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SUMMARY

Let PG(d, q) be the d-dimensional projective space defined over a finite field of

order q. For a nonempty set L of lines of PG(d, q), a set B of points of PG(d, q)

is called an L-blocking set if each line of L meets B in at least one point. An

L-blocking set B in PG(d, q) is said to be minimal if B has no proper subset

which is also an L-blocking set in PG(d, q).

Blocking sets are combinatorial objects in finite geometry with several ap-

plications and have been the subject of investigation by many researchers with

respect to varying sets of lines. The first step in this regard has been to determine

the minimum size of a blocking set and then to characterize, if possible, all block-

ing sets of that cardinality. When L is the set of all lines of PG(d, q), a classical

result by Bose and Burton [13, Theorem 1] says that if B is a blocking set in

PG(d, q) with respect to all its lines, then |B| > (qd − 1)/(q − 1) and equality

holds if and only if B is the point set of a hyperplane of PG(d, q).

In PG(3, q), consider an elliptic quadricQ−(3, q), a hyperbolic quadricQ+(3, q)

and a quadratic cone K with base an irreducible conic in some plane of PG(3, q).

Let Q ∈ {Q−(3, q), Q+(3, q),K}. Every line of PG(3, q) meets Q in either 0, 1, 2

or q + 1 points. A line L of PG(3, q) is called external if |L ∩ Q| = 0, secant if

|L∩Q| = 2, and tangent if |L∩Q| = 1 or q+1. We denote by E , S and T the set

of all lines of PG(3, q) that are external, secant and tangent, respectively, with

respect to Q.
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In this thesis, for Q ∈ {Q−(3, q),K}, we study the minimum size L-blocking

sets in PG(3, q), where the line set L is one of E , T , S, E ∪ T , E ∪ S and T ∪ S.

We note that, when Q = Q+(3, q), the minimum size blocking sets in PG(3, q)

with respect to such line sets have already been characterized in the papers [8, 9,

22, 23, 54, 55, 56], also see [57]. When q = 2 and Q ∈ {Q−(3, 2), Q+(3, 2)}, we

classify all minimal E-blocking sets in PG(3, 2), up to isomorphisms. When q = 3

and Q ∈ {Q−(3, 3), Q+(3, 3)}, we classify all next-to-minimum size E-blocking

sets in PG(3, 3), up to isomorphisms. We also give a characterization of the

secant lines with respect to a hyperbolic quadric in PG(3, q) for odd q > 7 based

on certain combinatorial properties.
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Chapter 1

Preliminaries

In this chapter, we recall the basic definitions and properties of point-line geome-

tries that are needed in the subsequent chapters. We also discuss substructures

like ovals in a finite projective plane, irreducible conics in PG(2, q), and ovoids

and quadrics in PG(3, q).

1.1 Point-line geometries

A point-line geometry is a triple X = (P ,L, I), where P and L are disjoint sets

with P nonempty and I is a subset of P × L such that for every L ∈ L there

are at least two x ∈ P with (x, L) ∈ I. The elements of P and L are called

points and lines of X respectively and the set I is called the incidence relation.

If (x, L) ∈ I, then we say that x is incident with L, or that L is incident with

x. Two distinct points of X are said to be collinear if they are incident with

a common line. We say that two distinct lines of X meet or intersect if they

are incident with a common point. If P is a finite set, then X is called a finite

point-line geometry. If any two distinct points of X are incident with at most

one line, then X is called a partial linear space. If any two distinct points of X

are incident with exactly one line, then X is called a linear space. Clearly, every

linear space is also a partial linear space. All the point-line geometries considered

1



§1.2. Projective planes

in this thesis are partial linear spaces.

Let X = (P ,L, I) be a partial linear space. Every line L ∈ L can be identified

with a unique subset {x ∈ P : (x, L) ∈ I} of P . Then for (x, L) ∈ I, we also say

that x is contained in L, or that L contains x, or that x lies on L, or that L passes

through x. For two distinct collinear points x and y of X , we denote by xy the

unique line of X containing both x and y. A subset S of P is called a subspace

of X if every line that contains at least two points of S has all its point in S.

The intersection of any collection of subspaces of X is again a subspace. For a

subset U of P , define 〈U〉 to be the intersection of all subspaces of X containing

U . Then 〈U〉 is called the subspace of X generated by U . Thus 〈U〉 is the smallest

subspace of X containing U . If 〈U〉 = P , then U is called a generating set of X .

The generating index of X is the minimal size of a generating set of X .

Let X = (P ,L, I) and X ′ = (P ′,L′, I ′) be two partial linear spaces. An

isomorphism from X to X ′ is a bijective map φ from P ∪ L to P ′ ∪ L′ such that

φ(P) = P ′, φ(L) = L′, and (x, L) ∈ I if and only if (φ(x), φ(L)) ∈ I ′. We say

that X and X ′ are isomorphic, denoted by X ∼= X ′, if there is an isomorphism

between X and X ′. Any isomorphism from X to itself is called an automorphism

of X .

Let X = (P ,L, I) be a partial linear space such that every point of X is

contained in at least two lines. Then the (point-line) dual of X is the point-line

geometry XD = (PD,LD, ID), where PD = L, LD = P , and ID ⊆ PD × LD =

L × P such that (L, x) ∈ ID if and only if (x, L) ∈ I for x ∈ P and L ∈ L. We

say that X is self-dual if XD ∼= X .

1.2 Projective planes

A projective plane is a linear space in which any two distinct lines meet at exactly

one point and there exist four points such that no three of them are collinear.

The generating index of a projective plane is three.

2



§1.2. Projective planes

Let X = (P ,L, I) be a projective plane. The point-line dual XD of X is again

a projective plane. For subsets P0 of P and L0 of L, the triple X0 = (P0,L0, I0)

with I0 the restriction of I to P0 × L0 is called a subplane of X if X0 itself is

a projective plane. For every point-line pair (x, L) ∈ P × L, there is a bijective

correspondence between the set of lines of X that are incident with x and the set

of points of X that are incident with L.

Now suppose that X is a finite projective plane. Then there exists a positive

integer n > 2 such that every point of X is contained in exactly n + 1 lines and

every line of X contains exactly n+ 1 points. The integer n is called the order of

X and we have |P| = |L| = n2 + n+ 1.

If X contains a proper subplane X0 of order n0 < n, then either n = n2
0 or

n > n2
0 + n0 (see [31, Theorem 3.7] or [33, Theorem 1.12]). If n = n2

0, then X0 is

called a Baer subplane of X . In that case, the lines of X0 are called Baer lines.

Thus Baer subplanes of X cannot exist unless n is a perfect square. We have that

X0 is a Baer subplane of X if and only if each line of X is incident with at least

one point of X0. If X0 is a Baer subplane of X and x is a point of X but not a

point of X0, then there is exactly one line of X through x that is also a line of

X0 and each of the remaining lines of X through x is incident with exactly one

point of X0, see [14]. We note that every known finite projective plane is of prime

power order.

Ovals

Let X be a finite projective plane of order n. A k-arc in X is a set of k points

such that no three of them are collinear. For every k-arc in X , we have k 6 n+ 1

if n is odd, and k 6 n+ 2 if n is even. Any (n+ 1)-arc in X is called an oval. If n

is even, then any (n+ 2)-arc in X is called a hyperoval. An oval can be obtained

from a hyperoval by removing a point.

Let O be an oval in X . We refer to the book [43] for the basics properties of

3



§1.3. Projective spaces

points and lines of X with respect to O. Every line of X meets O in at most two

points. A line L of X is called external (respectively, tangent, secant) with respect

to O if |L∩O| = 0 (respectively, |L∩O| = 1, |L∩O| = 2). There are n(n+ 1)/2

lines of X secant to O. Every point of O is contained in a unique tangent line and

n secant lines of X . Thus there are exactly n+ 1 lines of X tangent to O and so

the number of external lines to O is n2+n+1−(n+1)−n(n+1)/2 = n(n−1)/2.

First consider the case that n is even. Then all the n + 1 tangent lines of X

with respect to O meet in a unique common point, which is called the nucleus of

O. There is a unique hyperoval in X containing O, and this hyperoval consists of

the points of O and the nucleus of O. Every point of X different from the points

of O and its nucleus is contained in one tangent line, n/2 external lines and n/2

secant lines.

Now consider the case that n is odd. Then every point of X is contained in

at most two tangent lines. We call a point x of X interior (respectively, absolute,

exterior) with respect to O if x is contained in 0 (respectively, 1, 2) tangent lines.

The points of O are precisely the absolute points of X . So there are n+1 absolute

points of X . There are n(n+ 1)/2 exterior points and n(n− 1)/2 interior points

of X . Every exterior point of X is contained in two tangent lines, (n − 1)/2

secant lines and (n − 1)/2 external lines. Every interior point of X is contained

in (n + 1)/2 secant lines and (n + 1)/2 external lines. Every tangent line of

X contains one absolute point and n exterior points. Every external line of X

contains (n + 1)/2 exterior points and (n + 1)/2 interior points. Every secant

line of X contains two absolute points, (n − 1)/2 exterior points and (n − 1)/2

interior points.

1.3 Projective spaces

A linear space X = (P ,L, I) is called a projective space if it satisfies the following

conditions:

4



§1.3. Projective spaces

P1. Every line is incident with at least three points and there are at least two

distinct lines.

P2. Veblen-Young Axiom: If w, x, y, a, b are five mutually distinct points of X

such that the lines ab and xy intersect in a single point w, then the lines

xa and yb also meet in a point.

In a projective space, the geometry induced on a subspace containing at least

two distinct lines is again a projective space. The dimension of a subspace S of

a projective space is defined to be one less than the generating index of S. The

dimension of a projective space is at least two, and equality holds if and only if

it is a projective plane.

Classical projective spaces

Consider a right vector space V of dimension at least three over a division ring K.

Let PG(V ) denote the point-line geometry whose points are the one dimensional

subspaces of V , lines are the two dimensional subspaces of V and incidence is

containment. Then PG(V ) is a projective space of dimension dim(V ) − 1. If V

is of finite dimension d + 1 for some positive integer d > 2, then PG(V ) is of

dimension d and it is denoted by PG(d,K). If K is a finite division ring, then

K is a field by a theorem of Wedderburn and so K is the finite field Fq for some

prime power q. In this case, PG(d,K) will be denoted by PG(d, q). For d = 2,

PG(2, q) is an example of a projective plane, but not every projective plane is of

this form.

Let X = (P ,L, I) be a projective space. Consider a Desargues configuration

(in the sense of [63, Page 73]) x, a1, a2, a3, b1, b2, b3 consisting of seven distinct

points of X , that is, these points satisfy the following two conditions:

(i) the points a1, a2, a3 are not collinear and the points b1, b2, b3 are not collinear

in X ;

5



§1.3. Projective spaces

(ii) the lines a1b1, a2b2, a3b3 are mutually distinct and intersect at the point x.

If the intersection points z12, z13 and z23, where zij := aiaj ∩ bibj for 1 6 i <

j 6 3, are collinear in X for all possible Desargues configurations in X , then

the projective space X is called Desarguesian. Every Desarguesian projective

space is isomorphic to PG(V ) for some right vector space V of dimension at least

three over a division ring. Every projective space of dimension at least three is

Desarguesian. In particular, every finite projective space of dimension d > 3 is

isomorphic to PG(d, q) for some prime power q. However, there are projective

planes which are not isomorphic to PG(2, q).

Consider the projective space PG(d, q) associated with a (d+ 1)-dimensional

vector space V over the field Fq. If U is a (t+ 1)-dimensional vector subspace of

V , then the set of one-dimensional subspaces of U forms a t-dimensional subspace

of PG(d, q). Conversely, if S is a t-dimensional subspace of PG(d, q), then there

exists a (t+ 1)-dimensional vector subspace U of V such that the points of S are

precisely the one-dimensional subspace of U . The points and lines of PG(d, q) are

precisely the subspaces of dimensions 0 and 1, respectively. The 2-dimensional

subspaces of PG(d, q) are called planes and the (d− 1)-dimensional subspaces of

PG(d, q) are called hyperplanes. Each line of PG(d, q) meets every hyperplane.

The number of points in PG(d, q) is equal to (qd+1 − 1)/(q − 1). More generally,

for 0 6 t 6 d, the number of t-dimensional subspaces of PG(d, q) is

(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qt)
(qt+1 − 1)(qt+1 − q) · · · (qt+1 − qt)

.

If T : V −→ V is an invertible linear transformation, then T induces an automor-

phism of PG(d, q) which maps a point 〈v〉 to the point 〈T (v)〉 for v ∈ V \{0}. Such

automorphisms of PG(d, q) are called projective transformations. Two invertible

linear transformations T1 and T2 of V induce the same projective transformation

of PG(d, q) if and only if T2 = αT1 for some nonzero element α ∈ Fq. The group

of all projective transformations of PG(d, q) is denoted by PGL(d+1, q). We say

6



§1.4. Bilinear and quadratic forms

that two point sets in PG(d, q) are projectively equivalent if one of them can be

mapped into the other by an element of PGL(d+ 1, q).

Let PG(d, q)∗ denote the point-line geometry whose points are the (d − 1)-

dimensional subspaces of PG(d, q) (that is, hyperplanes of PG(d, q)), lines are the

(d−2)-dimensional subspaces of PG(d, q) and a point U is incident with a line W

in PG(d, q)∗ if and only if the subspace U contains W in PG(d, q). Then PG(d, q)∗

is a projective space of dimension d. Note that PG(d, q)∗ is also often called the

dual space of PG(d, q). A duality of PG(d, q) is an isomorphism from PG(d, q) to

PG(d, q)∗. A duality φ of PG(d, q) is called a polarity if the permutation of the

set of subspaces of PG(d, q) induced by φ has order 2.

1.4 Bilinear and quadratic forms

Let V be a vector space of finite dimension d + 1 over a field F. A map B :

V ×V −→ F is said to be a bilinear form on V if it is linear in both components,

that is,

(i) B(ū+ λv̄, w̄) = B(ū, w̄) + λB(v̄, w̄);

(ii) B(ū, v̄ + λw̄) = B(ū, v̄) + λB(ū, w̄)

for all ū, v̄, w̄ ∈ V and λ ∈ F.

Let B be a bilinear form on V . The form B is called nondegenerate if ū = 0̄

is the only vector in V for which B(ū, v̄) = 0 for all v̄ ∈ V , equivalently, if

ū = 0̄ is the only vector in V for which B(v̄, ū) = 0 for all v̄ ∈ V . If B is

not nondegenerate, then it is called degenerate. For a subspace W of V , the

set W⊥ := {v̄ ∈ V | B(v̄, w̄) = 0 for all w̄ ∈ W} is a subspace of V . We

have V ⊥ = {0̄} if and only if B is nondegenerate. If B is nondegenerate, then

dimW + dimW⊥ = d + 1 = dimV for every subspace W of V . A subspace W

of V is called totally isotropic if B(x̄, ȳ) = 0 for all x̄, ȳ ∈ W , that is, if W is

contained in W⊥.
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§1.4. Bilinear and quadratic forms

If B(ū, v̄) = B(v̄, ū) for all ū, v̄ ∈ V , then B is called a symmetric form on

V . If B(v̄, v̄) = 0 for all v̄ ∈ V , then B is called an alternating form on V . If

B is an alternating form, then B(v̄, ū) = −B(ū, v̄) for all ū, v̄ ∈ V . If B is a

nondegenerate alternating form on V , then dimV must be even and such a form

is also called a symplectic form on V .

A quadratic form on V is a function Q : V −→ F such that the following two

conditions are satisfied:

(i) Q(λū) = λ2Q(ū) for all ū ∈ V and λ ∈ F.

(ii) The map B : V × V −→ F defined by B(ū, v̄) := Q(ū + v̄) − Q(ū) − Q(v̄)

for ū, v̄ ∈ V is a symmetric bilinear form on V .

Let Q be a quadratic form on V and B be the associated symmetric bilinear

form on V . If V ⊥ ∩ Q−1(0) = {0̄}, then Q is called nondegenerate. Thus Q is

nondegenerate if for every nonzero v̄ ∈ V with Q(v̄) = 0, there exists ū ∈ V with

B(v̄, ū) 6= 0. Clearly, Q is nondegenerate if B is nondegenerate. The converse

is true if the characteristic of F is odd. The converse statement need not be

true if the characteristic of F is two. For example: Let V = F3, where F is

of characteristic 2. The quadratic form Q on V defined by Q(ū) := u20 + u1u2

for ū = (u0, u1, u2) ∈ V is nondegenerate. If B is the symmetric bilinear form

on V associated with Q, then B(ū, v̄) = u1v2 + u2v1 for ū = (u0, u1, u2) and

v̄ = (v0, v1, v2) in V . The form B is degenerate as (1, 0, 0) ∈ V ⊥.

A one-dimensional subspace 〈v̄〉 of V is called singular or nonsingular ac-

cording as Q(v̄) = 0 or not. A subspace W of V is called totally singular

if Q(w̄) = 0 for all w̄ ∈ W . Every totally singular subspace of V is totally

isotropic with respect to B. When F has odd characteristic, the converse is also

true. If Q is nondegenerate and W is a totally singular subspace of V , then

dimW 6 (d+ 1)/2 = dimV/2.

Let Q be the set of points 〈v̄〉, v̄ ∈ V \ {0̄}, of PG(d,F) such that Q(v̄) = 0.

The set Q is called a quadric in PG(d,F) with respect to Q. We say that Q is

8



§1.4. Bilinear and quadratic forms

a nondegenerate quadric in PG(d,F) if Q is a nondegenerate quadratic form on

V . If d = 2 (so that dimV = 3), then the quadric Q in PG(2,F) is called a

conic. Nondegenerate quadrics in PG(2,F) are called irreducible conics. If Q is

a nondegenerate quadric, then the Witt index of Q is the maximum vector space

dimension of a totally singular subspace contained in Q.

If the symmetric bilinear map B on V associated with Q is nondegenerate,

then the map τ : W → W⊥ for subspaces W of V is a polarity of PG(d,F)

as dimV = d + 1 is finite. This polarity τ is called a symplectic polarity or an

orthogonal polarity according as the characteristic of F is even or odd.

Let Q be a quadric in PG(d, q). Then every line of PG(d, q) meets Q in 0, 1, 2

or q + 1 points. A line L of PG(d, q) is called external if |L ∩ Q| = 0, secant if

|L ∩ Q| = 2, and tangent if |L ∩ Q| = 1 or q + 1. A tangent line of PG(d, q)

is called an outer tangent or an inner tangent with respect to Q according as it

meets Q in 1 or q + 1 points.

1.4.1 Irreducible conics in PG(2, q)

Let C be an irreducible conic in PG(2, q). Then C is the set of points 〈(u0, u1, u2)〉

of PG(2, q) satisfying a nonzero homogeneous quadratic polynomial equation

Q(X, Y, Z) = 0 in three variables, where Q(X, Y, Z) ∈ Fq[X, Y, Z] is irreducible.

By a suitable linear change of coordinates, C is equivalent to the conic defined by

XZ − Y 2 = 0. Thus we can write

C = {〈(1, t, t2)〉 : t ∈ Fq} ∪ {〈(0, 0, 1)〉}.

The conic C has q+1 points and no three of them are collinear. Thus C is an oval

in PG(2, q) and hence all the properties of points and lines with respect to an

oval hold true with respect to C as well. If q is odd, then by a result of Segre [58]

the irreducible conics are precisely the ovals in PG(2, q). If q ∈ {2, 4}, then every

oval in PG(2, q) is also an irreducible conic [17, Theorem 4.9]. However, for q > 8

9



§1.4. Bilinear and quadratic forms

even, there are ovals in PG(2, q) which are not irreducible conics [17, Theorem

4.11]. The classification of these ovals is a challenging and ongoing problem.

1.4.2 Quadrics in PG(3, q)

There are two types of nondegenerate quadrics in PG(3, q): (1) Elliptic quadrics

which are of Witt index one, and (2) Hyperbolic quadrics which are of Witt index

two. These are of special interest to us along with degenerate quadratic cones.

We refer to [30] for the basic properties of points, lines and planes of PG(3, q)

with respect to these quadrics.

Elliptic and hyperbolic quadrics

Let V = F4
q be the four-dimensional vector space over Fq and let Q be a nondegen-

erate quadratic form on V . By a linear change of coordinates, Q is given by either

Q(x0, x1, x2, x3) = x0x1 + ax22 + bx2x3 + cx23; or Q(x0, x1, x2, x3) = x0x1 + x2x3

for (x0, x1, x2, x3) ∈ V , where the quadratic polynomial aX2 + bX + c ∈ Fq[X]

is irreducible over Fq. The associated quadratic Q−(3, q) in PG(3, q) is of Witt

index 1 in the first case and is called an elliptic quadric. In the latter case, the

associated quadric Q+(3, q) is of Witt index 2 and is called a hyperbolic quadric.

Let Q−(3, q) be an elliptic quadric in PG(3, q). There are no inner tangent

lines. Then Q−(3, q) contains q2 + 1 points of PG(3, q) and it meets every line

of PG(3, q) in at most two points. Every point of Q−(3, q) is contained in q + 1

tangent lines, this gives (q + 1)(q2 + 1) tangent lines to Q−(3, q). We also have

q2(q2+1)/2 secant lines and then (q2+1)(q2+q+1)−q2(q2+1)/2−(q+1)(q2+1) =

q2(q2 + 1)/2 external lines to Q−(3, q). Every point of Q−(3, q) is contained in

q2 secant lines. Every point of PG(3, q) \ Q−(3, q) is contained in q + 1 tangent

lines, q(q − 1)/2 secant lines and q(q + 1)/2 external lines.

Let Q+(3, q) be a hyperbolic quadric in PG(3, q). Then Q+(3, q) contains

(q + 1)2 points of PG(3, q) and every line of PG(3, q) meets Q+(3, q) in 0, 1, 2

10
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or q + 1 points. Every point of Q+(3, q) is contained in q + 1 tangent lines (out

of which 2 are inner tangents and q − 1 are outer tangents) and q2 secant lines.

Every point of PG(3, q) \Q+(3, q) is contained in q+ 1 outer tangents, q(q+ 1)/2

secant lines and q(q − 1)/2 external lines. There are 2(q + 1) inner tangents,

(q− 1)(q+ 1)2 outer tangents, q2(q+ 1)2/2 secant lines and q2(q− 1)2/2 external

lines to Q+(3, q).

With the quadric Qε(3, q), ε ∈ {−,+}, there is naturally associated a polarity

τ of PG(3, q) which is symplectic if q is even, and orthogonal if q is odd. For a

point x of PG(3, q), the plane xτ is called a tangent or secant plane according as

x is a point of Qε(3, q) or not. For every point x of PG(3, q) \Qε(3, q), the secant

plane xτ intersects Qε(3, q) in an irreducible conic. The map x 7→ xτ ∩ Qε(3, q)

defines a bijection between PG(3, q) \ Qε(3, q) and the set of irreducible conics

contained in Qε(3, q). For every point x of Qε(3, q), the tangent plane xτ intersects

Qε(3, q) at the point x if ε = −, and in the union of the two inner tangents through

x if ε = +. In both cases, the q+ 1 tangent lines through x are precisely the lines

through x contained in xτ .

Suppose that q is odd. Then, for every point x of PG(3, q) \ Qε(3, q), the

secant plane xτ does not contain the point x and the tangent lines through x are

precisely the q + 1 lines through x meeting the conic xτ ∩Qε(3, q).

Suppose that q is even. Then, for every point x of PG(3, q) \ Qε(3, q), the

secant plane xτ contains the point x and the tangent lines contained in xτ are

precisely the q + 1 lines of xτ through x. Thus the point x is the nucleus of the

conic xτ ∩Qε(3, q) in xτ .

Consider the points, lines and planes of PG(3, q) with respect to Q−(3, q).

There are q2 + 1 tangent planes and q3 + q secant planes of PG(3, q) with respect

to Q−(3, q). Every point of Q−(3, q) is contained in one tangent plane and q2 + q

secant planes. Every point of PG(3, q) \ Q−(3, q) is contained in q + 1 tangent

planes and q2 secant planes. Every tangent line is contained in one tangent plane

and q secant planes. Every secant line is contained in q + 1 secant planes. Every

11
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external line is contained in two tangent planes and q − 1 secant planes.

Now, consider the points, lines and planes of PG(3, q) with respect to Q+(3, q).

