN |un(x)|p|x|−psdµk(x)
6 Cdk,s,p(1 +O(1)).

Let us define the functions un for dk > ps first. Let

I := {x ∈ RN : 0 6 |x| < 1}

Mn := {x ∈ RN : 1 6 |x| 6 n}

On := {x ∈ RN : |x| > n}.
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Define

un(x) :=


1− n−α, if x ∈ I,

|x|−α − n−α if x ∈Mn,

0 if x ∈ On,

(3.3.25)

where α = (dk−ps)
p

Multiply the integrand of (3.3.14) with un(x) and integrate

with respect to x. Using the symmetricity of Φps(x, y) we obtain as ε→ 0,

∫
RN

∫
RN

(un(x)− un(y))(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(x)dµk(y)

= Cdk,s,p

∫
RN

un(x)w(x)p−1

|x|ps
dµk(x). (3.3.26)

Write

∫
RN

∫
RN

(un(x)− un(y))(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(x)dµk(y)

=

∫
RN

∫
RN
|un(x)− un(y)|pΦps(x, y)dµk(x)dµk(y) + 2R0,

where

R0 :=

∫
x∈I

∫
y∈Mn

(1− w(y))((w(x)− w(y)p−1)− (1− w(y))p−1)

Φps(x, y)dµk(x)dµk(y)

+

∫
x∈Mn

∫
y∈On

(w(x)− n−α)((w(x)− w(y))p−1 − (w(x)− n−α)p−1)

Φps(x, y)dµk(x)dµk(y)

+

∫
x∈I

∫
y∈On

(1− n−α)((w(x)− w(y))p−1 − (1−N−α)p−1)

Φps(x, y)dµk(x)dµk(y).
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Since all the terms within all the three integral are non-negative, we have R > 0.

Divide the right-hand side of (3.3.26) by Cdk,s,p and add and subtract upn
|x|ps to the

integrand we obtain

∫
RN

upn
|x|ps

dµk(x) +R1 +R2, (3.3.27)

where

R1 :=

∫
I

(1− n−α)(w(x)p−1 − (1− n−α)p−1dµk(x)

|x|ps
(3.3.28)

R2 :=

∫
Mn

(w(x)− n−α)(w(x)p−1 − (w(x)− n−α)p−1)
dµk(x)

|x|ps
. (3.3.29)

Observe that the integrands on both of the integrals are non-negative and we will

show that R1 +R2 = O(1) as n→∞.

∫
RN
∫
RN |un(x)− un(y)|pΦps(x, y)dµk(x)dµk(y)∫

RN |un(x)|p|x|−psdµk(x)
(3.3.30)

= Cdk,s,p

(
1 +

R1R2∫
RN |un(x)|p|x|−psdµk(x)

)
− 2R0∫

RN |un(x)|p|x|−psdµk(x)

6 Cdk,s,p(1 + o(1)).

Now we need to prove that R1 +R2 = O(1) as n→∞. See that the integrand of

R1 is bounded by |x|α−dk and it allows us to writeR1 6
∫
|x|<1
|x|α−dkdµk(x) <∞.

Observe that 1 − (1 − t)p−1 6 t for 1 6 p 6 2 and 1 − (1 − t)p−1 6 (p − 1)t for

p > 2, where 0 6 t 6 1. Using this we can write

(w(x)− n−α)(w(x)p−1 − (w(x)− n−α)p−1) 6 Cpn
−αw(x)p−1, (3.3.31)

where Cp = 1 for 1 6 p 6 2 and Cp = p− 1 for p > 2. Now it is not hard to see

thatR2 6 Cp
∫
|x|<1
|x|α−dkdµk(x) <∞. The case dk < ps can be treated similarly
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using the sequence of trial functions described in [16] taking α = (dk − ps)/p.

3.4 Fractional Hardy Inequality for Half-Space

Let R1 be a root system on RN−1 and a k1 be a multiplicity function on R1.

Extend R1 to a root system R of RN as R = R1 × {0} = {(x, 0) : x ∈ R1}.

Clearly it is a root system on RN and the multiplicity function k1 can be extended

to k which acts on R by k(x1, x2, ...xN−1, xN) = k1(x1, x2, ...xN−1). Let R1,+

be a positive subsystem of R1 with R1 = R1,+ ∪ (−R1,+). Then we can write

R = R+ ∪ (−R+) where the positive subsystem R+ of R given by R+ = {(x, 0) :

x ∈ R1,+}. γk remains the same as γk =
∑

ν∈R+
k(ν) =

∑
ν∈R1,+

k1(ν) = γk1 . The

Dunkl measure corresponding to the root system R and the multiplicity function

k will be

dµk(x) =
∏
ν∈R+

|〈x, ν〉|2k(ν)dx

=
∏

ν∈R1,+

|〈x′, ν〉|2k1(ν)dx′.dxN = dµk1(x
′)dxN ,

where x = (x′, xN) ∈ RN .

Theorem 3.4.1. Let N > 1, 1 6 p < ∞, and 0 < s < 1 with ps 6= 1. Then for

all u ∈ Ẇ p
s (RN

+ )

∫
RN+

∫
RN+
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y) > DN,γk,p,s

∫
RN+

|u(x)|p

xpsN
dµk(x),

(3.4.1)

where

DN,γk,p,s := c−1
k1

2−λk1
Γ((1 + ps)/2)

Γ((dk + ps)/2)

∫ 1

0

|1− r(ps−1)/p|p dr

(1− r)1+ps
. (3.4.2)
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and the constant DN,γk,p,s is optimal. If p = 1 and N = 1, equality holds iff u is

proportional to a non-increasing function. If p = 1 or if p = 1 and N > 2, the

inequality strict for any non zero function in Ẇ s
p (RN

+ ). Further for p > 2 we also

have

∫
RN+

∫
RN+
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y) (3.4.3)

> DN,γk,p,s

∫
RN+

|u(x)|p

xpsN
dµk(x)

+cp

∫
RN+

∫
RN+
|v(x)− v(y)|pΦps(x, y)

dµk(x)

|xN |(1−ps)/2
dµk(y)

|yN |(1−ps)/2
,

where v := x
(1−ps)/p
N u, Φ is as in (3.3.3), DN,γk,p,s is given in (3.4.2) and cp is

given in (3.2.19). c2 = 1 and the equality holds in p = 2 case.

Proof. Let x = (x′, xN) and y = (y′, yN) are elements of RN . Choose w(x) =

|xN |(1−ps)/p and V (x) = DN,γk.p,s|xN |−ps. Since for the fixed root system R

τ ky (e−s|.|
2

)(x) = e−s|xN−yN |
2

τ k1y′ (e−s|.|
2

)(x′).

the definition of Φps(x, y) in (3.3.3) takes the form

Φps(x, y) :=
1

Γ((dk + ps)/2)

∫ ∞
0

s
dk+ps

2
−1τ ky

(
e−s|.|

2)
(x)ds

=
1

Γ((dk + ps)/2)

∫ ∞
0

s
dk+ps

2
−1e−s|xN−yN |

2

τ k1y′
(
e−s|.|

2)
(x′)ds.

We start with the Euler - Lagrange equation corresponding to (3.4.1) and let us
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verify that w(x) = |xN |−
1−ps
p solves it.

∫
y∈RN+

|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y) (3.4.4)

=
1

Γ((dk + ps)/2)

∫
y∈RN+

|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2 ×

∫ ∞
0

s
dk+ps

2
−1τy(e

−s|.|2)(x)dsdµk(y)

=
1

Γ((dk + ps)/2)

∫
RN−1

∫
|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2∫ ∞
0

s
dk+ps

2
−1e−s|xN−yN |

2

τ k1y′ (e−s|.|
2

)(x′)dsdyNdµk1(y
′).

Property of translation of a radial function[37, Theorem 3.8] gives that

∫
RN−1

τ k1y′ (e−s|.|
2

)(x′)dµk1(y
′) =

∫
RN−1

e−s|y
′|2dµk1(y

′) (3.4.5)

From the definition of Gamma function we get

1

Γ((dk + ps)/2)

∫ ∞
0

s
dk+ps

2
−1e−s(|xN−yN |

2+|y′|2)ds (3.4.6)

=
1

(|xN − yN |2 + |y′|2)
dk+ps

2

.

Applying (3.4.5) and (3.4.6) to (3.4.4 we find

∫
y∈RN+ ,

|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y)

=

∫
y∈RN+ ,

|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2

(|xN − yN |2 + |y′|2)
dk+ps

2

dµk(y).
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Let us calculate the following integral separately for convenience, and let us call

m = |xN − yN |2 and keep in mind that dk1 = dk − 1

∫
RN−1

1

(m2 + |y′|2)
dk+ps

2

dµk(y
′) = ‖SN−2‖k1

∫ ∞
0

1

(m2 + r2)
dk+ps

2

rdk−2dr

= ‖SN−2‖k1
1

m1+ps

∫ ∞
0

tdk−2

(1 + t2)
dk+ps

2

dt

= ‖SN−2‖k1
1

2m1+ps

Γ((dk − 1)/2)Γ((1 + ps)/2)

Γ((dk + ps)/2)
.

Now come back to the the equation and use the [15, Theorem 1.1] for N = 1 to

conclude. Also substitute the value of ‖SN−2‖k1 = (c−1
k1

2−λk1 )/Γ(dk1/2). We use

the same notation w for the function w(xN) = |xN |−(1−ps)/p;

∫
y∈RN+ ,|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2

(|xN − yN |2 + |y′|2)α/2
dµk(y) (3.4.7)

=
c−1
k1

2−λk1Γ((1 + ps)/2)

Γ((dk + ps)/2)∫
|xN−yN |>ε

(w(xN)− w(yN))|w(xN)− w(yN)|p−2

|xN − yN |1+ps
dyN .

From [15, Lemma 3.1], considering xN , yN ∈ R, we can write

C1,p,s

|xN |ps
w(xN)p−1 (3.4.8)

= 2 lim
ε→0

∫
R,

||xN |−|yN ||>ε

(w(xN)− w(yN)||w(xN)− w(yN)|p−2

|xN − yN |1+ps
dyN

= 2

∫ ∞
0

(w(xN)− w(yN)|w(xN)− w(yN)|p−2(
1

|xN − yN |1+ps + |xN + yN |1+ps

)
dyN .
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This gives the constant in [15, Theorem 1.1] as

C1,p,s = 2

∫ 1

0

∣∣1− r(1−ps)/p∣∣p( 1

(1− r)1+ps
+

1

(1 + r)1+ps

)
dr. (3.4.9)

But in our case we are only interested in the case yN > 0, so (3.4.8) and (3.4.9)

implies that

2 lim
ε→0

∞∫
0,

|xN−yN |>ε

(w(xN)− w(yN))
|w(xN)− w(yN)|p−2

|xN − yN |1+ps
dyN (3.4.10)

=
C̃1,p,s

|xN |ps
w(x)p−1,

where

C̃1,p,s := 2

∫ 1

0

∣∣1− r(1−ps)/p
∣∣p

(1− r)1+ps
dr. (3.4.11)

Now by using (3.4.10) and (3.4.7) we can conclude

2 lim
ε→0

∫
y∈RN+ ,|xN−yN |>ε

(w(x)− w(y))|w(x)− w(y)|p−2

(|xN − yN |2 + |y′|2)α/2
dµk(y) (3.4.12)

=
c−1
k1

2−λk1−1Γ((1 + ps)/2)

Γ((dk + ps)/2)

C̃1,p,s

|xN |ps
w(x)p−1.

