Abstract

In eukaryotes, the eIF2.GTP.tRNA_i^{Met} ternary complex (TC) plays an important role in AUG start codon recognition. The heterotrimeric eIF2 complex consists of a core eIF2 γ subunit to which binds eIF2 α and eIF2 β subunits. Cryo-EM structure suggests that the eIF2 β interacts with the eIF2 γ subunit via α 1-helix (residues 127-143). The eIF2 β C-terminal zincbinding domain (ZBD) is subdivided into the S-loop, R-loop, and the T-loop. However, the role of the eIF2 β ZBD in the TC formation is not clearly understood. Previously, the $eIF2\beta^{S264Y}$ mutation (S-loop) was reported to show an intrinsic GTPase activity, defect in the TC formation leading to the de-repression of GCN4 expression (gcd⁻ phenotype), and relaxed stringency of the AUG codon recognition (Sui⁻ phenotype). However, we showed that the $eIF2\beta^{S264Y}$ mutation has an $eIF2\beta$ - γ interaction defect, raising the possibility that the $eIF2\gamma$ has another binding site for the eIF2 β subunit in addition to the eIF2 β - γ interaction via α 1helix. To gain insights into the mechanism of TC formation, we screened for the eIF2 β^{S264Y} intragenic suppressor mutation. We identified the eIF2 β^{T238A} mutation in the ZBD that suppressed the slow growth (Slg⁻), Gcd⁻, and Sui⁻ phenotype of the eIF2 β ^{S264Y} mutation. Biochemical analysis of the eIF2 β^{S264Y} mutation reveals the Met-tRNA_i^{Met} and eIF2 β interaction defects with the eIF2 γ subunit. The intragenic suppressor mutation eIF2 β^{T238A} in the T-loop restores the eIF2 β^{S264Y} binding with the eIF2 γ subunit but not the Met-tRNA_i^{Met} binding defect in the free TC. However, the Met-tRNA_i^{Met} binding to the eIF2 β ^{S264Y/T238A} double mutation is stable when associated with the 40S ribosomes, explaining the partial rescue of the Gcd⁻ phenotype. The eIF2 β R-loop appears to interact with the acceptor arm of the Met-tRNA_i^{Met}. Consistently, the eIF2 β^{N252D} mutation showed Slg⁻, Gcd⁻, and Sui⁻ phenotype, which can be partially suppressed by the T-loop eIF2 β^{T238A} mutation. This suggests that the eIF2 β R-loop and the T-loop cooperate for the stable binding of the MettRNA_i^{Met} to the eIF2 complex. Interestingly, the eIF2 β^{T238A} mutation also partially suppressed the Slg⁻, Gcd⁻, and Sui⁻ phenotype of the core GTPase eIF2 γ^{N135D} switch-I mutation, suggesting that the eIF2 β ZBD modulates the Met-tRNA_i^{Met} binding by stabilizing the eIF2 γ switch-I region. However, even though the eIF2 β^{T238A} mutation rescued the eIF2 β^{S264Y} mutant's binding defect, it did not rescue the growth defect associated with the eIF2 γ^{V281K} mutation (an equivalent MEHMO syndrome mutation in yeast that shows an eIF2 β binding defect). Our data suggest that in addition to the previously known interaction of eIF2 β with the eIF2 γ subunit via its α 1-helix, the eIF2 β -ZBD also interacts with the eIF2 γ subunit via guanine nucleotide-binding interface; thus, the eIF2 β - γ interacts via two distinct binding sites.