There are (q+1)2 tangent planes and q3−q secant planes of PG(3, q) with respect

to Q+(3, q). Every point of Q+(3, q) is contained in 2q + 1 tangent planes and

q(q − 1) secant planes. Every point of PG(3, q) \ Q+(3, q) is contained in q + 1

tangent planes and q2 secant planes. Every inner tangent is contained in q + 1

tangent planes, every outer tangent is contained in one tangent plane and q secant

planes, every external line is contained in q + 1 secant planes, and every secant

line is contained in two tangent planes and q − 1 secant planes. Each tangent

plane contains q+1 tangent lines and q2 secant lines. Every secant plane contains

q + 1 tangent lines, q(q+1)
2

secant lines and q(q−1)
2

external lines. Every pencil of

lines in a tangent plane contains 0 or q secant lines. If q is odd, then every pencil

of lines in a secant plane contains q−1
2
, q+1

2
or q secant lines.

1.4.3 Quadratic cones

Let π∗ be a plane in PG(3, q), C be an irreducible conic in π∗ and p∗ be a point

of PG(3, q) \ π∗. A quadratic cone K in PG(3, q) with base C and kernel p∗ is

the set of points on the lines joining p∗ with the points of C. Thus K consists of

the q2 + q + 1 points of PG(3, q) that are contained in the q + 1 lines through

p∗ meeting C. Every line of PG(3, q) intersects K in either 0, 1, 2 or q + 1 points.

There are q3(q + 1)/2 secant lines, q3 + 2q2 + q + 1 tangent lines and q3(q − 1)/2

external lines of PG(3, q) with respect to K.

A plane π of PG(3, q) intersects K either in the point p∗, in a line (through p∗),

in two lines (intersecting at p∗), or in an irreducible conic. If π∩K is an irreducible

conic, then we call π a secant plane. The planes of PG(3, q) not passing through

p∗ are precisely the secant planes, giving in total q3 secant planes of PG(3, q).

There are q2 secant planes through a point of PG(3, q)\{p∗}, and q secant planes

through a line not containing p∗.
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1.5 Ovoids in PG(3, q)

An ovoid in PG(3, q) is a set of q2 + 1 points intersecting each plane in either a

singleton or an oval. For q > 2, the ovoids in PG(3, q) are precisely the subsets of

the point set of PG(3, q) of largest possible size with the property that no three

points of the set are collinear. In PG(3, 2), the complement of a plane is a subset

of size 8 > 22 + 1 in which no three points are collinear, but it is not an ovoid in

PG(3, 2).

Every elliptic quadric in PG(3, q) is an example of an ovoid. In fact, if q is

odd, then every ovoid in PG(3, q) is also an elliptic quadric [5, 47]. If q > 2 is even

and a nonsquare (that is, q = 2t for some odd integer t > 3), then another type of

ovoids in PG(3, q) is known which are called ‘Tits ovoids’, see [30, Section 16.4] for

more on these ovoids. All ovoids in PG(3, q) are classified for q ∈ {2, 4, 8, 16, 32}.

By [27, 44, 45, 46], every ovoid in PG(3, q) is an elliptic quadric if q ∈ {2, 4, 16},

and either an elliptic quadric or a Tits ovoid if q ∈ {8, 32}. However, classifying

all ovoids in PG(3, q) for other even q is still an open problem.

Let O be an ovoid in PG(3, q). If L is a line of PG(3, q), then L meets O in at

most two points. We say that L is an external, tangent or secant line depending

on whether |L ∩ O| is equal to 0, 1 or 2.

Suppose that q is even. Then there is a symplectic polarity τ of PG(3, q)

associated with O [59]. Planes intersecting O in a singleton are called tangent

planes while planes intersecting O in ovals are called secant planes. If x ∈ O,

then xτ is a tangent plane through x and every other plane through x is a secant

plane. Through x, there are q + 1 tangent lines (namely the q + 1 lines of xτ

through x) and q2 secant lines. If x ∈ PG(3, q) \ O, then xτ is a secant plane

intersecting O in q+ 1 points, say y1, y2, . . . , yq+1. The planes yτ1 , y
τ
2 , . . . , y

τ
q+1 are

the q + 1 tangent planes through x, while the remaining q2 planes through x are

secant planes. The point x is contained in precisely q + 1 tangent lines (namely

xy1, xy2, . . . , xyq+1),
q2−q
2

secant lines and q2+q
2

external lines. Also, every external
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line of PG(3, q) with respect to O is contained in two tangent planes and q − 1

secant planes.

1.6 Generalized quadrangles

Let s and t be positive integers. A generalized quadrangle of order (s, t) is a

partial linear space X = (P ,L, I) satisfying the following axioms:

(Q1) Every line of X is incident with s+1 points and every point of X is incident

with t+ 1 lines.

(Q2) For every point-line pair (x, L) with x not incident with L, there exists a

unique line M of X incident with x and intersecting L.

If s = t, then the generalized quadrangle X is said to have order s. See [49] for

background material on generalized quadrangles.

Let X = (P ,L, I) be a generalized quadrangle of order (s, t). Then |P| =

(s + 1)(st + 1) and |L| = (t + 1)(st + 1), see [49, 1.2.1]. A subset O of P such

that every line of X contains exactly one point of O is called an ovoid of X . If X

has an ovoid O, then |O| = st+ 1 (this follows counting in two ways the number

of point-line pairs (x, L), where x ∈ O and L is a line of X containing x).

Two points of X are called collinear if there is a line of X containing them.

For a point set A of X , the set A⊥ consists of all points of X which are collinear

with every point of A. Note that, for a point x, x⊥ := {x}⊥ contains x. For two

distinct points x, y, we have |{x, y}⊥| = s+ 1 or t+ 1 according as x is collinear

with y or not. For two noncollinear points x, y, the set {x, y}⊥⊥ is called the

hyperbolic line defined by x and y.

If P is a subset of the point set of some projective space PG(d, q), L is a

set of lines of PG(d, q), P is the union of all lines in L and I is the incidence

relation induced from PG(d, q), then X is called a projective generalized quadran-

gle. The points and the lines contained in a hyperbolic quadric in PG(3, q) form
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a (projective) generalized quadrangle of order (q, 1). Conversely, any projective

generalized quadrangle of order (q, 1) with ambient space PG(3, q) is a hyperbolic

quadric in PG(3, q), see [49, 4.4.8].

Let V be a 4-dimensional vector space over Fq and B : V × V → Fq be a

symplectic form on V . The map U 7→ U⊥ = {v̄ ∈ V : B(ū, v̄) = 0 for all ū ∈ U}

for subspaces U of V defines a symplectic polarity of PG(3, q). The point-line

geometry whose point set is that of PG(3, q) and line set consisting of all the

totally isotropic lines of PG(3, q) with respect to B is a generalized quadrangle

of order q, denoted by W (q). It has ovoids if and only if q is even, see [49, 3.2.1,

3.4.1]. By Segre [59]: Every ovoid of PG(3, q), q even, is an ovoid of some W (q).

The converse statement is due to Thas [62]: Every ovoid of W (q), q even, is an

ovoid of the ambient space PG(3, q).

1.7 Blocking sets

Let X = (P ,L, I) be a partial linear space and L be a nonempty subset of L. An

L-blocking set in X is a subset B of P such that every line in L is incident with

at least one point of B. An L-blocking set B is said to be minimal if B has no

proper subset which is also an L-blocking set in X . Every L-blocking set in X of

minimum size is a minimal L-blocking set, but the converse need not be true.

When X = PG(d, q), blocking sets in PG(d, q) are combinatorial objects in

finite geometry and have been the subject of investigation by many researchers

with respect to varying sets of lines. The first step in this regard has been to

determine the minimum size of a blocking set and then to characterize, if possible,

all blocking sets of that cardinality. The following classical result was proved by

Bose and Burton in [13, Theorem 1].

Proposition 1.7.1 ([13]). Let L be the set of all lines of PG(d, q). If B is an

L-blocking set in PG(d, q), then |B| > (qd − 1)/(q − 1), and equality holds if and

only if B is the point set of a hyperplane of PG(d, q).
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The above proposition is used frequently in the subsequent chapters while

studying blocking sets in PG(d, q), d ∈ {2, 3}, with respect to certain subsets of

the line set of PG(d, q).

A blocking set in PG(d, q) with respect to all its lines is called nontrivial if

it does not contain any hyperplane of PG(d, q), equivalently, if every hyperplane

of PG(d, q) contains a point outside the blocking set. In view of Proposition

1.7.1, one aspect to the study of blocking sets in PG(d, q) is to characterize the

minimal nontrivial blocking sets in PG(d, q). When d = 2, minimal nontrivial

blocking sets in PG(2, q) have been extensively studied by several authors and

many results are available in the literature, see [10, 37, 51, 52, 61] for example

and the references therein.

The other aspect to the study of blocking sets in PG(d, q) is to characterize

the minimal L-blocking sets in PG(d, q) for proper subsets L of the line set of

PG(d, q). If L is the set of all lines of PG(d, q) which are contained in a given non-

degenerate quadric Q in PG(d, q), then K. Metsch [38, 39, 40, 41, 42] has studied

the minimum size L-blocking sets in PG(d, q). He proved that such blocking sets

can be obtained as sets consisting of the nonsingular points of quadrics H ∩Q for

suitable hyperplanes H of PG(d, q). In this thesis, we investigate the minimum

size blocking sets in PG(3, q) of certain line sets with respect to a quadric in it.

There are several applications of blocking sets in finding solutions of geo-

metrical problems, and problems in other related research areas. The theory of

blocking sets are very useful in the study of the weights of the codewords of a

q-ary linear code Ck(d, q). The authors in [34] used properties of blocking sets

to find upper bounds for the minimum weight of the dual code Ck(d, q)
⊥. Using

the link between blocking sets and the codewords of Ck(d, q), the authors in [35]

computed a gap for the weights of the codewords. In [11], the authors provided

a family of minimal linear codes arising from certain blocking sets. See [50] for

more on applications of blocking sets in finite geometry and other related areas.
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Chapter 2

Blocking sets in PG(2, q)

In this chapter, we recall the known results available in the literature and prove

some new results on blocking sets in PG(2, q), which are needed in the subse-

quent chapters. The following result was proved in [55, Lemma 2.4], also see [9,

Proposition 3.1].

Proposition 2.0.1 ([9, 55]). Let x be a point of PG(2, q) and L be the set of all

lines of PG(2, q) not containing x. If A is an L-blocking set in PG(2, q), then

|A| > q and equality holds if and only if A = L \ {x} for some line L of PG(2, q)

through x.

Let C be an irreducible conic in PG(2, q). If q is even, then n denotes the

nucleus of C. In this chapter, we denote by E , S and T the set of all lines of

PG(2, q) that are external, secant and tangent, respectively, with respect to C.

The minimum size L-blocking sets in PG(2, q), where the line set L is one of E ,

T , S, E ∪ T , E ∪ S and T ∪ S, have been determined by the contributions of

several authors. One can refer to [48] for a brief survey of the results obtained in

this regard.
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2.1 E-blocking sets

The minimum size E-blocking sets in PG(2, q) were characterized by Giulietti in

[29, Theorems 1.1, 1.2] for q even and by Aguglia and Korchmáros in [3, Theorem

1.1] for q odd. When q = 3, it was observed in [22, Theorem 2.1] that one more

possibility occurs.

Proposition 2.1.1 ([3, 22]). If A is an E-blocking set in PG(2, q) with q odd,

then |A| > q − 1 and the following hold for equality case:

(i) For q > 9, |A| = q − 1 if and only if A = L \ C for some secant line L of

PG(2, q).

(ii) For q ∈ {5, 7}, |A| = q − 1 if and only if one of the following two cases

occurs:

(a) A = L \ C for some secant line L of PG(2, q).

(b) A is a suitable set of q − 1 points interior to C.

(iii) For q = 3, |A| = 2 if and only if one of the following two cases occurs:

(a) A = L \ C for some secant line L of PG(2, 3).

(b) A consists of any two interior points to C.

Proposition 2.1.2 ([29]). If A is an E-blocking set in PG(2, q) with q even, then

|A| > q − 1, and equality holds if and only if one of following three cases occurs:

(i) A = L \ C for some secant line L of PG(2, q).

(ii) A = L \ ({n} ∪ C) for some tangent line of PG(2, q).

(iii) q is a square and A = Π\ ({n}∪C), where Π is a Baer subplane of PG(2, q)

containing n such that |Π ∩ C| = √q + 1.

The following is an immediate consequence of Propositions 2.1.1 and 2.1.2.
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Corollary 2.1.3. Let A be an E-blocking set in PG(2, q). If |A| = q − 1, then

A ∩ C = ∅.

2.2 T -blocking sets

If q is even, then the proof of the following proposition is straightforward.

Proposition 2.2.1. Let A be a T -blocking set in PG(2, q), where q is even. Then

|A| > 1, and equality holds if and only if A = {n}.

For q odd, the minimum size T -blocking sets in PG(2, q) were characterized

by Patra et al. in [48, Section 3.1]. They proved the following.

Proposition 2.2.2 ([48]). Let A be a T -blocking set in PG(2, q), where q is odd.

Then |A| > (q + 1)/2, and equality holds if and only if A consists of (q + 1)/2

exterior points to C such that the line through any two distinct points of A is not

tangent to C.

2.3 S-blocking sets

A set of four points in PG(2, q) with the property that no three of them are

collinear is called a quadrangle. Let {x, y, z, w} be a quadrangle in PG(2, q). Then

the three points a, b, c defined by a := xy ∩ zw, b := xz ∩ yw and c := xw ∩ yz

are called the diagonal points of the quadrangle {x, y, z, w}. These three diagonal

points are collinear in PG(2, q) if and only if q is even [36, 9.63, p.501].

The minimum size S-blocking sets in PG(2, q) were studied by Aguglia et al.

in [4, Theorem 1.1] for q even and in [1, Theorem 1.1] for q odd.

Proposition 2.3.1 ([1, 4]). If A is an S-blocking set in PG(2, q), then |A| > q.

Moreover, the following hold:

(1) If q is odd, then |A| = q if and only if |A \ C| ∈ {0, 1, 3} and one of the

following three cases occurs:
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(i) A = C \ {x} for some point x ∈ C.

(ii) A = (C \ {x, y}) ∪ {a} for two points x, y ∈ C, and for some point a

(different from x and y) on the secant line xy to C.

(iii) A = (C \ {w, x, y, z}) ∪ {a, b, c} for some quadrangle {w, x, y, z} ⊆ C

with diagonal points a, b, c.

(2) If q is even and |A| = q, then the points of A \ C are contained in a line of

PG(2, q) which is tangent to C. The set L \ {n} is an S-blocking set of size

q for every tangent line L of PG(2, q).

We note that, for q even, the description of the S-blocking sets in PG(2, q) of

minimum size q is quite different. The statement in Proposition 2.3.1(2) above

was obtained while proving the main result of [4] in Section 2 (see after case

(3) on page 654 of that paper). The following is an immediate consequence of

Proposition 2.3.1.

Corollary 2.3.2. Let A be an S-blocking set in PG(2, q). If |A| = q, then

A∩ C 6= ∅, except when q = 3 and A consists of all the three interior points to C.

2.4 (E ∪ T )-blocking sets

Let L be a secant line of PG(2, q) with respect to C and let L ∩ C = {a, b}. The

pole of L is the intersection point of the two tangent lines through a and b.

The minimum size (E ∪ T )-blocking sets in PG(2, q) were studied by Aguglia

and Giulietti in [1, Theorem 1.2] for q even and by Aguglia and Korchmáros in

[2, theorem 1.1] for q odd.

Proposition 2.4.1 ([1, 2]). Let A be an (E ∪ T )-blocking set in PG(2, q). Then

|A| > q, and equality holds if and only if one of the following three cases occurs:

(i) A = L \ C for some tangent line L of PG(2, q).
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(ii) A = (L \ C)∪{x} for some secant line L of PG(2, q), where x is the pole of

L for q odd, and x = n is the nucleus of C for q even.

(iii) q is a square and A = Π \ (Π ∩ C), where Π is a Baer subplane of PG(2, q)

such that Π ∩ C is an irreducible conic in Π.

The examples mentioned in (i) and (ii) are always (E ∪ T )-blocking sets in

PG(2, q), while this is not always the case for the examples mentioned in (iii).

In (iii), it is therefore implicitly assumed that the Baer subplane Π needs to

be chosen in such a way that A = Π \ (Π ∩ C) is a blocking set, and this is

always possible. We refer to Section 2.7, in particular to Remark 2.7.2, for a

further discussion of this issue. The following is an immediate consequence of

Proposition 2.4.1.

Corollary 2.4.2. Let A be an (E ∪ T )-blocking set in PG(2, q). If |A| = q, then

A ∩ C = ∅.

2.5 (E ∪ S)-blocking sets

The minimum size (E ∪ S)-blocking sets in PG(2, q) were studied by Patra et al.

in [48, Section 3.2]. The following two results were proved in [48, Theorems 3.2

and 3.3].

Proposition 2.5.1 ([48]). Let A be an (E ∪ S)-blocking set in PG(2, q), where q

is even. Then |A| > q, and equality holds if and only if A = L \ {n} for some

tangent line L of PG(2, q).

Proposition 2.5.2 ([48]). Let A be an (E ∪ S)-blocking set in PG(2, q), where q

is odd. Then |A| > 3 for q = 3 and |A| > q+1 for q > 5. Moreover, the following

hold:

(i) For q = 3, |A| = 3 if and only if A consists of all the three interior points

to C.
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(ii) For q = 5, |A| = 6 if and only if one of the following occurs:

(a) A is a line of PG(2, 5).

(b) A = I \ {a1, a2, a3, a4}, where I is the set of interior points to C and

{a1, a2, a3, a4} ⊆ I is a quadrangle such that the line aiaj is external

to C for 1 6 i 6= j 6 4.

(iii) For q > 7, |A| = q + 1 if and only if A is a line of PG(2, q).

2.6 (T ∪ S)-blocking sets

Every (T ∪ S)-blocking set in PG(2, q) is of size at least q+ 1. The conic C itself

and lines of PG(2, q) are (T ∪ S)-blocking sets of size q + 1. Every (T ∪ S)-

blocking set in PG(2, q) of size q+ 1 which is disjoint from C must be an external

line to C. This was proved by Bruen and Thas in [15] for q even and by Segre and

Korchmáros in [60] for all q. We refer to [12] for the description of all (T ∪ S)-

blocking sets in PG(2, q) of size q + 1 that are different from C and the lines of

PG(2, q), also see [48, Section 2.3].

2.7 A new result

We shall need the following result in PG(2, q) while studying the blocking sets of

external and tangent lines with respect to an elliptic quadric in PG(3, q).

Lemma 2.7.1. Let Π be a Baer subplane of PG(2, q), q a square, such that Π∩C

is an irreducible conic in Π. Suppose that A := Π \ (Π∩C) is an (E ∪T )-blocking

set in PG(2, q) of size q. Let L be a line of PG(2, q) that is tangent to C in the

point x. Then the following hold for L:

(i) If x ∈ Π∩C, then L intersects Π in a Baer subline that is tangent to Π∩C

in the point x.
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(ii) If x ∈ C \ Π, then L cannot intersect Π in a Baer subline.

Proof. (i) Suppose x ∈ Π∩C. Then as L meets A = Π\ (Π∩C), it must intersect

Π in a Baer subline and this Baer subline necessarily coincides with the line of Π

that is tangent to Π ∩ C in the point x.

(ii) Suppose x ∈ C \ Π and q is even. Let y1 and y2 be two distinct points of

Π ∩ C. Let Li with i ∈ {1, 2} denote the unique line of PG(2, q) that is tangent

to C in the point yi. By (i), we know that L1 ∩ Π and L2 ∩ Π are two distinct

lines of Π that are tangent to Π ∩ C. So, L1 ∩Π and L2 ∩Π meet in the nucleus

m of the conic C ∩ Π in Π. As m ∈ L1 ∩ L2, the point m is also the nucleus of C

and so m = n. Now, the line L must contain the nucleus n. If L∩Π were a Baer

subline, then L ∩ Π would be a line of Π that is tangent to C ∩ Π in a point y.

As y ∈ L ∩ C, we have x = y, in contradiction with the fact that x 6∈ Π.

Suppose x ∈ C \ Π and q is odd. We choose coordinates such that Π consists

of all points (X1, X2, X3) of PG(2, q) with X1, X2, X3 ∈ F√q and Π ∩ C consists

of all points (X1, X2, X3) of PG(2, q) with X1, X2, X3 ∈ F√q satisfying X2
1 +

X2X3 = 0. Suppose C has equation
∑

16i6j63

aijXiXj = 0 with respect to the

same reference system, where aij ∈ Fq for all i, j ∈ {1, 2, 3} with i 6 j. Since

(1, 1,−1), (1,−1, 1), (0, 1, 0) and (0, 0, 1) belong to C ∩ Π ⊆ C, the equation of

C is of the form a11(X
2
1 + X2X3) + a12(X1X2 + X1X3) = 0, that is, of the form

X2
1 +X2X3 + b(X1X2 +X1X3) = 0 for some b ∈ Fq \ {1,−1} as C is irreducible.

The line K of PG(2, q) that is tangent to C in the point (0, 1, 0) has equation

X3 + bX1 = 0, while the line K of Π that is tangent to Π∩C in the point (0, 1, 0)

has equation X3 = 0. By (i), we know that K ∩Π = K. This implies that b = 0,

that is, C has equation X2
1 +X2X3 = 0 with respect to the same reference system

(but coordinates are in Fq).

Now, suppose that x has coordinates (u1, u2, u3) and that L intersects Π in a
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Baer subline. The line L has equation a1X1 + a2X2 + a3X3 = 0, where
a1

a2

a3

 :=


2 0 0

0 0 1

0 1 0

 ·

u1

u2

u3

 . (2.7.1)

Since L ∩ Π is a Baer subline, (a1, a2, a3) is proportional to a nonzero element

of F3√
q. This implies by (2.7.1) that (u1, u2, u3) is also proportional to a nonzero

element of F3√
q. As this is in contradiction with the fact that x ∈ C \ Π, our

assumption that L intersects Π in a Baer subline was wrong.

Remark 2.7.2. Let Π be a Baer subplane of PG(2, q), q a square, such that Π∩C

is an irreducible conic in Π. Then for q > 16, A := Π \ (Π ∩ C) is always an

(E ∪ T )-blocking set in PG(2, q), while counter examples to that claim exist for

q = 4 and q = 9.

We justify Remark 2.7.2 in the following. As in the proof of Lemma 2.7.1, we

can take a reference system in PG(2, q) with respect to which Π consists of all

points (X1, X2, X3) of PG(2, q) with X1, X2, X3 ∈ F√q and Π ∩ C consists of all

points (X1, X2, X3) of PG(2, q) with X1, X2, X3 ∈ F√q satisfying X2
1 +X2X3 = 0.

Suppose C has equation
∑

16i6j63

aijXiXj = 0 with respect to the same reference

system. The fact that the points (0, 1, 0), (0, 0, 1) and (1, ω,−ω−1) belong to C for

every ω ∈ F√q\{0} then implies that a22 = a33 = 0 and a12ω
2+(a11−a23)ω−a13 =

0 for all ω ∈ F√q \ {0}. For q > 16, this implies that a12 = a13 = 0, a11 = a23 and

so C has equation X2
1 +X2X3 = 0 with respect to the same reference system1. It is

now straightforward to verify that for every point x ∈ Π∩C, we have Kx = Kx∩Π,

where Kx and Kx are the tangent lines of PG(2, q) and Π through x with respect

to C and Π ∩ C, respectively. This property implies that A = Π \ (Π ∩ C) is an

1Another way to see this is as follows. For q > 16, we have |Π ∩ C| =
√
q + 1 > 5. As

there is a unique irreducible conic through any given collection of five points of which no three
are on the same line, we thus see that C coincides with the irreducible conic with equation
X2

1 + X2X3 = 0.
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(E ∪ T )-blocking set in PG(2, q).

For q ∈ {4, 9}, it is possible that C has equation X2
1 + X2X3 + ω(X1X2 +

X1X3) = 0 with ω ∈ Fq \F√q. We can then verify that K 6= K ∩Π, where K and

K are the tangent lines of PG(2, q) and Π through (0, 1, 0) with respect to C and

Π ∩ C, respectively. The line K does not contain any points of A = Π \ (Π ∩ C)

and so A cannot be an (E ∪ T )-blocking set in PG(2, q).