We can see that the constant appearing in (3.4.2) and
c−1
k1

2
−λk1−1

Γ((1+ps)/2)

Γ((dk+ps)/2)
C̃1,p,s

are same.

The Hardy inequalities (3.4.1) and (3.4.3), the strictness for p > 1 and the

equality in case of p = 1 follow from the proof of [16, Theorem 1.1]. Optimality

comes from the optimality of the Theorem 3.3.1.
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3.5 Fractional Hardy Inequality for Cone

For 0 6 l 6 l a cone RN
l+

is defined as a subset of RN which is precisely the

set {x = (x1, ....xN) ∈ RN : xN−l+1 > 0, ..., xN > 0}. In the case of half-

space we extended a root system of RN−1 to a root system of RN and we found

a corresponding multiplicity function and Dunkl weighted measure on RN
+ . In

the case of cone we write RN = RN−l × Rl and we extend a root system of

RN−l to RN . For an element x ∈ RN we write x = (x′, xN−l+1, xN−l+2, ...xN)

where x′ ∈ RN−l. Let R1 be a root system on RN−l and k1, dµk1 := h2
k(x
′)

be the corresponding multiplicity function and Dunkl weighted measure. Define

R := {(x, 0) ∈ RN : x ∈ R1}. It is easy to verify that R is a root system on

RN . Now as in the case of upper half-space extend the multiplicity function

to k of RN as k(x′, 0) = k1(x) and the corresponding Dunkl weighted measure

dµk(x) = dµk1(x
′)dxN−l+1...dxN . For the convenience of the calculations we write

x ∈ RN as x = (x′, x′′) with x′ ∈ RN−l and x′′ ∈ Rl.

Theorem 3.5.1. Let N ∈ N, 1 6 p < ∞. Further 0 < s < 1 with a condition

ps 6= 1. Then for all u ∈ Ẇ p
s (RN

l+
) the following inequality holds:

∫
RNl+

∫
RNl+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

> DNl,γk,p,s

∫
RNl+

|u(x)|2

x2
N−l+1 + · · ·+ x2

N

dµk(x).(3.5.1)

Here

DNl,γk,p,s =
c−1
k1

2−λkΓ((l + ps)/2)

Γ((dk + ps)/2)

∫ 1

0

rps−1|1− r(l−ps)/p|pΦ̃l+,s,p(r)dr (3.5.2)
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with

Φ̃l+,s,p(r) =

∫
Sl−1
l+

1

|x̃− rỹ|l+ps
dσ(ỹ),

where x̃ ∈ Sl−1
l+

and Sl−1
l+

= Sl−1∩Rl
l+

. The constant DNl,γk,p,s is optimal. If p = 1

and N = l, equality holds iff u is proportional to a non-increasing function. Also

for p > 2 the following inequality holds:

∫
RNl+

∫
RNl+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

> DNl,γk,p,s

∫
RNl+

|u(x)|p

|x′′|ps
dµk(x)

+cp

∫
RNl+

∫
RNl+

|v(x)− v(y)|pΦps(x, y)
dµk(x)

|x′′|(1−ps)/2
dµk(y)

|y′′|(1−ps)/2
, (3.5.3)

where v := |x′′|(l−ps)/pu, Φ is as in (3.3.3), DN,γk,p,s is given in (3.5.2) and cp is

given in (3.2.19). Moreover c2 = 1 and the equality holds in p = 2 case.

Proof. The proof is very similar to that of Hardy inequality of the half-space.

Similar steps will lead to the desired conclusion. In order to find a positive solution

of the Euler Lagrange equation corresponding to (3.5.1) we set w(x) = |x′′|−(l−ps)/2

and V (x) = DNl,γk,p,s|x′′|−ps. The Φps(x, y) given in (3.3.3) will take the form

Φps(x, y) :=
1

Γ((dk + ps)/2)

∫ ∞
0

s
dk+ps

2
−1τ ky

(
e−s|.|

2)
(x)ds

=
1

Γ((dk + ps)/2)

∫ ∞
0

s
dk+ps

2
−1e−s

∑N
j=N−l+1 |xj−yj |2τy′

(
e−s|.|

2)
(x′)ds,

since

τ ky
(
e−s|.|

2)
(x) = e−s

∑N
j=N−l+1 |xj−yj |2τy′

(
e−s|.|

2)
(x′)
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with our root system R on RN .

Repeating the same arguments as in the proof of the Theorem 3.4.1 we obtain

∫
y∈RNl+ ,

||x′′|−|y′′||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y)

=

∫
y∈RNl+ ,

||x′′|−|y′′||>ε

(w(x)− w(y))|w(x)− w(y)|p−2

(|x′′ − y′′|2 + |y′|2)
dk+ps

2

dµk(y).

We evaluate
∫
RN−l

1
(m2+|y′|2)α/2

dµk(y
′) as in the previous proof with m = |x′′ − y′′|

and find

∫
RN−l

1

(|x′′ − y′′|2 + |y′|2)
dk+ps

2

dµk(y
′) = π

dk1
2

Γ((l + ps)/2)

Γ((dk + ps)/2)

1

|x′′ − y′′|l+ps
,

where dk1 = N − l + 2γk1 . Now the Euler Lagrange equation corresponding to

(3.5.1) is of the form

2 lim
ε→0

∫
y∈RNl+ ,

||x′′|−|y′′||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y)

=
c−1
k1

2−λk1Γ((l + ps)/2)

Γ((dk + ps)/2)
×

lim
ε→0

∫
y∈Rll+ ,

||x′′|−|y′′||>ε

(w(x′′)− w(y′′))|w(x′′)− w(y′′)|p−2

(|x′′ − y′′|)l+ps
dy′′, (3.5.4)

with w(x′′) = |x′′|−(l−ps)/p.

If Sl−1
l+

= Sl−1 ∩ Rl
l+

, the polar decomposition of right-hand side integral of

106
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(3.5.4) can be written as

lim
ε→0

∫
y∈Rll+ ,

||x′′|−|y′′||>ε

(w(x′′)− w(y′′))|w(x′′)− w(y′′)|p−2

(|x′′ − y′′|)l+ps
dy′′

=

∫
|ρ−r|>ε

∫
Sl−1
l+

(r−α − ρ−α)|r−α − ρ−α|p−2

|rx̃− ρỹ|l+ps
dσ(ỹ)dρ,

where x′′ = rx̃, y′′ = ρỹ and α = (l − ps)/p. using similar steps in the proof of

[15, Lemma 3.1] we can prove that

2 lim
ε→0

∫
Rll+

(w(x′′)− w(y′′))|w(x′′)− w(y′′)|p−2

|x′′ − y′′|l+ps
dy′′ =

C̃l+,s,p
|x′′|ps

w(x′′)p−1, (3.5.5)

where for l > 2

C̃l+,s,p = 2

∫ 1

0

rps−1|1− r(l−ps)/p|pΦ̃l+,s,p(r)dr

with

Φ̃l+,s,p(r) =

∫
Sl−1
l+

1

|x̃− rỹ|l+ps
dσ(ỹ)

and when l = 1 then C̃1+,s,p = C̃1,p,s given in equation (3.4.11). The constant

C̃l+,s,p is different from the constant Cl,s,p given in [15, Theorem 1.1] since instead

of integrating over the whole sphere Sl−1 we are only integrating over the points

on the sphere which intersect with the cone, that is only on Sl−1
l+

.

Define DNl,γk,p,s :=
c−1
k1

2
−λk1 Γ((l+ps)/2)

Γ((dk+ps)/2)
C̃l+,s,p, from (3.5.4) and (3.5.5), we get w
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as the positive solution of the Euler Lagrange equation corresponding to (3.5.1);

2 lim
ε→0

∫
y∈RNl+ ,

||x′′|−|y′′||>ε

(w(x)− w(y))|w(x)− w(y)|p−2Φps(x, y)dµk(y)

=
DNl,γk,p,s

|x′′|ps
w(x)p−1.

Proof of the Hardy inequalities (3.5.1) and (3.5.3) and the proof of optimality of

the constant DNl,γk,p,s(it follows from the optimality of C̃1+,s,p) can be obtained

by the same techniques used in the proof of [15, Theorem 1.1, Theorem 1.2].

Remark 3.5.2. Since we could not calculate the integral
∫
Sl−1
l+

1
|x̃−rỹ|l+psdσ(ỹ) explic-

itly, the expression of the constant DNl,γk,p,s in the Theorem 3.5.1 is not explicit

compare to the constants given in Theorem 3.3.1 and Theorem 3.4.1 .

3.6 Stein-Weiss Inequality and Some Related In-

equalities

In [32], Stein and Weiss have proven the following inequality which is known as

Stein-Weiss inequality.

For every 0 < β < N and for every ϕ ∈ L2(RN) there exists a positive constant

such that the following inequality holds:

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β2 |x− y|N−β|y|β2
dxdy 6 C‖ϕ‖2

2. (3.6.1)

Moreover, it has been proven in [21], that C = 1
2β

(
Γ(N−β

4
)

Γ(N+β
4

)

)2

is the best con-

stant. We will prove the following Dunkl version of (3.6.1) using the ground state

representation technique.
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Theorem 3.6.1. Let 0 < β < dk. Then for every ϕ ∈ L2(RN , dµk(x)) the

Stein-Weiss inequality is given by

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β2 |y|β2
Φ−β(x, y)dµk(x)dµk(y) 6

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2 ∫
RN
|ϕ(x)|2dµk(x),

(3.6.2)

where the constant appearing on the right hand side is optimal.

Proof. Let w(x) = |x|−
dk
2 . Then by using Lemma 4.1 and Proposition 4.2 of [38]

we have

∫
RN\{0}

Φ−β(x, y)

|x|β2 |y|β2
w(x)dµk(x) =

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2

w(y). (3.6.3)

Multiply the left hand side by the test function ϕ2/w and integrate over RN to

obtain

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
w(x)

ϕ2(y)

w(y)
dµk(y)dµk(x)

=
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
)

(
w(x)

ϕ2(y)

w(y)
+ w(y)

ϕ2(x)

w(x)

)
dµk(y)dµk(x)

=

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
)w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)
dµk(x)dµk(y).

(3.6.4)

Similarly multiply the right hand side of (3.6.3) by ϕ2/w and integrate. Then

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2 ∫
RN
w(y)

ϕ2(y)

w(y)
=

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2 ∫
RN
ϕ2dµk(x). (3.6.5)
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Now by putting the equations (3.6.3), (3.6.4) and (3.6.5) together, we get

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2 ∫
RN
ϕ2(x)dµk(x)

=

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)2

dµk(x)dµk(y)

=

∫
RN

∫
RN

Φ−β(x, y)

|x|β2 |y|β2
ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

∣∣∣|x| dk2 ϕ(x)− |y|
dk
2
ϕ(y)
∣∣∣2 dµk(x)dµk(y).