2.8 Extending some results to ovals

Recall that ovals in PG(2, q) with q odd are precisely the irreducible conics. If q

is even and at least 8, then there are ovals in PG(2, q) which are not irreducible

conics, however, they have similar combinatorial properties. In the following

proposition, we extend some of results of the previous sections to arbitrary ovals

in PG(2, q) with q even.

Proposition 2.8.1. Let O be an oval in PG(2, q), q even, and let n be the nucleus

of O. Then the following hold:

(i) If A is a blocking set in PG(2, q) with respect to the external lines to O,

then |A| > q − 1. If |A| = q − 1, then A ∩ (O ∪ {n}) = ∅.

(ii) If A is a blocking set in PG(2, q) with respect to the external and tangent

lines to O, then |A| > q.

(iii) The point sets of size q in PG(2, q) that block all tangent and external lines

to O are precisely the sets of the form A∪{n}, where A is a blocking set in

PG(2, q) of size q − 1 with respect to the external lines to O. In particular,

such sets of points are always disjoint from O.

Proof. (i) It suffices to prove this claim for minimal blocking sets A with respect

to the external lines to O. Since A\(O∪{n}) is also a blocking set in PG(2, q) with

respect to the external lines to O, minimality of A implies that A∩(O∪{n}) = ∅.
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So, every point of A is contained in q
2

external lines. As there are q(q−1)
2

external

lines each containing at least one point of A, the number of points in A is at least

q(q−1)
2

(
q
2

)−1
= q − 1. Hence, |A| > q − 1.

If |A| = q− 1, then A necessarily is a minimal blocking set and by the above,

we then know that A ∩ (O ∪ {n}) = ∅.

(ii) Suppose that |A| 6 q − 1. As A is also a blocking set with respect to the

external lines to O, we know from (i) that |A| = q − 1 and A ∩ (O ∪ {n}) = ∅.

Each point of A is therefore contained in q
2

+ 1 = q+2
2

lines that are external or

tangent to O. In total, there are q(q−1)
2

+ q+ 1 = q2+q+2
2

lines in PG(2, q) that are

external or tangent to O. As each such line contains at least one point of A, we

have |A| > q2+q+2
2
·
(
q+2
2

)−1
> q − 1, a contradiction.

(iii) If A is a blocking set of size q− 1 with respect to the external lines to O,

then A ∪ {n} is a blocking set of size q with respect to the external and tangent

lines to O (as each tangent line contains n). Conversely, suppose A′ is a blocking

set of size q with respect to the external and tangent lines to O. If n 6∈ A′, then

each of the q+1 lines through n is a tangent line containing a point of A′, proving

that |A′| > q + 1, a contradiction. Hence, n ∈ A′. Obviously, A := A′ \ {n} is a

blocking set of size q− 1 with respect to the external lines to O. By (i), we know

that A is disjoint from O. Hence, also A′ = A ∪ {n} is then disjoint from O.
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Chapter 3

Blocking sets in PG(3, q): Elliptic

quadrics

Let Q−(3, q) be an elliptic quadric in PG(3, q) and τ be the associated polarity

of PG(3, q). So τ is symplectic if q is even, and orthogonal if q is odd. In this

chapter, we denote by E , S and T the set of all lines of PG(3, q) that are external,

secant and tangent, respectively, with respect to Q−(3, q). We shall study the

minimum size L-blocking sets in PG(3, q), where the line set L is one of E , T , S,

E ∪ T , E ∪ S and T ∪ S. The contents of this chapter appear in [18] and [19].

All the tangent and secant planes of PG(3, q) considered in this chapter are

with respect to the quadric Q−(3, q). Let L ∈ {E , T ,S, E ∪ T , E ∪S, T ∪S}. For

a plane π of PG(3, q), we denote by Lπ the set consisting of those lines of L that

are contained in π. For a secant plane π of PG(3, q), we shall denote by Cπ the

irreducible conic π ∩ Q−(3, q) in π. In that case, the lines of Lπ are of the same

type with respect to Cπ as that of L with respect to Q−(3, q). Note that if B is

an L-blocking set in PG(3, q) and π is a secant plane of PG(3, q), then the set

Bπ := π ∩B is an Lπ-blocking set in π.
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3.1 S-blocking sets

Let π be a secant plane of PG(3, q). For a given Sπ-blocking set A in π, we define

the set A(π) by

A(π) := A ∪ (Q−(3, q) \ Cπ),

which is a disjoint union. The proof of the following lemma is straightforward.

Lemma 3.1.1. Let π be a secant plane of PG(3, q). If A is an Sπ-blocking set in

π, then A(π) is an S-blocking set in PG(3, q) of size q2 − q + |A|.

In this section, we shall prove the following theorem which characterizes the

minimum size S-blocking sets in PG(3, q).

Theorem 3.1.2. Let B be an S-blocking set in PG(3, q). Then |B| > q2, and

equality holds if and only if B = A(π) for some secant plane π of PG(3, q) and

for some Sπ-blocking set A in π of size q.

As a consequence of Theorem 3.1.2 and Proposition 2.3.1(1), we have the

following.

Corollary 3.1.3. Let B be an S-blocking set in PG(3, q) of minimum size q2.

If q is odd, then |B \ Q−(3, q)| ∈ {0, 1, 3} and one of the following three cases

occurs:

(i) B = Q−(3, q) \ {x} for some point x ∈ Q−(3, q).

(ii) B = (Q−(3, q) \ {x, y})∪{a}, where x, y are two distinct points of Q−(3, q)

and a is a point (different from x, y) on the secant line xy.

(iii) A = (Q−(3, q) \ {w, x, y, z}) ∪ {a, b, c}, where {w, x, y, z} is a quadrangle

contained in Cπ for some secant plane π of PG(3, q) and a, b, c are the three

diagonal points of this quadrangle.
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If π is a secant plane of PG(3, q) and A is an Sπ-blocking set in π of size q,

then Lemma 3.1.1 implies that A(π) is an S-blocking set in PG(3, q) of size q2.

We prove the other parts of Theorem 3.1.2 in the rest of this section. Suppose

that B is an S-blocking set in PG(3, q) of minimum possible size.

3.1.1 General properties

For every point x of Q−(3, q), observe that Q−(3, q) \ {x} is an S-blocking set in

PG(3, q) of size q2. Then the minimality of |B| implies that |B| 6 q2 and hence

Q−(3, q) \B is nonempty.

Lemma 3.1.4. The following hold:

(i) Every secant line through a point of Q−(3, q)\B meets B in a unique point.

(ii) |B| = q2.

Proof. Let w be a point of Q−(3, q) \ B. Each of the q2 secant lines through

w meets B and two distinct such lines meet B at different points. This gives

|B| > q2. Since |B| 6 q2, it follows that both (i) and (ii) hold.

Suppose that B ⊆ Q−(3, q), then |B| = q2 implies that B = Q−(3, q) \ {x}

for some point x of Q−(3, q). Consider a secant plane π through the point x.

Then x ∈ Cπ and A := Cπ \ {x} is an Sπ-blocking set in π of size q. We also have

B = A ∪ (Q−(3, q) \ Cπ) = A(π). This proves Theorem 3.1.2 in this case.

From now on assume that B * Q−(3, q). Then both the sets B \Q−(3, q) and

Q−(3, q) \B are nonempty and we have

|Q−(3, q) \B| = |B \Q−(3, q)|+ 1. (3.1.1)

Lemma 3.1.5. B ∩Q−(3, q) is nonempty.

Proof. Suppose that B ∩ Q−(3, q) is empty. There are q(q − 1)/2 secant lines

through every point of B. We also have |B| = q2 and |S| = q2(q2 + 1)/2. Since
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B is an S-blocking set, counting the cardinality of the set

R = {(x, L) : x ∈ B,L ∈ S, x ∈ L}

in two ways, we get

q2 · q(q − 1)/2 = |R| > |S| · 1 = q2(q2 + 1)/2,

which is not possible. Hence B ∩Q−(3, q) is nonempty.

Corollary 3.1.6. Every secant line through a point of B \Q−(3, q) contains two

points of either B ∩Q−(3, q) or Q−(3, q) \B.

Proof. This follows from Lemma 3.1.4(i).

Lemma 3.1.7. The tangency point of every tangent line through a point of B \

Q−(3, q) is contained in B ∩Q−(3, q).

Proof. Let x be a point of B \ Q−(3, q) and y ∈ Q−(3, q) be the tangency point

of some tangent line through x. We show that y is a point of B ∩Q−(3, q).

Suppose to the contrary that y is a point of Q−(3, q)\B. Then there would go

at least q2 + 1 lines through y each containing a point of B, namely the q2 secant

lines (see Lemma 3.1.4) and the line yx, in contradiction with |B| = q2.

Corollary 3.1.8. Every line joining a point of B \ Q−(3, q) and a point of

Q−(3, q) \B is a secant line which meets Q−(3, q) \B in a second point.

Proof. This follows from Lemma 3.1.7 and Corollary 3.1.6.

Corollary 3.1.9. |Q−(3, q) \B| is even and hence |B \Q−(3, q)| is odd.

Proof. Since B \ Q−(3, q) is nonempty by our assumption, the first part follows

from Corollary 3.1.8. The second part follows from (3.1.1) using the first part.

Lemma 3.1.10. Let L be a secant line containing two points of Q−(3, q) \B. If

π is a secant plane containing L, then Bπ is an Sπ-blocking set in π of size q.
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Proof. Let π = π0, π1, . . . , πq be the q+1 secant planes through L. By Proposition

2.3.1, |Bπi| > q for every i ∈ {0, 1, . . . , q}. We show that |Bπi | = q for each i and

then the lemma will follow from this.

Let |Bπi | = q + si, 0 6 i 6 q, for some nonnegative integer si. We have

|L ∩ B| = 1 by Lemma 3.1.4(i) and πi ∩ πj = L for distinct i, j ∈ {0, 1, . . . , q}.

Since B =
q⋃
i=0

Bπi , we get

q2 = |B| = 1 +

q∑
i=0

(q + si − 1).

This gives
q∑
i=0

si = 0.

Since each si > 0, we must have si = 0 for all i.

3.1.2 The case q even

Lemma 3.1.11. If q is even, then the line through two distinct points of B \

Q−(3, q) is tangent to Q−(3, q).

Proof. Let x, y be two distinct points of B \ Q−(3, q). We show that xy is a

tangent line. Consider a point a ∈ Q−(3, q) \ B. Lemma 3.1.7 implies that the

lines xa and ya are secant to Q−(3, q). Since x, y ∈ B with x 6= y, Lemma 3.1.4(i)

implies that the secant lines xa and ya are distinct. Then, by Corollary 3.1.6,

there exist distinct points b and c of Q−(3, q)\B such that xa∩Q−(3, q) = {a, b}

and ya ∩Q−(3, q) = {a, c}.

Consider the plane π := 〈a, b, c〉 generated by the points a, b, c. Then π is a

secant plane and x, y are points of π. Since a, b ∈ Q−(3, q) \B, applying Lemma

3.1.10 to the secant line xa = ab, we get that Bπ is an Sπ-blocking set in π of

minimum size q. So, by Proposition 2.3.1(2), all the points of Bπ\Cπ are contained

in a common line L which is tangent to Cπ and hence tangent to Q−(3, q). Since
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x, y ∈ Bπ \ Cπ, it follows that the tangent line L contains both x and y.

As a consequence of Lemma 3.1.11, we have the following.

Corollary 3.1.12. If q is even, then any secant line contains at most one point

of B \Q−(3, q).

Lemma 3.1.13. If q is even, then all the points of B \Q−(3, q) are contained in

a common tangent line.

Proof. The statement is clear if |B \ Q−(3, q)| = 1. Since |B \ Q−(3, q)| is odd

by Corollary 3.1.9, we assume that |B \ Q−(3, q)| > 3. By Lemma 3.1.11, it is

enough to show that any three distinct points x, y, z of B \Q−(3, q) are contained

in a line.

By Lemma 3.1.11, xy, xz and yz are tangent lines. Suppose that the line xy

does not contain the point z. Then the plane π generated by the two tangent

lines xy and xz is a secant plane. Since q is even, x must be the nucleus of the

conic Cπ in π and so all tangent lines contained in π meet at x. But the tangent

line yz contained in π does not contain x, a contradiction.

The following proposition proves Theorem 3.1.2 when q is even.

Proposition 3.1.14. If q is even, then B = A(π) for some secant plane π of

PG(3, q) and for some Sπ-blocking set A in π of size q.

Proof. By Lemma 3.1.13, there exists a tangent line T containing all the points

of B \ Q−(3, q). Consider a point x of T which is in B \ Q−(3, q). Let L be a

secant line through x meeting Q−(3, q) \B at two points. Such a line L exists by

Corollary 3.1.8 as Q−(3, q) \ B is nonempty. The plane π generated by the two

intersecting lines T and L is a secant plane of PG(3, q). Applying Lemma 3.1.10

to the secant line L, the set Bπ is an Sπ-blocking set in π of size q.

As every point of B \ Q−(3, q) is contained in A := Bπ, we have B ⊆ A ∪

(Q−(3, q) \ Cπ) = A(π). Since |A(π)| = |A| + q2 − q = q2 = |B|, we see that

B = A(π).
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3.1.3 The case q odd

Lemma 3.1.15. If q is odd, then there is no line of PG(3, q) containing more

than two points of B \Q−(3, q).

Proof. Suppose that L1 is a line of PG(3, q) containing at least three points, say

a, b, c, of B \ Q−(3, q). Let L2 be a secant line through a which contains two

points of Q−(3, q) \B. Such a line L2 exists by Corollary 3.1.8 as Q−(3, q) \B is

nonempty. By Lemma 3.1.4(i), a is the only point of B \ Q−(3, q) contained in

L2. So L1 6= L2. The plane π generated by the two intersecting lines L1 and L2

is a secant plane of PG(3, q). By Lemma 3.1.10, the set Bπ is an Sπ-blocking set

in π of size q. Then |Bπ \ Cπ| 6 3 by Proposition 2.3.1(1). Since the points a, b, c

of L1 are contained in Bπ \ Cπ, we must have Bπ \ Cπ = {a, b, c}.

By Proposition 2.3.1(1)(iii), a, b, c must be the three diagonal points of some

quadrangle contained in Cπ. Then a, b, c can not be contained in any line of π as

q is odd, contradicting that the line L1 of π contains a, b, c.

Lemma 3.1.16. If q is odd, then |Q−(3, q)\B| 6 4 and hence |B \Q−(3, q)| 6 3.

Proof. Suppose that |Q−(3, q) \B| > 4. Then |Q−(3, q) \B| > 6 as |Q−(3, q) \B|

is even by Corollary 3.1.9. Fix a point x of B \Q−(3, q). Let L1, L2, L3 be three

secant lines through x each of which meets Q−(3, q)\B at two points (use Corol-

lary 3.1.8). Set Li ∩ (Q−(3, q) \ B) = {ai, bi} for i ∈ {1, 2, 3}. Since a1, a2, a3

(respectively, b1, b2, b3) are points of Q−(3, q), they are not contained in any line

of PG(3, q). Thus the seven points x, a1, a2, a3, b1, b2, b3 form a Desarguesian con-

figuration. So the three intersection points z12, z13, z23, where a1a2∩ b1b2 = {z12},

a1a3 ∩ b1b3 = {z13} and a2a3 ∩ b2b3 = {z23}, are contained in a line of PG(3, q).

Let πij be the plane generated by the two intersecting lines Li and Lj, where

1 6 i < j 6 3. Then πij is a secant plane and by Lemma 3.1.10, the set Bπij

is an Sπij -blocking set in πij of size q. Since ai, bi, aj, bj are points of Cπij \ Bπij ,

Proposition 2.3.1(1) implies that Cπij \Bπij = {ai, bi, aj, bj} and the set Bπij \Cπij
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consists of the diagonal points of the quadrangle {ai, bi, aj, bj} contained in Cπij .

In particular, the point zij is contained in Bπij \ Cπij and hence in B \ Q−(3, q).

It follows that the three points z12, z13, z23 of B \Q−(3, q) are contained in a line

of PG(3, q), contradicting Lemma 3.1.15.

Hence |Q−(3, q) \B| 6 4 and then (3.1.1) implies that |B \Q−(3, q)| 6 3.

The following proposition proves Theorem 3.1.2 when q is odd.

Proposition 3.1.17. If q is odd, then B = A(π) for some secant plane π of

PG(3, q) and for some Sπ-blocking set A in π of size q.

Proof. We have |B \ Q−(3, q)| ∈ {1, 3} by Lemma 3.1.16 and Corollary 3.1.9.

First assume that |B \ Q−(3, q)| = 1. Then |Q−(3, q) \ B| = 2 by (3.1.1). Let

B \Q−(3, q) = {a} and Q−(3, q) \B = {x, y}. The secant line xy meets B at the

point a. Consider any secant plane π containing the line xy. Then x, y ∈ Cπ and

A := (Cπ \ {x, y}) ∪ {a} is an Sπ-blocking set in π of size q. It can be seen that

B = A ∪ (Q−(3, q) \ Cπ) = A(π).

Now assume that |B \ Q−(3, q)| = 3. Then |Q−(3, q) \ B| = 4 by (3.1.1).

Let B \ Q−(3, q) = {a, b, c} and Q−(3, q) \ B = {w, x, y, z}. Using Corollary

3.1.8, there are exactly two secant lines through a point of B \ Q−(3, q) each of

which meets Q−(3, q) \B at two points. Conversely, any secant line through two

points of Q−(3, q) \B contains a unique point of B \Q−(3, q) by Lemma 3.1.4(i).

Thus the four points w, x, y, z generate a plane π of PG(3, q) which contains the

points a, b, c as well. In fact, a, b, c are the three diagonal points of the quadrangle

{w, x, y, z} contained in the conic Cπ. Then A := (Cπ \ {w, x, y, z}) ∪ {a, b, c} is

an Sπ-blocking set in π of size q. We also have B = A ∪ (Q−(3, q) \ Cπ) = A(π)

in this case.

3.2 E-blocking sets

The following theorem characterizes the minimum size E-blocking sets in PG(3, q).
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Theorem 3.2.1. Let B be an E-blocking set in PG(3, q). Then |B| > q2, and

equality holds if and only if B = π \Q−(3, q) for some secant plane π of PG(3, q).

We note that Biondi et al. studied in [9, Section 3] the E-blocking sets in

PG(3, q) and proved Theorem 3.2.1 in [9, Theorem 3.5], with exception of the

equality case for some small values of q, namely q ∈ {2, 3, 4, 5, 7, 8}. We observed

that their proof also works for all even q, but not for q = 3, 5, 7. By Propositions

2.1.1 and 2.1.2, the minimum size of a blocking set of the external lines with

respect to an irreducible conic in PG(2, q) is q − 1. For q = 3, 5, 7, there are

examples of such blocking sets in PG(2, q) of size q − 1 consisting of interior

points (see Proposition 2.1.1) and the arguments used to prove [9, Theorem 3.5]

does not cover such sporadic examples in the plane case.

In this section, our aim is to give an alternate proof of the equality case in

Theorem 3.2.1 which works for all q, in particular, for q = 3, 5, 7. We implicitly

borrow some of the arguments used in [9, Section 3] for our proof.

Let B be an E-blocking set in PG(3, q) of minimum size. If π is a secant plane,

then π \Q−(3, q) is an E-blocking set of size q2. From the minimality of |B| and

the fact that B \ Q−(3, q) is an E-blocking set, we have that |B| 6 q2 and that

B ∩ Q−(3, q) is empty. Note that if π is a tangent plane, then |Bπ| > q using

Proposition 2.0.1.

A proof of the following lemma can easily be extracted from [9, Proposition

3.4]. A proof is added here for reasons of completeness.

Lemma 3.2.2. Let N1 denote the number of tangent planes intersecting B in

exactly q points. Then N1 > q + 1. If N1 = q + 1, then |B| = q2 and each of the

remaining q2 − q tangent planes meets B in exactly q + 1 points.

Proof. There are q2 +1−N1 tangent planes intersecting B in at least q+1 points

by Proposition 2.0.1. As each point of PG(3, q) \Q−(3, q) is contained in exactly

q+ 1 tangent planes, a double counting of the incident point-tangent plane pairs
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(x, π) with x ∈ B yields

N1 · q + (q2 + 1−N1) · (q + 1) 6 |B| · (q + 1) 6 q2(q + 1),

that is, q+ 1 6 N1. If N1 = q+ 1, then the above implies that |B| = q2 and that

each of the q2 + 1 − N1 = q2 − q tangent planes that meets B in at least q + 1

points meet it in precisely q + 1 points.

In the sequel, let π1, π2, . . . , πk with k > q + 1 be all the tangent planes

intersecting B in precisely q points. Let αi with i ∈ {1, 2, . . . , k} be the tangency

point of πi. By Proposition 2.0.1, there exists a line Ui of πi through αi such that

B ∩ πi = Ui \ {αi}.

Lemma 3.2.3. Any two distinct lines in the collection {U1, U2, . . . , Uk} intersect

in a singleton (outside Q−(3, q)).

Proof. Let i1, i2 ∈ {1, 2, . . . , k} with i1 6= i2. The external line L = πi1 ∩ πi2
intersects B in a singleton {β} which belongs to both Ui1 and Ui2 . Hence Ui1 =

αi1β and Ui2 = αi2β meet in the singleton {β}.

Lemma 3.2.4. We have k = q + 1 and U1, U2, . . . , Uq+1 are the q + 1 tangent

lines contained in a secant plane π∗.

Proof. As {U1, U2, . . . , Uk} is a collection of mutually intersecting lines by Lemma

3.2.3, at least one of the following cases occurs:

(1) the lines U1, U2, . . . , Uk are contained in the same plane π∗;

(2) the lines U1, U2, . . . , Uk go through the same point x∗.

We show that case (1) occurs. Note that if case (2) occurs, then x∗ /∈ Q−(3, q)

by Lemma 3.2.3.

If case (2) occurs with q even, then the tangent lines U1, U2, . . . , Uk are all

contained in the secant plane (x∗)τ through x∗, indeed showing case (1) occurs.
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Suppose that case (2) occurs with q odd. Then the tangent lines through x∗

are the q+1 lines through x∗ containing a point of (x∗)τ ∩Q−(3, q). As k > q+1,

we then have k = q+ 1. As |B ∩ (U1 ∪U2 ∪ . . .∪Uq+1)| = 1 + (q+ 1)(q− 1) = q2

and |B| 6 q2, we must have B = (U1 ∪ U2 ∪ . . . ∪ Uq+1) \ Q−(3, q). But this is

impossible, as any external line contained in the secant plane (x∗)τ would then

be disjoint from B.

Thus, case (1) occurs. As the k > q + 1 tangent lines U1, U2, . . . , Uk are all

contained in the same plane and their tangency points are mutually distinct, we

can conclude that k = q + 1, π∗ is a secant plane and that U1, U2, . . . , Uq+1 are

all the q + 1 tangent lines contained in π∗.

The following is a consequence of Lemmas 3.2.2 and 3.2.4.

Corollary 3.2.5. We have |B| = q2. There are q + 1 tangent planes meeting B

in precisely q points and q2−q tangent planes meeting B in precisely q+1 points.

The following lemma completes the proof of Theorem 3.2.1.

Lemma 3.2.6. Let π∗ be the secant plane as in Lemma 3.2.4. Then B = π∗ \

Q−(3, q).

Proof. For q odd, let Eπ∗ and Iπ∗ denote the set of points of π∗ that are exterior

and interior, respectively, with respect to the conic Cπ∗ . Lemma 3.2.4 implies that

the set of points of B covered by the tangent lines contained in π∗ is precisely

π∗ \ Q−(3, q) if q is even, and Eπ∗ if q is odd. Since |B| = q2 = |π∗ \ Q−(3, q)|,

the lemma follows for even q and it suffices to prove that Iπ∗ ⊆ B for odd q.

Suppose to the contrary that there exists a point x ∈ Iπ∗ which is not con-

tained in B. There are q2+q
2
− q+1

2
= q2−1

2
external lines through x which are not

contained in π∗. Each of these q2−1
2

external lines contains at least one point of

B \ π∗, implying that

|B| = |B ∩ π∗|+ |B \ π∗| > |Eπ∗|+
q2 − 1

2
=
q2 + q

2
+
q2 − 1

2
= q2 +

q − 1

2
,
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in contradiction with |B| = q2.

3.3 (T ∪ S)-blocking sets

We prove the following theorem which characterizes the minimum size (T ∪ S)-

blocking sets in PG(3, q).

Theorem 3.3.1. Let B be a (T ∪S)-blocking set in PG(3, q). Then |B| > q2 + 1

and equality holds if and only if B = Q−(3, q).

Proof. Consider B to be a (T ∪ S)-blocking set in PG(3, q) of minimum possible

size. Since the quadric Q−(3, q) contains q2 + 1 points and it blocks the tangent

and secant lines, the minimality of |B| implies that |B| 6 |Q−(3, q)| = q2 +1. We

assert that B = Q−(3, q). It is enough to show that Q−(3, q) ⊆ B.

Suppose that there exists a point x of Q−(3, q) which is not in B. Each line

through x in PG(3, q) is either tangent or secant to Q−(3, q). Since x /∈ B and

B is a (T ∪ S)-blocking set, the q2 + q + 1 lines of PG(3, q) through x would

meet B at different points. This gives |B| > q2 + q + 1, a contradiction to that

|B| 6 q2 + 1. Thus Q−(3, q) ⊆ B.

3.4 (E ∪ S)-blocking sets

In this section, we shall prove the following theorem which characterizes the

minimum size (E ∪ S)-blocking sets in PG(3, q).

Theorem 3.4.1. Let B be an (E∪S)-blocking set in PG(3, q). Then the following

hold:

(i) If q = 2, then |B| > 6 and equality holds if and only if B = L∪Lτ for some

line L secant to Q−(3, q).

(ii) If q > 3, then |B| > q2 + q+ 1 and equality holds if and only if B is a plane

of PG(3, q).
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When q > 4 is even, Theorem 3.4.1(ii) can also be seen from [56, Theorem

1.3] which was proved using properties of the symplectic generalized quadrangle

W (q) of order q. Here we give a different proof which works for all q.

The rest of this section is devoted to prove Theorem 3.4.1. Note that if π is

a tangent plane, then there is no secant line in (E ∪ S)π. If π is a secant plane,

then (E ∪ S)π is precisely the set of external and secant lines with respect to the

conic Cπ = π ∩Q−(3, q) in π.

Suppose that B is a minimum size (E ∪ S)-blocking set in PG(3, q). Then

|B| 6 q2 + q + 1, as each plane blocks every line of PG(3, q). For every plane π,

the set Bπ = π ∩B is an (E ∪ S)π-blocking set in π.

We first prove two results for q even, which are needed to show that any secant

plane contains at least q+ 1 points of B for q > 4. Recall that, if q is even and x

is a point of PG(3, q) \Q−(3, q), then x is a point of the secant plane xτ . In fact,

x is the nucleus of the conic Cxτ in the plane xτ , in particular, xτ is precisely the

union of the q + 1 tangent lines through x.

Lemma 3.4.2. Suppose that q is even. Let L be a tangent line through a point

y /∈ B. Then |Bxτ | > q for every point x of L \ {y} and the points of Bxτ are

different from those of L ∩B.

Proof. Let M be a line through y in xτ which is different from L. If x is a point

of Q−(3, q), then xτ is a tangent plane and so the line M is external to Q−(3, q).

If x 6∈ Q−(3, q), then x is the nucleus of the conic Cxτ in xτ , implying that L = xy

is the unique tangent line of xτ through y and that M is either a secant or an

external line. In all cases, each such line M must meet B. Since y /∈ B and there

are q possible choices for M , it follows that |Bxτ | > q and the points of Bxτ are

different from those of L ∩B.

Lemma 3.4.3. Suppose that q is even and let x be a point of B∩Q−(3, q). If there

exists a tangent line L through x with |L∩B| = q, then every tangent line through

x contains at least q points of B. In particular, |Bxτ | > 1 + (q + 1)(q − 1) = q2.
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Proof. Let M be a tangent line through x different from L. Since L has a point

not in B, Lemma 3.4.2 implies that the tangent plane xτ through L contains at

least 2q points of B. Note that xτ is also the tangent plane through M .

Suppose that |M ∩B| 6 q− 1. Then M has at least two points which are not

in B. Applying Lemma 3.4.2 carefully to the tangent line M , it follows that each

of the q secant planes zτ , z ∈ M \ {x}, through M contains at least q points of

B which are different from those of M ∩ B. Counting the points of B contained

in the q + 1 planes through M , we get

|B| > 2q + q2 > q2 + q + 1,

which is a contradiction to the fact that |B| 6 q2 + q + 1. So |M ∩B| > q.

Lemma 3.4.4. Let π be a plane of PG(3, q). Then the following hold:

(i) Suppose that π is a tangent plane. Then |Bπ| > q and equality holds if

and only if Bπ = L \ {x} for some tangent line L through x, where {x} =

π ∩Q−(3, q).

(ii) Suppose that π is a secant plane. Then |Bπ| > q. Further, if q > 4, then

|Bπ| > q + 1.

Proof. (i) Since π is a tangent plane, (E ∪ S)π is precisely the set of all lines of π

not containing the point x. Then (i) follows from Proposition 2.0.1.

(ii) Here Bπ is an (E ∪ S)π-blocking set in π. The first part for all q and the

second part for odd q > 5 follow from Propositions 2.5.1 and 2.5.2.

Assume that q > 4 is even. Let π = xτ for some point x of PG(3, q) \

Q−(3, q). We have |Bxτ | > q by Proposition 2.5.1. Suppose that |Bxτ | = q.

Note that (E ∪ S)xτ is precisely the set of lines in xτ not containing x. Then, by

Proposition 2.5.1 again, Bxτ = L \ {x} for some tangent line L through x. Let

L = {x0, x1, · · · , xq−1, xq = x} with tangency point x0 ∈ Q−(3, q). By Lemma

3.4.2, each of the secant planes xτi , 1 6 i 6 q − 1, through L contains at least
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q points of B which are different from those of L ∩ B. Also we have |Bxτ0
| > q2

for the tangent plane xτ0 by Lemma 3.4.3. Counting the points of B contained in

the q planes xτi through L for i ∈ {0, 1, . . . , q− 1} and using our assumption that

q > 4, we get

|B| > q2 + (q − 1)q > q2 + q + 1,

which is a contradiction to the fact that |B| 6 q2+q+1. Hence |Bxτ | > q+1.

Corollary 3.4.5. |B| > q2 + q.

Proof. If every tangent line meets B, then B would be a blocking set with respect

to all lines of PG(3, q) and hence we must have |B| > q2 + q + 1 by Proposition

1.7.1. Suppose that there is a tangent line L which is disjoint from B. Count the

points of B contained in the q + 1 planes through L. Since L ∩ B = ∅, we get

|B| > (q + 1)q = q2 + q using Lemma 3.4.4.

The following proposition proves Theorem 3.4.1 when q > 4.

Proposition 3.4.6. If q > 4, then |B| = q2 + q+ 1 and B is a plane of PG(3, q).

Proof. By Proposition 1.7.1, it is enough to show that every tangent line meets

B. Suppose that there exists a tangent line L which is disjoint from B. Count the

points of B contained in the q + 1 planes through L. There is one tangent plane

and q secant planes containing L. Using the assumption that q > 4, Lemma 3.4.4

implies that

|B| > q + q(q + 1) = q2 + 2q > q2 + q + 1,

which is a contradiction to the fact that |B| 6 q2 + q + 1. Hence every tangent

line meets B.

The following proposition proves Theorem 3.4.1 for q = 2.

Proposition 3.4.7. If q = 2, then |B| = 6 and B = L ∪ Lτ for some line L

secant to Q−(3, q).
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Proof. By Corollary 3.4.5, we have |B| > 6. Let L be a secant line of PG(3, 2)

and L ∩ Q−(3, 2) = {u, v}. Then Lτ is an external line which is common to the

two tangent planes uτ and vτ . If w is the third point of L, then Lτ is the unique

external line contained in the secant plane wτ . If M is a secant line not containing

u and v, then M contains two points of Cwτ = Q−(3, 2) \ {u, v} and so is a line of

wτ . In the plane wτ , the lines M and Lτ meet. If M is an external line, then M

meets the plane wτ in at least one point of {w}∪Lτ . It follows that L∪Lτ is an

(E ∪S)-blocking set in PG(3, 2) of size 6. Thus |B| = 6 by the minimality of |B|.

Conversely, let B be an (E ∪ S)-blocking set in PG(3, 2) of size 6. Since B \

Q−(3, 2) is an E-blocking set in PG(3, 2), we have |B \Q−(3, 2)| > 4 by Theorem

3.2.1. There are 10 secant lines to Q−(3, 2), and every point of PG(3, 2)\Q−(3, 2)

is contained in a unique secant line. If |B \Q−(3, 2)| = 6 and B ∩Q−(3, 2) = ∅,

then B blocks precisely 6 secant lines. If |B\Q−(3, 2)| = 5 and |B∩Q−(3, 2)| = 1,

then B blocks at most 5 + 4 = 9 secant lines. So we must have |B \Q−(3, 2)| = 4

and |B ∩Q−(3, 2)| = 2. Hence B \Q−(3, 2) = π \Q−(3, 2) for some secant plane

π of PG(3, 2) by Theorem 3.2.1. Let B ∩ Q−(3, 2) = {x, y}. Since |B| = 6 and

B blocks all secant lines, it can be seen that Q−(3, 2) \ Cπ = {x, y}. The secant

line L = xy meets the plane π in the nucleus of Cπ and Lτ is precisely the unique

external line contained in π. It follows that B = L ∪ Lτ .

In the rest of this section, we prove Theorem 3.4.1 for q = 3.

Lemma 3.4.8. If q = 3, then |B| = 13.

Proof. We have |B| 6 13 and by Corollary 3.4.5, |B| > 12. Suppose that |B| =

12. Then Proposition 1.7.1 implies that there exists a tangent line L of PG(3, 3)

which is disjoint from B. By Lemma 3.4.4, each of the four planes through L

contains at least three points of B. Since L∩B = ∅ and |B| = 12, it follows that

each plane through L contains exactly three points of B. Clearly, the points of

B contained in the tangent plane through L are outside Q−(3, 3). Proposition
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2.5.2(i) implies that the points of B contained in a secant plane through L are

also outside Q−(3, 3). Thus B is disjoint from Q−(3, 3).

There are three secant lines through each point of B, giving that B blocks at

most 36 secant lines. But there are 45 lines which are secant to Q−(3, 3). It follows

that B does not block all the secant lines, a contradiction. Hence |B| = 13.

Lemma 3.4.9. Suppose that q = 3. If |B ∩ Q−(3, 3)| = 1, then B is a tangent

plane.

Proof. Since |B| = 13 by Lemma 3.4.8 and |B ∩ Q−(3, 3)| = 1, we have |B \

Q−(3, 3)| = 12. There are three secant lines through each point of B \Q−(3, 3),

implying that the points of B \Q−(3, 3) block at most 36 secant lines. There are

nine secant lines through the point of B∩Q−(3, 3). Since B blocks each of the 45

secant lines, it follows that each secant line contains exactly one point of B. Thus,

if B ∩ Q−(3, 3) = {x}, then none of the secant lines through x contains a point

of B \ Q−(3, 3). This is equivalent to saying that the 12 points of B \ Q−(3, 3)

are contained in the tangent lines through x. It follows that B coincides with the

tangent plane xτ .

Lemma 3.4.10. Suppose that q = 3. If B∩Q−(3, 3) contains exactly two points,

say x1, x2, then every tangent line that is disjoint from B meets x1x2 \ {x1, x2}.

Proof. Let K be a tangent line which is disjoint from B. Suppose that K does not

meet x1x2 \ {x1, x2}. Then the planes π1 = 〈K, x1〉 and π2 = 〈K, x2〉 are distinct

secant planes through K. Now, for every i ∈ {1, 2}, Bπi is an (E ∪ S)πi-blocking

set in πi containing the point xi ∈ Cπi . By Proposition 2.5.2, we then know that

|Bπi | > 4. Each of the two remaining planes π3, π4 through K distinct from π1, π2

contains at least three points of B by Lemma 3.4.4. As B ∩ K = ∅, we have

|B| =
∑4

i=1 |Bπi | > 4 + 4 + 3 + 3 = 14, in contradiction with |B| = 13.

Proposition 3.4.11. If q = 3, then B is a plane of PG(3, q).
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Proof. We have |B| = 13 by Lemma 3.4.8. There are three secant lines through

a point of PG(3, 3) \ Q−(3, 3). If B is disjoint from Q−(3, 3), then |B| = 13

implies that B blocks at most 39 secant lines. Since there are 45 lines which are

secant to Q−(3, 3), it would follow that B does not block all the secant lines. So,

|B \Q−(3, 3)| 6 12.

We show that every tangent line meets B. Then |B| = 13 and Proposition

1.7.1 would imply that B is a plane.

On the contrary suppose that there exists a tangent line L of PG(3, 3) which

is disjoint from B. Let π0, π1, π2, π3 be the four planes of PG(3, 3) through L,

where π0 is the tangent plane and the other three are secant planes. By Lemma

3.4.4, |Bπi | > 3 for each i ∈ {0, 1, 2, 3}. Since L ∩ B = ∅ and |B| = 13, it follows

that exactly one of planes πi contains 4 points of B and each of the remaining

three planes contains 3 points of B. By Proposition 2.5.2(i), if πi contains exactly

three points of B for some i ∈ {1, 2, 3}, then Bπi is disjoint from Q−(3, 3). Since

|B \Q−(3, 3)| 6 12 and the points of Bπ0 are outside Q−(3, 3), it follows that we

must have |Bπ0 | = 3.

Without loss of generality, we may assume that |Bπ1| = 4, |Bπ2| = 3 and

|Bπ3| = 3. Since Bπ1 \ Cπ1 is an Eπ1-blocking set in π1, we have |Bπ1 \ Cπ1| > 2 by

Proposition 2.1.1. Since |B \ Q−(3, 3)| 6 12, the set B ∩ Q−(3, 3) = B ∩ Cπ1 =

Bπ1 ∩ Cπ1 is nonempty. So |Bπ1 \ Cπ1| 6 3. Thus |Bπ1 \ Cπ1| ∈ {2, 3}.

If |Bπ1 \Cπ1| = 3, then |B \Q−(3, 3)| = 12 and |B∩Q−(3, 3)| = 1. In this case,

Lemma 3.4.9 implies that B is a tangent plane which is not possible as L∩B = ∅.

Thus |Bπ1 \ Cπ1| = 2. Then |B \ Q−(3, 3)| = 11 and |B ∩ Q−(3, 3)| = 2. Put

B ∩Q−(3, 3) = {x1, x2}.

Since L is disjoint from B, Lemma 3.4.10 implies that L meets x1x2 \ {x1, x2}

in a singleton. Denote by α the tangency point of L in Q−(3, 3). Note that

Bπ0 is an Eπ0-blocking set of size 3 in π0. By Proposition 2.0.1, we then know

that Bπ0 = U \ {α} for some line U of π0 through α distinct from L. If we

denote by K a line of π0 through α distinct from L and U , then K is another
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tangent line disjoint from B. By Lemma 3.4.10 again, we then know that K

meets x1x2 \ {x1, x2}. But that is impossible: as π0 ∩ x1x2 = L ∩ x1x2, L is the

unique line through α in π0 that meets x1x2.

3.5 (T ∪ E)-blocking sets

In this section, we shall prove the following theorem which characterizes the

minimum size (T ∪ E)-blocking sets in PG(3, q).

Theorem 3.5.1. Let B be a (T ∪E)-blocking set in PG(3, q). Then |B| > q2 + q,

and equality holds if and only if B = xτ \ {x} for some point x of Q−(3, q).

3.5.1 Basic properties

Let B be a (T ∪ E)-blocking set in PG(3, q) and π be a plane of PG(3, q). If π

is a tangent plane, then it does not contain any line of PG(3, q) that is secant

to Q−(3, q) and so (T ∪ E)π is the set of all lines of π. In that case, Proposition

1.7.1 (with d = 2) implies that |Bπ| > q + 1, and equality holds if and only if Bπ

is a line of π. If π is a secant plane, then |Bπ| > q by Proposition 2.4.1. We thus

have the following.

Lemma 3.5.2. Let B be a (T ∪ E)-blocking set in PG(3, q) and π be a plane of

PG(3, q). Then the following hold:

(i) If π is a secant plane, then |Bπ| > q.

(ii) If π is a tangent plane, then |Bπ| > q + 1 and equality holds if and only if

Bπ is a line of π.

Now let B be a (T ∪ E)-blocking set in PG(3, q) of minimum cardinality. For

any point x of Q−(3, q), it is clear that the point set xτ \ {x} blocks every line of

T ∪E and so is a (T ∪E)-blocking set in PG(3, q) of size q2 + q. Then minimality

of |B| implies that |B| 6 q2 + q.
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Lemma 3.5.3. The following hold:

(i) There exists a secant line of PG(3, q) that is disjoint from B. If L is such a

secant line, then each of the q+1 (secant) planes through L contains exactly

q points of B.

(ii) |B| = q2 + q and B ∩Q−(3, q) = ∅.

Proof. Since |B| 6 q2 + q, Proposition 1.7.1 implies that there exists a secant

line L of PG(3, q) that is disjoint from B. Each plane through L, being a secant

plane, contains at least q points of B by Lemma 3.5.2(i). Since L is disjoint from

B, the q + 1 secant planes through L together contain at least q2 + q points of

B. It follows that |B| = q2 + q and that each secant plane through L contains

exactly q points of B.

For a given secant plane π through L, |Bπ| = q implies that Bπ is disjoint

from the conic Cπ in π by Corollary 2.4.2. Since B is a disjoint union of the sets

Bπ, and Q−(3, q) is the union of the conics Cπ as π runs over all the secant planes

through L, it follows that B is disjoint from Q−(3, q).

Lemma 3.5.4. If π is a tangent plane with |Bπ| = q + 1, then Bπ is an external

line.

Proof. By Lemma 3.5.2(ii), Bπ is a line of π. Since B is disjoint from Q−(3, q)

by Lemma 3.5.3(ii), it follows that Bπ is an external line.

Lemma 3.5.5. There are at least two tangent planes each containing q+1 points

of B.

Proof. By Lemma 3.5.2(ii), every tangent plane contains at least q + 1 points of

B. Let a be the number of tangent planes containing exactly q + 1 points of B.

Consider the set

Y = {(x, π) : x ∈ B, π is a tangent plane containing x}.
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Every point of PG(3, q) \ Q−(3, q) is contained in q + 1 tangent planes. Using

Lemma 3.5.3(ii), we count |Y | in two ways to get

(q2 + q)(q + 1) = |B|(q + 1) = |Y | > a(q + 1) + (q2 + 1− a)(q + 2).

This gives a > 2.

Lemma 3.5.6. If π1 and π2 are two distinct tangent planes with |Bπ1| = q+ 1 =

|Bπ2|, then the external lines Bπ1 and Bπ2 are either equal or meet in a point.

Proof. The external line π1∩π2 of π2 contains a point of the line Bπ2 . This point

of B lies in π1 and hence is contained in Bπ1 . So, the lines Bπ1 and Bπ2 meet.

Lemma 3.5.7. For every external line L, there are at most two tangent planes

xτ , x ∈ Q−(3, q), such that Bxτ = L.

Proof. This follows from the fact that there are precisely two tangent planes

through L.

Lemma 3.5.8. Suppose π is a tangent plane with tangency point x. Then the

number of secant lines through x disjoint from B is at least |Bπ| − q > 1.

Proof. By Lemma 3.5.2(ii), |Bπ| > q+1 and so |Bπ|− q > 1. We have x 6∈ B and

|B| = q2 + q by Lemma 3.5.3(ii). There are |B| − |Bπ| = q2− (|Bπ| − q) points of

B \π and these are distributed over the q2 (secant) lines through x not contained

in π. So, at least |Bπ| − q of these q2 lines are disjoint from B.

3.5.2 The case q odd

Lemma 3.5.9. Suppose that q is odd. Then every tangent line meets B in either

1,
√
q or q points.

Proof. Consider a tangent line L with L∩Q−(3, q) = {x}. By Lemma 3.5.8, there

exists a secant line K through x disjoint from B. Put π := 〈K,L〉, the secant
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plane generated by K and L. By Lemma 3.5.3(i), π intersects B in precisely q

points. Since Bπ is a (T ∪ E)π-blocking set in π of size q, one of the following

three possibilities occurs for Bπ by Proposition 2.4.1.

(1) Suppose that Bπ = M \ Cπ for some line M of π tangent to Cπ. In π, if

L = M , then |L ∩B| = q, and if L 6= M , then |L ∩B| = 1 as L and M intersect

in a point not in Cπ.

(2) Suppose that Bπ = (M \ Cπ) ∪ {n} for some line M of π secant to Cπ,

where n is the pole of M with respect to Cπ. If x ∈M ∩Cπ, then L passes through

the pole n of M and so |L∩B| = 1. If x /∈M ∩Cπ, then L does not pass through

n and meets M \ Cπ in a point, implying |L ∩B| = 1.

(3) Suppose that q is square and Bπ = µ\(µ∩Cπ), where µ is a Baer subplane

of π such that µ ∩ Cπ is an irreducible conic in µ. Put K ∩ Q−(3, q) = {x, y}.

Note that every line of π meets µ in a singleton or a set of
√
q+1 points. Since K

is disjoint from B, it intersects µ in a unique point, and this point must belong

to Cπ. So, one of x, y belongs to µ ∩ Cπ while the other belongs to Cπ \ µ. If

x ∈ µ ∩ Cπ and y ∈ Cπ \ µ, then L intersects B in
√
q points by Lemma 2.7.1(i).

Assume therefore that y ∈ µ ∩ Cπ and x ∈ Cπ \ µ. Then Lemma 2.7.1(ii)

implies that the tangent line L of π through x meets µ in a unique point not

belonging to Cπ, that is, |L ∩B| = 1.

Remark 3.5.10. The proof of Lemma 3.5.9 does not work for q even. Otherwise,

in Step (2), we then have that Bπ = (M \Cπ)∪{n}, where n is the nucleus of Cπ.

In the case that y = u, we then have that L contains two points of B, namely the

nucleus n and a point of M \ Cπ.

For every i ∈ {1,√q, q}, we denote by Ni the number of tangent lines meeting

B in exactly i points.

Lemma 3.5.11. Suppose that q is odd. Then the following hold:

(i) N1 > (q + 1)(q2 −√q) and N√q +Nq 6 (
√
q + 1)(q + 1).
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(ii) If N√q = 0, then N1 = q2(q + 1) and Nq = q + 1.

Proof. Since there are q + 1 tangent lines through each point of Q−(3, q), we see

that

N1 +N√q +Nq = |Q−(3, q)| · (q + 1) = (q2 + 1)(q + 1). (3.5.1)

Consider the set Z = {(b, L) : b ∈ B, L is a tangent line containing b}. By

Lemma 3.5.3(ii), we have |B| = q2 + q and B ⊆ PG(3, q) \ Q−(3, q). Recall also

that each point of PG(3, q) \Q−(3, q) is contained in exactly q + 1 tangent lines.

Counting |Z| in two ways, we have

N1 +
√
q ·N√q + q ·Nq = |B| · (q + 1) = (q2 + q)(q + 1). (3.5.2)

If N√q = 0, then (3.5.1) and (3.5.2) imply that N1 = q2(q + 1) and Nq = q + 1.

This proves (ii). In the general case, we deduce from (3.5.1) and (3.5.2) that

(
√
q − 1)N1 − (q −√q)Nq = (q + 1) · (√q(q2 + 1)− (q2 + q)).

So,

(
√
q − 1)N1 > (q + 1) · ((√q − 1)q2 −√q(√q − 1)),

that is, N1 > (q+1)(q2−√q). Then (3.5.1) implies thatN√q+Nq 6 (
√
q+1)(q+1).

This proves (i).

Let Γ denote the set of all points x of Q−(3, q) such that the tangent plane

xτ meets B in exactly q + 1 points. By Lemma 3.5.5, |Γ| > 2. This bound is

improved in the following lemma for odd q.

Lemma 3.5.12. If q is odd, then |Γ| > 2q > q + 1.