(3.6.6)

Since the second integral on the right hand side of (3.6.6) is positive we obtain

the Stein-Weiss inequality stated in (3.6.2).

To obtain the optimality it is sufficient to prove that

sup
ϕ∈L2(RN )
‖ϕ‖261

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β2 |y|β2
Φ−β(x, y)dµk(x)dµk(y) =

1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2

. (3.6.7)

To deduce (3.6.7) from (3.6.6) we will find a family functions {ut}t>1 in L2(RN , dµk(x))

such that

sup
t>1

∫
RN
∫
RN

Φ−β(x,y)

|x|
λk+β

2 |y|
λk+β

2

∣∣ut(x)|x|
λk
2 − ut(y)|y|

λk
2

∣∣2dµk(x)dµk(y)∫
RN |u

2
t |dµk(x)

= 0. (3.6.8)

Let t > 1 and η ∈ C
(
(0,∞); [0, 1]

)
be such that η = 1 on (0, 1), η = 0 on (2,∞).

Define ut(x) := η( |x|
t

)η( 1
t|x|)

1

|x|
dk
2

. First we will show that the numerator of (3.6.8)
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is finite. We find

∫
RN

∫
RN

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

∣∣ut(x)|x|
dk
2 − ut(y)|y|

dk
2

∣∣2dµk(x)dµk(y)

6
∫
R2N\(Bt\B1/t)

2\(B1/2t∪RN\B2t)2

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

dµk(x)dµk(y)

6 2

∫
B2t

∫
RN\Bt

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

dµk(x)dµk(y)

+ 2

∫
B1/t

∫
RN\B1/2t

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

dµk(x)dµk.

To prove that the right hand side is finite, by scale invariance, we need to realize

that the integral

∫
B2

∫
RN\B1

Φ−β(x, y)

|x|
dk+α

2 |y|
dk+α

2

dµk(x)dµk(y)

is finite. Since it is sufficient to do for any t > 1 we arrive the conclusion that

sup
t>1

∫
RN

∫
RN

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

∣∣ut(x)|x|
dk
2 − ut(y)|y|

dk
2

∣∣2dµk(x)dµk(y) <∞.

Dividing both sides by
∫
RN |ut|

2 and using the fact that

lim
t→∞

∫
RN
|ut|2 =∞,

we arrive to the proof of the Theorem.

In 2008, W. Beckner found the optimal constant for the Stein Weiss potentials

with gradient estimate, [7]. The author has proved that, for every N > 3 and
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0 < β < N the following inequality holds:

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2
2 |x− y|N−β|y|β+2

2

dxdy 6
1

2β−2

(
Γ(N−β

4
)

(N − 2)Γ(N+β
4

)

)2

‖ϕ‖2
Ḣ1 (3.6.9)

where ϕ ∈ Ḣ1(RN) and the constant
(

Γ(N−β
4

)

(N−2)Γ(N+β
4

)

)2

is optimal. The space

Ḣ1(RN) is the homogeneous Sobolev space with the norm ‖ϕ‖2
Ḣ1 :=

∫
RN |∇ϕ|

2dx.

Now we state the corresponding result in the Dunkl setting.

Theorem 3.6.2. Let dk > 3 and 0 < β < dk. Then for every G-invariant

ϕ ∈ Ḣ1(RN , dµk(x)) the following inequality

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2
2 |y|β+2

2

Φ−β(x, y)dµk(x)dµk(y)

6
1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2 ∫
RN
|∇kϕ|2dµk(x) (3.6.10)

holds for all ϕ for which right hand side is finite. Also the constant appearing on

the right-hand side of the inequality is optimal.

Proof. Let w(x) = |x|−
dk−2

2 .

∫
RN\{0}

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

w(x)dµk(x) =
1

2β

(
Γ(dk−β

4
)

Γ(dk+β
4

)

)2
1

|y|
dk+2

2

. (3.6.11)

Using the following expression of Dunkl Laplacian for radial functions,

∆k =
∂2

∂r2
+

2λk + 1

r

∂

∂r
; λk =

dk − 2

2
,
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we can calculate

∆kw(y) =

(
dk(dk − 2)

4

)
|y|−(

dk+2

2
) −
(

(dk − 1)
dk − 2

2

)
|y|−(

dk+2

2
)

= −
(
dk − 2

2

)2
1

|y|
dk+2

2

. (3.6.12)

Using the expressions (3.6.11) and (3.6.12) together and Integrating both over

the test function ϕ2/w, we obtain

1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2 ∫
RN

(−∆k)w(x).
ϕ2(x)

w(x)
dµk(x)

=

∫
RN

∫
RN\{0}

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

w(x)
ϕ2(y)

w(y)
dµk(x)dµk(y). (3.6.13)

By similar calculations as in (3.6.4) the right-hand side of (3.6.13) become

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

w(x)
ϕ2(y)

w(y)
dµk(y)dµk(x)

=

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

)w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)
dµk(x)dµk(y).

(3.6.14)

Using the G-invariance of ϕ and the equations (3.2), (3.3) and (3.4) of [4] for the
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functions w and ϕ/w, we get

∫
RN
|∇kϕ|2dµk(x) =

∫
RN
|∇k

(ϕ
w

)|2w2dµk(x)−
∫
RN
w
ϕ2

w
∆kwdµk(x)

=

∫
RN

∣∣∣∇k

(ϕ
w

)
(x)
∣∣∣2w2(x)dµk(x)

+

∫
RN
∇k

(ϕ2

w

)
(x).∇kw(x)dµk(x). (3.6.15)

The inequality in (3.6.15) allows us to write

1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2 ∫
RN

(−∆k)w(x).
ϕ2(x)

w(x)
dµk(x)

=
1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2 ∫
RN
∇k

(ϕ2

w

)
(x).∇kw(x)dµk(x)

=
1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2

(∫
RN
|∇kϕ|2dµk(x)−

∫
RN

∣∣∣∇k

(ϕ
w

)
(x)
∣∣∣2w2(x)dµk(x)

)
. (3.6.16)

Now using the identities in (3.6.13) and (3.6.14) in (3.6.16) and substituting the

expression of w gives

1

2β−2

(
Γ(dk−β

4
)

(dk − 2)Γ(dk+β
4

)

)2

(∫
RN
|∇kϕ|2dµk(x)−

∫
RN

∣∣∣∇k

(
|x|

dk−2

2 ϕ
)

(x)
∣∣∣2

|x|dk−2
dµk(x)

)
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=

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2
2 |y|β+2

2

)w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)
dµk(x)dµk(y).

(3.6.17)

Since the second integral on both left and right hand side of (3.6.17) are positive

we obtain the combination of Stein-Weiss and Hardy inequality stated in (3.6.10).

The optimality can be obtained similar to the idea of Theorem 3.6.1. Choose

t and η as in Theorem 3.6.1. Define

ut(x) := η
( |x|
t

)
η
( 1

tx

) 1

|x|
dk−2

3

.

As in Theorem 3.6.1, we get

lim
t→∞

∫
RN
|∇kut|2 =∞

and

sup
t>1

∫
RN

∫
RN

Φ−β(x, y)

|x|
dk+β

2 |y|
dk+β

2

∣∣∣ut(x)|x|
dk−2

2 − ut(y)|y|
dk−2

2

∣∣∣2dµk(x)dµk(y) <∞.

Also, see that

∫
RN

∣∣∣∇k(|x|
dk−2

2 ut(x))
∣∣∣2

|x|dk−2
dµk(x) =

∫
B2t\Bt

η′(|x|/t)2

t2|x|dk−2
dµk(x)

+

∫
B1/t\B1/2t

t2η′(t/|x|)2

|x|dk+2
dµk(x).

A change of variable for |x|/t gives the right hand side of the above equation

independent of t and conclude as in the Theorem 3.6.1.
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The classical version of the Stein-Weiss inequality for the fractional gradient

is proven by Moroz and Schaftingen in [25]. Their result states that

for 0 < s < 1, s < N/2 and 0 < β < N

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2s
2 |x− y|N−β|y|β+2s

2

dxdy 6
1

2β+2s

(
Γ(N−2s

4
)Γ(N−β

4
)

Γ(N+2s
4

)Γ(N+β
4

)

)2

‖ϕ‖2
Ḣs

(3.6.18)

holds for every ϕ ∈ Ḣs(RN). Here Ḣs(RN) denotes the fractional homogeneous

Sobolev space equipped with the norm

‖ϕ‖2
Ḣs :=

sΓ(N+2s
2

)

22(1−s)πN/2Γ(1− s)

∫
RN

∫
RN

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy. (3.6.19)

The statement of the Stein-Weiss potential with the Dunkl fractional gradient is

as follows:

Theorem 3.6.3. Let s ∈ (0, 1), s < dk/2 and 0 < β < dk. Then for all

ϕ ∈ Ẇ s,2(RN) the following inequality holds

Ck,s

∫
RN

∫
RN
|ϕ(x)− ϕ(y)|2Φ2s(x, y)dµk(x)dµk(y) (3.6.20)

>
∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2s
2 |y|β+2s

2

Φ−β(x, y)dµk(x)dµk(y)

and the constant Ck,s = 1
2β+s

(
Γ(
dk−2s

4
)Γ(

dk−β
4

)

Γ(
dk+2s

4
)Γ(

dk+β

4
)

)2

is optimal.

Proof. Let w(x) = 1

|x|
dk−s

2

. By the definition of fractional power of Dunkl Lapla-
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cian and by Plancheral theorem for Dunkl transform we can write

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(w(x)− w(y))Φ−β(x, y)dµk(x)dµk(y)

=

∫
RN
Fk(ϕ)(ξ)|ξ|sFk(w)(ξ)dµk(ξ)

= 2s
Γ(dk+2s

4
)2

Γ(dk−2s
4

)2

∫
RN

ϕ(x)

|x|
dk+2s

2

dµk(x). (3.6.21)

Now by the semi group properties of Dunkl Riesz potential one can write

∫
RN

|y|
dk+β

2

|x|β+2s
2

Φ−β(x, y)dµk(y) = 2−β
Γ(dk−β

4
)2

Γ(dk+β
4

)2

1

|x|
dk+2s

2

. (3.6.22)

Now combining the equations (3.6.21) and (3.6.22) will allow us to write

1

2β+s

(
Γ(dk−2s

4
)Γ(dk−β

4
)

Γ(dk+2s
4

)Γ(dk+β
4

)

)2

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(w(x)− w(y))Φ−β(x, y)dµk(x)dµk(y)

=

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

w(x)dµk(x).

(3.6.23)

Integrating again the integral on the right hand side of (3.6.23) after multiplying

with ϕ2/w, we get

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

w(x)
ϕ(y)2

w(y)
dµk(x)

=
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

(
w(x)

ϕ(y)2

w(y)
+ w(y)

ϕ(x)2

w(x)

)
dµk(x)dµk(y)
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=

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)2

dµk(x)dµk(y).