Proof. For x ∈ Γ, Bxτ is an external line by Lemma 3.5.4 and so every tangent

line through x meets B in a singleton. If q is not a square, then N√q = 0 and so

Nq = q+ 1 by Lemma 3.5.11(ii). This implies that there are at most q+ 1 points
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of Q−(3, q) which are not contained in Γ. So,

|Γ| > (q2 + 1)− (q + 1) = q2 − q > 2q,

where the last inequality holds as q > 3 for q being odd.

If q is a square, then N√q + Nq 6 (q + 1)(
√
q + 1) by Lemma 3.5.11(i). This

implies that at most (q + 1)(
√
q + 1) points of Q−(3, q) are not contained in Γ.

So,

|Γ| > (q2 + 1)− (q + 1)(
√
q + 1) > 2q,

where the second inequality holds as q > 9 for q being an odd square.

The following proposition proves Theorem 3.5.1 when q is odd.

Proposition 3.5.13. If q is odd, then B is equal to the point set of a tangent

plane minus its tangency point in Q−(3, q).

Proof. Recall that, for x ∈ Γ, the tangent plane xτ meets B in the external line

Lx := Bxτ . The collection Lx, x ∈ Γ, of external lines mutually intersect by

Lemma 3.5.6. There are two possibilities: all these lines contain a given point or

are contained in a given plane.

Suppose first that all the lines of the collection Lx, x ∈ Γ, share a common

point, say u. Then u ∈ Lx ⊆ xτ for every x ∈ Γ. So, x ∈ uτ for every x ∈ Γ,

implying that the plane uτ intersects Q−(3, q) in at least |Γ| > q + 1 points

(Lemma 3.5.12), a contradiction.

Therefore, the external lines Lx, x ∈ Γ, are all contained in the same plane,

say µ∗. For every such external line L, there are at most two points x ∈ Γ such

that Lx = L by Lemma 3.5.7. This fact and Lemma 3.5.12 imply that the number

of mutually distinct lines in the collection Lx, x ∈ Γ, is at least
|Γ|
2

> q. Let
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L1, L2, . . . , Lq be q mutually distinct lines of this collection. We then have

|B ∩ µ∗| > |L1|+ |L2 \ L1|+ |L3 \ (L1 ∪ L2)|

+ · · ·+ |Lq \ (L1 ∪ L2 ∪ · · · ∪ Lq−1)|

> (q + 1) + q + · · ·+ 2 =
q(q + 3)

2
.

We claim that µ∗ \ Q−(3, q) is contained in B. Suppose there exists a point

u of µ∗ \ (Q−(3, q) ∪ B). There are q + 1 tangent lines and
q2 + q

2
external lines

of PG(3, q) through u. So, there are at least
q2 + q

2
tangent or external lines

through u which are not contained in µ∗. Each of these lines contains a point of

B \ µ∗. So,

|B| = |B ∩ µ∗|+ |B \ µ∗| > q(q + 3)

2
+
q2 + q

2
= q2 + 2q,

in contradiction with the fact that |B| = q2 + q.

Thus µ∗ \ Q−(3, q) ⊆ B. If µ∗ is a tangent plane, then |B| = q2 + q implies

that B is equal to the point set of the tangent plane µ∗ minus its tangency point.

In order to complete the proof of the proposition, we now show that µ∗ cannot

be a secant plane. If µ∗ is a secant plane, then Bµ∗ = µ∗ \ Cµ∗ = µ∗ \ Q−(3, q)

contains q2 points. Since |B| = q2 + q, we get

|B \ µ∗| = q > 2.

In fact, for every x ∈ Cµ∗, each of the q tangent lines through x not in µ∗ contains

a unique point of B \ µ∗. This implies that y ∈ xτ for every x ∈ Cµ∗ and every

y ∈ B \ µ∗. This is impossible as the intersection
⋂

x∈Cµ∗
xτ is a singleton, namely

(µ∗)τ .
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3.5.3 The case q even

Lemma 3.5.14. Suppose that q is even. Let x be a point of PG(3, q) \Q−(3, q).

If x is not a point of B, then |Bxτ | > q + 1.

Proof. Since q is even, every line of xτ through x is a tangent line. Each such

line must contain a point of B, that is, a point of Bxτ . Since x /∈ B, it follows

that |Bxτ | > q + 1.

As a consequence of Lemma 3.5.14, we have

Corollary 3.5.15. Suppose that q is even. Let x be a point of PG(3, q)\Q−(3, q).

If the secant plane xτ contains exactly q points of B, then x ∈ B.

Lemma 3.5.16. Suppose that q is even. Then the following hold for points x of

PG(3, q) \Q−(3, q):

(i) x ∈ B if and only if |Bxτ | = q.

(ii) x /∈ B if and only if |Bxτ | = q + 1.

Proof. By Lemma 3.5.2(i), every secant plane of PG(3, q) contains at least q

points of B. Let R be the collection of all points x of PG(3, q) \ Q−(3, q) for

which |Bxτ | = q.

(i) It is enough to show that R = B. We have R ⊆ B by Corollary 3.5.15,

and so |R| 6 |B| = q2 + q. Consider the following set

X = {(b, π) : b ∈ B, π is a secant plane containing b}.

The number of secant planes of PG(3, q) is q3 + q and each point of PG(3, q) \

Q−(3, q) is contained in exactly q2 secant planes. Counting |X| in two ways using

Lemma 3.5.3(ii), we get

(q2 + q)q2 = |B| · q2 = |X| > |R| · q + (q3 + q − |R|)(q + 1).
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This gives |R| > q2 + q. Thus |R| = q2 + q = |B| and hence R = B.

(ii) Let s denote the number of secant planes of PG(3, q) containing exactly

q+1 points of B. Using (i), we have s 6 q3 + q−|B| = q3 + q− (q2 + q) = q3− q2.

Consider again the set X defined in the proof of (i) above. We count |X| in two

ways to get

(q2 + q)q2 = |X| > (q2 + q)q + s(q + 1) + (q3 + q − (q2 + q)− s)(q + 2).

This gives s > q3 − q2. Thus s = q3 − q2 and it follows that each of the q3 − q2

secant planes xτ with x /∈ B meets B in exactly q + 1 points.

The following proposition proves Theorem 3.5.1 when q is even.

Proposition 3.5.17. If q is even, then B is equal to the point set of a tangent

plane minus its tangency point in Q−(3, q).

Proof. Let π0 be a tangent plane containing exactly q + 1 points of B. Such a

plane π0 exists by Lemma 3.5.5. Then Bπ0 is an external line by Lemma 3.5.4

and so it is contained in two tangent planes and q − 1 secant planes. Let π1 be

the other tangent plane and π2, . . . , πq be the secant planes through Bπ0 . Then

Bπi contains Bπ0 for every i ∈ {0, 1, . . . , q}. By Lemma 3.5.16, every secant plane

contains q or q+ 1 points of B. This implies that Bπj = Bπ0 for 2 6 j 6 q. Since

B =
q⋃
i=0

Bπi , it now follows that B = Bπ1 . Since B is disjoint from Q−(3, q) and

|B| = q2 + q by Lemma 3.5.3(ii), we must have that B = Bπ1 = π1 \ {y}, where

y is the tangency point of π1 in Q−(3, q).

3.6 T -blocking sets

We first prove the following lemma which gives a lower bound for the size of a

T -blocking sets in PG(3, q).
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Lemma 3.6.1. Let B be a T -blocking set in PG(3, q). Then |B| > q2 + 1, and

equality holds if and only if every tangent line meets B in a unique point.

Proof. Consider the set X = {(x, L) | x ∈ B,L ∈ T , x ∈ L}. We count the

cardinality of X in two ways. Every point of B is contained in q + 1 tangent

lines. This implies |X| = |B|(q + 1). Since each tangent line meets B and

|T | = (q + 1)(q2 + 1), we get |X| > (q + 1)(q2 + 1). Now it follows that |B| >
(q+1)(q2+1)

q+1
= q2 + 1. It is also clear that |B| = q2 + 1 if and only if every tangent

line contains a unique point of B.

If q is even, then it is known that the point-line geometry X = (P ,L, I),

where P is the point set of PG(3, q), L = T and I is the incidence relation

induced from PG(3, q) is a generalized quadrangle of order q and it is isomorphic

to W (q). The following theorem characterizes the minimum size T -blocking sets

in PG(3, q) for q even.

Theorem 3.6.2. Let B be a T -blocking set in PG(3, q), q even. Then |B| = q2+1

if and only if B is an ovoid of X ∼= W (q).

Proof. Since q is even, we know that W (q) has ovoids. Every ovoid of W (q) is of

size q2 + 1. By Lemma 3.6.1, |B| = q2 + 1 if and only if every tangent line meets

B in a unique point. The latter statement is equivalent to saying that B is an

ovoid of X ∼= W (q).

Recall that ovoids in W (q) (and hence in PG(3, q)) with q even are not clas-

sified except for q ∈ {2, 4, 8, 16, 32}.

If q is odd, then the quadric Q−(3, q) itself is an example of a T -blocking set

in PG(3, q) of size q2 + 1. The problem of classifying T -blocking sets in PG(3, q),

q odd, of size q2 + 1 is under our investigation.
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3.7 Generalizations to ovoids in PG(3, q)

Recall that if q is odd, then every ovoid in PG(3, q) is an elliptic quadric, but

more examples exist for q even. One can now wonder whether the main results

on minimum size blocking sets obtained in the previous sections extend to ovoids

in PG(3, q), where q is even. We have observed that a general ovoid in PG(3, q), q

even, satisfies similar properties as an elliptic quadric. This raises the hope that

some of the main results may be generalized to arbitrary ovoids.

First observe that the arguments used in the proof of Theorem 3.3.1 holds

good with respect to any ovoid. We thus have the following.

Theorem 3.7.1. Let O be an ovoid in PG(3, q), q even, and B be a blocking set

of the tangent and secant lines of PG(3, q) with respect to O. Then |B| > q2 + 1,

and equality holds if and only if B = O.

The proofs of Theorems 3.2.1 and 3.5.1 rely on the inequality |A| > q −

1 from Proposition 2.1.1, the inequality |A| > q from Proposition 2.4.1 and

Corollary 2.4.2. These results were proved in the literature for irreducible conics.

In Proposition 2.8.1, we have extended these results to arbitrary ovals. Taking

into account Proposition 2.8.1 and the properties of ovoids in PG(3, q), q even, we

can easily verify that the arguments used in Sections 3.2, 3.5.1 and 3.5.3 remain

valid for general ovoids. So the conclusions of Theorems 3.2.1 and 3.5.1 remain

valid for general ovoids in PG(3, q), q even. We thus have the following theorems:

Theorem 3.7.2. Let O be an ovoid in PG(3, q), q even, and B be a blocking set

of the external lines of PG(3, q) with respect to O. Then |B| > q2, and equality

holds if and only if B = π \ O for some secant plane π of PG(3, q) with respect

to O.

Theorem 3.7.3. Let O be an ovoid in PG(3, q), q even, and B be a blocking set

of the external and tangent lines of PG(3, q) with respect to O. Then |B| > q2+q,
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and equality holds if and only if B = π \ O for some tangent plane π of PG(3, q)

with respect to O.

For every ovoid in PG(3, q), q even, recall that there is associated a symplectic

polarity of PG(3, q). Taking into account the properties of ovoids in PG(3, q), q

even, we can easily verify that the arguments used in Sections 3.4 and 3.6 remain

valid for general ovoids. So the conclusions of Theorem 3.4.1, Lemma 3.6.1 and

Theorem 3.6.2 remain valid for ovoids in PG(3, q), q even. We thus have the

following theorems:

Theorem 3.7.4. Let O be an ovoid in PG(3, q), q even, and τ be the symplectic

polarity associated with O. If B is a blocking set of the external and secant lines

of PG(3, q) with respect to O, then the following hold:

(i) If q = 2, then |B| > 6 and equality holds if and only if B = L∪Lτ for some

line L secant to O.

(ii) If q > 4, then |B| > q2 + q+ 1 and equality holds if and only if B is a plane

of PG(3, q).

Theorem 3.7.5. Let O be an ovoid in PG(3, q), q even, and W (q) be the gen-

eralized quadrangle of order q corresponding to the symplectic polarity associated

with O. If B is a blocking set of the tangent lines of PG(3, q) with respect to O,

then |B| > q2 + 1, and equality holds if and only if B is an ovoid of W (q).

It is not clear whether the proof of Theorem 3.1.2 can be extended to ovoids

in PG(3, q), q even, as it makes use of Proposition 2.3.1(2) for which no general-

ization to ovals is known.
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Blocking sets in PG(3, q):

Quadratic cones

Let K be a quadratic cone in PG(3, q) with kernel the point p∗ whose base is an

irreducible conic C∗ in a plane π∗ not containing p∗. In this chapter, we denote by

E , S and T the set of all lines of PG(3, q) that are external, secant and tangent,

respectively, with respect to K. We shall study the minimum size A-blocking sets

in PG(3, q), where the line set A is one of E , T , S, E ∪ T , E ∪ S and T ∪ S.

All secant planes of PG(3, q) considered in this chapter are with respect to the

quadratic cone K.

4.1 Main result

Let A ∈ {E , T ,S, E ∪T , E ∪S, T ∪S}. With A, we associate two parameters NA

and εA as given in the following table.
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A NA εA

E q − 1 0

T 1 if q is even, and q+1
2

if q is odd 1

S q 0

E ∪ T q 1

E ∪ S q if q is even, 3 if q = 3 and q + 1 if q > 3 is odd 0

T ∪ S q + 1 1

Note that NA 6 q + 1 and εA = 1 if and only if T ⊆ A. Denote by A′ the

set of lines of A that are contained in π∗. As we will see in Lemma 4.2.1, the

number NA equals the smallest size of an A′-blocking set in π∗. The following

theorem is the main result of this chapter which appears in [21]. It gives a uniform

characterization of the minimum size A-blocking sets in PG(3, q).

Theorem 4.1.1. Let B be a minimum size A-blocking set in PG(3, q), where A

is one of the line sets E, T , S, E ∪ T , E ∪ S and T ∪ S. Then |B| = qNA + εA

and the following hold:

(i) If A ∈ {E ,S, E ∪ S}, then B = K′ \ {p∗}, where K′ is a cone with kernel p∗

and base an A′-blocking set of size NA in π∗.

(ii) If A ∈ {T , E ∪T }, then B = K′, where K′ is a cone with kernel p∗ and base

an A′-blocking set of size NA in π∗.

(iii) Suppose that A = T ∪ S.

(a) If p∗ /∈ B, then B is a secant plane.

(b) If p∗ ∈ B, then B = K′, where K′ is a cone with kernel p∗ and base an

A′-blocking set of size NA in π∗.
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4.2 Preliminaries

We note that, for a secant plane π of PG(3, q) with respect to the cone K, the

set of external (respectively, tangent, secant) lines of PG(3, q) with respect to

K contained in π are precisely the set of external (respectively, tangent, secant)

lines with respect to the irreducible conic π ∩ K in π.

Let A be one of the line sets E , T , S, E ∪T , E ∪S, T ∪S in PG(3, q). Recall

that A′ denotes the set of lines of A that are contained in π∗. Note that A′

consists of all the lines of π∗ of the same type (as that of A) with respect to the

irreducible conic C∗.

Lemma 4.2.1. Every A′-blocking set in π∗ has size at least NA, and there exists

an A′-blocking set in π∗ of size NA.

Proof. In PG(2, q), blocking sets of minimum size with respect to various line sets

(consisting of external/tangent/secant lines) determined by a given irreducible

conic have been studied in the papers [1, 2, 3, 4, 12, 15, 22, 29, 48, 60]. Brief

survey of the results obtained in this regard is given in Chapter 2 of this thesis.

The present lemma is a consequence of these results. In particular, for A = E ,

the lemma is implied by Proposition 2.1.1 for q odd and by Proposition 2.1.2 for

q even. For A = T , the lemma is implied by Proposition 2.2.1 for q even and

by Proposition 2.2.2 for q odd. For A = S, the lemma is implied by Proposition

2.3.1. For A = E ∪T , the lemma is implied by Proposition 2.4.1. For A = E ∪S,

the lemma is implied by Proposition 2.5.1 for q even and by Proposition 2.5.2 for

q odd. Finally, for A = T ∪ S, the lemma is implied by Section 2.6.

Lemma 4.2.2. Let X be an A′-blocking set of size NA in π∗. Let K′ be the

cone in PG(3, q) with kernel p∗ and base X ⊆ π∗. We put B′ = K′ \ {p∗} if

A ∈ {E ,S, E ∪ S} and B′ = K′ if A ∈ {T , E ∪ T , T ∪ S}. Then B′ is an

A-blocking set in PG(3, q) of size qNA + εA.

Proof. By construction, B′ has size qNA + εA. We need to prove that B′ is an
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A-blocking set in PG(3, q).

Let L be a line of A. If p∗ ∈ L, then we necessarily have A ∈ {T , E∪T , T ∪S},

and in this case L contains the point p∗ of B′. So, we may suppose that L does

not contain p∗. The plane σ := 〈p∗, L〉 can have three possibilities depending

upon L. If L is a tangent line meeting K in one point, then σ contains a line

of K. If L is a secant line, then σ contains two lines of K through p∗. If L is

an external line, then σ contains only the point p∗ of K. In each of these three

cases, it follows that σ intersects π∗ in a line L′ that belongs to A′. Since X is

an A′-blocking set in π∗, L′ contains a point x belonging to X. Then the unique

point of L on the line p∗x belongs to B′. We conclude that B′ is an A-blocking

set in PG(3, q).

4.3 Proof of the main result

Suppose B is an A-blocking set in PG(3, q) of minimum possible size. By Lemmas

4.2.1 and 4.2.2, we then know that

|B| 6 qNA + εA. (4.3.1)

Lemma 4.3.1. The following hold:

(a) If A ∈ {E ,S, E ∪ S}, then p∗ 6∈ B.

(b) If A ∈ {T , E ∪ T , T ∪ S} and p∗ 6∈ B, then NA = q + 1, εA = 1 and

|B| = q2 + q + 1.

Proof. (a) If A ∈ {E ,S, E∪S}, then B\{p∗} is also an A-blocking set in PG(3, q).

By the minimality of |B|, we then have B \ {p∗} = B, i.e. p∗ 6∈ B.

(b) If A ∈ {T , E ∪T , T ∪S} and p∗ 6∈ B, then each of the q2 + q+ 1 (tangent)

lines through p∗ contains a point of B, implying that |B| > q2 + q + 1. On the
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other hand, (4.3.1) implies that |B| 6 qNA + εA 6 q(q + 1) + 1 = q2 + q + 1. So,

|B| = q2 + q + 1, NA = q + 1 and εA = 1.

Lemma 4.3.2. Suppose p∗ ∈ B if A ∈ {T , E ∪ T , T ∪S}. Then |B| = qNA+ εA

and every secant plane meets B in exactly NA points.

Proof. By Lemma 4.3.1(a), we have p∗ 6∈ B if A ∈ {E ,S, E ∪ S}. So,

|B \ {p∗}| = |B| − εA 6 qNA (4.3.2)

by (4.3.1) and the definition of εA. We count the number N of pairs (x, π), where

x is a point of B \ {p∗} and π is a secant plane through x. As each point of

B \ {p∗} is contained in precisely q2 secant planes, we have

N = |B \ {p∗}| · q2 6 q3NA (4.3.3)

using (4.3.2). On the other hand, if π is one of the q3 secant planes, then π

contains at least NA points of B \ {p∗} by Lemma 4.2.1, implying that

q3NA 6 N. (4.3.4)

By (4.3.2), (4.3.3) and (4.3.4), we know that N = q3NA and |B| = qNA + εA.

Moreover, the reasoning leading to (4.3.4) then reveals that every secant plane

contains exactly NA points of B.

Lemma 4.3.3. We have |B| = qNA + εA.

Proof. By Lemma 4.3.2, we can assume that A ∈ {T , E ∪ T , T ∪ S} and p∗ 6∈ B.

By Lemma 4.3.1(b), we then know that NA = q+ 1, εA = 1 and |B| = q2 + q+ 1.

Hence, |B| = qNA + εA holds.

Lemma 4.3.3 proves the first part of Theorem 4.1.1 regarding the minimum

size of an A-blocking set in PG(3, q). We next characterize the A-blocking sets

of minimum size qNA + εA for which following result is needed.
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Lemma 4.3.4. Suppose p∗ ∈ B if A ∈ {T , E ∪T , T ∪S}. If π is a plane through

p∗ and L is a line of π not containing p∗, then

|L ∩B| = qNA + |π ∩B| − |B|
q

=
|π ∩B| − εA

q
.

Proof. By Lemma 4.3.2, the q secant planes through L contain in total |L∩B|+

q
(
NA − |L ∩B|

)
= qNA − (q − 1) · |L ∩B| points of B. It follows that

qNA − (q − 1) · |L ∩B| = |B| − |π ∩B|+ |L ∩B|.

Hence, |L∩B| = qNA+|π∩B|−|B|
q

. By Lemma 4.3.2, we also know that this number

is equal to |π∩B|−εA
q

.

Lemma 4.3.5. Suppose p∗ ∈ B if A ∈ {T , E∪T , T ∪S}. Then B can be obtained

as in Lemma 4.2.2.

Proof. By Lemma 4.3.1(a), it suffices to prove that if x is a point not belonging

to B ∪ {p∗}, then p∗x \ {p∗} has no points in common with B. Consider a secant

plane π through x. As |π ∩B| = NA 6 q + 1 by Lemma 4.3.2, there exists a line

L in π through x meeting B in η ∈ {0, 1} points. Let π′ be the plane 〈p∗, L〉.

By Lemma 4.3.4, B ∩ π′ is a set of ηq + εA points intersecting each line of π′ not

containing p∗ in exactly η points. If η = 0, then necessarily B ∩ π′ ⊆ {p∗} and

the claim is valid. If η = 1, then (B ∩ π′) ∪ {p∗} is a set of q + 1 points meeting

each line and so (B ∩ π′) ∪ {p∗} is a line through p∗ by Proposition 1.7.1. Also

the claim is valid in this case.

Lemma 4.3.6. Suppose A ∈ {T , E ∪ T , T ∪ S} and p∗ 6∈ B. Then A = T ∪ S

and B is a plane not containing p∗.

Proof. By Lemma 4.3.1(b), we know that NA = q + 1 and |B| = q2 + q + 1. As

NA = q + 1, we necessarily have A = T ∪ S. If each external line meets B,

we necessarily have that B is a plane by Proposition 1.7.1. So, we may assume
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that there exists an external line L that is disjoint from B. Each of the q secant

planes through L contains at least NA = q + 1 points of B. Also, the plane

σ := 〈p∗, L〉 (where σ ∩ K = {p∗}) through L must contain at least q + 1 points

of B, namely at least one on each of the q + 1 tangent lines of σ through p∗. So,

|B| > (q + 1)2 = q2 + 2q + 1, a contradiction.

Remark. A classification of all E-blocking sets (with respect to K) in PG(3, q)

of minimum size was already obtained in Theorem 4.3 of [9] in the case that

q > 9. However, that theorem has counter examples in the case that q is even.

Indeed, by Proposition 2.1.2, we know that there are three types of minimum size

blocking sets of the external lines with respect to an irreducible conic in PG(2, q),

q even. Via the construction mentioned in Lemma 4.2.2, we then obtain three

types of E-blocking sets of minimum size q2−q. Theorem 4.3 of [9] only mentions

one of these possibilities. The problem seems to originate from errors in the proof

of [9, Proposition 4.2].
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Chapter 5

Some minimal blocking sets in

PG(3, q), q ∈ {2, 3}

Let Q−(3, q) be an elliptic quadric and Q+(3, q) be a hyperbolic quadric in

PG(3, q). In this chapter, we shall denote by E− and E+ the set of all exter-

nal lines of PG(3, q) with respect to Q−(3, q) and Q+(3, q), respectively.

For ε ∈ {−,+}, two E ε-blocking sets X1 and X2 in PG(3, q) are said to

be isomorphic if there is an automorphism of PG(3, q) stabilizing Qε(3, q) and

mapping X1 to X2.

Recall from Theorem 3.2.1 that the following result holds for E−-blocking sets

in PG(3, q):

Proposition 5.0.1. Let X be an E−-blocking set in PG(3, q). Then |X| > q2,

and equality holds if and only if X = π \ Q−(3, q) for some secant plane π of

PG(3, q) with respect to Q−(3, q).