(3.6.24)

Using the equation (6.3) of [4], we have

∫
RN

∫
RN

(w(x)− w(y))(ψ(x)− ψ(y))Φ−β(x, y)dµk(x)dµk(y)

=

∫
RN

∫
RN

[
|ϕ(x)− ϕ(y)|2 − |ϕ

w
(x)− ϕ

w
(y)|2w(x)w(y)

]
Φ−β(x, y)dµk(x)dµk(y).

(3.6.25)

Combine the equations (3.6.23), (3.6.24) and (3.6.25) we get the following equal-

ity:

1

2β+s

(
Γ(dk−2s

4
)Γ(dk−β

4
)

Γ(dk+2s
4

)Γ(dk+β
4

)

)2 ∫
RN

∫
RN
|ϕ(x)− ϕ(y)|2Φ−β(x, y)dµk(x)dµk(y)

=

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

ϕ(x)ϕ(y)dµk(x)dµk(y)

+
1

2

∫
RN

∫
RN

Φ−β(x, y)

|x|β+2s
2 |y|β+2s

2

w(x)w(y)

(
ϕ(x)

w(x)
− ϕ(y)

w(y)

)2

dµk(x)dµk(y)

+
1

2β+s

(
Γ(dk−2s

4
)Γ(dk−β

4
)

Γ(dk+2s
4

)Γ(dk+β
4

)

)2

∫
RN

∫
RN
|ϕ
w

(x)− ϕ

w
(y)|2w(x)w(y)Φ−β(x, y)dµk(x)dµk(y).

(3.6.26)

Since the second and third integrals on the right-hand side of (3.6.26) are positive

we arrive at the inequality given in (3.6.20).

To prove the optimality, as in the proof of previous theorems we will consider
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a family of function {ut}t>1 in Ḣs(RN) whose homogeneous fractional norm con-

verges to infinity as t goes to infinity. Then if we prove that second and third

integrals on the right-hand side of (3.6.26) are finite we are done with the proof

of optimality.

Define the functions ut for t > 1 as

ut(x) := η
( |x|
t

)
η
( 1

t|x|

) 1

|x|
dk−2s

2

,

where the function η is continuous from the positive reals to the closed interval

[0, 1] with η(x) = 1 when 0 < x < 1 and it vanishes if x > 2.

For 0 < β < dk,

∫
RN

∫
RN

Φ−β(x, y)

|x|
dk+β

2
|y|

dk+β
2

|uλ(x)|x|
dk−2s

2 − ut(y)|y|
dk−2s

2 |2dµk(x)dµk(y)

6 2

∫
B2t

∫
RN\Bt

Φ−β(x, y)

|x|
dk+β

2
|y|

dk+β
2

dµk(x)dµk(y)

+ 2

∫
B1/t

∫
RN\B1

Φ−β

|x|
dk+β

2
|y|

dk+β
2

dµk(x)dµk(y).

(3.6.27)

Since

∫
B2

∫
RN\B1

Φ−β(x, y)

|x|
dk+β

2
|y|

dk+β
2

dµk(x)dµk(y) <∞

it deduces that the left-hand side of (3.6.27) is finite.

Now to finish the proof, we will prove that the following integral is finite. Let
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us compute the integral

∫
RN

∫
RN

|ut(x)|x|
dk−2s

2 − ut(y)|y|
dk−2s

2 |2

|x|
dk−2s

2 Φ−β(x, y)|y|
dk−2s

2

dµk(x)dµk(y)

6
∫
B2t

∫
RN\Bt

1

|x|
dk−2s

2 Φ−β(x, y)|y|
dk−2s

2

dµ(x)dµk(y)

+

∫
B1/t

∫
RN\B1/2t

1

|x|
dk−2s

2 Φ−β(x, y)|y|
dk−2s

2

dµ(x)dµk(y) (3.6.28)

Observe that

∫
B2

∫
RN\B1

1

|x|
dk−s

2 Φ−β(x, y)|y|
dk−s

2

dµk(x)dµk(y) <∞ (3.6.29)

and the right-hand side of (3.6.28) is bounded by the integral of the form (3.6.29)

which is independent of t and finite. Finally note that the Ḣs norm of ut

lim
t→∞

∫
RN

∫
RN
|ut(x)− ut(y)|2Φ−β(x, y)dµk(x)dµk(y)

=

∫
RN

∫
RN

Φ−β(x, y)

∣∣∣∣ 1

|x|
dk−2s

2

− 1

|y|
dk−2s

2

∣∣∣∣2dµk(x)dµk(y) =∞.

Now it can be concluded that

sup
ϕ∈Ḣs(RN )
‖ϕ‖Ḣs61

∫
RN

∫
RN

ϕ(x)ϕ(y)

|x|β+2s
2 |y|β+2s

2

Φ−β(x, y)dµk(x)dµk(y)

=
1

2β+s

(
Γ(dk−2s

4
)Γ(dk−β

4
)

Γ(dk+2s
4

)Γ(dk+β
4

)

)2

which gives the optimality of (3.6.20).
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Chapter 4

Improved Lp Fractional Hardy

Inequalities in the Dunkl Setting

In this chapter we improve the fractional Hardy inequalities discussed in the last

chapter. We will establish improved Hardy inequalities in this chapter which are

true for 1 < p < ∞ as well as the improvement term is coming from a norm

associated to a fractional Dunkl gradient.

4.1 Introduction

In a remarkable paper [16], Frank and Seiringer have proven the sharp Hardy

inequality with a remainder term. Their result is as follows: for p > 2 and

0 < s < 1 and for some positive constants CN,s,p and cp

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − CN,s,p

∫
RN

|u(x)|p

|x|ps
dx

> cp

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps

dx

|x|(N−ps)/2
dy

|y|(N−ps)/2
, (4.1.1)
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where v := |x|(N−ps)/2u. The result is true for all u ∈ C∞0 (RN) if ps < N and for

all u ∈ C∞0 (RN \ {0}) if ps > N . The same authors proved a similar fractional

Hardy inequality on half-space in [15], which states that: for p > 2, 0 < s < 1

and ps 6= 1

∫
RN+

∫
RN+

|u(x)− u(y)|p

|x− y|N+ps
dxdy −DN,p,s

∫
RN+

|u(x)|p

xpsN
dx

> cp

∫
RN+

∫
RN+

|v(x)− v(y)|p

|x− y|N+ps

dx

x
(1−ps)/2
N

dy

y
(1−ps)/p
N

, (4.1.2)

where DN,p,s and cp are positive constants and v := x
(1−ps)/p
N u. A more generalized

version of (4.1.1) and (4.1.2) in the Dunkl settings are proven in [5]. Combining

the results due to Abdellaoui et al. in [1, 2, 3] we can get an improved fractional

Hardy inequality for 1 < p <∞ which is stated below.

Let 0 < s < 1, ps < N , 1 < q < p <∞ and Ω ⊂ RN be a bounded domain.

Then we have

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − CN,p,s

∫
RN

|u(x)|p

|x|ps
dx

> C

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
dxdy (4.1.3)

for all functions u ∈ C∞0 (Ω). The constant CN,p,s is the sharp constant in the

fractional Hardy inequality obtained by Frank et al. in [16] and the constant C

is positive and depends on N, q, s and the domain Ω. Unlike in [16] the result is

true for all 1 < p < ∞ and the remainder term here is a p-norm of a fractional

gradient.

In the proof of fractional Hardy inequalities mentioned in (4.1.1), (4.1.2) and

(4.1.3), various properties of the kernel of the form |x − y|−(N+δ) with δ > −N
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play an important role. When it comes to the Dunkl case we use a generalized

kernel Φδ, δ > −dk which is defined in (4.2.1).

4.2 Fractional Sobolev Spaces and Some Auxil-

iary Lemmas

We begin the section by stating three algebraic lemmas which we will use later

to prove the main theorems.

Lemma 4.2.1. [22, P. Lindqvist] For any 1 < p < 2 there exist a positive

constant c depending on p such thar for all a, b ∈ RN we have:

|a|p − |b|p − p|b|p−2〈b, a− b〉 > c
|a− b|2

(|a|+ |b|)2−p

and for p > 2

|a|p − |b|p − p|b|p−2〈b, a− b〉 > |a− b|
2

2p−1 − 1
.

Lemma 4.2.2. [2, B. Abdellaoui, F. Mahmoudi] Let 1 6 p 6 2 and 0 6 t 6 1

and a ∈ R. Then for some positive constant c depending only on p we have the

following inequality:

|a− t|p − (1− t)p−1(|a|p − t) > c
|a− 1|2t

(|a− t|+ |1− t|)2−p .

4.2.1 Weighted Sobolev Spaces

We recall that Φδ with δ 6= −dk given by the integral

Φδ(x, y) :=
1

Γ((dk + δ)/2)

∫ ∞
0

s
dk+δ

2
−1τ ky

(
e−s|.|

2)
(x)ds. (4.2.1)
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If the multiplicity function is identically zero, that is k ≡ 0, then the kernel

Φδ(x, y) reduces to the Euclidean kernel |x − y|−N−δ. From this understanding

we define fractional Sobolev space in the Dunkl setting by using Φδ(x, y).

Let Ω be an open subset of RN containing origin. Let s ∈ (0, 1) and 1 < p <

∞. Then we define the fractional Sobolev space W s,p
k (Ω) with the kernel Φps as

W s,p
k (Ω)

:=
{
u ∈ Lp(Ω, dµk(x)) :

∫∫
Ω×Ω

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y) <∞
}
,

and the norm is given by

‖u‖W s,p
k (Ω) =

(∫
Ω

|u|pdµk(x)

) 1
p

+

(∫∫
Ω×Ω

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

) 1
p

.

Let C∞0 (Ω) be the compactly supported smooth functions on Ω. We define the

Sobolev space W s,p
k,0 (Ω) as the completion of C∞0 (Ω) with the norm ‖.‖W s,p

k (Ω).

Proposition 4.2.3. Let Ω ⊂ RN be open and G-invariant. Let u ∈ W s,p
k (Ω) and

let A ⊂ Ω such that A is compact and u is supported in A. Define an extension

ũ on RN as ũ(x) = u(x) when x ∈ Ω and ũ(x) = 0 when x ∈ RN \ Ω. Then ũ

belongs to W s,p
k (RN) and

‖ũ‖W s,p
k (RN ) 6 C(Ω, A, dk, p, s)‖u‖W s,p

k (Ω).

Proof. By the definition of ũ it is clear that ũ ∈ Lp(RN , dµk(x)). Since Φps is
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symmetric on x and y, we can write

∫
RN

∫
RN
|ũ(x)− ũ(y)|pΦps(x, y)dµk(x)dµk(y)

=

∫
Ω

∫
Ω

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

+ 2

∫
Ω

(∫
RN\Ω

|u(x)|pΦps(x, y)dµk(y)

)
dµk(x). (4.2.2)

Since u ∈ W s,p
k (Ω)

∫
Ω

∫
Ω

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y <∞.

Also u is supported in A and hence for any y ∈ RN \ Ω

|u(x)|pΦps(x, y) = |u(x)|pχA(x)Φps(x, y).

Now by [17, Lemma 2.3]

Φps(x, y) =

∫
RN

(
|x|2 + |y|2 − 2〈y, η〉

)− dk+ps
2
dµxk(η),

where µxk is a probability Borel measure whose support is contained in Co(G),

the convex hull of G-orbit of x in RN (see also [27]). It is easy to see that for any

η ∈ Co(G) (
|x|2 + |y|2 − 2〈y, η〉

) 1
2
> min

σ∈G
|σy − x|.

Using this and the fact that µxk is a probability measure we get

Φps(x, y) 6
(

min
σ∈G
|σy − x|

)−(dk+ps)

.

Since Ω is G-invariant we find that y ∈ RN \ Ω implies σy ∈ RN \ Ω for
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any σ ∈ G. Using the fact that A is compact and and Ω is bounded we have

dist(σy, ∂A) > dist(∂Ω, ∂A) > 0 for all σ ∈ G and y ∈ RN \ Ω.

But minσ∈G |σy − x| > minσ∈G(dist(σy, ∂A)) and hence we can write

∫
Ω

(∫
RN\Ω

|u(x)|pΦps(x, y)dµk(y)

)
dµk(x)

6 ‖u‖pLp(Ω,dµk(x))

∫
RN\Ω

dµk(y)

dist(∂Ω, ∂A)
.

Since dist(∂Ω, ∂A) > 0 and dk + ps > dk the integral

∫
RN\Ω

1

dist(∂Ω, ∂A)
dµk(y)

is finite. Finiteness of the above integral together with (4.2.2) we find that

‖ũ‖W s,p
k (RN ) 6 C(dk, p, s, A,Ω)‖u‖W s,p

k (Ω)

.

For 1 < p <∞ and 0 < β < dk−ps
2

we define the kernel Kβ
p as

Kβ
p (x, y) =

Φps(x, y)

|x|β|y|β
.

We also define the weighted fractional Sobolev space W s,p,β
k (Ω) with 0 ∈ Ω as

W s,p,β
k (Ω)

:=
{
u ∈ Lp(Ω, dµk(x)

|x|2β
) :

∫∫
Ω×Ω

|u(x)− u(y)|pKβ
p (x, y)dµk(x)dµk(y) <∞

}
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endowed with the norm

‖u‖W s,p,β
k (Ω) :=

(∫
Ω

|u(x)|pdµk(x)

|x|2β

) 1
p

+

(∫∫
Ω×Ω

|u(x)− u(y)|pKβ
p (x, y)dµk(x)dµk(y)

) 1
p

.

For 1 < q < p and 0 < β < dk−qs
2

we define the space W s,p,q,β
k (Ω)as follows:

W s,p,q,β
k (Ω)

:=
{
u ∈ Lp(Ω, dµk(x)

|x|2β
) :

∫∫
Ω×Ω

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y) <∞

}
,

where the norm is given by

‖u‖W s,p,q,β
k (Ω) :=

(∫
Ω

|u(x)|pdµk(x)

|x|2β

) 1
p

+

(∫∫
Ω×Ω

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y)

) 1
p

. (4.2.3)

Let us denote W s,p,q,β
k,0 (Ω) be the completion C∞0 (Ω) with respect to the norm of

W s,p,q,β
k (Ω).

Using the similar arguments of Proposition 4.2.3 we can say that, if u ∈

C∞0 (Ω), with a compact support A ⊂ Ω, then there exist an extension function ũ

of u belongs to W s,p,q,β
k,0 (RN) such that

‖ũ‖W s,p,q,β
k (RN ) 6 C‖u‖W s,p,q,β

k (Ω), (4.2.4)

where Ω is G-invariant and C = C(Ω, A, dk, p, q, s) is a positive constant.

If Ω is a bounded domain of RN we can attach W s,p,q,β
k,0 (Ω) with an equivalent
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norm |||.|||W s,p,q,β
k,0

,

|||u|||W s,p,q,β
k,0 (Ω) =

(∫∫
Ω×Ω

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y)

) 1
p

, (4.2.5)

and for positive constants c and C we can write

c|||u|||W s,p,q,β
k,0 (Ω) 6 ‖u‖W s,p,q,β

k (Ω) 6 C|||u|||W s,p,q,β
k,0 (Ω). (4.2.6)

4.2.2 Picone’s inequality

We are going to prove the Picone’s Inequality for the Sobolev space W s,p,q,β
k (Ω).

Now for w ∈ W s,p,q,β
k,0 (RN), we define

L(w)(x) = P.V.

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))Kβ

q (x, y)dµk(x)dµk(y)

and for v, w ∈ W s,p,q,β
k,0 (RN), we have

〈L(w), v〉

=

∫
RN

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))(v(x)− v(y))Kβ

q (x, y)dµk(x)dµk(y).

Theorem 4.2.4. Let Q = RN × RN \ (CΩ × CΩ) and w be a positive function

in W s,p,q,β
k,0 (Ω) with L(w)(x) > 0 for all x in Ω. Then for all u ∈ C∞0 (Ω) the

following inequality holds:

1

2

∫∫
Q

|u(x)− u(y)|pΦqs(x, y)
dµk(x)dµk(y)

|x|β|y|β
> 〈L(w),

|u|p

wp−1
〉.
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Proof. Let v(x) = |u(x)|p
|w(x)|p−1 ,

〈L(w), v〉

=

∫
Ω

v(x)

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))Kβ

q (x, y)dµk(x)dµk(y)

=

∫
Ω

|u(x)|p

|w(x)|p−1

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))Kβ

q (x, y)dµk(x)dµk(y).

Since Kβ
q (x, y) = Kβ

q (y, x), we can write

〈L(w), v〉

=

∫∫
Q

(
|u(x)|p

|w(x)|p−1
− |u(y)|p

|w(y)|p−1

)

|w(x)− w(y)|p−2(w(x)− w(y))Kβ
q (x, y)dµk(x)dµk(y).

Define the function g = u/w and obtain

〈L(w), v〉 =
1

2

(
|g(x)|pw(x)− |g(y)|pw(y)

)
|w(x)− w(y)|p−2(w(x)− w(y))Kβ

q (x, y)dµk(x)dµk(y)

=
1

2

∫∫
Q

[
|u(x)− u(y)|p − φ(x, y)

]
Kβ
q (x, y)dµk(x)dµk(y),

where

φ(x, y) = |u(x)− u(y)|p − (|g(x)|pw(x)− |g(y)|pw(y))|w(x)− w(y)|p−2(w(x)− w(y)).

It is enough to prove φ > 0 to get the desired inequality

〈L(w), v〉 6 1

2

∫∫
Q

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y).
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Since φ is symmetric we can assume that w(x) > w(y). Putting t = w(y)/w(x),

a = u(x)/u(y) and applying the inequality (3.3.8) in Lemma 3.3.3, we see that

φ > 0.

Lemma 4.2.5. Let 0 < β < dk−qs
2

and let 0 < α < dk−qs−2β
p−1

. For w(x) = |x|−α

we have the following equality for a.e. non zero x in RN

L(w) = Λ(α)
wp−1

|x|qs+2β
,

where Λ(α) is a positive constant.

Proof. For w given in the statement, we have

L(w)(x) = P.V.

∫
RN
|w(x)− w(y)|p−2(w(x)− w(y))Kβ

q (x, y)dµk(y).

Let r = |x| and ρ = |y|. Also let x = rx′ and y = ρy′ with x′, y′ ∈ SN−1. With

these setting we can write

L(w)(x) =

∫ ∞
0

∫
SN−1

|r−α − ρ−α|p−2(r−α − ρ−α)Φqs(rx
′ − ρy′)

rβρβ
ρ2λk+1dσk(y

′)dρ.

Let t = ρ/r. Using [17, Lemma 2.3] we have the following properties for Φδ

Φδ(rx
′, ρy′) = r−dk−δΦδ(x

′, ty′)

and

P (t) :=

∫
SN−1

Φqs(x
′, ty′)dσk(y

′) =
Γ(dk

2
)

√
πΓ(dk−1

2
)

∫ π

0

sindk−2θ

(1− 2t cos θ + t2)
dk+qs

2

dθ.

(4.2.7)
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With these properties we can write

L(w)(x) =
r−α(p−1)

r2β+qs

∫ ∞
0

|1− t−α|p−2(1− t−α)t2λk+1−βP (t)dt = Λ(α)
wp−1(x)

|x|2β+qs
,

where Λ(α) =
∫∞

0
ϕ(t)dt with ϕ(t) = |1− t−α|p−2(1− t−α)t2λk+1−βP (t). Now we

need to check the convergence of the integral
∫∞

0
ϕ(t)dt. With t → 1

t
and using

the fact that P (1
t
) = tdk+qsP (1/t) we can write

∫ 1

0

ϕ(t)dt = −
∫ ∞

1

(tα − 1)p−1tβ+ps−1P (t)dt

and with this, Λ(α) becomes

Λ(α) =

∫ ∞
1

(tα − 1)p−1P (t)
(
tdk−1−β−α(p−1) − tβ+qs−1

)
dt. (4.2.8)

Observe that P (t) is similar to 1
tdk+qs

as t tends to ∞ and P (t) is dominated by

a constant multiple of 1
|t−1|1+qs as t tends to 1. Together with this understanding

and using the assumption on α and β, as t→∞ we have

(tα − 1)p−1P (t)
(
tdk−1−β−α(p−1) − tβ+qs−1

)
' 1

t1+β+qs
(4.2.9)

and as t→ 1 we have

(tα − 1)p−1P (t)
(
tdk−1−β−α(p−1) − tβ+qs−1

)
' (t− 1)p−1−qs. (4.2.10)

One can easily see that the similar function written on the right-hand side of

(4.2.9) and (4.2.10) are integrable on the intervals (2,∞) and (1, 2) respectively.
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This gives Λ(α) is finite. Now since 0 < α(p− 1) < dk − qs− 2β,

(
tdk−1−β−α(p−1) − tβ+qs−1

)
> 0

and hence from the expression of Λ(α) in (4.2.8) we conclude Λ(α) > 0.

We have just proved above that under the given assumptions

L(w) = Λ(α)
wp−1

|x|qs+2β
.