If π is a tangent plane of PG(3, q) with respect to Q−(3, q), then π\Q−(3, q) is

obviously also an E−-blocking set in PG(3, q). A straightforward counting shows

that each point of π \ Q−(3, q) is contained in an external line that does not lie

in π, implying that also this E−-blocking set in PG(3, q) is minimal. Its size is

equal to q2 + q. It can be of interest to search for new (families of) minimal
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E−-blocking sets in PG(3, q) whose sizes are relatively small, say in the open

interval ]q2, q2 + q[. In this chapter, we classify, up to isomorphisms, all minimal

E−-blocking sets in PG(3, q) if q = 2 and all minimal E−-blocking sets in PG(3, q)

of size q2 + 1 = 10 if q = 3. We have not been able so far to describe an infinite

family that contains these examples.

The minimum size E+-blocking sets in PG(3, q) were characterized in [8, The-

orem 1.1] for even q > 8 and in [9, Theorem 2.4] for odd q > 9. Alternate proofs

characterizing such blocking sets are given in [22, Section 2] for all odd q and in

[54, Section 3] for all even q. The following result holds for E+-blocking sets in

PG(3, q):

Proposition 5.0.2 ([8, 9, 22, 54]). Let X be an E+-blocking set in PG(3, q).

Then |X| > q2 − q, and equality holds if and only if X = π \ Q+(3, q) for some

tangent plane π of PG(3, q) with respect to Q+(3, q).

If π is a secant plane of PG(3, q) with respect to Q+(3, q), then π \ Q+(3, q)

is obviously also an E+-blocking set in PG(3, q). It is straightforward to verify

that each point of π \ Q+(3, q) is contained in an external line that is not in π

if and only if q 6= 2. So, for q > 2, this E+-blocking set in PG(3, q) is minimal

and its size is equal to q2. It can be of interest to search for new (families of)

minimal E+-blocking sets in PG(3, q) whose sizes are relatively small, say in the

open interval ]q2− q, q2[. In this chapter, we also classify, up to isomorphisms, all

minimal E+-blocking sets in PG(3, q) if q = 2 and all minimal E+-blocking sets in

PG(3, q) of size q2 − q + 1 = 7 if q = 3. We have not been able so far to describe

an infinite family that contains these examples.

5.1 Description of the main results

The results of this chapter appear in [20]. Suppose first that q = 2 and consider a

hyperbolic quadric Q+(3, 2) in PG(3, 2). If π is a tangent plane of PG(3, 2) with
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respect to Q+(3, 2), then π \Q+(3, 2) is a minimal E+-blocking set in PG(3, 2) of

size 2 by Proposition 5.0.2. Such an E+-blocking set is also of the form L\Q+(3, 2)

for some outer tangent L. We will prove the following.

Theorem 5.1.1. Every minimal E+-blocking set in PG(3, 2) is of the form L \

Q+(3, 2) for some outer tangent L.

Consider now an elliptic quadric Q−(3, 2) in PG(3, 2). Let V be the 4-

dimensional vector space over F2 for which PG(3, 2) is the associated projective

space. The elliptic quadrics in PG(3, 2) are precisely the frames of PG(3, 2) im-

plying that we can take an ordered basis (ē1, ē2, ē3, ē4) in V with respect to which

Q−(3, 2) consists of the points with coordinates (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1) and (1, 1, 1, 1). Let Ω denote the set of all ω’s of the form ({i, j}, k, l)

with {i, j, k, l} = {1, 2, 3, 4} and i < j. For every such ω ∈ Ω, we define

Bω := {〈ēi + ēj〉, 〈ēi + ēj + ēk〉, 〈ēi + ēj + ēl〉, 〈ēi + ēk〉, 〈ēj + ēl〉}.

The set B := {Bω |ω ∈ Ω} contains 12 elements which are all projectively equiva-

lent under the stabilizer of Q−(3, 2) inside PGL(4, 2), which is a group isomorphic

to S5. We will prove the following.

Theorem 5.1.2. Each element of B is a minimal E−-blocking set in PG(3, 2) of

size 5.

Theorem 5.1.3. Up to isomorphisms, there are three minimal E−-blocking sets

in PG(3, 2). Each such blocking set is either of the form π \ Q−(3, 2) for some

secant plane π of PG(3, 2) with respect to Q−(3, 2), of the form π \ Q−(3, 2) for

some tangent plane π of PG(3, 2) with respect to Q−(3, 2) or belongs to B.

Next, we describe our obtained results for q = 3. For a given secant plane π of

PG(3, 3) with respect to the quadric Qε(3, 3) with ε ∈ {−,+}, we denote by Eπ

the set of six points of π that are exterior with respect to the irreducible conic

π ∩Qε(3, 3) in π. We will prove the following results.
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Theorem 5.1.4. Let Q−(3, 3) be the elliptic quadric in PG(3, 3) that has equation

X1X2 + X2
3 + X2

4 = 0 with respect to a certain reference system in PG(3, 3) and

let π be the secant plane of PG(3, 3) with equation X4 = 0. Then

Y := Eπ ∪ {〈(1, 0, 0, 1)〉, 〈(0,−1, 0, 1)〉, 〈(1,−1, 1, 1)〉, 〈(1,−1,−1, 1)〉}

is a minimal E−-blocking set in PG(3, 3) of size 10.

Theorem 5.1.5. Let B be an E−-blocking set in PG(3, 3) of size 10. Then B is

one of the following:

(1) B = (π \Q−(3, 3))∪{x}, where π is a secant plane of PG(3, 3) with respect

to Q−(3, 3) and x is a point of PG(3, 3) not belonging to π \Q−(3, 3).

(2) B is isomorphic to the E−-blocking set Y described in Theorem 5.1.4.

Theorem 5.1.6. Let w be a point of PG(3, 3) \ Q+(3, 3) and π be the secant

plane wτ , where τ is the orthogonal polarity associated with Q+(3, 3). Then B :=

Eπ ∪ {w} is a minimal E+-blocking set in PG(3, 3) of size 7.

Theorem 5.1.7. Let B be an E+-blocking set in PG(3, 3) of size 7. Then B is

one of the following:

(1) B = (π\Q+(3, 3))∪{x}, where π is a tangent plane of PG(3, 3) with respect

to Q+(3, 3) and x is a point of PG(3, 3) not belonging to π \Q+(3, 3).

(2) B is as described in Theorem 5.1.6.

5.2 Proofs for q = 2

5.2.1 Proof of Theorem 5.1.1

Suppose q = 2 andX is a minimal E+-blocking set in PG(3, 2). Then |X| > 2 with

equality if and only if X = L\Q+(3, 2) for some outer tangent L (see Proposition
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5.0.2). Suppose therefore that |X| > 3. As X is minimal and X \Q+(3, 2) is an

E+-blocking set, we know that X ∩Q+(3, 2) = ∅ and no two distinct points of X

are on the same outer tangent.

Let x1, x2 and x3 be three mutually distinct points of X. Suppose they are

on an (external) line L of PG(3, 2). Let π be a (secant) plane through L and let

y be the nucleus of the conic π ∩ Q+(3, 2). The unique external line through y

is not contained in π and contains a point x′3 ∈ X. Upon replacing x3 by x′3,

we may thus assume that x1, x2 and x3 are three points of X not on the same

line of PG(3, 2). But then x1x2, x1x3 and x2x3 are three distinct external lines

of the plane 〈x1, x2, x3〉. This is impossible as a plane only can contain 0 or 1

external line depending on whether it is a tangent or secant plane with respect

to Q+(3, 2).

5.2.2 Proof of Theorem 5.1.2

Suppose q = 2. We first give here a construction for minimal E−-blocking sets in

PG(3, 2) of size 5 and prove subsequently in Lemma 5.2.1 that each element of B

can be obtained via this construction.

Let π be a secant plane of PG(3, 2) with respect to Q−(3, 2) and denote by k

the nucleus of the irreducible conic Cπ = π∩Q−(3, 2). Let x be an arbitrary point

of π \ (Cπ ∪ {k}) and denote the two other points of π \ (Cπ ∪ {k}) by y1 and y2.

Through x, there are two external lines L1 and L2 not contained in π. The plane

〈L1, L2〉 meets π in a third line L3 through x. Since L1 and L2 are external lines,

〈L1, L2〉 must be a tangent plane and L3 a tangent line necessarily equal to kx.

Let x1 ∈ L1 \{x} and x2 ∈ L2 \{x} such that the line x1x2 contains the tangency

point x3 of L3 (so L3 = {k, x, x3}). By construction, X := {k, y1, y2, x1, x2} is an

E−-blocking set in PG(3, 2) of size 5. We now show that it is minimal. As Li is

an external line meeting X precisely in xi, X \ {xi} is not an E−-blocking set for

every i ∈ {1, 2}. As 〈L1, L2〉 is a tangent plane with tangency point x3, the lines
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x1k and x2k are external to Q−(3, 2). As the third external line through k is not

contained in π, we see that X \ {k} is not an E−-blocking set. Suppose now that

X \ {yi} is an E−-blocking set for some i ∈ {1, 2}. Then yix1 and yix2 must be

the two external lines through yi not contained in π. As above, we then know

that the plane 〈yix1, yix2〉 meets π in the line kyi, in particular the line x1x2 must

meet kyi. This is obviously not the case here as the point x3 ∈ kx does not lie

on kyi. So, X must be a minimal E−-blocking set in PG(3, 2).

Lemma 5.2.1. Each B ∈ B is an E−-blocking set in PG(3, 2) that can be obtained

via the above construction.

Proof. Let π be the secant plane through the points (1, 0, 0, 0), (0, 1, 0, 0) and

(0, 0, 1, 0) of Q−(3, 2). The nucleus k of Cπ = π ∩ Q−(3, 2) is equal to (1, 1, 1, 0)

and we denote the three points of π \ (Cπ ∪{k}) by x = (0, 1, 1, 0), y1 = (1, 1, 0, 0)

and y2 = (1, 0, 1, 0). The tangency point x3 on the line L3 = kx is then equal to

(1, 0, 0, 0). If x1 = (0, 1, 0, 1) and x2 = (1, 1, 0, 1), then x3 ∈ x1x2 and L1 = xx1,

L2 = xx2 are the two external lines through x not contained in π. We thus see that

Bω with ω = ({1, 2}, 3, 4), which is equal to the E−-blocking set {k, y1, y2, x1, x2},

can be obtained as in the above construction. The claim then follows from the

fact that any two elements of B are isomorphic.

5.2.3 Proof of Theorem 5.1.3

Suppose again that q = 2. We already know that π \ Q−(3, 2) is a minimal E−-

blocking set in PG(3, 2) for every plane π. Let B be a minimal E−-blocking set in

PG(3, 2) that is not of the form π \Q−(3, 2) for some plane π. As B is minimal

and B \ Q−(3, 2) is a minimal E−-blocking set, we know that B ∩ Q−(3, 2) = ∅

and B does not contain (nor is contained in) a set of the form π \Q−(3, 2) with

π a plane.

Applying a permutation to the coordinates of the points (X1, X2, X3, X4) of

PG(3, 2) is an automorphism of PG(3, 2) stabilizing Q−(3, 2). The stabilizer of
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Q−(3, 2) inside PGL(4, 2) therefore contains a subgroup S ∼= S4. We will show

that B ∈ B. As B is stabilized by S, we are allowed to classify the sets B, up to

isomorphisms in S.

The tangent plane π through the point (1, 1, 1, 1) ∈ Q−(3, 2) has equation

X1 +X2 +X3 +X4 = 0. As B contains points outside π, i.e. points with weight

3, we may without loss of generality assume that (1, 1, 1, 0) ∈ B. The external

line {(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0)} must contain a point of B. Without loss of

generality, we may assume that (1, 1, 0, 0) ∈ B. We distinguish two cases.

Case (1). Suppose first that (0, 0, 1, 1) 6∈ B. As each of the external lines

{(0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 0, 1)} and {(0, 0, 1, 1), (1, 0, 1, 0), (1, 0, 0, 1)} contains

a point of B, at least one of (0, 1, 1, 0), (0, 1, 0, 1) belongs to B, as well as at least

one of (1, 0, 1, 0), (1, 0, 0, 1). In the secant plane α with equation X4 = 0, the

points (1, 1, 0, 0) and (1, 1, 1, 0) belong to B, implying that at most one of the

two remaining points (0, 1, 1, 0), (1, 0, 1, 0) in α \Q−(3, 2) belongs to B. We will

prove that precisely one of them belongs to B.

If this is not true, then none of (0, 1, 1, 0), (1, 0, 1, 0) belongs to B and we must

have (1, 1, 1, 0), (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1) ∈ B. As the secant plane with

equation X3 = 0 contains at most three points of B (outside Q−(3, 2)), we have

(1, 1, 0, 1) 6∈ B. As each of the two external lines {(1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1)}

and {(0, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)} contains a point of B, we then have that

(0, 1, 1, 1) and (1, 0, 1, 1) belong to B. But that is impossible as it would imply

that the tangent plane in the point (0, 0, 1, 0) with equation X1 + X2 + X4 = 0

has all its points in B, with exception of (0, 0, 1, 0) ∈ Q−(3, 2).

So, precisely one of the points (0, 1, 1, 0), (1, 0, 1, 0) belongs to B. Up to

isomorphisms in S, we may assume that (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0) ∈ B and

(0, 1, 1, 0) 6∈ B. The external line {(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)} meets B. As

(0, 0, 1, 1) and (0, 1, 1, 0) are not in B, we have that (0, 1, 0, 1) ∈ B. The four

points outside Q−(3, 2) in the secant plane X1 = X3 are (1, 1, 1, 0), (1, 0, 1, 0),

(0, 1, 0, 1), (1, 0, 1, 1). As not all these points can be contained in B, we have

71



§5.3. Proofs for q = 3

(1, 0, 1, 1) 6∈ B. As the external line {(0, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1)} contains

points of B, we must have (1, 1, 0, 1) ∈ B. So, Bω with ω = ({1, 2}, 3, 4) is

contained in B. The minimality of B then implies that B = Bω.

Case (2). Suppose next that (0, 0, 1, 1) ∈ B. So, (1, 1, 1, 0), (1, 1, 0, 0) and

(0, 0, 1, 1) are in B. The fourth point (1, 1, 0, 1) of PG(3, 2)\Q−(3, 2) in the secant

plane through (1, 1, 1, 0), (1, 1, 0, 0), (0, 0, 1, 1) cannot belong to B. Considering

the external lines

{(1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0)} and {(1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 0)}

through (1, 1, 0, 1), we see that at least one of (0, 1, 1, 1), (1, 0, 1, 0) belongs to B,

as well as at least one of (1, 0, 1, 1), (0, 1, 1, 0).

By considering the secant plane with equation X3 = X4 and taking into

account that the points (1, 1, 0, 0), (0, 0, 1, 1) of B belong to that plane, we see

that not both of (0, 1, 1, 1), (1, 0, 1, 1) can belong to B.

By considering the secant plane with equation X4 = 0 and taking into account

that the points (1, 1, 1, 0), (1, 1, 0, 0) of B belong to that plane, we see that not

both of (1, 0, 1, 0), (0, 1, 1, 0) belong to B.

So, we either have (0, 1, 1, 1), (0, 1, 1, 0) ∈ B or (1, 0, 1, 1), (1, 0, 1, 0) ∈ B. So,

Bω with ω equal to either ({2, 3}, 1, 4) or ({1, 3}, 2, 4) is contained in B. The

minimality of B then implies that B = Bω.

5.3 Proofs for q = 3

5.3.1 Proofs of Theorems 5.1.4 and 5.1.5

Let B be an E−-blocking set in PG(3, 3) of size 10. If B is not minimal, then

B = B′ ∪ {x}, where B′ is an E−-blocking set in PG(3, 3) of size 9 and x is a

point of PG(3, 3) not belonging to B′. By Proposition 5.0.1, B′ = π \ Q−(3, 3)
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for some secant plane π of PG(3, 3) with respect to Q−(3, 3). We then have case

(1) of Theorem 5.1.5. Therefore, we may assume that B is minimal. We divide

the treatment into two cases:

� Case I: There exists a secant plane π of PG(3, 3) with respect to Q−(3, 3)

such that all the points of π exterior to the conic π∩Q−(3, 3) are contained

in B.

� Case II: There does not exist any secant plane π of PG(3, 3) with respect to

Q−(3, 3) such that all the points of π exterior to π ∩Q−(3, 3) are contained

in B.

We will prove that the set Y defined in Theorem 5.1.4 is a minimal E−-

blocking set in PG(3, 3) of size 10 (Proposition 5.3.5) and that if Case I occurs,

then B is isomorphic to Y (Proposition 5.3.6). We shall then prove that there

are no examples of blocking sets corresponding to Case II. We repeatedly use the

following lemma, mostly without mention.

Lemma 5.3.1. We have B ∩Q−(3, 3) = ∅.

Proof. This follows from the minimality of B and the fact that B \ Q−(3, 3) is

also an E−-blocking set in PG(3, 3).

Treatment of Case I

Here, we suppose that B is a minimal E−-blocking set in PG(3, 3) of size 10

containing the set Eπ of all points of a secant plane π that are exterior with

respect to the conic Cπ := π∩Q−(3, 3) in π. Let Iπ denote the set of three points

of π that are interior with respect to Cπ. Through each point of Iπ, there are four

lines belonging to E− that are not lines of π.

Lemma 5.3.2. The following hold:

(1) B ∩ π = Eπ and |B \ π| = 4.
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(2) If x ∈ Iπ, then each of the four external lines through x not contained in π

meets B in precisely one point.

Proof. Since π \ Cπ is an E−-blocking set in PG(3, 3) of size 9 containing Eπ, the

minimality of B with |B| = 10 implies that there must exist a point in Iπ not

belonging to B. Now, let x be an arbitrary point of Iπ \B. Since each of the four

external lines through x not contained in π meets B, we must have |B\π| > 4. As

|B| = 10 and Eπ is contained in B with |Eπ| = 6, we thus see that the conclusions

of the lemma must hold.

Let Q denote the quadratic form defining the quadric Q−(3, 3). We can choose

a reference system in PG(3, 3) such that Q−(3, 3) has equation

Q(X1, X2, X3, X4) = X1X2 +X2
3 +X2

4 = 0

and π has equation X4 = 0. We then have:

Cπ = {〈(1, 0, 0, 0)〉, 〈(0, 1, 0, 0)〉, 〈(1,−1, 1, 0)〉, 〈(1,−1,−1, 0)〉},

Eπ = {〈(0, 0, 1, 0)〉, 〈(1, 1, 0, 0)〉, 〈(1, 0, 1, 0)〉, 〈(1, 0,−1, 0)〉,

〈(0, 1, 1, 0)〉, 〈(0, 1,−1, 0)〉},

Iπ = {〈(1,−1, 0, 0)〉, 〈(1, 1, 1, 0)〉, 〈(1, 1,−1, 0)〉}.

In fact, Cπ (respectively, Eπ, Iπ) consists of all points 〈(X1, X2, X3, 0)〉 of π for

which Q(X1, X2, X3, 0) is equal to 0 (respectively, 1, −1). If f : F4
3 × F4

3 → F3 is

the symmetric bilinear form associated with Q, then

f((X1, X2, X3, X4), (Y1, Y2, Y3, Y4)) = X1Y2 +X2Y1 −X3Y3 −X4Y4

for all (X1, X2, X3, X4), (Y1, Y2, Y3, Y4) ∈ F4
3.

Lemma 5.3.3. If 〈(a, b, c, 1)〉 ∈ B \ π, then (a, b, c) 6= (0, 0, 0) and 〈(a, b, c, 0)〉 ∈

Cπ.
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Proof. Suppose that (a, b, c) = (0, 0, 0) and let 〈(u, v, w, 0)〉 be an arbitrary point

of Iπ. As Q(u, v, w, 1) = Q(u, v, w, 0)+Q(0, 0, 0, 1) = −1+1 = 0, the line through

〈(a, b, c, 1)〉 = 〈(0, 0, 0, 1)〉 and 〈(u, v, w, 0)〉 would not be external as required by

Lemma 5.3.2. Hence, (a, b, c) 6= (0, 0, 0).

We also have 〈(a, b, c, 0)〉 6∈ Iπ as otherwise Q(a, b, c, 1) = Q(a, b, c, 0) +

Q(0, 0, 0, 1) = −1 + 1 = 0, in contradiction with B ∩ Q−(3, 3) = ∅ (Lemma

5.3.1).

Suppose that 〈(a, b, c, 0)〉 ∈ Eπ. Consider then the unique external line

through 〈(a, b, c, 0)〉 contained in π. This external line contains precisely two

points of Iπ, say 〈(u1, v1, w1, 0)〉 and 〈(u2, v2, w2, 0)〉. Without loss of general-

ity, we may suppose that we have chosen (u1, v1, w1) and (u2, v2, w2) in such

a way that (a, b, c) = (u2, v2, w2) + λ(u1, v1, w1) for some λ ∈ F3. The line

through the points 〈(a, b, c, 1)〉 ∈ B \π and 〈(u1, v1, w1, 0)〉 ∈ Iπ then contains the

point 〈(u2, v2, w2, 1)〉 belonging to Q−(3, 3) as Q(u2, v2, w2, 1) = Q(u2, v2, w2, 0) +

Q(0, 0, 0, 1) = −1 + 1 = 0. But that is impossible as such a line must belong to

E− by Lemma 5.3.2.

Lemma 5.3.4. Let (a1, b1, c1, 0), (a2, b2, c2, 0), (a3, b3, c3, 0) and (a4, b4, c4, 0) be

mutually distinct elements of F4
3 such that each 〈(ai, bi, ci, 0)〉, i ∈ {1, 2, 3, 4}, is

a point of Cπ. Then

X := {〈(ai, bi, ci, 1)〉 | i ∈ {1, 2, 3, 4}} ∪ Eπ

is an E−-blocking set in PG(3, 3) if and only if 〈(ai − aj, bi − bj, ci − cj, 0)〉 6∈ Iπ
for all i, j ∈ {1, 2, 3, 4} with i 6= j.

Proof. We first prove that if 〈(a, b, c, 0)〉 ∈ Cπ, then 〈(a, b, c, 1), (a′, b′, c′, 0)〉 is

an external line for every 〈(a′, b′, c′, 0)〉 ∈ Iπ. Indeed, we have Q(a, b, c, 1) =

Q(a, b, c, 0) + Q(0, 0, 0, 1) = 0 + 1 6= 0 and Q(a′, b′, c′, 0) = −1. The secant line

〈(a, b, c, 0), (a′, b′, c′, 0)〉 in π contains only one point of Iπ, namely 〈(a′, b′, c′, 0)〉.

If (x, y, z) ∈ {(a+a′, b+b′, c+c′), (a−a′, b−b′, c−c′)}, then 〈(x, y, z, 0)〉 is a point
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of 〈(a, b, c, 0), (a′, b′, c′, 0)〉 not belonging to Iπ and hence the point 〈(x, y, z, 1)〉 ∈

〈(a, b, c, 1), (a′, b′, c′, 0)〉 does not belong toQ−(3, 3) asQ(x, y, z, 1) = Q(x, y, z, 0)+

Q(0, 0, 0, 1) = Q(x, y, z, 0) + 1 6= 0.

Now, X is an E−-blocking set in PG(3, 3) if and only if for every 〈(a′, b′, c′, 0)〉 ∈

Iπ, the four lines 〈(a′, b′, c′, 0), (ai, bi, ci, 1)〉, i ∈ {1, 2, 3, 4}, are distinct (external)

lines. The latter statement precisely holds when the condition in the lemma is

satisfied.

As an application of Lemma 5.3.4, we have the following proposition that also

proves Theorem 5.1.4.

Proposition 5.3.5. The sets

Y := {〈(1, 0, 0, 1)〉, 〈(0,−1, 0, 1)〉, 〈(1,−1, 1, 1)〉, 〈(1,−1,−1, 1)〉} ∪ Eπ

and

Z := {〈(−1, 0, 0, 1)〉, 〈(0, 1, 0, 1)〉, 〈(−1, 1,−1, 1)〉, 〈(−1, 1, 1, 1)〉} ∪ Eπ

are isomorphic minimal E−-blocking sets in PG(3, 3) of size 10.

Proof. Clearly, |Y | = 10 = |Z|. The facts that Y and Z are E−-blocking sets in

PG(3, 3) follows from Lemma 5.3.4. Since the map

(X1, X2, X3, X4) 7→ (X1, X2, X3,−X4)

defines an automorphism of PG(3, 3) stabilizing Q−(3, 3) and fixing π pointwise,

it follows that Y and Z are isomorphic.

If Y and Z were not minimal as E−-blocking sets, then they would be of the

form (π′ \Q−(3, 3)) ∪ {x}, where π′ is a secant plane of PG(3, 3) with respect to

Q−(3, 3) and x is a point not belonging to π′ \Q−(3, 3). This is obviously not the

case here.
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The following proposition proves Theorem 5.1.5 if Case I occurs.

Proposition 5.3.6. B is equal to either Y or Z.

Proof. Let G be the graph with vertex set

V (G) = {{(1, 0, 0, 1), (0,−1, 0, 1), (1,−1, 1, 1), (1,−1,−1, 1),

(−1, 0, 0, 1), (0, 1, 0, 1), (−1, 1,−1, 1), (−1, 1, 1, 1)} ⊆ F4
3,

where two distinct vertices (a, b, c, 1) and (a′, b′, c′, 1) are adjacent whenever 〈(a−

a′, b − b′, c − c′, 0)〉 ∈ Iπ ∪ Cπ. Then G is isomorphic to the complete bipartite

graph K4,4 with the two parts

{(1, 0, 0, 1), (0,−1, 0, 1), (1,−1, 1, 1), (1,−1,−1, 1)},

and

{(−1, 0, 0, 1), (0, 1, 0, 1), (−1, 1,−1, 1), (−1, 1, 1, 1)}

for which the set of all edges {(a, b, c, 1), (a′, b′, c′, 1)} satisfying 〈(a−a′, b− b′, c−

c′, 0)〉 ∈ Cπ is a complete (that is, perfect) matching.

We know that B\Eπ is a subset of {〈(a, b, c, 1)〉 : (a, b, c, 1) ∈ V (G)} by Lemma

5.3.3 and that B must be obtained as in Lemma 5.3.4. The first paragraph of

this proof in combination with Lemma 5.3.4 then immediately implies that B is

either Y or Z.

Treatment of Case II

Here, we suppose that B is a minimal E−-blocking set in PG(3, 3) of size 10

satisfying the following:

(∗) There is no secant plane π of PG(3, 3) with respect to Q−(3, 3)

such that all the points of π exterior to the conic π ∩ Q−(3, 3) are

contained in B.
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We shall derive a contradiction at the end of this subsection.

Lemma 5.3.7. Let π be a tangent plane of PG(3, 3) with respect to Q−(3, 3).

Then |π ∩ B| > 3, with equality if and only if π ∩ B = L \ Q−(3, 3) for some

tangent line L contained in π.

Proof. This follows from Proposition 2.0.1.

Lemma 5.3.8. A secant plane of PG(3, 3) with respect to Q−(3, 3) cannot contain

more than five points of B.

Proof. Suppose that there is a secant plane π containing at least six points of B.

By our assumption (∗), there exists a point x in π \ B exterior with respect to

the conic π ∩Q−(3, 3). Through x, there are five external lines not contained in

π. Each of these five external lines contains an extra point of B, implying that

|B| > |π ∩B|+ 5 > 6 + 5 = 11, a contradiction.

Lemma 5.3.9. There does not exist any tangent plane of PG(3, 3) with respect

to Q−(3, 3) meeting B in an external line.

Proof. Suppose π1 is a tangent plane meeting B in an external line L. Let π2 be

the other tangent plane through L, and π3, π4 be the two secant planes through

L. Each of π3 \ L and π4 \ L contains at most one point of B by Lemma 5.3.8,

implying that π2 \ L contains at least four points of B. Thus, the tangent plane

π2 contains at least eight points of B.

Now, let x be a point of π2 \ Q−(3, 3) not contained in B. There are three

external lines through x not contained in π. Each of these three external lines

contains a point of B, implying that |B| > |π2 ∩ B| + 3 > 8 + 3 = 11, a contra-

diction.

Lemma 5.3.10. There does not exist any tangent plane of PG(3, 3) with respect

to Q−(3, 3) meeting B in three points.
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Proof. Suppose π is a tangent plane meeting B in three points. Then there exists

a tangent line L in π such that π ∩B = L \Q−(3, 3) by Lemma 5.3.7.

By Lemma 5.3.8, each of the three secant planes through L contains besides

the points of L \ Q−(3, 3) at most two other points of B, giving that |B| 6

|L \Q−(3, 3)|+ 3 · 2 = 9, a contradiction.

Lemma 5.3.11. Each tangent plane of PG(3, 3) with respect to Q−(3, 3) inter-

sects B in precisely four points.

Proof. We count in two ways the number N of pairs (x, π), where x ∈ B and π

a tangent plane through x. As there are 10 tangent planes, we know by Lemmas

5.3.7 and 5.3.10 that N > 40, with equality if and only if every tangent plane

contains precisely four points. On the other hand, we have |B| = 10 possibilities

for x and we know by Lemma 5.3.1 that there are four possibilities for π for a

given x. So, N = 40 and every tangent plane contains precisely four points of

π.

Lemma 5.3.12. Let x be a point of Q−(3, 3) and π be the tangent plane of

PG(3, 3) with respect to Q−(3, 3) through x. Then

π ∩B = (Lx \Q−(3, 3)) ∪ {zx}

for some (tangent) line Lx of π through x and some point zx ∈ π \ Lx.

Proof. By Lemma 5.3.11, we have |π ∩B| = 4. First suppose that every tangent

line contained in π meets B. Then π∩B is a blocking set of size 4 with respect to

all lines of π and so π∩B is a line of π by Proposition 1.7.1. As B∩Q−(3, 3) = ∅,

π ∩B must be an external line, in contradiction with Lemma 5.3.9.

Therefore, there is some tangent line in π disjoint from B. As |B ∩ π| = 4,

this implies that there is some tangent line Lx in π meeting B in at least two

points, say x1 and x2. Let x3 denote the unique point in Lx \ Q−(3, 3) distinct

from x1 and x2. If x3 6∈ B, then each of the three external lines through x3
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contained in π would contain another point of B, implying |π ∩ B| > 5 which is

not possible. So, x3 ∈ B and Lx \Q−(3, 3) is contained in B. Since |π ∩ B| = 4

and B ∩ Q−(3, 3) = ∅, there exists a unique point zx ∈ π ∩ B not belonging to

Lx. Thus, π ∩B = (Lx \Q−(3, 3)) ∪ {zx}.

Lemma 5.3.13. There exist no four mutually distinct points x1, x2, x3, x4 in

Q−(3, 3) such that the tangent lines Lx1, Lx2, Lx3, Lx4 obtained as in Lemma

5.3.12 meet in a common point.

Proof. Suppose Lx1 , Lx2 , Lx3 , Lx4 meet in a common point y. Then the secant

plane yτ contains the points x1, x2, x3 and x4. The number of points of B

contained in Lx1 ∪Lx2 ∪Lx3 ∪Lx4 equals 9. There are also at least two points of

B in yτ which follows from Proposition 2.1.1. This would imply that |B| > 11, a

contradiction.

Lemma 5.3.14. Each point of B is contained in precisely three tangent lines Lx,

x ∈ Q−(3, 3).

Proof. We count in two ways the number N of pairs (x, y) with x ∈ Q−(3, 3)

and y ∈ Lx \ Q−(3, 3) ⊆ B. As |Q−(3, 3)| = 10, there are N = 30 such pairs.

On the other hand, there are at most |B| = 10 possibilities for y. For a given

y, there are at most three possibilities for x with y ∈ Lx by Lemma 5.3.13. As

N = 30, we thus see that every point of B is contained in precisely three lines

Lx, x ∈ Q−(3, 3).

Derivation of a contradiction:

Fix a point x ∈ B and let Lu1 , Lu2 , Lu3 be the three mutually distinct tangent

lines through x obtained in Lemma 5.3.14, where u1, u2, u3 ∈ Q−(3, 3). Put

Lu1 := {x, y1, z1, u1}, Lu2 := {x, y2, z2, u2} and Lu3 := {x, y3, z3, u3}.

Then {x, y1, z1, y2, z2, y3, z3} ⊆ B. We thus have already found seven points of B.

Each of the planes 〈Lu1 , Lu2〉, 〈Lu1 , Lu3〉 and 〈Lu2 , Lu3〉 is a secant plane contain-

80



§5.3. Proofs for q = 3

ing, by Lemma 5.3.8, no further points of B than those in {x, y1, z1, y2, z2, y3, z3}.

So, for the point y1 ∈ B, if

Lu1 = {y1, x, z1, u1}, Lu′2 := {y1, y′2, z′2, u′2} and Lu′3 := {y1, y′3, z′3, u′3}

are the three mutually distinct tangent lines through y1 obtained in Lemma

5.3.14 with u′2, u
′
3 ∈ Q−(3, 3) and y′2, z

′
2, y
′
3, z
′
3 ∈ B, then none of the points

y′2, z
′
2, y
′
3, z
′
3 can be contained in {x, y1, z1, y2, z2, y3, z3}. This would imply that

{x, y1, z1, y2, z2, y3, z3, y′2, z′2, y′3, z′3} is a set of 11 points of B, a contradiction.

5.3.2 Proof of Theorem 5.1.6

In this subsection, w is a point of PG(3, 3) \ Q+(3, 3), π is the secant plane wτ

of PG(3, 3), where τ is the orthogonal polarity associated with Q+(3, 3), and

B = Eπ ∪ {w}.

Proof of Theorem 5.1.6. Clearly, we have |B| = 7. We need to show that B

is a minimal E+-blocking set in PG(3, 3). Through w, there are:

� four outer tangents, namely the lines wx with x a point in the conic π ∩

Q+(3, 3);

� three external lines with respect to Q+(3, 3), namely the lines wz ∈ E+ with

z ∈ Iπ (see [23, Corollary 2.4]), where Iπ is the set of three points of π that

are interior with respect to π ∩Q+(3, 3);

� six secant lines with respect to Q+(3, 3), namely the lines wy with y ∈ Eπ.

Through a point u ∈ Iπ, there are three lines belonging to E+. Two of them are

contained in π and so each of them meets Eπ. The remaining one external line

necessarily coincides with uw.

Now, any external line L ∈ E+ is either contained in π, meets π in a point of

Eπ or meets π in a point of Iπ. In the first case, L contains two points of Eπ. In
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the second case, L contains one point of Eπ but not the point w. In the third

case, L contains the point w but not any of the points of Eπ.

It follows from the above that B is an E+-blocking set in PG(3, 3), but also

that it is minimal as removing one point x of B would imply the existence of

lines belonging to E+ that are disjoint from B \ {x}. Indeed, if x = w, then this

would be the case for the external lines wz ∈ E+ with z ∈ Iπ. If x ∈ Eπ, then

this would be the case for the two external lines through x not contained in π.

This completes the proof.

The rest of this subsection is devoted to prove a result (Corollary 5.3.16) which

is needed while proving Theorem 5.1.7.

Let L∗ be an outer tangent contained in π with tangency point x∗ in Q+(3, 3).

As wx∗ is also an outer tangent, the plane π∗ := 〈w,L∗〉 is a tangent plane with

tangency point x∗. Further, π∗ meets B in four points among which three are

on the same outer tangent L∗ and the remaining one point, namely w is on the

other outer tangent through x∗, that is, π∗ ∩B = (L∗ \ {x∗}) ∪ {w}.

Lemma 5.3.15. Any E+-blocking set in PG(3, 3) of size 7 intersecting π∗ in

B ∩ π∗ coincides with B.

Proof. Let X be an E+-blocking set in PG(3, 3) of size 7 such that X∩π∗ = B∩π∗.

We claim that X = B. It suffices to prove that there is at most one such E+-

blocking set X.

Put wx∗ := {w, x∗, u1, u2}. Then w ∈ B and x∗, u1, u2 are not contained in

B. Through the outer tangent wx∗, there are three secant planes, say π1, π2, π3,

of PG(3, 3) with respect to Q+(3, 3). For i ∈ {1, 2, 3}, the set X ∩πi is a blocking

set in πi of the external lines with respect to the conic Ci = πi ∩Q+(3, 3). Then

|X ∩πi| > 2 by Proposition 2.1.1, and so each πi contains at least one extra point

of X besides w. But as |X| = 7 and |X ∩ π∗| = |B ∩ π∗| = 4, there are precisely

three points in X \ π∗, showing that each πi contains precisely one extra point of
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X different from w. It suffices to show that this extra point in each πi is uniquely

determined.

As wx∗ is tangent to the conic Ci, the points u1 and u2 of πi are exterior with

respect to Ci. So, each uj with j ∈ {1, 2} is contained in a unique line Mij of

πi external to Ci. Each of the lines Mi1 and Mi2 contains a point of X. As πi

contains only one extra point of X besides w, this extra point of X in πi must

coincide with Mi1 ∩Mi2.

We thus have also shown the following.

Corollary 5.3.16. The E+-blocking sets in PG(3, 3) of size 7 disjoint from

Q+(3, 3) and intersecting a tangent plane in a set of four points three of which are

on the same outer tangent and the remaining one is on the other outer tangent

are precisely the E+-blocking sets described in Theorem 5.1.6.

5.3.3 Proof of Theorem 5.1.7

Let B be an E+-blocking set in PG(3, 3) of size 7. If B is not minimal, then

B = B′ ∪ {x}, where B′ is an E+-blocking set in PG(3, 3) of size 6 and x is a

point not belonging to B′. By Proposition 5.0.2, B′ = π \ Q+(3, 3) for some

tangent plane π of PG(3, 3) with respect to Q+(3, 3). We then have case (1) of

Theorem 5.1.7. So, we may assume the following:

Assumption 1: B is minimal.

As B \Q+(3, 3) is also an E+-blocking set in PG(3, 3), we have the following by

the minimality of B.

Lemma 5.3.17. B ∩Q+(3, 3) = ∅.

Each tangent plane of PG(3, 3) with respect to Q+(3, 3) meets B thus in at

most six points.
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Lemma 5.3.18. There is no tangent plane of PG(3, 3) with respect to Q+(3, 3)

meeting B in precisely six points.

Proof. If this were the case, then B would be as in (1) of Theorem 5.1.7, contrary

to the assumption that B is minimal.

Lemma 5.3.19. There exists no tangent plane of PG(3, 3) with respect to Q+(3, 3)

intersecting B in precisely five points.

Proof. Suppose π is a tangent plane intersecting B in precisely five points and

let x be the unique point in π \ (B ∪Q+(3, 3)). Through x, there are three lines

belonging to E+ not contained in π. Each of these lines contains at least one

point of B, showing that |B| = |B ∩π|+ |B \π| > 5 + 3 = 8, a contradiction.

We may also make the following assumption.

Assumption 2. There is no tangent plane of PG(3, 3) with respect

to Q+(3, 3) intersecting B in a set of four points three of which are on

the same outer tangent and the remaining one is on the other outer

tangent.

Indeed, if this were not the case, then Corollary 5.3.16 implies that we would

have case (2) of Theorem 5.1.7. We shall derive a contradiction at the end of this

section under the Assumptions 1 and 2.

Lemma 5.3.20. There exists no tangent plane of PG(3, 3) with respect to Q+(3, 3)

intersecting B in precisely four points.

Proof. Suppose π is a tangent plane intersecting B in precisely four points. By

Lemma 5.3.17 and Assumption 2, we then know that each of the two outer

tangents in π contains precisely two points of B. So, there exists a unique

line L in π that is secant to Q+(3, 3) and disjoint from B. There are two se-

cant planes, say π1, π2, of PG(3, 3) with respect to Q+(3, 3) through L. Each

of them contains at least two points of B by Proposition 2.1.1, showing that

|B| > |B ∩ π|+ |B ∩ π1|+ |B ∩ π2| > 4 + 2 + 2 = 8, a contradiction.
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Lemma 5.3.21. There exists no outer tangent intersecting B in precisely three

points.

Proof. Suppose L is an outer tangent meeting B in precisely three points. There

is a unique tangent plane π through L and π contains besides L one other outer

tangent L′. By Lemmas 5.3.17, 5.3.18, 5.3.19 and 5.3.20, we know that L′∩B = ∅.

There are three secant planes, say π1, π2, π3, of PG(3, 3) with respect to Q+(3, 3)

through L′. Each of them contains at least two points of B by Proposition 2.1.1,

giving that |B| > |B ∩ π|+ |B ∩ π1|+ |B ∩ π2|+ |B ∩ π3| > 3 + 2 + 2 + 2 = 9, a

contradiction.

Lemma 5.3.22. There exists no tangent plane of PG(3, 3) with respect to Q+(3, 3)

meeting B in precisely three points.

Proof. Suppose π is a tangent plane with tangency point x meeting B in precisely

three points. By Lemma 5.3.21, there exists a unique outer tangent L1 in π

containing precisely two points of B and the other outer tangent L2 in π contains

a unique point of B. By Lemma 5.3.15, we know that there exists a unique

E+-blocking set B∗ in PG(3, 3) of size 7 that meets π in (L1 \ {x}) ∪ (L2 ∩B).

Put L2 ∩ B = {y} and L2 = {x, u1, u2, y}. There are three secant planes,

say π1, π2, π3, of PG(3, 3) with respect to Q+(3, 3) through L2. Each of them

contains besides the point y at least one extra point of B by Proposition 2.1.1.

As ((π1 ∪ π2 ∪ π3) \ L2) ∩ B has size |B| − |B ∩ π| = 4, two of these planes,

say π1 and π2, contain precisely one extra point of B, while the remaining plane

π3 contains exactly two extra points of B (besides y). By the proof of Lemma

5.3.15, we know that each plane πi, i ∈ {1, 2, 3}, contains a unique point zi ∈ B∗

not belonging to L2 (that is, zi 6= y). If Mij denotes the unique external line in

πi through the point uj with j ∈ {1, 2}, then zi is obtained as the intersection

point of Mi1 and Mi2. Each of the external lines Mi1 and Mi2 must also contain

a point of B, showing that z1 and z2 are the unique points of B in respectively

π1 \ L2 and π2 \ L2. We claim that z3 is not a point of B.
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By the original construction of the E+-blocking set B∗ (see Theorem 5.1.6,

Lemma 5.3.15 and its proof), we know that B∗ = {y} ∪ (L1 \ {x}) ∪ {z1, z2, z3},

where (L1\{x})∪{z1, z2, z3} consists of the six points of π∗ := yτ that are exterior

with respect to the conic π∗ ∩Q+(3, 3).

Let z′ denote the unique point of L1 \ ({x} ∪ B). We know that there are at

least four points of B in π∗, namely z1, z2 and the two points in L1 \ {x, z′}. We

also know that there are at least three points of B outside π∗, namely y and two

points on the two external lines through z′ not contained in π∗ (note that yz′ is a

secant line). These must constitute all the seven points of B and it follows that

z3 is not a point of B.

Thus, z′ and z3 are the only points of B∗ not contained in B. Consider the

line z′z3 in π∗. It cannot be a secant line as both z′ and z3 are exterior points

with respect to π∗ ∩Q+(3, 3). If z′z3 is an external line containing besides z′ and

z3 two interior points with respect to π∗ ∩Q+(3, 3), then this external line would

be disjoint from B, which is impossible. So, z′z3 is an outer tangent in π∗ and

it must contain one of z1 and z2, say z1, as the third exterior point with respect

to π∗ ∩Q+(3, 3). The exterior point z1 is contained in two outer tangents of π∗.

One of them is z′z3. The other outer tangent through z1 contains precisely three

points of B, namely z1, z2 and one point of L1 ∩ B. But that is in contradiction

with Lemma 5.3.21. This completes the proof.

Lemma 5.3.23. Every outer tangent intersects B in either 0 or 1 point.

Proof. Suppose that this is not the case. Then by Lemmas 5.3.17 and 5.3.21, there

exists an outer tangent L meeting B in exactly two points. Let π be the unique

tangent plane containing L. By Lemmas 5.3.17, 5.3.18, 5.3.19, 5.3.20 and 5.3.22,

the other outer tangent L′ in π is disjoint from B. Then each of the three secant

planes, say π1, π2, π3, through L′ contains at least two points of B by Proposition

2.1.1, showing that |B| > |B∩π|+ |B∩π1|+ |B∩π2|+ |B∩π3| > 2+2+2+2 = 8,

a contradiction.
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Lemma 5.3.24. The number of outer tangents disjoint from B is equal to 4.

The number of outer tangents intersecting B in a singleton is equal to 28.

Proof. Let λi with i ∈ {0, 1} denote the number of outer tangents meeting B

in exactly i points. Each point of Q+(3, 3) is contained in precisely two outer

tangents and so the total number of outer tangents is equal to |Q+(3, 3)| ·2 = 16 ·

2 = 32. By Lemma 5.3.23, we thus have λ0+λ1 = 32. As each point ofB is outside

Q+(3, 3) by Lemma 5.3.17 and is contained in four outer tangents, counting the

pairs (x, L) with L an outer tangent and x ∈ L ∩ B yields λ1 = 7 · 4 = 28. We

then find λ0 = 32− λ1 = 4.

Lemma 5.3.25. If π is a secant plane of PG(3, 3) with respect to Q+(3, 3), then

among the six points of π that are exterior with respect to the conic π ∩Q+(3, 3)

at most two can belong to B.

Proof. If B contains at least three of the six exterior points of π, then there

would exist an outer tangent in π containing at least two of these points of B,

contradicting Lemma 5.3.23.

The following is a consequence of Lemmas 5.3.17 and 5.3.25.

Corollary 5.3.26. If π is a secant plane of PG(3, 3) with respect to Q+(3, 3),

then |π ∩ B| 6 5. If |π ∩ B| = 5, then all three points of π interior to the conic

π ∩Q+(3, 3) are contained in B and precisely two of the six points of π exterior

to π ∩Q+(3, 3) are contained in B.

Lemma 5.3.27. There cannot exist secant planes of PG(3, 3) with respect to

Q+(3, 3) meeting B in precisely five points.

Proof. Suppose π is a secant plane meeting B in precisely five points. Let y1 and

y2 denote the two points of B not contained in π. By Corollary 5.3.26, there

exist four points x1, x2, x3, x4 in π \B that are exterior with respect to the conic

π ∩ Q+(3, 3). Through each xi, i ∈ {1, 2, 3, 4}, there are two lines belonging to
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E+ not contained in π. As each of these lines contains a point of B, they have

to coincide with xiy1 and xiy2. It follows that y1x1, y1x2, y1x3 and y1x4 are four

external lines through y1, in contradiction with the fact that there are only three

external lines through y1.

Lemma 5.3.28. There exists no tangent plane of PG(3, 3) with respect to Q+(3, 3)

meeting B in precisely two points.

Proof. Suppose π is a tangent plane intersecting B in precisely two points. By

Lemma 5.3.23, each of the two outer tangents in π contains one point of B. Let

L denote the secant line with respect to Q+(3, 3) through the two points of π∩B.

We count the points of B contained in the four planes through L. By Lemmas

5.3.17, 5.3.18, 5.3.19, 5.3.20 and 5.3.22, each tangent plane contains at most two

points of B. This implies that each of the two tangent planes through L contains

precisely two points of B, namely the two points of L∩B = π ∩B. By Corollary

5.3.26 and Lemma 5.3.27, each of the two secant planes through L contains at

most four points of B (including the two points of L∩B). It follows that |B| 6 6,

a contradiction.

By Lemmas 5.3.17, 5.3.18, 5.3.19, 5.3.20, 5.3.22 and 5.3.28, we thus have the

following:

Corollary 5.3.29. Every tangent plane of PG(3, 3) with respect to Q+(3, 3) con-

tains either 0 or 1 point of B.

We are now ready to derive a contradiction (under the Assumptions 1 and

2). Let ni with i ∈ {0, 1} denote the number of tangent planes meeting B in

precisely i points. By Corollary 5.3.29, we have n0 + n1 = 16 and so n1 6 16.