Now Picone’s Theorem 4.2.4 for this w gives that

2Λ(α)

∫
RN

|u(x)|p

|x|qs+2β
dµk(x) = 〈L(w),

|u|p

wp−1
〉

6
∫∫

RN×RN

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y). (4.2.11)

Remark 4.2.6. Now choose Ω to be a bounded G-invariant domain containing

origin and let u ∈ C∞0 (Ω). Then as we described earlier we have an extension

function ũ of u ∈ W s,p,q,β
k (Ω). Using (4.2.11) for ũ together with the equations

(4.2.3) and (4.2.4) we find

2Λ(α)

∫
RN

|ũ(x)|p

|x|qs+2β
dµk(x) 6

∫∫
RN×RN

|ũ(x)− ũ(y)|pKβ
q (x, y)dµk(x)dµk(y)

6 ‖ũ‖W s,p,q,β
k (RN ) 6 C‖u‖W s,p,q,β

k (Ω).
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Now by restricting ũ to u and using equations (4.2.5) and (4.2.6), we obtain

2Λ(α)

∫
RN

|u(x)|p

|x|qs+2β
6 C‖u‖W s,p,q,β

k (Ω)

6 C ′|||u|||W s,p,q,β
k,0 (Ω) = C ′

∫∫
Ω×Ω

|u(x)− u(y)|pKβ
q (x, y)dµk(x)dµk(y).

(4.2.12)

4.3 Improved Fractional Hardy Inequality on RN

In this section we give the proof of the Theorem 4.3.2. We start with the following

lemma

Lemma 4.3.1. Fix α = dk−ps
p
, β = dk−ps

2
and let w(x) = |x|−α. Let u ∈ C∞0 (RN)

and define v(x) = u(x)/w(x). Then for all 1 < q < p < ∞ and for a given

positive constant C the following inequality holds:

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y)

> C

∫∫
RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y).

Proof. Let

f1(x, y) := |v(x)− v(y)|pKβ
q (x, y)

=
|w(y)u(x)− w(x)u(y)|p(

w(x)w(y)
) p

2

Φqs(x, y)

=

∣∣∣∣((u(y)− u(x)
)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣∣∣p(w(y)

w(x)

) p
2

Φqs(x, y).
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Observing the symmetry of f1(x, y) we define f2(x, y) in the following way

f2(x, y) :=

∣∣∣∣((u(x)− u(y)
)
− u(x)

w(x)

(
w(y)− w(x)

)∣∣∣∣p(w(x)

w(y)

) p
2

Φqs(x, y).

Now the integral

Hk(v) :=

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y)

can be written as

Hk(v) =
1

2

∫∫
RN×RN

(f1(x, y) + f2(x, y))dµk(x)dµk(y).

Also let

Q(x, y) =

(
w(x)w(y)

) p
2

w(x)p + w(y)p
and D(x, y) =

(
w(x)

w(y)

) p
2

+

(
w(y)

w(x)

) p
2

.

It is clear that Q(x, y) 6 C and Q(x, y)D(x, y) = 1 for all x and y. So for p > 2

we can apply the Lemma 4.2.1 to obtain the following inequality

f1(x, y) > CQ(x, y)

(
w(y)

w(x)

) p
2
[
|u(x)− u(y)|pΦqs(x, y)

− p|u(x)− u(y)|p−2Φqs(x, y)〈u(x)− u(y),
u(y)

w(y)
(w(x)− w(y))〉

+ c(p)| u(y)

w(y)
(w(x)− w(y))|pΦqs(x, y)

]
(4.3.1)
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and for 1 < p < 2, again by using Lemma 4.2.1, we can write

f1(x, y) > CQ(x, y)

(
w(y)

w(x)

) p
2
[
|u(x)− u(y)|pΦqs(x, y)

+ p|u(x)− u(y)|p−2Φqs(x, y)〈u(x)− u(y),
u(y)

w(y)
(w(x)− w(y))〉. (4.3.2)

Now combining equations (4.3.1) and (4.3.2), we can write for 1 < p <∞,

f1(x, y) >

[
CQ(x, y)

(
w(y)

w(x)

) p
2

|u(x)− u(y)|pΦqs(x, y)

]
− pCQ(x, y)

(
w(y)

w(x)

) p
2

|u(x)− u(y)|p−1Φqs(x, y)

∣∣∣∣ u(y)

w(y)

∣∣∣∣|w(x)− w(y)|
]
.

Similarly, we can calculate

f2(x, y) >

[
CQ(x, y)

(
w(x)

w(y)

) p
2

|u(x)− u(y)|pΦqs(x, y)

]
− pCQ(x, y)

(
w(x)

w(y)

) p
2

|u(x)− u(y)|p−1Φqs(x, y)

∣∣∣∣ u(x)

w(x)

∣∣∣∣|w(x)− w(y)|
]
.
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Now by using the estimates of f1 and f2 we obtain

Hk(v) > C

∫∫
RN×RN

Q(x, y

[(
w(y)

w(x)

) p
2

+

(
w(x)

w(y)

) p
2
]

|u(x− u(y))|pΦqs(x, y)dµk(x)dµk(y)

− pC
∫∫

RN×RN

[
Q(x, y)

(
w(y)

w(x)

) p
2

|u(x)− u(y)|p−1

Φqs(x, y)

∣∣∣∣ u(y)

w(y)

∣∣∣∣w(x)− w(y)|
]
dµk(x)dµk(y)

− pC
∫∫

RN×RN

[
Q(x, y)

(
w(x)

w(y)

) p
2

|u(x)− u(y)|p−1

Φqs(x, y)

∣∣∣∣ u(x)

w(x)

∣∣∣∣w(x)− w(y)|
]
dµk(x)dµk(y).

So we have

Hk(v) > C

∫∫
RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y)

− C1

∫∫
RN×RN

(
h1(x, y) + h2(x, y)

)
dµk(x)dµk(y), (4.3.3)

where

h1(x, y) = Q(x, y)

(
w(y)

w(x)

) p
2

|u(x)− u(y)|p−1Φqs(x, y)

∣∣∣∣ u(y)

w(y)

∣∣∣∣|w(x)− w(y)|

and

h2(x, y) = Q(x, y)

(
w(x)

w(y)

) p
2

|u(x)− u(y)|p−1Φqs(x, y)

∣∣∣∣ u(x)

w(x)

∣∣∣∣|w(x)− w(y)|.
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Since h1(x, y) = h2(y, x) we have

∫∫
RN×RN

h1(x, y)dµk(x)dµk(y) =

∫∫
RN×RN

h2(x, y)dµk(x)dµk(y). (4.3.4)

Therefore, it is sufficient to estimate one of the integral. Now by Young’s inequal-

ity we can write

∫∫
RN×RN

h2(x, y)dµk(x)dµk(y) 6 ε

∫∫
RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y)

+ C(ε)

∫∫
RN×RN

G(x, y)dµk(x)dµk(y), (4.3.5)

where

G(x, y) = Q(x, y)p
(
w(x)

w(y)

) p
2
∣∣∣∣ u(x)

w(x)

∣∣∣∣p|w(x)− w(y)|pΦqs(x, y).

The proof will be completed if we can establish

∫∫
RN×RN

G(x, y)dµk(x)dµk(y) 6 C

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y).

(4.3.6)

Let us calculate

∫∫
RN×RN

G(x, y)dµk(x)dµk(y)

=

∫∫
RN×RN

u(x)pw(x)p(p−1)|w(x)− w(y)|p(
w(x)p + w(y)p

)p Φqs(x, y)dµk(x)dµk(y)

=

∫
RN
u(x)p

∫
RN

||x|α − |y|α|p|y|αp(p−1)

(|x|αp + |y|αp)p
Φqs(x, y)dµk(y)dµk(x).

Let |x| = r and |y| = ρ with x = rx′ and y = ρy′. Also write t = ρ/r and
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dσk(y
′) = h2

k(y
′)dσ(y′) with dσ(y′) as the Eulidean surface measure on the sphere

SN−1. Then we have

∫∫
RN×RN

G(x, y)dµk(x)dµk(y)

=

∫
RN
u(x)p

∫ ∞
0

|rα − ρα|pραp(p−1)+2λk+1

(rpα + ρpα)p

∫
SN−1

Φqs(rx
′, ρy′)dσk(y

′)dρdµk(x)

=

∫
RN

u(x)p

|x|qs

∫ ∞
0

|1− tα|ptαp(p−1)+2λk+1

(1 + tαp)p

∫
SN−1

Φqs(x
′, ty′)dσk(y

′)dtdx

= I

∫
RN

u(x)p

|x|qs
dµk(x),

with

I =

∫ ∞
0

|1− tα|ptαp(p−1)+2λk+1

(1 + tαp)p
P (t)dt.

Here we set

P (t) =

∫
SN−1

Φqs(x
′, ty′)dσk(y

′)

and used the property of the kernel Φqs(rx
′, ρy′) = r−dk−qsΦqs(x

′, ty′) (see [17,

Lemma 2.3] for a proof). By proceeding with the similar steps used in Lemma

4.2.5 we get I is finite. Since we chose w(x) = |x|−
dk−ps
p and u = vw we have

∫∫
RN×RN

G(x, y)dµk(x)dµk(y) = I

∫
RN

|v(x)|p

|x|qs+(dk−ps)
dµk(x).

Set β0 = dk−ps
2

< dk−qs
2

and apply (4.2.11) for v, to get

∫∫
RN×RN

G(x, y)dµk(x)dµk(y) 6 C

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y).

(4.3.7)

Thus we proved our claim in (4.3.6). Now by considering the inequalities (4.3.3),
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(4.3.4), (4.3.5) and (4.3.7) we get the desired inequality

∫∫
RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y)

6 C

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y).

Let Ω be a bounded G-invariant domain on RN containing origin. Also let

u ∈ C∞0 (Ω) and ũ be its extension to RN as explained earlier (see Proposition

4.2.3). As u = vw we let the extension of v as ṽ and ũ = ṽw. Now using (4.2.4)

and Lemma 4.3.1 together, we get

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y)

> C

∫∫
RN×RN

|ṽ(x)− ṽ(y)|pKβ
q (x, y)dµk(x)dµk(y)

> C

∫∫
RN×RN

|ũ(x)− ũ(y)|Φqs(x, y)dµk(x)dµk(y)

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y) (4.3.8)

Theorem 4.3.2. Let Ω ⊂ RN be a bounded G-invariant domain. Let 1 < q <

p <∞ and 0 < s < 1. Then for all u ∈ C∞0 (Ω)

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x),

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y), (4.3.9)
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where

Λdk,s,p = 2

∫ 1

0

rps−1|1− r(dk−ps)/p|pΦ(r)dr, (4.3.10)

with

Φ(r) =


Γ(
dk
2

)
√
πΓ(

dk−1)

2
)

∫ π
0

sindk−2 θ

(1−2r cos θ+r2)
dk+ps

2

dθ for N > 2(
τ kr (|.|−dk−ps) + τ k−r(|.|−dk−ps)

)
(1) for N = 1

and C is a positive constant depending on Ω, dk, q and s.

Proof. The main idea of the proof is to show that

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

> C

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y), (4.3.11)

for some positive constant C. Then by using Lemma 4.3.1 we reach the desired

inequality. In order to prove (4.3.11) we need to consider two different cases p > 2

and 1 < p < 2.

Case 1: p > 2

From [5], we have

∫
RN

∫
RN
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Cdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

> cp

∫
RN

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

|x|(dk−ps)/2
dµk(y)

|y|(dk−ps)/2
.

But for Ω ⊂ RN bounded, we have Φps(x, y) > C(Ω)Φqs(x, y) on Ω. Using this
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we can write

∫
RN

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

|x|(dk−ps)/2
dµk(y)

|y|(dk−ps)/2

> C(Ω)

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y)

and it gives the claim given in (4.3.11) for p > 2.

Case 2: 1 < p < 2

We define f1 and f2 same as described in the proof of Lemma 4.3.1. We split the

domain Ω× Ω in accordance with the values of w(x) and w(y) as

D1 = {(x, y) ∈ Ω× Ω : w(y) 6 w(x)} and D2 = {(x, y) ∈ Ω× Ω : w(x) < w(y)}.

(4.3.12)

Now

C(Ω)HΩ(v) :=

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y)

=

∫∫
Ω×Ω

f1(x, y)dµk(x)dµk(y)

=

∫∫
D1

f1(x, y)dµk(x)dµk(y) +

∫∫
D2

f2(x, y)dµk(x)dµk(y)

= I1 + I2.
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We will first estimate the integral in I1. We can write

J1(x, y) :=
∣∣((u(y)− u(x)

)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣p(w(y)

w(x)

) p
2

=

∣∣((u(y)− u(x)
)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣p∣∣u(x)− u(y)
∣∣+
∣∣ u(y)
w(x)

(
w(x)− w(y)

)∣∣(2−p) p2
(
w(y)

w(x)

) p
2

×
∣∣u(x)− u(y)

∣∣+
∣∣ u(y)

w(x)

(
w(x)− w(y)

)∣∣(2−p) p2 .
Now applying the Hölder’s inequality, we obtain

I1 6 I1,1 × I1,2. (4.3.13)

Here we denote

I1,1 =

(∫∫
D1

∣∣((u(y)− u(x)
)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣2∣∣u(x)− u(y)
∣∣+
∣∣ u(y)
w(x)

(
w(x)− w(y)

)∣∣(2−p) w(y)

w(x)
(4.3.14)

Φqs(x, y)dµk(x)dµk(y)

) p
2

and

I1,2 =

(∫∫
D1

∣∣((u(y)− u(x)
)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣p (4.3.15)

Φqs(x, y)dµk(x)dµk(y)

) 2−p
p

.
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From (4.3.8), we get

I
2

2−p
1,2 6 C1

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y)

+

∫∫
Ω×Ω

| u(y)

w(y)
(w(x)− w(y))|pΦqs(x, y)dµk(x)dµk(y)

6
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y) = C(Ω)HΩ(v).

(4.3.16)

Thus we arrive at

I1,2 6 C(Ω)H
2−p
2

(Ω) (v). (4.3.17)

An application of Lemma 4.2.2 with t = w(y)
w(x)

, a = v(x)
v(y)

we find for (x, y) ∈ D1

∣∣((u(y)− u(x)
)
− u(y)

w(y)

(
w(x)− w(y)

)∣∣2∣∣u(x)− u(y)
∣∣+
∣∣ u(y)
w(x)

(
w(x)− w(y)

)∣∣(2−p) w(y)

w(x)
=
w(x)p|v(y)|p|a− 1|2t
(|a− t|+ |1− t|2−p)

6 w(x)p|v(y)|p
(
|a− t|p − (1− t)p−1(|a|p − t)

)
= w(x)p|v(y)|p

(∣∣v(x)

v(y)
− w(y)

w(x)

∣∣p − (1− w(y)

w(x)

)p−1(∣∣v(x)

v(y)

∣∣p − w(y)

w(x)

))
= |u(x)u(y)|p − (w(x)− w(y))p−2(w(x)− w(y))

( |u(x)|p

w(x)p−1
− |u(y)|p

w(y)p−1

)
.

(4.3.18)
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Further using (4.3.16) and (4.3.18) the first integral I1,1 in (4.3.13) becomes

C(Ω)I
2/p
1,1

6
∫∫

RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y)

−
∫∫

RN×RN

( |u(x)|p

w(x)p−1
− |u(y)|p

w(y)p−1

)
|w(x)− w(y)|p−2(w(x)− w(y))Φqs(x, y)dµk(x)dµk(y)

=

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x).

(4.3.19)

This gives that

I1 =

∫∫
D1

f1(x, y)dµk(x)dµk(y)

6 C(Ω)H
2−p
2

Ω (v)×( ∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

) p
2

.

(4.3.20)

The same arguments allow us to write

I2 =

∫∫
D2

f2(x, y)dµk(x)dµk(y)

6 C(Ω)H
2−p
2

Ω (v)×( ∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

) p
2

.

(4.3.21)
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Now put (4.3.20) and (4.3.21) together with the fact C(Ω)HΩ(v) = I1 + I2 to get

HΩ(v) 6 C(Ω)H
2−p
2

Ω (v)( ∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

) p
2

and hence

HΩ(v) 6 C(Ω)

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x).

Now the case 1 and case 2 together provide the claim

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

> C(Ω)

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y). (4.3.22)

for all 1 6 q < p <∞.

The desired inequality

∫∫
RN×RN

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λdk,s,p

∫
RN

|u(x)|p

|x|ps
dµk(x)

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y).

will be established by using (4.3.22) together with Lemma 4.3.1.
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4.4 Hardy Inequality on Half-space

Let R be a root system on RN−1 and k be a multiplicity function from R to

(0,∞). Define the root system R1 on RN
+ as R1 := R × {0}. We use the same

notation G for the corresponding Coxeter group. Also extend the multiplicity

function k to k1 by defining k1(x, 0) = k(x) where x ∈ R. With the root system

R1 and the multiplicity function k1 on RN
+ we can write the kernel Φqs on RN

+

with 1 < q <∞ and 0 < s < 1 as

Φqs(x, y) =
1

Γ((dk1 + qs)/2)

∫ ∞
0

s
dk+qs

2
−1e−s|xN−yN |

2

τ ky′(e
−s|.|2)(x′)ds.

For an element x ∈ RN
+ we write x = (x′, xN) where x′ ∈ RN−1 and xN > 0.

Using the properties of Dunkl translation and gamma function we can perform

the following calculations

∫
RN−1

Φqs(x, y)dµk(y
′)

=
1

Γ((dk1 + qs)/2)

∫
RN−1

∫ ∞
0

s
dk1

+qs

2
−1e−s|xN−yN |

2

τ ky′(e
−s|.|2)(x′)ds dµk(y

′)

=
1

Γ((dk1 + qs)/2)

∫
RN−1

∫ ∞
0

s
dk1

+qs

2
−1e−s(|xN−yN |

2+|x′−y′|2)ds dµk(y
′)

=

∫
RN−1

dµk(y
′)

(|xn − yN |2 + |x′ − y′|2)
dk1

+qs

2

= ‖SN−2‖k
∫ ∞

0

1

(|xN − yN |2 + r2)
dk1

+qs

2

rdk−2dr

= ‖SN−2‖k
1

|xN − yN |1+qs

∫ ∞
0

tdk−2

(1 + t2)
dk1

+qs

2

dt

= ‖SN−2‖k
1

|xN − yN |1+qs

Γ((dk1 − 1)/2)Γ((1 + qs)/2)

Γ((dk1 + qs)/2)
.

(4.4.1)
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Let Ω ⊂ RN
+ be an open G-invariant subset and let w0 ∈ W s,p,q,β

k,0 (Ω). Define

L0(w0)(x) := P.V.

∫
RN+
|w0(x)− w0(y)|p−2(w0(x)− w0)Kβ

q,0(x, y)dµk(x)dµk(y).

Also let Ω ⊂ RN
+ be bounded and we denote Q0 = RN

+ × RN
+ \ (CΩ× CΩ). Then

by the same arguments in the proof of Theorem 4.2.4 we can conclude a Picone’s

inequality for half-space, that is

1

2

∫∫
Q0

|u(x)− u(y)|pΦqs(x, y)
dµk(x)dµk(y)

xβNy
β
N

> 〈L0(w0),
|u|p

wp−1
0

〉, (4.4.2)

for all functions u ∈ C∞0 (Ω) and for all positive function w ∈ W s,p,q,β
k,0 (Ω).

Let 0 < β < 1−qs
2

, 0 < α < 1−qs−2β
p−1

and w0(x) = x−αN . Then for almost every

non zero x ∈ RN we have

L0(w0) = Λ0(α)
wp−1

0

xqs+2β
N

(4.4.3)

for a positive constant Λ0(α). The proof of this can be done with similar steps

of the proof of the Lemma 4.2.5. Denoting r = xN , ρ = yN and using the

calculations in (4.4.1), we get

L0(w0)(x) = ‖SN−2‖k
Γ((dk1 − 1)/2)Γ((1 + qs)/2)

Γ((dk1 + qs)/2)∫ ∞
0

|r−α − ρ−α|p−2(r−α − ρ−α)Φqs(rx
′ − ρy′)

rβρβ|r − ρ|1+qs
dρ.
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Set t = r/ρ,

L0(w0)(x) = ‖SN−2‖k
Γ((dk1 − 1)/2)Γ((1 + qs)/2)

Γ((dk1 + qs)/2)

r−α(p−1)

r2β∫ ∞
0

|1− t−α|p−2(1− t−α)

tβ|1− t|1+qs
dt

= Λ0(α)
wp−1(x)

x2β+qs
N

,

where the constant

Λ0(α) = ‖SN−2‖k
Γ((dk1 − 1)/2)Γ((1 + qs)/2)

Γ((dk1 + qs)/2)

∫ ∞
0

|1− t−α|p−2(1− t−α)

tβ|1− t|1+qs
dt.

It remains to show that Λ0(α) is positive. Splitting the integral in to two domains;

(0, 1) and (1,∞) and use the change of variable t → 1/t on (0, 1) we can write

Λ0(α) as

Λ0(α) =

∫ ∞
1

(tα − 1)p−1

|1− t|1+qs

(
t−β−α(p−1) − tβ+qs−1

)
dt.

A repetition of same arguments in the proof of Lemma 4.2.5 will show that Λ0(α)

is positive.

Use the identity (4.4.3) and the Picone’s inequality for half-space given in

(4.4.2) together to see that

2Λ0(α)

∫
RN+

|u(x)|p

xqs+2β
N

dµk(x) = 〈L0(w0),
|u|p

wp−1
0

〉

6
∫∫

RN+×RN+

|u(x)− u(y)|pKβ
q,0(x, y)dµk(x)dµk(y),

where

Kβ
q,0(x, y) =

Φqs(x, y)

xβNy
β
N

.

Lemma 4.4.1. Fix α = β = 1−ps
p

and let w0(x) = x−αN . Let u ∈ C∞0 (RN) and

148



§4.4. Hardy Inequality on Half-space

define v(x) := u(x)/w(x). Then for all 1 < q < p < ∞ and for a given positive

constant C the following inequality holds

∫∫
RN+×RN+

|v(x)− v(y)|pKβ
q,0(x, y)dµk(x)dµk(y)

> C

∫∫
RN+×RN+

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y).