The total number of outer tangents meeting B in a singleton is equal to n1. Then

n1 6 16 < 28 contradicts Lemma 5.3.24.
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Chapter 6

A characterization in PG(3, q)

Characterizations of the family of external or secant lines with respect to an

ovoid/quadric in PG(3, q) based on certain combinatorial properties have been

given by several authors. A characterization of the family of secant lines to an

ovoid in PG(3, q) was obtained in [28] for q odd and in [24] for q > 2 even, which

was further improved in [26] for all q > 2. A characterization of the family of

external lines to a hyperbolic quadric in PG(3, q) was given in [25] for all q (also

see [32] for a different characterization in terms of a point-subset of the Klein

quadric in PG(5, q)) and to an ovoid in PG(3, q) was obtained in [26] for all

q > 2. One can refer to [6, 7, 64, 65] for characterizations of external lines in

PG(3, q) with respect to quadric cone, oval cone and hyperoval cone.

6.1 Main result

In this chapter, we give a characterization of the secant lines with respect to a

hyperbolic quadric in PG(3, q) for odd q > 7. We prove the following result which

appears in [53]:

Theorem 6.1.1. Let S be a family of lines of PG(3, q), q > 7 odd, for which the

following properties are satisfied:
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(P1) There are q(q+1)
2

or q2 lines of S through a given point of PG(3, q). Further,

there exists a point which is contained in q(q+1)
2

lines of S and a point which

is contained in q2 lines of S.

(P2) Every plane π of PG(3, q) contains at least one line of S and one of the

following two cases occurs:

(P2a) every pencil of lines in π contains 0 or q lines of S.

(P2b) every pencil of lines in π contains q−1
2

, q+1
2

or q lines of S.

Then either S is the set of all secant lines with respect to a hyperbolic quadric

in PG(3, q), or the set of points each of which is contained in q2 lines of S form

a line L of PG(3, q) and S is a hypothetical family of q4+q3+2q2

2
lines of PG(3, q)

not containing L.

Let mi, 1 6 i 6 k, be k integers with 0 6 m1 < m2 < · · · < mk 6 q + 1. A

set K of points of PG(2, q) is said to be of class [m1,m2, . . . ,mk] if every line of

PG(2, q) meets K in mi points for some i ∈ {1, 2, . . . , k}. We need the following

result which was proved in [16, Theorem 4.6] for odd q > 7.

Proposition 6.1.2. [16] Let K be a set of class
[
1, q+1

2
, q+3

2

]
in PG(2, q), where

q > 7 is odd. Then K consists of an irreducible conic in PG(2, q) and its interior

points.

6.2 Combinatorial results

Let S be a family of lines of PG(3, q) for which the properties stated in Theorem

6.1.1 hold. A plane of PG(3, q) is said to be tangent or secant according as it

satisfies the property (P2a) or (P2b). For a given plane π of PG(3, q), we denote

by Sπ the set of lines of S which are contained in π.
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6.2.1 Tangent planes

Lemma 6.2.1. If π is a tangent plane of PG(3, q), then |Sπ| = q2.

Proof. Fix a line L of Sπ. Every line of Sπ meets L. By property (P2a), every

point of L is contained in q lines of Sπ. Then the numbers of lines of Sπ is

1 + (q + 1)(q − 1) = q2.

Lemma 6.2.2. Let π be a tangent plane. Then there are q2 + q points of π, each

of which is contained in q lines of Sπ. Equivalently, there is only one point of π

which is contained in no lines of Sπ.

Proof. Let Aπ (respectively, Bπ) be the set of points of π each of which is con-

tained in no lines (respectively, q lines) of Sπ. Then |Aπ| + |Bπ| = q2 + q + 1.

Consider the following set of point-line pairs:

X = {(x, L) : x ∈ Bπ, L ∈ Sπ, x ∈ L}.

By Lemma 6.2.1, |Sπ| = q2. Counting |X| in two ways, we get |Bπ| × q = |X| =

q2 × (q + 1). This gives |Bπ| = q2 + q and hence |Aπ| = 1.

For a tangent plane π, we denote by pπ the unique point of π which is contained

in no lines of Sπ (Lemma 6.2.2) and call it the pole of π.

Corollary 6.2.3. Let π be a tangent plane. Then the q+1 lines of π not contained

in Sπ are precisely the lines of π through the pole pπ.

6.2.2 Secant planes

In the rest of this chapter, we assume that q is odd and that q > 7. As an

application of Proposition 6.1.2, we have the following.

Lemma 6.2.4. Let K be a set of class
[
q−1
2
, q+1

2
, q
]

in PG(2, q). Then K consists

of the exterior points of an irreducible conic in PG(2, q).
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Proof. The complement K of K in PG(2, q) is a set of class
[
1, q+1

2
, q+3

2

]
. Since

q > 7, K consists of an irreducible conic C and its interior points by Proposition

6.1.2. Then K consists of the exterior points of C.

Lemma 6.2.5. Let π be a secant plane. Then Sπ consists of the secant lines of

an irreducible conic in π and so |Sπ| = q(q+1)
2

.

Proof. Each point of π is contained in (q − 1)/2, (q + 1)/2 or q lines of Sπ.

Therefore, in the dual plane πD of π, Sπ is a set of points of class
[
q−1
2
, q+1

2
, q
]
.

Since q > 7, by Lemma 6.2.4, Sπ consists of the exterior points of an irreducible

conic CD in πD. The dual of CD is an irreducible conic C in π and the lines of

π contained in CD are precisely the tangent lines of C. Since exterior points of

CD in πD correspond to the secant lines of C in π, it follows that Sπ is precisely

the set of secant lines of C in π and hence |Sπ| = q(q+1)
2

.

For a secant plane π of PG(3, q), we denote by γ(π) the irreducible conic

obtained in Lemma 6.2.5 with respect to which Sπ is the set of secant lines in

π. The sets of exterior and interior points of γ(π) in π are denoted by α(π) and

β(π), respectively. Then we have |γ(π)| = q+ 1, |α(π)| = q2+q
2

and |β(π)| = q2−q
2

.

Note that α(π), β(π) and γ(π) are precisely the sets of points of π which are

contained in q−1
2

, q+1
2

and q lines of Sπ, respectively.

6.3 Black points

Recall that every point of PG(3, q) is contained in q2 or q(q+1)
2

lines of S by

property (P1). We call a point of PG(3, q) black if it is contained in q2 lines of S.

6.3.1 Existence of tangent and secant planes

We show that both tangent and secant planes exist for which the following result

is needed.

92



§6.3. Black points

Lemma 6.3.1. The number of tangent planes through a line L of PG(3, q) is

equal to the number of black points contained in L.

Proof. Let t and b, respectively, denote the number of tangent planes through L

and the number of black points contained in L. We count in two different ways

the total number of lines of S \ {L} meeting L. We have |Sπ| = q2 or q(q+1)
2

by

Lemmas 6.2.1 and 6.2.5 for a plane π. Any line of S meeting L is contained in

some plane through L. If L ∈ S, then we get

t(q2 − 1) + (q + 1− t)
(
q(q + 1)

2
− 1

)
= b(q2 − 1) + (q + 1− b)

(
q(q + 1)

2
− 1

)
.

If L /∈ S, then we get

tq2 + (q + 1− t)q(q + 1)

2
= bq2 + (q + 1− b)q(q + 1)

2
.

In both cases, it follows that (t− b) q2−q
2

= 0 and hence t = b.

Corollary 6.3.2. Both tangent and secant planes exist.

Proof. By property (P1), let x (respectively, y) be a point of PG(3, q) which is

contained in q2 (respectively, q(q+1)
2

) lines of S. Taking L to be the line through

x and y, the corollary follows from Lemma 6.3.1 using the facts that x is a black

point but y is not a black point.

Corollary 6.3.3. Every line of a tangent plane contains at least one black point.

Corollary 6.3.4. Every black point is contained in some tangent plane.

6.3.2 Black points in secant planes

Lemma 6.3.5. If π is a secant plane, then the set of black points in π is contained

in the conic γ(π). In particular, there are exactly q lines of Sπ through a black

point in π.
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Proof. Let x be a black point in π. Suppose that x is not contained in γ(π). Fix

a line L of Sπ through x and consider the q + 1 planes of PG(3, q) through L.

There are q2 lines of S through x and each of them is contained in some plane

through L. Since x /∈ γ(π), the plane π contains at most q+1
2

lines of S through x.

Each of the remaining q planes through L contains at most q lines of S through

x. This implies that there are at most q+1
2

+ q(q − 1) lines of S through x. This

is not possible, as q+1
2

+ q(q − 1) < q2. So x ∈ γ(π).

Lemma 6.3.6. The number of black points in a given secant plane is independent

of that plane.

Proof. Let π be a secant plane and λπ denote the number of black points in π.

We count the total number of lines of S. The lines of S are divided into two

types:

(I) the q(q+1)
2

lines of S which are contained in π,

(II) those lines of S which meet π in a singleton.

Let θ be the number of type (II) lines of S. In order to calculate θ, we divide the

points of π into four groups:

(a) The λπ black points contained in π: These points are contained in γ(π) by

Lemma 6.3.5. Out of the q2 lines of S through such a point, q of them are

contained in π.

(b) The |γ(π)| − λπ points of γ(π) which are not black: Out of the q(q+1)
2

lines

of S through such a point, q of them are contained in π.

(c) The points of α(π): Out of the q(q+1)
2

lines of S through such a point, q−1
2

of them are contained in π.

(d) The points of β(π): Out of the q(q+1)
2

lines of S through such a point, q+1
2

of them are contained in π.
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Since |γ(π)| = q + 1, |α(π)| = q2+q
2

and |β(π)| = q2−q
2

, we get

θ = λπ(q2 − q) + (q + 1− λπ)

(
q(q + 1)

2
− q
)

+ |α(π)|
(
q(q + 1)

2
− q − 1

2

)
+ |β(π)|

(
q(q + 1)

2
− q + 1

2

)
= λπ

(
q2 − q

2

)
+
q3(q + 1)

2
.

Then |S| = θ +
q(q + 1)

2
= λπ

(
q2 − q

2

)
+
q4 + q3 + q2 + q

2
. Since |S| is a fixed

number, it follows that λπ is independent of the secant plane π.

By Lemma 6.3.6, we denote by λ the number of black points in a secant plane.

From the proof of Lemma 6.3.6, we thus have the following equation involving λ

and |S|:

λ

(
q2 − q

2

)
+
q4 + q3 + q2 + q

2
= |S|. (6.3.1)

As a consequence of Lemma 6.3.5, we have

Corollary 6.3.7. λ 6 q + 1.

6.3.3 Black points in tangent planes

Lemma 6.3.8. The number of black points in a given tangent plane is indepen-

dent of that plane.

Proof. Let π be a tangent plane with pole pπ and µπ be the number of black

points in π. We shall apply a similar argument as in the proof of Lemma 6.3.6

by calculating |S|. The lines of S are divided into two types: (I) the q2 lines of S

which are contained in π, and (II) those lines of S which meet π in a singleton.

Let θ be the number of type (II) lines of S. In order to calculate θ, we divide the

points of π into two groups:

(a) The µπ black points contained in π,
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(b) The q2 + q + 1− µπ points of π which are not black.

If x is a point of π which is different from pπ, then Lemma 6.2.2 implies that the

number of lines of S through x which are not contained in π is q2− q or q(q+1)
2
− q

according as x is a black point or not. We consider two cases depending on pπ is

a black point or not.

Case-1: pπ is a black point. In this case, Lemma 6.2.2 implies that none of the

q2 lines of S through pπ is contained in π. Then

θ = q2 + (µπ − 1)(q2 − q) + (q2 + q + 1− µπ)

(
q(q + 1)

2
− q
)

= µπ

(
q2 − q

2

)
+
q4 + q

2
.

Case-2: pπ is not a black point. In this case, none of the q(q+1)
2

lines of S through

pπ is contained in π by Lemma 6.2.2. Then

θ = µπ(q2 − q) +
q(q + 1)

2
+ (q2 + q − µπ)

(
q(q + 1)

2
− q
)

= µπ

(
q2 − q

2

)
+
q4 + q

2
.

In both cases, |S| = θ + q2 = µπ

(
q2 − q

2

)
+
q4 + 2q2 + q

2
. Since |S| is a fixed

number, it follows that µπ is independent of the tangent plane π.

By Lemma 6.3.8, we denote by µ the number of black points in a tangent

plane. From the proof of Lemma 6.3.8, we thus have the following equation

involving µ and |S|:

µ

(
q2 − q

2

)
+
q4 + 2q2 + q

2
= |S|. (6.3.2)

From equations (6.3.1) and (6.3.2), we have

µ = λ+ q. (6.3.3)
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6.3.4 Black points on a line

Lemma 6.3.9. The following hold:

(i) Every line of PG(3, q) contains 0, 1, 2 or q + 1 black points.

(ii) If a line of PG(3, q) contains exactly two black points, then it is a line of S.

Proof. Let L be a line of PG(3, q) and b be the number of black points contained

in L. Assume that b > 2. If there exists a secant plane π through L, then Lemma

6.3.5 implies that the line L contains b > 3 number of points of the conic γ(π)

in π, which is not possible. So all planes through L are tangent planes. Then all

the q + 1 points of L are black by Lemma 6.3.1. This proves (i).

If b = 2, then Lemma 6.3.1 implies that there exists a secant plane π through

L. By Lemma 6.3.5, L is a secant line of the conic γ(π) in π and hence a line of

Sπ. This proves (ii).

6.4 Proof of the main result

We shall continue with the notation used in the previous sections and the as-

sumption that q > 7. We denote by H the set of all black points of PG(3, q), and

by Hπ the set of black points of PG(3, q) which are contained in a given plane π.

Lemma 6.4.1. |H| = λ(q + 1). In particular, |H| 6 (q + 1)2.

Proof. Fix a secant plane π. Let L be a line of π which is external to the conic

γ(π). By Lemma 6.3.5, none of the points of L is black. Then, by Lemma 6.3.1,

each plane through L is a secant plane. The number of black points contained in

a secant plane is λ. Counting all the black points contained in the q + 1 planes

through L, we get |H| = λ(q + 1). Since λ 6 q + 1 by Corollary 6.3.7, we have

|H| 6 (q + 1)2.

Lemma 6.4.2. If π is a tangent plane, then Hπ contains a line.
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Proof. By Corollary 6.3.3, every line of π meets Hπ. By Proposition 1.7.1 (taking

d = 2), we then have |Hπ| > q+ 1, and equality holds if and only if Hπ itself is a

line of π.

Therefore, assume that |Hπ| > q + 1. Since q is odd, the maximum size of

an arc in π is q + 1. So Hπ cannot be an arc and hence there exists a line L of

π which contains at least three points of Hπ. Then all points of L are black by

Lemma 6.3.9(i) and so L is contained in Hπ.

Lemma 6.4.3. Let π be a tangent plane. Then Hπ is either a line or union of

two (intersecting) lines.

Proof. Using Lemmas 6.3.9(i) and 6.4.2, observe that there are only four possi-

bilities for the set Hπ:

(1) Hπ is a line.

(2) Hπ is the union of a line L and a point of π not contained in L.

(3) Hπ is the union of two (intersecting) lines.

(4) Hπ is the whole plane π.

We show that the possibilities (2) and (4) do not occur. If Hπ is the whole

plane π, then µ = q2 + q + 1 and so λ = q2 + 1 by equation (6.3.3), which is not

possible by Corollary 6.3.7.

Now suppose that Hπ is the union of a line L and a point x not on L. If

the pole pπ of π is different from x, then take T to be the line through pπ and x

(note that pπ may or may not be on L). If pπ = x, then take T to be any line

through pπ = x. Since π is a tangent plane, T is not a line of Sπ by Corollary

6.2.3 and hence is not a line of S. On the other hand, since T contains only two

black points (namely, the point x and the intersection point of L and T ), T is a

line of S by Lemma 6.3.9(ii). This leads to a contradiction.
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Lemma 6.4.4. Let π be a tangent plane. If Hπ is a line of PG(3, q), then the

following hold:

(i) Hπ is not a line of S.

(ii) Hπ = H.

(iii) S is a set of
q4 + q3 + 2q2

2
lines of PG(3, q) not containing the line H.

Proof. (i) Suppose that Hπ is a line of S. Then, by Corollary 6.2.3, the pole

pπ of π must be a point of π \ Hπ. Fix a line M of π through pπ. Note that

M /∈ S again by Corollary 6.2.3. Let x be the point of intersection of M and

Hπ. Since M contains only one black point (which is x), Lemma 6.3.1 implies

that M is contained in one tangent plane (namely, π) and q secant planes. Since

x 6= pπ, by Lemma 6.2.2, there are q lines of π through x which are contained in

S. In each of the q secant planes through M , x being a black point, there are q

lines through x which are contained in S by Lemma 6.3.5. Since M /∈ S, we get

q(q + 1) = q2 + q lines of S through x, which is not possible by property (P1).

(ii) Suppose that x is a black point which is not contained in Hπ. Let π′ be

the plane generated by the line Hπ and the point x. We have π 6= π′ as x is not

a black point of π. Each of the planes through the line Hπ is a tangent plane by

Lemma 6.3.1. In particular, π′ is a tangent plane. Note that π contains q + 1

black points, whereas π′ contains at least q + 2 black points. This contradicts

Lemma 6.3.8.

(iii) The line H is not contained in S by (i) and (ii). Since the tangent plane

π contains q + 1 black points, we have µ = q + 1. Then equation (6.3.2) gives

that |S| = q4 + q3 + 2q2

2
.

Lemma 6.4.4 proves the second possibility as mentioned in Theorem 6.1.1

for the family S. Theorem 6.1.1 for q ∈ {3, 5} and the family S of lines with

|S| = q4+q3+2q2

2
and satisfying the conditions of Theorem 6.1.1 are under our

investigation.
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In the rest of this section, we assume thatHπ is the union of two (intersecting)

lines for every tangent plane π. So µ = 2q + 1 and then equation (6.3.3) gives

that λ = q + 1. From equation (6.3.2) and Lemma 6.4.1, we get

|S| = q2(q + 1)2

2
and |H| = (q + 1)2. (6.4.1)

Lemma 6.4.5. Let π be a tangent plane. If Hπ is the union of the lines L and

L′ of π, then the pole pπ of π is the intersection point of L and L′.

Proof. Let x be the intersection point of L and L′. Suppose that pπ 6= x. Let

T be a line of π through pπ which does not contain x (note that pπ may or may

not be contained in L ∪ L′). Since π is a tangent plane, T is not a line of Sπ by

Corollary 6.2.3 and hence is not a line of S. On the other hand, since T contains

two black points (namely, the two intersection points of T with L and L′), it is a

line of S by Lemma 6.3.9(ii). This leads to a contradiction.

We call a line of PG(3, q) black if it is contained in H.

Lemma 6.4.6. Every black point is contained in at most two black lines.

Proof. Let x be a black point. If possible, suppose that there are three distinct

black lines L,L1, L2 each of which contains x. Let π (respectively, π′) be the

plane generated by L,L1 (respectively, L,L2). Each plane through L is a tangent

plane by Lemma 6.3.1. So π and π′ are tangent planes. Since Hπ = L ∪ L1 and

Hπ′ = L ∪ L2, it follows that π 6= π′. By Lemma 6.4.5, x is the pole of both π

and π′. So the lines through x which are contained in π or π′ are not lines of

S by Corollary 6.2.3. Thus each line of S through x is contained in some plane

through L which is different from both π and π′. It follows that the number of

lines of S through x is at most q(q − 1), which contradicts to the fact that there

are q2 lines of S through x (being a black point).

Lemma 6.4.7. Every black point is contained in precisely two black lines.
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Proof. Let x be a black point and L be a black line containing x. The existence

of such a line L follows from the facts that x is contained in a tangent plane

(Corollary 6.3.4) and that the set of all black points in that tangent plane is a

union of two black lines. By Lemma 6.3.1, let π1, π2, . . . , πq+1 be the q+1 tangent

planes through L. For 1 6 i 6 q + 1, we have Hπi = L ∪ Li for some black line

Li of πi different from L. Let {pi} = L ∩ Li. Lemma 6.4.6 implies that pi 6= pj

for 1 6 i 6= j 6 q + 1, and so L = {p1, p2, . . . , pq+1}. Since x ∈ L, we have x = pj

for some 1 6 j 6 q + 1. Thus, applying Lemma 6.4.6 again, it follows that x is

contained in precisely two black lines, namely, L and Lj.

The following two lemmas complete the proof of Theorem 6.1.1.

Lemma 6.4.8. The points of H together with the black lines form a hyperbolic

quadric in PG(3, q).

Proof. We have |H| = (q+ 1)2 by (6.4.1). It is enough to show that the points of

H together with the black lines form a projective generalized quadrangle of order

(q, 1). Clearly, this point-line geometry is a partial linear space. We shall verify

the axioms (Q1) and (Q2) of a generalized quadrangle defined in Section 1.6.

Each black line contains q + 1 points of H. By Lemma 6.4.7, each point of

H is contained in exactly two black lines. Thus the axiom (Q1) is satisfied with

s = q and t = 1.

We verify the axiom (Q2). Let L = {x1, x2, . . . , xq+1} be a black line and x be

a black point not contained in L. By Lemma 6.4.7, let Li be the second black line

through xi (different from L) for 1 6 i 6 q + 1. If Li and Lj intersect for i 6= j,

then the tangent plane π generated by Li and Lj contains L as well. This implies

that Hπ contains the union of three distinct black lines (namely L,Li, Lj), which

is not possible. Thus the black lines L1, L2, . . . , Lq+1 are pairwise disjoint. These

q+1 black lines contain (q+1)2 black points and hence their union must be equal

to H. In particular, x is a point of Lj for unique j ∈ {1, 2, . . . , q + 1}. Then Lj

is the unique black line containing xj and intersecting L.

101



§6.4. Proof of the main result

It now follows from the above that the points of H together with the black

lines form a projective generalized quadrangle of order (q, 1).

Lemma 6.4.9. The lines of S are precisely the secant lines to the hyperbolic

quadric H.

Proof. By (6.4.1), we have |S| =
q2(q + 1)2

2
, which is equal to the number of

secant lines to H. It is enough to show that every secant line to H is a line of

S. This follows from Lemma 6.3.9(ii), as every secant line to H contains exactly

two black points.
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[61] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes, Finite

Fields Appl. 3 (1997), no. 3, 187–202.

[62] J. A. Thas, Ovoidal translation planes, Arch. Math. (Basel) 23 (1972), 110–

112.

[63] J. Ueberberg, Foundations of Incidence Geometry, Projective and Polar

Spaces, Springer Monographs in Mathematics, Springer, Heidelberg, 2011.

[64] M. Zannetti, A characterization of the external lines of a hyperoval cone in

PG(3, q), q even, Discrete Math. 311 (2011), no. 4, 239–243.

[65] F. Zuanni, A characterization of the external lines of a hyperoval in PG(3, q),

q even, Discrete Math. 312 (2012), no. 6, 1257–1259.

109


	17f522d7-97f1-4e70-b4f2-d933b09de16e.pdf
	SUMMARY
	Preliminaries
	Point-line geometries
	Projective planes
	Projective spaces
	Bilinear and quadratic forms
	Irreducible conics in PG(2,q)
	Quadrics in PG(3,q)
	Quadratic cones

	Ovoids in PG(3,q)
	Generalized quadrangles
	Blocking sets

	Blocking sets in PG(2,q)
	E-blocking sets
	T-blocking sets
	S-blocking sets
	(ET)-blocking sets
	(ES)-blocking sets
	(TS)-blocking sets
	A new result
	Extending some results to ovals

	Blocking sets in PG(3,q): Elliptic quadrics
	S-blocking sets
	General properties
	The case q even
	The case q odd

	E-blocking sets
	(TS)-blocking sets
	(ES)-blocking sets
	(TE)-blocking sets
	Basic properties
	The case q odd
	The case q even

	T-blocking sets
	Generalizations to ovoids in PG(3,q)

	Blocking sets in PG(3,q): Quadratic cones
	Main result
	Preliminaries
	Proof of the main result

	Some minimal blocking sets in PG(3,q), q{2,3}
	Description of the main results
	Proofs for q=2
	Proof of Theorem 5.1.1
	Proof of Theorem 5.1.2
	Proof of Theorem 5.1.3

	Proofs for q=3
	Proofs of Theorems 5.1.4 and 5.1.5
	Proof of Theorem 5.1.6
	Proof of Theorem 5.1.7


	A characterization in PG(3,q)
	Main result
	Combinatorial results
	Tangent planes
	Secant planes

	Black points
	Existence of tangent and secant planes
	Black points in secant planes
	Black points in tangent planes
	Black points on a line

	Proof of the main result

	Bibliography