Proof. We will prove the lemma by following the proof of Lemma 4.3.1. Replacing

K and w by K0 and w0 we can define the functions f1 and f2 as:

f1(x, y) := |v(x)− v(y)|pKβ
q,0(x, y)

=
|w0(y)u(x)− w0(x)u(y)|p(

w0(x)w0(y)
) p

2

Φqs(x, y)

=

∣∣∣∣((u(y)− u(x)
)
− u(y)

w0(y)

(
w0(x)− w0(y)

)∣∣∣∣p(w0(y)

w0(x)

) p
2

Φqs(x, y);

f2(x, y) :=

∣∣∣∣((u(x)− u(y)
)
− u(x)

w0(x)

(
w0(y)− w0(x)

)∣∣∣∣p(w0(x)

w0(y)

) p
2

Φqs(x, y).

Proceeding with similar steps of the proof of Lemma 4.3.1 we arrive at

∫∫
RN+×RN+

G(x, y)dµk(x)dµk(y)

=

∫∫
RN+×RN+

u(x)pw0(x)p(p−1)|w0(x)− w0(y)|p(
w0(x)p + w0(y)p

)p Φqs(x, y)dµk(x)dµk(y)

=

∫
RN+
u(x)p

∫
RN+

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p
Φqs(x, y)dµk(y)dµk(x),

(4.4.4)
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where

G(x, y) = Q(x, y)p
(
w0(x)

w0(y)

) p
2 ∣∣ u(x)

w0(x)

∣∣p|w0(x)− w0(y)|pΦqs(x, y).

By the definition of the root system we can write

Φqs(x, y) =
1

Γ(dk+qs
2

)

∫ ∞
0

s
dk+qs

2
−1e−s|xN−yN |

2

τ k1y′ (e−s|.|
2

)(x′)ds.

Using this and the properties of Dunkl translation(see [38, Proposition 2.4]), the

integral become

∫
RN+

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p
Φqs(x, y)dµk(y)

=
1

Γ(dk+qs
2

)

∫ ∞
0

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p∫
RN−1

∫ ∞
0

s
dk+qs

2
−1e−s|xN−yN |

2

τ k1y′ (e−s|.|
2

)(x′)dsdµk1(y
′)dyN

=
1

Γ(dk+qs
2

)

∫ ∞
0

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p∫
RN−1

∫ ∞
0

s
dk+qs

2
−1e−s|xN−yN |

2+|y′|2dsdµk1(y
′)dyN .

(4.4.5)
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Using the polar coordinates and integrating, we have

∫
RN−1

1

(|xN − yN |2 + |y′|2)
dk+qs

2

dµk(y
′)

= ‖SN−2‖k
∫ ∞

0

1

(|xN − yN |2 + r2)
dk+qs

2

rdk−2dr

= ‖SN−2‖k
1

|xN − yN |1+qs

∫ ∞
0

tdk−2

(1 + t2)
dk+qs

2

dt

= ‖SN−2‖k
1

|xN − yN |1+qs

Γ((dk − 1)/2)Γ((1 + qs)/2)

Γ((dk + qs)/2)
. (4.4.6)

Also by using the gamma function we obtain

1

Γ((dk + qs)/2)

∫ ∞
0

s
dk+qs

2
−1e−s(|xN−yN |

2+|x′−y′|2)ds

=
1

(|xN − yN |2 + |x′ − y′|2)
dk+qs

2

. (4.4.7)

Substitute the equations (4.4.5), (4.4.6) and (4.4.7) in (4.4.4) we get the integral

∫∫
RN+×RN+

G(x, y)dµk(x)dµk(y)

= ‖SN−2‖k
Γ((dk − 1)/2)Γ((1 + qs)/2)

Γ((dk + qs)/2)
.∫

RN+
u(x)p

∫ ∞
0

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p
dyNdµk(x)

|xN − yN |1+qs
.
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Set t = yN/xN , then

∫∫
RN+×RN+

G(x, y)dµk(x)dµk(y)

= ‖SN−2‖k
Γ((dk − 1)/2)Γ((1 + qs)/2)

Γ((dk + qs)/2)∫
RN+
u(x)p

∫ ∞
0

|xαN − yαN |py
αp(p−1)
N

(xαpN + yαpN )p
dyNdµk(x)

|xN − yN |1+qs

= I

∫
RN+

u(x)p

xqsN
dµk(x),

where

I = ‖SN−2‖k
Γ((dk − 1)/2)Γ((1 + qs)/2)

Γ((dk + qs)/2)

∫ ∞
0

|1− tα|ptαp(p−1)+2λk+1

(1 + tαp)p|1− t|1+qs
dt.

Following the similar steps used in proving Lemma 4.2.5 we get

∫∫
RN+×RN+

G(x, y)dµk(x)dµk(y) = I

∫
RN+

|v(x)|p

xqs+1−ps
N

= C

∫∫
RN×RN

|v(x)− v(y)|pKβ
q,0(x, y)dµk(x)dµk(y)

and the inequality (see the proof of Lemma 4.2.5 and the beginning of Section

4.4 for more understanding)

∫∫
RN×RN

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y) 6 C

∫∫
RN×RN

Kβ
q,0(x, y)dµk(x)dµk(y).

Theorem 4.4.2. Let Ω ⊂ RN
+ be a bounded G-invariant domain. Let 1 < q <
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p <∞ and 0 < s < 1. Then for all u ∈ C∞0 (Ω)

∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λ0
dk,s,p

∫
RN+

|u(x)|p

xpsN
dµk(x)

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y), (4.4.8)

where Λ0
dk,s,p

is given as

Λ0
dk,s,p

:= c−1
k1

2−λk1
Γ((1 + ps)/2)

Γ((dk + ps)/2)

∫ 1

0

|1− r(ps−1)/p|p dr

(1− r)1+ps
. (4.4.9)

and C = C(Ω, dk, q, s) is a positive constant.

Proof. We follow the similar steps of the proof of Theorem 4.3.2. As in that case

we have two cases p > 2 and p < 2.

Case 1: p > 2

From [5], we have

∫
RN+

∫
RN+
|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Cdk,s,p

∫
RN+

|u(x)|p

x|psN
dµk(x)

+cp

∫
RN+

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

x
(1−ps)/2
N

dµk(y)

y
(1−ps)/2
N

.

But since Ω ⊂ RN bounded, we have Φps(x, y) > C(Ω)Φqs(x, y) on Ω, and

∫
RN

∫
RN
|v(x)− v(y)|pΦps(x, y)

dµk(x)

x
(dk−ps)/2
N

dµk(y)

y
(dk−ps)/2
N

> C(Ω)

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q,0(x, y)dµk(x)dµk(y).

The proof of Theorem 4.4.2 for p > 2 will be completed by applying Lemma 4.4.1.

Case 2: 1 < p < 2
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Let f1 and f2 be as in the proof of Lemma 4.4.1 and define D1 and D2 as in

(4.3.12) just by replacing w by w0. Now we have

∫∫
D1

f1(x, y)dµk(x)dµk(y) +

∫∫
D2

f2(x, y)dµk(x)dµk(y)

= C(Ω)

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q (x, y)dµk(x)dµk(y) := C(Ω)HΩ,0(v).

A similar calculations from (4.3.13) to (4.3.19) yield

∫∫
D1

f1(x, y)dµk(x)dµk(y)

6 C(Ω)H
2−p
2

Ω,0 (v)( ∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λ0
dk,s,p

∫
RN

|u(x)|p

xpsN
dµk(x)

) p
2

.

(4.4.10)

Similarly for f2

∫∫
D1

f2(x, y)dµk(x)dµk(y)

6 C(Ω)H
2−p
2

Ω,0 (v)( ∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λ0
dk,s,p

∫
RN

|u(x)|p

xpsN
dµk(x)

) p
2

.

(4.4.11)
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Combining (4.4.10) and (4.4.11) we arrive at

HΩ,0(v) 6 C(Ω)

∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)

− Λ0
dk,s,p

∫
RN+

|u(x)|p

xpsN
dµk(x).

Now putting both cases together we can write

∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λ0
dk,s,p

∫
RN+

|u(x)|p

xpsN
dµk(x)

> C(Ω)

∫∫
Ω×Ω

|v(x)− v(y)|pKβ
q,0(x, y)dµk(x)dµk(y). (4.4.12)

Now a direct application of Lemma 4.4.1 and (4.4.12) we get the desired improved

farctional Hardy inequality

∫∫
RN+×RN+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λ0
dk,s,p

∫
RN

|u(x)|p

xpsN
dµk(x)

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y).

By choosing the multiplicity function k ≡ 0 in Theorem 4.4.2 we obtain the

following corollary.

Corollary 4.4.3. Let 0 < s < 1 and ps < N . Also let Ω be a bounded domain of

RN
+ . Then for all 1 < q < p <∞ and for all functions u ∈ C∞0 (Ω) the following
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inequality holds:

∫
RN+

∫
RN+

|u(x)− u(y)|p

|x− y|N+ps
dxdy −DN,p,s

∫
RN+

|u(x)|p

xpsN
dx

> C

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|N+qs
dxdy. (4.4.13)

The constant DN,p,s is sharp and is given by

DN,p,s = cn−1

Γ(1+ps
2

)

Γ(N+ps
2

)

∫ 1

0

|1− r
ps−1
p |p dr

(1− r)1+ps
, (4.4.14)

with cn−1 = 2
N−3

2

∫
RN−1 e

−|x′|2/2dx′. The constant C is positive and depends on

N, q, s and the domain Ω.

4.4.1 Fractional Hardy inequality for cone

Let 1 6 l 6 N and RN
l+
⊂ RN be a cone, that is RN

l+
:= {(x1, x2, ..., xN) ∈ RN :

xN−l+1 > 0, ..., xN > 0}. Let R be a root system on RN−l and k be a multiplicity

function on R. Let R1 := {(x, 0) ∈ RN : x ∈ R} and we can check easily that

R1 is a root system on RN . Similar to the case of half-space we can extend the

multiplicity function k to k1 on R1 by setting k1(x, 0) = k(x) for x ∈ R. Let us

write x ∈ RN as x = (x′, x′′) with x′ ∈ RN−l and x′′ ∈ Rl. By using same method

as in the case of half-space we can obtain a Picone’s inequality and the following

theorem for the cone. Since the proof is very similar to that of Theorem 4.4.2 we

state the main theorem without proof.

Theorem 4.4.4. Let Ω ⊂ RN
l+

be open and bounded and G-invariant. Also let
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1 < p < q <∞. Then for all u ∈ c∞0 (RN
l+

) the following inequality holds:

∫∫
RNl+×R

N
l+

|u(x)− u(y)|pΦps(x, y)dµk(x)dµk(y)− Λl
dk,s,p

∫
RNl+

|u(x)|p

x′′ps

> C

∫∫
Ω×Ω

|u(x)− u(y)|pΦqs(x, y)dµk(x)dµk(y),

where Λl
dk,s,p

is given in [5] as

Λl
dk,s,p

:=
c−1
k 2−λk1Γ((l + ps)/2)

Γ((dk1 + ps)/2)

∫ 1

0

rps−1|1− r(l−ps)/p|pΦ̃l+,s,p(r)dr.

and C = C(Ω, dk, q, s) is a positive constant.
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